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Chapter 1

Introduction

1.1 Research background

1.1.1 Context & background: the need for traffic data fusion me-
thods

Traffic data collection and archiving systems are esseoitdd for online (and real-time)

dynamic traffic management (DTM) applications, such as tadamtersection control,

routing, ramp metering, and traffic information servicesit simply, without data from

sensors neither traffic management and control nor traffarnmation services are pos-
sible. However, the availability of data from a multitudedifferent traffic sensors do not
necessarily amount to consistent, coherent and meanimjfumation on the state of a
traffic network, for example in terms of speed, density or fldwaffic state estimation

and data fusion techniques are required to translate tivedlaldle data into a consistent
and complete description of the state in a traffic systemurgid.1 illustrates the posi-

tion of traffic data fusion and state estimation (and préatjtin the context of real-time

dynamic traffic management. In this thesis, the traffic stédebe estimated are traffic
speeds, flow and density. Later on in this thesis, some of$kd terms and definitions
will be given.

Traffic state estimation and data fusion are not only requioe the online applications
but also essential fasffline applications, such as policy / measure evaluation studids a
the development, calibration and validation of the toolsassary to perform these tasks
(e.g. traffic simulation models). Finally, the advancemeinscientific research itself
relies heavily on the availability of large amounts of dietéiand reliable empirical data
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real traffic system

(a) state estimation

traffic
Sensors

_ state estimation /
initial data fusion

state

(b) state prediction

(c) optimization

Figure 1.1: Schematic representation of traffic state estiom and prediction in the
context of (dynamic) traffic management (DTM) & control

and on techniques to extract consistent and reliable irdtan from these data.

In the last few decades the amount of empirical data becoavagable for both online
and offline use has steeply increased, particularly in tesfrtee wide range of sensor
technologies developed and applied to collect these daddficTsensors may range from
inductive loop detectors, radar, microwave, ultrasonitsses to infrared cameras and
in-vehicle GPS/GSM receivers/transmitters (“floatingdata”), to name a few. The mo-
torway network in the Netherlands for example (around 6600, kas an inductive loop
based monitoring system installed (with loops about evé§ Beters), however, this
only holds for around 1/3 of the network. Another 1/3 has dinhyted traffic monitoring,
while the rest 1/3 has nothing at all. Besides the limitediapabverage in some areas,
a second major issue is that of the available data on averd@&dis missing or other-
wise deemed unreliable, with regular extremes over 25 or.38%o in the Netherlands
other data sources (than loop detectors) are already blada will become available in
the near future. Data from these different sensors (camardigction loops, or in-car
GPS/GSM devices) are typically characterized by diffefentats, semantics, tempo-
ral and spatial resolution and accuracy, and also differvailability and reliability as
a function of location, time and circumstanc®gau Lint et al.(2005, Van Lint (2006).
From technical points of view, all kinds of currently avéila sensors can not provide
traffic measurements which have enough accuracy and cevéragolid traffic state es-
timation. However, economical situations may not allow ple®ple to invest too much
in equipment to collect traffic information. For this reassnientists have to put more
focus on the methodological part. For methodological @oaftview, the integration of
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such heterogeneous data into comprehensive and conslatarwarehouses is a complex
and challenging task. This chapter focuses predominantithe second challenge, that
Is, on the methodological tools to fuse heterogeneousdrddfia. As we will see later in
this thesis, particularly theemanticatifferences over space and time between these data
Impose strong constraints on the applicability of datadusechniques.

1.1.2 Multi-sensor data fusion

In many fields of science, such as robotics, medical diagnasiage processing,
air traffic control, remote sensing and ocean surveillarsze (e.g. Yager (2009);
Xiong and Svensso(2002); Varshney(1997); Piella (2003; Linn and Hall(199))), the
de facto method for state-estimation is multi-sensor das#oh, a technique by which
data from several sensors are combined by means of matloaireid/or statistical mo-
dels to provide comprehensive and accurate information.ide wariety of approaches
have been put forward for multi-sensor data fusion, basedarrinstance, (extended)
Kalman filters, Bayes methods and Artificial Neural NetwoiBempster-Shaefer theory
or Fuzzy Logic. Which of these is suitable for the problem aichis governed largely by
domain specific constraints, the characteristics of tha dailable, and - probably most
importantly, by the purpose and application for which th&ada (f)used. Using similar
arguments as iDailey et al.(1996, data fusion generally leads to

¢ Increased confidence and accuracy and reduced ambiguity;

e Increased robustness: one sensor can contribute infamatiere others are una-
vailable, inoperative, or ineffective;

e Enhanced spatial and temporal coverage: one sensor carwlerkor where ano-
ther sensor cannot;

e and (more tentatively), decreased costs, because (akao$iatverage’ sensors can
achieve the same level of performance as a single, higlibbie sensor and at a
significantly lower cost, and (b) fewer sensors may be reguio obtain a (for a
particular application¥ufficientpicture of the system state.

With these arguments in mind, data fusion techniques pecsdobvious solution for traf-

fic state estimation. However, most approaches to traffie stgtimation (e.gWang et al.
(2009) consider only ainglesource (i.e. minute aggregated or averaged flows and speeds
from local inductive loop detectors), whereas of the stsithatdo consider data from va-
rious traffic sensors (e.dailey et al.(1996; Kikuchi et al. (2000) most are concerned
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with limited traffic networks or corridors (e.g. single ftiaflinks), and not as in the RE-
NAISSANCE approach of Wang and Papageorgiou at comprehestiaiffic surveillance
and monitoring for entire freeway corridors or networks. e will elaborate in the
later chapters, the Kalman Filter (KF) approaches dematesirin\Wang et al.(20006);
Van Lint and Hoogendoor(R2007); Herrera and Baye(R007) do have other limitations,
which relate to the spatio-temporal alignment of the alddalata.

1.2 Problem formulation

As shown in Figurel.], traffic state estimation plays a critical role in the trafficstem.
The performance of traffic management (including speedrabmbute guidance, etc) is
highly dependent on the traffic state estimation. For trasoe, we do need less-biased,
solid estimation of basic traffic variables.

However, traffic data from different sensors are heterogesieThey have different types
of errors and don’t provide time-space traffic measuremgingstly. Although now there
exist some methods which can provide traffic state estimdijofusing some of traffic
data, these methods involve quite a few assumptions and eitrenfuse many more
types of data nor lead to solid and reliable results. Thishelshown and discussed later
in Chapter3.

The problem we face idn the state-of-the-art on traffic data fusion, there is ngep
priate method which is able to provide solid traffic staterastion by fusing heteroge-
neous multi-types of data with limited assumptioHsis thesis will make effort in finding
parsimonious approaches to fusing herterogeneous tratfc d

1.3 Research scope and objective

This research will focus on macroscopic traffic state edtomeon a road stretch. The
main traffic state variables in study are speed, density gaftictflow. The methods
to achieve this estimation can be useful for network-widgfitr estimation, and can
contribute to, for example, estimation of queue length edrintersection, OD (origin-
destination) estimation, etc.

The objectives of this research is to reconstruct lessediasd solid traffic variables by
fusing heterogeneous traffic data in a parsimonious way. Wenevide a new approach
and methods to give more reliable time-space mean traftiesst®eanwhile, many more
types of traffic data can be fused while less assumptions adem
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1.4 Theoretical and practical contributions

The research in this book has a number of scientific, metlogitzd! and practical contri-
butions. These contributions are summarized in this sectio

1.4.1 Scientific contributions

This thesis provides scientists with a comprehensive arg desight into traffic data
fusion. A new traffic data fusion paradigm and a new fusionreagh are given. The
methods proposed in this thesis can help scientists to knore mbout traffic data and
may contribute to new traffic theories and models. Also thmséhods and approaches
may open a door to developing more advanced data fusion ohetibie scientific contri-
butions made in this thesis are listed as below:

e This thesis develops a new taxonomy to classify all trafftadiasion methods and
it presents the state-of-the-art on traffic data fusion wd$hfrom the perspective
of this taxonomy. Each of the data fusion methods has two mt@mponents: a
core and a shell. The core represents the assumptionsfin thefory, which esta-
blishes the connections between different types of datadmn data and estimated
variables. The shell represents the assimilation teclesigoarticularly some sta-
tistical techniques, which may be able to combine modelsdatd in statistically
optimal ways.

e This thesis establishes a new paradigm that uses a dataafegstency approach
to fuse different types of traffic data. This paradigm is paosious, which only
needs very few assumptions but can fuse more types of daentiSts can use this
paradigm to develop many other simple but effective methodisse traffic data.

e This thesis proposes a new scheme to estimate optimal tsatieds in OLS (ordi-
nary least square) sense by using local speeds and traes. titientists can also
use this method to easily reconstruct individual trajeetoand therefore obtain
more details about traffic characteristics.

e Travel times can be easily estimated from the ground-traffi¢ speeds, but the in-
verse process is very difficult and complex since traffic gesrover both time and
space domains. This thesis theoretically shows that trersevprocess is possible
and that the exact trajectories can be reconstructed bytavgl times under cer-
tain circumstances. As a consequence, it provides thealstipports for scientists
to develop new methods to estimate traffic speeds only byusawel times.
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e A new iterative approach with dual-loop iterations is pregw to reconstruct indi-
vidual trajectories by using only travel times. In this apgrh, a new stochastic
model based on Brownian Motion is given to determine the cenfid on different
travel time records considering both time intervals anfficraonditions.

¢ It establishes a new stochastic model to fuse low-resaiytimsitioning data and
prior speed information. This model establishes a prolstisirelationship between
traffic speeds and sampled traffic flow.

e It develops a new scheme to fuse traffic speeds, flow and ttawmek. In this
scheme, only fundamental physical laws and traffic theagyuaed, but these three
types of data of different semantics can be fused by simpglygusn iterative ap-
proach and a linear regression technique.

1.4.2 Methodological contributions

This thesis proposes new methods that provide both effigisncomputation cost and
excellent performance in estimation accuracy and robastnehe methodological contri-
butions made in this thesis are listed as below:

e This thesis develops a new iterative approach combined avithear regression
technique to fuse local speeds and travel times. With thihoa®logy, the recons-
tructed trajectories can quickly converge in less thantenations.

e This thesis develops a new iterative approach to make thaubeof travel times.
An inner loop and an outer loop form the whole iterative appfo The inner loop
and outer loop work together and enable the convergenceetisgstimation within
tens of iterations and as a result more accurate speed &stiroan be made out of
travel times only.

e It uses the Bayesian rule and order statistics to establespribbabilistic relation-
ship between speeds and sample flow in a simple way.

¢ In the method that fuses speeds, travel times and flow, it cwslboth the itera-
tive approach and linear regression techniques. This rdetbgy provides high
computation efficiency.
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1.4.3 Practical contributions

The methods proposed in this thesis can satisfy many reaHfuirements. For example,
the available data in real life world may only have low resiolus. FCD (Floating Car
Data) data may have low polling rates or may have low positgresolution, and the ca-
meras for travel time may be far away from each other. Sonsesiatrce has its particular
attributes. For example, the speed measurements from let@gctdrs have considerable
biases. This thesis aims to use these real-life data antetdek practical challenges in
them. The contributions are listed as below:

e It was difficult for previous methods to use travel times fpeed estimation, or
particular for the travel times from far spaced cameras.prbposed method ‘PIS-
CIT’ (Piece-wise Inverse Speed Correction by using Individuavel-time) is able
to fuse local traffic speeds and travel times so that muchiéssed traffic speed
estimation can be achieved. This proposed method can esslyravel times of
larger intervals and can reduce the error in local speed une@ents by a few
times.

e When travel times are the only data source available, theqarevnethods that
use it for speed estimation lead to considerable bias. Bupoysosed method
‘TravRes’ in Chapte6 is very useful to reconstruct accurate individual trajeet®
and therefore can achieve more accurate speed estimattm.adcuracy can be
improved by about two times.

e Mobile phone tracking data in cell levels were not used fghkiesolution speed
estimation, but they exist in large quantities. The prodo$#owRes’ method
in Chapter7 is able to use this low-resolution positioning data to eatartraffic
speeds and further give the magnitude on estimation erfog. iiagnitude on es-
timation error can provide the user with the confidence atidhiéty on traffic
speeds and travel times. This method can also easily bededdn be applicable
in network-wide speed estimation.

e Fusing local speeds, flow and travel times in a simple framlkevgohighly deman-
ded in practical applications but was always a challengee fioposed method
‘ITSF (Integrated algorithm for fusingravel times, localSpeed andFlow) in
Chapter8 is able to estimate both speeds and density by fusing |laaffictspeeds,
flow and travel times through the data-data consistencyoggpr In comparison
with the result from the single data source—biased loopdgehis method can
improve the accuracy by up to 10 times.
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1.5 Thesis Outline

Below is the brief outline of this thesis. Chapters an introduction, which gives the
background, research scope, research objectives and onanibations. Chapte? dis-
cusses the characteristics of traffic data. Chapmesents the state-of-the-art on traffic
data fusion. Chapte4 proposes a data-data consistency approach. Chapté; 7
and 8 proposes four data fusion algorithms for different purgos®mong them, Chap-
ter5, 6 mainly use physics lawpeed * time = distance; Chapter7 uses physical law
density = speed = flow; Chapter8 uses both laws. Chapt®rfurther discusses appli-
cations of the proposed methods and proposes a possibba fluamework. ChaptetO
concludes this thesis. Figute?illustrates the layout of this thesis.

1: Introdution ‘

v

2: Characteristics of traffic
data

3: State-of-the-art on traffic
data fusion

4: Towards a new approach
for traffic data fusion:
Data-data consistency

\ y
5: Fusion of travel time 7: Fusion of low-resolution
and local speed positioning data

'

6: General Fusion
Method on travel time

v
Used physics law: 8: Integrated fusion of Used physics law:
Speed*Time=Distance | travel time, speed and flow Speed*Density=Flow

L

9: Data fusion framework

'

10: Conclusions

Figure 1.2: The Layout of this thesis



Chapter 2

Traffic data collection and importance
of data fusion

2.1 Introduction

This chapter will give the definitions of traffic variablestims thesis, mainly traffic flow,
speeds and density. It also introduces the mainly usedctiddtia collection techniques
and data characteristics. We will establish the basic kedgé and concepts about traffic
data and their characteristics. In addition, we will alsd timat data fusion techniques are
indeed important in order to make use of the data.

Our focus is the macroscopic level, in which traffic is in aggl to fluid or gas, des-
cribed as a continuum. First we give the definitions of the tnmaportant macroscopic
variables, such as flow, speed, density, etc. We use Edi@#stam (Edie (1963) to de-
fine these variables. Following that, we will talk about tlaedcollection techniques, and
characteristics of different data sources. In the end, vilsswinmarize and conclude this
chapter.

2.2 Definitions of basic traffic variables

The basic macroscopic traffic variables used to describaffctistate include flowy
(veh/h), speed> (km/h) and vehicular density (veh/km). Since traffic evolves over
time-space region, the definitions of the variables noynadpend on the observation
approach.
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2.2.1 generalized variables with Edie definition

A Space
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Segment 5
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Segment 4
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x1

Segment 1 Time

XO A a S :
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Figure 2.1: Trajectories in gridded time-space domain

Edie(1963 gives general definitions of these variables from persgeof vehicle trajec-
tories. Figure2.1shows vehicle trajectories in a time-space domain. Acogrth Edie’s
definition, the traffic characteristics in the shaded regioRigure2.1are given by

Flow: ¢(A,) = dﬁf”l) (2.1)
Density:  p(A,) = t&"’) (2.2)
Speed: v(A,) = ?éﬁ")) (2.3)

where A,, can actually represent an arbitrary time-space region.ufnllustration, it is
the shaded regiofA,, : © € (z9,23) t € (t3,t4)}, d(A,) = > d; is the total distance
traveled by all vehicles in regioA,,, t(A,) = >t is the total travel time spent by all
these vehicles in regiod,,, and|A,,| is the area of regionl,,. Based on such defini-
tions, each quantity depicts traffic states over a certeie-$pace region, which make it
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convenient and neat to represent traffic evolution over ame space. In particulaw,is
the so-calledime-spacanean speed, which is a primary input to compute travel times.
Combining Equationg.1, 2.2and?2.3 these variable are related to one another by

q=pv (2.4)

Traffic-flow characteristics such as flow, speed and denséy&importance to traffic
operations and management. Flow is a direct measure otttiafbughput, density is the
most important variable for many of macroscopic traffic nisdand (time-space mean)
speed determine travel times. N§(2007) suggests, successful applications in Intelligent
Transport System call for a solution that is able to deteertinese characteristics by using
all kind of traffic sensors and the same time is able to pres#rg basic relationship

(g = pv).

2.2.2 Eulerian and Lagrangian measurements

Also local and instantaneous traffic variables can be deficedrding to Edie’s definition.
As already seen above, the generalized traffic variabledediieed in a certain time-space
region. If the time interval for this region becomes very 8nmhbe generalized variables
are simplified to instantaneous variables. If the spaceviakdor this region becomes
very small, they are simplified to local variables.

In order to estimate the traffic variables, the traffic measwents are needed. These mea-
surements can be categorized into Eulerian measuremahtsigrangian measurements.
Eulerian measurements can be further classified into lowsthnt and time-space measu-
rements. Lagrangian measurements are typically repes$égtvehicle trajectories. The
categorization can be seen in TaBld. In the ensuing, we will define these traffic flow
measurements.

Table 2.1: Taxonomy of traffic measurements

Measurement types Sub-types Examples
time-space measurementsadar measurements
Eulerian measurements | local measurements data from loop detectors
instant measurements | traffic image
. complete vehicle trajectories
Lagrangian measurements :
incomplete travel times from camera

Local Measurements.Local measurements are the measurements which meastie traf
in a time-space region which space interval becomes extyesn@all. They refer point
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Figure 2.2: Illustration of local measurements

observations on a road. Local flows represent the numbertitlesn passing a certain
pointx during a periodl.
(2.5)

Local speed can be expressed in time-mean speed or harrpeeid and local time-mean
speed is

v(x) = w (2.6)
or local harmonic speed .
v(z) = S 1/ (2.7)

Harmonic speed is equal to time-space mean speed undetioasdif homogeneous and
stationary traffic. The local density during periddcannot be directly observed but only
be derived from speeds and flow. The derived local density is

k(z) = () (2.8)

v(x)

Since there are two types of local speeds, there are two tfdesal density which may
be quite different from each other.

Instantaneous Measurements. Instantaneous measurements are the measurements
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which measure traffic condition in a time-space region whiicte-intervals become ex-
tremely small. They give traffic conditions over a road swtf a certain lengthX at
instant timet. They can be taken as a picture captured by a camera at intethe traffic
states are ‘frozen’ at this moment. Instantaneous derssdgfined as:

k(t) = — (2.9)

The space-mean speed over this section at instanttisne

2. vi(t)

n

v(t) = (2.10)
It is worth to mention that; here refers to the speed of vehiclen this road section at
timet. For instantaneous variables, flow cannot be directly olesklbut only derived as

q(t) = k(t) x v(t) (2.11)

In order to achieve the estimation of traffic over a completeetspace region, the time-
space measurements are needed. However, due to the lmitdtimeasurement tech-
niques, only local measurements and instantaneous measuie can be available in
majority of cases. Unfortunately, local measurements cdy rovide the traffic condi-

tions at a certain point, and instantaneous can only prdvatgc conditions at a certain
moment. This makes a challenge in traffic state estimation.

Lagrangian Measurements. Lagrangian measurements are the measurements which
measure an individual fluid parcel (e.g. an individual viias it moves through space
and time. These measurements can plot all the positions widandual parcel through
time. Vehicle trajectories are typically Lagrangian measients as seen in Figuged.

This kind of measurements can be obtained via GPS technologyy tracking devices.
Different from Eulerian measurements, Lagrangian measends reflect how a vehicle
experiences traffic.

In many cases, however, we cannot get a complete vehicbetoay. Instead we can only
know the time spent for a vehicle to travel from one locatoanother. Such travel time
records can also be regarded as Lagrangian measuremeras.c8rresponding trajecto-
ries can not be determined, travel times turn to be incoraplagrangian measurements.
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2.2.3 Issues in computing traffic variables from available data
sources

We want to estimate traffic states under Edie’s definitionictvtare time-space mean
variables. In many cases, however, we can not obtain timeespmean measurements
to cover a complete time-space region. If we want to use loeaEsurements or instant
measurements to estimate the time-space variables, wadaxéend the range of these
measurements. For example, local measurements only prihadraffic states at a certain
point. So we have to assume the traffic is homogeneous in #eegegion around this
point. For instant measurements, we may have to assumenstgtitraffic during an
interval around a certain time instant. The questions areatws the consequence of
making the above assumption? Does any error will involverwéiech assumptions are
made.

Furthermore, for Lagrangian measurements, we cannotrologgaectories for all vehicles
and we can not even get trajectories but travel times inst@he@ question is: how do
these measurements contribute to the estimation of tiraeesgariables?

In the following section, we will look into specific types aétffic data or traffic measure-
ments in real-life world. We will show that there is indeedig fap between time-space
variables and different types of traffic measurements ama, aéhich cause a challenge
for traffic data fusion.

2.3 Traffic data

2.3.1 Brief overview

In the last decades the amount of empirical data becominitabiefor both online and
offline use has steeply increased, particularly in term$iefwiide range of sensor tech-
nologies developed and applied to collect these data. drsdfinsors may range from
inductive loop detectors, radar, microwave, ultrasonitsses to infrared cameras and in-
vehicle GPS/GSM receivers/transmitters (“floating caatjato name a few. Data from
these different sensors (cameras, induction loops, oair=®S/GSM devices) are typi-
cally characterized by different formats, semantics, terapand spatial resolution and
accuracy, availability as a function of location, time amdwumstances. Figur2.5gives
some examples of different sensors and their represemtatia@ time-space plane.

In addition, each of the traffic observation are charaaterizyVan Lint (2004 as shown
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below:

e data semantics (for example: space-mean speeds and tiarespeeds have dif-
ferent semantics, since both of them represents speeds\eitdifferent intrinsic
meanings and levels)

e spatial level of aggregation (for example: distance bebhweductive loop or came-
ras)

e temporal level of aggregation (for example: 1 minute or 5Sutes aggregation)
e availability in terms of frequency (time) and scope (pldo#, route)

e accuracy (expressed as a function of time, place and traiffiditions)

e technical aspects (for example, database format, commtimmcprotocols, etc)
e infrastructure bound or free (for example: roadside vensusar GPS/GSM)

e ownership of data (for example: private or public)

usage cost (for example: equipment cost, installation ceaintenance cost, etc)

Although data from traffic sensors come in many forms andities| they can essentially
be subdivided along two dimensions. The first relates to 8patio-temporal semantics,
that is, do the data represent local traffic quantities @peme headway(s), etc) or do
the data reflect quantities over space (journey speed, $pesd, instantaneous speed,
time-space mean speed, travel times, trajectories). Ttwnderelates to the degree of
aggregation, where data may represent an aggregate ogawevar fixed time periods
(e.g. 1 minute aggregate flows or averaged speeds), or a& smght (vehicle passage,
travel time, full trajectory). Tabl@.2 presents an overview of this classification with a
few examples. The main consequence for fusing these fundaityedifferent data is that
these data need to be aligned over space and time such thahveenploy mathematical
and statistical models to average, filter and combine theémone consistent picture
(space-time map) of the traffic conditions.

A comprehensive overview of traffic data collection systeas be found inVesterman
(1995; Michalopoulos and Hourdaki@001). Next, more attention is paid to the data
types that concern this thesis.
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Figure 2.5: Examples of some traffic data and their sources

Table 2.2: Classification of data from traffic sensors with s@xamples.

