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Abstract

Indoor positioning has several variants as a result of multiple years of
study on the topic. Using WiFi signals as the technology to compute the
position of the target device is one of the most extended and researched
techniques. WiFi Access Points are extensively deployed in all indoor envir-
onments where WiFi indoor localization has a potential application. Sev-
eral of these indoor localization techniques use the Received Signal Strength
(RSS) to compute the location of the device. However, the accuracy of the
methods that use this parameter is usually low, in the meter range. Eight
years ago, the new advances in wireless communications allowed to retrieve
the phase of an incoming signal from a commercial chipset, and not only
its strength. With the phase, we can use the physical and mathematical
principles of signal transmission to compute the distance to a device. In
the long term, it can contribute to having a more robust and long-lasting
method to perform indoor localization if we can overcome the challenge of
obtaining a delay-free phase measurement. For indoor distances, a small
delay in the time estimation can be translated into a significant error in the
ranging result.

In this work, we re-implement the ranging technique of the paper Chronos:
Decimeter-Level Localization with a Single WiFi Access Point. This well-
known research work explains how to obtain an accurate phase measurement
from a WiFi chipset and the technique to compute the distance to the target.
We provide a guide of the installation and implementation of the hardware
and software required for a system like this, indicating the critical points
to allow future researchers a quick set up of the equipment. We revisit the
procedure of Chronos to obtain a delay-free phase measurement and show
how to re-implement it from scratch. Finally, we perform a validation of
the system in four different steps, from the use of ideal data to progressively
introducing the real distortions of indoor wireless data. The evaluation of
the performance of the system leads us to present the finding of a non-linear
delay that can produce significant distance errors.
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Preface

Science and technology progress over the years and face new challenging
goals. Once the outdoor localization was mastered, a new field of technolo-
gies and techniques arose to overcome the challenges of indoor positioning.

After attending the course Smartphone Sensing, given by Marco Zúñiga,
I was interested in the innovations in indoor localization. In this course, we
used WiFi signals and motion sensors in combination with machine learning
to localize and track people inside a building; and I felt driven to find a way
of eliminating the inconvenience of spending hours gathering data for the
training phase. This way, the idea of going back to the origins of localization
arose: the signal triangulation techniques. Technology just needed to allow
the extraction of signal parameters like the phase from commercial chipsets,
which was not possible until eight years ago.

This Thesis has given me the chance of working in the theory and applica-
tion of a state-of-the-art technique. I hope I have contributed my little grain
of sand for future researchers in this group that want to keep investigating
this technique of multiple potential applications.

Firstly, I would like to thank Marco for his daring and encouragement when
I chose this topic; and for showing me the indoor localization world. I would
also like to thank Przemek for his enthusiasm, eagerness to learn new things
and support in the challenging moments. Secondly, thanks to the VLC
group for the progress meetings and their valuable suggestions. I would like
to extend thanks to all people that made me feel at home these two years,
friends and colleges that I have met in The Netherlands. To all my family
and friends in Spain, thank you for you encouragement in the rough times.
Finally, I would like to thank my parents and my sister. You are my pillars
and who brought me this fantastic opportunity. Thank you for your infinite
patience and your unconditional support; this is mine as much as yours.

Patricia Garćıa Ferŕın
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22nd April 2019

v



vi



Contents

Preface v

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Prior Work 5

3 Theoretical Foundation 9

3.1 Using the Phase for Localization . . . . . . . . . . . . . . . . 9

3.2 Channel State Information in WiFi chipsets . . . . . . . . . . 10

3.3 Chronos Approach . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Deterministic ToF Computation . . . . . . . . . . . . 15

3.3.2 Hardware Delays . . . . . . . . . . . . . . . . . . . . . 17

3.3.3 Direct Path Determination . . . . . . . . . . . . . . . 22

4 Implementation 25

4.1 Hardware Selection . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 IWL 5300 Card and Linux CSI Tool . . . . . . . . . . 26

4.2 Software Implementation . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Channel Hopping Protocol and Data Gathering . . . . 33

4.2.2 Delay Compensation Code . . . . . . . . . . . . . . . . 37

4.2.3 Inverse Non-Uniform Discrete Fourier Transform Al-
gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Evaluation 43

5.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Ideal Data . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.2 Ideal Data With Delays . . . . . . . . . . . . . . . . . 45

5.1.3 Cable Data . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.4 Wireless Data . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . 49

vii



5.2.1 Ideal Data Results . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Ideal Data With Delays Results . . . . . . . . . . . . . 50
5.2.3 Cable Data Results . . . . . . . . . . . . . . . . . . . . 50
5.2.4 Wireless Data Results . . . . . . . . . . . . . . . . . . 55

5.3 The New Delay . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusions and Future Work 67
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A Atheros CSI Tool 77
A.1 Tool Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2 Hardware Selection . . . . . . . . . . . . . . . . . . . . . . . . 77
A.3 OpenWRT Software Tool . . . . . . . . . . . . . . . . . . . . 78
A.4 Problems Found . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.4.1 Image Flashing . . . . . . . . . . . . . . . . . . . . . . 79
A.4.2 Empty Log File . . . . . . . . . . . . . . . . . . . . . . 79

A.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

viii



Chapter 1

Introduction

1.1 Motivation

Localization techniques have been continuously evolving for years. Its out-
doors accuracy has significantly increased, and it is so widespread that the
GPS has almost banished the use of maps. Millions of users have navig-
ators that can guide them from door to door on a road trip or real-time
smart-phone applications that can direct them while doing sightseeing in a
city. However, people spend most of their time inside buildings: at home,
at work, in the supermarket; places where the GPS signal can’t reach. Ap-
plications that allow, for instance, to guide a blind person inside a building
to the required location, to locate at any time the assets of a hospital or the
monitoring of senior people at home to extend their autonomy; are now a
closer reality.

The possibility of doing indoor localization has been under study since the
2000s for different radiofrequency technologies: RFID, WiFi, IR, and even
ultrasound. Among all of them, we will put our focus on WiFi. The main
reason is that the infrastructure is already present in the buildings where
indoor localization has a potential application. However, it isn’t a system
designed for it; so its purpose is not giving an accurate signal measurement
but reliable communications to the users connected to it.

For this reason, the most popular techniques until 2013 use metrics that
do not provide exact physical information of the signal like the phase or the
amplitude do. These are based on Machine Learning and use the Received
Signal Strength Indicator (RSSI) parameter received from the closest WiFi
Access Points (AP) as training data. The RSSI is just an indicator of the
signal quality that accounts for the received power level after the possible
signal loss. Therefore, it is not a parameter that we can use to extract
accurate information about the signal. Machine Learning can deal with the
uncertainty of the RSSI with long training processes and big datasets of this
indicator in different locations. However, this procedure has to be repeated
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every time the environment changed significantly.
Since six years ago, with the possibility of measuring the phase and amp-

litude of the incoming signal (also called Channel State Information), a new
opportunity appeared to perform robust indoor WiFi localization: compute
the position by triangulation using the phase of the received signal. This
approach uses an accurate metric like the phase and mathematics to locate
the device. Its main positive aspects are:

• We do not need long processes of data gathering anymore. The system
can localize the device just knowing where in the building the APs are
installed.

• The clock synchronization between the transmitter and the receiver of
the signal is not necessary. One of the problems of transferring the
GPS triangulation technique to WiFi was that GPS always requires
to be in time synchronization with the receiver.

• The accuracy has improved so much that, in the last two years, some
approaches have been able to narrow it down to the decimeter level.

On the other hand, we need to deal with the following weak points:

• The number of APs and the antennas receiving the signal is a signi-
ficant factor to obtain accurate results. The antennas will influence
the one-dimensional localization (also called ranging) results, while the
number of APs can be essential to triangulate the position.

• It is necessary to have accurate phase information of the signal to
compute the distance between devices. The data cannot be affected
by any delays because in such short distances the smallest delay can
lead to a significant distance error. Removing the possible external
delays is a challenging process as we will see in the course of this
Thesis.

1.2 Problem Statement

In spite of all the advantages of this new method, only around ten research
groups have been working on this technique. The pioneers built devices
that needed big arrays of antennas to localize other devices. In the last four
years, three mainstream papers have provided solutions that can apply this
method to systems resembling actual off-the-shelf hardware.

A big part of this Thesis is centered on researching why such a promising
technique like this one is not widespread, not even in systems for commercial
use. In general terms, the complexity of the method and the fact that there
are only two hardware options available to report the phase are the main
bottlenecks of this approach.
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We will choose one of the latest publications on this topic and build-up
from scratch the method that they propose. This way, we aim to point out
the problematic aspects of the process. We will also be able to compare the
results we obtain, analyze the method and indicate possible improvement
options for future work. We choose the system in Chronos: Decimeter-Level
Localization with a Single WiFi Access Point [36] from the CSAIL research
group at MIT as our objective. In Chapter 2 we will show the reasons for
selecting this paper among the existing prior work on the topic.

Summarizing, we can formulate the research objective of this work as fol-
lows:

Analyze indoor localization techniques that rely on CSI metrics using the
method of the paper Chronos: Decimeter-Level Localization with a Single
WiFi Access Point as the basis, and identify the reasons why such a prom-
ising technique is not widespread.

1.3 Contributions

The key contributions that we provide in this work are:

1. A guide that explains how to perform WiFi indoor localization using
the phase and, in particular, the method used in Chronos.

2. An analysis of the build-up of this system, where we can point out two
possible bottlenecks:

• The installation and setup of the hardware and software to collect
the phase information.

• The implementation of the code to process the data and compute
the localization.

3. A thorough evaluation of the method that leads us to observe the pres-
ence of a non-linear delay that does not appear in Chronos and causes
a mismatch between the obtained results and the expected output.

The objective of this analysis is to get the future researcher one step closer
to the state-of-the-art in this subject. Give her a starting point in the topic,
helping to solve future problems and avoid making similar mistakes.

1.4 Structure

In Chapter 2, we will compare the prior work on the topic with Chronos, and
show the reasons why we chose the re-implementation of this method as the
basis of our work. Chapter 3 will explain all the general theoretical concepts
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of this approach, and how the paper Chronos: Decimeter-Level Localization
with a Single WiFi Access Point [36] gets to localize, using only one Access
Point. Chapter 4 will show the steps we took to recreate the method of
Chronos. A big part of this chapter will be about the problems encountered
during the process, and the solutions and alternatives found for them. In
Chapter 5, we will evaluate the system and method performance, and we
will analyze the results. Finally, in Chapter 6 we will present the conclusions
and some possible ideas for future work.
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Chapter 2

Prior Work

In this Chapter, we will cite some of the most relevant papers about WiFi
indoor localization using CSI of the past few years. We will justify the
choice of the work Chronos: Decimeter-Level Localization with a Single WiFi
Access Point as the system to reimplement with a comparative chart of
different approaches.

WiFi indoor localization is a research problem that has been under study
for around two decades. There are some approaches that we can only apply
if we know the CSI. Some others, do not rely on the precise measurement of
the signal to obtain the position of the device that sent it. For this reason,
there are multiple proposals that combine both techniques, especially in the
past four years when the idea of using CSI for localizing started to grow.
We can summarize the most widespread techniques in the following classi-
fication:

Techniques that do not require CSI

a. Sensor Fusion: Consists of using the data of several sensors like ac-
celerometers, gyroscopes or barometers to track the movement of the
device. The method known as dead reckoning can compute the pos-
ition taking as a starting point a known location and measuring the
direction and distance traveled from there. [12, 8]

b. Machine Learning: There are multiple techniques related to the use
of Machine Learning, from the K-Nearest Neighbours (KNN), where
it decides the location of a data point based on its closest neighbors’;
to the Deep Neural Networks, where we train a complex network to
learn one or more physical parameters of the chosen locations. Fin-
gerprinting is another popular technique based on building radiofre-
quency maps from snapshots taken at training time. In the online
phase, the comparison between the live picture and the previously gen-
erated maps outputs the solution. In multiple occasions, the Received
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Signal Strength Indicator (RSSI) is the parameter used to build the
radio map database, which is just a power level indicator and thus not
completely reliable as a physical parameter of the signal. More recent
techniques combine other signals like the magnetic field or directly use
the CSI to build the fingerprints. [2, 1, 31, 5]

c. Time Difference of Arrival (TDoA): The TDoA uses the time differ-
ence of arrival at two different receivers of a beacon sent by the tar-
get. This method requires, either the synchronization between APs or
between the APs and the device so that we can interpret the timestamp
of the transmission correctly. Trilateration technique computes the fi-
nal position using the distance, that in this case, we can get from
the TDoA. Mathematics plays a significant role in this method to
determine the final location of the target. Theorems like the triangle
inequality can filter out distance results that are physically impossible,
and we can use them in combination with other techniques apart from
TDoA. [50, 49]

Techniques that require CSI

a. Time of Flight (ToF): The ToF is the time taken by the signal to
travel between endpoints. Knowing the speed of transmission of the
medium and the time taken, we can compute the distance. As we will
see in the next Chapter, it is possible to use the phase of the incoming
signal to calculate the ToF.

b. Angle of Arrival (AoA): The AoA indicates the direction from where
the signal was sent, from the receiver’s point of view. This parameter,
when combined with the distance at which the emission happened,
can be used to compute the bi-dimensional location of the transmitter.
This technique is called triangulation.

Looking at Figure 2.1 we can see an incoming signal arriving at two
different antennas separated at a distance d. The signal travels an ex-
tra path to get to the antenna further away, so there is a difference ∆ϕ
between the phase measured at both antennas. This phase difference,
in turn, can be expressed in terms of the Angle of Arrival (θ) and the
distance between antennas (d) as follows [20]:

∆ϕ =
2πf

c
d sin θ mod 2π (2.1)

There is always one reference antenna whose ∆ϕ is zero.

Chronos doesn’t use the AoA to compute the bi-dimensional position
of the device. In Table 2.1 we can see how several papers make use of
it.
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Figure 2.1: Graphical representation of the Angle of Arrival.

In Table 2.1, we summarize the most relevant features of 10 mainstream
papers about WiFi indoor localization with CSI.

In this Thesis we chose to reimplement the system explained in Chronos
[36]. It shows good accuracy, with a median error for both Line of Sight and
Non-Line of Sight measurements below 1m. It does not require a training
phase like the deep learning approaches. It is one of the few methods that
needs only one AP to be able to localize, and it does not require any extra
infrastructure. Finally, the system does not need a network synchronization
to compute the ToF, which reduces the dependency of the network with
the target and vice-versa to obtain results. For all these reasons, it is a
suitable choice to analyze the feasibility of CSI for indoor localization based
on WiFi.
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Table 2.1: Prior Work on WiFi Indoor Localization Using CSI. The tech-
niques marked with (∗) require a training phase.

Name Year
No.
APs

Extra
Infrastructure

Median
Error

Technique

[47] ArrayTrack 2013 6
Yes
Antenna ar-
ray

0.31m
CSI + AoA with
multiple antennas
(8 ant.)

[30] CUPID 2013 5 No 2m
CSI + AoA +
triangulation

[40] FILA 2013 1 - 6 No
LoS: <0.5m
NLoS: <1.2m

CSI + KNN(∗) +
trilateration

[22] SAIL 2014 1 No 2.5m
CSI + ToF +
dead reckoning

[20] SpotFi 2015 5 No 0.6m
CSI + AoA +
triangulation

[48] ToneTrack 2015 4

Yes
Rice
WARP
platform

0.9m
CSI + ToF +
triangle
inequality

[36] Chronos 2016 1 No
LoS: 0.65m
NLoS: 0.98m

CSI + ToF +
geometrical
constrained
quadratic
optimization

[38] DeepFi 2017 1 No
LoS: 0.8m
NLoS: 1.5m

CSI fingerprinting
with deep

learning(∗)

[7] ConFi 2017 1 No 1.4m

CSI +
Convolutional

Neural Netw.(∗)

[37] CiFi 2017 1 No
LoS: 2.2m
NLoS: 1.8m

CSI + AoA as
input for Deep
Convolutional

Neural Netw.(∗)
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Chapter 3

Theoretical Foundation

In this chapter, we will show how to compute the location of a device with the
phase of a WiFi signal and the system that Chronos implements to do it. In
Section 3.1, we will explain the physical foundations of how the phase allows
computing the distance at which the transmitter sent the signal. In Section
3.2, we will introduce the Channel State Information and its importance to
know how the communication channel affects the phase. Finally, in Section
3.3 we will describe in detail the process Chronos that follows to compute
the Time of Flight with high accuracy.

3.1 Using the Phase for Localization

The phase and the amplitude are the main parameters that define a signal.
The amplitude provides information about the attenuation that a signal
experiences during its course over the transmission medium. From the phase,
we can extract the time that has passed for the whole journey. Either for a
direct path transmission between the transmitter and the receiver or after
any reflections.

There are two common ways of representing a signal, as a sinusoidal func-
tion, and as a complex number in the polar representation, like in Figure 3.1.
While the time-dependent representation is probably easier to picture, the
angular representation gives us a better chance of observing the progression
of the phase.

The mathematical expression of the sinusoidal function is the following:

y = A sin (2πft+ Φ) (3.1)

being A the amplitude, f the frequency, t the time and Φ the initial phase
offset.

