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Chapter 1

Introduction

1.1 Research background

1.1.1 Context & background: the need for traffic data fusion me-
thods

Traffic data collection and archiving systems are essentialtools for online (and real-time)
dynamic traffic management (DTM) applications, such as adaptive intersection control,
routing, ramp metering, and traffic information services. Put simply, without data from
sensors neither traffic management and control nor traffic information services are pos-
sible. However, the availability of data from a multitude ofdifferent traffic sensors do not
necessarily amount to consistent, coherent and meaningfulinformation on the state of a
traffic network, for example in terms of speed, density or flow. Traffic state estimation
and data fusion techniques are required to translate these available data into a consistent
and complete description of the state in a traffic system. Figure 1.1 illustrates the posi-
tion of traffic data fusion and state estimation (and prediction) in the context of real-time
dynamic traffic management. In this thesis, the traffic states to be estimated are traffic
speeds, flow and density. Later on in this thesis, some of the used terms and definitions
will be given.

Traffic state estimation and data fusion are not only required for the online applications
but also essential forofflineapplications, such as policy / measure evaluation studies and
the development, calibration and validation of the tools necessary to perform these tasks
(e.g. traffic simulation models). Finally, the advancementof scientific research itself
relies heavily on the availability of large amounts of detailed and reliable empirical data

1



2 1 Introduction

Figure 1.1: Schematic representation of traffic state estimation and prediction in the
context of (dynamic) traffic management (DTM) & control

and on techniques to extract consistent and reliable information from these data.

In the last few decades the amount of empirical data becomingavailable for both online
and offline use has steeply increased, particularly in termsof the wide range of sensor
technologies developed and applied to collect these data. Traffic sensors may range from
inductive loop detectors, radar, microwave, ultrasonic sensors to infrared cameras and
in-vehicle GPS/GSM receivers/transmitters (“floating cardata”), to name a few. The mo-
torway network in the Netherlands for example (around 6600 km), has an inductive loop
based monitoring system installed (with loops about every 500 meters), however, this
only holds for around 1/3 of the network. Another 1/3 has onlylimited traffic monitoring,
while the rest 1/3 has nothing at all. Besides the limited spatial coverage in some areas,
a second major issue is that of the available data on average 5-10% is missing or other-
wise deemed unreliable, with regular extremes over 25 or 30%. Also in the Netherlands
other data sources (than loop detectors) are already available or will become available in
the near future. Data from these different sensors (cameras, induction loops, or in-car
GPS/GSM devices) are typically characterized by differentformats, semantics, tempo-
ral and spatial resolution and accuracy, and also differ in availability and reliability as
a function of location, time and circumstances (Van Lint et al.(2005), Van Lint (2006)).
From technical points of view, all kinds of currently available sensors can not provide
traffic measurements which have enough accuracy and coverage for solid traffic state es-
timation. However, economical situations may not allow thepeople to invest too much
in equipment to collect traffic information. For this reason, scientists have to put more
focus on the methodological part. For methodological points of view, the integration of
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such heterogeneous data into comprehensive and consistentdata warehouses is a complex
and challenging task. This chapter focuses predominantly on the second challenge, that
is, on the methodological tools to fuse heterogeneous traffic data. As we will see later in
this thesis, particularly thesemanticaldifferences over space and time between these data
impose strong constraints on the applicability of data fusion techniques.

1.1.2 Multi-sensor data fusion

In many fields of science, such as robotics, medical diagnosis, image processing,
air traffic control, remote sensing and ocean surveillance (see e.g. Yager (2004);
Xiong and Svensson(2002); Varshney(1997); Piella (2003); Linn and Hall(1991)), the
de facto method for state-estimation is multi-sensor data fusion, a technique by which
data from several sensors are combined by means of mathematical and/or statistical mo-
dels to provide comprehensive and accurate information. A wide variety of approaches
have been put forward for multi-sensor data fusion, based on, for instance, (extended)
Kalman filters, Bayes methods and Artificial Neural Networks,Dempster-Shaefer theory
or Fuzzy Logic. Which of these is suitable for the problem at hand is governed largely by
domain specific constraints, the characteristics of the data available, and - probably most
importantly, by the purpose and application for which the data is (f)used. Using similar
arguments as inDailey et al.(1996), data fusion generally leads to

• Increased confidence and accuracy and reduced ambiguity;

• Increased robustness: one sensor can contribute information where others are una-
vailable, inoperative, or ineffective;

• Enhanced spatial and temporal coverage: one sensor can workwhen or where ano-
ther sensor cannot;

• and (more tentatively), decreased costs, because (a) a suite of ‘average’ sensors can
achieve the same level of performance as a single, highly-reliable sensor and at a
significantly lower cost, and (b) fewer sensors may be required to obtain a (for a
particular application)sufficientpicture of the system state.

With these arguments in mind, data fusion techniques provide an obvious solution for traf-
fic state estimation. However, most approaches to traffic state estimation (e.g.Wang et al.
(2006)) consider only asinglesource (i.e. minute aggregated or averaged flows and speeds
from local inductive loop detectors), whereas of the studies thatdoconsider data from va-
rious traffic sensors (e.g.Dailey et al.(1996); Kikuchi et al.(2000)) most are concerned
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with limited traffic networks or corridors (e.g. single traffic links), and not as in the RE-
NAISSANCE approach of Wang and Papageorgiou at comprehensive traffic surveillance
and monitoring for entire freeway corridors or networks. Aswe will elaborate in the
later chapters, the Kalman Filter (KF) approaches demonstrated inWang et al.(2006);
Van Lint and Hoogendoorn(2007); Herrera and Bayen(2007) do have other limitations,
which relate to the spatio-temporal alignment of the available data.

1.2 Problem formulation

As shown in Figure1.1, traffic state estimation plays a critical role in the trafficsystem.
The performance of traffic management (including speed control, route guidance, etc) is
highly dependent on the traffic state estimation. For this reason, we do need less-biased,
solid estimation of basic traffic variables.

However, traffic data from different sensors are heterogeneous. They have different types
of errors and don’t provide time-space traffic measurementsdirectly. Although now there
exist some methods which can provide traffic state estimation by fusing some of traffic
data, these methods involve quite a few assumptions and can neither fuse many more
types of data nor lead to solid and reliable results. This will be shown and discussed later
in Chapter3.

The problem we face is:In the state-of-the-art on traffic data fusion, there is no appro-
priate method which is able to provide solid traffic state estimation by fusing heteroge-
neous multi-types of data with limited assumptions.This thesis will make effort in finding
parsimonious approaches to fusing herterogeneous traffic data.

1.3 Research scope and objective

This research will focus on macroscopic traffic state estimation on a road stretch. The
main traffic state variables in study are speed, density and traffic flow. The methods
to achieve this estimation can be useful for network-wide traffic estimation, and can
contribute to, for example, estimation of queue length in road intersection, OD (origin-
destination) estimation, etc.

The objectives of this research is to reconstruct less-biased and solid traffic variables by
fusing heterogeneous traffic data in a parsimonious way. We will provide a new approach
and methods to give more reliable time-space mean traffic states. Meanwhile, many more
types of traffic data can be fused while less assumptions are made.
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1.4 Theoretical and practical contributions

The research in this book has a number of scientific, methodological and practical contri-
butions. These contributions are summarized in this section.

1.4.1 Scientific contributions

This thesis provides scientists with a comprehensive and deep insight into traffic data
fusion. A new traffic data fusion paradigm and a new fusion approach are given. The
methods proposed in this thesis can help scientists to know more about traffic data and
may contribute to new traffic theories and models. Also thesemethods and approaches
may open a door to developing more advanced data fusion methods. The scientific contri-
butions made in this thesis are listed as below:

• This thesis develops a new taxonomy to classify all traffic data fusion methods and
it presents the state-of-the-art on traffic data fusion methods from the perspective
of this taxonomy. Each of the data fusion methods has two major components: a
core and a shell. The core represents the assumptions in traffic theory, which esta-
blishes the connections between different types of data, between data and estimated
variables. The shell represents the assimilation techniques, particularly some sta-
tistical techniques, which may be able to combine models anddata in statistically
optimal ways.

• This thesis establishes a new paradigm that uses a data-dataconsistency approach
to fuse different types of traffic data. This paradigm is parsimonious, which only
needs very few assumptions but can fuse more types of data. Scientists can use this
paradigm to develop many other simple but effective methodsto fuse traffic data.

• This thesis proposes a new scheme to estimate optimal trafficspeeds in OLS (ordi-
nary least square) sense by using local speeds and travel times. Scientists can also
use this method to easily reconstruct individual trajectories and therefore obtain
more details about traffic characteristics.

• Travel times can be easily estimated from the ground-truth traffic speeds, but the in-
verse process is very difficult and complex since traffic changes over both time and
space domains. This thesis theoretically shows that the inverse process is possible
and that the exact trajectories can be reconstructed by onlytravel times under cer-
tain circumstances. As a consequence, it provides theoretical supports for scientists
to develop new methods to estimate traffic speeds only by using travel times.
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• A new iterative approach with dual-loop iterations is proposed to reconstruct indi-
vidual trajectories by using only travel times. In this approach, a new stochastic
model based on Brownian Motion is given to determine the confidence on different
travel time records considering both time intervals and traffic conditions.

• It establishes a new stochastic model to fuse low-resolution positioning data and
prior speed information. This model establishes a probabilistic relationship between
traffic speeds and sampled traffic flow.

• It develops a new scheme to fuse traffic speeds, flow and traveltimes. In this
scheme, only fundamental physical laws and traffic theory are used, but these three
types of data of different semantics can be fused by simply using an iterative ap-
proach and a linear regression technique.

1.4.2 Methodological contributions

This thesis proposes new methods that provide both efficiency in computation cost and
excellent performance in estimation accuracy and robustness. The methodological contri-
butions made in this thesis are listed as below:

• This thesis develops a new iterative approach combined witha linear regression
technique to fuse local speeds and travel times. With this methodology, the recons-
tructed trajectories can quickly converge in less than ten iterations.

• This thesis develops a new iterative approach to make the best use of travel times.
An inner loop and an outer loop form the whole iterative approach. The inner loop
and outer loop work together and enable the convergence of speed estimation within
tens of iterations and as a result more accurate speed estimation can be made out of
travel times only.

• It uses the Bayesian rule and order statistics to establish the probabilistic relation-
ship between speeds and sample flow in a simple way.

• In the method that fuses speeds, travel times and flow, it combines both the itera-
tive approach and linear regression techniques. This methodology provides high
computation efficiency.
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1.4.3 Practical contributions

The methods proposed in this thesis can satisfy many real life requirements. For example,
the available data in real life world may only have low resolutions. FCD (Floating Car
Data) data may have low polling rates or may have low positioning resolution, and the ca-
meras for travel time may be far away from each other. Some data source has its particular
attributes. For example, the speed measurements from loop detectors have considerable
biases. This thesis aims to use these real-life data and tackle the practical challenges in
them. The contributions are listed as below:

• It was difficult for previous methods to use travel times for speed estimation, or
particular for the travel times from far spaced cameras. Theproposed method ‘PIS-
CIT’ (Piece-wise Inverse Speed Correction by using Individual Travel-time) is able
to fuse local traffic speeds and travel times so that much-less biased traffic speed
estimation can be achieved. This proposed method can easilyuse travel times of
larger intervals and can reduce the error in local speed measurements by a few
times.

• When travel times are the only data source available, the previous methods that
use it for speed estimation lead to considerable bias. But ourproposed method
‘TravRes’ in Chapter6 is very useful to reconstruct accurate individual trajectories
and therefore can achieve more accurate speed estimation. The accuracy can be
improved by about two times.

• Mobile phone tracking data in cell levels were not used for high-resolution speed
estimation, but they exist in large quantities. The proposed ‘FlowRes’ method
in Chapter7 is able to use this low-resolution positioning data to estimate traffic
speeds and further give the magnitude on estimation error. The magnitude on es-
timation error can provide the user with the confidence and reliability on traffic
speeds and travel times. This method can also easily be extended to be applicable
in network-wide speed estimation.

• Fusing local speeds, flow and travel times in a simple framework is highly deman-
ded in practical applications but was always a challenge. The proposed method
‘ITSF’ ( Integrated algorithm for fusingTravel times, localSpeed andFlow) in
Chapter8 is able to estimate both speeds and density by fusing local traffic speeds,
flow and travel times through the data-data consistency approach. In comparison
with the result from the single data source–biased loop speeds, this method can
improve the accuracy by up to 10 times.
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1.5 Thesis Outline

Below is the brief outline of this thesis. Chapter1 is an introduction, which gives the
background, research scope, research objectives and main contributions. Chapter2 dis-
cusses the characteristics of traffic data. Chapter3 presents the state-of-the-art on traffic
data fusion. Chapter4 proposes a data-data consistency approach. Chapter5, 6, 7
and 8 proposes four data fusion algorithms for different purposes. Among them, Chap-
ter 5, 6 mainly use physics lawspeed ∗ time = distance; Chapter7 uses physical law
density ∗ speed = flow; Chapter8 uses both laws. Chapter9 further discusses appli-
cations of the proposed methods and proposes a possible fusion framework. Chapter10
concludes this thesis. Figure1.2 illustrates the layout of this thesis.

Figure 1.2: The Layout of this thesis



Chapter 2

Traffic data collection and importance
of data fusion

2.1 Introduction

This chapter will give the definitions of traffic variables inthis thesis, mainly traffic flow,
speeds and density. It also introduces the mainly used traffic data collection techniques
and data characteristics. We will establish the basic knowledge and concepts about traffic
data and their characteristics. In addition, we will also find that data fusion techniques are
indeed important in order to make use of the data.

Our focus is the macroscopic level, in which traffic is in analogy to fluid or gas, des-
cribed as a continuum. First we give the definitions of the most important macroscopic
variables, such as flow, speed, density, etc. We use Edie’s definition (Edie(1963)) to de-
fine these variables. Following that, we will talk about the data collection techniques, and
characteristics of different data sources. In the end, we will summarize and conclude this
chapter.

2.2 Definitions of basic traffic variables

The basic macroscopic traffic variables used to describe a traffic state include flowq
(veh/h), speedv (km/h) and vehicular densityρ (veh/km). Since traffic evolves over
time-space region, the definitions of the variables normally depend on the observation
approach.

9
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2.2.1 generalized variables with Edie definition

Figure 2.1: Trajectories in gridded time-space domain

Edie(1963) gives general definitions of these variables from perspective of vehicle trajec-
tories. Figure2.1shows vehicle trajectories in a time-space domain. According to Edie’s
definition, the traffic characteristics in the shaded regionin Figure2.1are given by

Flow: q(An) =
d(An)

|An|
(2.1)

Density: ρ(An) =
t(An)

|An|
(2.2)

Speed: v(An) =
d(An)

t(An)
(2.3)

whereAn can actually represent an arbitrary time-space region. In our illustration, it is
the shaded region{An : x ∈ (x2, x3) t ∈ (t3, t4)}, d(An) =

∑

di is the total distance
traveled by all vehicles in regionAn, t(An) =

∑

ti is the total travel time spent by all
these vehicles in regionAn, and |An| is the area of regionAn. Based on such defini-
tions, each quantity depicts traffic states over a certain time-space region, which make it
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convenient and neat to represent traffic evolution over timeand space. In particular,v is
the so-calledtime-spacemean speed, which is a primary input to compute travel times.
Combining Equations2.1, 2.2and2.3, these variable are related to one another by

q = ρv (2.4)

Traffic-flow characteristics such as flow, speed and density are of importance to traffic
operations and management. Flow is a direct measure of traffic throughput, density is the
most important variable for many of macroscopic traffic models, and (time-space mean)
speed determine travel times. AsNi (2007) suggests, successful applications in Intelligent
Transport System call for a solution that is able to determine these characteristics by using
all kind of traffic sensors and the same time is able to preserve the basic relationship
(q = ρv).

2.2.2 Eulerian and Lagrangian measurements

Also local and instantaneous traffic variables can be definedaccording to Edie’s definition.
As already seen above, the generalized traffic variables aredefined in a certain time-space
region. If the time interval for this region becomes very small, the generalized variables
are simplified to instantaneous variables. If the space interval for this region becomes
very small, they are simplified to local variables.

In order to estimate the traffic variables, the traffic measurements are needed. These mea-
surements can be categorized into Eulerian measurements and Lagrangian measurements.
Eulerian measurements can be further classified into local,instant and time-space measu-
rements. Lagrangian measurements are typically represented by vehicle trajectories. The
categorization can be seen in Table2.1. In the ensuing, we will define these traffic flow
measurements.

Table 2.1: Taxonomy of traffic measurements

Measurement types Sub-types Examples

Eulerian measurements
time-space measurementsradar measurements
local measurements data from loop detectors
instant measurements traffic image

Lagrangian measurements
complete vehicle trajectories
incomplete travel times from camera

Local Measurements.Local measurements are the measurements which measure traffic
in a time-space region which space interval becomes extremely small. They refer point
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Figure 2.2: Illustration of local measurements

observations on a road. Local flows represent the number of vehiclesn passing a certain
pointx during a periodT .

q(x) =
n

T
(2.5)

Local speed can be expressed in time-mean speed or harmonic speed and local time-mean
speed is

v(x) =

∑

vi(x)

n
(2.6)

or local harmonic speed

v(x) =
n

∑

1/vi

(2.7)

Harmonic speed is equal to time-space mean speed under conditions of homogeneous and
stationary traffic. The local density during periodT cannot be directly observed but only
be derived from speeds and flow. The derived local density is

k(x) =
q(x)

v(x)
(2.8)

Since there are two types of local speeds, there are two typesof local density which may
be quite different from each other.

Instantaneous Measurements. Instantaneous measurements are the measurements
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Figure 2.3: Illustration of instant measurements

Figure 2.4: Illustration of Lagrangian measurements
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which measure traffic condition in a time-space region whichtime-intervals become ex-
tremely small. They give traffic conditions over a road section of a certain lengthX at
instant timet. They can be taken as a picture captured by a camera at timet and the traffic
states are ‘frozen’ at this moment. Instantaneous density is defined as:

k(t) =
n

X
(2.9)

The space-mean speed over this section at instant timet is

v(t) =

∑

vi(t)

n
(2.10)

It is worth to mention thatvi here refers to the speed of vehiclei on this road section at
time t. For instantaneous variables, flow cannot be directly observed but only derived as

q(t) = k(t) ∗ v(t) (2.11)

In order to achieve the estimation of traffic over a complete time-space region, the time-
space measurements are needed. However, due to the limitation of measurement tech-
niques, only local measurements and instantaneous measurements can be available in
majority of cases. Unfortunately, local measurements can only provide the traffic condi-
tions at a certain point, and instantaneous can only providetraffic conditions at a certain
moment. This makes a challenge in traffic state estimation.

Lagrangian Measurements. Lagrangian measurements are the measurements which
measure an individual fluid parcel (e.g. an individual vehicle) as it moves through space
and time. These measurements can plot all the positions of anindividual parcel through
time. Vehicle trajectories are typically Lagrangian measurements as seen in Figure2.4.
This kind of measurements can be obtained via GPS technologyor any tracking devices.
Different from Eulerian measurements, Lagrangian measurements reflect how a vehicle
experiences traffic.

In many cases, however, we cannot get a complete vehicle trajectory. Instead we can only
know the time spent for a vehicle to travel from one location to another. Such travel time
records can also be regarded as Lagrangian measurements. Since corresponding trajecto-
ries can not be determined, travel times turn to be incomplete Lagrangian measurements.
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2.2.3 Issues in computing traffic variables from available data
sources

We want to estimate traffic states under Edie’s definition, which are time-space mean
variables. In many cases, however, we can not obtain time-space mean measurements
to cover a complete time-space region. If we want to use localmeasurements or instant
measurements to estimate the time-space variables, we haveto extend the range of these
measurements. For example, local measurements only provide the traffic states at a certain
point. So we have to assume the traffic is homogeneous in the space region around this
point. For instant measurements, we may have to assume stationary traffic during an
interval around a certain time instant. The questions are: what is the consequence of
making the above assumption? Does any error will involve when such assumptions are
made.

Furthermore, for Lagrangian measurements, we cannot obtain trajectories for all vehicles
and we can not even get trajectories but travel times instead. The question is: how do
these measurements contribute to the estimation of time-space variables?

In the following section, we will look into specific types of traffic data or traffic measure-
ments in real-life world. We will show that there is indeed a big gap between time-space
variables and different types of traffic measurements and data, which cause a challenge
for traffic data fusion.

2.3 Traffic data

2.3.1 Brief overview

In the last decades the amount of empirical data becoming available for both online and
offline use has steeply increased, particularly in terms of the wide range of sensor tech-
nologies developed and applied to collect these data. Traffic sensors may range from
inductive loop detectors, radar, microwave, ultrasonic sensors to infrared cameras and in-
vehicle GPS/GSM receivers/transmitters (“floating car data”), to name a few. Data from
these different sensors (cameras, induction loops, or in-car GPS/GSM devices) are typi-
cally characterized by different formats, semantics, temporal and spatial resolution and
accuracy, availability as a function of location, time and circumstances. Figure2.5gives
some examples of different sensors and their representation on a time-space plane.

In addition, each of the traffic observation are characterized byVan Lint (2004) as shown
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below:

• data semantics (for example: space-mean speeds and time-mean speeds have dif-
ferent semantics, since both of them represents speeds but have different intrinsic
meanings and levels )

• spatial level of aggregation (for example: distance between inductive loop or came-
ras)

• temporal level of aggregation (for example: 1 minute or 5 minutes aggregation)

• availability in terms of frequency (time) and scope (place,link, route)

• accuracy (expressed as a function of time, place and traffic conditions)

• technical aspects (for example, database format, communication protocols, etc)

• infrastructure bound or free (for example: roadside versusin-car GPS/GSM)

• ownership of data (for example: private or public)

• usage cost (for example: equipment cost, installation cost, maintenance cost, etc)

Although data from traffic sensors come in many forms and qualities, they can essentially
be subdivided along two dimensions. The first relates to their spatio-temporal semantics,
that is, do the data represent local traffic quantities (speed, time headway(s), etc) or do
the data reflect quantities over space (journey speed, localspeed, instantaneous speed,
time-space mean speed, travel times, trajectories). The second relates to the degree of
aggregation, where data may represent an aggregate or average over fixed time periods
(e.g. 1 minute aggregate flows or averaged speeds), or a single event (vehicle passage,
travel time, full trajectory). Table2.2 presents an overview of this classification with a
few examples. The main consequence for fusing these fundamentally different data is that
these data need to be aligned over space and time such that we can employ mathematical
and statistical models to average, filter and combine them into one consistent picture
(space-time map) of the traffic conditions.

A comprehensive overview of traffic data collection systemscan be found inWesterman
(1995); Michalopoulos and Hourdakis(2001). Next, more attention is paid to the data
types that concern this thesis.
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Figure 2.5: Examples of some traffic data and their sources

Table 2.2: Classification of data from traffic sensors with someexamples.

Event-based Aggregate
Local vehicle passage speed, loop flow

low-resolution FCD, etc loop speed, etc

Spatial AVI travel time, time-space mean speed,
journey speed, etc mean travel time, etc
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2.3.2 Loop data

The most common data available for traffic state estimation come from (dual) loop de-
tectors. In the Netherlands for example, the main freeways have an inductive loop about
every 500 meters. These loop detectors can provide speed measurements and flow mea-
sures at the exact locations where they are installed. Thesedata are presented in aggrega-
ted values for a time period ranging from 30 seconds to 10 minutes. Although the speed

Figure 2.6: Illustration of vehicles traveling around a ring-road to explain the
consequence when time-mean speeds are used.

measurements have errors within5% for ordinary vehicles, the time-mean speeds stored
in a collection system will make a considerable bias for density estimation and travel time
estimation. Another type of speed measures are called time-space mean speeds. They
represent the journey speeds with which vehicles cover a certain road stretch. If we want
to get a correct estimate of travel time, the space mean speeds are required. It is also
true for traffic density estimation. The following example shows the difference between
time-mean speeds and space-mean ones.

Figure2.6 shows a one-kilometer long ring road on which there are threecars running
with constant speeds 10km/h, 20km/h and 30km/h respectively. Assuming that the three
cars run on the ring road for only once, it can be deduced that the travel times for them to
cover this road stretch correspond to1km/10km/h = 6min, 1km/20km/h = 3min and
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1km/30km/h = 2min. The average travel time is(6 + 3 + 2)/3 = 3.67min. However, if
one loop detector is placed on this road and aggregates the data for every 6 minutes, then
the time-mean speed is 20km/h. As a result, the estimated travel time from time-mean
speed turns out to be 3 minutes. In contrast, the space-mean speed will exactly lead to
travel time estimates of 3.67 minutes.

Figure 2.7: The impact of difference between time mean and harmonic mean speed:(left)
average speed difference; (middle) difference in density, 10 secondsaggregation; (right)

difference in density, 120 seconds aggregation (from:Knoop et al.(2007))

Let v depict the so-calledspace-meanspeedvS, i.e. the arithmetic average of the speeds
of vehicles present on the road sectionr of interest (with lengthLr) at some time instantt.
With loop detectors alongr, this speed can be approximated by the localharmonicmean
speedvM , that is

vS ≈ vM =< v >M=
Lr

1
N

∑

i

1
vi

(2.12)

The approximation in (2.12) is exact in the case that road stretch is very short and
speeds are constant over the region. The local arithmetic (or simply time) mean speed
vL =< v >L= 1

N

∑

vi provides a biased approximation of the space mean, due to the
fact that in a time samplefasterobservations are over represented. That this bias is si-
gnificant, specifically under congested (low-speed) conditions has been demonstrated for
example byTreiber and Helbing(2002) for estimating travel times (errors of over 30%),
and byKnoop et al.(2007) for estimating densities, where the resulting errors can mount
up to over 100% as shown in Figure2.7. In this figure,q/ < v >M represents the density
estimates derived from harmonic mean speed, andq/ < v >L respresents the density
estimates derived from time-mean speed. Since harmonic mean speed is the approxima-
tion of space-mean speed, so this figure also implicates the difference between time-mean
speed and space-mean speed.
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Figure 2.8: The accumulated traffic counts from loop detectors. The actual curve for
accumulated counts may cross each other due to accumulated error.

Apart from speed measures, loop detectors are able to count the number of passing ve-
hicles during a certain interval. The counts lead to estimates of flowq, and they are also
quite reliable. Theoretically, the accumulated vehicle counts may tell travel time and ve-
hicle density (or vehicle number) on a closed road section between two consecutive loop
detectors as shown in Figure2.8. In this figure,Na(t) andNb(t) are the accumulated
vehicle counts from loop A and loop B respectively. Given theinitial condition that no
vehicle is on the road section,N(t) = Na(t) − Nb(t) is the number of vehicle on this
road section. Another estimateTT (t) under the condition thatNa(t) = Nb(t + TT ), can
be taken as the average travel time from loop A to B. These estimates are reliable and
accurate if loop detectors made no errors in counting vehicles.

