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Yttrium iron garnet is the ubiquitous magnetic insulator used for studying pure spin currents. The exchange
constants reported in the literature vary considerably between different experiments and fitting procedures. Here
we calculate them from first principles. The local Coulomb correction (U − J ) of density-functional theory
is chosen such that the parametrized spin model reproduces the experimental Curie temperature and a large
electronic band gap, ensuring an insulating phase. The magnon spectrum calculated with our parameters agrees
reasonably well with that measured by neutron scattering. A residual disagreement about the frequencies of
optical modes indicates the limits of the present methodology.

DOI: 10.1103/PhysRevB.95.014423

I. INTRODUCTION

Yttrium iron garnet (Y3Fe5O12, YIG) is a ferrimagnetic
insulator of particular significance due to its uniquely low
magnetic damping and relatively high Curie temperature
(∼570 K). There has been a recent resurgence in interest after
Kajiwara et al. [1] electrically injected spin waves into YIG
and detected (by the inverse spin Hall effect) their transmission
over macroscopic distances of 1 mm. Short-wavelength spin
waves excited electrically [2] or thermally [3] can also
diffuse over distances of 40 μm, even at room temperature,
demonstrating the potential of using spin waves as information
carriers in spintronic applications. The spin Seebeck effect
(SSE) in YIG [4,5] also garners attention in the field known as
spin caloritronics [6]. Recent results on the SSE in the related
garnet gadolinium-iron garnet [7] illustrate the importance of
understanding the many mode spin-wave spectrum [8].

Most experiments on YIG are interpreted in terms of a
single magnon band with parabolic dispersion and a single
exchange or spin-wave stiffness parameter. However, the
magnetic primitive cell contains 20 Fe moments and gives a
complicated spin-wave spectrum with many modes in the THz
range [9]. The quantitative quality of Heisenberg spin models
of YIG [10] relies on the accuracy of the derived parameters,
such as exchange constants and magnetic moments. Through
several decades of literature there is a plethora of suggested
exchange constants for YIG. All are either deduced from
macroscopic measurements such as calorimetry or are fitted
to the neutron-scattering data by Plant from 1977 [11]. The
triple axis inelastic neutron scattering only resolved 3 of
the 20 spin-wave branches, which has led to quite a spread
in exchange parameter. The limited experimental data are
insufficient to uniquely fit the exchange parameters. Moreover,
the spin-wave spectrum of YIG is anomalously sensitive to
small changes in the exchange constants. Small changes in
the exchange parameters appear to give dramatically different
spectra. Here we employ computational material science to
improve this unsatisfactory situation.

Different ab initio techniques can be employed to deduce
Heisenberg exchange parameters. Within density-functional

theory (DFT) the Heisenberg Hamiltonian can be fitted to
the calculated total energy to identify the coupling constants.
There are two common methods of doing this. In the “real-
space” method, the total energy of a set of collinear spin
configurations (SCs) with spin flips on different sites is mapped
onto the Hamiltonian [12,13]. The alternative method is to
compute the spin-wave stiffness from the total energy of spin
spirals by varying the pitch [14]. For simple, one component
systems such as Fe, Co, and Ni, both approaches give a good
agreement between themselves and also with experimental
data [15,16]. Here we have chosen to use the real-space method
with collinear spin configurations due to the simplicity of
implementation when treating the complex crystal structure
of YIG.

YIG belongs to the cubic centrosymmetric space group
Ia3d [17,18]. The primitive bcc unit cell contains 80 atoms.
One eighth of it is shown in Fig. 1(a). The magnetic struc-
ture as determined by neutron-diffraction measurements [19]
confirms that the spins of the FeO and FeT ions are locked
into an antiparallel configuration. There is a net magnetization
because of the 2:3 ratio of FeO to FeT sites in the unit cell,
hence YIG is a ferrimagnet.

