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Theory for Marchenko imaging of marine seismic data with free surface
multiple elimination

Evert Slob and Kees Wapenaar
Delft University of Technology

Summary

The theory of data-driven true amplitude migration is presented for multicomponent marine seismic data.
The Marchenko scheme is adapted to account for the ghost, free surface and internal multiple effects
and works without the need to know the source wavelet. A true amplitude image is formed from the
obtained focusing functions without ghost effects and artefacts from free surface and internal multiples.
The resulting reflectivity at image times can be input for a final step of full waveform inversion. The
numerical example shows the effectiveness of the method in a simple 1D problem.
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Introduction

Combining free surface multiple elimination and internal multiple elimination is an ongoing research
effort. Examples of doing this using the inverse scattering series can be found in Weglein et al. (2003)
and for land data with the Marchenko method can be found in Singh et al. (2015, 2017). In this abstract
we present a Marchenko scheme for marine seismic data where we assume the wavefield is recorded
such that vertical particle velocity data is properly sampled and can be obtained in separate up- and
downgoing components. We show how this scheme accounts for the ghost effects and deals with free
surface and internal multiples such that an image is obtained without artefacts coming form these effects
in the data. We also show how this scheme can be set up such that the source wavelet does not need to
be known. We illustrate the presented method with a 1D numerical example to show the effectiveness
of the scheme in 1D.

Representation for vertical particle velocity data

The configuration consists of a heterogeneous half space below a pressure free surface at z = 0. The
source is located below the surface, zs > 0, and receivers are assumed to be placed below the source,
zr > zs. Outside the source depth level the acoustic pressure, p, satisfies the homogeneous wave equation
given by

ρ∇ · (ρ−1
∇p)+

1
c2 ∂

2
t p = 0, (1)

where ρ(x),c(x) denote the position dependent mass density and wave velocity. Frequency domain
expressions are obtained by replacing the time-derivative by the factor jω and frequency dependent
quantities are indicated with a diacritical hat, e.g., the acoustic pressure is denoted p̂. The particle
velocity is related to the pressure as v̂=−(jωρ)−1∇p̂. For these field quantities the reciprocity theorems
of the time-convolution and time-correlation types can be used to obtain relations between the fields in
two different states, labeled A and B. We apply reciprocity to a domain that has two horizontal boundaries
of infinite extent at depth levels zr and zi, both located below the source depth level and zi > zr. Between
the two depth levels we take the medium in both states the same and no sources exist inside the domain
or on the boundaries. In that case the reciprocity relations are given by (Wapenaar and Grimbergen,
1996) ∫

∂Dr

[p̂+A (xr)v̂−z,B(xr)+ p̂−A (xr)v̂+z,B(xr)]d2xr =−
∫

∂Di

[v̂+z,A(xi)p̂−B (xi)+ v̂−z,A(xi)p̂+B (xi)]d2xi, (2)∫
∂Dr

[(p̂+A (xr))
∗v̂+z,B(xr)+(p̂−A (xr))

∗v̂−z,B(xr)]d2xr =
∫

∂Di

[(v̂+z,A(xi))
∗ p̂+B (xi)+(v̂−z,A(xi))

∗ p̂−B (xi)]d2xi,

(3)

where it is assumed that the density and velocity at the depth level zi are continuously differentiable in
horizontal direction, while for equation (3) an additional approximation is made by ignoring evanescent
waves at both depth levels, as described in Appendix B in Wapenaar and Berkhout (1989). The wave-
fields are split in up- and downgoing components indicated by minus- and plus-signs in superscript, e.g.,
the acoustic pressure has an upgoing component p̂− and a downgoing component p̂+.

In state A we take the medium between zr and zi the same as the actual medium, whereas above the
receiver level zr and below the focusing level zi it is homogeneous with the medium parameters of the
actual medium at those depth levels. In this reduced medium we define an acoustic pressure related
focusing wavefield, f̂1(x,x′i), that focuses at a point x′i at depth level zi. Hence at the receiver level we
have p̂±A (xr) = f̂±1 (xr,x′i). At the focusing level we express the focusing particle velocity field in up- and
downgoing pressure focusing field components as

v̂z,A(xi) =−(jωρ)−1[∂z f̂+1 (xi,x′i)+∂z f̂−1 (xi,x′i)]. (4)