However, correct estimates can not be obtained in reality, due to error accumulation. In
the above example, the errors inNa(t) andNb(t) are accumulated with the timet. We
made an empirical study of one-day data on a one-kilometer section of highway A13 in
Netherlands. The data was from Regionlab-Delft which storesthe traffic data in Zuid-
Holland region. With these data, it was found, during the period from 6:00 to 20:00,
the total number of inflow vehicles was 64823 counted by the upstream loop detector
(loop A) on the section, and that the number of outflow vehicles was 71000 counted
by the downstream loop detector (loop B). The difference between inflowing traffic and
outflowing traffic is accumulated up to -6177. According to vehicle conservation law, one
explanation is that there are thousand of vehicles within the one-kilometer section, which
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is impossible in reality. The other explanation is that the loop detectors have considerable
errors in accumulated counting. For this reason, the curve for accumulated vehicle counts
may cross each other as illustrated in Figure2.8.

2.3.3 Travel time and trajectory data

In this thesis, travel time is given a particular attention considering that more and more
travel time information becomes available. Travel times can be measured by means of for
example automated vehicle identification (AVI) systems, which identify vehicles at two
consecutive locations A and B at time instantstA andtB and deduce therealizedtravel
time afterwards withTTr = tB − tA. AVI systems may employ cameras and license plate
detection technology, or may match vehicles through induction footprints, tolling tags or
otherwise. Methodologically, the most important characteristics of travel time are that:

• Travel time can only be measured for realized trips, i.e. after a vehicle has finished
it. The so-calledactualtravel timeTTa of a vehicle departing at the current moment
must hence be predicted per definition (Figure2.9).

• Travel time (or its reciprocal average journey speedur = Lr/TTr) is an average
representation of the traffic conditions (e.g. the speedv(t, x)) a vehicle encountered
during its trip. Figure2.9 illustrates this by superimposing vehicle trajectories on
a speed contour map. This implies that the relationship between this travel time
and the underlying traffic conditions (the speed contour through which a vehicle
has ‘traversed’ is1 : N . It is possible to estimate travel time from local speeds
(Van Lint and Van der Zijpp(2003); Ni and Wang(2008)), but conversely, it is very
difficult to estimate local speeds accurately from travel times, unless other sources
of information are available.

By sampling data (location and/or speed) from instrumented vehicles (e.g. through GPS
or GSM) at consecutive time instants, also vehicle trajectories can be measured. Clearly,
whenall vehicle trajectories are sampled at high frequencies, the traffic state (prevailing
speeds, flows, densities, travel times, etc) can be completely deduced from these so-called
floating car data(FCD). However, it is estimated at the end of 2009 that the penetration
rate of real-time traffic information and GPS enabled vehicles which actually transmit
their location and speed to their service provider is in the order of one percent or less
of the total amount of vehicles driving on the Dutch freeways. Therefore, at penetration
rates far below 100%, FCD at best provide a proxy for average speed on the road segments
from which these data are collected.
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Figure 2.9:Relationship between vehicle trajectories (the thick solid and dotted lines), realized
and actual travel time (TTr andTTa), average journey speed (ur) and the underlying speeds

(represented by a speed contour plot, where dark areas representlow speeds)

In addition, the availability of communication resources restricts the access to floating
car data. FCD can hardly be used for traffic state estimation before they are sent to in-
formation center via certain communication tunnels and collected. The simple way is to
use wireless networks. When in-car equipments sends relevant information via wireless
networks, a certain amount of communication resources haveto be consumed. If trajec-
tory data are required to be available, vehicles must reportits location at a quite high
polling rate (once a few seconds). In that case, more communication resources will be
consumed due to more information transmission or more frequent communication. This
may bring about high cost. In addition to high cost, there arealso physical limits, since
the frequency band-width for civil communication is quite limited and precious. For this
reason, this thesis tends to focus on FCD of low polling rates (once for one minute).

Nonetheless, with the in-car ICT revolution, it is reasonable to assume that more floating
car data will become available in the coming years. But for estimation of flows or den-
sities (required for many traffic management purposes such as intersection control, ramp
metering, but also for forecasting traffic information) other (local) data sources rather than
travel time or trajectory samples are necessary.
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Figure 2.10: An example of low-resolution positioning data from wireless
communication networks

2.3.4 Low-resolution positioning data

Probe vehicles with global positioning systems (GPS) can provide accurate positions
which enable spatial-average speed estimation. However, some probe vehicles cannot
provide accurate positions but can provide some location-specific information when and
where they are located at the segment or cell level. These low-resolution positioning data
with segment or cell level accuracy cannot provide the distance component that is ne-
cessary for traffic speed estimation, but they can be easily available in large quantities in
wireless networks.

As shown in Figure2.10, such kind of data don’t provide exact geographical positions
but point to a location area-a cell or a road segment. When a mobile phone in a vehicle
sends beacon signals periodically, the cellular networks are able to trace the phone and
record the cell where it is located. Although traffic speeds can not be directly estimated
with these data, the traffic flow may be indicated by these data. So they are essentially
sampled flow.

Assuming that beacon signal transmission can be one way and occurs at a frequency on
the order of minutes, the communication is relatively simple and low cost. In addition,
low-resolution positioning data are more widely availablein terms of time and space,
since devices as possible providers (e. g. mobile phones, laptops, iPhones, etc) are being
widely used in communication networks and are becoming increasingly popular. It can
be seen that the simplicity and wide availability of low-resolution positioning data may
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have potential for traffic estimation in large networks.

2.3.5 Summary

The below table2.3gives a summary of data which are mainly used in this thesis.

Table 2.3: Summary of data characteristics

Data sources Features
Speed measure-
ments by loop

Loop detectors can provide the speed measurements only at certain
points on a road (local speeds). They cannot provide the speed mea-
surements over a road section. Normally loop detectors aggregate the
speed measurements every 20 seconds or 1 minute, which leadsto
over-representation of high speed measurements. Therefore the speed
measurements from loop detectors have structural deviation from the
ground-truth speeds. The deviation is relatively bigger when the speed
is lower.

Flow measu-
rements by
loop

Loop detectors can count the vehicles which pass and aggregate them
every a certain period of time. In contrast to loop speed measurements,
loop flow measurements have much less bias. But if these measure-
ments are used to estimate the total flow during a long period of time,
there are accumulated errors. For this reason, one can not apply vehicle
conservation law on loop detectors for density estimation.

AVI data (travel
time data)

AVI systems provide the travel times from location A to location B.
The data may come from cameras that capture vehicle plates and make
comparison, or from in-car GPS devices which may report its location at
certain intervals. Less-biased journey speeds can be derived from these
data. If a vehicle report its locations at short intervals, high-resolution
trajectory can be constructed. But it will cost more communication re-
sources. If it reports the location at long intervals, the data can not
provide the details on traffic conditions but journey speed

low-resolution
positioning data

Low-resolution positioning data may come from cell phone networks.
The positioning data cannot provide the exact position but only tell in
which area the vehicle is. Therefore it is hard to reconstruct accurate
trajectory or obtain the journey speeds. But such data may be available
in large quantities. It is quite beneficial if they can be usedfor traffic
state estimation.
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2.4 Conclusion

This chapter mainly gives basic concepts about traffic system from macroscopic pers-
pectives. The major traffic variables on macroscopic level are speed, flow and density.
Furthermore, we use Edie’s definition to define these variables. Edie’s definition can ea-
sily represents the traffic states in time-space domain and can establish clear and solid
relationship between the variables. For these reasons, speeds, flow and density in terms
of time-space mean are our focus and output from the estimators.

In general, there are Eulerian measurements and Lagrangianmeasurements for traffic va-
riable estimation. However, not all the measurements for estimation are simply time-space
ones. They could be local or instant measurements. So when weuse these measurements
for estimation of time-space variables, we often have to make some assumptions. For
example, we may have to assume that the local speeds from loopdata can represent the
speeds over a large space. These assumptions, however, may lead to considerable errors.

In this chapter, we also have a close look at very common traffic measurements and traffic
data. Loop data (speed and flow measures), travel times from AVI systems, low-resolution
positioning data (e.g. cell-phone data) are the major data types that this thesis studies, for
these types of data are the main data types that traffic data collection systems can provide
or will provide in large quantities.

Seen from this chapter, each type of data can partially provides traffic states. However, the
estimates may be unreliable, inaccurate or have limited time-space coverage. So we need
data fusion techniques to improve this. The next chapter “state-of-the-art” will show how
the already-existing data fusion methods use the above-mentioned traffic data to estimate
traffic states. However, those fusion methods can fuse only certain types of data but under
quite a few assumptions. The estimation results may not be desirable. For example,
the bias in measurements may not be substantially removed. For this reason, this thesis
proposes a new data fusion approach which is able to fuse moretypes of data, and only
needs very limited assumptions. Better estimations of traffic states can be achieved.
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Chapter 3

The state-of-the-art in traffic data
fusion

The previous chapter gave the fundamental concepts about traffic data and traffic systems
on macroscopic level. With this knowledge in mind, we begin to talk about traffic data
fusion techniques. This chapter will focus on the state-of-the-art in traffic data fusion.
It will firstly give a brief introduction to data fusion and the traffic data fusion. Then
it will present some classic methods or algorithms which areable to fuse traffic data
with different characteristics from different sources by using various traffic models and
assimilation tools. Following that, we we reveal some drawbacks of these methods and
the challenges that are still left un-conquered. These challenges lead to the creation of a
new approach.

3.1 Data fusion and traffic data fusion

3.1.1 Levels on data fusion

Varshney(1997) proposed a simple three-level model for data fusion. Each level has its
particular function and purpose. Furthermore, the higher level data fusion is supported by
the result from low level data fusion. Table3.1shows the main functions and often-used
methods on each level.

The first-level data fusion is targeted at the raw data processing and estimates the basic
states of an object. For example, the measurements from several radars can be fused to
estimate the states of a flying aircraft, such as its speed, direction, location. The quality

27
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Table 3.1: Three-level data fusion

Level Purpose Typically used methods
Level 1 Processing raw data State estimation methods (Digital filters, LS es-

timation, EM methods,Kalman filters, Particle
filters, etc)

Level 2 Deriving features and
patterns

Classification/inference methods (statistical
pattern recognition, Dempster-Shafer, Baye-
sian methods, Neural Networks, Correlation
Measures, Fuzzy Set Theory, etc)

Level 3 Making decisions and
detecting events

DSS (Decision Support System) and Expert
System (Bayesian belief networks, Fuzzy/AI,
etc)

of estimation is determined not only by the accuracy and number of measurements but
also by the data fusion techniques. The mainly used methods on level one are varieties
of digital filters, model-based filters (e.g. Kalman filters), simulation techniques (e.g.
particle filters), etc. The results from this level are the foundation of the higher-level data
fusion.

Level two is aimed to derive features and patterns from the previous state estimates. Fol-
lowing the previous example, when the speed, direction and location of an aircraft are
available, further information can be deduced by fusing more extensive information. The
deduced information may contain the flight destination, thetype of the aircraft, flying
mode (e.g. auto, manual). For this purpose, quite a few statistics and inference methods
are used on level two. The common methods are Bayesian methods, Neural networks,
regression models, fuzzy logic, etc. It can be seen that training and learning processes are
involved in these methods.

Level three can be regarded as a decision level. Data fusion on the former two levels
provide some ‘facts’ concerning the observed object. These‘facts’ may trigger a certain
decision or initiate a chain of events. For example, based onthe derived (fused) infor-
mation (flight pattern, speed, height, destination, type ofaircraft, etc), military air traffic
control may infer that the plane has been hijacked and that the hijackers are up to no good.
On this level, more human effects are contained and many subjective evaluation and as-
sessment are involved. The common approaches on this level are DSS (Decision Support
System), Expert System, etc.

From level one to level three, the used data and the results ofdata fusion may change
from exact figures to language specification, and the difficulty in data fusion increases. In
addition, more and more human effects are involved, which leads to more uncertainties.
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3.1.2 Traffic data fusion

Also in traffic data fusion, the three-level model provides auseful categorization. On the
first level, the used data are collected from varieties of traffic sensors (e.g. loop detectors,
floating cars, cameras, etc), and then are fused and translated into basic traffic information
such as speed, density, flow, etc. On level two, traffic prediction or incident detection mo-
dels can be established on the above information by using forexample Neural Networks.
As a result, some tasks such as traffic state prediction, incident detection can be done
on this level. The results from the two of lower levels may lead to traffic decision and
management on level three of data fusion. Figure3.1gives the flow chart of traffic data
processing with different fusion levels. Table3.1 gives the examples for different levels
of data fusion.

Figure 3.1: The flow chart of traffic data processing on different fusion levels

Table 3.2: Examples in three-level traffic data fusion

Level Purpose Typical examples in traffic
Level 1 Processing raw data Basic state estimation (e.g. speed, flow, density)
Level 2 Deriving features and

patterns
Queue length,Incident detection,State predic-
tion

Level 3 Making decisions and
detecting events

Network Management DSS tools

Components in traffic data fusion methods.

No matter what kind of a method is used in traffic data fusion, it consists of two main
components, a ‘core’ and a ‘shell’, as shown in Figure3.2.

The core represents the physical laws and assumptions in traffic theory. The physical
laws, for example, can be the vehicle conservation law. The assumptions can be that
the traffic is homogeneous in a certain time-space region. These laws and assumptions
may lead to essential traffic models and theories, for example, first-order traffic models,
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Figure 3.2: Components in level one–data fusion of raw data

fundamental diagrams, car-following models, lane-changing theory, etc. In essence, the
core establishes the connections between data and data, andbetween data and estimated
variables. In addition, physical laws are associated with assumptions though physical
laws are always valid without assumption support. However,a certain physical law may
not be used until certain assumptions are given. For example, the vehicle conservation law
can be used for density estimation when flow measurements areassumed to be correct.
However, due to the accumulated error from flow measurements, conservation law may
not be used for density estimation for a long period.

The shell represents the assimilation techniques, particularly some statistical techniques,
which may be able to combine models and data in statisticallyoptimal ways. The shell
‘sticks’ to the core and needs the core to provide certain assumptions or particular models.
The Kalman filter is a typical example of assimilation techniques. In order to achieve the
optimal estimation, it needs the core to provide a linear model and needs the core to give
the assumption of Gaussian distribution in model and measurement errors. Seen from this
point of view, the shell cannot be simply separated from the core. They need to work
together to accomplish data fusion.

For traffic data fusion, the total information in data will not change with the processing
techniques. Better techniques may maximize the output information from the data, and
present the information as true as possible. In the ‘core’ part, assumptions may distort
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the true information during the fusion processing. Also more assumptions possibly mean
more restrictions which prevent some types of data being included. For this reason, less
assumptions are appreciated.

3.2 Assimilation techniques in the first level of traffic
data fusion

This thesis only focuses on the first level of data fusion, andthe fusion goal is to get more
reliable and accurate traffic state estimates, particularly for speed, density and flow. The
assimilation techniques for this goal are given below. Table3.3show the literature review
of the main data fusion methods

3.2.1 Kalman filters and its variations

The most widely utilized data assimilation technique applied to traffic state estimation
problems is the Kalman Filter (KF) and/or its many variations (extended and unscented
KF). Kalman filter for data assimilation uses the fact that many analytical traffic models
can be expressed in state-space form, that is

xk = f(xk−1,uk) + wk (3.1)

yk = h(xk) + vk (3.2)

In (3.2) k depicts discrete time steps of durationtk − tk−1 = ∆t seconds. Equation
(3.1) depicts the process equation also known as state-transition equation, which describes
the dynamics of statexk (e.g. density and/or speed) as a function ofxk−1 and external
disturbancesuk (for example traffic demand at network boundaries) plus an error term
wk, reflecting errors in the process model (e.g. model misspecification, process noises).
Equation (3.2) depicts the observation equation also known as measurement equationh
which relates the system state to measurementsyk. The error termvk depicts errors
in either the measurement modelh and/or the measures themselves. The fundamental
diagram of traffic flowq = Qe(ρ), or u = U e(ρ), relating speed or flow to density, is a
good example of such an measurement equation.q andu represent the flow and speed
measurements from loop detectors, andρ represents the density variables that need to be
estimated.
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Figure 3.3: Literature review: the state of the art in traffic data fusion.
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If the above equations represent a linear dynamic system,f andh are the linear operators
that can be expressed by matricesFk andHk respectively. As a result, the following
equations can be derived:

xk = Fkxk−1 + Bkuk + wk (3.3)

yk = Hkxk + vk (3.4)

wherewk is assumed to be drawn from a zero mean multivariate normal distribution with
covarianceQk:

wk ∼ N(0,Qk)

andvk is assumed to be a zero mean Gaussian white noise with covarianceRk:

vk ∼ N(0,Rk)

The initial state, and the noise vectors at each step{x0, w1, ..., wk, v1 ... vk} are all
assumed to be mutually independent.

In what follows, let the notation̂xn|m represent the estimate ofx at timen given obser-
vations up to, and including at timem. The state filter is represented by two variables:
x̂k|k is the posteriori state estimate at timek given observations up to and including at
timek; P̂k|k is the posteriori error covariance matrix for the state estimate at timek given
observations up to and including at timek. The initial conditions are given:

x̂0|0 = x̂0, P̂0|0 = P̂0 (3.5)

With the initial conditions, a Kalman filter is iteratively executed in the two distinct steps:

1. state prediction

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk (3.6)

2. state correction
x̂k|k = x̂k|k−1 + Kk(yk − Hkx̂k|k−1) (3.7)

The so-called Kalman gainKk in (3.7) is computed to make the Kalman filter an optimal
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estimator in terms of least square.

Kk = Pk|k−1H
T
k S−1

k (3.8)

whereS−1
k is called innovation covariance or residual. It is worth to mention that the

compuation of the inverse of the matrix may be quite time-consuming. The detail can be
seenKalman(1960). It can be informally understood as

Kk=
uncertainty process model

uncertainty observation model & data
× sensitivity obs. model to state variables

(3.9)

This implies that (a) the more uncertain the data are, the more weight is put on the model
predictions and vice versa, and (b) that the KF adjustsxk proportionally to the sensitivity
of the observation model to changes in the state variables. For example, under free flow
conditions the relationship between traffic density and speed is very weak, which would
imply only small corrections in state variables (xk) even if the speeds measured by sensors
(yk) differ largely from those predicted by the observation model (Hkx̂k|k−1). This intui-
tive structure can be easily explained to traffic operators and professionals using such state
estimation tools. Moreover, the same process and observation model can be subsequently
used for prediction and control purposes, given proper predictions of the boundary condi-
tions (traffic demand, turn fractions and capacity constraints) and estimates of the model
parameters are available.

Extended Kalman Filter. When the dynamic system is nonlinear,f andh cannot be
expressed by matricesFk andHk. However, the system can be linearized by computing
a matrix of partial derivatives (the Jacobian) around the current estimate. The state
transition and observation matrices become the following Jacobians:

Fk−1 =
∂f

∂x

∣

∣

∣

∣

x̂k−1|k−1,uk

(3.10)

Hk =
∂h

∂x

∣

∣

∣

∣

x̂k|k−1

(3.11)

Unlike the standard Kalman filter, the Extended Kalman filteris not an optimal estimator
when the process model or observation model is not linear. Ifthe initial estimates of the
state or the process model is not correct, the filter may quickly diverge due to linearization.

Unscented Kalman filters. An improvement to the extended Kalman filter led to the
development of the Unscented Kalman filter (UKF), which is also a nonlinear filter. In the
UKF, the probability density is approximated by a nonlineartransformation of a random
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variable, leading to more accurate results than the first-order Taylor expansion of the
nonlinear functions in the EKF. The approximation utilizesa set of sample points, which
guarantees accuracy with the posterior mean and covarianceto the second-order for any
nonlinearity. In addition, unlike the EKF, there is no need in the UKF to calculate the
Jacobian. However, there is a demand for computing many sample points.

Details on KF algorithms and its variations can be found in many textbooks (e.g.Simon
(2006),Speyer and Chung(2008)). There are a few remarks that can be made on their
applicability of fusing semantically different traffic data. The key advantage of KF based
state estimation approaches is that they provide a convenient and principled approach to
recursively correct state estimates by balancing the errors (uncertainties) in the process
and observation model and in the data.

Application of Kalman filters to traffic data fusion: Many data fusion methods for
traffic state estimation take (Extended) Kalman filter as thedata assimilation technique.
They differ mainly in data input, data output, traffic modelsor assumptions.

Gazis and Knapp(1971) use time-series flow and speed from loop detectors to estimate
traffic density. Basic physical laws are commonly used to approximate travel time on
a road section, and then Kalman filters are applied to combinedata and the model.
Szeto and Gazis(1972) estimates traffic density between the two consecutive loops by
fusing aggregated loop speeds and flow. The traffic model is based on the vehicle conser-
vation law and speed-density relation.Nahi and Trivedi(1973) also uses loop flows and
speeds as input data. This method contains a simpler traffic model which simply employed
the conservation law, but it is able to estimate both densityand speed.Ghosh and Knapp
(1978) approximated the space speed over two consecutive loops bysimply averaging
speeds from the two. As a result, a linear state model can be achieved by exploiting the
conservation law. Input being little different from the above, another contribution is repor-
ted inKurkjian et al.(1980) managed to use loop flow and occupancy to estimate traffic
density. The traffic models used in the above methods are first-order macroscopic mo-
dels, and the majority of them do not consider any speed-density relation but only employ
vehicle conservation law.

Since the end of 1970s, people began to use more advanced traffic models. Almost simul-
taneously,Willsky et al.(1980) andCremer and Papageorgiou(1981) combined a second-
order macroscopic traffic model and Kalman filter to estimatetraffic states (speed, flow
and density) by using loop speed and flow. Particularly, the traffic model used by the for-
mer is the Payne model. Following the similar method,Kohan and Bortoff(1998) propo-
sed a nonlinear sliding mode observer when combining Kalmanfilter and a second-order
macroscopic model. Also based on the Payne model,Meier and Wehlan(2001) proposed
a new scheme called section-wise modeling of traffic flow which helped to approximate
the boundary variables between the sections. Exploiting tothe extent possible the above
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approach,Wang and Papageorgiou(2005) proposed a general approach to the real-time
estimation of the complete traffic state on freeway stretches, which was based on an ex-
tended Kalman filter and a second-order traffic model. In thismethod, the important but
unknown model parameters such as free speed, critical density and exponent can be on-
line estimated. The further study and applications were shown in their later publications
asWang et al.(2006), Wang et al.(2008), Wang et al.(2009).

In addition to loop data, some other types of data also can be fused by employing a Kal-
man filter and its variations.Chu et al.(2005) estimated traffic density and travel-time
by fusing loop flow and probe car travel times over a section. In this method, the traffic
inside a section is assumed to be homogeneous, and probe vehicles provide travel-times
over the section that are used as measurements in Equation (3.2). The assimilation tech-
nique is adaptive Kalman filtering.Herrera and Bayen(2007) estimated density by fusing
loop data and vehicle trajectory from mobile sensors. In their methods, a first-order traffic
model is employed for process model. Loop flow is used as Eulerian measurement and
the vehicle trajectory as Lagrangian measurement from which local density is computed.

Figure3.4 gives an example to show the performance of Extended Kalman filter. It can
be found that the results become smoother after applying EKF

Figure 3.4: The estimation result by using an Extended Kalmanfilter (Adapted
from:Wang and Papageorgiou(2005)).

Used Data: Loop speed and flow. Model: Second-order traffic model.

A comparison of an EKF and an UKF for traffic state estimation is investigated by
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Hegyi et al.(2006) using simulated loop data. The result is shown in Table3.3, in which
Jρ, Jv, Jpar represent the root mean square relative errors on density, speed and model
parameter estimation, respectively. This research reaches some conclusions as follows.
Although the unscented Kalman filter has advantage that it propagates the state noise dis-
tribution with higher precision than the EKF, its performance was nearly equal (slightly
better) to that of the extended Kalman filter. Also they find that fewer detectors result in
larger state estimation errors, but have no effect on the parameter estimation error.

Table 3.3: The performance of an EKF and an UKF for different detector configuration
for joint estimation. The result is fromHegyi et al.(2006)

filter type flow loop
locations

speed loop
locations

Jρ Jv Jpar

EKF 1,2,3,4 1,2,3,4 0.054 0.055 0.035
UKF 1,2,3,4 1,2,3,4 0.049 0.051 0.042
EKF 1,2,3 1,2,3 0.071 0.080 0.034
UKF 1,2,3 1,2,3 0.066 0.076 0.041
EKF 2,3 2,3 0.112 0.101 0.039
UKF 2,3 2,3 0.114 0.110 0.041

3.2.2 Particle filters

Both EKF and UKF assume Gaussian distributions of the processof the noise in Equation
3.3, observation in Equation3.4. These methods fail when the distributions are heavily
skewed, bimodal or multimodal. In order to handle any arbitrary distribution, particle
filters are proposed as an alternatives to the extended Kalman filter and Unscented Kal-
man filter when it comes to non-Gaussian distributions. Particle filters are simulation-
based techniques, which are able to approach Bayesian optimal estimates with sufficient
samples.

Sampling importance resampling (SIR) is a very commonly usedtechnique and the ori-
ginal particle filtering algorithm proposed byGordon et al.(1993). Like Kalman filters,
Particle filters have also two phases: prediction from the previous state and correction by
the current measurements. In the prediction stage,P particles ofx(L)

k are sampled from
p(xk|x

(L)
k−1), wherep(xk|x

(L)
k−1) can by described by the process Equation3.3. For each

samplex(L)
k , there is a confidence weightw

(L)
k . The weight can be simply updated by the

measurementyk as follows:
ŵ

(L)
k = w

(L)
k−1p(yk|x

(L)
k ) (3.12)

wherep(yk|x
(L)
k ) can be described by the observation Equation3.4. Resampling is used
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to avoid the problem of degeneracy of the algorithm, that is,avoiding the situation that
all but one of the importance weights are close to zero. This algorithm approximates the
filtering distributionp(xk|y0, . . . , yk) by a weighted set of theP particles.

x
(L)
k ∼ p(xk|y0, . . . , yk) (3.13)

For state estimation, the expectation of process functionf(·) is approximated as a weigh-
ted average

∫

f(xk)p(xk|y0, . . . , yk)dxk ≈
P
∑

L=1

w(L)f(x
(L)
k ) (3.14)

The state estimate is

x̂k =
P
∑

L=1

w(L)f(x
(L)
k ) (3.15)

Similar to Kalman filters, particle filters need a process model and an observation model.
The process model can be based on various traffic models (e.g.first-order traffic model)
and the observation model depends on various measurements (e.g. loop measurement).
Within the framework of particle filters,Mihaylova et al.(2007) use loop speed and flow
to estimate the traffic states (speed, flow and density). A second-order macroscopic traffic
model is employed to establish process equations and observation equations.Cheng et al.
(2006) also use particle filters to estimate traffic states from cell phone network data. In
wireless communication networks, each base station is responsible for the communication
service within a certain area known as cell. When a cell phone moves from one service
cell to another service cell, the communication service forthe cell phone will be hand
over from one base station to another. The base station records the switching times so
that travel time for a vehicle can be known. In this paper, such a hand-off technique is
aimed to achieve the section-speed and traffic flow with knownprobe penetration rates
given. Both a first-order traffic model and a second-order one are used, respectively for
comparison. The estimated states are flow and speed.