As a magnetically soft insulator, the magnetism in YIG can
be well described by the Heisenberg model

Etot = E0 − 1

2

∑
i �=j

Jij Si · Sj , (1)

where E0 is the total energy excluding spin-spin interactions
and Si is a classical spin vector (of unit length) of the ith Fe
atom. The exchange interaction Jij is usually considered to be
short ranged, but in principle the index is summed over all spins
in the crystal. We initially consider only nearest-neighbor (NN)
exchange interactions (as done by most previous works); hence
there are three independent exchange constants, Jaa , Jdd , and
Jad covering inter- and intrasublattice interactions as indicated
in Fig. 1(b). Comparing the energy of the model Hamilto-
nian (1) with the total energy calculated ab initio for different
spin configurations which should be degenerate in energy, we
find unacceptably large energy differences (∼2 meV) when
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FIG. 1. (a) 1/8 of the YIG unit cell. The dodecahedrally coordi-
nated Y ions (green) occupy the 24c Wyckoff sites, the octahedrally
coordinated FeO ions (blue) occupy the 16a sites, and the tetrahedrally
coordinated FeT ions (yellow) occupy the 24d sites. The oxygen (red)
96h sites are not confined by symmetry, while all cation sites are
on special crystallographic positions. (b) The solid and dashed lines
denote the nearest- and next-nearest-neighbor exchange interactions.
The subscripts aa, dd , and ad stand for the FeO-FeO, FeT-FeT, and
FeO-FeT interactions, respectively.

only including NN interactions. Therefore, later in this paper
we extend the model to include also next-nearest-neighbor
(NNN) exchange interactions parametrized by three more
exchange constants J ′

aa , J ′
dd , and J ′

ad [also shown in Fig. 1(b)].
Previous works which have included interactions beyond
NN [20] suffer from an increased overparametrization of the
fitting of only three spin-wave modes in the neutron-scattering
data. Our minimal reliance on experimental data puts the
justification for the inclusion of NNN on a more solid footing.

We disregard the magnetocrystalline anisotropy energy
which for pure YIG is known to be small and in fact is beyond
the accuracy of our methods. The dipolar interactions do not
interfere with the exchange energy and can be added a posteri-
ori. The exchange constants are fitted to a number of different
collinear spin configurations in which spins are flipped from
the ground state. The number of different configurations must
be larger than the number of adjustable parameters (three for
the NN model and six for the NNN model).

II. EXCHANGE FITTING

We now give a brief outline of how the Heisenberg
Hamiltonian is mapped onto the different spin configurations.

We consider a spin wave of wave vector k that induces small
oscillations in a spin moment Si on site i about the collinear
ground state:

φk
i (t) = k · Ri + φα(t). (2)

The total energy Eq. (1) becomes

E
φ

ij (k,θ,t) = E0 − 1

2

∑
i �=j

Jij SiSj

{
cos θi cos θj

+ sin θi sin θj cos
[
φk

i (t) − φk
j (t)

]}
. (3)

The equation of motion for the spin magnetic moments is

dSi(t)

dt
= −Si(t) × Hi (4)

where Hi = −∂E/∂Si is the effective magnetic field. Then

dφj

dt
sin θj =

∑
i(�=j )

JijSi

[
cos θi sin θj

− cos
(
φk

i − φk
j

)
sin θi cos θj

]
. (5)

If θi � 1 or (π − θi) � 1, dφ/dt ≈ ωk. Expanding Eq. (5) to
lowest order leads to

ωkθj =
∑
i(�=j )

JijSi[Aiθj − cos(k · dij )θiAj ], (6)

where dij = Ri − Rj , and the prefactor Ai is +1 for θi ≈ 0
and −1 for θi ≈ π . The frequencies of the normal modes of
this spin system are the eigenvalues of the matrix M:

Mαβ =
(∑

γ

Jαγ (0)Sγ Aγ

)
δαβ − Jαβ(k)SβAα, (7)

Jαβ(k) =
∑

d

Jαβ cos(k · dij ), (8)

where the indices α and β label the 20 different positions in
the unit cell, δαβ is the Kronecker delta, dij = Ri − Rj is a
vector from an ion in the i sublattice to a nearest neighbor in
the j sublattice, and the sum is over all such vectors related
by symmetry. The eigenvalue problem can be solved in terms
of the real-space exchange constants Jαβ calculated from the
total energies of collinear magnetic structures.