Event-based Aggregate
Local vehicle passage speed, loop flow
low-resolution FCD, etc loop speed, etc
Spatial AVI travel time, time-space mean speed,

journey speed, etc mean travel time, etc
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2.3.2 Loop data

The most common data available for traffic state estimatmmecfrom (dual) loop de-
tectors. In the Netherlands for example, the main freeways lan inductive loop about
every 500 meters. These loop detectors can provide speeslireezents and flow mea-
sures at the exact locations where they are installed. Tdetaeare presented in aggrega-
ted values for a time period ranging from 30 seconds to 10 remuAlthough the speed

Car 1: 30km/h
Car 2: 20km/h
Car 3: 10km/h

Average Travel time: TT = 3.6min/km

V_space_mean = 16.3km/h

V_time_mean = 20km/h
(18%>space mean)

Figure 2.6: lllustration of vehicles traveling around a grroad to explain the
consequence when time-mean speeds are used.

measurements have errors withiyh for ordinary vehicles, the time-mean speeds stored
in a collection system will make a considerable bias for dgrestimation and travel time
estimation. Another type of speed measures are calleddpaee mean speeds. They
represent the journey speeds with which vehicles covertaineoad stretch. If we want

to get a correct estimate of travel time, the space mean sp@edrequired. It is also
true for traffic density estimation. The following exampleowss the difference between
time-mean speeds and space-mean ones.

Figure 2.6 shows a one-kilometer long ring road on which there are thege running
with constant speeds 10km/h, 20km/h and 30km/h respegtiveisuming that the three
cars run on the ring road for only once, it can be deduced lieatravel times for them to
cover this road stretch correspondltam/10km/h = 6min, 1km/20km/h = 3min and
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1km/30km/h = 2min. The average travel time {6 + 3 4 2)/3 = 3.67min. However, if
one loop detector is placed on this road and aggregates théadavery 6 minutes, then
the time-mean speed is 20km/h. As a result, the estimateel time from time-mean
speed turns out to be 3 minutes. In contrast, the space-npegadl svill exactly lead to
travel time estimates of 3.67 minutes.

- Comparison of speeds Computed densities, 10s Computed densities, 120s
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Figure 2.7: The impact of difference between time mean anchbaic mean speedteft)
average speed difference; (middle) difference in density, 10 seegggsgation; (right)
difference in density, 120 seconds aggregation (fikmaoop et al.(2007)

Let v depict the so-calledpace-measpeedvg, i.e. the arithmetic average of the speeds
of vehicles present on the road sectioof interest (with length.,.) at some time instarit
With loop detectors along, this speed can be approximated by the ld@aimonicmean
speedv,,, that is

Vg R Uy =<V >py= (212)

L,
1 1
N2l
KA

The approximation inZ.12) is exact in the case that road stretch is very short and
speeds are constant over the region. The local arithmatisirfgoly time) mean speed

v, =< v >p= % > v; provides a biased approximation of the space mean, due to the
fact that in a time sampl&aster observations are over represented. That this bias is si-
gnificant, specifically under congested (low-speed) comithas been demonstrated for
example byTreiber and Helbing2002 for estimating travel times (errors of over 30%),
and byKnoop et al.(2007) for estimating densities, where the resulting errors canmh

up to over 100% as shown in Figu2er. In this figure,q/ < v >, represents the density
estimates derived from harmonic mean speed, gh& v >, respresents the density
estimates derived from time-mean speed. Since harmonio sped is the approxima-
tion of space-mean speed, so this figure also implicatedffieeethce between time-mean
speed and space-mean speed.
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Figure 2.8: The accumulated traffic counts from loop detect®he actual curve for
accumulated counts may cross each other due to accumulated e

Apart from speed measures, loop detectors are able to deamumber of passing ve-
hicles during a certain interval. The counts lead to esesaf flowq, and they are also
quite reliable. Theoretically, the accumulated vehiclarde may tell travel time and ve-
hicle density (or vehicle number) on a closed road sectidwéxen two consecutive loop
detectors as shown in Figu&8. In this figure, N,(¢) and N,(t) are the accumulated
vehicle counts from loop A and loop B respectively. Given itigal condition that no
vehicle is on the road sectioN (t) = N,(t) — Ny(t) is the number of vehicle on this
road section. Another estimal&’(¢) under the condition thav,(¢) = N,(t + 7T"), can
be taken as the average travel time from loop A to B. These astsrare reliable and
accurate if loop detectors made no errors in counting vesicl

However, correct estimates can not be obtained in reality,td error accumulation. In
the above example, the errors M),(¢) and N,(¢) are accumulated with the time We
made an empirical study of one-day data on a one-kilometgioseof highway A13 in
Netherlands. The data was from Regionlab-Delft which stttegraffic data in Zuid-
Holland region. With these data, it was found, during theqaefrom 6:00 to 20:00,
the total number of inflow vehicles was 64823 counted by th&trepm loop detector
(loop A) on the section, and that the number of outflow velicleas 71000 counted
by the downstream loop detector (loop B). The difference betwinflowing traffic and
outflowing traffic is accumulated up to -6177. According tbiede conservation law, one
explanation is that there are thousand of vehicles witherotie-kilometer section, which
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Is impossible in reality. The other explanation is that thepl detectors have considerable
errors in accumulated counting. For this reason, the cunmvadcumulated vehicle counts
may cross each other as illustrated in Fig2r@

2.3.3 Travel time and trajectory data

In this thesis, travel time is given a particular attenti@msidering that more and more
travel time information becomes available. Travel timesloa measured by means of for
example automated vehicle identification (AVI) systemsiclvhdentify vehicles at two
consecutive locations A and B at time instah{sand¢z and deduce thesalizedtravel
time afterwards wit'T,. = t g — t 4. AVI systems may employ cameras and license plate
detection technology, or may match vehicles through indadbotprints, tolling tags or
otherwise. Methodologically, the most important charastes of travel time are that:

e Travel time can only be measured for realized trips, i.eraftvehicle has finished
it. The so-callecctualtravel timeT'T, of a vehicle departing at the current moment
must hence be predicted per definition (Fig2r8).

e Travel time (or its reciprocal average journey speed= L,/TT,) is an average
representation of the traffic conditions (e.g. the spdedr)) a vehicle encountered
during its trip. Figure2.9illustrates this by superimposing vehicle trajectories on
a speed contour map. This implies that the relationship éetvthis travel time
and the underlying traffic conditions (the speed contounugh which a vehicle
has ‘traversed’ id : . It is possible to estimate travel time from local speeds
(Van Lint and Van der Zijpg§2003; Ni and Wang(2008), but conversely, it is very
difficult to estimate local speeds accurately from travalets, unless other sources
of information are available.

By sampling data (location and/or speed) from instrumengdcles (e.g. through GPS
or GSM) at consecutive time instants, also vehicle trajgesacan be measured. Clearly,
whenall vehicle trajectories are sampled at high frequencies réiictstate (prevailing
speeds, flows, densities, travel times, etc) can be conhptduced from these so-called
floating car data(FCD). However, it is estimated at the end of 2009 that the fpatien
rate of real-time traffic information and GPS enabled vedsalvhich actually transmit
their location and speed to their service provider is in thgeo of one percent or less
of the total amount of vehicles driving on the Dutch freewaykerefore, at penetration
rates far below 100%, FCD at best provide a proxy for averagedspn the road segments
from which these data are collected.
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Figure 2.9: Relationship between vehicle trajectories (the thick solid and dotted line$ieda
and actual travel timeX'7, and1'T,), average journey speed,() and the underlying speeds
(represented by a speed contour plot, where dark areas représeispeeds)

In addition, the availability of communication resourcestricts the access to floating
car data. FCD can hardly be used for traffic state estimatidoréde¢hey are sent to in-
formation center via certain communication tunnels antectéd. The simple way is to
use wireless networks. When in-car equipments sends relefarmation via wireless
networks, a certain amount of communication resources twalse consumed. If trajec-
tory data are required to be available, vehicles must repofocation at a quite high
polling rate (once a few seconds). In that case, more conuation resources will be
consumed due to more information transmission or more &egjcommunication. This
may bring about high cost. In addition to high cost, thereadse physical limits, since
the frequency band-width for civil communication is quitaited and precious. For this
reason, this thesis tends to focus on FCD of low polling rates€ for one minute).

Nonetheless, with the in-car ICT revolution, it is reasopablassume that more floating
car data will become available in the coming years. But foirestion of flows or den-
sities (required for many traffic management purposes ssiatt@rsection control, ramp
metering, but also for forecasting traffic information)@tiflocal) data sources rather than
travel time or trajectory samples are necessary.
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Figure 2.10: An example of low-resolution positioning datarf wireless
communication networks

2.3.4 Low-resolution positioning data

Probe vehicles with global positioning systems (GPS) cavige accurate positions
which enable spatial-average speed estimation. Howeware probe vehicles cannot
provide accurate positions but can provide some locat@tific information when and
where they are located at the segment or cell level. Thesedeswlution positioning data
with segment or cell level accuracy cannot provide the dsgacomponent that is ne-
cessary for traffic speed estimation, but they can be easlyjable in large quantities in
wireless networks.

As shown in Figure2.10 such kind of data don't provide exact geographical pas#io
but point to a location area-a cell or a road segment. When alengone in a vehicle
sends beacon signals periodically, the cellular networ&saale to trace the phone and
record the cell where it is located. Although traffic speeais ©ot be directly estimated
with these data, the traffic flow may be indicated by these. datathey are essentially
sampled flow

Assuming that beacon signal transmission can be one way@natsat a frequency on
the order of minutes, the communication is relatively sien@hd low cost. In addition,
low-resolution positioning data are more widely availalslgerms of time and space,
since devices as possible providers (e. g. mobile phoneteds, iPhones, etc) are being
widely used in communication networks and are becomingeasingly popular. It can
be seen that the simplicity and wide availability of lowgkgion positioning data may
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have potential for traffic estimation in large networks.

2.3.5 Summary

The below table.3 gives a summary of data which are mainly used in this thesis.

Table 2.3: Summary of data characteristics

Data sources Features
Speed measuret Loop detectors can provide the speed measurements onlyrtatnce
ments by loop points on a road (local speeds). They cannot provide thedspea-
surements over a road section. Normally loop detectorseggig the
speed measurements every 20 seconds or 1 minute, which teads
over-representation of high speed measurements. Theriferspeed
measurements from loop detectors have structural dewmi&itoon the
ground-truth speeds. The deviation is relatively biggeemwthe speed

is lower.
Flow measu-| Loop detectors can count the vehicles which pass and aggrégam
rements by | every a certain period of time. In contrast to loop speed oreasents,
loop loop flow measurements have much less bias. But if these neeasur

ments are used to estimate the total flow during a long pefiidicne,
there are accumulated errors. For this reason, one can plgt\aghicle
conservation law on loop detectors for density estimation.

AVI data (travel | AVI systems provide the travel times from location A to IdoatB.
time data) The data may come from cameras that capture vehicle platesake
comparison, or from in-car GPS devices which may reporoation at
certain intervals. Less-biased journey speeds can beedfriom these
data. If a vehicle report its locations at short intervalghkresolution
trajectory can be constructed. But it will cost more commatian re-
sources. If it reports the location at long intervals, théadzan not
provide the details on traffic conditions but journey speed
low-resolution Low-resolution positioning data may come from cell phonavoeks.
positioning data | The positioning data cannot provide the exact position Inlit tell in
which area the vehicle is. Therefore it is hard to reconstagcurate
trajectory or obtain the journey speeds. But such data maydiable
in large quantities. It is quite beneficial if they can be usmdtraffic
state estimation.
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2.4 Conclusion

This chapter mainly gives basic concepts about traffic sydtem macroscopic pers-
pectives. The major traffic variables on macroscopic levelspeed, flow and density.
Furthermore, we use Edie’s definition to define these vaggalEdie’s definition can ea-
sily represents the traffic states in time-space domain andestablish clear and solid
relationship between the variables. For these reasonsgdsp#ow and density in terms
of time-space mean are our focus and output from the estimato

In general, there are Eulerian measurements and Lagramgiasurements for traffic va-
riable estimation. However, not all the measurements fimasion are simply time-space
ones. They could be local or instant measurements. So wheisevihese measurements
for estimation of time-space variables, we often have toerskme assumptions. For
example, we may have to assume that the local speeds frondiiaan represent the
speeds over a large space. These assumptions, howevegaay iconsiderable errors.

In this chapter, we also have a close look at very commondnai@asurements and traffic
data. Loop data (speed and flow measures), travel times fkday&tems, low-resolution
positioning data (e.g. cell-phone data) are the major gaiestthat this thesis studies, for
these types of data are the main data types that traffic diézibon systems can provide
or will provide in large quantities.

Seen from this chapter, each type of data can partially desvraffic states. However, the
estimates may be unreliable, inaccurate or have limited-space coverage. So we need
data fusion techniques to improve this. The next chaptetésbf-the-art” will show how
the already-existing data fusion methods use the aboveioned traffic data to estimate
traffic states. However, those fusion methods can fuse @mtgio types of data but under
quite a few assumptions. The estimation results may not bealde. For example,
the bias in measurements may not be substantially remowvadthis reason, this thesis
proposes a new data fusion approach which is able to fuse tyyees of data, and only
needs very limited assumptions. Better estimations of tratfites can be achieved.
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Chapter 3

The state-of-the-art in traffic data
fusion

The previous chapter gave the fundamental concepts aladiit ttata and traffic systems
on macroscopic level. With this knowledge in mind, we begintak about traffic data
fusion techniques. This chapter will focus on the staté¢hefart in traffic data fusion.
It will firstly give a brief introduction to data fusion anddhraffic data fusion. Then
it will present some classic methods or algorithms which avke to fuse traffic data
with different characteristics from different sources tsng various traffic models and
assimilation tools. Following that, we we reveal some drasis of these methods and
the challenges that are still left un-conquered. Thesdeages lead to the creation of a
new approach.

3.1 Data fusion and traffic data fusion

3.1.1 Levels on data fusion

Varshney(1997) proposed a simple three-level model for data fusion. Eeecéllhas its
particular function and purpose. Furthermore, the higénelldata fusion is supported by
the result from low level data fusion. Talel shows the main functions and often-used
methods on each level.

The first-level data fusion is targeted at the raw data psisgsand estimates the basic
states of an object. For example, the measurements fromaseadars can be fused to
estimate the states of a flying aircraft, such as its speeggtain, location. The quality
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Table 3.1: Three-level data fusion

Level | Purpose Typically used methods
Level 1 | Processing raw data | State estimation methods (Digital filters, LS es-
timation, EM methods,Kalman filters, Particle

filters, etc)
Level 2 | Deriving features and Classification/inference methods (statistical
patterns pattern recognition, Dempster-Shafer, Baye-

sian methods, Neural Networks, Correlation
Measures, Fuzzy Set Theory, etc)
Level 3 | Making decisions and DSS (Decision Support System) and Expert
detecting events System (Bayesian belief networks, Fuzzy/Al,
etc)

of estimation is determined not only by the accuracy and rermolb measurements but
also by the data fusion techniques. The mainly used methodsvel one are varieties
of digital filters, model-based filters (e.g. Kalman filtersimulation techniques (e.g.
particle filters), etc. The results from this level are therfdation of the higher-level data
fusion.

Level two is aimed to derive features and patterns from tegipus state estimates. Fol-
lowing the previous example, when the speed, direction andtion of an aircraft are
available, further information can be deduced by fusingevextensive information. The
deduced information may contain the flight destination, tifpe of the aircraft, flying
mode (e.g. auto, manual). For this purpose, quite a fewssitatiand inference methods
are used on level two. The common methods are Bayesian metNedsal networks,
regression models, fuzzy logic, etc. It can be seen thatitgand learning processes are
involved in these methods.

Level three can be regarded as a decision level. Data fusiaie former two levels

provide some ‘facts’ concerning the observed object. THases’ may trigger a certain

decision or initiate a chain of events. For example, basetherderived (fused) infor-

mation (flight pattern, speed, height, destination, typeiafraft, etc), military air traffic

control may infer that the plane has been hijacked and tledtifackers are up to no good.
On this level, more human effects are contained and mangsiiNg evaluation and as-
sessment are involved. The common approaches on this ievBIZE (Decision Support
System), Expert System, etc.

From level one to level three, the used data and the resultataf fusion may change
from exact figures to language specification, and the difffanldata fusion increases. In
addition, more and more human effects are involved, whiabdd¢o more uncertainties.
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3.1.2 Traffic data fusion

Also in traffic data fusion, the three-level model providassaful categorization. On the
first level, the used data are collected from varieties dfitraensors (e.g. loop detectors,
floating cars, cameras, etc), and then are fused and tred b basic traffic information
such as speed, density, flow, etc. On level two, traffic ptemhicor incident detection mo-
dels can be established on the above information by usingx@mple Neural Networks.
As a result, some tasks such as traffic state predictiondentidetection can be done
on this level. The results from the two of lower levels maydi¢a traffic decision and
management on level three of data fusion. Fig@ré gives the flow chart of traffic data
processing with different fusion levels. Tal3€l gives the examples for different levels
of data fusion.

Raw traffic data
(GPS, cameras,

loop detectors,etc) Traffic decision
Reliable Traffic
Fusion Level 1 coherent S e 2 patterns, Fusion Level
:> traffic data evidence, |:> usion Level 3
features

Figure 3.1: The flow chart of traffic data processing on déf@rfusion levels

Table 3.2: Examples in three-level traffic data fusion

Level | Purpose Typical examples in traffic
Level 1 | Processing raw data | Basic state estimation (e.g. speed, flow, density)
Level 2 | Deriving features and Queue length,Incident detection,State predic-
patterns tion

Level 3 | Making decisions and Network Management DSS tools
detecting events

Components in traffic data fusion methods

No matter what kind of a method is used in traffic data fusibrconsists of two main
components, a ‘core’ and a ‘shell’, as shown in Figar2

The core represents the physical laws and assumptionsfiic tteeory. The physical
laws, for example, can be the vehicle conservation law. Hsairaptions can be that
the traffic is homogeneous in a certain time-space regioresd laws and assumptions
may lead to essential traffic models and theories, for exanfipst-order traffic models,
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Different types of data \sources

(Input) (Input)
Data X Data'Y

Core: Assumptions
(assumptions in traffic theory)

Shell: Assimilation techniques
(e.g. statistical techniques)

(output)

Figure 3.2: Components in level one—data fusion of raw data

fundamental diagrams, car-following models, lane-chagdiheory, etc. In essence, the
core establishes the connections between data and datbetmeen data and estimated
variables. In addition, physical laws are associated wasumptions though physical
laws are always valid without assumption support. Howexegrtain physical law may
not be used until certain assumptions are given. For exatmae&ehicle conservation law
can be used for density estimation when flow measurementssataned to be correct.
However, due to the accumulated error from flow measuremeatservation law may
not be used for density estimation for a long period.

The shell represents the assimilation techniques, péatlgitsome statistical techniques,
which may be able to combine models and data in statisticgdtymal ways. The shell
‘sticks’ to the core and needs the core to provide certaimrapsons or particular models.
The Kalman filter is a typical example of assimilation tecjud@s. In order to achieve the
optimal estimation, it needs the core to provide a linear ehadd needs the core to give
the assumption of Gaussian distribution in model and measent errors. Seen from this
point of view, the shell cannot be simply separated from the.c They need to work
together to accomplish data fusion.

For traffic data fusion, the total information in data willtr@hange with the processing
techniques. Better technigues may maximize the outputnmdton from the data, and
present the information as true as possible. In the ‘cord, pasumptions may distort
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the true information during the fusion processing. Also emassumptions possibly mean
more restrictions which prevent some types of data beingded. For this reason, less
assumptions are appreciated.

3.2 Assimilation techniques in the first level of traffic
data fusion

This thesis only focuses on the first level of data fusion, thedusion goal is to get more
reliable and accurate traffic state estimates, partigufarlspeed, density and flow. The
assimilation techniques for this goal are given below. @88 show the literature review
of the main data fusion methods

3.2.1 Kalman filters and its variations

The most widely utilized data assimilation technique agaplio traffic state estimation
problems is the Kalman Filter (KF) and/or its many variaidextended and unscented
KF). Kalman filter for data assimilation uses the fact thahynanalytical traffic models
can be expressed in state-space form, that is

xi = f(Xk_1, uk) + Wi (3.1)
Yk = h(Xk) + Vi (32)

In (3.2 k depicts discrete time steps of duration— ¢,_; = At seconds. Equation
(3.1 depicts the process equation also known as state-tr@msijuation, which describes
the dynamics of state, (e.g. density and/or speed) as a functiorxgf; and external
disturbancesy, (for example traffic demand at network boundaries) plus aor éerm

wy, reflecting errors in the process model (e.g. model misfipation, process noises).
Equation 8.2 depicts the observation equation also known as measutergaationh
which relates the system state to measuremgntsThe error termv, depicts errors

in either the measurement modeland/or the measures themselves. The fundamental
diagram of traffic flomg = Q°(p), oru = U¢(p), relating speed or flow to density, is a
good example of such an measurement equatioand« represent the flow and speed
measurements from loop detectors, aneépresents the density variables that need to be
estimated.
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Figure 3.3: Literature review: the state of the art in traffiatd fusion.
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If the above equations represent a linear dynamic systeandh are the linear operators
that can be expressed by matridés and Hy respectively. As a result, the following
equations can be derived:

xx = Fyxx_1 + Brug + wy (33)
Yk = Hixi + vi (3.4)

wherew,, is assumed to be drawn from a zero mean multivariate norratallaition with
covariance)y:

wi ~ N (0, Qx)
andv; is assumed to be a zero mean Gaussian white noise with covala, :
Vi ~~ N(O, Rk)

The initial state, and the noise vectors at each $tep w1, ..., wi, vy ... v} are all
assumed to be mutually independent.

In what follows, let the notatiow,,,,, represent the estimate fat timen given obser-
vations up to, and including at time. The state filter is represented by two variables:
Xy, IS the posteriori state estimate at tirhegiven observations up to and including at
time k; Py, is the posteriori error covariance matrix for the stateneate at timek given
observations up to and including at tirheThe initial conditions are given:

Xolo = Xo, 150|0 = 130 (3.5)

With the initial conditions, a Kalman filter is iterativelxecuted in the two distinct steps:

1. state prediction

Xijk—1 = FrXp—1jp—1 + Brug (3.6)

2. state correction
Xk = Xijo—1 + K (yr — HeXgpe-1) (3.7)

The so-called Kalman gaiK, in (3.7) is computed to make the Kalman filter an optimal
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estimator in terms of least square.
K, = Py HL S, (3.8)

whereS; ! is called innovation covariance or residual. It is worth tention that the
compuation of the inverse of the matrix may be quite timescwoning. The detail can be
seenKalman(1960. It can be informally understood as

uncertainty process model . ,
K, yP %< sensitivity obs. model to state variables

- uncertainty observation model & data
(3.9)

This implies that (a) the more uncertain the data are, themeight is put on the model
predictions and vice versa, and (b) that the KF adjugtsroportionally to the sensitivity
of the observation model to changes in the state variableseXample, under free flow
conditions the relationship between traffic density anddps very weak, which would
imply only small corrections in state variables.] even if the speeds measured by sensors
(vx) differ largely from those predicted by the observation eldl; x;,—,). This intui-
tive structure can be easily explained to traffic operatodsmofessionals using such state
estimation tools. Moreover, the same process and obsenvaitbdel can be subsequently
used for prediction and control purposes, given properigtieds of the boundary condi-
tions (traffic demand, turn fractions and capacity constsaiand estimates of the model
parameters are available.