We can express a signal in the polar representation and its translation to
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Figure 3.1: Two ways of representing a signal.

the complex number expression as:

h = ae−j2πft (3.2)

z = a (cos (2πft) + j sin (2πft)) (3.3)

where h is the channel response comprising the phase and amplitude of the
signal and a is the amplitude. Likewise, the phase can also be expressed as:

ϕ = ∠h = −2πft mod 2π (3.4)

The Time of Flight or ToF is the time taken by the signal to travel from the
transmitter to the receiver, that we will call τ . In real setups, this parameter
gets distorted by the hardware imperfections in the signal processing process.
Therefore, the objective is to obtain the “clean” ToF that corresponds to
the true time taken for the journey, without the hardware delays. We will
talk about them in Section 3.3.

Another issue to face is how to compute the ToF deterministically if after
every period the phase is “reset” to 0 and a new turn starts. Looking
back at the phase expression in Equation (3.4) the mod 2π shows that,
it is impossible to tell how many periods of the signal have passed before
arriving at the receiver. We can see in the picture in Figure 3.2 that, we
obtain infinite possibilities for the ToF (τ) with the same phase measurement
(ϕ). Which in turn, translates to infinite distance solutions. In Section 3.3
we will show the technique that Chronos uses to unequivocally obtain this
parameter.

3.2 Channel State Information in WiFi chipsets

Now that we know the possibility that the phase offers to measure the dis-
tance between two devices; we need to see how to obtain it from an ordinary
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Figure 3.2: Phase uncertainty for distance calculation.

commercial WiFi chipset and the format in which this data is reported to
be able to interpret it.

To begin with, the Channel State Information (CSI) is the matrix that
will give us the phase information and the amplitude of the incoming signal
at each receiving antenna.

In WiFi transmissions, the transmitters send the data spread in different
frequencies, not only the carrier frequency or center frequency. This data
is multiplexed using Frequency Division Multiplexing so that the amount
of information that can be sent simultaneously increases and the commu-
nication can happen at a higher rate. Each of those frequencies is called a
subcarrier of the signal. The modulation scheme indicates the selection of
the subcarriers where to send the data. Specifically, in WiFi, the subcarriers
are chosen orthogonal to one another, following the Orthogonal Frequency-
Division Multiplexing (OFDM) method, to prevent the interference between
carriers [28].

The key concept here is not the technique used to transmit the signal, but
the fact that, for a single emission there is data sent in multiple frequencies.
We can take profit of that, and obtain more information measuring the phase
in all of them.

Consequently, the CSI matrix should comprehend the data collected by
each antenna in the receiver side, sent by each transmitter’s antenna in all
the signal subcarrier frequencies. This matrix is always formed by complex
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numbers that represent the amplitude and phase of the incoming signals as
in Equation (3.3), but the arrangement of the dimensions usually depends on
the software that reports it. Figure 3.3 shows an illustration of the process.
The channel response hi,k reports the phase and amplitude of the signal that
the RX antenna k received referenced to the pilot tone that the TX antenna
i sent. Therefore, in the matrix in the picture, each row is for a transmitting
antenna, and each column represents the receiving antenna. Finally, we will
have a matrix like this one per subcarrier of the transmitted signal.

However, not every WiFi chipset has the capability of computing the
phase. On top of that, only a few of those can report it to the user. The
hardware calculates the CSI at the physical layer, and only specialized soft-
ware designed for those particular chipsets can pass it up to the userspace.

There are two essential requirements that a chipset must fulfill to be valid
to compute and report these values to the user:

1. It must have the possibility of operation with the IEEE802.11n WiFi
protocol.

2. There must be a dedicated software for that device, that can access the
physical layer and extract the phase information up to the userspace.

Operation in IEEE802.11n WiFi protocol

The IEEE 802.11n WiFi standard has an operating mode that can measure
the transmission medium. This mode was added to the protocol to enhance
the range and quality of the communications. If the characteristics of the
channel at the current time are known, the transmission of each transmitter
antenna can be intentionally desynchronized to avoid creating, to a certain
extent, destructive interference at the receiver. The purpose of this channel
sounding process is to perform what is called beamforming. Beamforming,
as the name indicates, aims to form a directional beam between the receiver
and transmitter. This way, the chance of avoiding the obstacles that block
the direct transmission between them increases.

The procedure is the following: the transmitter sends a series of refer-
ence pilot tones known to the receiver. Each of the receiving antennas can
compute the attenuation and phase rotation the signal suffered during the
over-the-air journey, based on the difference between the expected and the
actual incoming signal. This computation is what we call the CSI matrix.
From here, the system builds the so-called steering matrix to change the
phase of the outgoing signal and reduce the destructive interference at the
receiver.

CSI extraction tool

Furthermore, we encounter the barrier of the data accessibility. In general
terms, it is never accessible to the user. The Channel State Information

12



Figure 3.3: Channel State Information matrix generation.

is used by the physical layer to adjust the transmission at the lowest level;
however, the higher layers do not need this information at all. For this
reason, it remains hidden to the user with no inner knowledge of how the
hardware is programmed to compute it. This problem creates the need of
finding a “software bridge” that can pass the information from the lowest
layer, up to any layer in which the user has access granted.

Currently, this custom made software exists for two different commercial
hardware options. In both cases, it is a solution given by developers that
know the firmware and hardware architecture of the chipset and not by the
chipset manufacturers.

The first one was developed by Daniel Halperin et al. [18] in 2011 for the
Intel Wireless Link 5300 (IWL5300) chipsets. As this was the first software
to appear, most of the oldest papers about WiFi indoor localization with
CSI use it for their implementations. The second option was developed in
2015 by Yaxiong Xie et al. [46] for Atheros chipsets. In theory, it works
for NIC cards in laptops or chipsets installed in APs. Although this feature
provides a versatility that some recent papers have leveraged; in our case the
lack of testing of the tool in the new Qualcomm Atheros chipsets prevented
us from using them in this work. For this reason, we use the IWL5300 and
Halperin’s Linux tool.

Besides these two options, even though not explored in this project, there
is a possibility of using research equipment like Software Defined Radio to
measure the phase, simulating how a realistic WiFi system works. However,
it is more convenient to work with off-the-shelf WiFi chipsets. It will give
us a real approach to the delays that appear when we work with commercial
hardware, oriented to functionality rather than precision.

3.3 Chronos Approach

In this section, we will explain the technique of the paper Chronos: Decimeter-
Level Localization with a Single WiFi Access Point. The main achievement
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of Chronos is to compute the Time of Flight down to nanosecond accuracy.
Once the accurate ToF is known, the distance between devices is obtained
multiplying it by the speed of light. However, the possibility of finding a
precise solution for the ToF depends on how the following three important
issues are solved:

1. An isolated phase measurement is not enough information to
compute the ToF unequivocally. Among all the periodic solutions
that a measured phase can show, Chronos can select the one corres-
ponding to the real distance. The phase measured from only one signal
cannot output a deterministic ToF. However, the combination of the
solutions from multiple transmissions at different frequencies can pin-
point the actual ToF, and therefore the distance between sender and
receiver. In Figure 3.4a we illustrate this first step of the functioning
of Chronos. The transmitter sends a beacon to the receiver, located
at a distance d, at three different frequencies. The receiver measures
a phase that can correspond to any of the positions marked with the
vertical dashed black lines, repeated period after period. If we only
use the frequency of the top, we could obtain four different locations
marked with the red dot including the true d. When we add the second
signal in the middle, we reduce from four to two possible outputs that
coincide in both blue and green frequencies. Finally, we obtain the
deterministic solution when only one solution for the yellow frequency
coincides with the previous two.

Chronos obtains the deterministic ToF by measuring the signal in
different WiFi channels and matching the coinciding solution in all
of them.

2. The hardware introduces delays to the phase measurement
that distort the distance results. These delays show a mismatch
between the real phase of the signal at the distance where it was meas-
ured and the value reported by the hardware. Choronos identifies three
of them: Packet Detection Delay, Carrier Frequency Offset and PLL
Offset. They distort the ideal or “delay-free” data that we expect to
obtain, like the one in Figure 3.4a. We could see up to tenths of meters
error in the final result if we do not remove these delays. In Section
3.3.2 we will explain the methods that Chronos presents to get rid of
them, and in Chapter 5 we will see their effect on the data and the
results.

Chronos detects three hardware delays that distort the data we meas-
ure. If left uncompensated, they can cause errors of tenths of meters
in the final location estimation of the device.
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3. It is necessary to know how to distinguish the direct path
among all the reflections that arrive at the receiver to com-
pute the real ToF. The data in Figure 3.4a is ideal, not only because
it is “delay-free”, but also because it represents a unique and direct
path transmission between the sender and receiver. In practice, the
incoming signal is formed by the different reflections of the same signal
transmission in the obstacles of the environment. Only with the phase
of the direct path, we can compute the real ToF. As we will see in
Section 3.3.3, Chronos uses the Inverse Non-Uniform Discrete Fourier
Transform (INDFT) to disentangle the different paths. Figure 3.4b
shows the output of this algorithm, where each peak represents one
path. The X-axis shows the ToF of those trajectories and the Y-axis
their magnitude. We can deduce that following the direct path the
signal gets faster to the receiver, even though its intensity might not
be the highest. The direct path transmission will still be the fastest
even if it is attenuated after passing through an obstacle in its way.
Therefore, in a profile like the one in Figure 3.4b, the first peak indic-
ates a ToF for the direct path of 1 ns, and two reflections arriving at
3 ns and 7 ns.

Chronos uses the INDFT to disentangle the different paths of the
transmission. The first peak of the output profile indicates the direct
path and therefore is the one to use for computing the ToF.

3.3.1 Deterministic ToF Computation

First of all, we know that with a single phase measurement, only sampling
the signal at one frequency, it is mathematically impossible to get a unique
solution for the ToF. Furthermore, the timer resolution is proportional to 1

B ,
and consequently, the smallest distance that we can tell apart is proportional
to c

B ; where B is the bandwidth and c the speed of the light. Therefore,
with the bandwidth of one channel, of 20 MHz and 40 MHz for the 2.4 GHz
and 5 GHz band respectively; in the worst-case scenario we can get up to
15 m and 7.5 m error. For indoor setups, this spatial resolution is too broad
to be useful. What Chronos does to fix this limitation, is to increase the
bandwidth by measuring the signal in the whole band of available WiFi
channels.

When we measure the signal at different frequencies, the amount of data
available to compute the ToF increases. In Equation (3.2) we can see the link
between the phase and the frequency. For the same ToF (τ), transmissions
at different frequencies (f1, ..., fn) result in different phase measurements
(∠h1, ...,∠hn). Chronos combines the data from all the channels and selects,
among all the possible solutions the one ∠h that coincides in all of them.
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Figure 3.4: Conceptual scheme of Chronos to obtain the ToF. (a)
The combination of multiple frequency signals allows us to obtain a single
solution for the ToF. (b) After the removing the delays introduced by the
hardware, the INDFT algorithm presented in Chronos allows to identify
the direct path and its ToF. In the picture, the output of the INDFT for a
transmission with three significant paths.

Combining the bands of 2.4 GHz and 5 GHz, we end up with data from a
total of 37 channels, which adds up to 560 MHz and reduces the worst-case
error to 1.79 ns and 53.55 cm. There are 13 channels in the 2.4 GHz band,
whose center frequency spacing is uniform at a 20 MHz distance and 24 in
the 5 GHz band, but in this case, organized in non-contiguous frequency
chunks [29]. There are groups of channels with central frequencies 20 MHz
apart, and then empty spaces in the frequency spectrum separating these
groups. This arrangement of the channels is beneficial for converging to a
deterministic result with fewer data. If the chosen frequency distribution is
uneven, the probability of having just one ∠h that coincides for all the chan-
nels increases because we do not favor the periodic nature of the phase. If the
spacing between frequencies is equal, we need a larger frequency sampling
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to obtain the same deterministic result.

Chronos implements a Request-Acknowledgement protocol to do the syn-
chronous channel swap for the data gathering process. It is impossible
to measure all the channels simultaneously, so we already know that this
method will introduce an unavoidable error. This error would be a factor to
take into account for the channel coherence time, that is the time for which
the channel conditions are assumed to remain unchanged. However, in our
case, this factor is not as relevant, because we want to test the concept for
static objects and not for tracking moving objects. So, we can assume that
we are meeting the requirement of the coherence time.

3.3.2 Hardware Delays

The principal goal of WiFi chipsets is to perform a reliable communication
between devices, and therefore, the precision in time measurement is not an
indispensable requirement. The packet reception chain introduces a series of
delays in each stage of the signal processing process before the Channel State
Information recording step. The CSI recording ends the signal processing
and leads to the packet processing stage.

The delay compensation is crucial for the accurate ToF computation.
Chronos is the first system that gets to compute the ToF down to nano-
second accuracy. The system can achieve this precision because apart from
augmenting the resolution with the bandwidth increase, it can identify and
remove effectively the delays introduced at the signal processing stage.

In this section, we will explain the delays identified in Chronos: the Packet
Detection Delay (PDD), Carrier Frequency Offset (CFO) and Phase Locked
Loop (PLL) Offset, and their effects on the time measurement and the way
of counteracting them.

Packet Detection Delay

The Packet Detection Delay, as the name itself indicates, is the delay intro-
duced while detecting the presence of a packet. The uncertainty in reaching
the energy threshold indicative of an incoming packet introduces a delay.
This delay will translate into an extra phase rotation. Its quantity is some-
what arbitrary, as it depends on variable factors like the TX power or the
transmission medium to reach that threshold.

Chronos identifies the introduction of this delay in the downconversion
process of the signal processing stage. The received signal is sampled, and
the subcarriers are downconverted to the carrier frequency before reaching
the Packet Detector block, that will acknowledge the presence of a packet if
these samples exceed the energy threshold. To illustrate better this process,
we can take a look at the example in Figure 3.5. The figure in the middle
represents the center frequency, while the one below and the one above
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Figure 3.5: Downsampling example for two subcarriers and the car-
rier with sampling frequency of 20 times the central frequency.
These frequencies do not correspond to any of those used in OFDM. On top,
the subcarrier representation with frequency below the carrier frequency. In
the middle, the carrier or central frequency representation. At the bottom,
the subcarrier representation with frequency above the carrier frequency.

represent a faster and a slower subcarrier respectively. The downconversion
consists on moving these frequencies from passband to baseband. In other
words, to transport them to the vicinity of the carrier frequency. To do
this, the sampler downsamples all the subcarriers using the center frequency
sampling rate. The vertical lines the Figure 3.5 represent this sampling 1.

We can see that with this rate one signal is oversampled and the other
one is undersampled. We get extra information from the slowest signal
while we lose some samples from the fastest ones. The center frequency,
on the contrary, suffers no variations. For instance, let’s assume that the
first maximum of each signal indicates the energy threshold and the time
passed to reach that point for the central frequency (0.125 ns) is the Packet
Detection Delay.

The receiver chain can compensate the delay for the carrier frequency
(subcarrier 0); this is, it will apply 2πfi,0δi to all subcarriers, where δi is the
PDD. In Figure 3.5 this corresponds to π

2 rad. With this compensation, the
zero subcarrier will always measure the real channel. However, if we deduct
π
2 rad from the faster subcarrier, we will not be able to remove the delay
entirely. On the contrary, for the slower subcarrier, we will overcompensate
with π

2 rad, and it will also not indicate the true phase of the incoming
signal. Knowing that the extra phase due to the PDD for every subcarrier
is −2πfi,kδi, in Equation (3.5) we see the mathematical expression for the

1The rate doesn’t adjust to real OFDM so that the effect of the delay could be more
visible in the example
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resulting added phase (∆i,k) because of the PDD.

∆i,k = −2π(fi,k − fi,0)δi (3.5)

The solution that Chronos introduces is to use the data that is not affected
by the PDD to make all the computations. It will not get rid of the delay;
instead, it will use only the zero subcarrier from all the available subcarri-
ers of each channel. With the data of just the carrier frequency, it is still
possible to apply the method depicted in Figure 3.4a, where the combina-
tion of all possible solutions outputs the real ToF. However, isolating the
zero subcarrier it is not that straightforward, because in WiFi there is no
transmission in this frequency. The solution adopted is to interpolate the
zero subcarrier using the rest of the subcarrier’s data. We will see in Section
4.2.2 how to do it.

Chronos uses only the data of subcarrier zero or carrier frequency (∠hi,0)
of each channel i for all the computations, because it is not affected by the
Packet Detection Delay.

PLL Phase Offset

The PLL (Phase Locked Loop) is the closed-loop system in charge of gen-
erating the signal for the carrier frequency. It compares the phase of the
reference signal generated by an oscillator, with the output carrier phase
that the system is producing and adjusts the Voltage Controlled Oscillator
(VCO) accordingly. The VCO is the final component in charge of generating
the carrier [3].

In a protocol that continuously changes the channel of operation, it is
impossible to control the state in which the PLL starts. This hardware will
at some point synchronize the phase of the reference and output signal, but
it will not necessarily happen in the signal’s zero crossing corresponding to
0 rad. On the other end, the receiver has to generate its carrier frequency
to demodulate the signal. The PLL Offset appears due to the imbalance of
the carrier’s initial phase between the transmitter and the receiver.