To calculate the total energy we use DFT as implemented in
the Vienna ab initio simulation package (VASP5.3) [21,22]. The
electronic structure is described in the local-density approx-
imation (LDA) and the generalized gradient approximation
(GGA). Projector augmented wave pseudopotentials [23] with
the Perdew-Wang 91 gradient-corrected functional are used.
A 500-eV plane-wave cutoff and a 6 × 6 × 6 Monkhorst-Pack
k-point mesh was found to lead to well-converged results.
We use the atomic positions from the experimental structural
parameters (Table I) [17,18].

For the (ferrimagnetic) ground-state structure, the calcu-
lated spin magnetic moment of the Fe ions and the electronic
band gap of YIG are shown in Fig. 2(a). The total moment
(including Fe, Y, and O ions) per formula unit is consistently
5 μB , in good agreement with experimental data [24,25]. The
majority of the moment within the unit cell is highly localized
to the Fe sites. In the DFT-LDA calculation, the spin moments
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TABLE I. Atomic positions in the YIG unit cell. The lattice
constant is a = 12.376 Å.

Wyckoff position x y z

FeO 16a 0.0000 0.0000 0.0000
FeT 24d 0.3750 0.0000 0.2500
Y 24c 0.1250 0.0000 0.2500
O 96h 0.9726 0.0572 0.1492

are −3.49 μB for FeO, 3.47μB for FeT, and the electronic
band gap has the value 0.35 eV, much lower than the value
of 2.85 eV found experimentally [26,27]. Density-functional
theory in its bare form is not good at predicting the energy
gap of insulators. This can be overcome to some extent by the
inclusion of an on-site Coulomb correction (LDA/GGA+U ).
In this study the Hubbard U and Hund’s J parameters for the Fe
atoms are determined [28–30] by DFT-GGA+U calculations
with U − J in the range 0.7–5.7 eV. The electronic energy
gap as well as the spin moments increase slightly with
U − J . Even for the largest values of U − J , the moments

(a)

(b)

FIG. 2. (a) Spin moments of Fe ions (per panel) and band gap
of YIG (lower panel) obtained by computed in the LDA, GGA, and
GGA+U approximations. Symbols mark calculated values and solid
lines are guides for the eye. (b) The band structures of YIG in the
GGA (left) and GGA+U , U − J = 5.7 eV (right) calculations.

TABLE II. Comparison of magnetic moments in the literature.
Note that per formula unit includes only the Fe moments and not the
total moment of the unit cell. All ab initio studies are for the Ia3̄d

point group.

μs (μB)
FeT FeO Per formula unit Method Source

5.37 4.11 7.89 Neutron (Ia3̄d) Ref. [31]
4.01 3.95 4.13 Neutron (R3̄)a

1.56 0.62 3.44 LSDA Ref. [32]
3.36 3.41 3.26 LDA Ref. [24]
3.95 4.06 3.73 GGA + C Ref. [30]
3.47 3.49 3.43 LDA This paper
4.02 4.12 3.82 GGA + U (3.7 eV)

aFe sites in the R3̄ space group retain the tetrahedral and octahedral
coordinations.

are much smaller than expected for the pure Fe3+ S = 5/2
state [μs = g

√
S(S + 1) = 5.916μB ], but quite close to those

found from neutron diffraction [31]. However, these authors
suggest that the true space group of YIG is R3̄. Only when
they perform the refinement in this setting do they obtain good
agreement with the known net moment of YIG. The moments
obtained are very similar to those found here and by other ab
initio calculations (Table II ). The difference between the Ia3̄d

and R3̄ groups appears to be sufficiently small to not affect the
results much. The electronic energy gap is still smaller than the
experimental value, but an even larger U − J causes unwanted
artifacts such as a negative gap for spin-flip excitations.