Extended Kalman Filter. When the dynamic system is nonlinegrand 2 cannot be
expressed by matricds, andH,. However, the system can be linearized by computing
a matrix of partial derivatives (the Jacobian) around theexu estimate. The state
transition and observation matrices become the followawpbians:

Fp, = g—f (3.10)
X X—1)k—1,Uk
oh
H, = = (3.11)

Xk|k—1

Unlike the standard Kalman filter, the Extended Kalman fikerot an optimal estimator
when the process model or observation model is not linedhelinitial estimates of the
state or the process model is not correct, the filter may Qudikerge due to linearization.

Unscented Kalman filters An improvement to the extended Kalman filter led to the
development of the Unscented Kalman filter (UKF), which sa nonlinear filter. In the
UKF, the probability density is approximated by a nonlingansformation of a random
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variable, leading to more accurate results than the fidgromaylor expansion of the
nonlinear functions in the EKF. The approximation utilizeset of sample points, which
guarantees accuracy with the posterior mean and covariartbe second-order for any
nonlinearity. In addition, unlike the EKF, there is no neadhe UKF to calculate the
Jacobian. However, there is a demand for computing many Isgmomts.

Details on KF algorithms and its variations can be found imynzxtbooks (e.gSimon
(2006 ,Speyer and Chun@008). There are a few remarks that can be made on their
applicability of fusing semantically different traffic @atThe key advantage of KF based
state estimation approaches is that they provide a convieansl principled approach to
recursively correct state estimates by balancing the £ worcertainties) in the process
and observation model and in the data.

Application of Kalman filters to traffic data fusion: Many data fusion methods for
traffic state estimation take (Extended) Kalman filter asdé&i assimilation technique.
They differ mainly in data input, data output, traffic modetsassumptions.

Gazis and Knap§1971]) use time-series flow and speed from loop detectors to eima
traffic density. Basic physical laws are commonly used to @xiprate travel time on

a road section, and then Kalman filters are applied to combata and the model.
Szeto and Gazi§l972 estimates traffic density between the two consecutiveddnp
fusing aggregated loop speeds and flow. The traffic modelsedan the vehicle conser-
vation law and speed-density relatiddahi and Trivedi(1973 also uses loop flows and
speeds as input data. This method contains a simpler tradtievhich simply employed
the conservation law, but it is able to estimate both derssity speedGhosh and Knapp
(1978 approximated the space speed over two consecutive loogariply averaging
speeds from the two. As a result, a linear state model cantieved by exploiting the
conservation law. Input being little different from the &bkpanother contribution is repor-
ted inKurkjian et al.(1980 managed to use loop flow and occupancy to estimate traffic
density. The traffic models used in the above methods areofider macroscopic mo-
dels, and the majority of them do not consider any speedigar$ation but only employ
vehicle conservation law.

Since the end of 1970s, people began to use more advandedrtraflels. Almost simul-
taneouslyWillsky et al.(1980 andCremer and Papageorgi¢l081) combined a second-
order macroscopic traffic model and Kalman filter to estimed#fic states (speed, flow
and density) by using loop speed and flow. Particularly, th#i¢ model used by the for-
mer is the Payne model. Following the similar methiddhan and Bortof{1998 propo-
sed a nonlinear sliding mode observer when combining Kalfittenand a second-order
macroscopic model. Also based on the Payne mddeier and Wehlar§2001) proposed
a new scheme called section-wise modeling of traffic flow Whielped to approximate
the boundary variables between the sections. Exploitirtgeaxtent possible the above
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approachWang and Papageorgidq@005 proposed a general approach to the real-time
estimation of the complete traffic state on freeway stretcivnich was based on an ex-
tended Kalman filter and a second-order traffic model. Inineshod, the important but
unknown model parameters such as free speed, criticaltgdersi exponent can be on-
line estimated. The further study and applications werevsha their later publications
asWang et al(2006, Wang et al(2008, Wang et al(2009.

In addition to loop data, some other types of data also candedfby employing a Kal-
man filter and its variationsChu et al.(2005 estimated traffic density and travel-time
by fusing loop flow and probe car travel times over a sectiorthis method, the traffic
inside a section is assumed to be homogeneous, and prolmtegghiovide travel-times
over the section that are used as measurements in Equai)nThe assimilation tech-
nigue is adaptive Kalman filterindgderrera and Baye(2007) estimated density by fusing
loop data and vehicle trajectory from mobile sensors. lir thethods, a first-order traffic
model is employed for process model. Loop flow is used as Emeneasurement and
the vehicle trajectory as Lagrangian measurement fromiwlbical density is computed.

Figure3.4 gives an example to show the performance of Extended Kalritan fit can
be found that the results become smoother after applying EKF

180 T T

T
speed --------
speed estimation
160 - density ——— -
density estimation ---------

140 | 1

120 | 14y
100 [
80
60

40

20 + ,‘,‘-*' G,L,,ug;.:— |
| g

Sa s . N
Favrprdifymn st i raiinr i, o L
s % P G

s —Jl_—""‘
1 L T 1 1 1 L 1 L 1

0
7:00 AM 8:00 AM 9:00 AM 10:00 AM  11:00 AM  12:00 AM 1:00 PM

Figure 3.4: The estimation result by using an Extended Kalfitean (Adapted
from:Wang and Papageorgio2005).
Used Data: Loop speed and flow. Model: Second-order traffidegho

A comparison of an EKF and an UKF for traffic state estimatisnnvestigated by
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Hegyi et al.(2006 using simulated loop data. The result is shown in T&82in which
Jo, Ju, Jpar YEPresent the root mean square relative errors on dengégdsand model
parameter estimation, respectively. This research reastime conclusions as follows.
Although the unscented Kalman filter has advantage thabpgmates the state noise dis-
tribution with higher precision than the EKF, its perfornsarwas nearly equal (slightly
better) to that of the extended Kalman filter. Also they findtttewer detectors result in
larger state estimation errors, but have no effect on thampeter estimation error.

Table 3.3: The performance of an EKF and an UKF for differenedtdr configuration
for joint estimation. The result is froidegyi et al.(2006

filter type | flow loop | speed loop J, Jy Jpar
locations locations

EKF 1,2,3,4 1,2,3,4 0.054| 0.055| 0.035
UKF 1,2,3,4 1,2,3,4 0.049| 0.051| 0.042
EKF 1,2,3 1,2,3 0.071| 0.080| 0.034
UKF 1,2,3 1,2,3 0.066| 0.076| 0.041
EKF 2,3 2,3 0.112| 0.101| 0.039
UKF 2,3 2,3 0.114| 0.110| 0.041

3.2.2 Particle filters

Both EKF and UKF assume Gaussian distributions of the prawfabg noise in Equation
3.3 observation in EquatioB.4. These methods fail when the distributions are heavily
skewed, bimodal or multimodal. In order to handle any aabytrdistribution, particle
filters are proposed as an alternatives to the extended Kadlitter and Unscented Kal-
man filter when it comes to non-Gaussian distributions. i€tarfilters are simulation-
based techniques, which are able to approach Bayesian ¢ptstraates with sufficient
samples.

Sampling importance resampling (SIR) is a very commonly useldnique and the ori-
ginal particle filtering algorithm proposed I&yordon et al(1993. Like Kalman filters,
Particle filters have also two phases: prediction from tle¥ipus state and correction by
the current measurements. In the prediction stayparticles ofml(f) are sampled from
p(xk]:z:,(f_)l), WthEp(:Ck|x;L_)l) can by described by the process Equad For each
samplerﬁf), there is a confidence weigm‘f). The weight can be simply updated by the
measuremeny, as follows:

" = wi p(yelz”) (3.12)

Wherep(yk|x,(f)) can be described by the observation Equaiégh Resampling is used
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to avoid the problem of degeneracy of the algorithm, thadweiding the situation that
all but one of the importance weights are close to zero. Tigisrghm approximates the
filtering distributionp(z|yo, . . ., yx) by a weighted set of th€ particles.

ml(cL) ~ p(@klyo, - -, k) (3.13)

For state estimation, the expectation of process fungtienis approximated as a weigh-
ted average

.
/ Fa)p(@lyo, - ye)dog =y w f(af?) (3.14)
L=1

The state estimate is

P
=y w® f(a) (3.15)
L=1

Similar to Kalman filters, particle filters need a process at@hd an observation model.
The process model can be based on various traffic modelsfifstgorder traffic model)
and the observation model depends on various measureneegitddop measurement).
Within the framework of particle filterdlihaylova et al.(2007) use loop speed and flow
to estimate the traffic states (speed, flow and density). Argikorder macroscopic traffic
model is employed to establish process equations and @tserequationsCheng et al.
(2006 also use particle filters to estimate traffic states frorhebne network data. In
wireless communication networks, each base station isnsgpe for the communication
service within a certain area known as cell. When a cell phooeesifrom one service
cell to another service cell, the communication servicetlier cell phone will be hand
over from one base station to another. The base stationd®tioe switching times so
that travel time for a vehicle can be known. In this paperhsatand-off technique is
aimed to achieve the section-speed and traffic flow with knpvabe penetration rates
given. Both a first-order traffic model and a second-order saaused, respectively for
comparison. The estimated states are flow and speed.

There are some remarks on Particle filters. In Particle $iltine true posterior probability
distribution can be well approximated only when there augh particles. Therefore, if
the assumptions for Kalman filters can be guaranteed, naleditters can outperform

them. In addition, computational cost for particle filtessquite high compared to the
Kalman filter and its variations.

Figure3.5gives an example to show the performance of a particle flitshows that the
results become smoother when applying the particle filter.
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Figure 3.5: The estimation result by using Particle filtefglapted fromMihaylova et al.
(2007). Used Data: Loop speed and loop flow. Model: Second-omddfi¢ model.
Solid lines represent the estimates and dotted lines reptdbe measurements

3.2.3 Linear programming

Kalman filters or particle filters iteratively process theadby using current data and the
data one time-step before the current step. One of biggeantafes of Kalman filters
Is that the computational and memory cost can be very lowh Wi development of the
computer technology, large memory devices are widely albg| so that a large amount
of data can be processed in a batch. Thus we can use the teehtilee Linear program-
ming to input a lot of historical data to estimate the curiates. Linear programming
is a technique for the optimization of a linear objectivedtion, subject to linear equa-
lity and linear inequality constraints. Linear programmican be employed when the
problems can be expressed in canonical form:

Minimize (Maximize) c’x (3.16)
Subjectto Ax <b (3.17)

When using Linear Programming (or LP in abbreviation) foffitestate estimation, the
objective function is aimed at traffic states (e.g. max or tranel times), and the linear
inequality constraints may be given by an appropriate coatimn of traffic models and
data. InClaudel and Baye(2008, Claudel et al(2009, Linear Programming is used to
estimate traffic density and travel time from loop flow andl@drajectory. The former
one focuses on the theoretical part and latter one focuséiseoapplication part. The
solution of their LP model yields two objective values: mmail traffic density and maxi-

mal traffic density, that is the patt x, which further returns the maximal travel time and
minimal travel time.

Minimize density or Maximize density ¢’ x (3.18)
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They use the Moskowitz function to describe both vehiclgett@ry and loop flow data.
With the help of Moskowitz function, the vehicle trajectagd loop flow data can esta-
blish an inequality, that is:

Trajectory data and loop data subjecttdx < b (3.19)

The Moskowitz functiorM(¢, z) (also known as cumulative number of vehicle function)
represents the number of the last vehicle to pass an obs#rigrationz before timet,
and encodes the distribution of the vehicles on the highwal aimes. The loop flow
(loop counts from downstream and upstream) as well vehigjedtory can be expressed
by Moskowitz function as below:

o M(t,z,): Inflow of vehicles at upstream loop
o M(t,z,u): Outflow of vehicles at downstream loop

o {(t,x;(t))M(t,x;(t)) = M;}: The curve(t, xz;(t)) approximates the trajectory of
vehicle labeledV,.

In addition, the partial differential equation from consaion of vehicles

Op(t, x) N oq(t, )

— 2
ot ox 0 (3.20)
can be transformed by Moskwitz function to
OM(t, x) OM(t, x)
_ Iy 21
5 ¢(=—5 —)=0 (3.21)

It is worth to note thaty(—aMa—%w)) is the function ofaMa—(xm. As a result, the Moskowitz

function can link loop counts, vehicle trajectory and fiostier traffic model all together.
Also it is assumed that cars do not overtake each other. Atherin (data, model and
assumptions) finally constitute the linear inequality ¢aaisats in form of Ax < b (see
Claudel and Baye1f2008 for details). Taking the densith as the objective function
c’'x, Linear Programming computes an associated possible & rdgnsity and further
traces back to the possible range of travel tif¥€E,,;,,, TT....] for all the vehicles.

Figure3.6 gives an example to show the performance of Linear Progragnapplied in
traffic data fusion.
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Figure 3.6: The estimated travel times by using Linear Pamgming Claudel et al.
(2009). Used Data: Loop flow (counts) and trajectories. Modelstfiorder traffic
model. Solid lines represent the estimates and dots représe measurements

3.2.4 Treiber filter

Treiber filter is originally designed for processing sindita source and reconstruct the
spatio-temporal traffic map. It is proposed bseiber and Helbind2002 and is based
on the spatio-temporal characteristics, that is, pertigbs in traffic travel along the so-
called characteristics (refer to Equati®25 with (approximately) constant characteristic
speeds.,,, in congestion, andy,.. under free flow conditions.

Single data source
The reconstructed quantityat (¢, z) is described as follows:

2(t,x) = w(t, ) zeong (t, ) + (L — w(t, ) 2prec(t, T)) (3.22)

Equation 8.22 shows that the reconstruction involves a weighted contimnausing
two reconstructions of the signal. The first assumes coedésaffic operations (i.e.
Zeong(t, x)) @and the second free flow conditions (ig,..(¢, x)). To reconstruct(¢, z) on
the basis of data measured at some time and locétion ), the time and space dependent
weights are computed as follows. First define the below fanst
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¢cong(t7x) = QbO (t - * ,ZL’) , and

Ceong
B rec(t, ) = o (t S x) (3.23)
Cfree
with
¢o(t,x) = exp (—M - m) (3.24)
o T

wheres andr are parameters of the filter which describe the width and winelow size
of the “influence” region aroung;, z;). The value of the weights of a data point, x;)
is given by

éong(t .Z') = ¢cong(xi — X, t; — t), and
ﬁ}ree(ta l’) = ¢free(xi — T, ti - t) (325)

The weights describe the importance of the measurementityuanat the time-space
point (¢;, z;) for the value of the quantity (to be estimated or reconstructed)(atr).
Loosely speaking, the weight is determined by the distaeteden the pointt;, ;) and
(t, ) considering the speed at which information moves througtiltdw under free flow
or congested conditions. To determine the value of the gyarit, ) on the basis of the
congested and the free flow filter, the weights are used assi|

Zi ﬁéong(t> .I')Zl

Zcong(tvx) = ﬁ (t ZIJ) ’ and
cong\ by
ey ta 7
relt, 1) = Ebf f’"eé x"’;)z (3.26)

Where the normalization factors are given by

ﬁcong(ta ZI}) = Zz 62()”9@, l’), and
Brree(t,@) = D Bpreelt, ) (3.27)
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An important filter design choice is the weight facto(t, z) used in eq. §.22. This
factor describes whether the conditiongdne) are dictated by free flow conditions or by
congested conditions or a combination of both. Treiber aelthidg Treiber and Helbing
(2002 propose to use speed data for this purpose and use the ifudj@xpression for
this weight factor:

U)(t, LL') = W(Zcong(ta $), Zfree(t7 Jj))

= % [1 + tanh (%V(M)H (3.28)
with:
V*(t,x) = min (Veong(t, ©), Viree(t, 7)) (3.29)

whereV,,,,(t,z) andV,..(t, z) are calculated witl3.26 V. depicts a critical speed mar-
king the transition from free to congested flow ah#” a bandwidth around it. Note that
the functions 8.28 and @.29 are arbitrary filter design choices. Any crisp, smooth or
even fuzzy function which is able to discriminate betweesefflowing and congested
traffic operations based on whatever data is available {émscupancy, speed) would
in principle do.

Multi data source

Van Lint and Hoogendoorf2009 extend the Treiber filter, so that it can process the multi

data source of the same type. L&V (¢, v) denote the considered traffic value as recons-

tructed from data sourcg To fuse data from multiple data sources, we propose the
following linear combination:

55 a0t 2)90) (¢, 2)20 (1, 2)

z(t,x) = S a0 (1, 2)90(t,2) (3.30)
where the second dynamic weightt) (¢, x) is defined by:
oV (t,x) = w P (t, ) - 60}, (¢, )

+ (1= w(t,2)) - o7 (t,7) (3.31)

The first (dynamic) weight factor?) (¢, z) in (3.30 can be interpreted as a dynamic
indicator of thereliability of the data from sourcg at (¢, z) and could for example be

determined on the basis of a priori estimates of the measmeatcuracy of data source
j. For induction loops, where measurements become incigggginreliable as speeds
decrease, it makes sense thét (¢, z) is proportional to speed. Although also location
tracking equipment (e.g. GPS) is likely to make relativ@esproportional to speeds, the
reliability of such FCD measurements in terms of speeds wmadt probably still be
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higher than that of induction loops.

The hyperbolic tangent function in equatidhZ8) is used to calculate this weight, which

reads
1

OY [1 + p)(1 — wi (¢, z))]

oV (t, ) = (3.32)

In (3.32 @(()j) represents the standard deviation of the measurementaérdata source
j at low speeds (under congestion), dhd- u(j)]@(()j) the standard deviation under free-
flowing conditions. For induction Ioop@éj) is typically in the order of 4 km/h, and"”)
aroundl% (yielding a standard deviation of around 10 km/h under fteg-conditions).

Figure3.7 gives an example to show the performance of Treiber filter.

u,, (1500m) u,, (1500m) + 2% FCD

1 90
. ! 1 80
| g 70

2000 4000 6000 8000 10000 12000 14000 16000 18
ts] ts]

2000 4000 6000 8000 10000 12000 14000 16000 18000

Figure 3.7: The estimated time space speed plots by usingerriter
(Van Lint and Hoogendoor(®009). (left figure) Used data: loop speed only; (right
figure)Used Data: speed measurements from loop detectorfi@ating cars. Model:
Fundamental diagrams.

3.2.5 Nudging Technique

Nudging, also known as Newtonian relaxation or 4DDA, is ipatarly used in weather
forecasting. In this data assimilation technique, modebtées are driven (nudged) to-
ward observations. A source term proportional to the diffiee between the predicted
and observed state is included in the constitutive equatienz,t) = 0 of the model
(e.g. LWR Patrtial differential equation in traffic):

f(z,z,t) = M, t) - (2 — 2°) (3.33)
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wherez is the space variable,is time, z is the state vector (e.g. density), agdis the
observation measurements. The nudging fastat ¢) vanishes away from the measure-
ment location and after the measurement time. As a resdltives the solution towards
the observations when the observation is made.

In Herrera and Baye(2007), nudging technique is used to fuse loop flow and probe tra-
jectories. In their methodf(z, z,¢) = 0 is simply the LWR PDE:

dp | Jq(p)
3t+ ox

=0 (3.34)

wherep(x, t) represents the vehicle density(att) andg(p) is the fundamental diagram.
The nudging technique adds a source term to the above dymaodgel, leading to:

dp  9qlp)

ot T o ;A(f’/’—%(t%t)-(p(xj(t),w—p"(fcj(t),t)) (3.35)

The summation over the indgxaccounts for the/ different vehicle trajectories that can
combine the loop counts to provide measured density;(¢), t). A possible expression
for the nudging factor can be found ishikawa et al(1996:

nudge

_ (3.36)
0 otherwise

%aexp(—Xg’”2 Jexp(—55) if & < aX,uape andt > 0
Az, t) =

whereT, is the timescale and determines the strength of the nudgutgrit® is the ob-
servation time, and; and X,,,q,. reflect how the effect of any observation decrease over
time and space. The coefficiemtdetermines the zone of influence of the measurements.
The nudging factor is zero outside the influence zone. Idi¢rabntext, the nudging
term ‘adds’ the vehicles on the freeway when the model urstienates the density and
‘removes’ vehicles when the model overestimates the densit

Figure3.8 gives an example to show the performance of Nudging method.

3.2.6 Summary

The summary of the above mentioned techniques is shown ile 3ab

Figure3.9gives a summary of data input and data output by using theeadigsimilation
techniques. It can found that quite a few combinations dédght data are still missing.
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Figure 3.8: Traffic flow estimation by Nudging methétefrera and Bayeri2007)).
Used data: loop counts and trajectory; Model: First-ordeaffic model. Dotted lines
represent the estimates when using both loop counts anatosje dashed lines
represent the estimates when using only loop counts, andllswis represent the

measurements.
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Figure 3.9: Input data and output data types in data fusiashteques of the state of the
art
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Table 3.4: Summary of varieties of assimilation techniqoégaffic data fusion

Filter

Feature

KF

Description: Give the optimal estimation by iteratively processing data

linear and Gaussian models.

Pros: The optimal solution can be achieved when models are linear
Gaussian. Computation requirements are less than of an EKiier Bean
an EKF, UKF and PF in linear and Gaussian system.

Cons: It cannot deal with a non-linear system

EKF

Description: This method is chosen when it comes to slightly nonlin
and Gaussian system with local approximation. Itis antitezgrocessing
technique

Pros: The estimation result is quite good for slightly nonlinegstem.
Cons: EKEF is difficult to tune, the Jacobian may be hard to deriven
only handle limited amount of nonlinearity.

UKF

Description: Based on values on a larger area; Can only be applie
models driven by Gaussian noises; A trade-off between EKFR4H
Pros: Functions don’t need to be differentiable.

Cons: More computations than EKF and the results is not better B
for slightly nonlinear system; Not a truly global approxitiea but based
on trial points

PF

Description: An iterative processing technique like Kalman filters; ¢
handle a highly nonlinear and non-Gaussian system

Pros: No restrictions in model; Can be applied to non-Gaussian mpde
hierarchical models etc; Global approximation;Approactie exact solut

tion, when the number of samples goes to infinity.

ear

dto

an

Cons: The result is not better than EKF or UKF if there are no enough

number of particles; Computational requirements much higren of the
Unscented Kalman filters.

LP

Description: Process data in a large batch and achieve the optimal estima-

tion by seeking the biggest or smallest value. The value pedéent on
objective functions and subject to a linear inequality ¢asts.

Pros: Have a simple form; Computation cost is low compared with Kal-

man filter and its variation. Can give a range of estimates (eigimal
and maximal travel time estimates).
Cons: It needs a particular form, which is hard to obtain in manyesas

Nudging

Description: Work for systems (e.g. weather, traffic) which evolves o
time space and can be described by differential equationsib@® model
and data similar KF but no optimal estimation is guaranteed.

Pros: Easy to understand and implement; Low computation coskiscas

Cons: Not easy to find an appropriate nudging factor; Data used r
be linked to the major variables in differential equatioagy( density in
first-order traffic model)

ver

mnust

Treiber

Description: Treiber filter similar to image processing.

Pros: Easy to understand and implement; Low computation cost.
Cons: Can only fuse the data of the same type (e.g fusion of loop s
and probe car speed)

heed
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3.3 Discussion on further challenges

This section will look into the issues which have not beerpprty solved in the above-
mentioned methods. The main problems consist in spatipaeshalignment, parameter
calibration and identification, computational costs, efs a result, it is hard to fuse
more types of data, and the estimation results based on thett®ds have relative less
accuracy and reliability. Considering the implementatibdaia fusion in large networks,
less computation cost is also important.