We can take a look at Figure 3.6 to see the effect of this offset. The
transmitter’s in orange and receiver’s signal in blue have a phase mismatch
of π

2 , one has an initial phase Φtx
0 = 0 and the other Φrx

0 = π
2 . The green

vertical line represents the real ToF. When the orange TX signal arrives
at the receiver, this one interprets the phase with the carrier that it has
generated; this is, the blue signal. Therefore, we can see a mismatch of
Φrx = −π

2 . Similarly, the transmitter would suffer an offset of Φtx = π
2 if it

had to interpret the incoming phase over the orange signal. Equations 3.6
and 3.7 show the mathematical expression of this effect.
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Figure 3.6: PLL Offset illustration. TX signal in orange and RX signal in
blue with a mismatch of π

2 is translated to an offset of ±π
2 when measuring

the phase at each end. The green line marks the real ToF, while the red
shows the output affected by the delay.

Φrx
i,0(t) = ej(Φ

tx
i,0−Φrxi,0) (3.6)

Φtx
i,0(t) = ej(Φ

rx
i,0−Φtxi,0) (3.7)

This delay will produce a shift in the data. All the subcarriers of the signal
will experience the same mismatch, but there will be variations between
channels, as the generation of each carrier frequency will produce its initial
phase offset.

The nature and effect of the Carrier Frequency Offset is very similar to
this one. We will use the same procedure to eliminate both; explained in
the following section.

Carrier Frequency Offset

The Carrier Frequency Offset (CFO) is caused by the mismatch between
the expected carrier frequency and the real one used to codify and send the
signal. This difference entails an imbalance that adds an extra rotation to
the phase. If left uncompensated, it can also create interference between
carriers and complicate the decoding and recovery of information [6]. Even
though the margins in the fabrication of components are tight, there is
always a chance of having a little deviation in the frequency generation.

In Figure 3.7 we can see an illustration of the CFO 2. Again, in orange
we have the carrier frequency signal for the transmitter and in blue for the

2For both CFO and PLL Offset the phase and frequency mismatch has been exagerated
to appreciate the effect.
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Figure 3.7: CFO illustration. TX signal in orange and RX signal in blue with
a frequency mismatch of frx = 2ftx is translated to an offset of Φ = ±2πftxt
when measuring the phase at each end. The green line marks the real ToF,
while the red shows the output affected by the delay.

receiver. Now, the RX frequency is two times the TX frequency frx = 2ftx.
We assume that the initial phase is the same for both to visualize it better.
As before, the green line marks the real ToF. We can transform the frequency
mismatch into phase with the well-known Φ = 2πft. The receiver will
interpret the phase value of the orange signal as the one marked in red
in its own blue signal, which is deviated Φrx = −2πftxt. The transmitter
experiences the opposite Φrx = 2πftxt deviation from the real value marked
with the green line and it is shifted to the red mark. Mathematically, we
can express it with in Equations (3.8) and (3.9).

CFOrxi,0(t) = ej(f
tx
i,0−frxi,0)t (3.8)

CFOtxi,0(t) = ej(f
rx
i,0−f txi,0)t (3.9)

The CFO will cause the same effect as the PLL Offset in the data, and
we can take advantage of how similar they are to remove them as a whole.
We can notice that in all the Equations (3.7), (3.6), (3.9) and (3.8), the only
difference between transmitter and receiver is the sign. We can take profit
of the channel hopping protocol’s need to communicate transmitter and
receiver to collect data from both sides, and if we put all of them together
we can express the extra added phase as:

CSIrx = hi,0e
j(f txi,0−frxi,0)t+(Φtxi,0−Φrxi,0) (3.10)

CSItx = hi,0e
j(frxi,0−f txi,0)t+(Φrxi,0−Φtxi,0) (3.11)

Multiplying the data from both sides, we can remove the offset and obtain
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the phase free from all delays:

CSI = h2
i,0e

j(f txi,0−frxi,0)t+(Φtxi,0−Φrxi,0)+j(frxi,0−f txi,0)t+(Φrxi,0−Φtxi,0)

As this is an exponential multiplication, terms of different sign cancel each
other. We end up obtaining the squared Channel State Information, and no
added phase rotation at all:

CSI = h2
i,0 (3.12)

Chronos multiplies the CSI from the transmitter and the receiver together
to get rid of the CFO and PLL Offset.

In the next section, we will see how this new expression for the CSI affects
the computation of the final result.

3.3.3 Direct Path Determination

All the process explained until this point assumes that there is just one path
from the transmitter to the receiver. However, we know that in an environ-
ment full of obstacles and relatively small like the inside of a building; that
will never be the case. The signal that arrives at the receiver is formed by
a group of reflections of the same transmission, that has traversed different
distances to reach the endpoint. This phenomenon is called multipath.

Because of this, it is essential to find a way of disentangling all the traject-
ories and discriminate the direct path, if it exists. Once we know the ToF
of the path with no reflections, the distance computation is straightforward,
just multiplying it by the speed of light. In this kind of applications there
is usually a direct path; however, it is also typical that this one has no Line
of Sight (LoS). Which means that the signal arrives attenuated by going
through the obstacles that encounters in its way.

We will work under the premise that the direct path, with or without LoS,
is the one that needs the least time to get to the receiver. The intensity of
that fastest signal is a factor that will only tell us the presence or not of a
LoS. In other words, the direct path will be the shortest, and therefore the
fastest, even if it has to go through an obstacle to get to the destination.

Therefore, given a multipath environment, the received signal must be the
sum of all the incoming reflections and the direct path:

hi,k =

p∑
l=1

ale
−2πjfi,kτl (3.13)

which is the sum of all the signals that have travelled through the p different
paths, with amplitude al, in channel (i), subcarrier (k) and Time of Flight
τl.
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Taking a closer look, we can see that this equation has the form of a
Discrete Fourier Transform (in Equation (3.14)), so it would come up to
our minds that computing the Inverse Discrete Fourier Transform (IDFT)
it would be possible to disentangle all the different transmission paths.

Xk =
N−1∑
n=1

xne
− 2πj

N
kn (3.14)

However, it is not as straightforward as inverting this equation, because
the sampling of the signal in the frequency domain is not uniform. Therefore,
we need an algorithm to invert the Non-Uniform Discrete Fourier Transform
(NDFT). This equation has a problem: there is no direct and unique result
for it.

The aim of this equation is to compute the parameters xn from the known
Xk; that is, to obtain the time response from the response in frequency. The
time response vector (xn) is called the Power Delay Profile (PDP), and it
is the output of the INDFT. The PDP will show us the instants in time at
which the signal coming from different paths has arrived. We can see an ex-
ample in Figure 3.4b. These three peaks indicate that the signal has arrived
at the receiver from three different paths. The first one, and therefore the
direct one took 1 ns. The second and third travelled for 3 ns and 7 ns and
were attenuated in their way. We can see that this PDP corresponds to a
LoS transmission because the direct path is also the most powerful traject-
ory. In the case of a NLoS transmission, it could happen that, depending on
the attenuation caused by the obstacle blocking the direct path, any other
trajectory arrives with an intensity higher than the direct path transmission.

The direct path, for both LoS and NLoS conditions, is the shortest and
fastest transmission. Therefore, the first peak of the PDP corresponds to
the direct path, as it arrives the first to the receiver, regardless of its intensity.

Finally, we need to include the effect of inputting the data as in Equation
(3.12). Now the phase information is squared, so we need to work with
the square of the Equation (3.13). As explained in [36][p.171], applying the
binomial expansion we can see the new output of the time vector.

Following the same example given in Chronos, let’s assume a signal that
arrives at the receiver along two paths, then p = 2:

h2
i,0 =

(
p=2∑
l=1

ale
−2πjfi,0τl

)2

= (a1e
−2πjfi,0τ1 + a2e

−2πjfi,0τ2)2

So, applying the binomial expression:

h2
i,0 = (a1e

−2πjfi,0τ1)2 + 2(a1e
−2πjfi,0τ1)(a2e

−2πjfi,0τ2) + (a2e
−2πjfi,0τ2)2

= a2
1e

−2πjfi,02∗τ1 + 2 ∗ a1a2e
−2πjfi,0(τ1+τ2) + a2

2e
−2πjfi,02∗τ2 (3.15)

23



The ToF for both paths will show up as double their real times. Apart
from this, a new term appears in the equation, giving a ToF that doesn’t
correspond to any existing trajectory. If we assume that τ1 is the time for
the direct path, the following applies:

τ1 < τ2 =⇒ 2 ∗ τ1 < 2 ∗ τ2

=⇒ 2 ∗ τ1 < τ1 + τ2

Therefore, the shortest path time will continue being the smallest result of
the time response vector, but it will show up as double its real value. We
can obtain the actual time response of the channel dividing this number by
two.

Using CSI2 as the input data for the INDFT will cause that the first peak
appears at twice the distance, but this one will still be the first. If we halve
this value, we can obtain the true ToF of the signal.

In Section 4.2.3, we will explain and analyze the algorithm of approxim-
ation used by Chronos to make the INDFT converge to a solution.
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Chapter 4

Implementation

In this chapter we will describe the implementation of that explained in
Section 3.3. We will indicate the key points and the problems found dur-
ing the process, as well as the provided solutions. This chapter has two
parts: hardware setup and installation and software implementation. In the
hardware section, we will describe the characteristics and critical points for
the installation of the chosen hardware. In the software section, we will
go through the steps to install the software for collecting the CSI informa-
tion. We will also explain the Chronos software re-implementation that we
have developed, emphasizing the parts that may cause any issues in future
projects.

4.1 Hardware Selection

Recall that to select a valid chipset it has to comply with the following two
conditions: the operation in 802.11n WiFi protocol and the existence of
specialized software that can access the physical layer from the userspace to
recover the CSI. Nowadays there are only two known software tools for this
kind of WiFi chipsets. The oldest one, developed by Daniel Halperin et al.
in 2011 [18], works exclusively for the Intel Wireless Link 5300 (IWL5300)
NIC card. In 2015 Yaxiong Xie et al. [46] developed a second tool designed
to work for any device with an Atheros manufacturer chipset, installed either
in an OpenWRT OS Access Point or NIC card of a laptop.

With the aim of using and testing a system as close to reality as possible,
the first approach of this project was to re-implement Chronos using some
commercial access points from TP-Link. According to the specifications [27],
it integrates an Atheros AR9380 chipset (currently Qualcomm Atheros).
Unfortunately, this approach didn’t work, and we decided to change and use
the same card as Chronos is using, the IWL5300. In the following sections,
we will explain the process to install the Intel card and the software to
recover the data it gathers. In Appendix A, we describe the Atheros tool,

25



the different attempts we performed to make it work and the reasons why
we think it is not working for the selected hardware.

4.1.1 IWL 5300 Card and Linux CSI Tool

In this Section, we will pinpoint all the problems found during the installa-
tion of the hardware and building up of the setup. Then we will talk about
the installation steps of the Linux tool that was developed to work along
with it. We will give a user guide for its utilization and an example of the
data representation obtained with it.

The Linux software tool for the IWL5300 card computes the CSI at the
receiver side when the packets that arrive are sent in 802.11n rates and pass
it to higher layers of the operating system, where the user can access it.

To do so, there are two main places where to apply software modifications:
the operating system and the wireless card firmware. The change in the
firmware is transparent to us as we can’t see the code, but we are aware of
its purpose. The new firmware enables the debug mode in the card. This
mode was designed by the chipset developers to check the functioning of the
CSI computation, so the chipset will compute it for any packet that arrives
with an 802.11n rate. Thanks to the transfer of the code from their side, we
are able now to see those values outside the physical layer.

On the other hand, there are some changes to the wireless drivers in
the operating system, so that the data can arrive at the userspace. These
changes will allow logging multiple aspects as well as the data, and to pipe
it upstream to the userspace.

IWL5300 Card Installation

The Hardware installation consists of two main components: the IWL530
wireless card and the laptop where to plug it. There is a third important
part, the antennas, about which we will talk later on.

The main problem with the card, mainly due to its availability in the
market, is the size to choose. There is a full-size card and a half-size one.
The small one was designed to fit in the newest and more compact laptops,
where the big one doesn’t fit. The second important feature of any of the
cards is that they use a PCIe connector 1. These two factors will restrict the
computer we can choose to install the card. Both size cards should support
this tool, but we have only tested it with the full-size one.

The full-size IWL5300 card will not fit in the newest computers, where the
components are more compact to reduce the size of the laptop.

1The complete datasheet of the IWL5300 card can be found in https:

//www.intel.com/content/dam/www/public/us/en/documents/product-briefs/

ultimate-n-wifi-link-5300-brief.pdf
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For this project, we had access to full-size cards, and we reused a couple
of old IBM Lenovo R60 laptops, kept by the TU Delft’s ICT department
after no longer in use. Their most interesting specifications are:

• Intel Centrino Duo processor.

• Intel PRO/Wireless 3954ABG as the native wireless card.

• PCIe connector.

On the laptop side, the critical issue is what is called the hardware whitel-
isting. Some laptops include a list of accepted hardware components. If we
substitute one of the native components by a new piece of hardware that is
not on the list, the computer will not boot. For the Lenovo computers, and
in particular for this model, we find this problem.

We found three different approaches to overcome the whitelist problem:

1. Modify the BIOS changing a bit in the nonvolatile BIOS memory. In
a Linux Operating System, we can access this memory reading the
/dev/nvram file.

2. Install a modified BIOS that removes the hardware whitelist restric-
tion.

3. Change the card ID so that it matches with one that is in the approved
hardware list.

The first and third option are explained in detail in [32]. For the first
option, they provide a small program that changes one bit in the BIOS
memory space to disable the whitelist check. Unfortunately, this method
is not extensible to every Lenovo Thinkpad model, and it didn’t work out
for the R60. The third option seems simple, but it is difficult to find the
original table of accepted cards, and the procedure is quite risky.

The final solution was to find or build ourselves a modification of the
BIOS that bypasses the check. After an intensive search, a modified BIOS
was found in [13]. The steps for the installation of the new BIOS are the
following:

1. Update the Lenovo BIOS version to v2.23 [21]. The tool to install it
only works with Windows OS, so a prior step to this is to have installed
any version of Windows 2.

2. Then, use the same tool to install the modified v2.23 BIOS with the
procedure of step one.

2I tried to use a portable version of Windows XP for this laptop, but it didn’t work
out because some drivers for the battery were not working fine. The battery needs to be
charged and plugged for the BIOS installation to work.
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3. Finally, the laptop should be able to boot with the new card, and the
Windows OS is not needed anymore.

The hardware whitelisting is a common feature in some laptops. If the new
piece of hardware is not on the list of accepted devices, the computer will
not boot. We need to modify the BIOS of the laptop if we want to make it
accept the substitution of the card.

Channel State Information Tool Installation

Now that the laptop can boot, we can install the CSI tool for Linux [18].
The only requirement here is to choose a Linux based Operating System
with a supported kernel version between 3.2 and 4.2. For this project, we
chose an old Ubuntu distribution, specifically 14.04 with v.3.13 kernels. Be
aware of the support that the Ubuntu community provides to the kernel
versions [35]. Most of the old versions of the OS will have updated v.4.4
kernels, so the right 14.04 distribution can be found in [34].

The CSI tool needs to merge its modifications with the whole kernel structure
of the operating system. For the tool to work, it is necessary a Linux based
operating system with a supported kernel version between 3.2 and 4.2.

Once the Operating system is set up, we can start with the installation of
the CSI tool following the instructions in [17]. As indicated, this process has
five steps to be performed from the command line, and can be summarized
as follows:

1. Prerequisites
Install the build tools, the Linux development headers according to the
kernel version, and the Git client. After this, my recommendation is to
follow the first tip and disable the Network Manager to avoid conflicts
in the management of the wireless connections. All the configurations
can be done with the iw utility from the command line.

2. Build and Install the Modified Wireless Driver
Obtain the CSI Tool Linux source tree, with the appropriate changes
to the wireless driver that match the kernel version. Note: The direct
cloning process of the CSI Tool repository took a really long time for
this laptop (> 24h). The processing capability of the laptop has an
important role in this step. To save some time, cloning the repository
in one computer with the same kernel version tag, and copying it in
the wanted one was proven to work.

It is indispensable to merge these driver modifications with the Linux
source tree for the distribution-provided kernel version, as explained
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in the first tip. This process should resolve without conflicts if we
are using a supported kernel version by the tool (like v.3.13). If the
merge outputs conflicts, we should check we are indeed working with
the correct kernel version3. The tool won’t work if we ignore this
mismatch in the merging.
Finally, we have to build and install the modified driver as explained
in the instructions. For this laptop, we will get the message can’t

read private key after loading the new driver, but it will not affect
the functioning of the tool.

3. Install the Modified Firmware
Substitute the original IWL5300 card firmware by the modified firm-
ware.

4. Build the Userspace Logging Tool
Consists on building the tool that logs at the userspace the CSI that
comes from the driver.

5. Enable Logging and Test
Finally, we have to unload the driver and reload it enabling the logging
capabilities. To enable the different logging possibilities there is a
parameter called connector log loaded at the same time as the driver.

How To Use the CSI Tool for Linux

connector log indicates the amount and type of information to log. In the
code of the tool, there are several masks defined associated with different
kinds of information which we contain in Table 4.1.

Table 4.1: Different masks to set the value of connector log.

Mask Value

IWL CONN BFEE NOTIF MSK 0x1

IWL CONN RX PHY MSK 0x2

IWL CONN RX MPDU MSK 0x4

IWL CONN RX MSK 0x8

IWL CONN NOISE MSK 0x16

IWL CONN TX RESP MSK 0x32

IWL CONN TX BLOCK AGG MSK 0x64

IWL CONN STATUS MSK 0x128

Either doing a bitwise AND or adding their hexadecimal values we com-
bine all the information to record. So, if we want to get the computed

3The command uname outputs the kernel version.
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CSI as well as log the payload of the incoming packet, we need to add
IWL CONN BFEE NOTIF MSK and IWL CONN RX MPDU MSK and set connector log

to 0x5. For this project, this is the information that we need. We can get
the CSI and use the payload of the packet to contain information to use as
protocol control that we will later explain.