III. EXCHANGE INTERACTIONS

A. Nearest neighbor

Ten different SCs were used to determine the exchange con-
stants. Considering the NN model first, with Eaa = JaaSaSa ,
Edd = JddSdSd , and Ead = JadSaSd , where Sa and Sd are the
+ and − directions of FeO and FeT ions, the total energies
Eq. (1) are listed in Table III.

The exchange constants are the solutions of each of four
linear equations. To minimize the dependence of the results
on the choice of the spin configurations, the final results were
obtained using all the configurations a–j listed in Table III.
The final values, shown in Fig. 3, were obtained by a least-
squares fit of the 10 SCs. In the DFT-LDA/GGA calculations,
the exchange constant Jdd is negative, meaning that this

TABLE III. Total energies for different spin configurations (SC)
in the NN model. SC (a) is the ground-state structure. The other
configurations are gotten by changing the magnetization directions
of part of Fe ions.

SC Etot SC Etot

a E0 + 32Eaa + 24Edd + 48Ead f E0 + 32Eaa − 24Edd

b E0 + 32Eaa + 24Edd − 48Ead g E0 − 32Eaa − 24Edd

c E0 + 32Eaa + 8Edd + 32Ead h E0 − 32Eaa − 8Edd

d E0 + 32Eaa − 8Edd + 16Ead i E0 − 32Eaa + 8Edd

e E0 + 16Eaa + 16Edd + 28Ead j E0 − 32Eaa + 24Edd
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FIG. 3. Calculated exchange constants (in units of meV) by the
DFT-GGA+U method. The error bars denote the square root of
the squared 2 norm of the residual (l2 norm). Exchange constants
favoring a ferromagnetic alignment are here denoted negative. Inset:
Calculated exchange constants (in units of meV) in the DFT-
GGA/LDA approximations.

interaction favors ferromagnetic order. This result contradicts
all previous results in the literature [33,34]—indicating that
the DFT-LDA/GGA method fails to describe the magnetism
of YIG. However, in the GGA+U method, all three exchange
constants are positive (antiferromagnetic), Jdd is an order of
magnitude smaller than Jad , while Jaa is about half of Jdd .
The strong Jad intersublattice exchange dominates the smaller
intrasublattice energies, forcing the ferrimagnetic ground state
of the bulk. All three exchange constants decrease as U − J

increases, because a larger on-site U − J of the Fe atoms leads
to a more localized electronic structure resulting in weaker
exchange. Previous works assumed that Jad � Jaa,Jdd , which
is required to constrain the fitting problem [9,20,33,34]. Our
results show directly the smallness of the intrasublattice
exchange energies because of a stronger objective function
for the least-squares-fitting procedure.

B. Next-nearest neighbor

The error bars in Fig. 3 reveal a large covariance in the
fitting of the NN spin model to the different configurations.
Even though the errors decrease with increasing U − J , the
variance in the energies is still comparable to its estimation.
This situation can be improved by extending the NN to the
NNN model with additional parameters J ′

aa , J ′
dd , and J ′

ad . The
total energies of the corresponding SC can be rewritten (shown
in Table IV), where E′

aa = J ′
aaSaSa , E′

dd = J ′
ddSdSd , E′

ad =
J ′

adSaSd , and Etot stands for the total energy expression in the
NN model. The exchange constants are obtained from the set
of linear equations for the SCs a–g listed in the table. SCs h–j
are selected to check whether the results are reasonable. Ecal

are the calculated total energies for U − J = 4.7 eV relative to
the ground state (SC a). The energy difference for the different
SC is of the order of 1–10 eV, which is much larger than the
accuracy of the calculation (10−3 eV). �ENNN (��ENN) is

TABLE IV. Total energies for different SC in the NNN model.
The energies are in units of meV. Etot and E′

tot are the total energies
for the NN and the NNN models. Ecal are the total energies calculated
ab initio and �ENNN (�ENN) are the differences between the fitted
total energies from the NNN (NN) spin model and Ecal. Ecal of the
ground-state structure [SC (a)] is denoted zero.

