Print Email Facebook Twitter Adaptive time-delay estimation and control of optimized Stewart robot Title Adaptive time-delay estimation and control of optimized Stewart robot Author Tajdari, F. (TU Delft Emerging Materials) Date 2022 Abstract Aiming at a more efficient and accurate performance of parallel manipulators in the existence of complex kinematics and dynamics, a robust generalizable methodology is proposed here for an integrated 6-DOF Stewart platform with rotary time-delayed actuators torque control. The suggested method employs a time-delay linear–quadratic integral regulator with online artificial neural network gain adjustment. The unknown time-delay is estimated through a novel robust adaptive estimator. The global asymptotic stability of the estimator is proved via a Lyapunov function. The controller is developed in MATLAB software and implemented on the robot designed in ADAMS software to ensure that the real-time tracking error of a nonlinear system with an unknown time-delay is kept to a minimum. The sensitivity of the controller to the parameter choices is studied via implementing the controller in ADAMS software and is validated by investigating the performance on a naturalistic fabricated robot. The approach is assessed using simulation and experimental tests to show the feasibility, optimum, and zero-error convergence of the technique developed. Subject time-delay actuatoradaptive estimatotorque controrobust controlartificial neural network To reference this document use: http://resolver.tudelft.nl/uuid:6d00a215-fd40-40ab-ac55-882c658db75f DOI https://doi.org/10.1177/10775463221137141 ISSN 1077-5463 Source Journal of Vibration and Control Part of collection Institutional Repository Document type journal article Rights © 2022 F. Tajdari Files PDF 10775463221137141_1_.pdf 2.4 MB Close viewer /islandora/object/uuid:6d00a215-fd40-40ab-ac55-882c658db75f/datastream/OBJ/view