The connector log parameter loaded with the driver indicates the type of
information we want to log. It is formed combining the masks of the different
types. For example, connector log = 0x5 if we want to obtain the CSI and
get the payload of the incoming packet.

In principle, this would be enough to set up the tool if we want to compute
the CSI for packets coming from an AP. We need to establish an unencrypted
connection with an AP and run the following command to start the CSI
logging utility:

sudo l inux −80211n−c s i t o o l−supplementary / n e t l i n k / l o g t o f i l e c s i .
dat

Then, we can compute the CSI from the packets that the AP pings back
in 802.11n rates. However, the developers of the tool already pointed out
that the most reliable mode is the monitor mode. We could test that indeed,
the AP-Client mode did not work. As both ends need to work as AP and
Client (transmitter-receiver) at certain moments, the monitor mode suits
the requirements of the project. From now onwards, we will explain and
refer to the monitor mode for the communication mode between devices.

The standard monitor mode defines one end as the packet injector in the
network and the other end as receiver in monitor mode. So, in the tool source
code there is a script to run for the device acting as the sender, and another
one acting as the receiver (setup inject.sh and setup monitor csi.sh).
As for our setup, we need to have both devices injecting and receiving we
built a script that combines both in Listing 4.1.

Listing 4.1: Script to set the injector mode and monitor mode in the same
machine

1 cd l inux −80211n−c s i t o o l−supplementary / i n j e c t i o n /
2
3 modprobe −r i w l w i f i mac80211 c fg80211
4 s l e e p 1
5 modprobe i w l w i f i c onne c to r l og=0x5 debug=0x40000
6 s l e e p 1
7
8 iwcon f i g wlan0 mode monitor 2>/dev/ n u l l 1>/dev/ n u l l
9 while [ $? −ne 0 ]

10 do
11 iwcon f i g wlan0 mode monitor 2>/dev/ n u l l 1>/dev/ n u l l
12 done
13 s l e e p 1
14 i f c o n f i g wlan0 up
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15 s l e e p 1
16 iw wlan0 set channel $1 $2
17
18 echo 0x1C113 | sudo tee ‘ sudo f i n d / sys −name mon i to r tx ra te ‘
19 cd

Note: The sleep 1 are additions to the original injection and monitor
mode scripts. They give some time for the configuration to take place, and
we reduce the chance of obtaining a “device busy” error when running the
script.

The line 18 in Listing 4.1 is used to set the transmission rate. This step is
crucial, as only packets sent with High Throughput (802.11n) rates can be
used to compute the CSI. The bits conforming this number adjust different
parameters of the transmission, but in our case, the important one is the
number of streams or transmitting antennas. For further details about this
number, the code can be accessed in [15].

We must always set the transmission data rate to High Throughput
(802.11n). If the configured bitrate is not an 802.11n rate, the receiver
will not be able to compute the CSI from that packet.

The value of the rate is formed putting together the following parameters:

• The antenna or antennas that are transmitting the signal. A, B, C, AB
or ABC. These correspond to the antennas 1, 2 and 3 of the chipset.
Each of these possibilities has a corresponding mask associated.

• A bit indicating if this is a High Throughput (HT) rate or not.

• The Modulating and Coding Scheme (MCS), which is a reference num-
ber of the combination of the number of spatial streams, modulation
type, and coding scheme [39, 25].

In Table 4.2 we can see all these values together forming the rates that we
have used for this project.

Table 4.2: Values to set the transmission rate.

No. Antennas Tx Ant. Ant. mask HT (yes) MCS Full Value

1 A 0x04000 0x00100 0x00003 0x04103

1 B 0x08000 0x00100 0x00003 0x04103

1 C 0x10000 0x00100 0x00003 0x04103

2 AB 0x0C000 0x00100 0x0000B 0x0C10B

3 ABC 0x1C000 0x00100 0x00013 0x1C113

Finally, we need to run the script of Listing 4.1 using as first parameter
the WiFi channel where to set the device, and as second parameter HT20
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configuring it as a High Throughput 20MHz width channel. For example, if
we want to configure the system in channel 64 (center frequency 5320MHz):

sudo . / s c r i p t . sh 64 HT20

Phase Reported by the Tool

The CSI tool includes a series of functions for the data processing in MAT-
LAB, besides the already mentioned software to log the CSI. In this part,
we will explain the significant steps to get the phase from the data reported
by the tool [16].

First of all, there is a function that opens the .dat file containing the
logged raw data and parses it searching for the CSI. After this step, we
will be able to visualize a structure with several parameters for each packet,
such as the RSSI values of each antenna or the rate at which it was sent.
The second essential function that they provide is called get scaled csi.
As explained in [16]: “this function will compute the CSI in absolute units,
rather than Intel’s internal reference level”. It will use the values of the
structure, like the RSSI and noise, to obtain the normalized CSI.

The final format of the data that we will use is a three-dimensional matrix
of complex numbers representing the phase and amplitude of the incoming
signal. The first dimension is associated with the stream from which that
signal has been measured, this is, which transmitter’s antenna has cast it.
The second dimension corresponds to the antenna that has received the
signal and reported the phase information. Finally, the third dimension
is related to the subcarrier of the signal carrying the data. This card only
reports 30 subcarriers, which for the case of 20 MHz bandwidth channels are
312.5 kHz apart from each other at both sides from the center frequency. So,
if for instance, we are working with three transmitting and three receiving
antennas, the format of the data will have the shape of a 3x3x30 dimension
matrix of complex numbers. For a general view of this, we have Figure 4.1.

Figure 4.1: Channel State Information matrix format.
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Figure 4.2: Phase reported by the CSI tool for one of the antennas of the
laptop acting as receiver (values contained between π and −π). Each dot
corresponds to a different subcarrier.

Finally, in Figure 4.2 we can see an example of the phase reported by the
tool using real wireless data. We gathered this data with one of the two
internal antennas of the laptop to prove the correct installation of the tool.
Using the function angle() in MATLAB, we can obtain the phase from the
values of the matrix contained between π and −π. In Chapter 5, we will
talk about the final hardware setup with the external antennas, and analyze
in depth the data that these obtain.

4.2 Software Implementation

In this Section, we will explain the implementation of the software in this
work. In the first place, we will show the design of the software that is
running in both laptops to synchronously change the channel and at the
same time collect CSI data on both sides. Chronos gives a general view of
its functioning; however, the implementation belongs to the contributions of
this project. We will walk through it and explain its main features. Then, we
will comment on the MATLAB code developed for the data processing and
the delay removal. Finally, we will focus on the computation of the Inverse
Non-Uniform Discrete Fourier Transform algorithm presented by Chronos,
and we will pinpoint the problems found here and the given solutions.

4.2.1 Channel Hopping Protocol and Data Gathering

As mentioned in Chapter 3, to collect CSI data in every channel we need
to implement a protocol that performs the synchronous channel change.
This mechanism needs to allow the sending of channel sounding packets
and recording of CSI at both sides. Therefore, we can use this need for
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synchronizing the channel change to measure the CSI, reusing the channel
jump request to compute the CSI.

Apart from recording the data, we need a way to recover it to perform
the post-processing and compute the distance between devices. For this,
we have developed a server program where both devices send the data that
they collect.

Channel Hopping Protocol

In this system, we have two participating devices that we can call Access
Point and Client. The AP is the device that starts the channel changing
process; this is, the one that sends the requests to the other end asking for
a change to the next channel in the band. The Client has a more passive
role because it waits for the AP’s petition to change. The AP keeps track
of the current channel and tells the Client to which one has to switch.

For this implementation, we have two different programs, one to run in
each device and started by the user. Following the path of Chronos, we have
implemented a Request-Acknowledgement (REQ-ACK) protocol. We will
leverage the protocol design to compute the CSI from both sides. The REQ
and ACK are 802.11n packets and include in its payload all the information
that we need, for example, the next channel in the sweep. We can compute
the CSI from them and get the necessary information to control the process.

Once the CSI data is ready, a server collects it from both devices. The data
processing to compute the distances between devices is done in MATLAB
running in another machine. The top-level architecture of the system with
its inputs and outputs is shown in Figure 4.3.

Figure 4.3: General view of the functioning of the system.

To explain what happens when the packets sent don’t arrive at the destin-
ation, we can take a look at Figure 4.4a and Figure 4.4b. In these diagrams
we have a flow chart of the program running in the AP and the Client. The
AP starts a timer every time it sends a channel change REQ to wait for the
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ACK from the Client. If that ACK is received, the AP logs the CSI and
sends the next REQ. In the case that the ACK is never received, after the
timer expires, the channel is reset to the first one on the list. On the side
of the Client, the timer is set continuously to wait for REQs. If the REQ
is received, the device changes to the next channel, logs the CSI and waits
for the next one. On the contrary, if a time-out occurs, the same as the AP,
the device is reset to the first channel of the list.

(a) Access Point flow chart. (b) Client flow chart.

Figure 4.4: Program architecture flow charts. (a)AP side flow chart.
(b)Client side flow chart.

Getting into the actual implementation of the code, we use three threads
to achieve the functionalities explained up to this point. We need a thread
that can send the packets using the procedure of the tool so that the other
end can compute the CSI, but that can also embed the necessary information
of the protocol in the payload. Another thread should be in charge of receiv-
ing those packets and logging the CSI data. Finally, we need a third thread
that can keep track of the time for the packet reception time-outs. There-
fore, we can call these threads Packet Transmission Thread (main thread),
Packet Reception Thread, and Timer Thread. They communicate with each
other through the generation of events. The events, in turn, are capable of
changing the state of the state machine running in the main thread.

Summarizing, the purpose and functionality of the threads are the follow-
ing:

• Packet Transmission Thread

– This thread is the main execution thread. It is a state machine
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with two essential states: “Waiting for ACK” and “Changing
Channel”.

– The state will change if it receives a Time-out event or a Packet
Received event from one of the other threads.

– The Packet Received event will unchain an ACK transmission
and a channel switch in the side of the Client. In the case of the
AP, the reception of the ACK will cause a channel change, the
transmission of a REQ for the next channel and the restart of the
timer.

– The Time-out event will cause, in both cases, a reset to the first
channel of the list.

• Packet Reception Thread

– This thread is in charge of receiving the packets, logging the CSI
and generating the corresponding event (Packet Received event)
to the Packet Transmission Thread.

– For the Client, as the number of the channel is in the payload of
the packet, this thread has to parse it and pass it to the main
thread to perform the channel change.

• Timer Thread

– This thread gets executed periodically to implement the time-
outs of the AP and Client to wait for the reception of an ACK
or REQ.

– When the timer expires, it sends the corresponding event (Time-
out event) to the main thread.

After testing the implementation, we concluded that the system was working
with a low rate of loss packets (around 5%) for the band of 5 GHz following
this protocol and logging the CSI correctly. However, for the 2.4 GHz band,
the packet loss rate was unbearable (around 90%), and the system had to
start over in the first channel too often. The reasons for this behavior could
be diverse, like the wireless traffic of the environment or the position of
the antennas. We performed various tests modifying these two factors. We
tested the system in an isolated environment with no wireless transmissions
that could disturb our process, and we also tried different positions and
angles for the antennas, but the improvement in the loss rate was insuffi-
cient4. We finally decided to use only the 5 GHz band (24 channels add up
to 645MHz bandwidth) for the experiments, and adjust all the computations
to this situation. We will see the new granularity in Section 4.2.3.

4This issue with the band of 2.4 GHz has been reported by other users of the tool:
https://github.com/dhalperi/linux-80211n-csitool-supplementary/issues/287
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Server Implementation

In the setup for this system, an external computer plays the part of the
server, while the two Lenovo laptops interact as AP and Client, and send the
CSI information that they collect to it. We should note that the modified
IWL5300 firmware does not allow the connection to encrypted APs [16].
Also, as both sides need to be working in injector mode, we cannot be
connected to an AP. For these two reasons, the three devices mentioned
before have a wired connection through a hub. The IP addresses of the
devices are fixed and hardcoded in the server source code.

The laptops send every packet that they log to the server, indicating in
which channel it was received. Then, in the processing stage in MATLAB,
we perform a preliminary step to detect and use only the scans that are
complete.

4.2.2 Delay Compensation Code

Once we have the data, we need to process it to remove the delays that
we explained in Section 3.3.2. In this Section, we will talk about how to
manipulate the data, perform the data interpolation to obtain the zero sub-
carrier value and remove the final delays with the data multiplication all
using MATLAB.

As seen in Figure 4.1, we have a matrix of dimensions 3x3x30, and we
want to get the data from every receiving antenna corresponding to each
transmitter stream. Therefore, for 3 RX and 3 TX antennas, we end up with
nine vector shape structures of size 1x1x30. We use this vector to interpolate
the data for the zero subcarrier, based on the other 30 subcarriers reported.

The interpolation function we use, as in Chronos, is the Cubic spline
interpolation [23] provided by MATLAB. We enquire for the zero subcarrier
using the code in Listing 4.2 and use the output for the rest of the process,
only that subcarrier. The other two arguments of the function are the
subcarrier indexes and their corresponding data.

Listing 4.2: Cubic spline interpolation to obtain the zero subcarrier data.

1 SubCarrInd = [−28 , −26, −24, −22, −20, −18, −16, −14, −12, −10,
−8, −6, −4, −2, −1, 1 , 3 , 5 , 7 , 9 , 11 , 13 , 15 , 17 , 19 , 21 ,
23 , 25 , 27 , 2 8 ] ;

2 query = (0) ;
3 h0 = spline ( SubCarrInd , data , query )

Finally, we remove the last delays, the CFO and PLL Offset, multiplying
the CSI measured from both sides. We have to be careful and multiply
the corresponding zero subcarrier of a channel with its respective one at
the other device from the same RX-TX antenna combination. After this
process, the values will be ready to feed the INDFT algorithm.
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4.2.3 Inverse Non-Uniform Discrete Fourier Transform Al-
gorithm

If we recall the previous chapter, we already pointed out the problems of
this algorithm. Due to its irregular frequency sampling, it is not possible to
obtain a direct and unique solution to the inversion of the Fourier Trans-
form. The equation of the Discrete Fourier Transform in (3.14) and we can
reformulate it as a matrix form expression like in Equation (4.1). This sys-
tem of equations is under-determined as some of the responses in frequency
are missing and therefore it has multiple possible solutions.

Among all these possible solutions, Chronos will choose the one that gets
closer to satisfying one of the characteristics of indoor transmissions: the
sparsity; in other words, to have a small number of dominant paths. Ac-
cording to Chronos, mathematically this characteristic is translated into
finding the minimum of the norm of the INDFT’s output vector 5. We want
to obtain the response in time (x(ti)) from the equation in (4.1) adding this
last constraint of minimizing the norm.X(f1)

...
X(fn)

 =

F1,1 · · · F1,k
...

. . .
...

Fn,1 · · · Fn,k


x(t1)

...
x(tk)

 (4.1)

As said before this expression is just Equation (3.14) in the matrix repres-
entation. Therefore, X(fi) is the response in frequency from the measured
in every channel of the non-contiguous frequency chunks of the WiFi band;
and Fi,k is the Fourier matrix term that for the ith channel and kth path of
Equation (4.2).

Fi,k = e−j2πfi,0τk (4.2)

The approach used by Chronos to converge to a solution in an optimiza-
tion problem with these characteristics, is the so-called Proximal Gradient
method. Specifically, within these methods, it employs a Proximal Gradient
Descent style algorithm.

The gradient [24] can be seen as the derivative of a multi-variable function,
so it represents the slope of the tangent of a function. It shows the direction
of the highest increase of the function (potentially a maximum) and the
magnitude of this increment.

The Proximal Gradient Descent method [19] follows the opposite direction
of what the gradient is pointing searching for the minimum. This iterative
algorithm will advance one step further from the maximum in each iteration.
If we consider f(~x) the multi-variable function to optimize and ∇ represent-
ing its gradient; xt and xt+1 the current and next iteration of the algorithm

5The full mathematical expression can be seen in (8), (9) and (10) of Chronos paper
[36].
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and λ the size of the step we want to take following the gradient, we can see
in Equation (4.3) the mathematical expression of this method.

~xt+1 = ~xt − λ∇(f(~xt)) (4.3)

We will soon see how the size of the step plays a crucial role in the con-
vergence of this iterative algorithm. When λ is small, we run the risk of
needing a large number of iterations to get to a solution. However, if the
step is too big, we might skip the minimum we are searching for and diverge
completely.

We can see in Listing 4.3 the piece of code extracted from the paper to
perform the mentioned algorithm. Here ~pt and ~pt+1 are the current and
next iteration values of the algorithm, where ~p is the objective output. F is
the Fourier matrix and λ the iteration step. Next we will explain what the
sparsity parameter α and the convergence parameter ε are.

Listing 4.3: INDFT algorithm based on Proximal Gradient Descent method
[36].