The focusing condition is given by

∂z f̂+1 (xi,x′i) =−
1
2

iωρδ (xT −x′T ), and ∂z f̂−1 (xi,x′i) = 0, (5)
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which implies that the wavefield focuses in xi = x′i after which it propagates downwards as a diverging
wavefield and there is no upgoing wavefield at and below depth level zi. In state B we take the actual
medium with a free surface and possible other heterogeneities above the receiver level zr. At the receiver
level we assume the up-and downgoing components of the vertical component of the particle velocity are
obtained from measurements. This can be achieved using over-under pressure field data or when both
pressure and vertical component of the particle velocity data are acquired in streamer data (Amundsen,
2001), or when mutlicomponent OBC data is available (Amundsen et al., 2001). At depth level zi we
write the pressure in its up- and downgoing components as

p̂B(xi) = p̂+(xi,xs)+ p̂−(xi,xs), (6)

where the source position xs is explicitly given.

Substitution of these choices of the wavefields in equations (2) and (3) gives

p̂−(xi,xs) =−2
∫

∂Dr

[ f̂+1 (xr,xi)v̂−z (xr,xs)+ f̂−1 (xr)v̂+z (xr,xs)]d2xr, (7)

p̂+(xi,xs) = 2
∫

∂Dr

[( f̂+1 (xr,xi))
∗v̂+z (xr,xs)+( f̂−1 (xr,xi))

∗v̂−z (xr,xs)]d2xr. (8)

These equations relate the upgoing and downgoing pressure wavefield at a virtual receiver located in
the subsurface at xi and generated by a source at xs in terms of integrals over all receiver locations of
the decomposed data v̂±z and the decomposed focusing wavefield f̂±1 . Note that the required wavefield
has only been decomposed in up-and downgoing parts and both components contain ghost events and
surface related multiples as well as the source signature. All these effects will still be present in the
pressure field at the focusing level. In the time domain equations (7) and (8) are given by

p−(xi,xs, t) =−2
∫

∂Dr

∫ t

t ′=−∞

[
f+1 (xr,xi, t ′)v−z (xr,xs, t− t ′)+ f−1 (xr,xi, t ′)v+z (xr,xs, t− t ′)

]
dt ′dxr, (9)

p+(xi,xs, t) =2
∫

∂Dr

∫ t

t ′=−∞

[
f+1 (xr,xi,−t ′)v+z (xr,xs, t− t ′)+ f−1 (xr,xi,−t ′)v−z (xr,xs, t− t ′)

]
dt ′dxr,

(10)

where causality of the measured wavefield defines the upper integration limit of the time integrals. The
left-hand sides of equations (9) and (10) are the up- and downgoing acoustic pressure fields at a point xi
in the subsurface and generated by a source in xs. We let the source be excited at t = 0 and the first arrival
is recorded in xi at t = td(xi,xs). This implies that for t < td(xi,xs) both left-hand sides are zero. Because
the focusing wavefield collapses its vertical component of the particle velocity to a delta function at xi
and t = 0, it is a non-causal wavefield at the receiver level that starts to exist at t = −td(xi,xr) and for
similar reason it ceases to exist for t > td(xi,xr). Evaluating equations (9) and (10) for t < td(xi,xr) we
end up with∫

∂Dr

∫ t

t ′=−td
f+1 (xr,xi, t ′)v−z (xr,xs, t− t ′)dt ′dxr =−

∫
∂Dr

∫ t

t ′=−td
f−1 (xr,xi, t ′)v+z (xr,xs, t− t ′)dt ′dxr,

(11)∫
∂Dr

∫ t

t ′=−td
f−1 (xr,xi,−t ′)v−z (xr,xs, t− t ′)dt ′dxr =−

∫
∂Dr

∫ t

t ′=−td
f+1 (xr,xi,−t ′)v+z (xr,xs, t− t ′)dt ′dxr,

(12)

where td = td(xi,xr). Equations (11) and (12) are two coupled 3D Marchenko-type equations from which
f±1 (xr,xi, t) can be solved in the interval −td(xi,xr) ≤ t < td(xi,xr). At the time instant t = td(xi,xs)
the downgoing pressure in equation (10) is non-zero and that means that f+1 (xr,xi, t) can be non-zero,
whereas f−1 (xr,xi, t) = 0, at t =±td(xi,xr). Because we exclude the time instant t = td(xi,xr) we need
an initial estimate for the downgoing part of the focusing wavefields at t = td(xi,xr). To focus the field
at depth requires to send in the inverse of the transmission response. Hence we can write the downgoing
part of the focusing wavefield as