3.3.1 The spatio-temporal alignment problem

There is, however, one major drawback of the above assionl&chniques, which re-
lates to the spatial and temporal alignment of the data. ketake Kalman filter for
illustration of this problem. For every data source usedaalditional) observation equa-
tion (3.2 is required, which relates the data to the traffic statesT$not necessarily a
problem, as long as the spatial and temporal discretizafitine data (detector locations
x; and time periods of sizAT') can be aligned with the discretization used in the model
(road segments of lengthx and time periods of sizét). For example, some spatial
data can be transformed fairly easily into local measurésyench as sampled floating
car data used in e.gHerrera and Baye(2007) andVan Lint and Hoogendoor(2007).
This, however, is not the case for e.g. travel time or jourfs@gment) speeds. These are
available after trips are realized, that is, after a timeqakequal to the measured travel
time (or traveled distance divided by the average journegdp As a result, a (realized)
travel time observation equation has the following genkenah

Vi = h(Xp, Xp—1, -+ Xp—ppmes) + & (3.37)

where the output variablg, now depicts (realized) travel tim&7T", and7T 7™ is the
maximum observed travel time on the route of interest. Inalbservation equation, the
observation function(-) is needed in order to establish the relationship betweestéte
variables and measuremefit$. However, this function cannot be obtained until the cor-
rect trajectory is found. Figur@10shows that one travel time may correspond numerous
possible trajectories, so it is almost impossible to ohtagmobservation functioh(-) only
from this travel time. As a result, Kalman filter cannot askite the travel time in such a
case. For this reason, in some research where travel tinsedsas measurements in Kal-
man filter framework, traffic on the study road has to be assibmbe homogeneous and
stationary during the travel period. ©hu et al.(2005, the observation equation using



3.3 Discussion on further challenges 49

Space

Possible| |
trajecton:y, ------

Road

Segment i+1

Segment i

a e e Time
}l“f Entry >
|

TT (measured travel time)

Figure 3.10: Numerous trajectories correspond one travaktirecord

travel time as measurement is given as:

Az Ax-p(t)
o(t)  a()

whereAz is the length of the road segmepts the density and is the flow. This method
can work only in some special cases (e.g. when the traveldueeonly one road segment
Is given), but if the travel times over a few road segmentgasen, this method does not
work. Many other techniques mentioned above cannot asganihese kinds of travel
time either. In addition to travel time records, some otHeraaly-existing data sources
have potential for traffic estimation but don't fit in any oke#e assimilation techniques.
For this reason, some important combinations of diffetgped data as input and output
are missing, for example combining biased local speed ddtetravel times to estimate
space speed, or even further, combining local speed, flowtrandl time to estimate
both space speed and density. In conclusion, when the datetche straightforwardly
aligned, no conventional data fusion techniques can beaag!

TT(t) = (3.38)
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3.3.2 Measurability and parameter identification

The main variables in traffic are density, speed and flow, iwhan be associated to one
another by the equation= pv. This relationship holds only whenis space mean speed.
However, loop detectors fail to give space-mean speed measuts. They can only give
speed measures at a certain point on a road. In any evenpdhe-mean speed cannot
be measured by loop detectors. And in order to apply thistemuan loop data, the
time-mean speed measures from loop detectors have to beaakeean-space speeds.

Apart from time-space mean speeds, traffic density cannatdsesured, either. Theore-
tically, traffic density is easily available given initiabeditions and traffic counts from

loop detectors. But the accumulated errors in loop countserttakdensity estimates de-
viate far from the true results. In estimation of traffic dgngom loop data, fundamental

diagrams have to be employed to bridge flow and density.

Majority of the above methods need to identify parametensaodels, particularly parame-
ters in fundamental diagrams. Fundamental diagrams rgughlesent the relationship
between the major traffic variables, and more roughly in ested traffic. To make things
worse, the parameters in such a rough relationship areifiéenivith data that are pro-
bably not reliable and accurate enough, e.g. speed medsometoop detectors. These
methods have to be processed by data before they are appligata, so the quality of
these methods rely on the quality of data.

3.3.3 Computation cost

Thanks to the advanced computation algorithm and modermpuatars, the computation
cost is not a big problem in an application of (extended) Kairfilters, if the the state
vector and measurement vector have only a few hundred VesialBut Kalman filters
involve computation of matrix inverse as required in Equa8.8, and the complexity of
calculating the inverse of a matriX * N with the most effect and practical algorithm
Strasseris O(N%8°7), Therefore, when Kalman filters are applied on a large trafic
work with thousands of state and measurement variableggatimgutation cost becomes
a problem. Particle filters ask for much more computation gamed to Kalman filter,
though they are better at processing non-linear functiowsren-Gaussian probability.
In Chen et al(2004), it is found that 500 particles are needed in applicatioRaiticle
filters so that the performance is as good as Kalman filtetstheucomputation cost is
200 times as that of a Kalman filter.
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3.4 Conclusion

This chapter discusses and synthesizes the state-ofithetaffic data fusion. The data
fusion methods are composed of two parts core and shell asesent. The core repre-
sents the assumption in traffic theory which is used to mdaetraffic system. The shell
represents the assimilation techniques e.g. statisechhiques which are used to com-
bine data and traffic model in an optimal way. The previousspnted methods have
deal with many data fusion issues, but still there are qufemeto be left unsolved. Still
we need some methods which can fuse more types of data anat outype reliable re-
sults. Next chapter will propose the idea of new approackea*data consistency” which
may help to solve this issue with less assumptions.
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Chapter 4

Towards a new approach

This chapter will look at the traffic data fusion from a new ngresenting the concept of
a new approach called “data-data consistency”. It makesssiple to fuse more types of
data but with limited assumptions. Based on this idea, tHeviimhg chapters give quite a
few methods (algorithms) which can effectively fuse datafdifferent levels and output
better results.

4.1 From data-model consistency to data-data consis-
tency

The conventional data fusion techniques attempt to dra#idrmodels and data against
each other. It means that the models are constantly caibtatfit into the measurement
data. The data are corrected through models so that theyfinor® models. For state
estimation, when the models are more reliable, more weggptit on models, otherwise
more weight is placed on measured data. By putting certaight&on models and data
respectively, the assimilation techniques make a balaeteden models and data. As a
result, an better estimate is expected in appropriate auatibn of model and data. In the
process of finding optimal estimates, these techniquesezmhtb consistency between
models and data. In this thesis, these techniques can bé/siatpgorized into so-called
‘Data-Model Consistency’ approach.

However, as seen in the previous chapter, the models thaisarkin classic data fusion
methods need quite a number of assumptions. For example aydave to assume that
the models are unbiased and have only random errors so #iatilasion techniques like
Kalman filters can be used. In addition, probably we may havassume that traffic

53
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behaviors are the same when the same average traffic corsdétie given. Based on this
assumption, fundamental diagrams can be used. These mgthodnore attention on
traffic models rather than traffic data itself. For modellwation, we will meet the issue
of overfitting: the number of parameters in the model may bkugge that although the
model can be fitted nicely to the data, it does not generdizeéata. For highly stochastic
traffic system, traffic modelling will lead to large model @ms: the traffic process is
a complex process, which is very hard to model. Using a ‘wrongdel may lead to
model-data consistency, but not necessarily to a bettiena&tst of the state. For example,
the widely-used LWR model assumes stationarity, even ifitrég in a non-stationary
situation. As presented in the previous chapter, such ardatiel consistency approach
have quite a few drawbacks and fail to fuse more types of d&atizely. In order to
tackle the above issues, we may need to shift our focus frenréiffic model and a new
approach has to be found.

Although traffic measurements come for many numbers of sentere are only very
few traffic variables that need to be estimated (e.g. speew, tlensity, travel times,
etc). Also these measurements can be simply categorizedpated, flow, density and
travel time measurements. The relationship between orghemnis quite simple or can
be made simple. The relationship between speed and traves tis strictly determined
by simple physical laws. Based on Edie’s definition, we wil/édhe simple equation
density = flow/speed. We do not necessarily need those advanced traffic models. Why
not just use basic physical laws and try to avoid using masyragtions? The main
barrier lie in this fact that the relationship between meaduwata and traffic variables
cannot always be expressed in explicit equations or onesjimned forms. For example,
the physical laws give = fUTT v(t)dt,wheres depicts travel distance affidl" is the travel
time. Although this physics can simply deduce travel tinteavel distance and speed are
known, no explicit equations can be found if travel tiffi#¢’ is known measurement and
v(t) is estimated variable. Therefore, the new approach prajpodéis thesis makes the
use of such simple relationships and expresses them inesiioqphs of equations.

Data from different sources have their own characteristlosop detectors are able to
measure traffic speeds at certain points and thus give ftifie ttratails. But estimated local
speeds derived from loop data are biased due to the oversemation of fast vehicles
by loop detectors (This depends on the collection systemisledsst, it is true in the
Netherlands). Cameras or floating cars may be able to giverakelttime, which is
the aggregated result of traffic over certain time spaceorefut it does not give the
traffic detail. In contrast to the local speed estimates ftoap detectors, travel time
has unbiased traffic information and is able to capture tbbailprofile of traffic. By
comparison of these two data, it can be seen that each typatafathd source has its
particular strengthes and weaknesses, therefore the sgdpapproach is supposed to
make the use of the strength in one type of data to compersatedakness in another.
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Figure 4.1: New approach: Data-Data Consistency approach.
g(+) represents the relationship between datand datay. It exists independent of data.

The proposed approach in this thesis is inspired by the atacte and it is called ‘Data-
Data Consistency’ Approach. This approach still needs ¢raibdels, but these models
are simply based on some basic physical laws and very fewrggns. Unlike first-
order or second-order traffic models, the used models dontains any parameters that
need to be calibrated.

This approach can be illustrated by Figdt& It takes one type of dataas prior informa-

tion and the othey as reference information. The reference dakeas a specific strength
that datar is lacking. For illustration, let represent local speeds from loop data gnd
travel time. Since travel time is unbiased information amzhl speed estimate is biased,
an appropriate adjustment.tocan be done so that the posterior estimates of local speeds
are consistent with travel time information. In the adjusit) the local information that
depict the traffic details is kept and it is also correctedegaibbiased by travel time. If
necessary, this adjustment may be an iterative processelartd, less biased estimates
of local speeds are achieved.
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4.2 Benefits of the new approach

There are quite a few benefits from this approach.

e Minimal assumptions are required. The models used in thisogeh are sim-
ply based on basic physical laws and fewer assumptions. Tdielyrused phy-
sical laws aredistance = speed x time (it actually meanAs = v x At),
density = flow/speed (based on Edie’s definition) and vehicle conservation law.
The measurement data are expected to satisfy several assusng-or example,
we assume that the travel time is unbiased and much morélestizan loop mea-
surement. Or we may assume that the flow measurements aneirebje with less
than 1% errors. Or we may assume that the measurements hassi&eerrors.

e No model parameters need to be estimated. As we know, trgBters is highly
stochastic. For this reason, even on a given road segmenmaldel parameters
will change due to all kinds of external impacts such as werattomposition of ve-
hicles, time of day, etc. Even if these parameters can bmat&d online, the quality
of calibration is still determined by measurement data. &lameasurements lead
to biased models, and biased models lead to biased estrma#matter of fact,
one important motivation or aim of this thesis is to providerenaccurate traffic
state and data for better model calibration but not viceazers

e Less restrictions are placed. This approach seeks forstensy between different
types of data. The so-called consistency can be expressidioed in any ways as
long as it makes sense. In addition, no particular forms aféqgn are required to
formulate the relationship between data. But in some assiionl techniques like
Kalman filter, for example the measurements are always sgpdein the combina-
tion of variables. The state equation must be express inaarmental and iterative
way. The linearization of nonlinear equations also bringsud inconvenience.

e More data sources can be better used. Since there are nocufarforms to for-
mulate the relationship between the data. Any two types td dan be fused by
this approach as long as there is a link between the two. Besdeh type of data
can only cover one aspect of traffic, and have its own streagthweakness. This
approach tends to combine the strength in data and compeimgatveakness in
data, so the better use of data can be achieved.

e Compatible with conventional data fusion techniques. Sonest it is difficult to
choose among different fusion techniques. It is hard tod#ewihich one is better.
When one method is chosen, then the rest have to give way.DetacConsistency
approach is an addition to the conventional methods moredhalternative. This
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approach aims to do some data fusion that is hardly done lgy t#bhhniques. The
result from this approach can be used to establish a moreateamodel that for
example Kalman filters need. Also the output estimates filmerother techniques
also can be further used in approach to do further fusion work

e More efficientimplementation. It can be seen from Figluke that the whole fusion
process is simple and thus easily understood. There is tocligputation cost for
things like the inverse of a high-dimensional matrix. Tipp@ach uses ‘feed-back’
strategy in which the data are iteratively adjusted or e Such iteratively
processing is just where computers are specialized in. Asudty less time cost for
computation is required.

4.3 Methods based on this approach

Following this approach, a few methods are designed to derdiit data fusion work.

So-called PISCIT is able to achieve much less-biased loesdspstimation from biased
local speed measurements and travel time. TravRes is ainmbkd same goal when few
loop data or none is available. FlowRes is a theoretical frewnie which can combine

low-resolutioned positioning data from e.g wireless comioation networks. So-called
ITSF can give both density and speed estimated by fusing ftmal speed and travel
times. All of the data used in the methods are very common mibeasavailable in large

guantities. The fusion of these data has not been well dottesiprevious work as seen
in Chapter3.

As Figure4.2 shows, the advanced traffic models with a number of assungp#ce not
required but ‘speedtime = distance’. The third mainly uses the 'model’ that is ‘speed
density= flow’. The last method is based on both of the models.

This chapter simply gives the idea behind the approach.owolp that, the next few
chapters will give the details of these methods, the impheat®n and the results.
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4 Towards a new approach

PISCIT

TravRes

Speed*Time=Distance Speed*Density=Flow

different physical models in data-data consistency approach

Figure 4.2: The new methods are based on different physiodkhs



Chapter 5

Trajectory reconstruction by using
travel time and local speed

Biased local Reliable travel time
speed measures v measures TT from AVI

Consistent ?
Yes

Output v

Figure 5.1: lllustration of how data-data consistency apgch works for biased local
speed measures and reliable travel time measures

As shown in Chapte2, the local speed measures from loop detectors have coablder
bias depending on the speeds. Such a bias may lead to an prtorl00% in density
estimation, also lead to biased estimation of travel timascontrast with loop speeds,
travel times from AVI system are statistically unbiasedrtRer considering the intrinsic
relations between time, space and speed, it is a good soltd the travel times are used
to remove the bias in loop data.

59
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However, as shown in Chapt8r fusing travel times and local speeds is quite difficult
and no appropriate methods have been proposed so far to thidvissue. The main
challenge is that the different data have different semamver space and time. A travel
time measurement equals average journey speed (of a sieliele) over a stretch of
road during a variable time interval with a length equal te ttavel time itself, whereas
for example a local average speed gives an average over adnegredefined time
interval, which has meaning only over a very small regionpace (a cross section).
This local average can not simply be added, subtracted or@vapared to spatial traffic
guantities. But a solution of this issue is of practical ralese in case of the (potentially)
wide availability of loop data and travel time data.

Based on the idea of the data-data consistency given in Chgptas chapter will give
an algorithm which is able to reconstruct vehicle trajae®by fusing travel time and
local speeds. The reconstructed trajectories are muckbiased and thus return less-
biased time-space speeds. Figbré illustrates the main rationale of the data fusion
algorithm we will describe in this chapter. The idea is tiet bocal speed measureg)
over the time-space region are indirectly adjusted to becoamsistent with each other
by applying an iterative algorithm. The consistency heramsehat the given travel times
can be almost exactly derived from the update time-spacedspender the physics law
speed x time = distance.

The main symbols used in this chapter are listed in Talle

5.1 Introduction

5.1.1 Analysis of fusing travel time and local traffic data

Data fusion of travel times (e.g. derived from stampingetiprovided by cameras) and
local traffic speeds (from e.g. loops) is not as easy as it ppgga. Travel times and
local traffic data have different levels as shown in Figbr2 Local traffic data shows
the traffic information in the discretized cells. But traviehés may represent the traffic
information over a large area of time-space region when tiéng rates are quite low.
In contrast to other traffic information such as traffic floendity and speed, travel times
may be regarded as a kind of integral of its experienced draffieeds over the travel-
space region, which is mathematically representedbyt) = f(x 1) Wheref can
be determined by using the fagieed * time = distance.

From a mathematical perspective, travel time estimatiogetbeon traffic speed infor-
mation represents the projection of high-dimensional dspaeds) into low-dimension
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Table 5.1: Symbol list

L; Length of road segmerjt

TT® Measured travel time for individual vehicle on a specif
road stretch (link)

ttgk) Sub-travel time for vehiclé to traverse segmerit

Etg.’“) Estimated sub-travel time for vehicleto traverse segment
J

o Moment when vehiclé starts to travel at segmejt

Ag.k) Estimated moment when vehiclestarts to travel at seg
ment;

0(1,7) Ground-truth traffic speed at segmegrduring periodi

0~ (i,7) | Prior estimated speed at segmgmturing period: (before
fusingTT)

04, 7) Posterior estimated speed at segmehiring period: (after
fusing?'T)

0¥ (4,7) | Estimated speed for vehicle at time-space celli, j),
wherei and; indicate the time and location respectively

5™ (i, 4) | Estimated travelled distance by vehicle for vehi¢leat
time-space cel(i, j)

n(i,7) Number of reconstructed trajectories that traverse the-t
space celli, j)

|
Probe |
car

Road

Space

Exit

|Possible| ;
trajectory,..--"

Segment i+1

Segment i

Time

Entry

Figure 5.2: Travel time and local speed data have differenels.
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space, shown in Graph A in Figu&e3. This projection is straightforward and many
ready-use algorithms have been proposed to this end subk pgete-wise linear speed-
based (PLSB) trajectory algorithm propose®an Lint and Van der Zijpg2003. In this
algorithm imaginary vehicle trajectories are drawn thitoagspace-time grid, based on a
number of assumptions:

e A space-time grid of cell§i, j) is constructed in which loop detectors are located
at each cell boundary.

e Traffic conditions are assumed stationary within each(¢gll). Speeds at detectors
are assumed to be averaged harmonically (to counter effecéstimation due to
the over-representation of fast observations in local saraples). If this is not the
case and only time averaged speeds are available theseortseddrrected for this
bias.

e The slope of each trajectory (i.e. the speed of the imagiwinicle) in a cell7, j) is
considered a convex linear combination of the speeds megduring; at detectors
jandj+ 1.

The resulting travel times can be easily derived from thet stad end times of these
imaginary vehicle trajectories. Clearly, a number of strasgumptions are made in this
heuristic method. First traffic conditions are assumedastaty (so constant over each
periodi), and secondly, speeds are assumed to change linearly fiendeiector loca-
tion to the next. In case of for example passing shock wavesaweongestion downs-
tream it can be easily seen these assumptions do not holitytery if detectors are
widely spread or data from large aggregation intervals @&lable. Moreover, loop data
exhibits both structural and random errors (see &an Lint and Van der Zijpg2003,
Lindveld and Thijs(1999). Their study shows that this leads to travel times whiah ar
at best in a 5% range around true realized travel times, bighAtecome quickly more
biased as fewer loops are available or traffic conditionseivben loops are more hete-
rogeneous and non-stationary. Recently more advanced tirageestimation techniques
have been proposed which use spatiotemporal filtering asisééan Lint (2010 and
Kesting and Treibe(2008.

The inverse process (from travel times to section speedsuh more difficult, parti-
cularly when nothing but travel time information (from AVystems) is available. For
instance, trajectories A and B in Graph B in BEigp, both result in exactly the same travel
time. The inverse problem is hence undetermined, whichiesphat to solve it addi-
tional information (e.g. from induction loops) is requiredhich implies that to solve it
additional information (e.g. from induction loops) is réeal.
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5.2 Methodology: PISCIT

In this section we present this two-step algorithm namedCPISPiece-wise Inverse
Speed Correction by using Individual Travel-time) for fugsimdividual travel times

with an initially estimated time-space speed contour plothis initial time-space

contour plot of speeds may be the result of a simple intetjpolebetween consecu-
tive detector measurements, or even the result of a modeldbatate estimator as in
(Van Lint and Hoogendoor(2007),Wang and PapageorgigR005).

5.2.1 Framework of PISCIT

The main assumption underlying the PISCIT algorithm is treatdl times measured with
cameras (or other automated vehicle identification (AVBtegns) have errors which are
substantially smaller than travel times estimated fronald@ffic data such as inductive
loop-data. Particularly, travel time measurements aremasd to be unbiased. The errors
in an estimated travel time induced from loop speeds aregptiopal to this travel time.
In other words, longer travel time, more errors. Also we assuhat traffic is homo-
geneous and stationary in each cell of time-space regioe. phlgsical law used in this
method is as simple aBstance = speed x time.

The algorithm (schematically outlined in Figusel) consists of two steps:

Step 1 In the first step, approximate vehicle trajectories are mstracted based on an
initial time-space speed contour plot, and individual élaimes. The ingredients
for step one are

1. Alinitial (prior) time-space speeds (visualized as canfaots)
2. individual travel times
Step 2 In the second step, all the approximated trajectories fitoenfitst step are used
to re-estimate (correct) the speeds from the initial (prsgeed contour plot. The

result is a posteriori time-space speeds (visualized a®uapplots), which fit best
with all the estimated trajectories.

5.2.2 Step one: reconstruction of individual vehicle trajectories

The measured travel times provide (virtually error freefryeand exit times of the ap-
proximate vehicle trajectory. These entry and exit timaer@lly) provide the constraints
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for each approximated vehicle trajectory over time. Theldata provide the information
which determines the slope of each trajectory over spaces&iuently there is incon-
sistency between two kinds of travel times. For examplegtigeinconsistency between
AVI travel times and loop travel times. In order to comproengsich inconsistency, loop
travel time on each segment is to be proportionally adjustadother words, the total
error is proportionally distributed to each segment if vimdiual error characteristic on
each segment is unknown. Particularly, this step is a heupsocess: starting from a
straight line (with slope route lengthmeasured travel time) an optimal vehicle trajectory
Is reconstructed on the basis of the additional data frorqpdoo

Below we point out the relationships between the relevanabbes:

A(k:) J— A(k) 7 (k)
tj+1 J tj

The main idea behind the approach in step one is to use sdqaibportion-multipliers
to repeatedly correct sub-travel times at every segmese(ban the prior speed contour
plot) such that the sum of the sub-travel times satisfiesdtse travel time on the whole
link (based on the measured travel times). As starting at pagrassume that the vehicle
is driving with a constant speed over segmgnthis yields the following estimatioﬁg.’“):

i = rTW /L (5.1)
where L = ZLj
J

that is the initial estimate of a vehicle trajectory is theight line shown in Graph A in
Figure5.5. Based orftgk’) and the entry momemﬁk), 55.’21 can be calculated.
Next, we will make use of the prior-estimated time-spacesdpsontour to correct the
estimate ofit* . Since higher speeds imply less sub-travel time , the fafigviterative
update rule is applied:

(K ~— (k) 2k .

£ oc /o7 (7, 8511, 5) (5.2)
with constraint

2 (k
TT® =3 " il (5.3)
j

In whichj = 1,2, ..., n andn is the (arbitrary) number of segments divided on the link.