1 while converged = f a l s e do

2 ~pt+1 = SPARSIFY(~pt − λF ∗(F~pt − h̃) , λα)
3 i f ||~pt+1 − ~pt||2 < ε then
4 converged = true
5 ~pt = ~pt+1

6 else
7 t = t + 1
8 end i f
9 end while

10
11 function SPARSIFY(~p , d )
12 for i = 1 , 2 , . . . length (~p) do
13 i f |~pi| < d then
14 ~pi = 0
15 else

16 ~pi = ~pi
|~pi|−d
|~pi|

17 end i f
18 end for
19 end function

We want to emphasize certain parts of the code that are important to un-
derstand the implementation of the algorithm:

• line 2: This line of code performs the main functionality of the al-
gorithm. Here we are iterating over the Proximal Gradient Descent
equation as in Equation (4.3). The expression should have the form
of Equation (4.4); however, they set it as one of the arguments of
the function called sparsify (defined in line 11). This function en-
forces sparse solutions. It maintains the paths of power over a certain
threshold and sets the rest to zero. This way, the next iteration value
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will have less dominant paths, and those that remain will be computed
with a higher resolution.

~pt+1 = ~pt − λF ∗(F~pt − h̃) (4.4)

• l.3: In this line, we will decide if the iteration is over or not. The
criterion to decide it resides in the difference between the current and
next iteration. If this difference is below a certain threshold, we will
consider that the algorithm has converged. The value of the threshold
ε is up to the user. In our case, a value of 10−6 gave us a good execution
time vs sharp solution ratio.

• l.11: The sparsify function gets as arguments the output vector for
the next iteration of the Proximal Gradient Descent algorithm, and
what we could call sparsity threshold. The sparsity parameter α and
the iteration step λ form this threshold. The output of the function,
as already mentioned, will be a more sparse next iteration vector.

Problems Found

While implementing and testing this piece of code, we spotted a typo in one
of the parameters of the paper that prevented the algorithm from converging.
Another sensitive point was how to choose the resolution of the time vector,
this is, the τk in the Fourier matrix expression of Equation (4.2).

• The step (λ) size
The step size will determine the progression of each iteration alongside
the direction determined by the gradient. As mentioned before, if the
step is too big we run the risk of passing over the minimum. While
if the step is too small, the time and computation resources to reach
that minimum can be excessive. On top of this, the initial value of the
output vector (iteration 0) is set to a random value, so the step needs
to be carefully chosen to converge in a reasonable time.

Getting back to Chronos, the step size is
1

||F ||2
, where F is the Fourier

Matrix of Expression (4.2). However, when testing the implementation
of the whole algorithm, we saw that the solution was always diverging
to infinite. After an extensive search, we determined that the step size
was too big and it was preventing the algorithm from converging.

Looking deeper into the gradient method, we see that it is inside a
group of algorithms used to solve the optimization problem called Base
Pursuit Denoising (formulation in expression (4.5)). This problem has
the form of Expression (10) in Chronos [36]. There are several altern-
ative possibilities to obtain a solution, like the in-crowd algorithm that
can solve large and sparse problems [14]. However, we focus on the
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gradient method for the L-1 norm minimization and its step size. The
expression in (4.5) can be reformulated and appear under the name of
Lasso formulation 6.

min
x

1

2
‖y −Ax‖22 + λ‖x‖1d (4.5)

Looking at information about the influence of the step size in the con-
vergence of the gradient method ([19], [33], [11]), we concluded that
the step needs to be smaller for the algorithm to converge. Based on
the step definition that E. Birgin et al. [4] give in their study (Ex-
pression (2)) and corroborated by Deepak Vasisht7, the main author
of the paper Chronos, we deduced that the step size should change to

1

||F ∗F ||2
or the equivalent

(
1

||F ||2

)2

.

With the step size stated in Chronos,
1

||F ||2
the algorithm doesn’t converge

to a solution. Instead, we have to use the smaller value

(
1

||F ||2

)2

.

• The time vector (τk)

To compute the values of the Fourier matrix of Equation (4.2), we need
the time vector τk; where k represents the number of possible paths
of the multipath profile. We can choose the length and granularity of
this vector. For each of these time inputs, the INDFT algorithm will
output a value that determines if a reflection of the signal has arrived
at that time and its intensity.

If the resolution of this vector is low, we lose the chance of distinguish-
ing several paths that arrived in a short time lapse. There is always a
limit to the smallest distance that we can tell apart and having values
below that threshold will not report any better results. However, in
Chronos it is not indicated how to obtain this lower threshold. We
determine our time vector according to the frequency that the 5 GHz
band channels span, even if not in a continuous spectrum, which is
645 MHz. With this bandwidth, we can have a worst-case time resol-
ution and space resolution of 1.55 ns and 46.5 cm. However, as we still
need to divide the result by two to compensate for the squared input
data, it increases to 0.78 ns and 23.25 cm. Finally, the time vector that
we will provide as input to the INDFT will range from 0 ns to 50 ns

6https://en.wikipedia.org/wiki/Lasso_(statistics)#cite_note-Tibshirani_

1996-2
7We communicated the typo to the author who corroborated the change of the para-

meter as we proposed
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with values every 1.55 ns. For our tests in Chapter 5, we will see that
we need to distinguish values every 30 cm and this time vector can
provide us that resolution.
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Chapter 5

Evaluation

In this Chapter, we will validate the implementation of Chapter 4 and eval-
uate the results of the method. To do so, we have divided the Chapter into
three parts. In Section 5.1, we will show the evaluation setup of the system.
We present the four different datasets that we will use to validate the imple-
mentation. In Section 5.2, we present the results of the evaluation with the
different types of data. Finally, in Section 5.3 we will focus on the findings
of Section 5.2. In particular, we will analyze the presence of an unexpected
delay.

5.1 Evaluation Setup

In this section, we describe the setup for the evaluation. We use four types
of data: Ideal, Ideal with Delays, Cable and Wireless data. We explain the
purpose and the expected output of each of them.

5.1.1 Ideal Data

The ideal data of this section is mathematically generated data. It shows the
phase that we would obtain if a signal could arrive at the receiver without
being affected by the multipath effect. The hardware delays are also not
included here. The aim is to validate the correct functioning of the INDFT
algorithm. If it is working correctly, we should obtain a single path in the
Power Delay Profile for the distance at which we have generated the phase
information.

To understand the process of data generation we need to recall some
concepts. First of all, we have to remember the difference between the phase
rotation due to the distance traveled through the air (the ToF), and the
phase rotation introduced by the hardware. For now, we want to generate
data with just the first type of phase rotation because we are working with
no delays. In the next subsection, we will show how to introduce the delays.
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Figure 5.1: (a) Example of wrapped phase between π and −π. (b) Example
of unwrapped phase of a signal recorded at the Receiver. The channel fre-
quency (center or carrier frequency) is 5.32 GHz and the dots represent each
subcarrier.

Second, we need to go back to the representation of the data. In Figure
4.2 (also in Figure 5.1a) we could see an example of what is called wrapped
phase. However, there is another possibility that appears more often called
unwrapped phase. In this case, the data is plotted in a continuous way
avoiding the 2π jumps in the border cases. As we can see in Figure 5.1b,
the unwrapped phase continues after reaching 2π, and fits a linear regression
(following the phase expression of Equation (3.4)).

Then, to generate the data we use the formula in Equation (3.4). As
we cannot distinguish how many periods of the signal have passed when it
gets to the receiver, we have to apply the mod (2π) operation. For this
test, we have created phase data in each of the 5 GHz band available fre-
quencies for the distances of 30 cm, 90 cm, 150 cm and 210 cm. In Figure
5.2a we see the data in its wrapped representation, while in Figure 5.2b the
unwrapped phase of each channel. The lines in the figure represent the data
for each channel, which is, in turn, formed by the data of its subcarriers
like the markers in Figure 5.1. The “jumps” in the data of Figure 5.2b ap-
pear because we unwrap every channel individually and there is no previous
reference of the period of the signal. If we add the corresponding multiple
of 2π to that data, then it will show up linear without discontinuities. As
the phase of the incoming signal is dictated by 2πft, the more distance the
signal travels, the higher its ToF will be. Therefore, the slope of the data in
Figure 5.2b is steeper for longer distances.

Finally, another aspect that we have to highlight is that the data that we
build remains in between 0 and 2π, while the real one, due to the charac-
teristics of the software tool, is reported between −π and π. Therefore, this
data presents a shift upwards compared to the wireless one. However, the
output of the INDFT algorithm will not be affected.

The evaluation results for the Ideal Data are shown in Section 5.2.1.
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Figure 5.2: Ideal phase data for different distances: (a) Ideal wrapped
phase for distances of 30 cm, 90 cm, 150 cm and 210 cm. (b) Ideal unwrapped
phase for distances of 30 cm, 90 cm, 150 cm and 210 cm.

5.1.2 Ideal Data With Delays

In this section, we add the hardware delays to the ideal data. The purpose
is to have phase information that is affected by the delays explained in
Chronos due to the hardware imperfections in the signal processing. This
data does not include the effects of multipath. It simulates the nature of a
transmission through a cable that joins both ends, an experiment that we
will carry out in Section 5.1.3.

To generate this data we have to go back to Section 3.3.2 where we ex-
plained the Packet Detection Delay, the Carrier Frequency Offset and the
PLL Offset. To generate data with PDD, we use the expression in Equation
(5.1), that is a combination of Equation (3.4) for the ideal phase of a trans-
mission at a certain distance, and Equation (3.5) that applies the delay to
every subcarrier but zero.

∠hi,k = (−2πfi,kτ − 2π(fi,k − fi,0)δi) mod 2π (5.1)

To obtain τ , this is, the ToF, we divide the distance by the speed of trans-
mission of the medium. For wireless transmissions, that speed is the speed
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(b) Ideal Data with PDD, CFO and PLL Offset

Figure 5.3: Ideal Data with Delays: (a) Ideal data for the cable trans-
mission (in blue) and the same data affected by Power Detection Delay (in
red). (b) Ideal data for the cable transmission (in blue) and the same data
affected by Power Detection Delay, CFO and PLL Offset (in orange).

of light (c). For the case of the wire, it is 2c
3 . δi is the delay, that according to

Chronos paper is large and unpredictable, with a median value of 177 ns and
a standard deviation of 24 ns. Based on this, we generate the delay using a
Gaussian distribution with these parameters. In Figure 5.3a we can see the
data with PDD for a distance of 191 cm and the ideal data for comparison.
This distance relates to the cable length of 191 cm that we will use in the
next section. The other cable lengths are 341 cm and 491 cm, for which we
will also generate data and compare the PDP results in Section 5.2.

We see in Figure 5.3a the expected effect on the data: the subcarriers at
the extremes suffer a bigger shift and separate more from the zero subcarrier
than the ones closer to it. The visible effect is that the data is now more
spred out: the length of the blue line (data with no delay) and the red line is
no longer the same and the reason is that the subcarriers do not experience
the same delay. We know that the zero subcarrier of the ideal and delayed
data should coincide because, as seen in Chapter 3, it does not experience
the delay. The displacement that we see in the plot is due to how MATLAB
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represents the unwrapped phase with the function unwrap(). The phase is
the same, only with a number of extra periods (2π). To see them coinciding
in the plot, we would need to apply mod 2π the same number of times.

For the complete emulation of the data, we have to add the CFO and
PLL Offset. We recall with expressions (3.10) and (3.11) that these delays
apply to every subcarrier equally. Therefore, we can add them after the
PDD using 2πft, where t is the delay. There is not a reference value for
these offsets in the paper, so; we apply a random quantity enough to see its
expected effect on the data. In Figure 5.3b we can see the output for one of
the transmission ends. With CFO we saw a change in the length of the line
that represents the phase information for the whole channel because not all
subcarriers experience the effect of the delay in the same amount. In this
case, for CFO and PLL Offset, the lines suffer a shift as a whole because the
delay equally affects all subcarriers including zero. We saw in Chapter 3 that
the receiver and transmitter experience the same delay but with opposite
signs. Therefore, for the other transmission end, the data would look like
Figure 5.3b but shifted in the opposite direction.

The evaluation results for the Ideal Data With Delays are shown in Section
5.2.2.

5.1.3 Cable Data

In this section, we already work with real data collected joining the antennas
of both AP and Client. The purpose is to evaluate the results of using data
that is not affected by the multipath effect but includes the real hardware
delays. In the previous section, we generated ideal delays according to the
formulas in Chronos. Therefore, the delay compensation techniques will
always work correctly for the ideal data, and we will obtain the expected
PDP. For the case of the cable data, the hardware delays are real. We will
be able to isolate the effect of the hardware imperfections in the results, and
check if Chronos is capable of getting rid of them and obtain a delay-free
PDP.

The setup consists of a cable, a 20dBm attenuator and a couple connectors
that join everything together with a total length of 191 cm. In addition to
this, we could obtain two extension cables that allowed us to collect data at
341 cm and 491 cm distance too.

In Figure 5.4a we plot the data collected at one of the ends of the 191 cm
cable. This data is analogous to the one generated with PDD, CFO and
PLL Offset, therefore we can compare it with Figure 5.3b. The data in both
figures has a similar shape. We see that the data maintains its linearity in
every scan as it is not affected by any other factor besides the hardware
delays.

The evaluation results for the Cable Data are shown in Section 5.2.3.

47



5100 5200 5300 5400 5500 5600 5700 5800 5900

Frequency (MHz)

-40

-30

-20

-10

0

10

P
h

a
s

e
 (

ra
d

)

(a) 191 cm Cable Data
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(b) Wireless Data at 209 cm distance in orange and reference
ideal data for 209 cm in blue

Figure 5.4: Cable data and Wireless data: (a) 24 channel scan in the
5 GHz band measured at one of the laptops for a cable length of 191 cm. (b)
Wireless data for 24 channel scan in the 5 GHz band measured at one of the
laptops at a distance of 209 cm.

5.1.4 Wireless Data

Finally, the real wireless data includes all the effects that may distort the
signal in an indoor environment. With this data, we will evaluate the com-
plete implementation in Section 5.2 and observe how the multipath affects
the result in comparison with the output of the previous section data.

The setup to collect the data of this section consists of the already men-
tioned laptops acting as AP and Client with three external antennas sep-
arated at 11 cm, which is around two times the wavelength of the 5 GHz
transmissions. The three antennas are aligned and placed in parallel to the
other device antennas. For the experimental setup, we measure the distance
between the antennas that are placed face to face. The length of the cable
joining the connector of the NIC card with the antenna is 168 cm, which will
introduce a delay of 8.4 ns at each side. We will take this delay into account
when computing the PDP output of the wireless data. Finally, all the data
that we will use for the next Section 5.2 is obtained placing the laptops in
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Line of Sight.

For the tests, we collect data at several distances separated by 30 cm,
specifically at 29 cm, 59 cm, 89 cm, 119 cm, 149 cm, 179 cm and 209 cm. In
Figure 5.4b we plot the data for a scan at 209 cm. We can observe the
effect of the multipath if we compare it with Figure 5.4a. The data loses the
linearity in some of the scans because of the multiple reflections arriving at
the same time to the receiver. This effect should not affect the results, as the
INDFT algorithm already accounts for the multipath with the appearance
of multiple peaks in the Power Delay Profile. If the hardware delays are
properly corrected, the first peak of the PDP should still indicate the direct
path, and we should only notice the appearance of smaller peaks around the
main one.

The evaluation results for the Wireless Data are shown in Section 5.2.4.

5.2 Evaluation Results

In this section, we will show the Power Delay Profile for the data of Section
5.1. We will analyze these results and see how they compare to the ones
presented by Chronos.

5.2.1 Ideal Data Results

For this data, with no delays or multipath effect, we expect to obtain a single
peak at the exact time that links to the distance for which we generated the
data. For the distances of 30 cm, 90 cm, 150 cm and 210 cm, we expect to
see a single output at 1 ns, 3 ns, 5 ns, and 7 ns. We will express the PDP
results in distance units instead of time because it is easier to visualize. The
conversion to distance units is as straightforward as multiplying the time by
c and adjusting the units to cm. In Figure 5.5 we can see the resulting PDP.
Notice that we use a spatial resolution of 30 cm instead of the previously
mentioned 23.3 cm. The purpose of this change is to have outputs that
coincide with the input values of the data and it is easier to validate the
performance of the INDFT algorithm. For the PDPs using wireless data,
we use the 23.3 cm spatial resolution. In the case of the cable, as the speed
of transmission of the medium is 2

3 slower, the spatial resolution increases 2
3

up to 15.5 cm (2c/3
B ).

With these results, we validate that the implementation of the INDFT
algorithm is correct. The ideal data does not require the removal of any
hardware delays, and therefore we can isolate the performance of the ap-
proximation algorithm for the INDFT explained in Section 4.2.3.
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Figure 5.5: Power Delay Profile for distances of 30 cm, 90 cm, 150 cm and
210 cm.

5.2.2 Ideal Data With Delays Results

In this section, we obtain the PDP results that act as a baseline for the fol-
lowing Section 5.2.3. We generated the data for 191 cm, 341 cm and 491 cm
cable lengths with their corresponding delays, the PDD, CFO, and PLL Off-
set in Section 5.1.2. In Figure 5.6b, 5.6d and 5.6f we can see the expected or
ideal output for the real cable data at those distances. In Figure 5.6a, 5.6c
and 5.6e we have plotted the PDPs before removing the delays, at one of the
transmission ends for its comparison. We can appreciate how the peaks are
displaced due to the random delay. Once we multiply the data from both
ends removing the delays we obtain the results of Figure 5.6b, 5.6d and 5.6f.