SC E′
tot Ecal �ENNN �ENN

a Etot + 24E′
aa + 48E′

dd + 48E′
ad 0.00 0.37 − 59.97

b Etot + 24E′
aa + 48E′

dd − 48E′
ad 4225.32 − 0.31 − 3.69

c Etot + 24E′
aa + 16E′

dd + 32E′
ad 1907.02 0.39 − 58.19

d Etot + 24E′
aa + 16E′

dd + 16E′
ad 566.01 0.38 44.42

e Etot + 12E′
aa + 32E′

dd + 32E′
ad 778.86 0.23 5.97

f Etot + 24E′
aa + 48E′

dd 1987.42 − 0.21 − 36.19
g Etot + 24E′

aa + 48E′
dd 1228.54 0.24 52.29

h Etot + 24E′
aa + 16E′

dd 1848.59 − 3.04 43.44
i Etot + 24E′

aa + 16E′
dd 1885.68 − 7.62 49.55

j Etot + 24E′
aa + 48E′

dd 2018.23 − 13.40 − 39.80

the difference between the total energies calculated ab initio
and the fitted total energies from the NNN (NN) spin model and
constitutes the energy that has not been accounted for in our
model Hamiltonian. This can be, for example, from longer-
ranged exchange interactions or anisotropies in the system.
The difference between the first-principles total energy and
the spin model |�ENN| amounts to up to 7.85%, but the NNN
model has a significantly smaller value |�ENNN| = 0.66%,
which we deem to be acceptable.

In Table V we compare our results to other values in the
literature. Almost all of the exchange interactions we calcu-
lated are lower than that obtained from fitting experimental
data. Especially Jad , the strongest interaction, is lower than
others have suggested, although the NNN U − J = 3.7 eV
is quite close. Lowering U − J gives an increase in Jad ,
but at the expense of the size of the magnetic moments
and the width of the electronic band gap. One may naively
think that lower exchange constants will give a lower Curie
temperature, however because the intrasublattice interactions
are also antiferromagnetic in character the situation is more
complicated.

Where NNN values are calculated the order of magnitude
agrees with attempts by Plant to fit the neutron-scattering data
with a NNN model [20].

Compared with the NN model (as shown in Table V), the
values of Jaa , Jdd , and Jad in the NNN model became slightly
smaller but still obey Jad � Jdd > Jaa . The additional inter-
actions J ′

dd and J ′
ad are of the same order of magnitude as the

NN intrasublattice exchange and are also antiferromagnetic.
Notably, J ′

dd > Jdd interaction.

IV. INTRINSIC PROPERTIES

A. Curie temperature and magnetization

We calculate the temperature dependence of the magneti-
zation and the Curie temperature (TC) from the spin models by
Metropolis Monte Carlo (MC) simulations on a 32 × 32 × 32
supercell (each unit cell contains 20 spins) with periodic
boundary conditions [37]. The temperature dependence of
the total magnetization, M = Md − Ma , is shown in Fig. 4,
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TABLE V. Comparison of exchange constants in the literature. (*) All fits to neutron data use the same data from Plant [11].

(meV)
Jad Jdd Jaa J ′

ad J ′
dd J ′

aa Method Reference

3.10 1.40 0.96 Molecular field approximation Ref. [35]
3.90 0.78 0.78 Magnetization fit Ref. [9]
3.40 0.69 0.69 Neutron spectrum fit* Ref. [11]
2.60 1.00 0.56 Molecular field approximation Ref. [36]
3.20 0.45 0.00 0.23 0.14 0.75 Neutron spectrum fit* Ref. [20]
3.40 1.20 0.33 Neutron spectrum fit* Ref. [34]
3.176 0.223 0.112 Ab initio GGA + U (U − J = 3.7 eV) This paper
2.917 0.213 0.090 0.218 0.228 0.005
2.584 0.160 0.091 Ab initio GGA + U (U − J = 4.7 eV)
2.387 0.154 0.072 0.163 0.179 0.004