When the EquatioB.2and Equatiorb.3are iteratively executed, the reconstructed vehicle
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trajectories approximate the true trajectory to some éxge Graph A in Figuré.5).
The iterative execution will stop when the difference betwerevious values and current
ones is smaller than some preset threshold (a small number).
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Figure 5.5: Recursive reconstructions of vehicle trajee®

5.2.3 Step two: speed re-estimation

In this section, the estimated vehicle trajectories oletdin the first step are used in turn
to correct the speeds in the initial (prior) speed contoat.plo illustrate the idea, consi-
der the case when only one trajectory passes through auartiegion. Clearly, the
posteriori speed in that region equals the slope of thisqdalte trajectory. In case many
trajectories pass through the same region as seen in Graplfigure 5, it becomes im-
possible to satisfy all the trajectories, and a best fit mpaed is estimated. To tackle the
problem, we introduce a simple and effective linear regoestechnique with constraints.

First of all, for each segmerit, j) we collect the estimated speed¥’ (i, j) and the
approximated traverse length®) (i, j) for each vehiclé: which traversed regiofy, j),
as illustrated in Graph A in Figurg.6.

The average speed in each segniént) can be derived by simply averaging these speeds
o) (i, 7). However, in doing so, this results in a corrected (post@rspeed contour map
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which may result in travel times which no longer equal the soeed travel times. To
make consistency, we add the below constraint:

> 8/ ) =TTY  fork=1.23.m (5.4)

(4,7)ETraj(k)

wherem is the number of vehicles whose travel times are availalile,j) denotes the
variables of speeds over the time-space @ell) andTraj(k) is the set of cells in which
vehicle k traverse during its trip. Now assume the following relasioip between the
speeds of each approximated vehicle trajectory (from stef) and the a posteriori speed
contour map:

n(i,5)

> 16, 5) | /n(i,j) = 1/v(i, §) + e(i, j) (5.5)

wheren(i, j) is the number of reconstructed trajectories that travezg®n (¢, j), and
e(i, 7) is an estimation error which is assumed zero mean normatyitolited.

In theory, it is possible to use equatioris4) and 6.5) to give the optimal estimate of
1/v(i, 7). To simplify computation, however, we propose to group ¢heshicle trajec-
tories into subsets which share identi¢alj) regions along their route. For example, in
Graph B in Figurés.6, trajectory A and B belong to the same group while trajec@@he-
longs to a different one. Suppose that the classified t@jgdroups ard’rajGroup(r)
forr =1,2,3..., then equationy.4) becomes:

TrajGroup(r) X TrajGroup(r)
S WG = Y TT®Y forr=1,23..  (5.6)
(i.7) k

We now have the necessary ingredients to optimally estimate, 7) (instead ofu(p, ¢)

for mathematical purposes) for all regiofisj). To this end we cast the problem as
a Linear Model subject to Linear Restrictipmvhich is formulated below. First of all,
consider a general linear regression equations:

Y = XpB+¢ (5.7)
e ~ N(0,0°)
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Figure 5.6: Illustration of individual vehicle trajectass

whereY isaN x 1 vector (observations) is a/N x k matrix, 5 is k x 1 (parameters to be
estimated), and is anN x 1 vector of Gaussian distributed zero-mean random variables
which reflects the random errors produced by the model. Argétieear reduction (a
linear restriction) in the parameter space frbro £ — m can be written as:

HE=h (5.8)

whereH’ is m x k matrix and known and the rank @f is m, andh is anm x 1 vector
(observation). Then the least square estimatg ahder such a restriction as shown in
Equation5.8 or specifically Equatio’.6is:

B=p3—(X'X)"H'(H(X'X)"H)"'(HS3 — h) (5.9)
wheref = (X'X)"X'Y.
In order to apply Equatiob.8to Equationb.5, let
B =Vec[l/v(i,j)l;y, (5.10)

where Vec is an operator to vectorize a matrix, that is to reshape aixnstich that
it becomes a vector. Corresponding withY may be easily produced with elements
n(i,j)
S 1/9%) (i,j)) /n(i, 7). Similarly, H andh are easily determined according to Equa-
k

tion 5.6. Particularly, in this cas& has a very simple form that reads = /. Conse-
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quently, the least square estimati®mlso has a simple form as:
B=Y — H'(HH)"'(HY — h) (5.11)

where there is quite computation cost in the tefhH’)~t. After all trajectories are
classified, the dimensions &f H'are greatly reduced. Finally(i, j) can be obtained by:

(i, j) = (5.12)

5.3 Validation

In this part, we will validate this algorithm by using synticedata. In the first place, the
synthetic ‘ground-truth’ data are generated by assumiegehl loop data are true, and
then the observed data are generated by tampering the @jtouth’ data. In the second
part, the proposed algorithm is applied on the observed aladareturns the estimated
data. The performance of this algorithm is shown by comgatire ‘ground-truth’ and
estimated results.

5.3.1 Experiment setup & data generation

First of all, a 9.5 kilometer stretch of 3-lane Highway A4 tsasind in Netherlands is
considered (Graph (a) in Figur@.7), where 18 loop detectors are placed spacing around
500 meters and aggregated traffic speed measures and ceenyt®ee minute.

e Ground-truth speed We assume the loop detectors give the ground-truth speed
measures over certain segments. The resulting time-spaee sontour plots (Fi-
gure 5.8) shows 5 hour traffic condition on this stretch from 6:00 A#.11:00
A.M. on July 8th, 2008, during which congestions onset asgelised twice.

e Observed speedsThe observed speeds in each time-space cell are assumed by
tampering the ground-truth speeds with the below assumpfibis assumption is
based on the empirical study Knoop et al.(2007)

00 — l-1v9(0.5-0.50/120) (5.13)

wherev? is the observed speed andis the ground-truth speed. With this assump-
tion, the observed speed is 10% higher when ground-trutedsige120km/h, and
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Figure 5.7: Illustration of the study road and how the grotindth data are perturbed

70% higher at the speed of 20km/h. The resulting observeel sipace speeds are
shown in Graph (a) in Figur.9 The relationship between then is show in Graph
(b) in Figure 8.7.

e Travel times The travel times are generated by sampling the ‘groundittime-
space speed plots. There are three virtual cameras pladbd antry, exit and
middle of the whole road stretch. It is assumed that 10% oicleth are captured
by the cameras, giving the travel times from milepgsh to4.8km and others from
4.8km to 9.5km.

5.3.2 Results

We use mean absolute relative errffARE) to evaluate the results. The definition of
MARE is shown in Equatio8.16

VARE — iiw,j)—x(i,j)\ (5.14)
- MxN < x(i,7) '

(i, j) represents the estimate and, j) represents the ground-truth quantity. The com-
parison of the results without and with using the algorittan be seen in Figurg.9.

e Before The observed speeds and density have large errors. MARES@b$erved
speeds is 33.4% in the given scenario.
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Table 5.2: Comparison of MARE before and after using the pgedalgorithm.

Measure type MARE (before)| MARE (after)
MARE on speeds (global) 33.4% 4.8%

MARE on low speeds<{50kmph)| 64.6% 10.8%
MARE on travel times 26% 3.5%
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Figure 5.8: Ground-truth time-space speed plot

e After After the proposed algorithm is applied to fuse the obsespEds, travel
times and flow, the above errors remarkably decrease. MAREsiimated speeds
becomes 4.8%.

With time-space speed plots, travel times can be easilyettriFigure5.12makes com-
parison of travel time estimates between before and afiegukis algorithm. Before
using it, the travel times based on observed speeds have absatute error of 202 se-
conds and MARE 26%. After using it, the travel times have a narohller error of 32
seconds and MARE 3.5%. In Figu8el4 the thick green line represent the ground-truth
travel time, dark dashed line represents the results aieguhe algorithm and thin red
line represents the travel time estimation based on thenad$speeds. The former two
lines almost overlap with each other.

Next, we study how the added floating car data influence thedspstimation when they
are added into travel times from camera data. The traveldiate from camera remain as
above, that is 10% vehicles are captured by fixed camerasreploeting rate of floating
car data is 60 seconds. The penetration range from 0% thrb@%h The impacts of
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Figure 5.9: Comparison between observed speeds and estisgeds after applying
the proposed fusion algorithm
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Figure 5.10: Comparison between ground-truth speeds, obseand estimated ones on
road-segment 12 (around 5.5km milepost)

added floating car data can be seen in Taldand Figures.13 The results show that the
added floating car data help to further reduce the estimatian. When the penertration
rate change from 0% to 5%, MARE is considerably improved. Bghér rates do not
bring much improvements.
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Figure 5.11: Comparison between ground-truth speeds, obgeand estimated ones on
road-segment 7 (around 3.8km milepost)
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Figure 5.12: Compare travel times between before and afterguiis algorithm
5.4 Conclusion and recommendations

This chapter proposed a new algorithm (PISCIT) for fusingeslsdrom local detectors
such as inductive loops with individual travel times measuby AVI systems. This al-
gorithm is based on data-data consistency approach. laltgasithm, individual vehicle
trajectories are reconstructed, consistent with the givavel times and proportionally



5.4 Conclusion and recommendations

75

Table 5.3: The impacts of added floating car data. MARE with@wvel time

information is 32.3% (global)and 64.6% (speeds lower 50Kkmph

Penetration of FCD added 10% | 5% 25%| 1% | 0.5%
MARE on speeds (global) 2.5% | 2.65%| 2.9% | 3.5% | 4.2%
MARE on low speeds<{50kmph)| 5.6% | 6.3% | 7.7% | 9.3% | 10.2%
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Figure 5.13: The impact of FCD added into camera data (cameaita dapture 10%

vehicles).
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consistent with the local speeds. Very few assumptionseeded: the traffic is assumed
to be homogeneous in each time-space cell, and the traves tine assumed to be correct.
We assume the proportionality of the errors in loop-estaddtavel times. As matter of
fact, when travel times are less reliable, we still can sanfygm distributions of given
travel times and each sample has its own confidence. Wherajbettiries are combined,
the confidence for each travel time sample can be taken ictuac.

The algorithm consists of two steps. In the first step vehrelgctories are reconstructed
by individual travel times in combination with an initial rfpr) time-space speed plot
(based on loop data). It is worth mention that the trajectegonstruction technique
in this part does not guarantee the convergence, thouglemséhat the reconstructed
trajectory converges. In the second step a corrected (pm3teme-space speed plot is
produced on the basis of these reconstructed vehicle toaes. In this algorithm, the
travel times are assumed to be reliable and correct, so tkaysad as constraints when a
regression technique is employed to combine all recortsttiticajectories and output the
time-space speeds.

On the basis of synthetic data driven by real-life loop data,demonstrated PISCIT is
able to successfully correct strongly biased prior speegsomements. The applications
for PISCIT are manifold. First of all, in an offline context,3€IT enables a simple but
effective method to fuse data from local detectors and ktawe data from AVI systems
and hence improve the quality of archived datasets significaThis is beneficial for a
multitude of applications which depend on such histori@hdarchives (e.g. simulation
studies, performance analysis, policy evaluations, ele)case the AVI data contains
travel times over short distances, the algorithm might bsege benefits for real-time ITS
applications such as route guidance systems or ATIS.

However, this algorithm relies on prior speed informatiooni loop detectors. When
there is very little local speed information or no such infiation at all, PISCIT cannot
work. To deal with this issue, the next chapter propose a meneral algorithm which
are able to fuse the travel times themselves or fuse themlittighioop speed data. This
approach is still based on data-data consistency.
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General approach for speed
reconstruction by fusing travel times

travel time measures
from AVI

Adjust speed
estimates

peed estimate
consistent with

Output speed
estimates

Figure 6.1: lllustration of internal consistency. The mé&imction is to find speeds that
are ‘best’ consistent with all travel time records from Floet Car Data

The previous chapter, Chapteiused a data-data consistency approach to remove much
of the bias in local speed estimates by fusing travel timeshat method, the initial local
speed measures from loop detectors are used as prior intforpavhich are updated
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Table 6.1: Symbol list

L, Length of road segmerjt

tg.’“) Time moment when probe vehicteenters road segmeint

A;'“) Estimated time moment when probe vehiglenters road
segmentj

1t Travel time of probe vehiclé on road segment

tAg»k) Estimated travel time of probe vehioleon road segment

*)(i,4) | Estimated duration of vehicle dwelling in cell (4, 5)
5™ (i, 5) | Estimated traveled distance of vehiélén cell (4, 7)

)
G~ (i,7) | Measured flow in celli, j) by loop detectors.
0~ (i,7) | Measured (biased) speed in cgllj) by loop detectors.
2™ (4, 5) | ‘Measured’ speed in cell, j) by trajectoryk. Similarly for

densityp®) (i, ) and flowg™® (i, 5)
0(2,7) The final estimated speed in céll j) by using travel times
speed and flow. Similarly for densigyi, j) and flowg (i, j)

when the extra information of travel times are given. But imgneases, the loop detectors
are sparsely installed or none of them is installed on a laagl rstretch. In order to
estimate the traffic speeds in such a case, people may haedtorr floating car data
(FCD). As shown in the following, a considerable bias in spest@nation is likely to be
made out of these floating car data, especially when the FCP lbavresolution in time
horizon (lower polling rates).

To tackle this issue, this chapter proposes a new methoeldcatbvRes for accurate re-
construction of high-resolution (e.g. 500m*60sec) tinpaee speeds on the basis of sam-
pled floating car data. This new method is superior to naivthats (classic methods),
methods which reconstruct time-space speeds by simplgidgitravel distance by tra-
vel time between consecutive FCD samples. Later on in thetehape will show the
improvements by applying the method to a test case. It usigsrative trajectory recons-
truction technique as given in Chapter Still based on data-data consistency approach,
the ‘best’ estimate of speeds is found, such that the spdadatss are best consistent
with all travel time measures, or in other words speed eséisnand travel times meet
the physics lawspeed * time = distance. This method is mainly checking the internal
consistency, and only FCD are needed as input data. Fglireughly shows the overall
idea. Although only FCD is necessary for this method, thishmétcan be extended such
that other data source e.g. loop speeds can be fused. Indodthy part, we will also
show the extension of this method.
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6.1 Introduction

6.1.1 Floating car data used for speed estimation

With the fast growth of in-vehicle ICT, the number of feasibjgplications based on in-
car intelligent transportation system applications iddigpgrowing as well. These in-
clude not only the (off- and online) collection of vehicl@jectories, speed, travel time
(Laird (1996) and even OD paths, but also incident detection and routiagae. Traffic
monitoring on the basis of probe vehicle systems has margraages over classic infra-
structure based monitoring such as low cost per unit of datatjnuous (over space) data
collection, and the inherently non-intrusive nature o$tiype of monitoringTurner et al.
(1998). The common use of global positioning systems (GPS) inilaghones and/or
in-vehicle navigation systems makes it easier and feaslpeovide (more detailed) data
of higher accuracy. In terms of traffic management, typiggdliaations of floating car
data include traffic state estimatioHérman(1984), travel time estimation and predic-
tion (Coifman (2002). For the estimation and prediction of travel times, goadfic
state estimation is the pre-condition, since traffic moél@iprediction are likely to take
traffic states—density or speeds or both as inpan(Lint et al. (2002). The accuracy
of the source data for such applications is crucial. It isnfihufor instance, that errors
in speed estimation of up to 20% may lead to errors in estidnd&nsity up to 100%
(Stipdonk et al(2008). In this chapter, we focus on the accurate estimationadfitr
speeds by using floating car data (also known as probe dateboei FCD).

6.1.2 Challenge from floating car data

It is seemingly simple to derive traffic speeds from floatiag data. Floating car data at
least contain the probe vehicle’s relative position on alraad timestamps. The com-
monly used method to derive the speed between consecutbe pehicle reports is to
divide traveled distance by travel time, resulting in tisgace mean speed (Graph (a) in
Figure6.2). Such a method works well when floating car data have highngotates
(e.g. one report every one or a few seconds). But as shown foltbeing, this method
brings about considerable errors when it comes to the estimaf high-resolution (e.g
500m*60sec) time-space speeds from floating car data of twiing rate (30sec-90sec
or more).

High resolution traffic speed plots may not be derived from kC®straightforward way.
This is due to the fact that a probe vehicle reports its pwsitiat a regular interval (e.g.
1 or 2 minutes), during which the vehicle may have alreadyeoed 1 or 2 kilometers
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Figure 6.2: (a) Comparison of assumed vehicle trajectorigl @wiound-truth ones.
(b)An example for estimated speed and ground-truth one.
(c) Ground-truth time space speed contour plots from sitedlaata in an example of

Vissim simulation.

(d) Reconstructed time-space speed contour plots by nateoah (classic method) on
the basis simulated FCD in the Vissim simulation.
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on a highway or passed several blocks in urban roads. Witdubther assumptions or
taking into other data sources, one can only derive the gegraurney speed a vehicle
experiences during such polling intervals by dividing aite traveled with travel time.
The underlying assumption is hence that the vehicle doeshaotge its speed during the
interval. Consequently, the trajectory of this vehicle igraight line on a time-space map,
obviously differing from its ground-truth trajectory akigtrated in Figuré.2(a). On the
basis of such average journey speeds (straight vehickctaajes) one can calculate an
average speed in each time-space cell through which adeagirobe vehicle ‘traversed’.
We will refer to this method of calculating speeds from prebkicle data as the naive me-
thod (classic method) from hereon in this thesis. This nate¢hod causes considerably
errors, particularly in low-speed regions. Figér2 (b) gives a simple example, in which
probe vehicle reports its location at an interval of 2 miswdad it travels at 20meters/sec
in the first minute and 10 meters/sec in the second minutaltirgg in 15 meters/sec on
time-space average. This implies an 25% underestimatiapeéd in the first minute
and a 50% overestimation in the second minute. What's worggtghe estimation er-
ror "diffuses” into neighboring cells or regions. As a rdstle reconstructed time-space
speed plots from FCD are inaccurate as illustrated in the pbaim graph (c) and (d) in
Figure6.2 In this example, Vissim software was employed to give Gabtrath speeds
as shown in Graph (c) and also generated virtual probe \eetiath with reporting interval
of 2 minutes. When the FCD were processed with the naive mettask{c method), the
resulting speed plots Graph (d) displayed noticeable sldfu of speed estimation. Due
to this diffusion, the speed estimation on the downstreaaa (&rom the mile point 4.8
km) has the average relative error of 37.8%.

In real-life and large scale application of FCD, it is likelyat we may only get FCD of
low polling rates rather than data of high polling rates aueestriction on communication
cost. Therefore, it makes sense to find a way to use low paiitegdata or low-resolution
data. For this purpose, this chapter proposes a new metiied daavRes to tackle the
above-mentioned issue, borrowing the idea of trajectacgmstruction from PISCIT that
is given in the previous chapter. In the next sections of ¢thigpter, some theoretical
analysis about speed reconstruction from FCD is given bdf@dechnique details on
the method are fully presented. After presentation of théhodology, the method is
validated on the basis of an experiment with simulated data.

6.2 Theoretical background

In this section, some quantitative analyses are given teatethe relationship between
floating car data (FCD) and cell speeds on time-space plotsn§rihat the ground-truth
speeds can be exactly reconstructed by FCD under some assusngthe first assump-
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tion is that each cell of the time-space speed plot has honsmyes traffic conditions.
This implies that the vehicle trajectories in a cell are paratraight lines. The second
assumption is that the given floating car data are consistigntthe ground-truth time-
space speed plots, which means the floating car data cam leéhexactly reconstructed
through the time-space speed plots.

6.2.1 Analysis of simple cases

On the basis of simple example cases we will first demonstinaiteit is possible to use
low-resolution FCD to exactly reconstruct ground-truthespe each time-space cell, if
the above assumptions are made. FiguBga) presents such a simple two-cell case. This
graph shows two neighboring time-space cells referred toaagly, in which two probe
vehicles only pass the space-boundary of cells once withassing the time-boundary.
Both the probe vehicles report their locations after a tinteriral, which are marked by
black dots in the graph. Since the locations with timestaarpsprovided, the distance
from their reporting locations to space-boundary of théscsl known, represented by
S1, 52, S3 andS4 shown in Figures.3 (a). Assuming homogeneous speed on each cell,
the relationship between time, distance and speeds carndi@igised through the below
equations:

S1/vx + S2/vy = At (6.1)
S3/vx + S4/vy = At (6.2)

It can be expressed with matrix as:

S1 52 Ljvxe | | At
{53 54}[1/1@}_[At] (6:3)
Looking into the equations, it is found that the unique solutcan be achieved if the
matrix

S3 5S4 6.4

{ S1 52 }
has full rank. For FCD with the same polling rate, the unique esasonable solution
(positive speeds) can be achieved only if the two probe lehido not report the same
locations. In addition, the unique solution has to equahtodground-truth speeds. Since
the ground-truth speeds and the above solution both s#hisfequation, if they were not
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Figure 6.3: lllustrations of a few cases when probe-vehi@dgttories run through
time-space cells.

equal, then solutions to this equation will not be unique.

Figure6.3 (b) shows the case when the probe vehicles only pass thebtimedary once
without pass the space-boundary. Similarly, the below tojscan be established as

tl-ve+1t2-vy =51 (6.5)
t3-vx +td-vy =952 (6.6)
or
t1 2 vx S1
) lwl= 5] ©7)

has full rank. The unique and reasonable solution can beasthionly if the two probe
vehicles do not report their locations at the same time. Saithethe first case, the unique
solution give exactly the ground-truth speeds.
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6.2.2 Analysis of more complicated cases

Figure6.3 (c) illustrates a more complicated case in which probe Veioun through
three time-space cells. Assuming that the trajectorieskaogvn to run through cell d,

c and b, it is not easy but still feasible to establish a simiteear equation in terms of
Ax = b as already shown in the first two cases, where vect@presents cell speeds or
inverse speeds (1/speed). It can also be found that the dntoutth speeds on cell d, c and
b can be exactly deduced, given enough FCD suchAhhgs full rank. Further more,
if the trajectory is incorrectly assumed to run through delt and b instead, the conflict
equation (no solution) will be established when enough FGDgaren. In that case, the
assumption has to be changed till no conflict equation ocdarthe light of the above,
such a linear equatioAx = b always exist for whatever complex cases. Furthermore,
if enough FCD are given so th& has full rank, the unique and exact solution to cell
speeds can be achieved. Even when the FCD are not fully censisith ground-truth
speeds (e.g. in real-life, some vehicles run faster whifeesother slower than ground-
truth ones), one optimal solution to the possible conflictagipn Ax = b can be solved
by a transformed equation suchA3Ax = ATb.

We therefore conclude that if enough FCD are available arttege are fully consistent
with ground-truth speeds, these cell speeds can be estimeaetly under the assumption
of homogeneous speed on each cell, no matter how small theizelis chosen or how
large the polling interval is. Furthermore, this estimat®unique and the only one which
can be fully consistent with FCD.

6.2.3 Implied difficulties in complicated cases

Practically, however, when more cells and more floating eéa §FCD) are considered,
the establishment of such a linear equation becomes inipessMore generally put,

the key difficulty lies in the fact that whereas sampled viehiajectories (i.e. floating

car data) can be easily reconstructed from the time-spasedsp the inverse, deriving
time space speeds from sampled vehicle trajectories bexapally infeasible, even in
case the assumptions introduced above are met. Particutad hard to make correct
assumptions about which cells are traversed through byrtteeprehicles. In addition,

the time cost for solving the linear equations outlined &exponentially rises with the
dimensions, which may even make the real-life implemematnpossible.

The new method proposed below does not establish such kewgeations for solution.
Instead, it uses a heuristic and iterative way to approartieg solution for cell-speed es-
timation. We call the new method TravRes since it enables ohetaledTraveexperience
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Figure 6.4: Evolution and convergence of time-space sppkds and corresponding

sets of FCD. This graph shows that when the sampled travel tipeach the given

travel time records, the estimated speed plots approachritend-truth speed plots
(under certain conditions).

Reversdrom FCD, leading to high-resolution time-space speeds.