To generate the ideal delays, we have used the Equation (5.1) and Equa-
tion (3.10) and (3.11) from Chapter 3. In essence, we have generated the
delays on the base of knowing how to eliminate them. In this step we will
always obtain a PDP without delays related to hardware. Therefore, we can-
not attribute to hardware delays any appreciable effect or deviation from the
expectations in the graphs.

Analyzing the results, we see that we obtain the first peak at the closest
possible solution for 191 cm, 341 cm and 491 cm with this spatial resolution,
which is 186 cm, 341 cm and 496 cm respectively.

The only unexpected effect that we can appreciate in Figure 5.6f is the
presence of an extra peak at 992 cm in a multipath-free environment. We
will be able to see this effect at a bigger scale in the following section. This
section’s data is mathematically generated, so we can already intuit that
this effect is not linked to any physical phenomenon.

5.2.3 Cable Data Results

In this section, we show the PDPs for the cable measurements. In Figure
5.7a for 191 cm, in Figure 5.7b for 341 cm and in Figure 5.7c for 491 cm.

Almost all the first peaks coincide around a single position. We will take
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(c) Ideal 341 cm cable PDP w/ delays
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(d) Ideal 341 cm cable PDP
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(e) Ideal 491 cm cable PDP w/ delays
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(f) Ideal 491 cm cable PDP

Figure 5.6: Ideal cable transmission PDP. Results of using ideally gen-
erated data with mathematically generated PDD, CFO and PLL Offset
delays.(a-b) Ideal 191 cm cable PDP w/ delays and after delay removal.
(c-d) Ideal 341 cm cable PDP w/ delays and after delay removal. (e-f) Ideal
491 cm cable PDP w/ delays and after delay removal.

this distance as the average solution. For 191 cm the first peak is in 232.5 cm,
for 341 cm in 418.5 cm and for 491 cm in 573.5 cm. All these results have a
significant delay from the expected results of Figure 5.6. In Table 5.1, we
summarize the results and the delays in time, as well as the error in distance.
In blue we compute the time compensation we need to apply to obtain the
real distances, while in orange, we compute the delay to the expected PDP
output.

Analyzing these results we can observe that:
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(b) Real 341 cm cable PDP
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Figure 5.7: Real cable transmission PDP.Results of using real cable
data.(a) Real 191 cm cable data PDP (8 scans). (b) Expected 341 cm cable
PDP (7 scans). (c) Expected 491 cm cable PDP (7 scans).

• There is an uncompensated hardware delay affecting the res-
ults. We can isolate this delay and attribute it to the hardware pro-
cessing stage because we are working in a multipath-free environment.

• The delay is not following a clear linear regression. We obtain
the linear regressions in Equation (5.2) and Equation (5.3) for the time
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Table 5.1: Summary of the cable results. Expected result vs obtained
result (in gray). In blue the time error of the result to the real distance. In
orange to the expected result.

Real Distance (cm) 191 341 491
Expected Output (cm) 186 341 496

PDP Output (cm) 232.5 418.5 573.5

Error to Real (cm) 41.5 77.5 82.5
Time Error to Real (ns) 2.075 3.875 4.125

Error to Expected (cm) 46.5 77.5 77.5
Time Error to Expected (ns) 2.325 3.875 3.875

error to the real distance and the expected distance respectively.

y = 0.0068333x+ 1.02817 R2 = 0.83994 (5.2)

y = 0.0051667x+ 1.5965 R2 = 0.75 (5.3)

The R2 error under 0.9 indicates that the data does not adjust accur-
ately to a linear fit, so we cannot use the Equation (5.2) nor Equation
(5.3) to apply an “automatic” compensation of the delay.

In Figure 5.8a, 5.8b and 5.8c we can see the result of compensating the
delay to the real distance (in blue in Table 5.1). We can appreciate
that, while for 341 cm we obtain the expected output, for 191 cm we
cannot completely remove the delay and for 491 cm we are overcom-
pensating it. In the PDP for 191 cm even if the first peak is at the
expected 186 cm, the highest intensity peak is at 217 cm, so we would
need to increase the 2.075 ns compensation. For 491 cm, on the con-
trary, we get 480.5 cm instead of the expected 496 cm, meaning that
the 4.125 ns compensation is excessive.

The reason for this is the spatial resolution. The output indicates
the closest possible result given that we can only resolve a 15.5 cm
distance. There might be an extra +/- distance that we cannot take
into account to apply the compensation because we cannot see it in
the PDP.

Summarizing, we see that the compensation works, and we obtain
almost the expected error that the ideal data indicates. However, we
have “manually” applied this compensation assuming that we already
know the true distance. We have seen that these delays are not linear,
so we cannot use a linear regression to compute the amount of the
delay to compensate for any other distance. In the following sections,
we will use the same manual compensation technique to try to find a
pattern for the delays in the wireless data.

53



0 200 400 600 800 1000

Distance (cm)

0

20

40

60

80

100

P
o

w
e

r

X: 217

Y: 93.58

X: 186

Y: 27.24

X: 682

Y: 26.49

(a) 191 cm cable PDP with 2.075 ns delay compensation.
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(b) 341 cm cable PDP with 3.875 ns delay compensation.
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(c) 491 cm cable PDP with 4.125 ns delay compensation.

Figure 5.8: Cable data PDP with delay compensation to the real
distance: (a) 191 cm cable PDP with 2.075 ns delay compensation. (b)
341 cm cable PDP with 3.875 ns delay compensation. (c) 491 cm cable PDP
with 4.125 ns delay compensation.

• There is a predominant second peak in some PDPs at more
than double the distance from the first one. We know that the
multipath is not causing this effect in the data. We also observed in
Figure 5.6f that the same happened for the ideally generated data;
so we discard the hardware as the cause too. Therefore, the only
possibility left is that the data post-processing algorithm is provoking
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the appearance of this peak.

We can see it with the following sequence of ideally generated data.
We will use ideal cable data without delays to isolate the INDFT
performance. In the first place, we generate the data to coincide with
one of the outputs of the time vector. In this case, for the cable, we
have a solution every 15.5 cm. Then, we will compute the PDP for a
distance that is in between two possible outputs, this is, that has the
maximum error. Finally, we will select a distance that is close to the
next value that the INDFT can output, but not the exact solution. We
can compare these three cases in Figure 5.9a, Figure 5.9b and Figure
5.9c for data generated at 15.5 cm, 23.25 cm and 27 cm.

We have the 15.5 cm plot for reference, where there is only a peak
coinciding with the exact result. For 23.25, the worst-case scenario,
the first peak is still in 15.5 cm but is less powerful than before. Apart
from that, we see two more peaks around 500 cm. If we look at 27 cm
PDP, the first path has already moved to 31 cm but we still have
an extra peak at 527 cm like in Figure 5.9b. We can see that these
unexpected peaks appear when the exact solution is not available in
the output time vector due to the spatial resolution of the algorithm.
Therefore, the first peak will still point out to the closest possible
solution but we will notice the presence of other peaks at a further
distance that might even be stronger than the first one.

The only factor contributing to these results is the INDFT, as we use
ideal data without delays. Therefore, we can assume that this is an
effect triggered by using an approximation algorithm to compute the
INDFT.

• One of the scans of Figure 5.7c has two small first peaks far
apart from the average solution. This effect looks like an isolated
event for that particular scan. We know it cannot be an influence of
the multipath, as we are using cable data. So we can only assume that
either it is the data that for some reason in this scan was incorrectly
logged, or it is another effect of the INDFT algorithm. However, we
observe that for this scan there is also a tiny peak at the same distance
(573.5 cm) as the rest of scans, which may suggest that it is an effect
of the algorithm. We see that we should choose the solution based
on the distance where more first peaks coincide, which in this case is
573.5 cm. In the following section, we will also apply this metric to
choose the solution.

5.2.4 Wireless Data Results

Finally, we are able to analyze the PDP results of the wireless data taking
into account what we have seen until this point. We already talked about the

55



0 200 400 600 800 1000

Distance (cm)

0

0.2

0.4

0.6

P
o

w
e

r

X: 15.5

Y: 0.5833

(a) 15.5 cm ideal cable PDP
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(b) 23.25 cm ideal cable PDP
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(c) 27 cm ideal cable PDP

Figure 5.9: The effect of having data that does not coincide exactly
with a possible output in the PDP. (a) PDP output for ideal 15.5 cm
cable, coinciding exactly with a possible distance output. (b) PDP output
for ideal 23.25 cm cable, value with the highest possible error. (c) PDP
output for ideal 27 cm cable, close to the next possible distance output at
31 cm.

setup and the distances at which we collect the data; now we have to discuss
the sparsity parameter α for the INDFT algorithm. As explained in Section
4.2.3, depending on the value assigned to this parameter α we will get a
result with a higher or lower number of dominant paths. However, it needs
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(a) 29 cm PDP with α = 1000.
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(b) 29 cm PDP with α = 2000.
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(c) 29 cm PDP with α = 3000.
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(d) 29 cm PDP with α = 4000.

Figure 5.10: Qualitative effect of different sparsity parameter α for
the same wireless data. The X axis represents the distances travelled
by the different paths, while the Y axis shows their intensity. (a) 29 cm
PDP with α = 1000. (b) 29 cm PDP with α = 2000. (c) 29 cm PDP with
α = 3000. (d) 29 cm PDP with α = 4000.

to be adjusted empirically. In Figure 5.10a - 5.10d, we can qualitatively see
the effect of increasing the value of this parameter. The number of paths
gets reduced as the α increases. We will not always get the same number of
peaks for the same α. In a transmission where the multipath is weak, a high
α value will output a low number of peaks. If, on the contrary, the intensity
of the reflected signals is high, we will obtain more peaks than before for
the same sparsity parameter.

In Chronos five is the average number of predominant paths they obtain
after multiple experiments with an unknown α. Following the opposite pro-
cess, we choose α = 3000 to get an output with approximately five main
peaks in each wireless scan. We have to note that for the previous three
sections, as there was no multipath involved, we use a really low α = 10
parameter.

Moving on to the results for the wireless data at distances of 29 cm, 59 cm,
89 cm, 119 cm, 149 cm, 179 cm and 209 cm, we expect to obtain the first
peak of the PDP at 23.3 cm, 69.8 cm, 93 cm, 116.3 cm, 139.5 cm, 186 cm and
209.3 cm. These are the closest possible outputs to the true distance with a
spatial resolution of 23.3 cm.

From Figure 5.11a to 5.11g we can observe the PDPs for several scans.
As it is not easy to appreciate in the plot where is the first peak of each
scan, the one that determines the time and distance of the direct path, we
summarize the most relevant features of the results in Table 5.2.
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(a) Wireless data PDP at 29 cm
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(b) Wireless data PDP at 59 cm
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(c) Wireless data PDP at 89 cm
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(d) Wireless data PDP at 119 cm

Figure 5.11: [Part I] PDP for the wireless data at different distances:
(a) For 29 cm. (b) For 59 cm. (c) For 89 cm. (d) For 119 cm.
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(e) Wireless data PDP at 149 cm
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(f) Wireless data PDP at 179 cm

0 500 1000 1500

Distance (cm)

0

50

100

150

200

250

P
o

w
e

r

(g) Wireless data PDP at 209 cm

Figure 5.11: [Part II] PDP for the wireless data at different dis-
tances: (e) For 149 cm. (f) For 179 cm. (g) For 209 cm.

We can interpret these tables as a summary of the output of a histogram
that accounts for the number of times the first peak appears at a certain
distance in each scan. We count the number of times a first peak appears at
a given distance in each scan (in orange). We select the most recurrent one
as the solution and compute the error in distance (in red) and in time (in
gray) to the true location of the AP. Finally, we also calculate the percentage
of appearance of that error among the total number of scans (in blue).

For example, for the results of 29 cm in Table 5.2a we expect a result of
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23.3 cm shown in green. Adding all the first peak appearances (in orange),
we know we performed a total of 11 scans, where the most repeated output
was 162.8 cm with 5 appearances, followed by 232.5 cm with 3. Therefore,
we take 162.8 cm as the output for this distance. We can see that for the
expected output, there was not even a single result. Then, we show in
red the error in cm of our output to the true 29 cm distance, and in gray
the time delay in ns that this error implies which are 133.8 cm and 4.46 ns
respectively. Finally, in blue we show the percentage of that solution, this
is, of that error, among the total number of scans. In the other columns we
can see the results for the other distances that are not the selected output.

For the range of 0m to 2m, Chronos achieves a median distance error
below 10 cm and a median time error under the 0.3 ns for measurements in
LoS. In our case, looking at the expected outputs and the true distances, the
minimum theoretical error we can get is −5.7 cm, 10.8 cm, 4 cm, −2.7 cm,
−9.5 cm, 7 cm and 0.3 cm for each distance from 29 cm to 209 cm respectively.
We can see that only for the distance of 59 cm (10.8 cm error) we expect
to have an error above the threshold that Chronos results indicate. For
any distance, we can compute the worst-case error as half of the spatial
resolution, this will happen with a location that is just in the middle of two
values that we can resolve. For example, in our case, as we have outputs
every 23.3 cm, 11.65 cm is our expected worst-case error.

As we could expect from the results of Section 5.2.3, there is a delay in
almost all the PDPs. In cases like 29 cm, 119 cm and 149 cm, the error is
higher than the distance itself, 133.8 cm, 183.3 cm and 153.3 cm respectively.
As before, these delays do not fit a linear regression.

Summarizing, we can conclude about this delay of unknown origin that:

• It can be too large to be acceptable for an indoor localization envir-
onment.

• It is neither constant nor can be adjusted in a linear regression, or
follows a clear relation with the true location of the AP.

• The linear fit of the cable delay does not help to determine its quantity.

5.3 The New Delay

The main objective of this section is to search for a pattern in the delay
found in the previous section. We will try to find this pattern by observing
the outcomes of two different delay compensations that we will apply, also
based on the results of Section 5.2.4. First, we will check if the outcome of
the delay removing methods improves the poor results of Table 5.2. If that
is the case, we will check if the applied time compensation has a bound or
follows a regression.
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Table 5.2: [Part I] PDP analysis of the first peak in order of appear-
ance. These tables summarize the histogram representing the appearances
as the first peak of the possible output distances. The first row shows the
distances at which we find the first peak. In green the expected output. The
second row indicates the number of times that the first peak appears at the
given distance. In orange the distance with more appearances. The third
row shows the distance error in cm to the true distance of the device. In red
the error in cm of the distance with more appearances. In the fourth row,
we compute the percentage of appearance of that distance over the total
number of scans. In blue the percentage of appearance of the output with
more presences. The last row shows the time error in ns of that distance. In
gray the time error in ns to compensate for the peak with more appearances.

(a) 29 cm PDP analysis.

Distance (cm) 23.3 162.8 209.3 232.5 255.8
1st Peak Appearances 0 5 1 3 2
Error (cm) -5.7 133.8 180.3 203.5 226.8
%Error Appearance 0 45.5 9.1 27.3 18.2
Time Error (ns) 0.19 4.46 6.01 6.783 7.56

(b) 59 cm PDP analysis.

Distance (cm) 69.8 93 116.3 139.5 255.8
1st Peak Appearances 7 1 1 1 1
Error (cm) 10.8 34 57.3 80.5 196.8
%Error Appearance 63.6 9.1 9.1 9.1 9.1
Time Error (ns) 0.36 1.133 1.91 2.683 6.56

(c) 89 cm PDP analysis.

Distance (cm) 93 116.3 162.8
1st Peak Appearances 4 7 1
Error (cm) 4 27.3 73.8
%Error Appearance 33.3 58.3 8.3
Time Error (ns) 0.133 0.91 2.46

We perform a delay compensation based on the results shown in Table 5.2
and another one looking at Figure 5.11. The first compensation corresponds
to the time error depicted in the tables (in gray) for the first peak with more
appearances. The second approach compensates the delay of what we will
call the main peak to the true distance. We define the main peak as the
first output of the PDP that presents an intensity significantly higher than
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Table 5.2: [Part II] PDP analysis of the first peak in order of ap-
pearance.

(d) 119 cm PDP analysis.

Distance (cm) 93 116.3 139.5 186 209.3 302.3
1st Peak Appearances 1 2 1 2 4 7
Error (cm) -26 -2.7 20.5 67 90.3 183.3
%Error Appearance 5.9 11.8 5.9 11.8 23.5 41.2
Time Error (ns) 0.867 0.09 0.683 2.233 3.01 6.11

(e) 149 cm PDP analysis.

Distance (cm) 23.3 116.3 139.5 186 279 302.3 348.8
1st Peak Appear. 1 3 3 2 1 5 2
Error (cm) -125.7 -32.7 -9.5 37 130 153.3 199.8
%Error Appear. 5.9 17.6 17.6 11.8 5.9 29.4 11.8
Time Error (ns) 4.19 1.09 0.317 1.233 4.333 5.11 6.66

(f) 189 cm PDP analysis.

Distance (cm) 116.3 139.5 186 255.8 302.3 348.8 395.3
1st Peak Appear. 2 1 2 6 4 1 1
Error (cm) -62.7 -39.5 7 76.8 123.3 169.8 216.3
%Error Appear. 11.8 5.9 11.8 35.3 23.5 5.9 5.9
Time Error (ns) 2.09 1.317 0.233 2.56 4.11 5.66 7.21

(g) 209 cm PDP analysis.