There are some remarks on Particle filters. In Particle filters, the true posterior probability
distribution can be well approximated only when there are enough particles. Therefore, if
the assumptions for Kalman filters can be guaranteed, no Particle filters can outperform
them. In addition, computational cost for particle filters is quite high compared to the
Kalman filter and its variations.

Figure3.5gives an example to show the performance of a particle filter.It shows that the
results become smoother when applying the particle filter.
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Figure 3.5: The estimation result by using Particle filters (Adapted from:Mihaylova et al.
(2007)). Used Data: Loop speed and loop flow. Model: Second-order traffic model.

Solid lines represent the estimates and dotted lines represent the measurements

3.2.3 Linear programming

Kalman filters or particle filters iteratively process the data by using current data and the
data one time-step before the current step. One of biggest advantages of Kalman filters
is that the computational and memory cost can be very low. With the development of the
computer technology, large memory devices are widely available, so that a large amount
of data can be processed in a batch. Thus we can use the techniques like Linear program-
ming to input a lot of historical data to estimate the currentstates. Linear programming
is a technique for the optimization of a linear objective function, subject to linear equa-
lity and linear inequality constraints. Linear programming can be employed when the
problems can be expressed in canonical form:

Minimize (Maximize) cTx (3.16)

Subject to Ax ≤ b (3.17)

When using Linear Programming (or LP in abbreviation) for traffic state estimation, the
objective function is aimed at traffic states (e.g. max or mintravel times), and the linear
inequality constraints may be given by an appropriate combination of traffic models and
data. InClaudel and Bayen(2008), Claudel et al.(2009), Linear Programming is used to
estimate traffic density and travel time from loop flow and probe trajectory. The former
one focuses on the theoretical part and latter one focuses onthe application part. The
solution of their LP model yields two objective values: minimal traffic density and maxi-
mal traffic density, that is the partcTx, which further returns the maximal travel time and
minimal travel time.

Minimize density or Maximize density cTx (3.18)
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They use the Moskowitz function to describe both vehicle trajectory and loop flow data.
With the help of Moskowitz function, the vehicle trajectoryand loop flow data can esta-
blish an inequality, that is:

Trajectory data and loop data subject toAx ≤ b (3.19)

The Moskowitz functionM(t, x) (also known as cumulative number of vehicle function)
represents the number of the last vehicle to pass an observerat locationx before timet,
and encodes the distribution of the vehicles on the highway at all times. The loop flow
(loop counts from downstream and upstream) as well vehicle trajectory can be expressed
by Moskowitz function as below:

• M(t, xin): Inflow of vehicles at upstream loop

• M(t, xout): Outflow of vehicles at downstream loop

• {(t, xi(t))|M(t, xi(t)) = Mi}: The curve(t, xi(t)) approximates the trajectory of
vehicle labeledMi.

In addition, the partial differential equation from conservation of vehicles

∂ρ(t, x)

∂t
+

∂q(t, x)

∂x
= 0 (3.20)

can be transformed by Moskwitz function to

∂M(t, x)

∂t
+ q(−

∂M(t, x)

∂x
) = 0 (3.21)

It is worth to note thatq(−∂M(t,x)
∂x

) is the function of∂M(t,x)
∂x

. As a result, the Moskowitz
function can link loop counts, vehicle trajectory and first-order traffic model all together.
Also it is assumed that cars do not overtake each other. All ofthem (data, model and
assumptions) finally constitute the linear inequality constraints in form ofAx ≤ b (see
Claudel and Bayen(2008) for details). Taking the density∆ as the objective function
cTx, Linear Programming computes an associated possible rangeof density and further
traces back to the possible range of travel times[TTmin, TTmax] for all the vehicles.

Figure3.6gives an example to show the performance of Linear Programming applied in
traffic data fusion.
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Figure 3.6: The estimated travel times by using Linear Programming (Claudel et al.
(2009)). Used Data: Loop flow (counts) and trajectories. Model: first-order traffic

model. Solid lines represent the estimates and dots represent the measurements

3.2.4 Treiber filter

Treiber filter is originally designed for processing singledata source and reconstruct the
spatio-temporal traffic map. It is proposed byTreiber and Helbing(2002) and is based
on the spatio-temporal characteristics, that is, perturbations in traffic travel along the so-
called characteristics (refer to Equation3.25) with (approximately) constant characteristic
speedsccong in congestion, andcfree under free flow conditions.

Single data source
The reconstructed quantityz at (t, x) is described as follows:

z(t, x) = w(t, x)zcong(t, x) + (1 − w(t, x)zfree(t, x)) (3.22)

Equation (3.22) shows that the reconstruction involves a weighted combination using
two reconstructions of the signal. The first assumes congested traffic operations (i.e.
zcong(t, x)) and the second free flow conditions (i.e.zfree(t, x)). To reconstructz(t, x) on
the basis of data measured at some time and location(ti, xi), the time and space dependent
weights are computed as follows. First define the below functions:
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φcong(t, x) ≡ φ0

(

t −
x

ccong

, x

)

, and

φfree(t, x) ≡ φ0

(

t −
x

cfree

, x

)

(3.23)

with

φ0(t, x) = exp

(

−
|x|

σ
−

|t|

τ

)

(3.24)

whereσ andτ are parameters of the filter which describe the width and timewindow size
of the “influence” region around(ti, xi). The value of the weights of a data point(ti, xi)
is given by

βi
cong(t, x) = φcong(xi − x, ti − t), and

βi
free(t, x) = φfree(xi − x, ti − t) (3.25)

The weights describe the importance of the measurement quantity zi at the time-space
point (ti, xi) for the value of the quantityz (to be estimated or reconstructed) at(t, x).
Loosely speaking, the weight is determined by the distance between the point(ti, xi) and
(t, x) considering the speed at which information moves through the flow under free flow
or congested conditions. To determine the value of the quantity z(t, x) on the basis of the
congested and the free flow filter, the weights are used as follows:

zcong(t, x) =

∑

i β
i
cong(t, x)zi

βcong(t, x)
, and

zfree(t, x) =

∑

i β
i
free(t, x)zi

βfree(t, x)
(3.26)

Where the normalization factors are given by

βcong(t, x) =
∑

i
βi

cong(t, x), and

βfree(t, x) =
∑

i
βi

free(t, x) (3.27)
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An important filter design choice is the weight factorw(t, x) used in eq. (3.22). This
factor describes whether the conditions in(t, x) are dictated by free flow conditions or by
congested conditions or a combination of both. Treiber and HelbingTreiber and Helbing
(2002) propose to use speed data for this purpose and use the following expression for
this weight factor:

w(t, x) = ω(zcong(t, x), zfree(t, x))

=
1

2

[

1 + tanh

(

Vc − V ∗(t, x)

∆V

)]

(3.28)

with:
V ∗(t, x) = min (Vcong(t, x), Vfree(t, x)) (3.29)

whereVcong(t, x) andVfree(t, x) are calculated with3.26, Vc depicts a critical speed mar-
king the transition from free to congested flow and∆V a bandwidth around it. Note that
the functions (3.28) and (3.29) are arbitrary filter design choices. Any crisp, smooth or
even fuzzy function which is able to discriminate between free-flowing and congested
traffic operations based on whatever data is available (density/occupancy, speed) would
in principle do.

Multi data source
Van Lint and Hoogendoorn(2009) extend the Treiber filter, so that it can process the multi
data source of the same type. Letz(j)(t, x) denote the considered traffic value as recons-
tructed from data sourcej. To fuse data from multiple data sources, we propose the
following linear combination:

z(t, x) =

∑

j α(j)(t, x)φ(j)(t, x)z(j)(t, x)
∑

j α(j)(t, x)φ(j)(t, x)
(3.30)

where the second dynamic weightφ(j)(t, x) is defined by:

φ(j)(t, x) = w(j)(t, x) · φ(j)
cong(t, x)

+ (1 − w(j)(t, x)) · φ
(j)
free(t, x) (3.31)

The first (dynamic) weight factorα(j)(t, x) in (3.30) can be interpreted as a dynamic
indicator of thereliability of the data from sourcej at (t, x) and could for example be
determined on the basis of a priori estimates of the measurement accuracy of data source
j. For induction loops, where measurements become increasingly unreliable as speeds
decrease, it makes sense thatα(j)(t, x) is proportional to speed. Although also location
tracking equipment (e.g. GPS) is likely to make relative errors proportional to speeds, the
reliability of such FCD measurements in terms of speeds wouldmost probably still be
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higher than that of induction loops.

The hyperbolic tangent function in equation (3.28) is used to calculate this weight, which
reads

α(j)(t, x) =
1

Θ
(j)
0 [1 + µ(j)(1 − w(j)(t, x))]

(3.32)

In (3.32) Θ
(j)
0 represents the standard deviation of the measurement errorof data source

j at low speeds (under congestion), and[1 + µ(j)]Θ
(j)
0 the standard deviation under free-

flowing conditions. For induction loopsΘ(j)
0 is typically in the order of 4 km/h, andµ(j)

around11
2

(yielding a standard deviation of around 10 km/h under free-flow conditions).

Figure3.7gives an example to show the performance of Treiber filter.

Figure 3.7: The estimated time space speed plots by using Treiber filter
(Van Lint and Hoogendoorn(2009)). (left figure) Used data: loop speed only; (right

figure)Used Data: speed measurements from loop detectors and floating cars. Model:
Fundamental diagrams.

3.2.5 Nudging Technique

Nudging, also known as Newtonian relaxation or 4DDA, is particularly used in weather
forecasting. In this data assimilation technique, model variables are driven (nudged) to-
ward observations. A source term proportional to the difference between the predicted
and observed state is included in the constitutive equationf(z, x, t) = 0 of the model
(e.g. LWR Partial differential equation in traffic):

f(z, x, t) = λ(x, t) · (z − zo) (3.33)
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wherex is the space variable,t is time,z is the state vector (e.g. density), andzo is the
observation measurements. The nudging factorλ(x, t) vanishes away from the measure-
ment location and after the measurement time. As a result,λ drives the solution towards
the observations when the observation is made.

In Herrera and Bayen(2007), nudging technique is used to fuse loop flow and probe tra-
jectories. In their method,f(z, x, t) = 0 is simply the LWR PDE:

∂ρ

∂t
+

∂q(ρ)

∂x
= 0 (3.34)

whereρ(x, t) represents the vehicle density at(x, t) andq(ρ) is the fundamental diagram.
The nudging technique adds a source term to the above dynamicmodel, leading to:

∂ρ

∂t
+

∂q(ρ)

∂x
= −

J
∑

j=1

λ(x − xj(t), t) · (ρ(xj(t), t) − ρo(xj(t), t)) (3.35)

The summation over the indexj accounts for theJ different vehicle trajectories that can
combine the loop counts to provide measured densityρo(xj(t), t). A possible expression
for the nudging factor can be found inIshikawa et al.(1996):

λ(x, t) =

{

1
Ta

exp(− x2

X2

nudge

)exp(− t−to

Td
) if x ≤ αXnudge andt ≥ to

0 otherwise
(3.36)

whereTa is the timescale and determines the strength of the nudging factor,to is the ob-
servation time, andTd andXnudge reflect how the effect of any observation decrease over
time and space. The coefficientα determines the zone of influence of the measurements.
The nudging factor is zero outside the influence zone. In traffic context, the nudging
term ‘adds’ the vehicles on the freeway when the model underestimates the density and
‘removes’ vehicles when the model overestimates the density.

Figure3.8gives an example to show the performance of Nudging method.

3.2.6 Summary

The summary of the above mentioned techniques is shown in Table 3.4

Figure3.9gives a summary of data input and data output by using the above assimilation
techniques. It can found that quite a few combinations of different data are still missing.
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Figure 3.8: Traffic flow estimation by Nudging method (Herrera and Bayen(2007)).
Used data: loop counts and trajectory; Model: First-order traffic model. Dotted lines

represent the estimates when using both loop counts and trajectory, dashed lines
represent the estimates when using only loop counts, and solid lines represent the

measurements.

Figure 3.9: Input data and output data types in data fusion techniques of the state of the
art
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Table 3.4: Summary of varieties of assimilation techniquesin traffic data fusion

Filter Feature

KF
Description: Give the optimal estimation by iteratively processing datain
linear and Gaussian models.
Pros: The optimal solution can be achieved when models are linear and
Gaussian. Computation requirements are less than of an EKF. Better than
an EKF, UKF and PF in linear and Gaussian system.
Cons: It cannot deal with a non-linear system

EKF
Description: This method is chosen when it comes to slightly nonlinear
and Gaussian system with local approximation. It is an iterative processing
technique
Pros: The estimation result is quite good for slightly nonlinear system.
Cons: EKF is difficult to tune, the Jacobian may be hard to derive, can
only handle limited amount of nonlinearity.

UKF
Description: Based on values on a larger area; Can only be applied to
models driven by Gaussian noises; A trade-off between EKF and PF;
Pros: Functions don’t need to be differentiable.
Cons: More computations than EKF and the results is not better thanEKF
for slightly nonlinear system; Not a truly global approximation but based
on trial points

PF
Description: An iterative processing technique like Kalman filters; can
handle a highly nonlinear and non-Gaussian system
Pros: No restrictions in model; Can be applied to non-Gaussian models,
hierarchical models etc; Global approximation;Approaches the exact solu-
tion, when the number of samples goes to infinity.
Cons: The result is not better than EKF or UKF if there are no enough
number of particles; Computational requirements much higher than of the
Unscented Kalman filters.

LP
Description: Process data in a large batch and achieve the optimal estima-
tion by seeking the biggest or smallest value. The value is dependent on
objective functions and subject to a linear inequality constraints.
Pros: Have a simple form; Computation cost is low compared with Kal-
man filter and its variation. Can give a range of estimates (e.g. minimal
and maximal travel time estimates).
Cons: It needs a particular form, which is hard to obtain in many cases.

Nudging
Description: Work for systems (e.g. weather, traffic) which evolves over
time space and can be described by differential equations. Combine model
and data similar KF but no optimal estimation is guaranteed.
Pros: Easy to understand and implement; Low computation cost is asked
Cons: Not easy to find an appropriate nudging factor; Data used must
be linked to the major variables in differential equations (e.g. density in
first-order traffic model)

Treiber
Description: Treiber filter similar to image processing.
Pros: Easy to understand and implement; Low computation cost.
Cons: Can only fuse the data of the same type (e.g fusion of loop speed
and probe car speed)
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3.3 Discussion on further challenges

This section will look into the issues which have not been properly solved in the above-
mentioned methods. The main problems consist in spatio-temporal alignment, parameter
calibration and identification, computational costs, etc.As a result, it is hard to fuse
more types of data, and the estimation results based on thesemethods have relative less
accuracy and reliability. Considering the implementation of data fusion in large networks,
less computation cost is also important.

3.3.1 The spatio-temporal alignment problem

There is, however, one major drawback of the above assimilation techniques, which re-
lates to the spatial and temporal alignment of the data. Let us take Kalman filter for
illustration of this problem. For every data source used, an(additional) observation equa-
tion (3.2) is required, which relates the data to the traffic state. This is not necessarily a
problem, as long as the spatial and temporal discretizationof the data (detector locations
xi and time periods of size∆T ) can be aligned with the discretization used in the model
(road segments of length∆x and time periods of size∆t). For example, some spatial
data can be transformed fairly easily into local measurements, such as sampled floating
car data used in e.g.Herrera and Bayen(2007) andVan Lint and Hoogendoorn(2007).
This, however, is not the case for e.g. travel time or journey(segment) speeds. These are
available after trips are realized, that is, after a time period equal to the measured travel
time (or traveled distance divided by the average journey speed). As a result, a (realized)
travel time observation equation has the following generalform

yk = h(xk,xk−1, · · · ,xk−TT max) + ξt (3.37)

where the output variableyk now depicts (realized) travel timeTT , andTTmax is the
maximum observed travel time on the route of interest. In theobservation equation, the
observation functionh(·) is needed in order to establish the relationship between thestate
variables and measurementsTT . However, this function cannot be obtained until the cor-
rect trajectory is found. Figure3.10shows that one travel time may correspond numerous
possible trajectories, so it is almost impossible to obtainthe observation functionh(·) only
from this travel time. As a result, Kalman filter cannot assimilate the travel time in such a
case. For this reason, in some research where travel time is used as measurements in Kal-
man filter framework, traffic on the study road has to be assumed to be homogeneous and
stationary during the travel period. InChu et al.(2005), the observation equation using
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Figure 3.10: Numerous trajectories correspond one travel time record

travel time as measurement is given as:

TT (t) =
∆x

v(t)
=

∆x · ρ(t)

q(t)
(3.38)

where∆x is the length of the road segment,ρ is the density andq is the flow. This method
can work only in some special cases (e.g. when the travel timeover only one road segment
is given), but if the travel times over a few road segments aregiven, this method does not
work. Many other techniques mentioned above cannot assimilate these kinds of travel
time either. In addition to travel time records, some other already-existing data sources
have potential for traffic estimation but don’t fit in any of these assimilation techniques.
For this reason, some important combinations of different-typed data as input and output
are missing, for example combining biased local speed data with travel times to estimate
space speed, or even further, combining local speed, flow andtravel time to estimate
both space speed and density. In conclusion, when the data cannot be straightforwardly
aligned, no conventional data fusion techniques can be employed.
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3.3.2 Measurability and parameter identification

The main variables in traffic are density, speed and flow, which can be associated to one
another by the equationq = ρv. This relationship holds only whenv is space mean speed.
However, loop detectors fail to give space-mean speed measurements. They can only give
speed measures at a certain point on a road. In any event, the space-mean speed cannot
be measured by loop detectors. And in order to apply this equation on loop data, the
time-mean speed measures from loop detectors have to be taken as mean-space speeds.

Apart from time-space mean speeds, traffic density cannot bemeasured, either. Theore-
tically, traffic density is easily available given initial conditions and traffic counts from
loop detectors. But the accumulated errors in loop counts make the density estimates de-
viate far from the true results. In estimation of traffic density from loop data, fundamental
diagrams have to be employed to bridge flow and density.

Majority of the above methods need to identify parameters inmodels, particularly parame-
ters in fundamental diagrams. Fundamental diagrams roughly represent the relationship
between the major traffic variables, and more roughly in congested traffic. To make things
worse, the parameters in such a rough relationship are identified with data that are pro-
bably not reliable and accurate enough, e.g. speed measuresfrom loop detectors. These
methods have to be processed by data before they are applied on data, so the quality of
these methods rely on the quality of data.

3.3.3 Computation cost

Thanks to the advanced computation algorithm and modern computers, the computation
cost is not a big problem in an application of (extended) Kalman filters, if the the state
vector and measurement vector have only a few hundred variables. But Kalman filters
involve computation of matrix inverse as required in Equation 3.8, and the complexity of
calculating the inverse of a matrixN ∗ N with the most effect and practical algorithm
Strassenis O(N2.807). Therefore, when Kalman filters are applied on a large trafficnet-
work with thousands of state and measurement variables, thecomputation cost becomes
a problem. Particle filters ask for much more computation compared to Kalman filter,
though they are better at processing non-linear functions and non-Gaussian probability.
In Chen et al.(2004), it is found that 500 particles are needed in application ofParticle
filters so that the performance is as good as Kalman filters, but the computation cost is
200 times as that of a Kalman filter.



3.4 Conclusion 51

3.4 Conclusion

This chapter discusses and synthesizes the state-of-the-art in traffic data fusion. The data
fusion methods are composed of two parts core and shell as we present. The core repre-
sents the assumption in traffic theory which is used to model the traffic system. The shell
represents the assimilation techniques e.g. statistical techniques which are used to com-
bine data and traffic model in an optimal way. The previously presented methods have
deal with many data fusion issues, but still there are quite afew to be left unsolved. Still
we need some methods which can fuse more types of data and output more reliable re-
sults. Next chapter will propose the idea of new approach “data-data consistency” which
may help to solve this issue with less assumptions.
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Chapter 4

Towards a new approach

This chapter will look at the traffic data fusion from a new angle, presenting the concept of
a new approach called “data-data consistency”. It makes it possible to fuse more types of
data but with limited assumptions. Based on this idea, the following chapters give quite a
few methods (algorithms) which can effectively fuse data from different levels and output
better results.

4.1 From data-model consistency to data-data consis-
tency

The conventional data fusion techniques attempt to drive traffic models and data against
each other. It means that the models are constantly calibrated to fit into the measurement
data. The data are corrected through models so that they morefit into models. For state
estimation, when the models are more reliable, more weight is put on models, otherwise
more weight is placed on measured data. By putting certain weights on models and data
respectively, the assimilation techniques make a balance between models and data. As a
result, an better estimate is expected in appropriate combination of model and data. In the
process of finding optimal estimates, these techniques can lead to consistency between
models and data. In this thesis, these techniques can be simply categorized into so-called
‘Data-Model Consistency’ approach.

However, as seen in the previous chapter, the models that areused in classic data fusion
methods need quite a number of assumptions. For example, we may have to assume that
the models are unbiased and have only random errors so that assimilation techniques like
Kalman filters can be used. In addition, probably we may have to assume that traffic

53
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behaviors are the same when the same average traffic conditions are given. Based on this
assumption, fundamental diagrams can be used. These methods put more attention on
traffic models rather than traffic data itself. For model calibration, we will meet the issue
of overfitting: the number of parameters in the model may be solarge that although the
model can be fitted nicely to the data, it does not generalize the data. For highly stochastic
traffic system, traffic modelling will lead to large model errors: the traffic process is
a complex process, which is very hard to model. Using a ‘wrong’ model may lead to
model-data consistency, but not necessarily to a better estimate of the state. For example,
the widely-used LWR model assumes stationarity, even if traffic is in a non-stationary
situation. As presented in the previous chapter, such a data-model consistency approach
have quite a few drawbacks and fail to fuse more types of data effectively. In order to
tackle the above issues, we may need to shift our focus from the traffic model and a new
approach has to be found.

Although traffic measurements come for many numbers of sensors, there are only very
few traffic variables that need to be estimated (e.g. speed, flow, density, travel times,
etc). Also these measurements can be simply categorized into speed, flow, density and
travel time measurements. The relationship between one another is quite simple or can
be made simple. The relationship between speed and travel times is strictly determined
by simple physical laws. Based on Edie’s definition, we will have the simple equation
density = flow/speed. We do not necessarily need those advanced traffic models. Why
not just use basic physical laws and try to avoid using many assumptions? The main
barrier lie in this fact that the relationship between measured data and traffic variables
cannot always be expressed in explicit equations or ones in required forms. For example,
the physical laws gives =

∫ TT

0
v(t)dt,wheres depicts travel distance andTT is the travel

time. Although this physics can simply deduce travel time iftravel distance and speed are
known, no explicit equations can be found if travel timeTT is known measurement and
v(t) is estimated variable. Therefore, the new approach proposed in this thesis makes the
use of such simple relationships and expresses them in simple forms of equations.

Data from different sources have their own characteristics. Loop detectors are able to
measure traffic speeds at certain points and thus give the traffic details. But estimated local
speeds derived from loop data are biased due to the over-representation of fast vehicles
by loop detectors (This depends on the collection systems. At least, it is true in the
Netherlands). Cameras or floating cars may be able to give the travel time, which is
the aggregated result of traffic over certain time space region but it does not give the
traffic detail. In contrast to the local speed estimates fromloop detectors, travel time
has unbiased traffic information and is able to capture the global profile of traffic. By
comparison of these two data, it can be seen that each type of data and source has its
particular strengthes and weaknesses, therefore the proposed approach is supposed to
make the use of the strength in one type of data to compensate the weakness in another.
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Figure 4.1: New approach: Data-Data Consistency approach.
g(·) represents the relationship between datax and datay. It exists independent of data.

The proposed approach in this thesis is inspired by the abovefacts and it is called ‘Data-
Data Consistency’ Approach. This approach still needs traffic models, but these models
are simply based on some basic physical laws and very few assumptions. Unlike first-
order or second-order traffic models, the used models don’t contains any parameters that
need to be calibrated.

This approach can be illustrated by Figure4.1. It takes one type of datax as prior informa-
tion and the othery as reference information. The reference datay has a specific strength
that datax is lacking. For illustration, letx represent local speeds from loop data andy
travel time. Since travel time is unbiased information and local speed estimate is biased,
an appropriate adjustment tox can be done so that the posterior estimates of local speeds
are consistent with travel time information. In the adjustment, the local information that
depict the traffic details is kept and it is also corrected to be unbiased by travel time. If
necessary, this adjustment may be an iterative process. In the end, less biased estimates
of local speeds are achieved.
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4.2 Benefits of the new approach

There are quite a few benefits from this approach.

• Minimal assumptions are required. The models used in this approach are sim-
ply based on basic physical laws and fewer assumptions. The mainly-used phy-
sical laws aredistance = speed ∗ time (it actually mean∆s = v ∗ ∆t),
density = flow/speed (based on Edie’s definition) and vehicle conservation law.
The measurement data are expected to satisfy several assumptions. For example,
we assume that the travel time is unbiased and much more reliable than loop mea-
surement. Or we may assume that the flow measurements are veryreliable with less
than 1% errors. Or we may assume that the measurements have Gaussian errors.

• No model parameters need to be estimated. As we know, traffic system is highly
stochastic. For this reason, even on a given road segment, the model parameters
will change due to all kinds of external impacts such as weather, composition of ve-
hicles, time of day, etc. Even if these parameters can be estimated online, the quality
of calibration is still determined by measurement data. Biased measurements lead
to biased models, and biased models lead to biased estimation. As matter of fact,
one important motivation or aim of this thesis is to provide more accurate traffic
state and data for better model calibration but not vice versa.

• Less restrictions are placed. This approach seeks for consistency between different
types of data. The so-called consistency can be expressed ordefined in any ways as
long as it makes sense. In addition, no particular forms of equation are required to
formulate the relationship between data. But in some assimilation techniques like
Kalman filter, for example the measurements are always expressed in the combina-
tion of variables. The state equation must be express in an incremental and iterative
way. The linearization of nonlinear equations also brings about inconvenience.

• More data sources can be better used. Since there are no particular forms to for-
mulate the relationship between the data. Any two types of data can be fused by
this approach as long as there is a link between the two. Besides, each type of data
can only cover one aspect of traffic, and have its own strengthand weakness. This
approach tends to combine the strength in data and compensate the weakness in
data, so the better use of data can be achieved.