f+1 (xr,xi, t) = f+1d(xr,xi, t)+ f+1m(xr,xi, t), (13)
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where f+1d(xr,xi, t) denotes the first arrival of the inverse of the transmission response between xr and xi

and f+1m(xr,xi, t) represents the coda following the first arrival. Because we do not have a single delta-
like event in the measured data we cannot use the usual iterative scheme (Slob et al., 2014; Wapenaar
et al., 2014) and must resort to other methods such as the conjugate gradient iterative method or matrix
inversion. This leads to the following operator equation

L11 f+1m +L12 f−1 = d1, (14)

L21 f+1m +L22 f−1 = d2, (15)

with

L11 f+1m =
∫

∂Dr

∫ t

t ′=−td
v−z (xr,xs, t− t ′) f+1m(xr,xi, t ′)dt ′dxr, (16)

L12 f−1 =
∫

∂Dr

∫ t

t ′=−td
v+z (xr,xs, t− t ′) f−1 (xr,xi, t ′)dt ′dxr, (17)

L21 f+1m =
∫

∂Dr

∫ td

t ′=−t
v+z (xr,xs, t + t ′) f+1m(xr,xi, t ′)dt ′dxr, (18)

L22 f−1 =
∫

∂Dr

∫ td

t ′=−t
v−z (xr,xs, t + t ′) f−1 (xr,xi, t ′)dt ′dxr, (19)

and

d1 =−
∫

∂Dr

∫ t

t ′=−td
v−z (xr,xs, t− t ′) f+1d(xr,xi, t ′)dt ′dxr, (20)

d2 =−
∫

∂Dr

∫ t

t ′=−td
v+z (xr,xs, t− t ′) f+1d(xr,xi,−t ′)dt ′dxr. (21)

These equations can be solved by unconditional iterative methods, such as the CG method, or through
matrix inversion techniques. An example of sparse inversion can be found in Staring et al. (2017).

Numerical example

To illustrate the method we use a one-dimensional model. The model consists of a layered medium
with 10 reflecting interfaces below the source and receiver and a free surface above them at z=0. The
source and receiver depths are zs = 10 m and zr = 25 m. The layered model is given in Table 1. The
first layer is the water layer in which the source and receivers are located. The source emits an upgoing
and a downgoing normal incidence plane Ricker wavelet with 60 Hz center frequency. The vertical
component of the particle velocity is computed separately in its downgoing and upgoing parts as input
for the Marchenko equations. We solve equations (14) and (15) by matrix inversion for all image times
and create an image directly from f−1 as presented in Slob et al. (2014).

Table 1 density and velocity model.

d (m) 75 117 99 85 111 75 123 151 163 221 ∞

ρ (kg/m3) 1000 2250 1750 1430 1750 1930 1500 2110 2110 2250 2300
c (m/s) 1500 1900 2100 1700 2100 2300 2100 2100 2500 2750 2900

The left plot of Figure 1 shows the downging (black solid line) and upgoing (red dashed line) vertical
component of the particle velocity including the ghost, free surface and internal multiple effects. The
up- and downgoing parts are assumed to be available separately as input for the scheme. The right plot
of Figure 1 shows the ideal image at image time in the black solid line and the obtained image from the
presented Marchenko scheme in the red dashed line. It can be seen that the ghost effect is absent from
the image and no artefacts occur from the free surface or internal multiples.
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Figure 1 Left: The vertical particle velocity in its downgoing (black solid line) and upgoing (red dashed
line) components measured 25 m and generated by a source 10 m below the free surface over a model
with ten reflecting boundaries. Right: the obtained image (red dashed line) and the ideal image con-
volved with Ricker wavelet (black solid line).

Conclusions

We have presented the theory for a scheme that could work on marine seismic data in case the data can
be decomposed into the up- and downgoing components of the vertical particle velocity at the receiving
depth level. These data would still include ghost effects as well as free surface and internal multiples.
We have formulated the scheme such that the source wavelet does not need to be known. The focusing
wavefield is obtained in separated up- and downgoing components from which the true amplitude image
can be formed at the correct image time. The numerical example showed that the scheme performs well
on ideal 1D model data.
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