Dist. 69.8 93 116.3 139.5 186 209.3 302.3 395.3 418.5 441.8
1st P. 1 1 1 1 2 0 6 2 2 1
Err. -139.2 -116 -92.7 -69.5 -23 0.3 93.3 186.3 209.5 232.8
%Er. 5.9 5.9 5.9 5.9 11.8 0 35.3 11.8 11.8 5.9
T Er. 4.64 3.867 3.09 2.317 0.767 0.01 3.11 6.21 6.983 7.76

the first peak. Therefore, we choose the main peak based on the intensity
that they show in the graph, on two conditions. First, the peak needs to be
in the vicinity of the main peak in Table 5.2. If the outputs are far from
the first peak, it could be a result of using CSI2 as input data (Equation
(3.15)), or the effect of the algorithm like in Figure 5.9. Second, more than
one scan must have a solution at that distance. A single and solitary peak
can be a result of an isolated case where the data of the scan does not
follow the behavior of the rest, as it was the case of the small peaks in
Figure 5.7c. For example, for the distance of 89 cm the histogram outputs a
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result of 116.3 cm, and if we take a look at the PDP in Figure 5.11c we can
appreciate several small peaks gathering around that position. However,
there is a peak at 325.5 cm that stands out above all the surrounding ones.
In this case, we choose this distance because it is close to the first peak
solution, and multiple scans show a peak in this position, so it satisfies both
conditions.

The purpose of this compensation is to ignore the smaller peaks that
might remain even after choosing a high sparsity parameter and focus on a
peak that has a bigger chance of being the direct path in LoS because of its
higher intensity.

We will start analyzing the results of applying the first approach where
we compensate the delay of the first peak in Table 5.3. We compare them
with the original results in Table 5.2 (now in in orange). We use the same
metric as in the previous section to evaluate the result; this is, choose the
output with more appearances as the first peak.

In general terms, we can appreciate a noticeable reduction of the error. In
fact, in cases where the result was especially inaccurate, like 29 cm or 149 cm,
there is an error reduction of more than 1m. We have three distances with
an error below the 10 cm. In turn, we observe that the lowest error of the
previous results, for 59 cm, is now more than 20 cm higher than before. For
the distances of 119 cm, 179 cm and 209 cm we see in the tables more than
one result for the error. In these cases, multiple distances have the same
number of appearances as the first peak in the histogram, and each of these
presents a different error to the true distance that is shown in the table. We
will refer to them as possible solutions. All three distances, 119 cm, 179 cm
and 209 cm , have one possible solution under the 10 cm error threshold.

The reason for the appearance of multiple possible solutions comes from
the fact that the peaks will not be moving as a whole when we apply the
time compensation. We have already seen in Figure 5.9 that the outputs
will fit the closest possible output upwards or downwards. When we shift
the data to compensate the delay, some of the peaks that gathered around
the same output might not end up now in the vicinity of the same result.
Therefore, after the delay compensation, we cannot expect to have the same
first peak appearances distribution as before but with a distance shift. As
a result, a distance can end up having multiple possible solutions.

If we now observe the time compensation applied to obtain these results,
in gray in Table 5.3, we see that the values are quite scattered. It is not
possible to fit them in a linear regression. Even if we have seen a significant
improvement in the results, we would need a non-linear approach to find a
general and scalable solution to compute the delay for all distances with this
method.

In Table 5.4 we see the results for the second delay compensation method.
Here we choose the main peak for each plot of Figure 5.11 based on the two
conditions mentioned before and compensate the delay to the true distance.
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Table 5.3: Results for delay compensation using the values of Table
5.2a-5.2g. In green the error in cm after the application of this method.
In orange the error in cm of the comparative method in Table 5.2a-5.2g.

Real
Distance (cm)

29 59 89 119 149 179 209

Time
compensation
(ns)

4.46 0.36 0.91 6.11 5.11 2.56 3.11

1st Peak
Distance (cm)

23.3 93 93 23.3
116.3

139.5 46.5
116.3
186

116.3
209.3
302.3

1st Peak
Appearances

10 (11) 5 (11) 7 (12) 6 (17) 6 (17) 3 (17) 3 (17)

%Appearances 90.9 45.5 58.3 35.3 35.3 17.7 17.7

Error (cm) -5.7 34 4
-95.7
-2.7

-9.5 -142.5
-72.7
-3

-92.7
0.3
93.3

Previous
Error (cm)

133.8 10.8 27.3 183.3 153.3 76.8 93.3

In the second row of this table, we indicate the distance of the main peak in
each case. We compare the results with the ones in Table 5.3 (in orange).

In general terms, the results are better than for the first method. We
improve the output for the scans at 29 cm, 149 cm and 209 cm significantly,
reducing the error around 100 cm. Five distances are now close to or under
the error threshold of 10 cm marked by Chronos. Only two other distances
are still over the 90 cm error.

Overall, we can conclude that this method works better than using the
histogram results. However, again it is not possible to fit the time compens-
ation applied in this method in a linear regression, we can only appreciate
that the delay is bounded between 5 ns and 8 ns.

In a final approach, we will see if there is a chance to obtain deterministic
error results; this is, only one output per distance. We will not try to find a
pattern for the delay, as it is noticeable its non-linear nature. We will also
try to improve the results of Table 5.4 and get them closer to what Chronos
reports. To do so, we will modify the sparsity parameter α maintaining the
same delay compensation of Table 5.4, the time compensation of the second
method. This approach will cause the reduction or disappearance of the
smaller peaks. As a result, the appearances in the histogram of the most
powerful ones will increase, as those are the only ones left. In other words,
now the strongest peaks will determine the error to the true distance.
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Table 5.4: Delay compensation using the PDP graph. In green the
error in cm after the application of this method. In orange the error in cm
of the comparative method in Table 5.2a-5.2g.

Real
Distance (cm)

29 59 89 119 149 179 209

Distance of
the main peak
(cm)

232.5 255.8 325.5 302.3 302.3 395.3 441.8

Time
compensation
(ns)

6.78 6.56 7.88 6.11 5.11 7.21 7.76

1st Peak
Distance (cm)

23.3 46.5 23.3
93

23.3 139.5 46.5 209.3

1st Peak
Appearances

9 (11) 11 (11) 5 (12) 6 (17) 6 (17) 7 (17) 4 (17)

%Appearances 81 100 41.6 35.3 35.3 41.2 23.5

Error (cm) -5.7 -12.5
-65.5
4

-95.7 -9.5 -132.5 0.3

Previous
Error (cm)

133.8 10.8 27.3 183.3 153.3 76.8 93.3

We can increase α until a certain amount. All scans should have at least
one peak that indicates the path of the incoming signal. The more α in-
creases, the less peaks we get in the PDP. The first scan that ends up with
a single peak delimits the threshold of the sparsity parameter. In this case,
α = 4800. In Table 5.5 we compare the results of the different parameters,
in green for α = 4800, in orange for α = 3000. Overall, the distance er-
ror improves and gets closer to what we can consider acceptable for indoor
environments. For 29 cm, 59 cm and 209 cm we maintain the good results,
for 119 cm and 179 cm we reduce the error almost 70 cm, and for 89 cm
we obtain a result that lies between the two possible solutions of 4 cm and
−65.5 cm error. We find the only drawback for 149 cm, where we add an
error of 23.2 cm.

In this section, we have confirmed the existence of a delay that is not
constant and does not adjust to a linear fit. We have tried two different
approaches to remove the error that appears in Table 5.2. Although both
of them improve the accuracy considerably, even reducing all errors below
65 cm and most of them below 30 cm, we have seen that the time compens-
ation that they apply is non-linear, and we cannot extend this hardcoded
approach to any other distance. Therefore, it will be necessary to know the
origin of this non-linear delay as Chronos does for the PDD, CFO, and PLL
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Table 5.5: Delay compensation using the PDP graphs with α = 4800
maintaining the time compensation of Table 5.4. In green the error
in cm after the application of this method. In orange the error in cm of the
comparative method in Table 5.4 for α = 3000. Finally, the last row shows
the results for the wireless data with no delay compensation of Table Table
5.2a-5.2g.

Real
Distance (cm)

29 59 89 119 149 179 209

Time
compensation
(ns)

6.78 6.56 7.88 6.11 5.11 7.21 7.76

1st Peak
Distance (cm)

23.3 46.5 116.3 93 116.3 116.3 209.3

1st Peak
Appearances

5 (11) 10 (11) 11 (12) 13 (17) 7 (17) 9 (17) 11 (17)

%Appearances 45.5 90.9 94.1 75 41.2 52.9 64.7

Error (cm) -5.7 -12.5 27.3 -26 -32.7 -62.7 0.3

Previous
Error (cm)

-5.7 -12.5
-65.5
4

-95.7 -9.5 -132.5 0.3

Original Error
(cm)

133.8 10.8 27.3 183.3 153.3 76.8 93.3

Offset to remove it accordingly and make it scalable for all distances.
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Chapter 6

Conclusions and Future
Work

6.1 Conclusions

In this work, we have analyzed the ranging method of the paper Chronos:
Decimeter-Level Localization with a Single WiFi Access Point. It is one
of the research papers with a significant impact in the past few years on
the topic of indoor localization using the Channel State Information with
a reduced number of Access Points. In the course of this Thesis, we have
encountered different difficulties relative to both the hardware installation
and software implementation required to extract a critical parameter in WiFi
communications like CSI. We have obtained results that differ from our ex-
pectations and reached some conclusions that can be summarized as follows:

- Implementation -

• We tried to use a different chipset for the implementation, instead of
the IWL5300 like in Chronos, to see if there was a possibility of using
real APs. We found out that there are issues with the new chipsets of
Qualcomm Atheros, that prevent us from extracting the CSI from the
physical layer.

• We developed a similar program to Chronos for the channel hopping
procedure, except that our system does not work at the kernel level
but in the userspace. We have performed all the measurements keeping
both AP and Client static to reduce the constraint of the channel
coherence time. We found that the communication was only working
correctly for the 5 GHz band channels, and accordingly, we adjusted
the spatial resolution of the INDFT to the bandwidth reduction.

• On the side of the data processing algorithm, we discovered that the
INDFT algorithm had an error that was preventing it from conver-
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ging to a solution. In Section 4.2.3, we modified the necessary step
size parameter to achieve the convergence.

- Evaluation -

After implementing the channel hopping protocol, we have tested the
system with different experiments. We have taken as reference the math-
ematically generated ideal data plus the added delays explained in Chronos.
In addition to this, we have performed a test with a cable transmission to
obtain data without multipath, and finally, the complete system validation
for wireless data. Thereby, we have gathered the following conclusions:

• We have validated that the INDFT algorithm outputs the closest solu-
tion to the real distance as its first peak. However, we also found that
we can see extra peaks appearing at a further distance that do not cor-
respond to a path that the signal has traversed. The limited spatial
resolution and the fact that the INDFT algorithm is an approximation
algorithm are the cause of this effect.

• With the cable experiment, we confirmed the presence of an extra
uncompensated delay. The hardware is the source of this delay, as the
signal is not affected by anything else in a wired transmission. We
found that this delay is not constant and it does not adjust well to a
linear regression.

• With the wireless data, we corroborated the presence of the non-linear
delay. We have experienced a median error of 96.9 cm. For some
distances, this deviation gets close to two meters, while for others, we
obtain results near the 10 cm threshold that Chronos determines.

• Finally, we have applied different delay compensation methods that
allow us to reduce the median error around 50 cm. However, none of
these methods is applicable to compute the time compensation extens-
ible for all distances in a generic way. We could observe there is not a
pattern in the delay, it is not linear or quantifiable, and therefore it is
necessary to know its origin to find a scalable method to remove it.

6.2 Future Work

Indoor localization is a well-known topic, studied from a varied range of
perspectives and methods. Perhaps, this last approach of using a physical
parameter and mathematical techniques to obtain the distance between two
devices may have a future due to its robustness. For that, there are a couple
of aspects that we can propose as future research to improve this approach

68



and make the most of it so that it can become a mainstream method for the
indoor localization in the coming years:

• The hardware delays: An important topic that the papers about
indoor localization using CSI research is the effect of the signal pro-
cessing stage on the final result. Using hardware that is not designed
to obtain precise phase and amplitude measurements can lead to er-
rors. A small delay in time can be translated to a considerable error in
distance for indoor environments. In this work, we have detected the
presence of a non-linear delay that can cause an error greater than one
meter in some cases. Finding the source of this delay and achieving a
method that systematically removes it can be a research topic to take
into consideration.

• The dedicated software to extract the CSI: Nowadays we know
about two options to extract the CSI which are the Atheros and the
IWL5300 chipset tool. However, if we want to extend this indoor
localization technique, we need to have more hardware choices. Almost
all current WiFi chipsets can compute the CSI, as IEEE802.11n is
widespread. It is necessary to research the possibility of developing
software that allows the user to extract that information from more
than only those two pieces of hardware.

69



70



Bibliography

[1] Paramvir Bahl, Venkata N Padmanabhan and Anand Balachandran.
‘Enhancements to the RADAR user location and tracking system’. In:
Microsoft Research 2.MSR-TR-2000-12 (2000), pp. 775–784.

[2] Paramvir Bahl, Venkata N Padmanabhan et al. ‘RADAR: An in-
building RF-based user location and tracking system’. In: IEEE in-
focom. Vol. 2. 2000. INSTITUTE OF ELECTRICAL ENGINEERS
INC (IEEE). 2000, pp. 775–784.

[3] Dean Banerjee. PLL Performance, Simulation and Design. url: http:
//www.ti.com/lit/ug/snaa106c/snaa106c.pdf (visited on 25/11/2018).

[4] Ernesto G Birgin, Jose Mario Mart́ınez, Marcos Raydan et al. ‘Spec-
tral projected gradient methods: review and perspectives’. In: J. Stat.
Softw 60.3 (2014), pp. 1–21.

[5] Mauro Brunato and Roberto Battiti. ‘Statistical learning theory for
location fingerprinting in wireless LANs’. In: Computer Networks 47.6
(2005), pp. 825–845.

[6] Qasim Chaudhari. Wireless Communications From the Ground Up.
What is Carrier Frequency Offset (CFO) and How It Distorts the
Rx Symbols. url: https://wirelesspi.com/what-is-carrier-
frequency-offset-cfo-and-how-it-distorts-the-rx-symbols/

(visited on 25/11/2018).

[7] Hao Chen et al. ‘ConFi: Convolutional neural networks based indoor
wi-fi localization using channel state information’. In: IEEE Access 5
(2017), pp. 18066–18074.

[8] Zhenghua Chen et al. ‘Fusion of WiFi, smartphone sensors and land-
marks using the Kalman filter for indoor localization’. In: Sensors 15.1
(2015), pp. 715–732.

[9] OpenWRT Community. OpenWRT Repository. url: https://github.
com/openwrt/openwrt (visited on 25/03/2018).

[10] OpenWRT Community. OpenWRT Wireless Freedom. url: https:
//openwrt.org/docs/start (visited on 25/03/2018).

71

http://www.ti.com/lit/ug/snaa106c/snaa106c.pdf
http://www.ti.com/lit/ug/snaa106c/snaa106c.pdf
https://wirelesspi.com/what-is-carrier-frequency-offset-cfo-and-how-it-distorts-the-rx-symbols/
https://wirelesspi.com/what-is-carrier-frequency-offset-cfo-and-how-it-distorts-the-rx-symbols/
https://github.com/openwrt/openwrt
https://github.com/openwrt/openwrt
https://openwrt.org/docs/start
https://openwrt.org/docs/start


[11] Technical University of Denmark (DTU). Lecture on Algorithms for
large-scale convex optimization: Proximal gradient method. url: https:
/ / people . eecs . berkeley . edu / ~elghaoui / Teaching / EE227A /

lecture18.pdf (visited on 28/12/2018).

[12] Frédéric Evennou and François Marx. ‘Advanced integration of WiFi
and inertial navigation systems for indoor mobile positioning’. In:
Eurasip journal on applied signal processing 2006 (2006), pp. 164–
164.

[13] My Digital Life Forums. BIOS Mods. url: https://forums.mydigitallife.
net/ (visited on 03/05/2018).

[14] Patrick R Gill, Albert Wang and Alyosha Molnar. ‘The in-crowd al-
gorithm for fast basis pursuit denoising’. In: IEEE Transactions on
Signal Processing 59.10 (2011), pp. 4595–4605.

[15] Daniel Halperin. iwlagn rate n flags bit fields. url: https://github.
com / dhalperi / linux - 80211n - csitool / blob / csitool - 3 . 13 /

drivers/net/wireless/iwlwifi/dvm/commands.h#L245- L334

(visited on 01/12/2018).

[16] Daniel Halperin. Linux 802.11n CSI Tool. Frequently Asked Questions.
url: https://dhalperi.github.io/linux-80211n-csitool/faq.
html (visited on 16/12/2018).

[17] Daniel Halperin. Linux 802.11n CSI Tool. Installation Instructions.
url: https : / / dhalperi . github . io / linux - 80211n - csitool /

installation.htm (visited on 28/09/2018).

[18] Daniel Halperin et al. ‘Tool Release: Gathering 802.11n Traces with
Channel State Information’. In: ACM SIGCOMM CCR 41.1 (2011),
p. 53. url: http://www.halper.in/pubs/halperin_csitool.pdf.

[19] Society for Industrial and Applied Mathematics. Chapter 10: The
Proximal Gradient Descent Method. url: https://my.siam.org/
books/mo25/mo25_ch10.pdf (visited on 28/12/2018).