• Compatible with conventional data fusion techniques. Sometimes it is difficult to
choose among different fusion techniques. It is hard to decide which one is better.
When one method is chosen, then the rest have to give way. Data-Data Consistency
approach is an addition to the conventional methods more than an alternative. This
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approach aims to do some data fusion that is hardly done by other techniques. The
result from this approach can be used to establish a more accurate model that for
example Kalman filters need. Also the output estimates from the other techniques
also can be further used in approach to do further fusion work.

• More efficient implementation. It can be seen from Figure4.1, that the whole fusion
process is simple and thus easily understood. There is no high computation cost for
things like the inverse of a high-dimensional matrix. This approach uses ‘feed-back’
strategy in which the data are iteratively adjusted or corrected. Such iteratively
processing is just where computers are specialized in. As a result, less time cost for
computation is required.

4.3 Methods based on this approach

Following this approach, a few methods are designed to do different data fusion work.
So-called PISCIT is able to achieve much less-biased local speed estimation from biased
local speed measurements and travel time. TravRes is aimed atthe same goal when few
loop data or none is available. FlowRes is a theoretical framework which can combine
low-resolutioned positioning data from e.g wireless communication networks. So-called
ITSF can give both density and speed estimated by fusing flow,local speed and travel
times. All of the data used in the methods are very common or can be available in large
quantities. The fusion of these data has not been well done inthe previous work as seen
in Chapter3.

As Figure4.2 shows, the advanced traffic models with a number of assumptions are not
required but ‘speed∗ time = distance’. The third mainly uses the ’model’ that is ‘speed∗
density= flow’. The last method is based on both of the models.

This chapter simply gives the idea behind the approach. Following that, the next few
chapters will give the details of these methods, the implementation and the results.
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Figure 4.2: The new methods are based on different physical models



Chapter 5

Trajectory reconstruction by using
travel time and local speed

Figure 5.1: Illustration of how data-data consistency approach works for biased local
speed measures and reliable travel time measures

As shown in Chapter2, the local speed measures from loop detectors have considerable
bias depending on the speeds. Such a bias may lead to an error up to 100% in density
estimation, also lead to biased estimation of travel times.In contrast with loop speeds,
travel times from AVI system are statistically unbiased. Further considering the intrinsic
relations between time, space and speed, it is a good solution that the travel times are used
to remove the bias in loop data.

59



60 5 Trajectory reconstruction by using travel time and local speed

However, as shown in Chapter3, fusing travel times and local speeds is quite difficult
and no appropriate methods have been proposed so far to solvethis issue. The main
challenge is that the different data have different semantics over space and time. A travel
time measurement equals average journey speed (of a single vehicle) over a stretch of
road during a variable time interval with a length equal to the travel time itself, whereas
for example a local average speed gives an average over a fixedand predefined time
interval, which has meaning only over a very small region in space (a cross section).
This local average can not simply be added, subtracted or even compared to spatial traffic
quantities. But a solution of this issue is of practical relevance in case of the (potentially)
wide availability of loop data and travel time data.

Based on the idea of the data-data consistency given in Chapter4, this chapter will give
an algorithm which is able to reconstruct vehicle trajectories by fusing travel time and
local speeds. The reconstructed trajectories are much less-biased and thus return less-
biased time-space speeds. Figure5.1 illustrates the main rationale of the data fusion
algorithm we will describe in this chapter. The idea is that the local speed measuresv(t)
over the time-space region are indirectly adjusted to become consistent with each other
by applying an iterative algorithm. The consistency here means that the given travel times
can be almost exactly derived from the update time-space speeds under the physics law
speed ∗ time = distance.

The main symbols used in this chapter are listed in Table5.1.

5.1 Introduction

5.1.1 Analysis of fusing travel time and local traffic data

Data fusion of travel times (e.g. derived from stamping-time provided by cameras) and
local traffic speeds (from e.g. loops) is not as easy as it may appear. Travel times and
local traffic data have different levels as shown in Figure5.2. Local traffic data shows
the traffic information in the discretized cells. But travel times may represent the traffic
information over a large area of time-space region when the polling rates are quite low.
In contrast to other traffic information such as traffic flow, density and speed, travel times
may be regarded as a kind of integral of its experienced traffic speeds over the travel-
space region, which is mathematically represented byTT (t) = f(x[t,t+TT ]) wheref can
be determined by using the factspeed ∗ time = distance.

From a mathematical perspective, travel time estimation based on traffic speed infor-
mation represents the projection of high-dimensional data(speeds) into low-dimension
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Table 5.1: Symbol list

Lj Length of road segmentj
TT (k) Measured travel time for individual vehicle on a specified

road stretch (link)

tt
(k)
j Sub-travel time for vehiclek to traverse segmentj

t̂t
(k)
j Estimated sub-travel time for vehiclek to traverse segment

j

t
(k)
j Moment when vehiclek starts to travel at segmentj

t̂
(k)
j Estimated moment when vehiclek starts to travel at seg-

mentj
v̂(i, j) Ground-truth traffic speed at segmentj during periodi
v̂−(i, j) Prior estimated speed at segmentj during periodi (before

fusingTT )
v̂(i, j) Posterior estimated speed at segmentj during periodi (after

fusingTT )
v̂(k)(i, j) Estimated speed for vehiclek at time-space cell(i, j),

wherei andj indicate the time and location respectively
ŝ(k)(i, j) Estimated travelled distance by vehicle for vehiclek at

time-space cell(i, j)
n̂(i, j) Number of reconstructed trajectories that traverse the time-

space cell(i, j)

Figure 5.2: Travel time and local speed data have different levels.



62 5 Trajectory reconstruction by using travel time and local speed

space, shown in Graph A in Figure5.3. This projection is straightforward and many
ready-use algorithms have been proposed to this end such as the piece-wise linear speed-
based (PLSB) trajectory algorithm proposed inVan Lint and Van der Zijpp(2003). In this
algorithm imaginary vehicle trajectories are drawn through a space-time grid, based on a
number of assumptions:

• A space-time grid of cells(i, j) is constructed in which loop detectors are located
at each cell boundaryj.

• Traffic conditions are assumed stationary within each cell(i, j). Speeds at detectors
are assumed to be averaged harmonically (to counter effect overestimation due to
the over-representation of fast observations in local timesamples). If this is not the
case and only time averaged speeds are available these need to be corrected for this
bias.

• The slope of each trajectory (i.e. the speed of the imaginaryvehicle) in a cell(i, j) is
considered a convex linear combination of the speeds measured duringi at detectors
j andj + 1.

The resulting travel times can be easily derived from the start and end times of these
imaginary vehicle trajectories. Clearly, a number of strongassumptions are made in this
heuristic method. First traffic conditions are assumed stationary (so constant over each
period i), and secondly, speeds are assumed to change linearly from one detector loca-
tion to the next. In case of for example passing shock waves due to congestion downs-
tream it can be easily seen these assumptions do not hold, particularly if detectors are
widely spread or data from large aggregation intervals is available. Moreover, loop data
exhibits both structural and random errors (see e.g.Van Lint and Van der Zijpp(2003),
Lindveld and Thijs(1999)). Their study shows that this leads to travel times which are
at best in a 5% range around true realized travel times, but which become quickly more
biased as fewer loops are available or traffic conditions in between loops are more hete-
rogeneous and non-stationary. Recently more advanced travel time estimation techniques
have been proposed which use spatiotemporal filtering as seen in Van Lint (2010) and
Kesting and Treiber(2008).

The inverse process (from travel times to section speeds) ismuch more difficult, parti-
cularly when nothing but travel time information (from AVI systems) is available. For
instance, trajectories A and B in Graph B in Fig5.3, both result in exactly the same travel
time. The inverse problem is hence undetermined, which implies that to solve it addi-
tional information (e.g. from induction loops) is required, which implies that to solve it
additional information (e.g. from induction loops) is required.
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Figure 5.3: Data fusion of travel times and local traffic data
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5.2 Methodology: PISCIT

In this section we present this two-step algorithm named PISCIT (Piece-wise Inverse
Speed Correction by using Individual Travel-time) for fusing individual travel times
with an initially estimated time-space speed contour plot.This initial time-space
contour plot of speeds may be the result of a simple interpolation between consecu-
tive detector measurements, or even the result of a model-based state estimator as in
(Van Lint and Hoogendoorn(2007),Wang and Papageorgiou(2005)).

5.2.1 Framework of PISCIT

The main assumption underlying the PISCIT algorithm is that travel times measured with
cameras (or other automated vehicle identification (AVI) systems) have errors which are
substantially smaller than travel times estimated from local traffic data such as inductive
loop-data. Particularly, travel time measurements are assumed to be unbiased. The errors
in an estimated travel time induced from loop speeds are proportional to this travel time.
In other words, longer travel time, more errors. Also we assume that traffic is homo-
geneous and stationary in each cell of time-space region. The physical law used in this
method is as simple asdistance = speed ∗ time.

The algorithm (schematically outlined in Figure5.4) consists of two steps:

Step 1 In the first step, approximate vehicle trajectories are reconstructed based on an
initial time-space speed contour plot, and individual travel times. The ingredients
for step one are

1. A initial (prior) time-space speeds (visualized as contour plots)

2. individual travel times

Step 2 In the second step, all the approximated trajectories from the first step are used
to re-estimate (correct) the speeds from the initial (prior) speed contour plot. The
result is a posteriori time-space speeds (visualized as contour plots), which fit best
with all the estimated trajectories.

5.2.2 Step one: reconstruction of individual vehicle trajectories

The measured travel times provide (virtually error free) entry and exit times of the ap-
proximate vehicle trajectory. These entry and exit times (literally) provide the constraints
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Figure 5.4: The framework of PISCIT
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for each approximated vehicle trajectory over time. The loop data provide the information
which determines the slope of each trajectory over space. Consequently there is incon-
sistency between two kinds of travel times. For example, there is inconsistency between
AVI travel times and loop travel times. In order to compromise such inconsistency, loop
travel time on each segment is to be proportionally adjusted. In other words, the total
error is proportionally distributed to each segment if individual error characteristic on
each segment is unknown. Particularly, this step is a heuristic process: starting from a
straight line (with slope route length/ measured travel time) an optimal vehicle trajectory
is reconstructed on the basis of the additional data from loops.

Below we point out the relationships between the relevant variables:

t
(k)
j+1 = t

(k)
j + tt

(k)
j

t̂
(k)
j+1 = t̂

(k)
j + t̂t

(k)
j

The main idea behind the approach in step one is to use so-called proportion-multipliers
to repeatedly correct sub-travel times at every segment (based on the prior speed contour
plot) such that the sum of the sub-travel times satisfies the total travel time on the whole
link (based on the measured travel times). As starting a point we assume that the vehicle
is driving with a constant speed over segmentj. This yields the following estimation̂tt(k)

j :

t̂t
(k)
j = TT (k) ∗ Lj/L (5.1)

where L =
∑

j

Lj

that is the initial estimate of a vehicle trajectory is the straight line shown in Graph A in
Figure5.5. Based on̂tt(k)

j and the entry momentt(k)
j , t̂

(k)
j+1 can be calculated.

Next, we will make use of the prior-estimated time-space speed contour to correct the
estimate of̂ttki . Since higher speeds imply less sub-travel time , the following iterative
update rule is applied:

t̂t
(k)
j ∝ 1/v̂−([t̂

(k)
j , t̂

(k)
j+1], j) (5.2)

with constraint
TT (k) =

∑

j

t̂t
(k)
j (5.3)

In which j = 1, 2, ..., n andn is the (arbitrary) number of segments divided on the link.

When the Equation5.2and Equation5.3are iteratively executed, the reconstructed vehicle
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trajectories approximate the true trajectory to some extent (see Graph A in Figure5.5).
The iterative execution will stop when the difference between previous values and current
ones is smaller than some preset threshold (a small number).

Figure 5.5: Recursive reconstructions of vehicle trajectories

5.2.3 Step two: speed re-estimation

In this section, the estimated vehicle trajectories obtained in the first step are used in turn
to correct the speeds in the initial (prior) speed contour plot. To illustrate the idea, consi-
der the case when only one trajectory passes through a particular region. Clearly, the
posteriori speed in that region equals the slope of this partof the trajectory. In case many
trajectories pass through the same region as seen in Graph A in Figure 5, it becomes im-
possible to satisfy all the trajectories, and a best fit mean speed is estimated. To tackle the
problem, we introduce a simple and effective linear regression technique with constraints.

First of all, for each segment(i, j) we collect the estimated speedsv̂(k)(i, j) and the
approximated traverse lengthsŝ(k)(i, j) for each vehiclek which traversed region(i, j),
as illustrated in Graph A in Figure5.6.

The average speed in each segment(i, j) can be derived by simply averaging these speeds
v̂(k)(i, j). However, in doing so, this results in a corrected (posteriori) speed contour map
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which may result in travel times which no longer equal the measured travel times. To
make consistency, we add the below constraint:

∑

(i,j)∈Traj(k)

ŝ(k)(i, j)/v(i, j) = TT (k) for k = 1, 2, 3...m (5.4)

wherem is the number of vehicles whose travel times are available,v(i, j) denotes the
variables of speeds over the time-space cell(i, j) andTraj(k) is the set of cells in which
vehiclek traverse during its trip. Now assume the following relationship between the
speeds of each approximated vehicle trajectory (from step one) and the a posteriori speed
contour map:





n(i,j)
∑

k

1/v̂(k)(i, j)



 /n(i, j) = 1/v(i, j) + e(i, j) (5.5)

wheren(i, j) is the number of reconstructed trajectories that traverse region(i, j), and
e(i, j) is an estimation error which is assumed zero mean normally distributed.

In theory, it is possible to use equations (5.4) and (5.5) to give the optimal estimate of
1/v(i, j). To simplify computation, however, we propose to group these vehicle trajec-
tories into subsets which share identical(i, j) regions along their route. For example, in
Graph B in Figure5.6, trajectory A and B belong to the same group while trajectoryC be-
longs to a different one. Suppose that the classified trajectory groups areTrajGroup(r)
for r = 1, 2, 3..., then equation (5.4) becomes:

TrajGroup(r)
∑

(i,j)

l̂(k)(i, j)/v(i, j) =

TrajGroup(r)
∑

k

TT (k) for r = 1, 2, 3... (5.6)

We now have the necessary ingredients to optimally estimate1/v(i, j) (instead ofu(p, i)
for mathematical purposes) for all regions(i, j). To this end we cast the problem as
a Linear Model subject to Linear Restriction, which is formulated below. First of all,
consider a general linear regression equations:

Y = Xβ + ε (5.7)

ε ∼ N(0, σ2I)
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Figure 5.6: Illustration of individual vehicle trajectories

whereY is aN×1 vector (observations),X is aN×k matrix,β is k×1 (parameters to be
estimated), andε is anN × 1 vector of Gaussian distributed zero-mean random variables,
which reflects the random errors produced by the model. A general linear reduction (a
linear restriction) in the parameter space fromk to k − m can be written as:

H ′β = h (5.8)

whereH ′ is m × k matrix and known and the rank ofH is m, andh is anm × 1 vector
(observation). Then the least square estimate ofβ under such a restriction as shown in
Equation5.8or specifically Equation5.6 is:

β̂ = β̃ − (X ′X)−H ′(H(X ′X)−H ′)−1(Hβ̃ − h) (5.9)

whereβ̃ = (X ′X)−X ′Y .

In order to apply Equation5.8to Equation5.5, let

β = V ec [1/v(i, j)]i×j (5.10)

whereV ec is an operator to vectorize a matrix, that is to reshape a matrix such that
it becomes a vector. Corresponding withβ, Y may be easily produced with elements
(

n(i,j)
∑

k

1/v̂(k)(i, j)

)

/n(i, j). Similarly,H andh are easily determined according to Equa-

tion 5.6. Particularly, in this caseX has a very simple form that readsX = I. Conse-
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quently, the least square estimationβ̂ also has a simple form as:

β̂ = Y − H ′(HH ′)−1(HY − h) (5.11)

where there is quite computation cost in the term(HH ′)−1. After all trajectories are
classified, the dimensions ofHH ′are greatly reduced. Finallŷv(i, j) can be obtained by:

û(i, j) = β̂ (5.12)

5.3 Validation

In this part, we will validate this algorithm by using synthetic data. In the first place, the
synthetic ‘ground-truth’ data are generated by assuming the real loop data are true, and
then the observed data are generated by tampering the ‘ground truth’ data. In the second
part, the proposed algorithm is applied on the observed dataand returns the estimated
data. The performance of this algorithm is shown by comparing the ‘ground-truth’ and
estimated results.

5.3.1 Experiment setup & data generation

First of all, a 9.5 kilometer stretch of 3-lane Highway A4 eastbound in Netherlands is
considered (Graph (a) in Figure8.7), where 18 loop detectors are placed spacing around
500 meters and aggregated traffic speed measures and counts every one minute.

• Ground-truth speed We assume the loop detectors give the ground-truth speed
measures over certain segments. The resulting time-space speed contour plots (Fi-
gure 5.8) shows 5 hour traffic condition on this stretch from 6:00 A.M.till 11:00
A.M. on July 8th, 2008, during which congestions onset and dispersed twice.

• Observed speedsThe observed speeds in each time-space cell are assumed by
tampering the ground-truth speeds with the below assumption. This assumption is
based on the empirical study inKnoop et al.(2007)

vo = e1.1vg(0.5−0.5vg/120) (5.13)

wherevo is the observed speed andvg is the ground-truth speed. With this assump-
tion, the observed speed is 10% higher when ground-truth speed is 120km/h, and
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(a) study road stretch
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Figure 5.7: Illustration of the study road and how the ground-truth data are perturbed

70% higher at the speed of 20km/h. The resulting observed time-space speeds are
shown in Graph (a) in Figure5.9 The relationship between then is show in Graph
(b) in Figure 8.7.

• Travel times The travel times are generated by sampling the ‘ground-truth’ time-
space speed plots. There are three virtual cameras placed atthe entry, exit and
middle of the whole road stretch. It is assumed that 10% of vehicles are captured
by the cameras, giving the travel times from milepost0km to4.8km and others from
4.8km to9.5km.

5.3.2 Results

We use mean absolute relative error (MARE) to evaluate the results. The definition of
MARE is shown in Equation8.16.

MARE =
1

M ∗ N

M
∑

i

N
∑

j

|x̂(i, j) − x(i, j)|

x(i, j)
(5.14)

x̂(i, j) represents the estimate andx(i, j) represents the ground-truth quantity. The com-
parison of the results without and with using the algorithm can be seen in Figure5.9.

• BeforeThe observed speeds and density have large errors. MARE for the observed
speeds is 33.4% in the given scenario.
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Table 5.2: Comparison of MARE before and after using the proposed algorithm.

Measure type MARE (before) MARE (after)
MARE on speeds (global) 33.4% 4.8%
MARE on low speeds (<50kmph) 64.6% 10.8%
MARE on travel times 26% 3.5%
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Figure 5.8: Ground-truth time-space speed plot

• After After the proposed algorithm is applied to fuse the observedspeeds, travel
times and flow, the above errors remarkably decrease. MARE forestimated speeds
becomes 4.8%.

With time-space speed plots, travel times can be easily derived. Figure5.12makes com-
parison of travel time estimates between before and after using this algorithm. Before
using it, the travel times based on observed speeds have meanabsolute error of 202 se-
conds and MARE 26%. After using it, the travel times have a muchsmaller error of 32
seconds and MARE 3.5%. In Figure8.14, the thick green line represent the ground-truth
travel time, dark dashed line represents the results after using the algorithm and thin red
line represents the travel time estimation based on the observed speeds. The former two
lines almost overlap with each other.

Next, we study how the added floating car data influence the speed estimation when they
are added into travel times from camera data. The travel timedata from camera remain as
above, that is 10% vehicles are captured by fixed cameras. Thereporting rate of floating
car data is 60 seconds. The penetration range from 0% through10%. The impacts of
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(a) Observed speed
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(b) Estimated speed

Figure 5.9: Comparison between observed speeds and estimatedspeeds after applying
the proposed fusion algorithm
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Figure 5.10: Comparison between ground-truth speeds, observed and estimated ones on
road-segment 12 (around 5.5km milepost)

added floating car data can be seen in Table5.3and Figure5.13. The results show that the
added floating car data help to further reduce the estimationerror. When the penertration
rate change from 0% to 5%, MARE is considerably improved. But higher rates do not
bring much improvements.
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Figure 5.11: Comparison between ground-truth speeds, observed and estimated ones on
road-segment 7 (around 3.8km milepost)
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Figure 5.12: Compare travel times between before and after using this algorithm

5.4 Conclusion and recommendations

This chapter proposed a new algorithm (PISCIT) for fusing speeds from local detectors
such as inductive loops with individual travel times measured by AVI systems. This al-
gorithm is based on data-data consistency approach. In thisalgorithm, individual vehicle
trajectories are reconstructed, consistent with the giventravel times and proportionally
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Table 5.3: The impacts of added floating car data. MARE withouttravel time
information is 32.3% (global)and 64.6% (speeds lower 50kmph).

Penetration of FCD added 10% 5% 2.5% 1% 0.5%
MARE on speeds (global) 2.5% 2.65% 2.9% 3.5% 4.2%
MARE on low speeds (<50kmph) 5.6% 6.3% 7.7% 9.3% 10.2%
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Figure 5.13: The impact of FCD added into camera data (camera data capture 10%
vehicles).
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consistent with the local speeds. Very few assumptions are needed: the traffic is assumed
to be homogeneous in each time-space cell, and the travel times are assumed to be correct.
We assume the proportionality of the errors in loop-estimated travel times. As matter of
fact, when travel times are less reliable, we still can sample from distributions of given
travel times and each sample has its own confidence. When the trajectories are combined,
the confidence for each travel time sample can be taken into account.

The algorithm consists of two steps. In the first step vehicletrajectories are reconstructed
by individual travel times in combination with an initial (prior) time-space speed plot
(based on loop data). It is worth mention that the trajectoryreconstruction technique
in this part does not guarantee the convergence, though it seems that the reconstructed
trajectory converges. In the second step a corrected (posterior) time-space speed plot is
produced on the basis of these reconstructed vehicle trajectories. In this algorithm, the
travel times are assumed to be reliable and correct, so they are used as constraints when a
regression technique is employed to combine all reconstructed trajectories and output the
time-space speeds.

On the basis of synthetic data driven by real-life loop data,we demonstrated PISCIT is
able to successfully correct strongly biased prior speed measurements. The applications
for PISCIT are manifold. First of all, in an offline context, PISCIT enables a simple but
effective method to fuse data from local detectors and travel time data from AVI systems
and hence improve the quality of archived datasets significantly. This is beneficial for a
multitude of applications which depend on such historical data archives (e.g. simulation
studies, performance analysis, policy evaluations, etc).In case the AVI data contains
travel times over short distances, the algorithm might alsohave benefits for real-time ITS
applications such as route guidance systems or ATIS.

However, this algorithm relies on prior speed information from loop detectors. When
there is very little local speed information or no such information at all, PISCIT cannot
work. To deal with this issue, the next chapter propose a moregeneral algorithm which
are able to fuse the travel times themselves or fuse them withlittle loop speed data. This
approach is still based on data-data consistency.



Chapter 6

General approach for speed
reconstruction by fusing travel times

Figure 6.1: Illustration of internal consistency. The mainfunction is to find speeds that
are ‘best’ consistent with all travel time records from Floating Car Data

The previous chapter, Chapter5 used a data-data consistency approach to remove much
of the bias in local speed estimates by fusing travel times. In that method, the initial local
speed measures from loop detectors are used as prior information, which are updated

77
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Table 6.1: Symbol list

Lj Length of road segmentj

t
(k)
j Time moment when probe vehiclek enters road segmentj

t̂
(k)
j Estimated time moment when probe vehiclek enters road

segmentj

tt
(k)
j Travel time of probe vehiclek on road segmentj

tt̂
(k)
j Estimated travel time of probe vehiclek on road segmentj

tt̂(k)(i, j) Estimated duration of vehiclek dwelling in cell(i, j)
ŝ(k)(i, j) Estimated traveled distance of vehiclek in cell (i, j)
q̂−(i, j) Measured flow in cell(i, j) by loop detectors.
v̂−(i, j) Measured (biased) speed in cell(i, j) by loop detectors.
v̂(k)(i, j) ‘Measured’ speed in cell(i, j) by trajectoryk. Similarly for

densityρ̂(k)(i, j) and flowq̂(k)(i, j)
v̂(i, j) The final estimated speed in cell(i, j) by using travel times,

speed and flow. Similarly for densitŷρ(i, j) and flowq̂(i, j)

when the extra information of travel times are given. But in many cases, the loop detectors
are sparsely installed or none of them is installed on a long road stretch. In order to
estimate the traffic speeds in such a case, people may have to rely on floating car data
(FCD). As shown in the following, a considerable bias in speedestimation is likely to be
made out of these floating car data, especially when the FCD have low resolution in time
horizon (lower polling rates).

To tackle this issue, this chapter proposes a new method called TravRes for accurate re-
construction of high-resolution (e.g. 500m*60sec) time-space speeds on the basis of sam-
pled floating car data. This new method is superior to naive methods (classic methods),
methods which reconstruct time-space speeds by simply dividing travel distance by tra-
vel time between consecutive FCD samples. Later on in the chapter, we will show the
improvements by applying the method to a test case. It uses aniterative trajectory recons-
truction technique as given in Chapter5. Still based on data-data consistency approach,
the ‘best’ estimate of speeds is found, such that the speed estimates are best consistent
with all travel time measures, or in other words speed estimates and travel times meet
the physics lawspeed ∗ time = distance. This method is mainly checking the internal
consistency, and only FCD are needed as input data. Figure6.1roughly shows the overall
idea. Although only FCD is necessary for this method, this method can be extended such
that other data source e.g. loop speeds can be fused. In methodology part, we will also
show the extension of this method.
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6.1 Introduction

6.1.1 Floating car data used for speed estimation

With the fast growth of in-vehicle ICT, the number of feasibleapplications based on in-
car intelligent transportation system applications is rapidly growing as well. These in-
clude not only the (off- and online) collection of vehicle trajectories, speed, travel time
(Laird (1996)) and even OD paths, but also incident detection and route guidance. Traffic
monitoring on the basis of probe vehicle systems has many advantages over classic infra-
structure based monitoring such as low cost per unit of data,continuous (over space) data
collection, and the inherently non-intrusive nature of this type of monitoring (Turner et al.
(1998)). The common use of global positioning systems (GPS) in mobile phones and/or
in-vehicle navigation systems makes it easier and feasibleto provide (more detailed) data
of higher accuracy. In terms of traffic management, typical applications of floating car
data include traffic state estimation (Herman(1984)), travel time estimation and predic-
tion (Coifman (2002)). For the estimation and prediction of travel times, good traffic
state estimation is the pre-condition, since traffic modelsfor prediction are likely to take
traffic states–density or speeds or both as input (Van Lint et al. (2002)). The accuracy
of the source data for such applications is crucial. It is found, for instance, that errors
in speed estimation of up to 20% may lead to errors in estimated density up to 100%
(Stipdonk et al.(2008)). In this chapter, we focus on the accurate estimation of traffic
speeds by using floating car data (also known as probe data or in brief FCD).