normalized by M(T = 0 K). The TC of the NN model
exchange parameters using different U − J values are shown
in the inset. The experimental value of TC is 570 K [35,38]. In
the NN model, the larger U gives smaller exchange constants
and hence weaker interactions giving a lower TC . This follows
intuitively because of the increased localization of the wave
functions reducing the exchange and hence also the Curie
temperature. With the parameters U − J = 4.7 eV, TC is
540 K, in good agreement with the experimental value. The
magnetization curve of the NNN model is quite similar to
the NN model with a slightly higher TC of 590 K using the
parameters exchange parameters when U − J = 3.7 eV. The
finite slope at low temperatures in both models does not agree
with experiments. This deviation is ascribed to our disregard of
quantum statistics in the simulations. Nevertheless, at higher
temperatures the calculated shapes of the magnetization and
TC agree well with experiments.

FIG. 4. The magnetization curves of the NN model (red line)
and the NNN model (blue line) with exchange constants fitted to
the ab initio energies for U − J = 4.7 eV for the NN model and
U − J = 3.7 eV for the NNN model. The experimental data [35] are
indicated by circles. Inset: The Curie temperatures of the NN model
fitted to the ab initio results for different U − J .

FIG. 5. Spin-wave spectrum in the first Brillouin zone for the NN
model (red dots) derived from ab initio calculations with U − J =
4.7 eV and the NNN model (blue dots) where U − J = 3.7 eV and
compared to the available neutron-scattering data (black circles) [11].
(a) The entire spin-wave spectrum. (b) Comparison of the shape of
the parabolic optical mode; the results are shifted by +3.35 THz
for the NN model and +2.40 THz for the NNN model and compared
to the 83-K experimental data. The directions in k space use the
standard labels of the bcc reciprocal lattice.

014423-5



XIE, JIN, HE, BAUER, BARKER, AND XIA PHYSICAL REVIEW B 95, 014423 (2017)

B. Spin-wave spectrum

Next we calculate the spin-wave spectrum from our
parametrized Heisenberg model. We choose the exchange
constants with the parameter U − J = 4.7 eV for the NN
model and the parameter U − J = 3.7 eV for the NNN model.
The analytic results of the spin-wave spectrum Eq. (7) are
shown in Fig. 5. The experimental data from Refs. [11,20] are
for 83 K. Strictly speaking only the low-temperature results
should be compared with theory.

1. Dispersion relation of the acoustic mode

The slopes of the lowest acoustic mode of the NN model and
the NNN model both agree well with the neutron-scattering
data [Fig. 5(a)]. The spin-wave stiffness D is governed by
the second derivative at the � point. D = 77 × 10−41 and
85 × 10−41J m2 for the NN and NNN models, respectively.
The values reported in the literature obtained by different
experimental methods [34,35,39] vary from D = 42 × 10−41

to 109 × 10−41J m2.

2. High-frequency modes

As shown in Fig. 5(a), the spectra of both models in the
range of 8–11 THz have a similar structure. However, the
modes of the NNN model are more separated, especially at
the � point, which we ascribe to J ′

dd . At high frequencies
(above 12 THz), the modes of the NNN model have much
higher frequency compared to the corresponding ones of the
NN model.

3. Spin-wave gap

The (exchange) gap between two lowest (acoustic and
optical) modes at the � point of the NN model is about

5 THz, while the one of the NNN model is 0.945 THz
higher due to the larger Jad in the latter, but is still smaller
than the experimental gap of about 8 THz at 83 K. The
comparison of the frequency-shifted second lowest mode with
the experimental data is shown in Fig. 5(b). The slope of
the NNN model is a little steeper than that of the one of the
NN model, and they are both in good agreement with the
experimental data.

V. CONCLUSIONS

In conclusion, we report exchange constants of YIG
computed from first principles but with an adjustable U − J

constant to increase the density-functional band gap. We
found that NNN interactions are required for a good fit of
total energies by a Heisenberg model. Our results reproduce
the experimental Curie temperature well. In addition, we
obtain a spin-wave spectrum in which the lowest acoustic
mode agrees very well with the available neutron-scattering
data. However, the lowest optical mode energy appears to be
underestimated, emphasizing the need for more studies of the
temperature-dependent spin-wave spectrum.
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