6.3 Methodology: TravRes

This section elaborates the method in detail. This methdzhs®d on some simple as-
sumptions and physical laws. Homogeneous and stationaffictconditions are assu-

med in each time-space cell. The travel times are assumeel ¢torpect and consistent
with ground-truth traffic speeds. The quantities of traveles are large enough so
that no more than one speed result can satisfy all the tramebkt The physical law is

distance = speed * time.

Before we give the method detail, we first present the basasidethis method.
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6.3.1 Basicideas

The fundamental idea is shown in Figused. In this figure, there are a sequence of
time-space speed plots. For each time-space speed graph¢arCiie reconstructed by
sampling speed plots. However, under certain assumptilobess is only one time-space
speeds which can exactly lead to the given FCD. Our goal isdcsfilch time-space graph
which can exactly reconstruct the given FCD.

For example, there is one piece of FCD, which shows that a kelsiat location) at

time 0 minute, and at location000 meters at timel minute. When we get a graph of
estimated time-space plots, we can reconstruct its tapetly sampling speed plots. If
the reconstructed trajectory shows that the vehicle isaddecation0 at time( minute

and at locationl000 meters at timed minute, we call that the estimated speed plots are
consistentvith this piece of FCD. If the reconstructed trajectory shotet the vehicle is

at location900 meters at time minute, we can update the estimated time-space speeds
so that the resulting speeds are consistent with this pie€ED.

It is very likely that many estimation results are consisteith this piece of FCD. But for
a certain set of FCD, there is one and only one speed estimakimh is consistent with
this set of FCD. Such a set of FCD does exist if we assume théittrmhomogeneous
and stationary in each time-space cell so that vehicledi@jies in each cell are parallel
with one another. As shown in the cases in the previous seaie piece of FCD impli-
cates one equation where time-space speeds are takenadaesr\When more and more
equations are established with more FCD, there is one soliti@ll the equation and
this solution is ground-truth time-space speed. In othedgosuch a set of FCD can be
sampled from the ground-truth time-space speeds, and énerenough of them so that
there exists one and only one graph of time-space speeds whicexactly reconstruct
all the FCD.

As a matter of fact, we are not going to establish a set of @musand solve the equa-
tions for traffic speed estimation. The previous sectiondigsady shown that it is very
inefficient and difficult to establish equations and solenthwhen many FCD are taken.
For this reason, we are taking a ‘feed-back’ strategy. Leassume that there is only
one estimation that is exactly consistent with all the giF€@D. Firstly, we find arbitrary

speed estimation. If this estimation is not consistent Withgiven FCD, we update the
estimation and get new estimation which tends to have lesmsistency with the FCD.

Iteratively update the estimation until the estimationns@gh or exactly consistent with
the FCD. The next problem is how to design such an algorithnptiate the estimation
so that less consistency will be achieved in each time. Thevanwill be given below.
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Figure 6.5: The whole framework of TravelRes

6.3.2 Methodology framework

This method consists of two iteration loops—inner loop anteoloop as shown in Fi-
gure 4. The inner loop accomplishes the reconstructionsaggatories and outer loop
further reconstruct time-space speeds. With enough cytézations), estimated speeds
are supposed to be consistent with the given FCD to some extent

e Figure6.5(A) represents the inner loop which accomplishes trajgateconstruc-
tion, an algorithm adapted from PISCIT. The input is the gi#&D and the pre-
viously estimated time-space speeds. For the initial edion, we simply assume
that the speeds over the whole time-space region are equiloas in (C). As
matter of fact, the initial estimation is not supposed tong®the final result.

e Figure6.5 (A) and (B) constitute the outer loop, in which time-spaceespes-
timation is reconstructed by the reconstructed trajeesoand the resulting speed
estimation is to be taken as input for inner loop in the nextey

e Figure6.5 (D) represents an optional input for the inner loop wheneghsraddi-
tional traffic speed information available from other dasarses or modeling. Dif-
ferent confidences are put on different time-space regmmdifferent data sources.
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For example, if correct speed information on some road satgeavailable, it can
be used to replace the corresponding time-space regiomphdB) in each cycle.

The above iterative steps can be executed until the samglBdifem the resulting speed
estimation is close enough to the given FCD.

6.3.3 Inner loop: trajectory reconstruction

This part of the algorithm is able to reconstruct individtrajectories by combining the
given travel times and previously observed (estimated)speleds from loop detectors.
Cameras or in-car GPS can provide the entry point for a veltiudd is where and when
the vehicle enters a road stretch. Also the exit point isrgadeout where and when this
vehicle leaves the road stretch. Any line which links the peints could be a trajectory
for this vehicle. The algorithm presented below is able td fire most ‘likely’ trajectory
with the help of the time-space speed information from loefedtors, even though there
Is considerable bias in these speed measures. The mecHaehemd is quite simple. For
a fixed road segment in a road stretch, longer travelledrdistanore travel time; higher
speed, less travel time;

In illustration, it is assumed a probe vehidleentered road segment 1 at reporting time
fﬁ’“) and exited segment 6 at the next reporting t'vffy“ié(Refer to Figures.6). This tra-
jectory reconstruction algorithm is made up of the stepswethe first four of which
accomplish reconstruction on segment level while the lastdn cell level. Table.1
lists the important symbols used below.

STEP 1: Getfg.k) anthy“) from this previously-estimated trajectory as shown in Grap
(a) in Figure6.6 (The initial trajectory can be assumed to be a straight line)

STEP 2: Based on the given time-space speeds (biased)a(ce)ate the average speed
o([i",#"),]. j) over segmeng during the time betweef}" and\"),.

STEP 3: Updaté”'andti\"’ based on the average spegd'”, "], j). The updated
tfg-k) can be obtained from the equations displayed below

L
o(f", 1. 5) o9

JRRLARS!

(k)
ttj o'

Sl = (6.9)
j
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,wherett is the given travel time for a vehicle over the whole stretghter that, update
fﬁ.’“) based ontfg.k).

STEP 4: Repeat STEP 2 and STEP 3 uiltil and " converge to a specific extent.
(Refer to Graph (b) in Figuré.6)

STEP 5: Deducet®) (4, j) from tfgk), A;'“) and cell size. (Refer to Graph (c) in Figure
6.6)

STEP 6: Deducé®™ (i, j) under the below equations. (Refer to Graph (c) in Figu6p

§0(i, 7) oc t®) (4, ) 0~ (4, §) Jo ([E 191, 5) (6.10)

> 5W(i,4) = L (6.11)

L, is the length of segmerit The division of a whole stretch depends on the requirement
for estimation resolution as well as the input FCD. Normallg,make the length of each
segment about 500 meters. If we have a large number of thé K@D with high polling

rate e.g. 30seconds, we can divide a road stretch into makesnmoad-segments.

6.3.4 Outer loop: time-space speed reconstruction

In this section, cell speeds are estimated via the abovensétmted trajectories. With
the reconstructed trajectorie$” (i, j) ands" (i, j) can be known, which are the travel
time and travel distance for probe vehiél®n time-space celli, j) respectively. In the
case that a cell has two or more trajectories pass througlspiked on the time-space cell
(1,7) can be estimated as

> w® (i, §)oM (i, j)

k > wk (i, 5)

Zwg“)(z',j)é(’“)(i,j)/tﬂ“(i,j)

_ K SCIoN (6.12)

k

>

(i,j) =
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wherew®) (4, j) is the weight put on the speed estimatiofi (4, j) from probe vehicle:
in time-space celli, 7). One possible choice for weight is:

w (i, §) = \/ 80 (4, )HE®) (4, 5)/ / " |60 (t)| dt (6.13)
0

The reason for this choice is given below.

If a probe vehiclek leave a longer trajectory in a c€ll, j) , it is supposed to put more
weight on() (4, j) when it is used for the speed estimatiafi, j) . Considering both
space length and time span, we assume

w®(i, ) oc /309G, j)HO i, ) (6.14)

The main reason to choose such an assumption is that thel detgth’ may lead
to a dimensionality issue. The actual ‘length’ this trapegt left in the cell is

\/é(@ (1,7)% 4+ tt®) (i, )2, howevers® (i, j) andtt™® (i, j) have different units. Conside-

ring that inequalityad < (a® + %) /2, \/§(’f) (i, 7)tt®) (i, 5) is simply used.
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Figure 6.7: Comparison of the ground-truth trajectory ane tieconstructed trajectory

When polling rates of probe vehicles are different or cameta ¢also providing travel
times) are considered, different confidence is supposec tpldced on trajectories of
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different polling rate and traffic experience. Compared witie minute polling rate, two
minutes rate can lead to larger deviation of reconstruatgeddtories from the ground-
truth ones. More deviation, less confidence is put this ¢tajg. If we consider polling
ratett, we will also find

tt/2
w® (i, 5) oc 1/ / ") (1)| dt (6.15)
0

Now let us explain why this equation makes sense. Figufshows that a probe vehicle
reports its location at time 0 and report its next locationirae ¢ = t¢t. This piece of
FCD can precisely tell its locations at time 0 and at titne: ¢t, so the reconstructed
trajectory (dashed red) and the ground-truth one (blac&jesthe same locations at the
both ends. But during the polling interval, their trajecésrare most likely to deviate from
each other.

Since there is no deviation at the two ends, the bigget dewiat supposed to be between.
For simplicity, we assume that the biggest deviation ocatitanett/2. Let S*)(¢) and
S (t) represent the estimated location and ground-truth oneatfepvehiclek at time
t respectively. An attempt is made to approximately quarttiy difference between
S®)(tt/2) and the exact valu§™™ (tt/2) . Given the ground-truth speed for this vehicle,
it can easily found that

dSP(t) = v®) (t)dt (6.16)

or
S®(t 4+ At) = SB (1) + v ®) (1) At (6.17)

for very small At . But for the estimated reconstructed trajectory, omﬁi’“)(t) =
v®)(t)dt + n can be established, in which possible errors on speed é&timand tra-
jectory reconstruction are considered, ancepresents the random displacement due to
these errors. To better describe this random displacef@sswnian motion (Wiener Pro-
cess) is introduced. In the standard Brownian motion, thdoandisplacement during
the period front till ¢ + Atis W (t+ At) — W (t) , wherelV (¢) is the position of particle

at timet and the displacement follows the normal distribution:

W (t+ At) — W(t) ~ N(0, At) (6.18)

Considering that the absolute error on the estimate of higheed is larger while the
relative error on the estimation of lower speed is largenakes sense to establish

n =~ ay/vE () (W (t + At) — W(t)) (6.19)
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For very smallAt , it can be assumed that= «/v®)(t)dW (t) , leading to a stochastic
differential equation

~

dSW () = v® () dt 4 o /v® (£)dW (t) (6.20)
where W (¢) is Brownian motion process with covarianeé = 1 and«a is a tunable
factor with the dimensionec x \/meter/sec. Actually, « would have been displayed
in Equation6.23 and Equatior6.24, but whena is assumed to be constant, it can be
cancelled in Equatiof.12 Therefore we simply make = 1. Integrating Equatio%.20

from time O till time¢¢/2 when the biggest deviation may occur as shown in Figure
the following equation can be deduced.

s%u2) = [ 0 byt + / S maw (6.21)
0 0

Further, the covariance &f*)(¢t/2) can be deduced as below:
R tt/2 tt)2
cov(S® (tt/2)) = cov(/ v(k)(t)dt+/ v®) () dW (t))
Ott/2 "
= COV(/ vB) (£)dW (1))
0
tt/2
= / v ™) ()] dt (6.22)
0

Sincew(t) is unknown, we replace it with the estimatioff (¢) in Equation6.22 leading
to the below result:

. tt)2
cov(S®) (tt/2)) o / |50 (t)| at (6.23)

Obviously, the bigger the deviation is, the less confideagait on the trajectory. So we
can also assume
tt)2
Wi, j) 1/ [
0

Combined with EquatioB.14 the weightw®) (4, j) now equals

oM ()] dt (6.24)

w® (i, 5) = \/g(k) (i, R (i, 5)/ / " |00 (¢)| dt (6.25)
0

Now 5% (4, 1), tt¥)(4, ) andw® (i, j) become available, so the speed estimation in cell
(1, 7) can be achieved via Equatiénl2 Considering all the FCD, then time-space speeds
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on the specific region can be reconstructed.

6.4 Method validation

In this section, three scenarios are set up to validate thibadgroposed in the previous
section. They are aimed to show how TravRes outperforms tive maethod (classic
method), how probe vehicle polling rates and penetratioesranpact the results, and
how camera data and partial loop data can be added to furiberases the accuracy
of estimation. In scenario A, only FCD are used for speed egtim under different
polling rates and penetrations. In scenario B, travel timesfvirtual cameras spaced
4.5 kilometers apart are used as additional data sourcéh Guera data can be taken
as a special kind of FCD in processing since they share the datagformat, they are
processed the same way that FCD are done. In scenario C, lprésadded and taken
as optional input as shown in Figuéeb (c). It is assumed that the loop detectors only
covered part of road segments. The motivation of Scenariesdsee if the external data
can help FCD to give better speed estimation on the road wheiledp detectors Do Not
cover.
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Figure 6.8: Assumed ground-truth time-space contour pgpgserated through real-life
data from 18 loop detectors spacing around 500 metes on arf &tietch of Highway
A4 Eastbound in Netherlands.

In the three scenarios, the ultimate outputs are time-sppeed plots with resolution
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500m*60sec or so. So when FCD have high polling rate (e.g 80}, there is lower
chance that the probe vehicles traverse multi time-spdtsediging one polling interval.
When FCD have low polling rate (e.g. 120seconds), the probeleshare likely to

traverse quite a few time-space cells during one pollingriral.

6.4.1 Experiment setup and generation of virtual FCD

First of all, a 9.5 kilometer stretch of 3-lane Highway A4 tsasind in Netherlands is
considered (Graph (a) in Figue8), where 18 loop detectors are placed spacing around
500 meters and aggregated traffic speed measures and ceantsoee minute. The
resulting time-space speed contour plots (Graph (b) in&:8).from loop detector shows

5 hour traffic condition on this stretch from 6:00 A.M. till LZA.M. on July 8th, 2008,
during which congestions onset on the morning and dispersdle afternoon. Next, the
above real-life speeds are taken as ground-truth ones traenvirtual probe vehicles
and subsequent virtual FCD (FiguBe8 (c)). The probe vehicles were generated at the
location O meter at random time during the 5 hours. With tHp bétime-space speeds,
the ‘ground-truth’ trajectories were reconstructed. Agsuit, FCD were generated by
sampling the time-space locations of the ‘true’ traje@sat a certain rate and meanwhile
the resulting FCD were fully consistent with ‘ground-trugipeeds. Penetrations of probe
vehicles were given based on the fact that there were taththyt 28500 vehicles passing
through the first loop detectors during the 5 hours. Penetraaries from 2% to 10%
and polling rates varied from 30sec to 120sec.

6.4.2 Speed reconstruction by FCD only

The initial speed plots on the whole time-space region (tefEigure6.5(b)) are assumed
to have uniform speeds 20meter/sec and the generated FCDtanéopthe method (refer
to Fig. 6.5(a)). In this scenario, there are no other data source as. ilyith the above
data as input, the inner cycle is executed iteratively 1®siand outer cycle only 9 times.
As the later findings show that the error inconsistency desgé very rapidly, so only
about 10 iterations are needed. In the speed reconstrymicnthe Equatior.12 and
Equation6.13are employed MARE (Mean Average Relative Error) is used to evaluate
the performance of the naive method (classic method) andREmas shown below:

1 e i, g) — 06, )]
MARE = - ZEJ: i) (6.26)
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where(i, j) is the estimated speed in céll j) andv(z, j) is the ground-truth speed.
Figure6.9and Fig.6.10compare the performances of the naive method (classic metho
and TravRes with different penetrations and different pgllates. In calculating MARE,
the speeds on some of cells failed to be estimated due tontitteoli penetration, so only
the cells where there are reconstructed trajectories nagisiough were taken into ac-
count. The penetration is based on the number of probe eshpassing by the most
upstream detector, that is about 28500 in number. This egeeaipproximately indicates
the percentage of reconstructed trajectories coveringvtitde time-space regions based
on the case of 5% penetration and 60 seconds polling rated@Verage is similar with
the case of 120 seconds polling rate). Both lBig.and Fig.6.10show that the proposed
method TravRes outperforms the naive method (classic methatitakes weighted ave-
rage speed for estimation if multi trajectories are foundme cell. In addition, MARE
significantly decreases with the polling rate rise from 2 tiB0 seconds.

Table 6.2: MARE of speed estimation over the whole time-seaoen by using Naive
and TravRes methods respectively.

Penetration Polling rate| MARE with naive | MARE with TravRes
10% 120sec 15.4% 7.4%

10% 60sec 9.1% 3.7%

10% 30sec 5.4% 2.7%

5% 120sec 16.8% 9.5%

5% 60sec 9.8% 3.9%

5% 30sec 5.7% 2.6%

2% 120sec 17.7% 12.3%

2% 60sec 11.4% 6.3%

2% 30sec 7.2% 3.1%

Table 6.3: MARE of speed estimation (speeds are lower thamplkby using Naive
and TravRes methods respectively.

Penetration Polling rate| MARE with naive | MARE with TravRes
10% 120sec 38.9% 11.8%

10% 60sec 23.4% 7.0%

10% 30sec 13.8% 6.5%

5% 120sec 44% 17.3%

5% 60sec 24.9% 7.5%

5% 30sec 15% 6.6%

2% 120sec 50% 29%

2% 60sec 33.5% 14.2%

2% 30sec 20% 7.9%
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I Naive
161 LI TravRes

case label

Figure 6.9: Global MARES (%) in speed estimation by usingthiee method and
TravRes under different polling rates and penetration sate
case 1,2,3: penetration rate 10% with polling rate 120seseg®0and 30sec respectively;
case 4,5,6: penetration rate 5% with polling rate 120sece60md 30sec respectively;
case 7,8,9: penetration rate 2% with polling rate 120sece@Cmd 30sec respectively.

I Naive
451 [__JTravRes

case label

Figure 6.10: For time-space region with speeds smaller th@kn&/h, this figure shows
the MARES (%) in speed estimation by using the naive methdd@vRes under
different polling rates and pernetration rates
case 1,2,3: penetration rate 10% with polling rate 120seseg®0and 30sec respectively;
case 4,5,6: penetration rate 5% with polling rate 120sece60md 30sec respectively;
case 7,8,9: penetration rate 2% with polling rate 120sece@tmnd 30sec respectively.
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estimated among all time-space cells;
(b) Decrease and Convergence of MARE with the iterations iother cycles.

N
(]

Ground-Truth Travel time
-------------- Travel time with TravRes
Travel time with naive method |

N
N
T

N
N

N
o

18

16

14

Travel time (min)

12

10

50 60 70 80 90 100 110
Depature time (min)

Figure 6.12: Comparison of estimated travel times with défémethods

Graph (a) in Figures.11 shows the coverage rate of travel time records with differen
polling rates and penetration rates. It can be seen that Wigepenetration rate is more
than 3%, we can estimate the majority (90%) time-space.c@8maph (b) in Fig.6.11
shows an example of how fast the result converge with TravRethad. It can be seen
MARE of estimated speeds has already leveled after the Sthagin.
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Also we can estimate travel times by sampling the reconstduttme-space speed plots.
As shown in Figures.12 the red curve represents the estimated travel times by usin
naive-method-based speed plots, and the dashed curveseatgehe estimated travel
times by using TravRes-based speed plots, and the bold gneenrepresents the ground-
truth travel times. They refers to travel times over this Brkieter road segment during
50th minute (6:50 a.m.) till 110th minute (7:50 a.m.). It @aihd that the travel times
from naive method (classic method) have a relative error.@&#3 while the travel times
from TravRes have a relative error of only 1.2%. This showsThavRes is able to give
much better travel time estimation.

In this validation, it is found that TravRes can significanthprove the accuracy of speed
estimation compared with the naive method (classic meth@djnbination with camera

data or loop data leads to better estimations. In expersnénis also found that this

method is time-cost efficient. For processing data with 1@¥tepration and 60 seconds
polling rate for 5 hour durations, 10 times of outer cycles lba accomplished within 8.5

seconds. In other words, 21600 travel time records are psecewithin 8.5 seconds.

6.5 Conclusion and recommendations

This chapter proposed a new method to accurately reconsigieresolution time-space
speeds from floating car data (FCD). This new method calledR&sa, does this by ite-
ratively reconstructing the (unobserved) probe vehidgettories between polling time
instants, until the resulting time-space speed map is asigtent as possible with all
probe vehicle reports. Like the method presented in theiquechapter, we can not gua-
rantee that the reconstructed trajectories will convenghis iterative processing. The
underlying rationale is simple: instead of assuming coristpeeds between probe ve-
hicle reports (which we refer to as the naive method or atassthod) and deriving a
time-space speed map by averaging these constant speadRe$rassumes and approxi-
mates probe vehicle trajectories which are consistentalithther probe vehicle reports.
One of the main assumptions made is that speed is constaabitrdrily chosen) time-
space regions. Compared to the naive method (classic methed)ew method almost
doubles the estimation accuracy, particularly in low-shesgions where such an increa-
sed accuracy is most valuable.

It is found that the polling interval (i.e. the time interda@tween probe vehicle reports)
significantly influences estimation accuracy, and thatipglintervals of 60sec can lead
to twice better accuracy than 120sec polling intervalss,lthiowever, important to note
that one should choose the size of the space-time grid oedlsdordance with the polling
interval, that is, each time-space cell had better covema period equal or larger than
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the polling interval. The probe vehicle penetration ratee(age percentage of equipped
vehicles among the all vehicles) largely determines thésp@mporal coverage, that is,
the amount of time-space cells in which a speed can be estim&rom our results it
appears that 3%-4% penetration can lead to both high covenadjaccurate estimation.

By now, we already tackled the issue how to fuse travel tim@s {ime-resolution travel
time data in particular) by using data-data consistencyagmh. With this approach, very
few assumptions are needed, but considerably improvedi sgstenations are achieved.
However, there are still a lot left to be done. In addition @w Iresolution travel time
data, there are also low-resolution positioning data whirehwidely available in wireless
networks as mentioned in Chap®rConsidering their wide availability, fusing these data
will also be practical relevant. The next chapter will givihaoretical framework to fuse
low-resolution positioning data. And this framework idl¢tased on the idea of data-data
consistency.



Chapter 7

Speed estimation by fusing
low-resolution positioning data

Prior speed distribution ~ Low-resolution
(e.g. from historical positioning data
loop data) (TP data)

i

Density*speed=flow

Shell: Bayes rule

speed estimates

Figure 7.1: Illustration of the consistency rule in this gitar

Chapter5 and 6 are concerned with low-resolution travel time data (lowlipgl rates).
This chapter will deal with another type of data, data whichymot only have low time-
resolution but also have quite low position-resolution.ctsuata cannot pinpoint the
accurate positions of vehicles but can only give some lonagpecific information when
and where the vehicles are located at the segment or cell IEge this reason, we will

101
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refer to such data as topological position data or TP data.

In contrast to high-resolution positioning data, TP datanca provide the distance com-
ponent that is necessary for traffic speed estimation. Hewewnsidering the wide avai-
lability of TP data in the existing telecommunications netky there is still hope and

benefits to make use of the data for traffic state estimatione groposed method in

this chapter is capable of fusing low resolution positignitata with other data sources,
leading to more accurate and reliable speed estimatioraifuely low bias.

This method is also based on data-data consistency apprbastead of usingpeed
time = distance law, we usedensity x speed = flow under the assumption of homo-
geneous traffic in each discretized time-space cell. Twesygf information are taken
as input. One is prior distribution of traffic speeds from. etgstorical loop data, and
the other is TP data, which actually contain informationamning flow and density.
Bayes rule is used to update the prior speed distribution Wiedata is given, such that
posterior speed (distribution) with more reliability ivgn.