6.1.2 Challenge from floating car data

It is seemingly simple to derive traffic speeds from floating car data. Floating car data at
least contain the probe vehicle’s relative position on a road and timestamps. The com-
monly used method to derive the speed between consecutive probe vehicle reports is to
divide traveled distance by travel time, resulting in time-space mean speed (Graph (a) in
Figure6.2). Such a method works well when floating car data have high polling rates
(e.g. one report every one or a few seconds). But as shown in thefollowing, this method
brings about considerable errors when it comes to the estimation of high-resolution (e.g
500m*60sec) time-space speeds from floating car data of low polling rate (30sec-90sec
or more).

High resolution traffic speed plots may not be derived from FCDin a straightforward way.
This is due to the fact that a probe vehicle reports its positions at a regular interval (e.g.
1 or 2 minutes), during which the vehicle may have already covered 1 or 2 kilometers
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Figure 6.2: (a) Comparison of assumed vehicle trajectories with ground-truth ones.
(b)An example for estimated speed and ground-truth one.

(c) Ground-truth time space speed contour plots from simulated data in an example of
Vissim simulation.

(d) Reconstructed time-space speed contour plots by naive method (classic method) on
the basis simulated FCD in the Vissim simulation.
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on a highway or passed several blocks in urban roads. Withoutany other assumptions or
taking into other data sources, one can only derive the average journey speed a vehicle
experiences during such polling intervals by dividing distance traveled with travel time.
The underlying assumption is hence that the vehicle does notchange its speed during the
interval. Consequently, the trajectory of this vehicle is a straight line on a time-space map,
obviously differing from its ground-truth trajectory as illustrated in Figure6.2(a). On the
basis of such average journey speeds (straight vehicle trajectories) one can calculate an
average speed in each time-space cell through which at leastone probe vehicle ‘traversed’.
We will refer to this method of calculating speeds from probevehicle data as the naive me-
thod (classic method) from hereon in this thesis. This naivemethod causes considerably
errors, particularly in low-speed regions. Figure6.2(b) gives a simple example, in which
probe vehicle reports its location at an interval of 2 minutes and it travels at 20meters/sec
in the first minute and 10 meters/sec in the second minute, resulting in 15 meters/sec on
time-space average. This implies an 25% underestimation ofspeed in the first minute
and a 50% overestimation in the second minute. What’s worse isthat the estimation er-
ror ”diffuses” into neighboring cells or regions. As a result, the reconstructed time-space
speed plots from FCD are inaccurate as illustrated in the example in graph (c) and (d) in
Figure6.2. In this example, Vissim software was employed to give Ground-truth speeds
as shown in Graph (c) and also generated virtual probe vehicle data with reporting interval
of 2 minutes. When the FCD were processed with the naive method (classic method), the
resulting speed plots Graph (d) displayed noticeable diffusion of speed estimation. Due
to this diffusion, the speed estimation on the downstream road (from the mile point 4.8
km) has the average relative error of 37.8%.

In real-life and large scale application of FCD, it is likely that we may only get FCD of
low polling rates rather than data of high polling rates due to restriction on communication
cost. Therefore, it makes sense to find a way to use low pollingrate data or low-resolution
data. For this purpose, this chapter proposes a new method called TravRes to tackle the
above-mentioned issue, borrowing the idea of trajectory reconstruction from PISCIT that
is given in the previous chapter. In the next sections of thischapter, some theoretical
analysis about speed reconstruction from FCD is given beforethe technique details on
the method are fully presented. After presentation of the methodology, the method is
validated on the basis of an experiment with simulated data.

6.2 Theoretical background

In this section, some quantitative analyses are given to reveal the relationship between
floating car data (FCD) and cell speeds on time-space plots, finding that the ground-truth
speeds can be exactly reconstructed by FCD under some assumptions. The first assump-
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tion is that each cell of the time-space speed plot has homogeneous traffic conditions.
This implies that the vehicle trajectories in a cell are parallel straight lines. The second
assumption is that the given floating car data are consistentwith the ground-truth time-
space speed plots, which means the floating car data can either be exactly reconstructed
through the time-space speed plots.

6.2.1 Analysis of simple cases

On the basis of simple example cases we will first demonstratethat it is possible to use
low-resolution FCD to exactly reconstruct ground-truth speed in each time-space cell, if
the above assumptions are made. Figure6.3(a) presents such a simple two-cell case. This
graph shows two neighboring time-space cells referred to asx andy, in which two probe
vehicles only pass the space-boundary of cells once withoutpassing the time-boundary.
Both the probe vehicles report their locations after a time interval, which are marked by
black dots in the graph. Since the locations with timestampsare provided, the distance
from their reporting locations to space-boundary of the cells is known, represented by
S1, S2, S3 andS4 shown in Figure6.3 (a). Assuming homogeneous speed on each cell,
the relationship between time, distance and speeds can be established through the below
equations:

S1/vx + S2/vy = ∆t (6.1)

S3/vx + S4/vy = ∆t (6.2)

It can be expressed with matrix as:

[

S1 S2
S3 S4

] [

1/vx
1/vy

]

=

[

∆t
∆t

]

(6.3)

Looking into the equations, it is found that the unique solution can be achieved if the
matrix

[

S1 S2
S3 S4

]

(6.4)

has full rank. For FCD with the same polling rate, the unique and reasonable solution
(positive speeds) can be achieved only if the two probe vehicles do not report the same
locations. In addition, the unique solution has to equal to the ground-truth speeds. Since
the ground-truth speeds and the above solution both satisfythis equation, if they were not
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Figure 6.3: Illustrations of a few cases when probe-vehicle trajectories run through
time-space cells.

equal, then solutions to this equation will not be unique.

Figure6.3 (b) shows the case when the probe vehicles only pass the time-boundary once
without pass the space-boundary. Similarly, the below equations can be established as

t1 · vx + t2 · vy = S1 (6.5)

t3 · vx + t4 · vy = S2 (6.6)

or
[

t1 t2
t3 t4

] [

vx
vy

]

=

[

S1
S2

]

(6.7)

has full rank. The unique and reasonable solution can be achieved only if the two probe
vehicles do not report their locations at the same time. Samewith the first case, the unique
solution give exactly the ground-truth speeds.
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6.2.2 Analysis of more complicated cases

Figure6.3 (c) illustrates a more complicated case in which probe vehicles run through
three time-space cells. Assuming that the trajectories areknown to run through cell d,
c and b, it is not easy but still feasible to establish a similar linear equation in terms of
Ax = b as already shown in the first two cases, where vectorx represents cell speeds or
inverse speeds (1/speed). It can also be found that the ground-truth speeds on cell d, c and
b can be exactly deduced, given enough FCD such thatA has full rank. Further more,
if the trajectory is incorrectly assumed to run through celld, c and b instead, the conflict
equation (no solution) will be established when enough FCD are given. In that case, the
assumption has to be changed till no conflict equation occurs. In the light of the above,
such a linear equationAx = b always exist for whatever complex cases. Furthermore,
if enough FCD are given so thatA has full rank, the unique and exact solution to cell
speeds can be achieved. Even when the FCD are not fully consistent with ground-truth
speeds (e.g. in real-life, some vehicles run faster while some other slower than ground-
truth ones), one optimal solution to the possible conflict equationAx = b can be solved
by a transformed equation such asATAx = ATb.

We therefore conclude that if enough FCD are available and if these are fully consistent
with ground-truth speeds, these cell speeds can be estimated exactly under the assumption
of homogeneous speed on each cell, no matter how small the cell size is chosen or how
large the polling interval is. Furthermore, this estimation is unique and the only one which
can be fully consistent with FCD.

6.2.3 Implied difficulties in complicated cases

Practically, however, when more cells and more floating car data (FCD) are considered,
the establishment of such a linear equation becomes impossible. More generally put,
the key difficulty lies in the fact that whereas sampled vehicle trajectories (i.e. floating
car data) can be easily reconstructed from the time-space speeds, the inverse, deriving
time space speeds from sampled vehicle trajectories becomes rapidly infeasible, even in
case the assumptions introduced above are met. Particularly, it is hard to make correct
assumptions about which cells are traversed through by the probe vehicles. In addition,
the time cost for solving the linear equations outlined above exponentially rises with the
dimensions, which may even make the real-life implementation impossible.

The new method proposed below does not establish such linearequations for solution.
Instead, it uses a heuristic and iterative way to approximate the solution for cell-speed es-
timation. We call the new method TravRes since it enables moredetailedTraveexperience
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Figure 6.4: Evolution and convergence of time-space speedsplots and corresponding
sets of FCD. This graph shows that when the sampled travel times approach the given
travel time records, the estimated speed plots approach theground-truth speed plots

(under certain conditions).

Reversefrom FCD, leading to high-resolution time-space speeds.

6.3 Methodology: TravRes

This section elaborates the method in detail. This method isbased on some simple as-
sumptions and physical laws. Homogeneous and stationary traffic conditions are assu-
med in each time-space cell. The travel times are assumed to be correct and consistent
with ground-truth traffic speeds. The quantities of travel times are large enough so
that no more than one speed result can satisfy all the travel times. The physical law is
distance = speed ∗ time.

Before we give the method detail, we first present the basic ideas in this method.
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6.3.1 Basic ideas

The fundamental idea is shown in Figure6.4. In this figure, there are a sequence of
time-space speed plots. For each time-space speed graph, FCDcan be reconstructed by
sampling speed plots. However, under certain assumptions,there is only one time-space
speeds which can exactly lead to the given FCD. Our goal is to find such time-space graph
which can exactly reconstruct the given FCD.

For example, there is one piece of FCD, which shows that a vehicle is at location0 at
time 0 minute, and at location1000 meters at time1 minute. When we get a graph of
estimated time-space plots, we can reconstruct its trajectory by sampling speed plots. If
the reconstructed trajectory shows that the vehicle is indeed location0 at time0 minute
and at location1000 meters at time1 minute, we call that the estimated speed plots are
consistentwith this piece of FCD. If the reconstructed trajectory showsthat the vehicle is
at location900 meters at time1 minute, we can update the estimated time-space speeds
so that the resulting speeds are consistent with this piece of FCD.

It is very likely that many estimation results are consistent with this piece of FCD. But for
a certain set of FCD, there is one and only one speed estimationwhich is consistent with
this set of FCD. Such a set of FCD does exist if we assume that traffic is homogeneous
and stationary in each time-space cell so that vehicle trajectories in each cell are parallel
with one another. As shown in the cases in the previous section, one piece of FCD impli-
cates one equation where time-space speeds are taken as variables. When more and more
equations are established with more FCD, there is one solution to all the equation and
this solution is ground-truth time-space speed. In other words, such a set of FCD can be
sampled from the ground-truth time-space speeds, and thereare enough of them so that
there exists one and only one graph of time-space speeds which can exactly reconstruct
all the FCD.

As a matter of fact, we are not going to establish a set of equations and solve the equa-
tions for traffic speed estimation. The previous section hasalready shown that it is very
inefficient and difficult to establish equations and solve them when many FCD are taken.
For this reason, we are taking a ‘feed-back’ strategy. Let usassume that there is only
one estimation that is exactly consistent with all the givenFCD. Firstly, we find arbitrary
speed estimation. If this estimation is not consistent withthe given FCD, we update the
estimation and get new estimation which tends to have less inconsistency with the FCD.
Iteratively update the estimation until the estimation is enough or exactly consistent with
the FCD. The next problem is how to design such an algorithm to update the estimation
so that less consistency will be achieved in each time. The answer will be given below.
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Figure 6.5: The whole framework of TravelRes

6.3.2 Methodology framework

This method consists of two iteration loops–inner loop and outer loop as shown in Fi-
gure 4. The inner loop accomplishes the reconstructions of trajectories and outer loop
further reconstruct time-space speeds. With enough cycles(iterations), estimated speeds
are supposed to be consistent with the given FCD to some extent.

• Figure6.5(A) represents the inner loop which accomplishes trajectory reconstruc-
tion, an algorithm adapted from PISCIT. The input is the givenFCD and the pre-
viously estimated time-space speeds. For the initial estimation, we simply assume
that the speeds over the whole time-space region are equal asshown in (C). As
matter of fact, the initial estimation is not supposed to change the final result.

• Figure 6.5 (A) and (B) constitute the outer loop, in which time-space speed es-
timation is reconstructed by the reconstructed trajectories and the resulting speed
estimation is to be taken as input for inner loop in the next cycle.

• Figure6.5 (D) represents an optional input for the inner loop when there is addi-
tional traffic speed information available from other data sources or modeling. Dif-
ferent confidences are put on different time-space regions for different data sources.



88 6 General approach for speed reconstruction by fusing travel times

For example, if correct speed information on some road segments is available, it can
be used to replace the corresponding time-space region in graph (B) in each cycle.

The above iterative steps can be executed until the sampled FCD from the resulting speed
estimation is close enough to the given FCD.

6.3.3 Inner loop: trajectory reconstruction

This part of the algorithm is able to reconstruct individualtrajectories by combining the
given travel times and previously observed (estimated) cell-speeds from loop detectors.
Cameras or in-car GPS can provide the entry point for a vehicle, that is where and when
the vehicle enters a road stretch. Also the exit point is given about where and when this
vehicle leaves the road stretch. Any line which links the twopoints could be a trajectory
for this vehicle. The algorithm presented below is able to find the most ‘likely’ trajectory
with the help of the time-space speed information from loop detectors, even though there
is considerable bias in these speed measures. The mechanismbehind is quite simple. For
a fixed road segment in a road stretch, longer travelled distance, more travel time; higher
speed, less travel time;

In illustration, it is assumed a probe vehiclek entered road segment 1 at reporting time
t̂
(k)
1 and exited segment 6 at the next reporting timet̂

(k)
7 (Refer to Figure6.6). This tra-

jectory reconstruction algorithm is made up of the steps below, the first four of which
accomplish reconstruction on segment level while the last two on cell level. Table8.1
lists the important symbols used below.

STEP 1: Get̂t(k)
j andtt̂

(k)
j from this previously-estimated trajectory as shown in Graph

(a) in Figure6.6(The initial trajectory can be assumed to be a straight line)

STEP 2: Based on the given time-space speeds (biased), (re)-calculate the average speed
v̄([t̂

(k)
j , t̂

(k)
j+1], j) over segmentj during the time between̂t(k)

j andt̂
(k)
j+1.

STEP 3: Updatêt(k)
j andtt̂

(k)
j based on the average speedv̄([t̂

(k)
j , t̂

(k)
j+1], j). The updated

tt̂
(k)
j can be obtained from the equations displayed below

tt̂
(k)
j ∝

Lj

v̄([t̂
(k)
j , t̂

(k)
j+1], j)

(6.8)

∑

j

tt̂
(k)
j = tt (6.9)
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Figure 6.6: Illustration of trajectory reconstruction algorithm
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,wherett is the given travel time for a vehicle over the whole stretch.After that, update
t̂
(k)
j based ontt̂(k)

j .

STEP 4: Repeat STEP 2 and STEP 3 untilt̂
(k)
i andtt̂

(k)
i converge to a specific extent.

(Refer to Graph (b) in Figure6.6)

STEP 5: Deducett̂(k)(i, j) from tt̂
(k)
j , t̂

(k)
j and cell size. (Refer to Graph (c) in Figure

6.6)

STEP 6: Deducês(k)(i, j) under the below equations. (Refer to Graph (c) in Figure6.6)

ŝ(k)(i, j) ∝ tt̂(k)(i, j) ∗ v̂−(i, j)/v̄([t̂
(k)
j , t̂

(k)
j+1], j) (6.10)

∑

i

ŝ(k)(i, j) = Lj (6.11)

Lj is the length of segmentj. The division of a whole stretch depends on the requirement
for estimation resolution as well as the input FCD. Normally,we make the length of each
segment about 500 meters. If we have a large number of the input FCD with high polling
rate e.g. 30seconds, we can divide a road stretch into more smaller road-segments.

6.3.4 Outer loop: time-space speed reconstruction

In this section, cell speeds are estimated via the above reconstructed trajectories. With
the reconstructed trajectories,tt̂

(k)
i (i, j) andŝ

(k)
i (i, j) can be known, which are the travel

time and travel distance for probe vehiclek on time-space cell(i, j) respectively. In the
case that a cell has two or more trajectories pass through, the speed on the time-space cell
(i, j) can be estimated as

v̂(i, j) =

∑

k

w(k)(i, j)v̂(k)(i, j)

∑

k

w(k)(i, j)

=

∑

k

w(k)(i, j)ŝ(k)(i, j)/tt̂(k)(i, j)

∑

k

w(k)(i, j)
(6.12)
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wherew(k)(i, j) is the weight put on the speed estimationv̂(k)(i, j) from probe vehiclek
in time-space cell(i, j). One possible choice for weight is:

w(k)(i, j) =

√

ŝ(k)(i, j)tt̂(k)(i, j)/

∫ tt/2

0

∣

∣v̂(k)(t)
∣

∣ dt (6.13)

The reason for this choice is given below.

If a probe vehiclek leave a longer trajectory in a cell(i, j) , it is supposed to put more
weight onv̂(k)(i, j) when it is used for the speed estimationv̂(i, j) . Considering both
space length and time span, we assume

w(k)(i, j) ∝

√

ŝ(k)(i, j)tt̂(k)(i, j) (6.14)

The main reason to choose such an assumption is that the actual ‘length’ may lead
to a dimensionality issue. The actual ‘length’ this trajectory left in the cell is
√

ŝ(k)(i, j)2 + tt̂(k)(i, j)2 , however̂s(k)(i, j) andtt̂(k)(i, j) have different units. Conside-

ring that inequalityab ≤ (a2 + b2)/2,
√

ŝ(k)(i, j)tt̂(k)(i, j) is simply used.

Figure 6.7: Comparison of the ground-truth trajectory and the reconstructed trajectory

When polling rates of probe vehicles are different or camera data (also providing travel
times) are considered, different confidence is supposed to be placed on trajectories of
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different polling rate and traffic experience. Compared withone minute polling rate, two
minutes rate can lead to larger deviation of reconstructed trajectories from the ground-
truth ones. More deviation, less confidence is put this trajectory. If we consider polling
ratett, we will also find

w(k)(i, j) ∝ 1/

∫ tt/2

0

∣

∣v̂(k)(t)
∣

∣ dt (6.15)

Now let us explain why this equation makes sense. Figure6.7shows that a probe vehicle
reports its location at time 0 and report its next location attime t = tt. This piece of
FCD can precisely tell its locations at time 0 and at timet = tt, so the reconstructed
trajectory (dashed red) and the ground-truth one (black) share the same locations at the
both ends. But during the polling interval, their trajectories are most likely to deviate from
each other.

Since there is no deviation at the two ends, the bigget deviation is supposed to be between.
For simplicity, we assume that the biggest deviation occursat timett/2. Let Ŝ(k)(t) and
S(k)(t) represent the estimated location and ground-truth one of probe vehiclek at time
t respectively. An attempt is made to approximately quantifythe difference between
Ŝ(k)(tt/2) and the exact valueS(k)(tt/2) . Given the ground-truth speed for this vehicle,
it can easily found that

dS(k)(t) = v(k)(t)dt (6.16)

or
S(k)(t + ∆t) = S(k)(t) + v(k)(t)∆t (6.17)

for very small∆t . But for the estimated reconstructed trajectory, onlydŜ(k)(t) =
v(k)(t)dt + η can be established, in which possible errors on speed estimation and tra-
jectory reconstruction are considered, andη represents the random displacement due to
these errors. To better describe this random displacement,Brownian motion (Wiener Pro-
cess) is introduced. In the standard Brownian motion, the random displacement during
the period fromt till t + ∆t is W (t + ∆t)−W (t) , whereW (t) is the position of particle
at timet and the displacement follows the normal distribution:

W (t + ∆t) − W (t) ∼ N(0, ∆t) (6.18)

Considering that the absolute error on the estimate of higherspeed is larger while the
relative error on the estimation of lower speed is larger, itmakes sense to establish

η ≈ α
√

v(k)(t)(W (t + ∆t) − W (t)) (6.19)
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For very small∆t , it can be assumed thatη = α
√

v(k)(t)dW (t) , leading to a stochastic
differential equation

dŜ(k)(t) = v(k)(t)dt + α
√

v(k)(t)dW (t) (6.20)

whereW (t) is Brownian motion process with covarianceσ2 = 1 and α is a tunable
factor with the dimensionsec ∗

√

meter/sec. Actually, α would have been displayed
in Equation6.23 and Equation6.24, but whenα is assumed to be constant, it can be
cancelled in Equation6.12. Therefore we simply makeα = 1. Integrating Equation6.20
from time 0 till time tt/2 when the biggest deviation may occur as shown in Figure6.7,
the following equation can be deduced.

Ŝ(k)(tt/2) =

∫ tt/2

0

v(k)(t)dt +

∫ tt/2

0

√

v(k)(t)dW (t) (6.21)

Further, the covariance of̂S(k)(tt/2) can be deduced as below:

cov(Ŝ(k)(tt/2)) = cov(

∫ tt/2

0

v(k)(t)dt +

∫ tt/2

0

√

v(k)(t)dW (t))

= cov(

∫ tt/2

0

√

v(k)(t)dW (t))

=

∫ tt/2

0

∣

∣v(k)(t)
∣

∣ dt (6.22)

Sincev(t) is unknown, we replace it with the estimationv̂(k)(t) in Equation6.22, leading
to the below result:

cov(Ŝ(k)(tt/2)) ∝

∫ tt/2

0

∣

∣v̂(k)(t)
∣

∣ dt (6.23)

Obviously, the bigger the deviation is, the less confidence is put on the trajectory. So we
can also assume

w(k)(i, j) ∝ 1/

∫ tt/2

0

∣

∣v̂(k)(t)
∣

∣ dt (6.24)

Combined with Equation6.14, the weightw(k)(i, j) now equals

w(k)(i, j) =

√

ŝ(k)(i, j)tt̂(k)(i, j)/

∫ tt/2

0

∣

∣v̂(k)(t)
∣

∣ dt (6.25)

Now ŝ(k)(i, j), tt̂(k)(i, j) andw(k)(i, j) become available, so the speed estimation in cell
(i, j) can be achieved via Equation6.12. Considering all the FCD, then time-space speeds
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on the specific region can be reconstructed.

6.4 Method validation

In this section, three scenarios are set up to validate the method proposed in the previous
section. They are aimed to show how TravRes outperforms the naive method (classic
method), how probe vehicle polling rates and penetration rates impact the results, and
how camera data and partial loop data can be added to further increases the accuracy
of estimation. In scenario A, only FCD are used for speed estimation under different
polling rates and penetrations. In scenario B, travel times from virtual cameras spaced
4,5 kilometers apart are used as additional data source. Such camera data can be taken
as a special kind of FCD in processing since they share the samedata format, they are
processed the same way that FCD are done. In scenario C, loop data are added and taken
as optional input as shown in Figure6.5 (c). It is assumed that the loop detectors only
covered part of road segments. The motivation of Scenarios Cis to see if the external data
can help FCD to give better speed estimation on the road where the loop detectors Do Not
cover.

Figure 6.8: Assumed ground-truth time-space contour plots, generated through real-life
data from 18 loop detectors spacing around 500 metes on a 9,5 km stretch of Highway

A4 Eastbound in Netherlands.

In the three scenarios, the ultimate outputs are time-spacespeed plots with resolution
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500m*60sec or so. So when FCD have high polling rate (e.g 30seconds), there is lower
chance that the probe vehicles traverse multi time-space cells during one polling interval.
When FCD have low polling rate (e.g. 120seconds), the probe vehicles are likely to
traverse quite a few time-space cells during one polling interval.

6.4.1 Experiment setup and generation of virtual FCD

First of all, a 9.5 kilometer stretch of 3-lane Highway A4 eastbound in Netherlands is
considered (Graph (a) in Figure6.8), where 18 loop detectors are placed spacing around
500 meters and aggregated traffic speed measures and counts every one minute. The
resulting time-space speed contour plots (Graph (b) in Fig.6.8) from loop detector shows
5 hour traffic condition on this stretch from 6:00 A.M. till 11: A.M. on July 8th, 2008,
during which congestions onset on the morning and dispersedon the afternoon. Next, the
above real-life speeds are taken as ground-truth ones to generate virtual probe vehicles
and subsequent virtual FCD (Figure6.8 (c)). The probe vehicles were generated at the
location 0 meter at random time during the 5 hours. With the help of time-space speeds,
the ‘ground-truth’ trajectories were reconstructed. As a result, FCD were generated by
sampling the time-space locations of the ‘true’ trajectories at a certain rate and meanwhile
the resulting FCD were fully consistent with ‘ground-truth’speeds. Penetrations of probe
vehicles were given based on the fact that there were totallyabout 28500 vehicles passing
through the first loop detectors during the 5 hours. Penetrations varies from 2% to 10%
and polling rates varied from 30sec to 120sec.

6.4.2 Speed reconstruction by FCD only

The initial speed plots on the whole time-space region (refer to Figure6.5(b)) are assumed
to have uniform speeds 20meter/sec and the generated FCD are put into the method (refer
to Fig. 6.5 (a)). In this scenario, there are no other data source as input. With the above
data as input, the inner cycle is executed iteratively 15 times and outer cycle only 9 times.
As the later findings show that the error inconsistency decreased very rapidly, so only
about 10 iterations are needed. In the speed reconstructionpart, the Equation6.12and
Equation6.13are employed.MARE (Mean Average Relative Error) is used to evaluate
the performance of the naive method (classic method) and TravRes as shown below:

MARE =
1

M ∗ N

M
∑

i

N
∑

j

|v̂(i, j) − v(i, j)|

v(i, j)
(6.26)
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where v̂(i, j) is the estimated speed in cell(i, j) andv(i, j) is the ground-truth speed.
Figure6.9and Fig.6.10compare the performances of the naive method (classic method)
and TravRes with different penetrations and different polling rates. In calculating MARE,
the speeds on some of cells failed to be estimated due to the limit of penetration, so only
the cells where there are reconstructed trajectories passing through were taken into ac-
count. The penetration is based on the number of probe vehicles passing by the most
upstream detector, that is about 28500 in number. This coverage approximately indicates
the percentage of reconstructed trajectories covering thewhole time-space regions based
on the case of 5% penetration and 60 seconds polling rate (Thecoverage is similar with
the case of 120 seconds polling rate). Both Fig.6.9and Fig.6.10show that the proposed
method TravRes outperforms the naive method (classic method) that takes weighted ave-
rage speed for estimation if multi trajectories are found inone cell. In addition, MARE
significantly decreases with the polling rate rise from 2 minto 30 seconds.

Table 6.2: MARE of speed estimation over the whole time-spaceregion by using Naive
and TravRes methods respectively.