[20] Manikanta Kotaru et al. ‘Spotfi: Decimeter level localization using
wifi’. In: ACM SIGCOMM Computer Communication Review. Vol. 45.
4. ACM. 2015, pp. 269–282.

[21] Lenovo. BIOS update utility - ThinkPad R60, R60i (Types: 94xx). url:
https://support.lenovo.com/nl/es/downloads/ds001506 (visited
on 03/05/2018).

[22] Alex T Mariakakis et al. ‘Sail: Single access point-based indoor localiz-
ation’. In: Proceedings of the 12th annual international conference on
Mobile systems, applications, and services. ACM. 2014, pp. 315–328.

[23] MathWorks. spline Documentation. url: https://nl.mathworks.
com/help/matlab/ref/spline.html (visited on 20/12/2018).

72

https://people.eecs.berkeley.edu/~elghaoui/Teaching/EE227A/lecture18.pdf
https://people.eecs.berkeley.edu/~elghaoui/Teaching/EE227A/lecture18.pdf
https://people.eecs.berkeley.edu/~elghaoui/Teaching/EE227A/lecture18.pdf
https://forums.mydigitallife.net/
https://forums.mydigitallife.net/
https://github.com/dhalperi/linux-80211n-csitool/blob/csitool-3.13/drivers/net/wireless/iwlwifi/dvm/commands.h#L245-L334
https://github.com/dhalperi/linux-80211n-csitool/blob/csitool-3.13/drivers/net/wireless/iwlwifi/dvm/commands.h#L245-L334
https://github.com/dhalperi/linux-80211n-csitool/blob/csitool-3.13/drivers/net/wireless/iwlwifi/dvm/commands.h#L245-L334
https://dhalperi.github.io/linux-80211n-csitool/faq.html
https://dhalperi.github.io/linux-80211n-csitool/faq.html
https://dhalperi.github.io/linux-80211n-csitool/installation.htm
https://dhalperi.github.io/linux-80211n-csitool/installation.htm
http://www.halper.in/pubs/halperin_csitool.pdf
https://my.siam.org/books/mo25/mo25_ch10.pdf
https://my.siam.org/books/mo25/mo25_ch10.pdf
https://support.lenovo.com/nl/es/downloads/ds001506
https://nl.mathworks.com/help/matlab/ref/spline.html
https://nl.mathworks.com/help/matlab/ref/spline.html


[24] Wolfram MathWorld. Gradient. url: http://mathworld.wolfram.
com/Gradient.html (visited on 28/12/2018).

[25] MCS.Constellations and Modulation. url: http://ecee.colorado.
edu/~liue/teaching/comm_standards/2015S_IEEE_802.11n/

Webpages/constellation.html (visited on 01/12/2018).

[26] OpenWRT. OpenWRT Table of Supported Hardware. url: https :

//openwrt.org/toh/start (visited on 25/03/2018).

[27] OpenWRT.org. TP-Link TL-WA901ND v5. url: https://openwrt.
org/toh/hwdata/tp-link/tp-link_tl-wa901nd_v5 (visited on
25/03/2018).

[28] Ian Poole. OFDM Orthogonal Frequency Division Multiplexing Tu-
torial. url: https : / / www . radio - electronics . com / info / rf -

technology- design/ofdm/ofdm- basics- tutorial.php (visited
on 25/11/2018).

[29] Ian Poole. Wi-Fi / WLAN Channels, Frequencies, Bands and Band-
widths. url: https://www.radio-electronics.com/info/wireless/
wi-fi/80211-channels-number-frequencies-bandwidth.php (vis-
ited on 25/11/2018).

[30] Souvik Sen et al. ‘Avoiding multipath to revive inbuilding WiFi local-
ization’. In: Proceeding of the 11th annual international conference on
Mobile systems, applications, and services. ACM. 2013, pp. 249–262.

[31] Yuxiang Sun, Ming Liu and Max Q-H Meng. ‘WiFi signal strength-
based robot indoor localization’. In: 2014 IEEE International Confer-
ence on Information and Automation (ICIA). IEEE. 2014, pp. 250–
256.

[32] ThinkWiki. Problem with unauthorized MiniPCI network card. url:
https://www.thinkwiki.org/wiki/Problem_with_unauthorized_

MiniPCI_network_card (visited on 03/05/2018).

[33] Ryan Tibshirani. Lecture 8 on Convex Optimization. url: http://
www.stat.cmu.edu/~ryantibs/convexopt-S15/scribes/08-prox-

grad-scribed.pdf (visited on 28/12/2018).

[34] Ubuntu. Ubuntu 14.04.2 LTS (Trusty Tahr). url: http : / / old -

releases.ubuntu.com/releases/14.04.3/ (visited on 03/05/2018).

[35] Ubuntu. Ubuntu Kernel Support and Schedules. url: https://wiki.
ubuntu.com/Kernel/Support (visited on 01/12/2018).

[36] Deepak Vasisht, Swarun Kumar and Dina Katabi. ‘Decimeter-Level
Localization with a Single WiFi Access Point.’ In: NSDI. Vol. 16. 2016,
pp. 165–178.

73

http://mathworld.wolfram.com/Gradient.html
http://mathworld.wolfram.com/Gradient.html
http://ecee.colorado.edu/~liue/teaching/comm_standards/2015S_IEEE_802.11n/Webpages/constellation.html
http://ecee.colorado.edu/~liue/teaching/comm_standards/2015S_IEEE_802.11n/Webpages/constellation.html
http://ecee.colorado.edu/~liue/teaching/comm_standards/2015S_IEEE_802.11n/Webpages/constellation.html
https://openwrt.org/toh/start
https://openwrt.org/toh/start
https://openwrt.org/toh/hwdata/tp-link/tp-link_tl-wa901nd_v5
https://openwrt.org/toh/hwdata/tp-link/tp-link_tl-wa901nd_v5
https://www.radio-electronics.com/info/rf-technology-design/ofdm/ofdm-basics-tutorial.php
https://www.radio-electronics.com/info/rf-technology-design/ofdm/ofdm-basics-tutorial.php
https://www.radio-electronics.com/info/wireless/wi-fi/80211-channels-number-frequencies-bandwidth.php
https://www.radio-electronics.com/info/wireless/wi-fi/80211-channels-number-frequencies-bandwidth.php
https://www.thinkwiki.org/wiki/Problem_with_unauthorized_MiniPCI_network_card
https://www.thinkwiki.org/wiki/Problem_with_unauthorized_MiniPCI_network_card
http://www.stat.cmu.edu/~ryantibs/convexopt-S15/scribes/08-prox-grad-scribed.pdf
http://www.stat.cmu.edu/~ryantibs/convexopt-S15/scribes/08-prox-grad-scribed.pdf
http://www.stat.cmu.edu/~ryantibs/convexopt-S15/scribes/08-prox-grad-scribed.pdf
http://old-releases.ubuntu.com/releases/14.04.3/
http://old-releases.ubuntu.com/releases/14.04.3/
https://wiki.ubuntu.com/Kernel/Support
https://wiki.ubuntu.com/Kernel/Support


[37] Xuyu Wang, Xiangyu Wang and Shiwen Mao. ‘CiFi: Deep convo-
lutional neural networks for indoor localization with 5 GHz Wi-Fi’.
In: 2017 IEEE International Conference on Communications (ICC).
IEEE. 2017, pp. 1–6.

[38] Xuyu Wang et al. ‘DeepFi: Deep learning for indoor fingerprinting us-
ing channel state information’. In: 2015 IEEE wireless communications
and networking conference (WCNC). IEEE. 2015, pp. 1666–1671.

[39] Wikipedia. IEEE 802.11n-2009. Data rates. url: https://en.wikipedia.
org/wiki/IEEE_802.11n-2009#Data_rates (visited on 01/12/2018).

[40] Kaishun Wu et al. ‘CSI-based indoor localization’. In: IEEE Transac-
tions on Parallel and Distributed Systems 24.7 (2013), pp. 1300–1309.

[41] Yaxiong Xie. Accepted Hardware for the Atheros CSI Tool. url: http:
//wands.sg/research/wifi/AtherosCSI/Hardware.html (visited
on 25/03/2018).

[42] Yaxiong Xie. Atheros CSI Tool. url: http://wands.sg/research/
wifi/AtherosCSI/ (visited on 25/03/2018).

[43] Yaxiong Xie. Atheros CSI Tool Functioning Instructions. url: https:
//github.com/xieyaxiongfly/Atheros_CSI_tool_OpenWRT_src/

wiki/Collect-CSI (visited on 25/03/2018).

[44] Yaxiong Xie. OpenWRT Image Generation Instructions. url: https:
//github.com/xieyaxiongfly/Atheros_CSI_tool_OpenWRT_src/

wiki/Install-OpenWRT-version-of-Atheros-CSI-tool (visited
on 25/03/2018).

[45] Yaxiong Xie. OpenWRT images with the Atheros CSI Tool. url: https:
//github.com/xieyaxiongfly/OpenWRT_firmware (visited on 25/03/2018).

[46] Yaxiong Xie, Zhenjiang Li and Mo Li. ‘Precise power delay profiling
with commodity Wi-Fi’. In: IEEE Transactions on Mobile Computing
(2018).

[47] Jie Xiong and Kyle Jamieson. ‘Arraytrack: A fine-grained indoor loca-
tion system’. In: Presented as part of the 10th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 13). 2013,
pp. 71–84.

[48] Jie Xiong, Karthikeyan Sundaresan and Kyle Jamieson. ‘ToneTrack:
Leveraging frequency-agile radios for time-based indoor wireless local-
ization’. In: Proceedings of the 21st Annual International Conference
on Mobile Computing and Networking. ACM. 2015, pp. 537–549.

[49] Ryota Yamasaki et al. ‘TDOA location system for IEEE 802.11 b
WLAN’. In: IEEE Wireless Communications and Networking Confer-
ence, 2005. Vol. 4. IEEE. 2005, pp. 2338–2343.

74

https://en.wikipedia.org/wiki/IEEE_802.11n-2009#Data_rates
https://en.wikipedia.org/wiki/IEEE_802.11n-2009#Data_rates
http://wands.sg/research/wifi/AtherosCSI/Hardware.html
http://wands.sg/research/wifi/AtherosCSI/Hardware.html
http://wands.sg/research/wifi/AtherosCSI/
http://wands.sg/research/wifi/AtherosCSI/
https://github.com/xieyaxiongfly/Atheros_CSI_tool_OpenWRT_src/wiki/Collect-CSI
https://github.com/xieyaxiongfly/Atheros_CSI_tool_OpenWRT_src/wiki/Collect-CSI
https://github.com/xieyaxiongfly/Atheros_CSI_tool_OpenWRT_src/wiki/Collect-CSI
https://github.com/xieyaxiongfly/Atheros_CSI_tool_OpenWRT_src/wiki/Install-OpenWRT-version-of-Atheros-CSI-tool
https://github.com/xieyaxiongfly/Atheros_CSI_tool_OpenWRT_src/wiki/Install-OpenWRT-version-of-Atheros-CSI-tool
https://github.com/xieyaxiongfly/Atheros_CSI_tool_OpenWRT_src/wiki/Install-OpenWRT-version-of-Atheros-CSI-tool
https://github.com/xieyaxiongfly/OpenWRT_firmware
https://github.com/xieyaxiongfly/OpenWRT_firmware


[50] Xiuyan Zhu and Yuan Feng. ‘RSSI-based algorithm for indoor local-
ization’. In: Communications and Network 5.02 (2013), p. 37.

75



76



Appendix A

Atheros CSI Tool

In this appendix, we will show the process that we followed for the install-
ation and setup of the Atheros CSI tool [42] and the modifications that we
made to try to make it work. We will also explain the reasons why we deduce
the tool is not working correctly for our hardware.

A.1 Tool Introduction

The Atheros CSI Tool was developed by Yaxiong Xie and presented in [46]
to extract the CSI data from Atheros wireless chipsets. This tool has two
variants, one for wireless devices like Access Points and another one for NIC
cards in computers, both based on Atheros manufacturer chipsets. Depend-
ing on the choice, the software is slightly different. For APs, the tool works
on top of the OpenWRT Operating System, an OS for this type of wireless
devices. In the case of NIC cards for computers, as the IWL5300, it works
for Linux OS.

We decided to get two AP and try the approach of the tool for OpenWRT.
Most recent literature use laptops as APs ([20] [36] with the IWL5300 and
[30] [22] with Atheros chipsets), so our aim was to re-implement the same
system as Chronos with a different hardware. It could prove that the method
works regardless of the hardware, and have a system close to what a real
WiFi network looks like with actual APs.

A.2 Hardware Selection

The hardware needs to fulfill two requirements to be eligible for the install-
ation of the tool:

• The wireless chipset must be from Atheros and preferably supported
and previously tested by the tool. We can find a list of tested chipsets
in [41].
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• The AP must be able to run with OpenWRT OS. We can find a list
of supported APs in [26].

The only device that we found still in the market fulfilling both requirements
was the TP-Link TP-LINK WA901ND (v.5.0). According to [27] the main
characteristics of this device are:

• Atheros AR9380 chipset.

• 4Mb Flash/ 32Mb RAM.

• TFTP server.

• 3x3 MIMO antennas.

A.3 OpenWRT Software Tool

This tool takes the open source software of OpenWRT operating system
and adds modifications to extract the CSI from the physical layer and pipe
it upwards to the userspace so that the user can log it. The transmitter
needs the patched version of OpenWRT to be able to send IEEE802.11n
HT packets that the receiver will use to compute the CSI.

This tool introduces a structure of modifications at driver level (ath9k),
which are the following:

• A patch to wireless drivers that allows recording the raw CSI data
from incoming packets at the transmitter.

• A patch to wireless drivers to modify all outgoing packets into HT
packets.

• A new kernel module (called ar9003 csi) that can access the raw CSI
data and parse it.

Also, a series of additions at the equivalent userspace level of the AP:

• A userspace program to log the parsed CSI data piped from the phys-
ical layer.

• A userspace program to send HT packets at the transmitter.

After flashing the modified OpenWRT image, we can SSH into the AP and
run the programs to send and log the received packets at the transmitter
and receiver respectively. In [10] we can find all the information to establish
a connection with the device once the OpenWRT OS is running.
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A.4 Problems Found

We encountered two main problems, the first one is related to the OpenWRT
image and flashing it in the AP. The second issue is related to the functioning
of the logging tool itself.

A.4.1 Image Flashing

Yaxiong Xie provides a list of OS images in [45] with the Atheros Tool.
However, there is no image for WA901ND v5. We need to generate our own
by compiling the source code as explained in [44]. The problem is that the
OpenWRT code of the repository is not the so-called “tiny distribution”,
build to work in 4MB flash memory devices like ours. If we compile the
image with the repository code, the AP will not boot correctly.

The only way we found to build a valid image for the AP is to merge the
additions of the tool with the “tiny distribution” of the OS at [9]. We have
to make sure that we include all driver modifications and the userspace app
to send packets and log the CSI. A code comparison software can help to
locate all files to merge. Back in [44], we need to select in the OpwnWRT
Configuration window Subtarget(tiny). We should follow the rest of the
instructions and compile to generate a valid image.

Finally, to flash the image, I recommend the option explained in the
TL-WA901ND v4 support forum (https://forum.archive.openwrt.org/
viewtopic.php?id=60117&p=3) of using a TFTP server as a back door. It
is the less intrusive option as we need just a TFTP server at our computer
with IP 198.168.0.66 with a file called wa901ndv5 tp recovery.bin con-
taining the image we want to flash in the device. When we boot the AP
pressing the reset button, it will inquire the server for the file and install
the new firmware.

A.4.2 Empty Log File

Once the system is running, we can start by setting the transmission at one
AP and the logging at the receiver. In [43] we can find the instructions to
set up the devices as AP and Client or in injector mode. We could only
use AP-Client mode, as we could not compile the Lorcon source code in our
image due to the reduced space in the flash memory. In [10] we can find a
broader explanation to establish the connection between the AP setting one
as a Client.

For the transmitter, we run the userspace app sendData, while in the
receiver we start the logging running recvCSI and the file where to log the
data as the input parameter. We can see that the Client is receiving packets
when a message appears with the message count, rate and payload length
of the incoming packet. If this packets correctly trigger the computation of
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CSI data, the log file records the CSI information. In our case, we found
the log file empty.

Diving into the driver code, we could figure out that the system detects
the packets correctly as HT packets, but for some reason, the CSI data is
not passing from the physical layer to the new kernel module that handles
the logging. However, the lack of documentation about this chipset did not
allow us to go further. We saw that the driver patch code changes a couple of
bits in a reserved space of a register, which we assume is related to enabling
the CSI computation or passing the information upstream.

On top of that, we found out that, according to the output traces of
the bootloader of the AP this one integrates a QCA9561 from the new
Qualcomm Atheros, and not the Atheros AR9380 as we thought and the
documentation indicated. It might be the case that the way of enabling the
CSI computation for this new manufacturer chipsets is not the same as the
old Atheros chipsets.

A.5 Conclusion

We have seen that the Atheros CSI Tool is not working for the TP-Link AP
WA901ND-v5. There is evidence that the CSI can be extracted from NIC
cards with Atheros chipsets like in [30] with AR9390 and [22] with AR9590.
However, we have to conclude that it is not extensible to the QCA9561.
Therefore, we have to assume that the new Qualcomm Atheros chipsets
have altered the way how they enable the extraction of the CSI from the
physical layer 1.

1 We notified the developer of the tool about it, but we received no feedback.
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