7.1 Introduction

We first look at high-resolution positioning data as GPS .dake emerging use of global
positioning systems in mobile phones or as part of in-vehnavigation systems makes
it feasible to derive real-time traffic state information thre basis of these data. Since
GPS-equipped vehicles or devices provide their geogrgpdsdions with time stamps,
one can derive a moving vehicle’s mean speed by dividingckelistance traveled by
travel time. With more and more high-resolution probe viehttata becoming available,
accurate and reliable traffic state estimation can likelpdlaeved.

However, before state estimation from a very large sampke & GPS-based probe ve-
hicles is fully achieved, some other data sources are neédeckr resolution positioning
data via cellular communications networks can be one of thidmarefore, the motivation
of this chapter is to examine the potential benefits of fusige low resolution data as
extra information to achieve better traffic speed estinmatio

7.1.1 Cellular networks and topology positioning data

Cellular phone location data is considered to be a low-réisoidocation data source.
Cellular phones operate in a network made up of multiple radils, as shown in Figure
7.2 In each cell, a base station provides the communicatioriceefor phones. Base
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stations are all interconnected so that an on-call phonenoae from one cell to another
without losing the connection. All cells are grouped intotgalar location areas (LA).
Normally a cell hexagon ranges in size between 200 and 10@€rsne urban areas, and
location areas range from 1 kilometer to several kilomdtesize.

Previous research on wireless-network-based traffic mong and estimation
(Smith et al.(2001) has focused on positioning techniqu&snith (2007) and the im-
pact of probe penetration on the quality of these positigrigthniques. Major posi-
tioning techniques include angle-of-arrival positionitigne-of-arrival positioning, time-
difference-of-arrival positioningRoos et al.(2002), and the handoff approaciZifao
(2000). These techniques obtain the geographical positiongafepvehicles so that
the travel distance is available for traffic speed estinmatiRrevious field operational tests
(Thiessenhusen et dR005) assessed the accuracy of estimation with different nastho
and different probe penetration. In previous researchyleeldata has been treated simi-
larly to positioning data obtained from GPS.

This chapter describes a mechanism for tracking cellulanpk at the cell level. Cell
level data has low positioning accuracy, ranging betwedhri8ters and one kilometer,
depending on the size of cell, not appropriate for travdbgise estimation.

Location | ﬁ @

Area A A

Location
Area B

Figure 7.2: Example cellular network.

Technically, TP data are location data which don’t provigaat geographical positions
but point to a location area-a cell or a road segment. When alengloone in a vehicle
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sends beacon signals periodically, the cellular networksaale to trace the phone and
record the cell where it is located. Considering that beaogmas transmission is one
way and occurs at a frequency on the order of minutes, the commation is relatively
simple and low cost. In addition, TP data are more widelylaée in terms of time and
space, since devices possibly providing TP data (e.g. mgibnes, laptops, iPhones,
etc) are being widely used in communication networks andbamming increasingly
popular. In sum, the simplicity and wide availability of TRtd may have potential for
traffic estimation in large networks.

7.1.2 Challenge and objectives

Street Located|in cell A at time t1 Located in cell B at time t2
Yamihill 7
o—— i) ’ D
Broad
way 6th  5th  4th 3rd  2nd | 1% Avenue
[ a—— 1 KiMesssmmmsmes >

Figure 7.3: lllustration of location displacement of veleig at different levels of
resolution.

Before TP data can be used for traffic monitoring, a new methoeéded for processing
the data.

In order to satisfy the real-life application, below we tisé objectives which this method
is supposed to achieve.

e (@) Usage of TP data. For traffic monitoring with TP data, prebhicle locations
are grouped only according to their road segment or cell. Aesalt, the accuracy
of positioning is only at the segment or cell level. So TP dza't be treated
in the same way that GPS data are normally handled. In Figuehe vehicle
could have provided accurate traffic estimation if it waswndhat it traversed
1 kilometer during the time interval between t1 and t2. Buthwaegment-level
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accuracy, the vehicle can only report that it traversed #tiboundary and entered
the next cell during this time period. So the proposed methost be able to handle
this inaccuracy issue.

e (b) Error tolerance. The cell boundary is uncertain andegawith the signal po-
wer and signal distribution of the cellular network. Becatisesize of the cell is
more or less uncertain, incorrect pre-matching of road segsnmay occur. Due
to inaccurate positioning, probe vehicles may not be srépyge the correct cell
especially when the vehicles are close to the boundariesheSproposed method
should be tolerant of errors and uncertainties.

e (c) Fusion with other data. TP data should not be the only slat@ce for traffic
estimation. It would be preferable for TP data to serve agaduformation, fused
with other high-resolution and more reliable data soureeg, GPS data. The
proposed method should include data fusion using low-oéisol positioning data
and high-resolution ones .

e (d) Magnitude of error in estimation. Traffic estimation is @itial step in the
traffic management process. The estimated traffic statebevilirther used for e.g.
travel time prediction. Traffic prediction not only needs thurrent state estimation
but also needs the confidence on estimated results. Foruipssge, the proposed
method should also provide an error estimate, such as tlencar

¢ (e) Extension to network-wide estimation. A cell may notyotver a simple road
segment but a portion of the road network. So the method dimusasily extended
to applications on network-wide traffic estimation with sogimple modifications.

So we want the proposed method to possess several propehiels together help to
achieve the five objectives described above. The methoga@lod validation are presen-
ted next, followed by some conclusions and suggestionauftindr research.

7.2 Methodology

In the first place, we present the assumptions and physieal lsed in this method.
The main assumption is that the traffic is homogeneous atidrstiay in each time-space
cell. TP data are assumed to be correct and reliable dedpite dow-resolution. The
prior distribution of speeds is assumed to be known. Theipaytaw that is used is
density = flow/speed.

This section is sub-divided in four parts:
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e The first section uses an analogy to show the fundamentabigl@iad the method.

e The second section describes a stochastic process onevebighting which helps
to set up a mathematical formula to fuse TP data with prioedpeformation from
other data sources e.g. historical GPS data.

e The third section proposes an improved formula. It consid@stream traffic flow
and better estimation of speed is expected.

e The last section uses order-statistics to analyze thedtiemariance of the speed
estimation using this method.

7.2.1 Prototype and basic idea

time t time t+At i-1 Road Segment i i+1

Length D-——————

Figure 7.4: Model comparison of water container and roadway.

The initial inspiration for this method comes from a watertainer prototype, in a similar
fashion as first order traffic flow theory. Suppose there isrdaainer with 1kg water,and
after a valve is opened, the out-flowing rate is constanttyd€conds. As a result, it takes
100 seconds to drain the container after this valve is opeBedn when the liquid has
non-uniform density in the container, the total drainimgeiis still L00 seconds. Similarly,
let us take traffic as water and a segment of roadway as thainent Suppose that there
are N vehicles on the road segment of lendbh and suppose that the upstream traffic is
held so that there is no traffic flowing into the downstreanmsenf (see Figur&.4). If

it takes timeAt to ‘drain’ all the traffic on this segment, the space mean speed can be
estimated withv ~ D /At. Furthermore, if it is known that only/ vehicles (out-flowing
volume) enter the downstream segment, the speed can bexttias

Dx M
At x N

(7.1)

~
~

Equation7.1 may still hold when vehicles are not uniformly distributed the road seg-
ment, because the ratid /N simply indicates the flow rate and largely determines the
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traffic speed. For example,when congestion occurs, theagsttraffic is in free-flow and
the downstream is in congestion. In this case, the ratjdv becomes smaller and there-
fore the ‘effective’ speed on the whole segment will dropluhe speed is approximately
proportional to flow raté\//N.

However, if there is no way to measure the total number ofalekiand the outflow,
this estimation would not be possible. As an alternativeitsmh (see Figurd.5), some
indicators e.g. number number of particles or isotopes egouib in the container. These
particles are assumed to be uniformly distributed in theewaWith this addition, we
need only measure the total amount of the indicators anddh#iow amount so that the
approximate estimate of the drop rate in the water level eaméasured.

i-1 Road Segment i i+1

ffffff Length D-——————

n — m probe vehicles — -m-

Figure 7.5: lllustration of all vehicles moving and probeweaes moving

For traffic speed estimation, probe vehicles with segme# leccuracy positioning can
serve as such indicators. Suppose that therevgmobe vehicles at timeé and thatm
probe vehicles move to the next segment byA¢ (Refer to Figurer.5). The pair(n, m)
then becomes characteristic of the space mean speed oregimeist during this time
period.

Analogously to the above, this estimation reads

Dxm
At xn

~
~

(7.2)

The question is, how good this estimate is, i.e., how muclidence we can have in this
estimate. For example, the pairs, m) = (100, 50) and(n, m) = (10,5) result in the
same estimation, but the latter would be trusted less. Bhirgome more complicated
with prior knowledge of traffic speed (e.g. the speed distrdn based on historical GPS
data). In the next section, a more accurate estimation rdethib be given with (and
without) prior knowledge of traffic speed combined.
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7.2.2 Probe vehicle count process and speed re-estimation

This section will describe a mathematical formula in terrh$ e= f(v, m,n) as shown
in Equation7.11, wherev depicts prior speed probabilistic information from anottiata
sourceyn andn are the information from TP data, ands the posterior speed estimation.
As a result, this formula may serve in the data fusion of TR datd other data.

First, let us define a count proceg8(z), + > 0}, where x is the number of the counted
vehicles (also traffic volume) anl(x) is the number of probe vehicles whervehicles
are counted. (Refer to Figuie6).

traffic volume = x

Number of probe vehicles in thistraffic = ¥(x)

Figure 7.6: lllustration of a count processl(z), x > 0}

It is found that¥ (=) has the following four attributes:

(1) ¥(0) = 0: No vehicle, no probe vehicles.

(2) ¥(z+y) — ¥Y(z) isindependent o¥ (z) for anyz > 0,y > 0 : Whether a vehicle
Is a probe vehicle has nothing to do with other vehicles.

(3) P(¥(x+ h) — ¥(x) = 1) = Ah + o(h) for smallh, where) is the proportionality
factor associated with the percentage of probe vehiclesworth noting that this
percentage is unknown.

(4) P(Y(z+h)—V(x) > 2) = o(h): One vehicle implicates at most one probe vehicle.

Asaresult{¥(z), z > 0} is a Poisson process according to its definitidiedhi (2002).

It is worth to mention tha¥ (=) has no business with the traffic condition e.g. congestion
or free-flow. ¥(z) is a counting process, which shows how many probe vehickes ar
counted when counting vehicles of all kinds. For exampl@llithe vehicle are probe
vehicles, it will read¥ (z) = z. Taking another example, if no probe vehicle is found in
counting the first 0 vehicles, we hava(10) = 0.
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To fuse the TP data with prior knowledge of the traffic spesttithution P(v), a Bayesian
rule will be employed to (re)-estimate the traffic speed i pair(n, m). As shown in
Figure7.5, according to the Bayesian rule, we have

|
P(U(M)=m|¥(N)=n,v)* P(v|]U(N)=n (7.3)

where it is found thatP(v|V(N) = n) = P(v) becausel(N) is independent of.

It is straightforward to normalize it and get the exact philiy. However, P(V(M) =
m|W(N) = n,v) is not easily deduced, so let us only focusn (M) = m|¥(N) = n)

. In view of the conclusion thaf¥(z), x > 0} is a Poisson process, it can be deduced
that

P(U(M) =m|¥(N) =n) (7.4)
= P(U(M)=m,¥U(N)=n)/P(U(N)=n)
= P(Y(M)=m,¥(N)—U(M)=n—m)/P(¥(N)=n)
= P(U(M)=m)*x P(W(N)—¥(M)=n—m)/P(¥(N)=n)
_ QAM)me M (NN — M))rmen MM n!
m! (n— m)' (AN )re= N

Thus,P(V(M) = m|¥(N) = n) becomes :

P(U(M) = m|U(N) = n) = W'_m), (%)m (1 - %)nm (7.5)

It can be found thaP (¥ (M) = m|V(N) = n) already contained the speed information
v as prior information. So when we assumex D x M /At N, we can rewrite the
Equation7.5and get:

PU(M) = m|W(N) = n) ~ — (“gt)m (1 - “%tym (7.6)

m!x (n —m)!
It is found that Equatio?.6 includes an unknown parameterThis unknown parameter
is actually a random variable that needs to be estimated;hnimplicates that it is a
given condition in this equation. So we can explicate thisdiion by further rewriting
Equation??and get:
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P(¥(M) = m|¥(N) = n,v) ~ —— (Z!_ - (”§t>m (1 - ”%t)n_m (7.7)

Putting Equatiory.7and P(v|V(N) = n) = P(v) into Equation7.3, we finally obtain:

P(o[U(N) = n, W(M) = m) & —— (Z!_ - (“§t>m (1 - ”%t)nm P(v) (7.8)

wherem, n , v, P(v) andD are all known as mentioned above, while unknownhs N
and )\ are not needed. An important benefit from this formula is thatpercentage of
probe vehicles is not needed.

For the estimate of traffic speed with prior knowledge of theesl distribution, we have

v =

N)=n,¥(M)=m)

E(v]¥(
1 n! vAE\"™" AN AN
- E/m! * (n—m)! ( D ) (1 a T) Pvjvdy (7.9)

C= / — (Z!_ - (”§t>m (1 - %t)n_m P(v)dv (7.10)

Is a normalization factor . In particular, if there is no prkmowledge of the actual speed
distribution, we simply assum&(v) has a uniform distribution with regard ta It is
worth noting that the method is valid under the restriction

where

VAt < D (7.11)

This restriction implies that some of vehicles don’t movehe next segment after one
time interval.

7.2.3 Physical explanation and improved re-estimation

This section will present an improved formula shown in Egqura®.17 after giving a
physical explanation. In Equatioh8, vAt/D is the outflowing traffic (in terms of ve-
hicle number) proportion antl— vAt/D is the proportion of traffic that remains on this
segment. Since speeds the variable to be estimated, the two proportions areaigtu
unknown. Thus, the paimn, m) is needed to weigh the two proportions with regard to
v. For a fixedv , a larger means a larger outflow proportion, so it will be moea-
vily weighted. Furthermore, when considering the numbesatiicles from the upstream
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Figure 7.7: Physical explanation of Equatidng.
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Figure 7.8: Probe vehicle in inflowing and outflowing traffic.

segment, more information can be added for estimation (Eig8). We expect more
accurate and reliable speed estimation can be achieveda®ynwe consider three pro-
portions: the outflow traffic proportion, the remaining fi@proportion and the inflow
traffic proportion which arg;%3%;) . (57/47) and (555;) respectively. The corres-
ponding weighting factors are. , n — m andl — n . Analogously to the derivation of

Equations/.5, 7.7, 7.8, we can now write:

P(VU(M) =m,¥(N)=n|¥(L) =1 (7.12)
_ P(U(M)=m,U(N)=n,V(L) =1)
- P(¥(L) =1)
_ P(U(M)=m,V¥(N)—U(M)=n—m,¥(L)—VU(N)=1—n)
- P(¥(L)=1)
_ P(U(M) =m)P(¥(N) = ¥(M) =n—m)P(¥(L) -~ ¥(N) =1—n)

P(U(L) =1)

 (AM)me MM (NN — M))nme INEM) (N(L — N M EEN) )
B m! (n—m)! (I —n)! (AL)le=ML

- b () O ()
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Moreover, we have the below equations as approximation:

M vAt

T~ DtoAt (7:13)
N —-M D — vAt

L " DAt (7:14)

N D
L~ Dot (7.15)

and
Pw|U(N)=n, V(M) =m,¥(L)=1) x

P(U(M)=m,¥(N)=n|V(L)=1,v) % P(v|]V(N) =n) (7.16)

Similar to Equatiorv.1], the estimation then becomes:

1 /!
Cm!(n —m)!(l —n)!

oAt \" (D — oA\ D\
*/<D—|—2}At) (D—l—vAt) (D+0At) Pojedv(7.17)

il
ml(n —m)!(l —n)!

oAt \" (D —vAt\"" D o
*/ <D+vAt> (D—l—vAt) (D—H}At) Ploydv(7.18)

7.2.4 Analysis of variance

0 = E(vn,m,l)=

where

c:

This section presents an approximate variance analydie@dtimation results. Variance
var(0) is a critical indicator of estimation quality, which will leepractitioners to make
an optimal/economical configuration of number of probe elelsiand sampling time in-
terval, and will also contribute to travel time predictiamdaraffic management since the
variance is known.

ldeally var(v) should be used to estimate the variance of speed estimatistead, we
use a proxy, namekhyar(m/n), which provides us with an analytical solution. According
to the container-draining model, we have speed D x M /At « N, in which speed
is determined by the ratid//N. Further,m is the number of probe vehicles from M
vehicles andh is from N, therefore the ratian/n can indicate the ratid//N and speed
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v. Althoughwvar(m/n) is a rough and approximate indicatorefr(v), it still enables us
to give some general analysis and results, for examplechvbarameters have what kind
of effect on the variance’.

Seen as in Figur@.8 and Equatiorv.7, the proportionm /n plays a critical role in this
method. It will lead to an accurate estimatiomif/n is almost equal td//N. However,
all probe vehicles are uniformly distributed, resultingaim inconsistency between/n
and M/N. This analysis begins with a brief introduction of a typicater statistic.
Suppose samples follow a uniform distribution over the egfigl|, and the samples are
sorted in increasing order &8y, U(a)...U)...Uyy, Wherem is thep(th) sample quantile,
thatism = [nx*p|. With the knowledge of order statistids,, is asymptotically normally
distributed, that is

Ut ~ AN(p, 202 (7.19)

n

In our method, we assume all vehicles are uniformly distatdwon the road, so it makes
sense to let/(,,) = m/n andp = M/N = vAt/D. As aresult, we have

m vAt vAt(D — vAt)
o AN( 5 oo ) (7.20)
It can be further transformed into
m D v(D — vAt)
W F A AN =) (7.21)
If we let
v(D — vAt)
=\ — 7.22
g Atn ( )

theno* can be approximately taken as the standard deviation of likelate error in
speed estimation. This expression with respeet‘tshows that the variance of the error
in speed estimation can be diminished by makixgas large as possible or by putting
more probe vehicles in operation.

If the input flow of probe vehicles is counted as shown in Fegu8, the information used
for estimation will double. Assuming that input flow and ouitflow play identical and
independent roles in this estimation, both sources of mé&tion will upgrade Equation
7.22into:

. v(D — vAt)

wheres** is the standard deviation when taking into account bothwé#ad outflow.



114 7 Speed estimation by fusing low-resolution positionintada

7.3 Validation

This section illustrates how the method accomplishes tleedijectives promised in the
introduction.

(1) First, the validation of the proposed approach will bevei by means of an expe-
riment with synthetic data generated using a microscopnukition program. In
this section, the accomplishment of the objective (a) apd(shown.

(2) Following that, the effect of the number of probe velsabs estimation accuracy
Is analyzed, including an estimate of an economically oatipercentage of probe
vehicles. In this section, the accomplishment of objed{il)as shown.

(3) Third, the impact of different prior distribution fornm the posterior distribution
is given, in which the accomplishment of objective (b) iswho

(4) The final section concerns the network-wide traffic eation by an update ap-
proach so that Equatioh17fits in network cases, in which the accomplishment of
objective (e) is shown

7.3.1 Validation by synthetic data

The simulation environment used for data generation is W5&20. We will show the
performance of this algorithm in a typical scenario, in whilkke ground-truth speeds are
perturbed with both non-uniformly structural deviatiomslaonsiderable random errors,
leading to a very poor observation of speeds. When consglénm TP data, estimated
speeds are obtained by this method. The contrast betweandjtouth speeds, observed
and estimated (corrected) is shown.

Using VISSIM a 35.25 km section of freeway was coded (Figu@®, made up of 15
segments each 2.35 km long. At the end of this freeway, a dpagdontrol was esta-
blished, resulting in a simulated incident. Every 1 mingtebe vehicles (10% of total
vehicles) reported which segments they were positione&omnve haveD = 2.35km and
time intervalAt = 1 minute. VISSIM provides the exact position of each vehiblat,
we reduced the position accuracy to the segment level. Sreceegment boundaries are
pre-determined, we know how many probe vehicles remain agaent and how many
flow in and out. That way, the informatigmz, [, n) is known on the specific segment.

In addition, we assumed observed speeds with non-unifostniictural deviations up to
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Figure 7.9: The layout of road infrastructure, segment aoér&rio settings in VISSIM.

80% plus random errors based with regard to ground-trutedspe

I 73— 1.
Structural Deviation rate(%= (07?1—109 * U+ 1.85) * 100% (7.24)
Random Error rate(%3 N(0,0.13%) * 100% (7.25)

wherev was a ground-truth speed and0, 0.13%) was a normal distribution with mean 0
and standard deviation 0.13. This way, the observed spee&dhs fabricated by applying
the structural deviation rate and random error rate to thargt truth speed. In particular,
the structural deviation rate was primarily dependent anaspeeds. When speeds were
higher than 80 km/h, they were underestimated. When lower 8¥m/h, they were

overestimated. Then, a uniform probability distributioitharegard tov was assumed to

be
1

" 150 — 0.50-
where P(x) is a probability density function. With more empirical aysis, one may
assume that follows other possible distributions such as normal or &misor with more
accurate parameters. For example, GPS data provide aedratiic speed information

but they may have only sparse time-space coverage. We mag soake inferences on
these GPS data, deducing the most possible prior speeibuatitn.

P(v) (7.26)

Now that we have the information concernitwy, [, n), prior speed distributior(v),
segment lengthD and sampling time interval¢, we apply Equatiory.17, leading to
the posterior speed estimation on a specific road segmentn \&eloying the above
mentioned method on each segment, the space mean speetisegmants of the whole
corridor can be estimated.

Figure 7.10(b) shows the perturbed speed contour plots with bias and raretoons.
After applying this method, the bias is largely removed arahyndetails become visible,
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e.g. more detailed color-gradation. The contrast betwegumr&7.10(a) Figure7.10(b)
and Figure7.10(c)shows the good performance of this method in correcting®ribhe
average relative-error on the entire time space regiompghdropped from 41% to 10.5%.
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(a) Ground truth time-space speed (kmph) contour plots.
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(b) speed contour plot based on ‘observed’ speeds. (¢) Estimated speeds after using TP data.

Figure 7.10: Time-space speed plot: comparison betweemgkdwth, observed and
corrected speeds after applying this method
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In Figure7.11(a)and Figurer.11(b) corrections of structural deviation are also noticeable
regardless of the overestimation speed or underestimalibe random errors are also
essentially diminished. After correcting the bias and dishing the random errors, it
would be possible to use other filtering techniques, e.g. imgoaverage, Butterworth
filtering or Kalman filtering to further improve the estin@tiresults.

7.3.2 Impact of penetration of probe vehicles

Next, the analysis of the paifs, m) is performed withD = 2.35km, which partially
validates the error estimation Equatioh22and7.23and further leads to an estimate of
the economically optimal percentage of probe vehicles.

In this analysis, the prior probability distribution of gukis assumed to be uniform, ran-
ging from 0 through 141 (kmph), and the proportional rate. @verm is fixed at2 : 1.
With an increasing number of probes, the posterior proligldlistribution evolves stea-
dily (Refer to Figurer.12(a), resulting in smaller standard deviations. So the paijm)
plays a critical role in the accuracy and reliability of thesgerior speed estimation.