Penetration Polling rate MARE with naive MARE with TravRes
10% 120sec 15.4% 7.4%
10% 60sec 9.1% 3.7%
10% 30sec 5.4% 2.7%
5% 120sec 16.8% 9.5%
5% 60sec 9.8% 3.9%
5% 30sec 5.7% 2.6%
2% 120sec 17.7% 12.3%
2% 60sec 11.4% 6.3%
2% 30sec 7.2% 3.1%

Table 6.3: MARE of speed estimation (speeds are lower than 50kmph) by using Naive
and TravRes methods respectively.

Penetration Polling rate MARE with naive MARE with TravRes
10% 120sec 38.9% 11.8%
10% 60sec 23.4% 7.0%
10% 30sec 13.8% 6.5%
5% 120sec 44% 17.3%
5% 60sec 24.9% 7.5%
5% 30sec 15% 6.6%
2% 120sec 50% 29%
2% 60sec 33.5% 14.2%
2% 30sec 20% 7.9%
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Figure 6.9: Global MAREs (%) in speed estimation by using thenaive method and
TravRes under different polling rates and penetration rates

case 1,2,3: penetration rate 10% with polling rate 120sec, 60sec and 30sec respectively;
case 4,5,6: penetration rate 5% with polling rate 120sec, 60sec and 30sec respectively;
case 7,8,9: penetration rate 2% with polling rate 120sec, 60sec and 30sec respectively.

Figure 6.10: For time-space region with speeds smaller than 50km/h, this figure shows
the MAREs (%) in speed estimation by using the naive method and TravRes under

different polling rates and pernetration rates
case 1,2,3: penetration rate 10% with polling rate 120sec, 60sec and 30sec respectively;
case 4,5,6: penetration rate 5% with polling rate 120sec, 60sec and 30sec respectively;
case 7,8,9: penetration rate 2% with polling rate 120sec, 60sec and 30sec respectively.
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Figure 6.11: (a) Coverage rate: the percentage of time-spacecells whose speeds can be
estimated among all time-space cells;

(b) Decrease and Convergence of MARE with the iterations in theouter cycles.

Figure 6.12: Comparison of estimated travel times with different methods

Graph (a) in Figure6.11 shows the coverage rate of travel time records with different
polling rates and penetration rates. It can be seen that whenthe penetration rate is more
than 3%, we can estimate the majority (90%) time-space cells. Graph (b) in Fig.6.11
shows an example of how fast the result converge with TravRes method. It can be seen
MARE of estimated speeds has already leveled after the 5th estimation.
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Also we can estimate travel times by sampling the reconstructed time-space speed plots.
As shown in Figure6.12, the red curve represents the estimated travel times by using
naive-method-based speed plots, and the dashed curve represents the estimated travel
times by using TravRes-based speed plots, and the bold green curve represents the ground-
truth travel times. They refers to travel times over this 9 kilometer road segment during
50th minute (6:50 a.m.) till 110th minute (7:50 a.m.). It is found that the travel times
from naive method (classic method) have a relative error of 8.6%, while the travel times
from TravRes have a relative error of only 1.2%. This shows that TravRes is able to give
much better travel time estimation.

In this validation, it is found that TravRes can significantlyimprove the accuracy of speed
estimation compared with the naive method (classic method). Combination with camera
data or loop data leads to better estimations. In experiments, it is also found that this
method is time-cost efficient. For processing data with 10% penetration and 60 seconds
polling rate for 5 hour durations, 10 times of outer cycles can be accomplished within 8.5
seconds. In other words, 21600 travel time records are processed within 8.5 seconds.

6.5 Conclusion and recommendations

This chapter proposed a new method to accurately reconstruct high-resolution time-space
speeds from floating car data (FCD). This new method called TravRes, does this by ite-
ratively reconstructing the (unobserved) probe vehicle trajectories between polling time
instants, until the resulting time-space speed map is as consistent as possible with all
probe vehicle reports. Like the method presented in the previous chapter, we can not gua-
rantee that the reconstructed trajectories will converge in this iterative processing. The
underlying rationale is simple: instead of assuming constant speeds between probe ve-
hicle reports (which we refer to as the naive method or classic method) and deriving a
time-space speed map by averaging these constant speeds, TravRes assumes and approxi-
mates probe vehicle trajectories which are consistent withall other probe vehicle reports.
One of the main assumptions made is that speed is constant in (arbitrarily chosen) time-
space regions. Compared to the naive method (classic method), the new method almost
doubles the estimation accuracy, particularly in low-speed regions where such an increa-
sed accuracy is most valuable.

It is found that the polling interval (i.e. the time intervalbetween probe vehicle reports)
significantly influences estimation accuracy, and that polling intervals of 60sec can lead
to twice better accuracy than 120sec polling intervals. It is, however, important to note
that one should choose the size of the space-time grid cells in accordance with the polling
interval, that is, each time-space cell had better cover a time period equal or larger than
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the polling interval. The probe vehicle penetration rate (average percentage of equipped
vehicles among the all vehicles) largely determines the spatio-temporal coverage, that is,
the amount of time-space cells in which a speed can be estimated. From our results it
appears that 3%-4% penetration can lead to both high coverage and accurate estimation.

By now, we already tackled the issue how to fuse travel times (low time-resolution travel
time data in particular) by using data-data consistency approach. With this approach, very
few assumptions are needed, but considerably improved speed estimations are achieved.
However, there are still a lot left to be done. In addition to low resolution travel time
data, there are also low-resolution positioning data whichare widely available in wireless
networks as mentioned in Chapter2. Considering their wide availability, fusing these data
will also be practical relevant. The next chapter will give atheoretical framework to fuse
low-resolution positioning data. And this framework is still based on the idea of data-data
consistency.



Chapter 7

Speed estimation by fusing
low-resolution positioning data

Figure 7.1: Illustration of the consistency rule in this chapter

Chapter5 and6 are concerned with low-resolution travel time data (low polling rates).
This chapter will deal with another type of data, data which may not only have low time-
resolution but also have quite low position-resolution. Such data cannot pinpoint the
accurate positions of vehicles but can only give some location-specific information when
and where the vehicles are located at the segment or cell level. For this reason, we will

101
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refer to such data as topological position data or TP data.

In contrast to high-resolution positioning data, TP data cannot provide the distance com-
ponent that is necessary for traffic speed estimation. However, considering the wide avai-
lability of TP data in the existing telecommunications network, there is still hope and
benefits to make use of the data for traffic state estimation. The proposed method in
this chapter is capable of fusing low resolution positioning data with other data sources,
leading to more accurate and reliable speed estimation of relatively low bias.

This method is also based on data-data consistency approach. Instead of usingspeed ∗
time = distance law, we usedensity ∗ speed = flow under the assumption of homo-
geneous traffic in each discretized time-space cell. Two types of information are taken
as input. One is prior distribution of traffic speeds from e.g. historical loop data, and
the other is TP data, which actually contain information concerning flow and density.
Bayes rule is used to update the prior speed distribution whenTP data is given, such that
posterior speed (distribution) with more reliability is given.

7.1 Introduction

We first look at high-resolution positioning data as GPS data. The emerging use of global
positioning systems in mobile phones or as part of in-vehicle navigation systems makes
it feasible to derive real-time traffic state information onthe basis of these data. Since
GPS-equipped vehicles or devices provide their geographicpositions with time stamps,
one can derive a moving vehicle’s mean speed by dividing vehicle distance traveled by
travel time. With more and more high-resolution probe vehicle data becoming available,
accurate and reliable traffic state estimation can likely beachieved.

However, before state estimation from a very large sample size of GPS-based probe ve-
hicles is fully achieved, some other data sources are needed. Lower resolution positioning
data via cellular communications networks can be one of them. Therefore, the motivation
of this chapter is to examine the potential benefits of fusingthose low resolution data as
extra information to achieve better traffic speed estimation.

7.1.1 Cellular networks and topology positioning data

Cellular phone location data is considered to be a low-resolution location data source.
Cellular phones operate in a network made up of multiple radiocells, as shown in Figure
7.2. In each cell, a base station provides the communication service for phones. Base
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stations are all interconnected so that an on-call phone canmove from one cell to another
without losing the connection. All cells are grouped into particular location areas (LA).
Normally a cell hexagon ranges in size between 200 and 1000 meters in urban areas, and
location areas range from 1 kilometer to several kilometersin size.

Previous research on wireless-network-based traffic monitoring and estimation
(Smith et al.(2001)) has focused on positioning techniques (Smith (2007)) and the im-
pact of probe penetration on the quality of these positioning techniques. Major posi-
tioning techniques include angle-of-arrival positioning, time-of-arrival positioning, time-
difference-of-arrival positioning (Roos et al.(2002)), and the handoff approach (Zhao
(2000)). These techniques obtain the geographical positions of probe vehicles so that
the travel distance is available for traffic speed estimation. Previous field operational tests
(Thiessenhusen et al.(2005)) assessed the accuracy of estimation with different methods
and different probe penetration. In previous research, cellular data has been treated simi-
larly to positioning data obtained from GPS.

This chapter describes a mechanism for tracking cellular phones at the cell level. Cell
level data has low positioning accuracy, ranging between 100 meters and one kilometer,
depending on the size of cell, not appropriate for travel distance estimation.

Figure 7.2: Example cellular network.

Technically, TP data are location data which don’t provide exact geographical positions
but point to a location area-a cell or a road segment. When a mobile phone in a vehicle
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sends beacon signals periodically, the cellular networks are able to trace the phone and
record the cell where it is located. Considering that beacon signal transmission is one
way and occurs at a frequency on the order of minutes, the communication is relatively
simple and low cost. In addition, TP data are more widely available in terms of time and
space, since devices possibly providing TP data (e.g. mobile phones, laptops, iPhones,
etc) are being widely used in communication networks and arebecoming increasingly
popular. In sum, the simplicity and wide availability of TP data may have potential for
traffic estimation in large networks.

7.1.2 Challenge and objectives

Figure 7.3: Illustration of location displacement of vehicles at different levels of
resolution.

Before TP data can be used for traffic monitoring, a new method is needed for processing
the data.

In order to satisfy the real-life application, below we listthe objectives which this method
is supposed to achieve.

• (a) Usage of TP data. For traffic monitoring with TP data, probe vehicle locations
are grouped only according to their road segment or cell. As aresult, the accuracy
of positioning is only at the segment or cell level. So TP datacan’t be treated
in the same way that GPS data are normally handled. In Figure7.3, the vehicle
could have provided accurate traffic estimation if it was known that it traversed
1 kilometer during the time interval between t1 and t2. But with segment-level
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accuracy, the vehicle can only report that it traversed the cell boundary and entered
the next cell during this time period. So the proposed methodmust be able to handle
this inaccuracy issue.

• (b) Error tolerance. The cell boundary is uncertain and varies with the signal po-
wer and signal distribution of the cellular network. Becausethe size of the cell is
more or less uncertain, incorrect pre-matching of road segments may occur. Due
to inaccurate positioning, probe vehicles may not be snapped into the correct cell
especially when the vehicles are close to the boundaries. Sothe proposed method
should be tolerant of errors and uncertainties.

• (c) Fusion with other data. TP data should not be the only datasource for traffic
estimation. It would be preferable for TP data to serve as added information, fused
with other high-resolution and more reliable data sources,e.g. GPS data. The
proposed method should include data fusion using low-resolution positioning data
and high-resolution ones .

• (d) Magnitude of error in estimation. Traffic estimation is an initial step in the
traffic management process. The estimated traffic states will be further used for e.g.
travel time prediction. Traffic prediction not only needs the current state estimation
but also needs the confidence on estimated results. For this purpose, the proposed
method should also provide an error estimate, such as the variance.

• (e) Extension to network-wide estimation. A cell may not only cover a simple road
segment but a portion of the road network. So the method should be easily extended
to applications on network-wide traffic estimation with some simple modifications.

So we want the proposed method to possess several propertieswhich together help to
achieve the five objectives described above. The methodology and validation are presen-
ted next, followed by some conclusions and suggestions for further research.

7.2 Methodology

In the first place, we present the assumptions and physical laws used in this method.
The main assumption is that the traffic is homogeneous and stationary in each time-space
cell. TP data are assumed to be correct and reliable despite of the low-resolution. The
prior distribution of speeds is assumed to be known. The physical law that is used is
density = flow/speed.

This section is sub-divided in four parts:
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• The first section uses an analogy to show the fundamental ideabehind the method.

• The second section describes a stochastic process on vehicle counting which helps
to set up a mathematical formula to fuse TP data with prior speed information from
other data sources e.g. historical GPS data.

• The third section proposes an improved formula. It considers upstream traffic flow
and better estimation of speed is expected.

• The last section uses order-statistics to analyze the theoretic variance of the speed
estimation using this method.

7.2.1 Prototype and basic idea

Figure 7.4: Model comparison of water container and roadway.

The initial inspiration for this method comes from a water-container prototype, in a similar
fashion as first order traffic flow theory. Suppose there is a container with 1kg water,and
after a valve is opened, the out-flowing rate is constantly 10g/seconds. As a result, it takes
100 seconds to drain the container after this valve is opened. Even when the liquid has
non-uniform density in the container, the total draining time is still 100 seconds. Similarly,
let us take traffic as water and a segment of roadway as the container. Suppose that there
areN vehicles on the road segment of lengthD, and suppose that the upstream traffic is
held so that there is no traffic flowing into the downstream segment (see Figure7.4). If
it takes time∆t to ‘drain’ all the traffic on this segment, the space mean speed can be
estimated withv ≈ D/∆t. Furthermore, if it is known that onlyM vehicles (out-flowing
volume) enter the downstream segment, the speed can be estimated as

v ≈
D × M

∆t × N
(7.1)

Equation7.1may still hold when vehicles are not uniformly distributed on the road seg-
ment, because the ratioM/N simply indicates the flow rate and largely determines the
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traffic speed. For example,when congestion occurs, the upstream traffic is in free-flow and
the downstream is in congestion. In this case, the ratioM/N becomes smaller and there-
fore the ‘effective’ speed on the whole segment will drop until the speed is approximately
proportional to flow rateM/N .

However, if there is no way to measure the total number of vehicles and the outflow,
this estimation would not be possible. As an alternative solution (see Figure7.5), some
indicators e.g. number number of particles or isotopes can be put in the container. These
particles are assumed to be uniformly distributed in the water. With this addition, we
need only measure the total amount of the indicators and their outflow amount so that the
approximate estimate of the drop rate in the water level can be measured.

Figure 7.5: Illustration of all vehicles moving and probe vehicles moving

For traffic speed estimation, probe vehicles with segment level accuracy positioning can
serve as such indicators. Suppose that there aren probe vehicles at timet and thatm
probe vehicles move to the next segment byt + ∆t (Refer to Figure7.5). The pair(n,m)
then becomes characteristic of the space mean speed on this segment during this time
period.

Analogously to the above, this estimation reads

v ≈
D ∗ m

∆t ∗ n
(7.2)

The question is, how good this estimate is, i.e., how much confidence we can have in this
estimate. For example, the pairs(n,m) = (100, 50) and(n,m) = (10, 5) result in the
same estimation, but the latter would be trusted less. Things become more complicated
with prior knowledge of traffic speed (e.g. the speed distribution based on historical GPS
data). In the next section, a more accurate estimation method will be given with (and
without) prior knowledge of traffic speed combined.
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7.2.2 Probe vehicle count process and speed re-estimation

This section will describe a mathematical formula in terms of v̂ = f(v,m, n) as shown
in Equation7.11, wherev depicts prior speed probabilistic information from another data
source,m andn are the information from TP data, andv̂ is the posterior speed estimation.
As a result, this formula may serve in the data fusion of TP data and other data.

First, let us define a count process{Ψ(x), x > 0}, where x is the number of the counted
vehicles (also traffic volume) andΨ(x) is the number of probe vehicles whenx vehicles
are counted. (Refer to Figure7.6).

Figure 7.6: Illustration of a count process{Ψ(x), x > 0}

It is found thatΨ(x) has the following four attributes:

(1) Ψ(0) = 0 : No vehicle, no probe vehicles.

(2) Ψ(x + y) − Ψ(x) is independent ofΨ(x) for anyx ≥ 0, y > 0 : Whether a vehicle
is a probe vehicle has nothing to do with other vehicles.

(3) P (Ψ(x + h) − Ψ(x) = 1) = λh + o(h) for smallh, whereλ is the proportionality
factor associated with the percentage of probe vehicles; Itis worth noting that this
percentage is unknown.

(4) P (Ψ(x+h)−Ψ(x) > 2) = o(h): One vehicle implicates at most one probe vehicle.

As a result,{Ψ(x), x > 0} is a Poisson process according to its definition (Medhi(2002)).
It is worth to mention thatΨ(x) has no business with the traffic condition e.g. congestion
or free-flow. Ψ(x) is a counting process, which shows how many probe vehicles are
counted when counting vehicles of all kinds. For example, ifall the vehicle are probe
vehicles, it will readΨ(x) = x. Taking another example, if no probe vehicle is found in
counting the first10 vehicles, we haveΨ(10) = 0.
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To fuse the TP data with prior knowledge of the traffic speed distributionP (v), a Bayesian
rule will be employed to (re)-estimate the traffic speed withthe pair(n,m). As shown in
Figure7.5, according to the Bayesian rule, we have

P (v|Ψ(N) = n, Ψ(M) = m) ∝

P (Ψ(M) = m|Ψ(N) = n, v) ∗ P (v|Ψ(N) = n) (7.3)

where it is found thatP (v|Ψ(N) = n) = P (v) becauseΨ(N) is independent ofv.
It is straightforward to normalize it and get the exact probability. However,P (Ψ(M) =
m|Ψ(N) = n, v) is not easily deduced, so let us only focus onP (Ψ(M) = m|Ψ(N) = n)
. In view of the conclusion that{Ψ(x), x > 0} is a Poisson process, it can be deduced
that

P (Ψ(M) = m|Ψ(N) = n) (7.4)

= P (Ψ(M) = m, Ψ(N) = n)/P (Ψ(N) = n)

= P (Ψ(M) = m, Ψ(N) − Ψ(M) = n − m)/P (Ψ(N) = n)

= P (Ψ(M) = m) ∗ P (Ψ(N) − Ψ(M) = n − m)/P (Ψ(N) = n)

=
(λM)me−λ∗M

m!
∗

(λ(N − M))n−me−λ∗(N−M)

(n − m)!
∗

n!

(λN)ne−λ∗N

=
n!

m! ∗ (n − m)!

(

M

N

)m(

1 −
M

N

)n−m

Thus,P (Ψ(M) = m|Ψ(N) = n) becomes :

P (Ψ(M) = m|Ψ(N) = n) =
n!

m! ∗ (n − m)!

(

M

N

)m(

1 −
M

N

)n−m

(7.5)

It can be found thatP (Ψ(M) = m|Ψ(N) = n) already contained the speed information
v as prior information. So when we assumev ≈ D ∗ M/∆t ∗ N , we can rewrite the
Equation7.5and get:

P (Ψ(M) = m|Ψ(N) = n) ≈
n!

m! ∗ (n − m)!

(

v∆t

D

)m(

1 −
v∆t

D

)n−m

(7.6)

It is found that Equation7.6 includes an unknown parameterv. This unknown parameter
is actually a random variable that needs to be estimated, which implicates that it is a
given condition in this equation. So we can explicate this condition by further rewriting
Equation??and get:
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P (Ψ(M) = m|Ψ(N) = n, v) ≈
n!

m! ∗ (n − m)!

(

v∆t

D

)m(

1 −
v∆t

D

)n−m

(7.7)

Putting Equation7.7andP (v|Ψ(N) = n) = P (v) into Equation7.3, we finally obtain:

P (v|Ψ(N) = n, Ψ(M) = m) ∝
n!

m! ∗ (n − m)!

(

v∆t

D

)m(

1 −
v∆t

D

)n−m

P (v) (7.8)

wherem, n , v , P (v) andD are all known as mentioned above, while unknownsM , N
andλ are not needed. An important benefit from this formula is thatthe percentage of
probe vehicles is not needed.

For the estimate of traffic speed with prior knowledge of the speed distribution, we have

v̂ = E(v|Ψ(N) = n, Ψ(M) = m)

=
1

C

∫

n!

m! ∗ (n − m)!

(

v∆t

D

)m(

1 −
v∆t

D

)n−m

P (v)vdv (7.9)

where

C =

∫

n!

m! ∗ (n − m)!

(

v∆t

D

)m(

1 −
v∆t

D

)n−m

P (v)dv (7.10)

is a normalization factor . In particular, if there is no prior knowledge of the actual speed
distribution, we simply assumeP (v) has a uniform distribution with regard tov. It is
worth noting that the method is valid under the restriction

v∆t < D (7.11)

This restriction implies that some of vehicles don’t move tothe next segment after one
time interval.

7.2.3 Physical explanation and improved re-estimation

This section will present an improved formula shown in Equation 7.17 after giving a
physical explanation. In Equation7.8, v∆t/D is the outflowing traffic (in terms of ve-
hicle number) proportion and1 − v∆t/D is the proportion of traffic that remains on this
segment. Since speedv is the variable to be estimated, the two proportions are actually
unknown. Thus, the pair(n,m) is needed to weigh the two proportions with regard to
v. For a fixedv , a larger means a larger outflow proportion, so it will be morehea-
vily weighted. Furthermore, when considering the number ofvehicles from the upstream
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Figure 7.7: Physical explanation of Equation7.8.

Figure 7.8: Probe vehicle in inflowing and outflowing traffic.

segment, more information can be added for estimation (Figure 7.8). We expect more
accurate and reliable speed estimation can be achieved. Similarly, we consider three pro-
portions: the outflow traffic proportion, the remaining traffic proportion and the inflow
traffic proportion which are

(

v∆t
D+v∆t

)

,
(

D−v∆t
D+v∆t

)

and
(

D
D+v∆t

)

respectively. The corres-
ponding weighting factors arem , n − m and l − n . Analogously to the derivation of
Equations7.5, 7.7, 7.8, we can now write:

P (Ψ(M) = m, Ψ(N) = n|Ψ(L) = l) (7.12)

=
P (Ψ(M) = m, Ψ(N) = n, Ψ(L) = l)

P (Ψ(L) = l)

=
P (Ψ(M) = m, Ψ(N) − Ψ(M) = n − m, Ψ(L) − Ψ(N) = l − n)

P (Ψ(L) = l)

=
P (Ψ(M) = m)P (Ψ(N) − Ψ(M) = n − m)P (Ψ(L) − Ψ(N) = l − n)

P (Ψ(L) = l)

=
(λM)me−λ∗M

m!

(λ(N − M))n−me−λ∗(N−M)

(n − m)!
∗

(λ(L − N))n−me−λ∗(L−N)

(l − n)!

l!

(λL)le−λ∗L

=
l!

m! ∗ (n − m)! ∗ (l − n)!

(

M

L

)m(
N − M

L

)n−m(

1 −
N

L

)l−n
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Moreover, we have the below equations as approximation:

M

L
=

v∆t

D + v∆t
(7.13)

N − M

L
=

D − v∆t

D + v∆t
(7.14)

N

L
=

D

D + v∆t
(7.15)

and

P (v|Ψ(N) = n, Ψ(M) = m, Ψ(L) = l) ∝

P (Ψ(M) = m, Ψ(N) = n|Ψ(L) = l, v) ∗ P (v|Ψ(N) = n) (7.16)

Similar to Equation7.11, the estimation then becomes:

v̂ = E(v|n,m, l) =
1

C

l!

m!(n − m)!(l − n)!

∗

∫ (

v∆t

D + v∆t

)m(
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D + v∆t
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D
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where

C =
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m!(n − m)!(l − n)!

∗

∫ (

v∆t

D + v∆t

)m(
D − v∆t

D + v∆t

)n−m(
D

D + v∆t

)l−n

P (v)dv (7.18)

7.2.4 Analysis of variance

This section presents an approximate variance analysis of the estimation results. Variance
var(v̂) is a critical indicator of estimation quality, which will help practitioners to make
an optimal/economical configuration of number of probe vehicles and sampling time in-
terval, and will also contribute to travel time prediction and traffic management since the
variance is known.

Ideally var(v̂) should be used to estimate the variance of speed estimation.Instead, we
use a proxy, namelyvar(m/n), which provides us with an analytical solution. According
to the container-draining model, we have speedv ≈ D ∗ M/∆t ∗ N , in which speed
is determined by the ratioM/N . Further,m is the number of probe vehicles from M
vehicles andn is from N , therefore the ratiom/n can indicate the ratioM/N and speed
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v. Althoughvar(m/n) is a rough and approximate indicator ofvar(v̂), it still enables us
to give some general analysis and results, for example, ‘which parameters have what kind
of effect on the variance’.

Seen as in Figure7.8 and Equation7.7, the proportionm/n plays a critical role in this
method. It will lead to an accurate estimation ifm/n is almost equal toM/N . However,
all probe vehicles are uniformly distributed, resulting inan inconsistency betweenm/n
and M/N . This analysis begins with a brief introduction of a typicalorder statistic.
Suppose samples follow a uniform distribution over the range [0, 1], and the samples are
sorted in increasing order asU(1), U(2)...U(m)...U(n), wherem is thep(th) sample quantile,
that ism = [n∗p]. With the knowledge of order statistics,U(m) is asymptotically normally
distributed, that is

U(m) ∼ AN(p,
p(1 − p)

n
) (7.19)

In our method, we assume all vehicles are uniformly distributed on the road, so it makes
sense to letU(m) = m/n andp = M/N = v∆t/D. As a result, we have

m

n
∼ AN(

v∆t

D
,
v∆t(D − v∆t)

D2n
) (7.20)

It can be further transformed into

m

n
∗

D

∆t
∼ AN(v,

v(D − v∆t)

∆tn
) (7.21)

If we let

σ∗ =

√

v(D − v∆t)

∆tn
(7.22)

then σ∗ can be approximately taken as the standard deviation of the absolute error in
speed estimation. This expression with respect toσ∗ shows that the variance of the error
in speed estimation can be diminished by making∆t as large as possible or by putting
more probe vehicles in operation.

If the input flow of probe vehicles is counted as shown in Figure7.8, the information used
for estimation will double. Assuming that input flow and output flow play identical and
independent roles in this estimation, both sources of information will upgrade Equation
7.22into:

σ∗∗ =

√

v(D − v∆t)

2∆tn
(7.23)

whereσ∗∗ is the standard deviation when taking into account both inflow and outflow.
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7.3 Validation

This section illustrates how the method accomplishes the five objectives promised in the
introduction.

(1) First, the validation of the proposed approach will be shown by means of an expe-
riment with synthetic data generated using a microscopic simulation program. In
this section, the accomplishment of the objective (a) and (c) is shown.

(2) Following that, the effect of the number of probe vehicles on estimation accuracy
is analyzed, including an estimate of an economically optimal percentage of probe
vehicles. In this section, the accomplishment of objective(d) is shown.

(3) Third, the impact of different prior distribution formson the posterior distribution
is given, in which the accomplishment of objective (b) is shown.

(4) The final section concerns the network-wide traffic estimation by an update ap-
proach so that Equation7.17fits in network cases, in which the accomplishment of
objective (e) is shown

7.3.1 Validation by synthetic data

The simulation environment used for data generation is VISSIM 4.20. We will show the
performance of this algorithm in a typical scenario, in which the ground-truth speeds are
perturbed with both non-uniformly structural deviations and considerable random errors,
leading to a very poor observation of speeds. When considering the TP data, estimated
speeds are obtained by this method. The contrast between ground-truth speeds, observed
and estimated (corrected) is shown.

Using VISSIM a 35.25 km section of freeway was coded (Figure7.9), made up of 15
segments each 2.35 km long. At the end of this freeway, a speedlimit control was esta-
blished, resulting in a simulated incident. Every 1 minute,probe vehicles (10% of total
vehicles) reported which segments they were positioned on.So we haveD = 2.35km and
time interval∆t = 1 minute. VISSIM provides the exact position of each vehicle,but
we reduced the position accuracy to the segment level. Sincethe segment boundaries are
pre-determined, we know how many probe vehicles remain on a segment and how many
flow in and out. That way, the information(m, l, n) is known on the specific segment.

In addition, we assumed observed speeds with non-uniformlystructural deviations up to
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Figure 7.9: The layout of road infrastructure, segment and scenario settings in VISSIM.

80% plus random errors based with regard to ground-truth speeds:

Structural Deviation rate(% )=

(

0.73 − 1.9

110
∗ v + 1.85

)

∗ 100% (7.24)

Random Error rate(% )= N(0, 0.132) ∗ 100% (7.25)

wherev was a ground-truth speed andN(0, 0.132) was a normal distribution with mean 0
and standard deviation 0.13. This way, the observed speedv− was fabricated by applying
the structural deviation rate and random error rate to the ground truth speed. In particular,
the structural deviation rate was primarily dependent on actual speeds. When speeds were
higher than 80 km/h, they were underestimated. When lower than 80km/h, they were
overestimated. Then, a uniform probability distribution with regard tov was assumed to
be

P (v) =
1

1.5v− − 0.5v−
(7.26)

whereP (∗) is a probability density function. With more empirical analysis, one may
assume thatv follows other possible distributions such as normal or Poisson or with more
accurate parameters. For example, GPS data provide accurate traffic speed information
but they may have only sparse time-space coverage. We may make some inferences on
these GPS data, deducing the most possible prior speed distribution.

Now that we have the information concerning(m, l, n), prior speed distributionP (v),
segment lengthD and sampling time interval∆t, we apply Equation7.17, leading to
the posterior speed estimation on a specific road segment. When employing the above
mentioned method on each segment, the space mean speeds on all segments of the whole
corridor can be estimated.

Figure 7.10(b) shows the perturbed speed contour plots with bias and randomerrors.
After applying this method, the bias is largely removed and many details become visible,
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e.g. more detailed color-gradation. The contrast between Figure7.10(a), Figure7.10(b)
and Figure7.10(c)shows the good performance of this method in correcting errors. The
average relative-error on the entire time space region sharply dropped from 41% to 10.5%.

(a) Ground truth time-space speed (kmph) contour plots.

(b) speed contour plot based on ‘observed’ speeds. (c) Estimated speeds after using TP data.

Figure 7.10: Time-space speed plot: comparison between ground-truth, observed and
corrected speeds after applying this method
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In Figure7.11(a)and Figure7.11(b), corrections of structural deviation are also noticeable
regardless of the overestimation speed or underestimation. The random errors are also
essentially diminished. After correcting the bias and diminishing the random errors, it
would be possible to use other filtering techniques, e.g. moving average, Butterworth
filtering or Kalman filtering to further improve the estimation results.

7.3.2 Impact of penetration of probe vehicles

Next, the analysis of the pairs(n,m) is performed withD = 2.35km, which partially
validates the error estimation Equations7.22and7.23and further leads to an estimate of
the economically optimal percentage of probe vehicles.

In this analysis, the prior probability distribution of speed is assumed to be uniform, ran-
ging from 0 through 141 (kmph), and the proportional rate ofn overm is fixed at2 : 1.
With an increasing number of probes, the posterior probability distribution evolves stea-
dily (Refer to Figure7.12(a)), resulting in smaller standard deviations. So the pair(n,m)
plays a critical role in the accuracy and reliability of the posterior speed estimation.

In order to estimate how the number of probes affects the accuracy, an indicator needs
to be defined. Since the posterior distributions approximately follow normal, pseudo
standard deviations may be defined byσ as shown in Figure7.12(b).

Although this definedσ is not an actual standard deviation, it is able to indicate a standard
deviation. With this pseudo deviation, the relationship betweenσ andm under several
n/m proportions is plotted in Figure7.13(a). Under thelog10 scale, it is foundσ ∝ mα

approximately, whereα ≈ −0.5. We can see this relationship is fixed under different
n/m proportions (Refer to the parallel lines in Figure7.13(a)). Thus, for a fixed ratio
n/m, we haven ∝ n and thereforeσ ∝ nα can be approximately established.

In addition, some interesting results can be found in Figure7.13(a). For a fixedm, when
n = 1.03m or n = 8m, σ is small. However, when1.03m < n < 8m, σ is relatively
larger. Below is an explanation. Whenn/m becomes larger with fixedm, the smaller
proportion of out-flowing vehicles can observed. So the error should have been larger due
to smaller proportions of out-flowing observation. In the meantime, whenn/m becomes
larger with fixedm, the total observationsn will be larger. With more observations, the
estimation error should drop. Forced by the both factors, weget the results as shown in
Figure7.13(b). In this figure, the theoretical curve is based on Equation7.22. The ‘actual’
and theoretical curves do not overlap because the actual curve only uses the approximate
σ as shown in Graph (B) in Figure7.12.

Being an application, considering the cost of probe equipment, the above conclusion is
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(a)

(b)

Figure 7.11: (a) Speed time series plots on segment 2. Blue curve represents
ground-truth speeds.

(b) Speed time series plots on segment 6. Blue curve represents ground-truth speeds.
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(a)

(b)

Figure 7.12: (A)The influence of number of probe vehicles on posterior speed probability
distribution under various (n, m) pairs.

(B) Illustration of the defined deviationσ
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(a)

(b)

Figure 7.13: (a) The relation between the vehicle number andσ.
(b) The relation betweenσ and the ration/m with m=10. The theoretical line is based

on Equation7.22.
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beneficial for defining an optimal percentage of probe vehicles. For a general example,
whenn low-resolution positioning probe vehicles have already been available, the added
benefit from installation of one additional probe is diminished asB(n) = K[nα−(n+1)α]
, K is the multiplier factor for the trade off between diminished error and benefits in terms
of money. IfB(n) is smaller than the unit cost, it is better to stop adding moreprobes. In
this way, the optimal percentage of probe vehicles can be determined.

7.3.3 Impacts of different prior speed probability distributions

In traffic operations, it is difficult to estimate the form of the prior speed distribution,
which may change with time or circumstances.

Here we assume three prior distributions of substantially different profiles-normal, trian-
gular, and uniform (Refer to Figure7.14(a)) . Given the fixed pair(n,m) = (30, 15) and
D = 2.35km, the corresponding posterior distributions all look like normal (see Figure
7.14(b)). Table7.1shows estimates of the parameters of a normal distribution for each of
the three of the three prior distributions.

Table 7.1: Given the different prior distributions, the posterior distributions fit into
Normal distributions with Standard Error.

Prior distributions Uniform Triangle Normal
µ̂ 71.2 ± 0.1 71.0 ± 0.1 70.7 ± 0.1
σ̂ 13.0 ± 0.1 11.8 ± 0.1 11.0 ± 0.1

This result can be understood by looking at the expression

n!

m! ∗ (n − m)!

(

v∆t

D

)m(

1 −
v∆t

D

)n−m

(7.27)

which serves an important role in our method. This is exactlythe expression of a bino-
mial distribution, which approximates to normal distribution with n approaching infinity.
However, it is worth to mention that the posterior distribution may not exactly be normal
or asymptotically normal due to the appendedP (v).

It can be seen that this result does not higly rely on the typesof prior distributions. As
mentioned above, the boundary of a cell is uncertain to some extent, which boils down
to the uncertainty in prior information. This method is ableto tackle the uncertainty for
it is robust to prior information, always keeping an invariant distribution profile. When
a vehicle is close to the boundary, it is hard to snap it to the correct cell. But it can be
snapped into the correct cell with some probability. Since the method is embedded in a
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framework of probability with invariant profiles, it becomes tolerant of the probabilistic
errors.

7.3.4 Network-wide traffic speed estimation

For network-wide traffic estimation using TP data, the abovemethod can be extended.
As shown in Figure7.15, a hypothetical road network is circled. Within this area, probe
vehicles flow in and out, while others remain inside during∆t, leading tol, m, n which
are required in Equation7.17. As for the road lengthD, an equivalent value is needed
for the network case. Considering the O-D pairs and corresponding traffic flow, such
an equivalence is given asD =

∑

i j

Nij ∗ Dij/
∑

i j

Nij , whereNij is the traffic flow on

routei− > j , andDij is the length of this route. With an equivalentD available, Equation
7.17 can be used to estimate the average speed on the road network.As a result, this
method is applicable for the network, particularly for urban network cases.

7.4 Conclusions and recommendations

In this chapter, we have proposed an algorithm for using segment-level topological po-
sitioning (TP) data for traffic speed estimation. In contrast with high accuracy position
data from GPS, topological position data provide only lowerresolution segment-level ve-
hicle location information. For this reason, using TP data is not straight-forward like GPS
data. However, as shown in this chapter TP data can be a valuable additional data source
for traffic state estimation since they are widely availablevia the existing communication
networks. Based on the proposed algorithm, TP data can be usedalone or with other data
sources, leading to more flexible traffic applications.

This algorithm corrects strongly biased prior speed measurements and reduces the impact
of random errors. To run the algorithm, the percentage of probe vehicles is not required to
be known, but a higher percentage contributes to the accuracy and reliability based on the
findingσ ≈ nα (α ≈ −0.5). The algorithm has sufficient robustness to make the posterior
distributions follow approximately normal under different profiles of prior distributions.
Since the method is conceptually simple, it can be extended to fit in network-wide traffic
speed estimation, which is the next step in this research. Itis also notable that there
are some technical barriers to be overcome when it comes to practical operations. For
example, the vehicles/cell-phones that are not traveling on the road must be identified.

By now, we have proposed three algorithms (methods) to fuse loop speeds and floating
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(a)

(b)

Figure 7.14: The influence of the forms of probability distribution. (a) Prior speed
probability distribution ; (b) Posterior speed probability distribution.



124 7 Speed estimation by fusing low-resolution positioning data

Figure 7.15: Road network and throughput of probe vehicles.

car data including travel times captured by cameras. Chapter5 and6 focus on the data
which have low-resolution in time horizon. This chapter focused on the floating car data
which shows the low-resolution in positioning. The output from these methods are speeds.
But there is another type of very important information whichhas not been fused in our
methods. This type of information is traffic flow by loop detectors. The next chapter
will add the ingredient of flow observed at cross-sections and fuse it with loop speeds
and travel times. As a result, the output not only contains the speeds but also the density,
which greatly improves the applicability of the method to for instance short-term traffic
predictions using traffic flow models.



Chapter 8

An integrated algorithm for fusing
travel times, local speed and flow

Figure 8.1: Illustration of Data-data consistency in this chapter

The previous chapters5, 6 and 7 mainly focus on the estimation of traffic speeds by
fusing local speeds (e.g. loop speeds) and AVI data (e.g. FCD). However, many forms of

125
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detectors such as loop detectors may also provide traffic flow. Further more, the estimation
of traffic density is also important in traffic management andoperation. This chapter
proposes an algorithm (method) to fuse loop speeds, loop flowand travel times from AVI
system. This algorithm is able to provide estimates of both speeds and density.

The algorithm uses the trajectory reconstruction technique which has been presented
in Chapter5. Then it uses loop flow to estimate traffic density on each roadseg-
ment. This algorithm is still based on data-data consistency approach. The major as-
sumption is homogeneous traffic in each time-space cell, under which the physics law
speed ∗ time = distance anddensity ∗ speed = flow can be simply used. Figure8.1
shows this consistency approach in this chapter.

Table 8.1: Symbol list

Lj Length of road segmentj

t
(k)
j Time moment when probe vehiclek enters road segmentj

t̂
(k)
j Estimated time moment when probe vehiclek enters road

segmentj

tt
(k)
j Travel time of probe vehiclek on road segmentj

tt̂
(k)
j Estimated travel time of probe vehiclek on road segmentj

tt̂(k)(i, j) Estimated duration of vehiclek dwelling in cell(i, j)
ŝ(k)(i, j) Estimated traveled distance of vehiclek in cell (i, j)
q̂−(i, j) Measured flow in cell(i, j) by loop detectors.
v̂−(i, j) Measured (biased) speed in cell(i, j) by loop detectors.
v̂(k)(i, j) ‘Measured’ speed in cell(i, j) by trajectoryk. Similarly for

densityρ̂(k)(i, j) and flowq̂(k)(i, j)
v̂(i, j) The final estimated speed in cell(i, j) by using travel times,

speed and flow. Similarly for densitŷρ(i, j) and flowq̂(i, j)

8.1 Introduction

8.1.1 Basic relationships between traffic variables

Let’s recall the characteristics of traffic data and traffic flow operations which have been
been presented in Chapter3. There are three major variables in macroscopic traffic. They
are density (ρ), speed (v) and flow (q). The evolution of these traffic states can be com-
pactly and efficiently visualized by means of time-space contour plots. These plots are
discrete representations of traffic states by using discretized time-space cells and color
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(e.g. Figure8.8). This way, the traffic states at the given time and location can be simply
shown. In each cell, the traffic is assumed to be homogeneous and stationary. Accor-
ding to Edie’s definition (Edie(1965)), these three traffic variables have such relationship
between one another as shown in the below equation:

q = ρv (8.1)

whereq, ρ andv are all time-space mean quantities.

In addition, there is a physics law in macroscopic traffic, called Vehicle Conservation Law:
“the change in vehicle number on a road segment equals to the net difference between
inflowing vehicle number and outflowing vehicle number”. It reads

ρ(i, j) = ρ(i − 1, j) +
∆t

Lj

(q(i, j − 1) − q(i, j)) (8.2)

wherei = 1, 2, 3... represents discrete time,j indicates the location,Lj is the length of
the road segmentj and∆t is the span of one discrete time.

Figure 8.2: Time-space contour plot and its functions
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Figure 8.3: The accumulated traffic counts from loop detectors

8.1.2 Impact of traffic flow data

The most common data available for traffic state estimation come from (dual) loop de-
tectors. As we already mentioned, loop speeds may probably be biased. This bias is si-
gnificant, specifically under congested (low-speed) conditions has been demonstrated for
example byTreiber and Helbing(2002) for estimating travel times (errors of over 30%),
and byKnoop et al.(2007) for estimating densities, where the resulting errors can mount
up to over 100%. It is true particularly for the data collection system in the Netherlands.
In the previous chapters, we put a lot of effort on local speedmeasurements. Now we
push forward and put another common data into account.

Apart from speed measurements, loop detectors and other forms of detectors may be able
to count the number of vehicles that pass a location during a certain interval. These
counts lead to estimates of flowq, the number of vehicles passing per unit time. Theo-
retically, the accumulated vehicle counts may tell travel time and vehicle density (or ve-
hicle number) on a closed road section between two consecutive loop detectors as shown
in Figure8.3. In this figure,Na(t) andNb(t) are the accumulated vehicle counts from
loop A and loop B respectively. Given the initial condition that no vehicle is on the
road section,N = Na(t) − Nb(t) is the number of vehicle on this road section, and
TT (t)|Na(t) = Nb(t + TT ) can be taken as the travel time from loop A to B under the
assumption of no overtaking. These estimates are reliable and accurate if loop detectors
made no errors in counting vehicles.

However, correct estimates cannot be obtained in reality, due to error accumulation. In
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the above example, the errors inNa(t) andNb(t) are accumulated with the timet. As a
result, it may be found that the total number vehicle in a roadsegment is minus thousands
in the end. We made an empirical study of one-day data on a one-kilometer section of
highway A13 in Netherlands. The data was from Regionlab-Delft which stores the traffic
data in Zuid-Holland region. With these data, it was found, during the period from 6:00
to 20:00, the total number of inflow vehicles was 64823 counted by the upstream loop de-
tector (loop A) on the section, and that the number of outflow vehicles was 71000 counted
by the downstream loop detector (loop B). The difference between inflowing traffic and
outflowing traffic is accumulated up to -6177. According to vehicle conservation law,
one explanation is that there are thousand of vehicles are within the one-kilometer sec-
tion, which is impossible in reality. The other explanationis that the loop detectors have
considerable errors in accumulated counting. For this reason, the curve for accumulated
vehicle counts may cross each other as illustrated in Figure8.3.

In this chapter, travel time is still an important ingredient. Travel time can be measured
by means of for example automated vehicle identification (AVI) systems, which identify
vehicles at two consecutive locations A and B at time instants tA andtB and deduce the
realizedtravel time afterwards withTTr = tB − tA. AVI systems may employ camera’s
and license plate detection technology, or may match vehicles through induction foot-
prints, tolling tags or otherwise. It is worth to note that this paper uses individual travel
times instead of aggregated or average travel times. In contrast to other traffic informa-
tion such as traffic flow, density and speed, travel times may be regarded as a kind of
causal aggregation of traffic history information over realized travel space. In addition,
compared to loop data, travel times have an higher order of accuracy without structural
bias. Although, travel times can be derived from time-spacespeed information, the re-
verse process is impossible. For this reason, it is quite a challenge to use travel times to
estimate the local traffic states.

This chapter proposed a new algorithm to fuse these three ingredients (flow, biased speed
and travel times) to achieve reliable and more accurate estimates of traffic density and
speeds without using traffic models such as second-order traffic models, but only using
the basic relationship between traffic variables as shown inEquation (8.1) and (8.2).

8.2 Methodology

In the first place, we present the assumptions and physical laws that are used in this
method. The main assumption is still that traffic is homogeneous and stationary in each
time-space cell. Travel time measurement are unbiased and very reliable in contrast to
speed measurements. Traffic flow measurements are also very reliable but with very small
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errors. These small errors are used to bring a serious defectin using a conservation law
(see Chapter2). The main physical laws aredistance = speed ∗ time, density =
flow/speed and vehicle conservation law.

8.2.1 Framework

The whole fusion algorithm consists of two parts. The first part fuses travel time and
speed measures by loop detectors. The second part further fuses the flow measures. In the
end, the density and speed over the whole time space region are achieved. (See Figure8.4)

• In the first part, the vehicle trajectories are reconstructed on a time-space plot by
combining individual travel times and the given speed measures. This part of algo-
rithm stems fromPISCIT algorithmOu et al.(2008). The individual travel times
are obtained from vehicle identification systems e.g. in-car GPS, cameras or other
AVI devices. The given speeds are measured by loop detectorswhich cause measu-
rement bias due to time-mean aggregation. The reconstructed trajectories are able
to remove the bias effects to some extent by satisfying the given travel times as
constraints.

• In the second part, the traffic density and speed in the time-space cells where the
trajectories pass are deduced by simply using these trajectories. Next, the flow
information is used to further deduce the density in the other time-space cells by
employingVehicle Conservation Law. Assuming that the traffic is homogeneous
and stationary in each time-space cell, the traffic speed in the all time-space cells
also becomes available by applyingv = q/ρ for each cell.

8.2.2 Fusion part one: trajectory reconstruction

This part of the algorithm is able to reconstruct individualtrajectories by combining the
given travel times and previously observed (estimated) cell-speeds from loop detectors.
Many AVI devices such as cameras or in-car GPS can provide theentry point for a vehicle,
that is where and when the vehicle enters a road stretch. Alsothe exit point is given
about where and when this vehicle leaves the road stretch. Any line which links the
two points could be a trajectory for this vehicle. The algorithm presented below is able
to find the most ‘likely’ trajectory with the help of the time-space speed information
from loop detectors, even though there is considerable biasin these speed measures. The
mechanism behind is quite simple. For a fixed road segment in aroad stretch, longer
travelled distance, more travel time; higher speed, less travel time;
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Figure 8.4: Fusion framework

For simple illustration, it is assumed a probe vehiclek entered road segment 1 at reporting
time t̂

(k)
1 and exited segment 6 at the next reporting timet̂

(k)
7 (Refer to Figure8.5). This

trajectory reconstruction algorithm is made up of the belowsteps, the first four of which
accomplish reconstruction on segment level while the last two on cell level. Table8.1lists
the important symbols used below.

STEP 1: Get̂t(k)
j andtt̂

(k)
j from this previously-estimated trajectory as shown in Graph

(a) in Figure8.5(The initial trajectory can be assumed to be a straight line)

STEP 2: Based on the given time-space speeds (biased), (re)-calculate the average
speed̄v([t̂

(k)
j , t̂

(k)
j+1], j) over segmentj during the time between̂t(k)

j andt̂
(k)
j+1.

STEP 3: Updatêt(k)
j andtt̂

(k)
j based on the average speedv̄([t̂

(k)
j , t̂

(k)
j+1], j). The updated

tt̂
(k)
j can be obtained under the below restrain equations

tt̂
(k)
j ∝

Lj

v̄([t̂
(k)
j , t̂

(k)
j+1], j)

(8.3)
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Figure 8.5: Illustration of PISCIT algorithm

∑

j

tt̂
(k)
j = tt (8.4)

wherett is the given travel time for a vehicle over the whole stretch.After that, update
t̂
(k)
j based ontt̂(k)

j .
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STEP 4: Repeat STEP 2 and STEP 3 untilt̂
(k)
i andtt̂

(k)
i converge to a specific extent or

the difference between the resutls from two consecutive iterations falls into a given range.
(Refer to Graph (b) in Figure8.5)

STEP 5: Deducett̂(k)(i, j) from tt̂
(k)
j , t̂

(k)
j and cell size. (Refer to Graph (c) in Fi-

gure8.5)

STEP 6: Deducês(k)(i, j) under the below equations. (Refer to Graph (c) in Figure8.5)

ŝ(k)(i, j) ∝ tt̂(k)(i, j) ∗ v̂−(i, j)/v̄([t̂
(k)
j , t̂

(k)
j+1], j) (8.5)

∑

i

ŝ(k)(i, j) = Lj (8.6)

8.2.3 Fusion part two: speed and density reconstruction

In fusion part two, the reconstruction of trajectories returns the traffic speed and density
where they pass through, and then traffic density and speed over the whole time space
region are deduced by fusing flow information (Refer to Figure8.6).

Assuming trajectoryk passes the cell(i, j), the measured (estimated) density and speed
by the trajectory at this cell can be obtained with the below equations:

v̂(k)(i, j) =
ŝ(k)(i, j)

tt̂(k)(i, j)
(8.7)

Assuming the traffic is homogeneous in each time-space cell,it reads

ρ̂(k)(i, j) =
q̂−(i, j)

v̂(k)(i, j)
(8.8)

In order to distinguish the final estimation̂v(i, j), we simply callv̂(k)(i, j) ‘measured’
speed by trajectoryk, though it is actually deduced from the reconstructed trajectory.
Similarly for density and flow.

For a fixed road segmentj, Vehicle Conservation Lawleads to below equations

0 = ρ(i − 1, j) − ρ(i, j) +
∆t

Lj

(q(i, j − 1) − q(i, j)) (8.9)

wherei = 1, 2, 3... represents discrete time.



134 8 An integrated algorithm for fusing travel times, local speed and flow

Figure 8.6: Fusion part two

The measured density by trajectories leads to measurement equations for density:

ρ̂(k)(i, j) = ρ(i, j) i = 1, 2, 3... (8.10)

The measured flow by loop detectors leads to measurement equations for flow:

q̂−(i, j) = q(i, j) i = 1, 2, 3... (8.11)

A regression model can be easily established by combining these three sets of formula
(8.9),(8.10) and (8.11)

y = Ax (8.12)

wherey contains measures0, ρ̂(k)(i, j) andq̂−(i, j) for a fixedj, andx contains estimated
statesρ(i, j) andq(i, j). The optimal estimate ofx in terms of least square given errors
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(b) perturb data

Figure 8.7: Illustration of the study road and how the ground-truth data are perturbed

with the independent and identical distribution is

x̂ = (AT A)
−1

ATy (8.13)

wherex̂ contains the optimal estimation̂ρ(i, j) and q̂(i, j). Further, the speed can be
estimated as

v̂(i, j) =
q̂(i, j)

ρ̂(i, j)
(8.14)

Now we have density, flow and speed estimates over the whole time-space region.

8.3 Validation

In the first part, the synthetic ‘ground-truth’ data are generated by assuming the real loop
data are true, and then the observed data are generated by tampering the ‘ground truth’
data. In the second part, the proposed algorithm is applied on the observed data and
returns the estimated data. The performance of this algorithm is shown by comparing the
‘ground-truth’ and estimated results.

8.3.1 Experiment setup & data generation

First of all, a 9.5 kilometer stretch of 3-lane Highway A4 eastbound in Netherlands is
considered (Graph (a) in Figure8.7), where 18 loop detectors are placed spacing around
500 meters and aggregated traffic speed measures and counts every one minute.
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• Ground-truth speed We assume the loop detectors give the ground-truth speed
measures over certain segments. The resulting time-space speed contour plots (Fi-
gure 8.8) shows 5 hour traffic condition on this stretch from 6:00 A.M.till 11:00
A.M. on July 8th, 2008, during which congestions onset and dispersed twice.

• Ground-truth density & flow The ‘ground-truth’ density and flow are generated
by using the ‘ground-truth’ speeds and loop counts as boundary condition. The
generated data satisfyConservation Lawand the homogeneous conditionρv = q.

• Observed speedsThe observed speeds in each time-space cell are assumed by
tampering the ground-truth speeds with the below assumption:

vo = e1.1vg(0.5−0.5vg/120) (8.15)

It can lead to nonlinear bias in speed measurements as in real-life. In order to show
the performance of our method, this nonlinear bias is made larger than realistic. In
this equation,vo is the observed speed andvg is the ground-truth speed. With this
assumption, the observed speed is 10% higher when ground-truth speed is 120km/h,
and 70% higher at the speed of 20km/h. The resulting observedtime-space speeds
are shown in Graph (a) in Figure8.9 The relationship between them is shown in
Graph (b) in Figure8.7.

• Observed flow & density The observed flow is assumed to almost equal to the
ground-truth ones. But still we tamper the ground-truth flow measurement with
only 1% relative errors (uniform distribution between[−1%, +1%]). The purpose
is to keep the characteristics of accumulated errors in flow measurements as in real-
life world. Due to these errors, we cannot estimate traffic states by only using flow
measurements and conservation law. The observed density isactually estimated by
usingρ = q/v (Refer to Graph (a) in Figure8.12).

• Travel times The travel times are generated by sampling the ‘ground-truth’ time-
space speed plots. There are three virtual cameras placed atthe entry, exit and
middle of the whole road stretch. It is assumed that 10% of vehicles are captured
by the cameras, giving the travel times from milepost0km to4.8km and others from
4.8km to9.5 km.

8.3.2 Results

We use mean absolute relative error (MARE) to evaluate the results. The definition of
MARE is shown in Equation8.16.
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MARE =
1

M ∗ N

M
∑

i

N
∑

j

|x̂(i, j) − x(i, j)|

x(i, j)
(8.16)

x̂(i, j) represents the estimate andx(i, j) represents the ground-truth quantity. The com-
parison of the results before and after using the algorithm can be seen in Figure8.9 and
Figure8.12.

Table 8.2: Comparison of MARE before and after using the proposed algorithm.

Measure type MARE (before) MARE (after)
MARE on speeds (global) 33.7% 3.3%
MARE on speeds (<50kmph) 63.4% 3.4%
MARE on density 24.1% 3.46%
MARE on travel times 26.9% 0.74%

• BeforeThe observed speeds and density have large errors. MARE for the observed
speeds is 33.7% in the given scenario. MARE for observed density is 24.12%.

• After After the proposed algorithm is applied to fuse the observedspeeds, travel
times and flow, the above errors remarkably decrease. MARE forestimated speeds
becomes 3.3% and MARE for estimated density becomces 3.46%.
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Figure 8.8: Ground-truth time-space speed plot

With time-space speed plots, travel times can be easily derived. Figure8.14makes com-
parison of travel time estimates between before and after using this algorithm. Before
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(a) Observed speed
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Figure 8.9: Comparison between observed speeds and estimatedspeeds after applying
the proposed fusion algorithm
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Figure 8.10: Comparison between ground-truth speeds, observed and estimated ones on
road-segment 10 (around 5.5km milepost)
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Figure 8.11: Ground-truth time-space density plot

using it, the travel times based on observed speeds have meanabsolute error of 230.4
seconds and MARE 26.89%. After using it, the travel times havea much smaller error of
6.6 seconds and MARE 0.74%. In Figure8.14, the thick green line represent the ground-
truth travel time, dark dashed line represents the results after using the algorithm and thin
red line represents the travel time estimation based on the observed speeds. The former
two lines almost overlap with each other.



140 8 An integrated algorithm for fusing travel times, local speed and flow

50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

time (minute)

po
si

tio
n 

(m
et

er
)

 

 

10

20

30

40

50

60

70

80

(a) Observed density
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Figure 8.12: Comparison between observed density and estimated density after applying
the proposed fusion algorithm



8.4 Conclusion 141

0 20 40 60 80 100
5

10

15

20

25

30

35

40

45

50

55

Time (min)

D
en

si
ty

 (
#/

km
/la

ne
)

 

 
Ground−Truth
Estimated
Observed

Figure 8.13: Comparison between ground-truth density, observed and estimated ones on
road-segment 10 (around 5.5km milepost)
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Figure 8.14: Compare travel times between before and after using this algorithm

8.4 Conclusion

The previous chapters5, 6 and7 mainly focus on the estimation of traffic speeds by fusing
loop speeds and floating car data. But they cannot fuse loop flowand provide traffic den-
sity. To tackle this issue, this chapter proposed a new algorithm for fusingspeedsandflow
from local detectors with individualtravel timesmeasured by AVI systems. Travel times
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from in-car GPS or cameras can provide average journey speeds over a few road segments
but fails to provide the traffic details on each segment. Loopdetectors can provide local
traffic information, but there are biased errors in speed measures and the error in vehicle
counts is accumulated over the time. The proposed algorithmexploits the strength of
each type of data and avoids their weakness. In contrast to the often-used traffic fusion
techniques presented in Chapter3, this algorithm needs very few assumptions on traffic
behavior but can fuse more types of data.

The validation shows this fusion algorithm can improve the estimation accuracy by up
to 10 times. On the basis of synthetic ‘ground-truth’ data, we demonstrated how this
algorithm is able to successfully correct strongly biased prior speed measurements. It is
able to improve the estimation accuracy up to ten times, e.g decreasing MARE from 33%
to 3.3%, descreasing errors in travel time estimation from 230 seconds to 6.6 seconds.



Chapter 9

Synthesis: a data fusion framework

In this thesis, four methods have been proposed to fuse multi-source traffic data. These
methods are all based on the data-data consistency approach. For each method, there are
separate validations and specific applications. This chapter will discuss issues regarding
the applications of these four methods. We will discuss how these four methods are used
in different conditions and how they can work with other already-existing methods.

9.1 Synthesis and comparison of data-data consistency
methods

PISCIT, TravRes and ITSF all deal with travel times that come from camera data or floa-
ting car data. The previous chapters have already given the validations of these methods
under almost the same experiment setup and data assumption.18 loop detectors are ins-
talled on the about 10 kilometer road stretch on A4 in the Netherlands. The synthetic
‘observed’ speeds from loop detectors have relative errorsof 32% over the whole region
and errors of 64% over the region where the ground-truth speeds are lower than 50kmph.
The virtually installed cameras are spaced 5 kilometers, which capture 10% vehicles. In
PISCIT validation, the added floating cars have polling rate of 60 seconds. In the valida-
tions, the travel times and flow are not made to be biased or erroneous.

In this section, the main validation results are put together to compare their performance
when different data combinations are used. Table9.2shows the result when travel times
(camera data and FCD of polling rate 60 seconds) and local speeds are fused by PIS-
CIT. Table9.3and9.4shows the performance when only travel times are fused by using
TravRes. Table9.5 shows the result when travel times (camera data), local speeds and

143
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Table 9.1: Brief on the proposed algorithms in the book basedon data-data consistency
approach

Method name function input output
ITSF Fuse travel times, time-space

speeds and flow all toge-
ther. The output is time-space
speed plots and density plots

T-S speeds;
travel times;
T-S flow

T-S speeds; T-
S density

TravRes Mainly fuse floating car data
of low-polling rates. The out-
put is time-space speed plots
with high accuracy and little
bias.

travel times T-S speeds

PISCIT Remove much of the bias in
the initial time-space speed
plots by using travel times
from e.g. cameras. The bias-
free time-space speed plots
can be achieved after fusion

T-S speeds;
travel times

T-S speeds

FlowRes Fuse low-resolution positio-
ning data with initially mea-
sured time-space speeds. The
output is time-space speeds

T-S speeds;
sampled flow;
prior speed
distribution

T-S speeds;
posterior dis-
tribution and
error variance
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Figure 9.1: MARE on speed estimation under different cases.
case 1: ITSF with 10% camera travel times + loop speeds + trafficflow

case 2: TravRes with 2% FCD
case 3: TravRes with 5% FCD
case 4: TravRes with 10% FCD

case 5: PISCIT with 10% camera data + loop speeds
case 6: PISCIT with 10% camera data + 1% FCD + loop speeds
case 7: PISCIT with 10% camera data + 5% FCD + loop speeds

flow measured by loop detectors.

Table 9.2: The result from PISICT.
MARE without travel time information is 32.3% (global)and 64.6% (speeds lower

50kmph).

Penetration of FCD added 10% 5% 2.5% 1% 0.5% 0%
MARE on speeds (global) 2.5% 2.65% 2.9% 3.5% 4.2% 4.8%
MARE on low speeds (<50kmph) 5.6% 6.3% 7.7% 9.3% 10.2% 10.8%

By using PISCIT, fusing FCD of penetration 1%, camera data (penetration 10%) and loop
speeds leads to 3.5% relative error over the whole space region. The similar result of
MARE 3.7% can be achieved by using TravRes to fuse 10% FCD. But for the estimation



146 9 Synthesis: a data fusion framework

Table 9.3: The result from TravRes.
MARE of speed estimation over the whole time-space region.

Penetration Polling rate MARE with naive MARE with TravRes
10% 120sec 15.4% 7.4%
10% 60sec 9.1% 3.7%
10% 30sec 5.4% 2.7%
5% 120sec 16.8% 9.5%
5% 60sec 9.8% 3.9%
5% 30sec 5.7% 2.6%
2% 120sec 17.7% 12.3%
2% 60sec 11.4% 6.3%
2% 30sec 7.2% 3.1%

Table 9.4: The result from TravRes.
MARE of low-speed estimation (speeds are lower than 50kmph).

Penetration Polling rate MARE with naive MARE with TravRes
10% 120sec 38.9% 11.8%
10% 60sec 23.4% 7.0%
10% 30sec 13.8% 6.5%
5% 120sec 44% 17.3%
5% 60sec 24.9% 7.5%
5% 30sec 15% 6.6%
2% 120sec 50% 29%
2% 60sec 33.5% 14.2%
2% 30sec 20% 7.9%

Table 9.5: The result from ITSF.

Measured type MARE (before) MARE (after)
MARE on speeds (global) 33.7% 3.3%
MARE on speeds (<50kmph) 63.4% 3.4%
MARE on density 24.1% 3.46%
MARE on travel times 26.9% 0.74%
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of low-speeds (lower than 50kmph), TravRes outperforms PISCIT with the MARE 7.0%
v.s. 9.3%. Even with FCD penetration of 5%, TravRes can outperform PISCIT with the
MARE 7.5% v.s. 9.3% over the low speed region. When more FCD are used in PISCIT,
PISCIT will achieve better results. If the FCD pernetration rise to 5% in PISCIT, PISCIT
can give MARE of 2.65% (global) and 6.3% (lower speeds) with FCDpenetration 5%.
The same result can be achieved by TravRes with FCD penertration 10% and polling rate
30 seconds.

Compared with PISCIT and TravRes, ITSF is able to fuse another type of data–traffic
flow, which leads to further improvements in results. As seenin Table9.5, MARE in
low-speed region is only 3.4%, while PISCIT can only achieve MARE 5.6% in low-speed
region by fusing FCD pentration 10%, camera data (10% penetration) and local speeds.

FlowRes is able to fuse low-resolution positioning data fromwireless networks. When
it works with other methods such as PISCIT, TravRes or ITSF, we have to deal with
inconsistency issue. In wireless networks, base station may cover a road segment with
length e.g. 3 kilometers. With TP data, FlowRes can only estimate the average speeds
on this 3-kilometer road segment. But in PISCIT or other methods, a road stretch may be
divided into segments with length about 500 meters. As a result, the road segment defined
in different methods have different space boundary, which leads to space inconsistency.
In addition to space inconsistency, there is time inconsistency. For example, the reporting
time or rate from wireless networks may not be synchronized with the ones from loop
detectors. As a result, we need to upgrade the low-resolution time-space cell to high-
resolution time-space cell. Figure9.2show one time-space cell defined in FlowRes may
partially or completely cover several time-space cells defined in other methods.

Figure 9.2: Time-space consistency when FlowRes works with other methods

This issue can be easily dealt with by establishing linear equations and then giving best
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estimation with regression techniques.

∑

w(i, j)v(i, j) = vTP + ǫ (9.1)

and equations

v(i, j) = vo(i, j) + e(i, j) (9.2)

for (i, j) in the shadowed region.vTP is the average speed over the shadowed time-space
region, which is given by FlowRes.vo(i, j) is the estimated speeds in the time-space
region(i, j), which is given by PISCIT, TravRes, etc. Since the shadowed region may
only partially cover some region(i, j), we appendw(i, j) as weight. Particularly,w(i, j)
satisfies

∑

w(i, j) = 1 for (i, j) in the shadowed region.ǫ is the error involved invTP , and
e(i, j) represents the error in speed estimation from other methods. The best estimation
v̂(i, j) can be achieved by using linear regression techniques.

9.2 Data fusion framework

As presented in Chapter3, there are some other fusion methods that have been proposed,
such as ‘EKF plus traffic model’, ‘Treiber filter plus traffic model’, etc. We don’t ne-
cessarily intend to replace these methods by our proposed methods. On the contrary, the
proposed algorithms or methods can be well used to enrich thealready-existing methods
and work along with these methods.

One of important features in our methods is that they are ableto provide much less-biased
time-space speed and density plots. These plots can be used to better calibrate parameters
(e.g. critical speed) in traffic models such as the fundamental diagram. These models and
parameters play a critical role in e.g. Extended Kalman filters or Treiber filter. Recal-
ling the attributes of Kalman filters, the noises in the equations are not supposed to have
structural bias but only random errors. Therefore, the output from PISCIT or TravRes
can be taken as ‘bias-free measurements’ for Kalman-filter-based methods. Furthermore,
the method FlowRes provides not only speed estimation but also the error variance in this
speed estimation. The error estimation is equally important as state estimation, which
helps to determine the confidence on the estimation and can betaken as input for traffic
prediction.

These ‘model-data consistency’ approaches can also contribute to the proposed methods
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Figure 9.3: Application of fusion tools in the traffic system
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in this thesis. The travel time data from cameras or floating car may not have enough
time-space coverage for traffic estimation. Also the loop detectors may not be installed
for about 500 meters as in South-Holland. In many countries,loop detectors on freeways
may be sparsely installed. Due to lack of enough coverage of loop detectors, floating cars
and cameras, the methods like PISCIT, TravRes or ITSF can not work well or even does
not work at all. As a result, the reconstructed time-space plots for the proposed methods
will have a lot of blank regions. In order to fill in these blankregions, we can use many
model-based methods like Kalman-filter-based methods or Treiber-filter-based methods.
For example,we can use Kalman-filter-based methods to reconstruct an initial time-space
speed plots when loop detectors are sparsely installed. Then PISCIT method is used to
remove the bias in the initial estimation. Following that, these less biased results can be
re-used by e.g. Kalman-filter-based methods to re-estimatethe traffic states.

In sum, all the methods are not exclusive to one another. On the contrary, they need to
collaborate to achieve better estimation results. All these methods can make a tool box
of traffic data fusion. As shown in Figure9.3, they are able to process the current data
as well historical data from different sensors. This tool box plays a very critical role in
traffic state estimation, prediction and optimization.

9.3 Summary

This chapter mainly compare the applications of the proposed methods and further ap-
plications combined with already-existing methods. We only give a rough guideline to
the applications of these methods in the different conditions and how they can work toge-
ther for more advanced application. Although no real-life application has been given, the
broad application potential of the proposed methods can be clearly seen.



Chapter 10

Conclusions and recommendations

Reliable and accurate estimation of traffic state variables from the available traffic data
plays an important role in traffic management practice and science. State estimation on
the basis of multiple data sources is a challenging task, since many of the variables of
interest, such as space mean speed or traffic density, cannotbe observed directly and must
be deduced from the data which are available. Moreover, the available data from various
sources (loop detectors, floating car data or automated vehicle identification systems) dif-
fer largely in terms of quality, reliability, availabilityand even spatiotemporal semantics,
which renders state estimation on the basis of multiple datasources even more problema-
tic.

In this thesis a new traffic data fusion paradigm based on data-data consistency is proposed
and several example data fusion algorithms in line with thisnew paradigm are presented.
In this final chapter we will highlight the main conclusions and provide recommendations
for practical application as well as directions for future research.

10.1 Conclusions

10.1.1 Main conclusions

The main conclusion of this thesis is that the proposed ‘data-data consistency’ (DDC)
paradigm works, and that it provides a parsimonious and robust framework for fusing
data from different sources, even if these data have fundamentally different spatiotemporal
semantics. Methods based on the DDC paradigm are characterized by the fact that one
data source is used to constrain or correct the state variables deduced from a second data
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source using as few additional assumptions (parameters) aspossible. This new DDC
paradigm for traffic state estimation and data fusion has twomajor advantages over classic
data fusion paradigms.

In the first place we can conclude that DDC algorithms requiremaking (much) less as-
sumptions than classic state estimation and data fusion approaches such as recursive fil-
tering methods (Kalman filtering, particle filtering, nudging techniques). These recur-
sive approaches essentially use a model-data consistency paradigm, in which process and
observation models are required to specify the relationship between state variables and
between state variables and observations respectively. Both process and observation mo-
dels are typically parameterized and make many implicit andexplicit assumptions about
the data. For example, the speed-density relationship usedin recursive data assimilation
techniques is a coarse and noisy observation model and largely underdetermined in free
flow conditions. The DDC methods developed in this thesis useonly simple parameter-
free physical laws (e.g. travel time = distance / speed and flow = density x speed), and a
minimum number of assumptions with respect to the data assimilation methods.

Secondly, the DDC approaches solve the spatio-temporal alignment problem of recur-
sive techniques. This problem occurs when the available data sources have incompatible
spatiotemporal semantics. The best example of semantically incompatible data involves
travel times (from AVI systems or partial vehicle trajectories) and spot mean speeds (from
local detectors). Classic data fusion approaches based on recursive filtering require ob-
servation equations to link the first to the latter, which in this case is impossible, since
the relationship between travel times and spot speeds is underdetermined. The various
algorithms presented in this thesis solve the problem by using the first data source (tra-
vel times) as a constraint to re-estimate the second (spot speeds). This effectively results
in much less-biased and accurate spatiotemporal speeds and- as a direct consequence -
also in improved travel time records without resorting to complicated observation models.
Note that all DDC methods are designed to reconstruct average speeds, flows and/or den-
sities on small spatiotemporal areas of length∆X and period size∆T , in the sense of
Edie Definition (Edie(1965))

10.1.2 Conclusions related to the presented algorithms

In this thesis four DDC algorithms were designed and validated. The methods developed
are

• PISCIT: a method for traffic speed reconstruction based on prior speeds and indivi-
dual travel time
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• TravRes: a method for traffic speed reconstruction based on travel time of low-
polling rates.

• FlowRes: a method for traffic speed re-estimation based on low-resolution positio-
ning FCD and prior speeds

• ITSF: a method for speed and density reconstruction based ontraffic flow, speed
and individual travel times.

Based on the research in this thesis, the following conclusions can be drawn. The PISCIT
method fuses (possibly biased) spot mean speeds with individual travel time records and
uses the second to constrain and correct the first. From our results we can conclude that
it is effective in removing much of the bias in local speed measurements. The result is
a much less-biased spatiotemporal map of average speeds. The TravRes method fuses
travel time (or average speed) records from a percentage p probe vehicles which may pro-
vide these records at arbitrary polling rates T. The method also allows incorporation of
spot speeds, which is used as prior information. Again the data are used as constraints
for additional data such that no assumptions need to be made on the actual vehicle tra-
jectories (e.g. that vehicles drive with constant speeds).From our results we conclude
that the method results in much-less biased estimates of spatiotemporal mean speeds for
penetration rates above 10%, in which polling rates may varyfrom 30 seconds to 120
seconds. Based on synthetic data, it is found that classic methods may lead to errors of
30% in speed estimations and error of 50% in lower speed (50kmph) estimation. TravRes
doubles or even triples the estimation accuracy. The FlowResmethod also provides a so-
lution for optimally using data from probe vehicles but takes a slightly different approach
and uses different data. FlowRes is able to fuse low-resolution positioning data (e.g. from
mobile phones) to reconstruct spatiotemporal mean speeds.FlowRes takes low-resolution
positioning data as sampled flow, and fuses the sampled flow with local speeds by using
a Bayesian update rule. The validation shows that the method can decrease the relative
error in speed estimation from 41% to 10.5%. The ITSF method finally builds on the
same ideas as the PISCIT method, but further takes traffic flow as input. As a result,
it can provide more accurate speed estimations than PISCIT, particularly for low-speed
estimation. Additionally, ITSF provides a means to also estimate traffic density. As far
as we know, this is the only viable reliable alternative for density estimation aside from
the much more elaborate recursive filtering approaches (e.g. Kalman filtering, particle
filtering) discussed earlier
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10.2 Implications and recommendations

The methods based on the data data consistency paradigm are scientifically new and pro-
vide practical solutions for problems which cannot be addressed by existing methods.
Below we list a number of implications and recommendations for both science and prac-
tice

• Since the data-data consistency approaches only make very few assumptions, we
recommend scientists to use this approach in the early stages traffic theory and
model development in case ground-truth data (in the Edie-sense) are not available.

• We also strongly recommend scientists from various disciplines (traffic theory, but
also control and systems engineering) to consider data-data consistency methods
as a viable alternative to well-known traditional approaches (e.g. Kalman-filter-
based approach). We believe that in many cases it is possibleto find appropriate
consistency criteria and to find a data assimilation method to achieve this consis-
tency. Additionally, one may use the results of such a DDC method in traditional
recursive filtering.

• Although the problem of time averaging local traffic data hasbeen acknowledged
widely, still quite a few traffic data collection systems usetime averaging, leading
to biased speeds and density estimates. We strongly recommend methods based
on data-data consistency to remove this bias, instead of using again parameterized
methods for this purpose.

• The methods developed in this thesis may be used in combination with other me-
thods. In this sense, data data consistency methods constitute a toolbox of data
fusion algorithms, which can be readily used in both scienceand practice

• The four example algorithms (fusion tools) developed in this thesis provide a good
starting point, in that they cover data fusion of the most commonly available data in
practice to date. These four algorithms are effective in fusing low-resolution data,
e.g. travel times, FCD of low polling rates and low-resolution positioning data.

– When a large amount of local speeds and individual travel timerecords are
available, the PISCIT method can be used to improve the local speed estima-
tion.

– In case partial probe vehicle records are available, the TravRes method is re-
commended.

– When additionally also traffic flow information is available beside local speed
and travel time, the ITSF method is recommended.
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– When a large amount of low-resolution positioning data from wireless net-
works become available, we can use the FlowRes method.

10.3 Future research

In this final section we will provide some pointers for futureresearch. First of all, more
research is needed to assess the impact of errors in the available data. For example, this
thesis assumes that all travel times are correct. In real-life, individual travel times may be
error-free. Aside from measurement inaccuracies, the maincause of errors (particularly
from AVI systems) relate to vehicles traveling over different paths, or making unobserved
stops. Further research into automated methods for detecting and resolving these errors is
needed. Similarly, more research is needed into resolving errors in traffic flows

• Impact of error in traffic flow. In ITSF method, we also use veryreliable traffic flow
data, in which relative errors are smaller than 1%. Indeed, loop detectors can give
quite reliable flow measurement, but in some time-space region e.g. near ramps,
the measurement may not be reliable. The future research should also consider the
impact of error in flow measurements.

• Technology realization in FlowRes. In order to apply FlowRes,we have to trace
floating car in cell level for every one minute. Also we have todistinguish vehicles
from pedestrian, and we have to make sure on which road the vehicle is. All these
requirements must be met before FlowRes can be used. In order to achieve this,
there are still some techniques and equipments that need to be developed. One of
solution is to invent a in-car dock for mobile phones. With the support of this dock,
the mobile phone can send a beep signal to a base station everyone minute.

• Convergence in trajectory reconstruction. PISCIT, TravRes and ITSF all involve
the trajectory reconstruction algorithm. However, we cannot theoretically prove the
trajectory will converge in this iteration algorithm. In other words, the convergence
of trajectory cannot be guaranteed. The research on convergence turns to be a very
important topic when data-data consistency approach is used.

• Design of optimal data composition. This thesis has showed that fusing more types
of data normally can lead to better estimation result. Each type of data can partially
contribute to the state estimation. Meanwhile there are costs for different types of
data collection. Therefore, considering the trade-off between estimation accuracy
and the cost, we should try to find the optimal data composition. That is a very
important topic in practical applications.
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• Design of fusion framework. Data-data consistency approach is not a replacement
for other approaches or in conflict with them. The proposed methods based on this
approach piece together different types of data in a simple way, while the previous
methods normally use traffic models. e.g. first-order and second-order model. All
these methods can be combined together and form a fusion framework which can
intelligently choose appropriate methods to accomplish data fusion under different
scenarios.

• Network application. This thesis mainly focuses on traffic state estimation on a
single route. When it comes to the network-wide state estimation, the situation be-
comes more complex. For example, travel times from cameras may refer to several
routes in this network. Therefore we have to infer which route a vehicle travel be-
fore the proposed methods can be used. Also route inference can be achieved by
fusing data from different sources.
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Summary

Reliable and accurate estimation of traffic states play an important role in traffic manage-
ment and traffic theory development, which therefore has significant social and scientific
relevance. Data for traffic estimation normally from different sources and have different
types, characteristics, etc, so data fusion techniques areused. Traffic state estimation in-
volves fusion of data from different sources. Therefore, data fusion techniques are used.

The subject of this thesis is about traffic data fusion and themain objective is to propose
more efficient approach and algorithms to accomplish trafficdata fusion.

Different types of data have different characteristics andaccuracy, which causes chal-
lenges. Let us take data from loop detectors as an example. Loop detectors can provide the
speed measures only at certain points on a road (local speeds). The speed measures from
loop detectors have structural deviation from the ground-truth speeds based on Edie’s de-
finition. The deviation is relatively bigger when the speed is lower. This deviation can
lead to the 100% error in density estimation. Similary, someother types of data, e.g.
floating car data, camera data, etc, have their particular characteristics. It is a challenge
to fuse all kinds of data with different characteristics, semantics, resolution, accuracy and
reliability.

Although the previous methods have already solved quite a few traffic data fusion issues,
yet there are quite a few challenges left. For example, due tospatio-temporal alignment
problem, Kalman filter, the most commonly used assimilationtechniques for data fusion
can not be well used to fuse travel times and local data. Majority of these methods need
model calibration that is made through biased data e.g. biased loop speeds, so these
methods are not effective in removing the structural bias indata. In sum, previous data
fusion techniques normally involves quite a few assumptions, but they may not fuse many
types of data or give reliable results.

In order to fuse more types of data and give more accurate results, we propose a new
approach. This approach is called ‘Data-Data Consistency’ Approach. It still needs traffic
models, but these models are simply based on some basic physical laws and very few
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assumptions.

Based on this data-data consistency paradigm, we develop four methods for traffic data
fusion. The first proposed algorithm is called PISCIT which isable to fuse traffic speeds
from local detectors such as inductive loops with individual travel times measured by
AVI systems. The second is called TravRes which is able to accurately reconstruct high-
resolution time-space speeds from floating car data (FCD). Itachieves this by iteratively
reconstructing the (unobserved) probe vehicle trajectories between polling time instants,
until the resulting time-space speed map is consistent (enough) with all probe vehicle re-
ports. The above-mentioned two algorithms are concerned with the low-resolution travel
time data (low polling rates). The third is called FlowRes. Itdeals with another type of
data, data which may not only have low time-resolution but also have quite low position-
resolution. Such data cannot pinpoint the accurate positions of vehicles but can only give
some location-specific information when and where the vehicles are located at the seg-
ment or cell level.This algorithm corrects strongly biasedprior speed measurements and
reduces the impact of random errors. it can be easily extended to fit in network-wide
traffic speed estimation. The fourth algorithm is called ITSF, which is able to fuse traffic
flow, local speeds and travel times all together. It uses extra data source: traffic flow.
As a result, more accurate and reliable estimation is achieved compared to the first two
algorithms.

Rather than these four methods, more methods and algorithms can be developed by follo-
wing data-data consistency paradigm. Furthermore, we propose a data fusion framework,
in which all proposed methods can work with other already-existing methods so that better
estimation can be achieved.
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