In order to estimate how the number of probes affects theracguan indicator needs
to be defined. Since the posterior distributions approagatollow normal, pseudo
standard deviations may be defineddgs shown in Figur@.12(b)

Although this defined is not an actual standard deviation, it is able to indicataadard
deviation. With this pseudo deviation, the relationshipsgeno andm under several
n/m proportions is plotted in Figuré.13(a) Under thelog,o scale, it is foundr o« m®
approximately, wherex ~ —0.5. We can see this relationship is fixed under different
n/m proportions (Refer to the parallel lines in Figufel3(a). Thus, for a fixed ratio
n/m, we haven « n and thereforer o« n® can be approximately established.

In addition, some interesting results can be found in Figui&(a) For a fixedm, when

n = 1.03m orn = 8m, o is small. However, when.03m < n < 8m, o is relatively
larger. Below is an explanation. Wher/m becomes larger with fixeg:, the smaller
proportion of out-flowing vehicles can observed. So thereshould have been larger due
to smaller proportions of out-flowing observation. In theameéme, whem /m becomes
larger with fixedm, the total observations will be larger. With more observations, the
estimation error should drop. Forced by the both factorsgetehe results as shown in
Figure7.13(b) In this figure, the theoretical curve is based on Equati@2 The ‘actual’
and theoretical curves do not overlap because the actua oaty uses the approximate
o as shown in Graph (B) in Figuia12

Being an application, considering the cost of probe equipintbe above conclusion is
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Figure 7.11: (a) Speed time series plots on segment 2. Blue capresents
ground-truth speeds.
(b) Speed time series plots on segment 6. Blue curve repsag@und-truth speeds.
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Figure 7.12: (A)The influence of number of probe vehiclesastgrior speed probability
distribution under various (n, m) pairs.
(B) lllustration of the defined deviation
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on Equation7.22
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beneficial for defining an optimal percentage of probe velicFor a general example,
whenn low-resolution positioning probe vehicles have alreadgrbavailable, the added
benefit from installation of one additional probe is dimivéd asB(n) = K[n*—(n+1)¢]

, K is the multiplier factor for the trade off between diminigherror and benefits in terms
of money. If B(n) is smaller than the unit cost, it is better to stop adding npoobes. In
this way, the optimal percentage of probe vehicles can ermated.

7.3.3 Impacts of different prior speed probability distributions

In traffic operations, it is difficult to estimate the form dfet prior speed distribution,
which may change with time or circumstances.

Here we assume three prior distributions of substantiaffgrént profiles-normal, trian-
gular, and uniform (Refer to Figuig14(a) . Given the fixed paifn, m) = (30, 15) and
D = 2.35km, the corresponding posterior distributions all loolelikormal (see Figure
7.14(b). Table7.1shows estimates of the parameters of a normal distributioadch of
the three of the three prior distributions.

Table 7.1: Given the different prior distributions, the persor distributions fit into
Normal distributions with Standard Error.

Prior distributions| Uniform Triangle | Normal
1 71.24+0.1|71.0£0.1 | 70.7+0.1
o 13.0+0.1 | 11.84+0.1 | 11.0£0.1

=

This result can be understood by looking at the expression

n! vAE\ " vA\"T"
m!x (n —m)! < D ) (1_T) (7.27)

which serves an important role in our method. This is exatityexpression of a bino-
mial distribution, which approximates to normal distrilout with » approaching infinity.
However, it is worth to mention that the posterior distribntmay not exactly be normal
or asymptotically normal due to the appended).

It can be seen that this result does not higly rely on the tgbgsior distributions. As
mentioned above, the boundary of a cell is uncertain to sotteng which boils down
to the uncertainty in prior information. This method is atdgackle the uncertainty for
it is robust to prior information, always keeping an invatidistribution profile. When
a vehicle is close to the boundary, it is hard to snap it to treect cell. But it can be
snapped into the correct cell with some probability. Sideermethod is embedded in a



122 7 Speed estimation by fusing low-resolution positionintada

framework of probability with invariant profiles, it becom#lerant of the probabilistic
errors.

7.3.4 Network-wide traffic speed estimation

For network-wide traffic estimation using TP data, the abaosthod can be extended.
As shown in FigureZ.15 a hypothetical road network is circled. Within this areahe
vehicles flow in and out, while others remain inside during leading tol, m, n which
are required in Equatior.17. As for the road lengthD, an equivalent value is needed
for the network case. Considering the O-D pairs and corraesipgrraffic flow, such
an equivalence is given @ = »_ N;; « D;;/ > N;; , whereN;; is the traffic flow on

17 1]

route— > j, andD;; is the length of this route. With an equivaldntavailable, Equation
7.17 can be used to estimate the average speed on the road netd®k.result, this
method is applicable for the network, particularly for unbretwork cases.

7.4 Conclusions and recommendations

In this chapter, we have proposed an algorithm for using sedntevel topological po-

sitioning (TP) data for traffic speed estimation. In cortragh high accuracy position

data from GPS, topological position data provide only lovesolution segment-level ve-
hicle location information. For this reason, using TP dataat straight-forward like GPS
data. However, as shown in this chapter TP data can be a \aladtiitional data source
for traffic state estimation since they are widely availaliethe existing communication
networks. Based on the proposed algorithm, TP data can bealgmszlor with other data
sources, leading to more flexible traffic applications.

This algorithm corrects strongly biased prior speed measants and reduces the impact
of random errors. To run the algorithm, the percentage dig@k@hicles is not required to
be known, but a higher percentage contributes to the acgaratreliability based on the
findingo ~ n* (o« =~ —0.5). The algorithm has sufficient robustness to make the poster
distributions follow approximately normal under diffeterofiles of prior distributions.
Since the method is conceptually simple, it can be extenal&tlin network-wide traffic
speed estimation, which is the next step in this researcls dtso notable that there
are some technical barriers to be overcome when it comesatdigel operations. For
example, the vehicles/cell-phones that are not travelimthe road must be identified.

By now, we have proposed three algorithms (methods) to fuse $peeds and floating
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Figure 7.15: Road network and throughput of probe vehicles.

car data including travel times captured by cameras. Ch&ped6 focus on the data
which have low-resolution in time horizon. This chapterdsed on the floating car data
which shows the low-resolution in positioning. The outpoth these methods are speeds.
But there is another type of very important information whitets not been fused in our
methods. This type of information is traffic flow by loop dat@s. The next chapter
will add the ingredient of flow observed at cross-sectiond fuse it with loop speeds
and travel times. As a result, the output not only contaiessiteeds but also the density,
which greatly improves the applicability of the method to iiwstance short-term traffic
predictions using traffic flow models.
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An integrated algorithm for fusing
travel times, local speed and flow
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Figure 8.1: lllustration of Data-data consistency in thisapter

The previous chapters, 6 and 7 mainly focus on the estimation of traffic speeds by
fusing local speeds (e.g. loop speeds) and AVI data (e.g. F@®@yever, many forms of

125
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detectors such as loop detectors may also provide traffic Favther more, the estimation
of traffic density is also important in traffic management aperation. This chapter
proposes an algorithm (method) to fuse loop speeds, loopdimhtravel times from AVI
system. This algorithm is able to provide estimates of bp#eds and density.

The algorithm uses the trajectory reconstruction techaiginich has been presented
in Chapter5. Then it uses loop flow to estimate traffic density on each reegH
ment. This algorithm is still based on data-data consistapproach. The major as-
sumption is homogeneous traffic in each time-space celleunthich the physics law
speed x time = distance anddensity * speed = flow can be simply used. Figu&1
shows this consistency approach in this chapter.

Table 8.1: Symbol list

L, Length of road segmerjt

tg.k) Time moment when probe vehicteenters road segment

Ag’“) Estimated time moment when probe vehigélenters road
segmentj

1t Travel time of probe vehiclé on road segment

tfgk) Estimated travel time of probe vehioleon road segment

1) (4, 7) | Estimated duration of vehicle dwelling in cell (i, 5)

5™ (i, 5) | Estimated traveled distance of vehiélén cell (4, 7)

)
G~ (i,7) | Measured flow in celli, j) by loop detectors.
0~ (i,7) | Measured (biased) speed in cgllj) by loop detectors.
2™ (4, 5) | ‘Measured’ speed in cell, j) by trajectoryk. Similarly for

densitys) (i, 5) and flowg® (i, 5)
0(i,7) The final estimated speed in céll j) by using travel times
speed and flow. Similarly for densigyi, 7) and flowg (i, j)

8.1 Introduction

8.1.1 Basic relationships between traffic variables

Let’s recall the characteristics of traffic data and traffewfloperations which have been
been presented in ChaprThere are three major variables in macroscopic trafficyThe
are density 4), speed ¢) and flow ). The evolution of these traffic states can be com-
pactly and efficiently visualized by means of time-spacet@anplots. These plots are
discrete representations of traffic states by using digeckttime-space cells and color
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(e.g. FigureB.8). This way, the traffic states at the given time and locat@m lse simply
shown. In each cell, the traffic is assumed to be homogenewlistationary. Accor-
ding to Edie’s definitionEdie (1965), these three traffic variables have such relationship
between one another as shown in the below equation:

q=pv (8.1)
whereq, p andv are all time-space mean quantities.

In addition, there is a physics law in macroscopic traffilecBVehicle Conservation Law
“the change in vehicle number on a road segment equals toethdifference between
inflowing vehicle number and outflowing vehicle number”.dads

pli,3) = pli = 1,3) + T4l — 1) — a(io) 82)

J

where: = 1,2, 3... represents discrete timg,indicates the location,; is the length of
the road segmentandAt is the span of one discrete time.
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Figure 8.3: The accumulated traffic counts from loop detecto

8.1.2 Impact of traffic flow data

The most common data available for traffic state estimatmmecfrom (dual) loop de-
tectors. As we already mentioned, loop speeds may probabbjdsed. This bias is si-
gnificant, specifically under congested (low-speed) combthas been demonstrated for
example byTreiber and Helbind2002 for estimating travel times (errors of over 30%),
and byKnoop et al.(2007) for estimating densities, where the resulting errors canmh
up to over 100%. It is true particularly for the data colleatsystem in the Netherlands.
In the previous chapters, we put a lot of effort on local spee@dsurements. Now we
push forward and put another common data into account.

Apart from speed measurements, loop detectors and othmes foirdetectors may be able
to count the number of vehicles that pass a location duringrtaio interval. These
counts lead to estimates of flayy the number of vehicles passing per unit time. Theo-
retically, the accumulated vehicle counts may tell trawaktand vehicle density (or ve-
hicle number) on a closed road section between two consedobp detectors as shown
in Figure8.3. In this figure,N,(t) and N,(¢) are the accumulated vehicle counts from
loop A and loop B respectively. Given the initial conditidmat no vehicle is on the
road section,N = N,(t) — N,(t) is the number of vehicle on this road section, and
TT(t)|N.(t) = Ny(t + TT) can be taken as the travel time from loop A to B under the
assumption of no overtaking. These estimates are relialgle@ecurate if loop detectors
made no errors in counting vehicles.

However, correct estimates cannot be obtained in realitg, td error accumulation. In
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the above example, the errorsMy(¢) and N,(t) are accumulated with the time As a
result, it may be found that the total number vehicle in a megiment is minus thousands
in the end. We made an empirical study of one-day data on &itoreeter section of
highway A13 in Netherlands. The data was from Regionlabigtich stores the traffic
data in Zuid-Holland region. With these data, it was foundjry the period from 6:00
to 20:00, the total number of inflow vehicles was 64823 codibiethe upstream loop de-
tector (loop A) on the section, and that the number of outflehieles was 71000 counted
by the downstream loop detector (loop B). The difference betwinflowing traffic and
outflowing traffic is accumulated up to -6177. According tdiede conservation law,
one explanation is that there are thousand of vehicles arermthe one-kilometer sec-
tion, which is impossible in reality. The other explanatisithat the loop detectors have
considerable errors in accumulated counting. For thisorgatke curve for accumulated
vehicle counts may cross each other as illustrated in Figie

In this chapter, travel time is still an important ingrediefravel time can be measured
by means of for example automated vehicle identificationl{Aystems, which identify
vehicles at two consecutive locations A and B at time instantand¢z and deduce the
realizedtravel time afterwards witll"l,, = tz — t 4. AVI systems may employ camera’s
and license plate detection technology, or may match vehittirough induction foot-
prints, tolling tags or otherwise. It is worth to note thastpaper uses individual travel
times instead of aggregated or average travel times. Irrastrio other traffic informa-
tion such as traffic flow, density and speed, travel times neyelgarded as a kind of
causal aggregation of traffic history information over rzad travel space. In addition,
compared to loop data, travel times have an higher orderaifracy without structural
bias. Although, travel times can be derived from time-spgmeed information, the re-
verse process is impossible. For this reason, it is quiteallecige to use travel times to
estimate the local traffic states.

This chapter proposed a new algorithm to fuse these threedrents (flow, biased speed
and travel times) to achieve reliable and more accuratenasts of traffic density and
speeds without using traffic models such as second-ordéc tnaodels, but only using
the basic relationship between traffic variables as shoviagumation 8.1) and 8.2).

8.2 Methodology

In the first place, we present the assumptions and physiaal that are used in this
method. The main assumption is still that traffic is homogeseand stationary in each
time-space cell. Travel time measurement are unbiased enydreliable in contrast to
speed measurements. Traffic flow measurements are alsaliabte but with very small
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errors. These small errors are used to bring a serious defestng a conservation law
(see ChapteR). The main physical laws aréistance = speed x time, density =
flow/speed and vehicle conservation law.

8.2.1 Framework

The whole fusion algorithm consists of two parts. The firgt pases travel time and
speed measures by loop detectors. The second part furtiesr the flow measures. In the
end, the density and speed over the whole time space regi@thieved. (See Figugd)

¢ In the first part, the vehicle trajectories are reconstaicte a time-space plot by
combining individual travel times and the given speed messsurhis part of algo-
rithm stems fromPISCIT algorithmOu et al.(2008. The individual travel times
are obtained from vehicle identification systems e.g. iIn&RS, cameras or other
AVI devices. The given speeds are measured by loop deteglock cause measu-
rement bias due to time-mean aggregation. The recondtrtretectories are able
to remove the bias effects to some extent by satisfying thengiravel times as
constraints.

¢ In the second part, the traffic density and speed in the tipaees cells where the
trajectories pass are deduced by simply using these taest Next, the flow
information is used to further deduce the density in the rotinee-space cells by
employingVehicle Conservation LawAssuming that the traffic is homogeneous
and stationary in each time-space cell, the traffic speellaratl time-space cells
also becomes available by applying- ¢/p for each cell.

8.2.2 Fusion part one: trajectory reconstruction

This part of the algorithm is able to reconstruct individtrajectories by combining the
given travel times and previously observed (estimated)speleds from loop detectors.
Many AVI devices such as cameras or in-car GPS can providerttng point for a vehicle,
that is where and when the vehicle enters a road stretch. tAs@xit point is given
about where and when this vehicle leaves the road stretcty liAe which links the
two points could be a trajectory for this vehicle. The algon presented below is able
to find the most ‘likely’ trajectory with the help of the tinspace speed information
from loop detectors, even though there is considerableibitese speed measures. The
mechanism behind is quite simple. For a fixed road segmentraaa stretch, longer
travelled distance, more travel time; higher speed, les®ltime;
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Figure 8.4: Fusion framework

For simple illustration, it is assumed a probe vehickntered road segment 1 at reporting
time £*) and exited segment 6 at the next reporting titfi& (Refer to Figures.5). This
trajectory reconstruction algorithm is made up of the best®ps, the first four of which
accomplish reconstruction on segment level while the Vasion cell level. Tabld.1lists
the important symbols used below.

STEP 1: Geﬁgk) andtfgk) from this previously-estimated trajectory as shown in Grap
(a) in Figure8.5(The initial trajectory can be assumed to be a straight line)

STEP 2. Based on the given time-space speeds (biased) a(oel)ale the average
speed}([ : ,tg’fl] j) over segmeni during the time betweeﬁk andth

STEP 3: Update andtt(k based on the average spe&@j : Jle] j). The updated
ttg. can be obtained under the below restrain equations

Lj
— : (8.3)
U([t§k)> tyj—)l] ) j)

(k)
ttj X
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Figure 8.5: lllustration of PISCIT algorithm

> il = (8.4)
J

wherett is the given travel time for a vehicle over the whole stretéffter that, update

z?g.k) based ortf§.k).
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STEP 4. Repeat STEP 2 and STEP 3 uﬁﬁ?l andtfgk) converge to a specific extent or
the difference between the resutls from two consecutivatitins falls into a given range.
(Refer to Graph (b) in Figur8.5)

STEP 5: Deducet® (i, ;) from tfy“), AS."”) and cell size. (Refer to Graph (c) in Fi-
gure8.5)

STEP 6: Deducé® (i, j) under the below equations. (Refer to Graph (c) in FiguB
3M(d, ) o< t8 N (i, 3) % 0~ (0, ) /o([E7, 851, ) (8.5)

>890 g) = 1y (86)

8.2.3 Fusion part two: speed and density reconstruction

In fusion part two, the reconstruction of trajectories resuthe traffic speed and density
where they pass through, and then traffic density and spesdtioe whole time space
region are deduced by fusing flow information (Refer to FigRi@.

Assuming trajectory: passes the cell, j), the measured (estimated) density and speed
by the trajectory at this cell can be obtained with the belqwagions:

/\(k) . .
NCIT A UY)) 8.7

Assuming the traffic is homogeneous in each time-spaceitcedhds

PG = ) ©9)

In order to distinguish the final estimatiar{i, j), we simply callo™®) (i, j) ‘measured’
speed by trajectory, though it is actually deduced from the reconstructed ¢tajg.
Similarly for density and flow.

For a fixed road segmerif Vehicle Conservation Laweads to below equations

At

0=p(i—1,7) = pli.5) + 7-(a(i, ] —1) = a(i, 7)) (8.9)

wherei = 1,2, 3... represents discrete time.



134 8 An integrated algorithm for fusing travel times, local egand flow

Estimate density and speed at the
Space A cells where the trajectories pass (@) Trajectory

Segment
1

Segmen
j

Time

Space A Deduce density and speed at all cells (b)

Segment
*1

Segmen
j

\

Time time i time i+1
Figure 8.6: Fusion part two

The measured density by trajectories leads to measuremeatiens for density:

pW (i, 5) = pli,5) i=1,2,3.. (8.10)

The measured flow by loop detectors leads to measuremeniatgifor flow:

G (i.§)=qli.j) i=123.. (8.11)

A regression model can be easily established by combinieggtithree sets of formula
(8.9,(8.10 and 8.11)
y = Ax (8.12)

wherey contains measurés %) (i, j) andg~ (4, j) for a fixedj, andx contains estimated
statesp(7, j) andq(i, 7). The optimal estimate at in terms of least square given errors
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with the independent and identical distribution is

-1

% = (ATA)

wherex contains the optimal estimatig#(i, j) and (i, j). Further, the speed can be
estimated as o
(4,9)

(4,7)

Now we have density, flow and speed estimates over the wimégpace region.

ATy (8.13)

L)

(i, j) = (8.14)

>

8.3 Validation

In the first part, the synthetic ‘ground-truth’ data are gatexd by assuming the real loop
data are true, and then the observed data are generated jpgrisagnthe ‘ground truth’
data. In the second part, the proposed algorithm is appirethe observed data and
returns the estimated data. The performance of this algorig shown by comparing the
‘ground-truth’ and estimated results.

8.3.1 Experiment setup & data generation

First of all, a 9.5 kilometer stretch of 3-lane Highway A4 tsasind in Netherlands is
considered (Graph (a) in Figur@.7), where 18 loop detectors are placed spacing around
500 meters and aggregated traffic speed measures and ceenyt®ee minute.
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e Ground-truth speed We assume the loop detectors give the ground-truth speed
measures over certain segments. The resulting time-spaee ontour plots (Fi-
gure 8.8) shows 5 hour traffic condition on this stretch from 6:00 A#¥.11:00
A.M. on July 8th, 2008, during which congestions onset asgelised twice.

e Ground-truth density & flow The ‘ground-truth’ density and flow are generated
by using the ‘ground-truth’ speeds and loop counts as baynctandition. The
generated data satis§onservation Lavand the homogeneous conditipn = q.

e Observed speedsThe observed speeds in each time-space cell are assumed by
tampering the ground-truth speeds with the below assumptio

00 — l1v9(0.5-0.509/120) (8.15)

It can lead to nonlinear bias in speed measurements as #ifeedh order to show
the performance of our method, this nonlinear bias is madgetahan realistic. In
this equationy’ is the observed speed andlis the ground-truth speed. With this
assumption, the observed speed is 10% higher when groutidsiyeed is 120km/h,
and 70% higher at the speed of 20km/h. The resulting obsenvedspace speeds
are shown in Graph (a) in Figu&9 The relationship between them is shown in
Graph (b) in Figure8.7.

e Observed flow & density The observed flow is assumed to almost equal to the
ground-truth ones. But still we tamper the ground-truth flo@asurement with
only 1% relative errors (uniform distribution betwepnl %, +1%]). The purpose
is to keep the characteristics of accumulated errors in fleasurements as in real-
life world. Due to these errors, we cannot estimate trafbtest by only using flow
measurements and conservation law. The observed denaitjuiglly estimated by
usingp = ¢/v (Refer to Graph (a) in Figurg.12).

e Travel times The travel times are generated by sampling the ‘groundittime-
space speed plots. There are three virtual cameras pladbd antry, exit and
middle of the whole road stretch. It is assumed that 10% oicleth are captured
by the cameras, giving the travel times from miledidsh to4.8km and others from
4.8km t09.5 km.

8.3.2 Results

We use mean absolute relative err®ARE) to evaluate the results. The definition of
MARE is shown in Equatio.16
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MARE = — L3y D) — i) (6.16)
- MxsN - (i, 7) '

(i, j) represents the estimate and, j) represents the ground-truth quantity. The com-
parison of the results before and after using the algoritamhe seen in Figurg.9 and
Figure8.12

Table 8.2: Comparison of MARE before and after using the medalgorithm.

Measure type MARE (before)| MARE (after)
MARE on speeds (global) | 33.7% 3.3%

MARE on speeds<{50kmph)| 63.4% 3.4%

MARE on density 24.1% 3.46%
MARE on travel times 26.9% 0.74%

e Before The observed speeds and density have large errors. MARES@bigerved
speeds is 33.7% in the given scenario. MARE for observed teiss24.12%.

e After After the proposed algorithm is applied to fuse the obsespzbds, travel
times and flow, the above errors remarkably decrease. MAREstimated speeds
becomes 3.3% and MARE for estimated density becomces 3.46%.

position

e iy
‘ ‘ i | WI ! L lm

1100 0 0

50 100 150 200 250 300
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Figure 8.8: Ground-truth time-space speed plot

With time-space speed plots, travel times can be easilyettriFigure8.14makes com-
parison of travel time estimates between before and afiegukis algorithm. Before
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Figure 8.9: Comparison between observed speeds and estisgeds after applying
the proposed fusion algorithm
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Figure 8.11: Ground-truth time-space density plot

using it, the travel times based on observed speeds have absatute error of 230.4
seconds and MARE 26.89%. After using it, the travel times learaich smaller error of
6.6 seconds and MARE 0.74%. In Figul8d.4 the thick green line represent the ground-
truth travel time, dark dashed line represents the resfiéis @sing the algorithm and thin
red line represents the travel time estimation based onlikereed speeds. The former
two lines almost overlap with each other.
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Figure 8.12: Comparison between observed density and esithansity after applying
the proposed fusion algorithm
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8.4 Conclusion

The previous chaptets 6 and7 mainly focus on the estimation of traffic speeds by fusing
loop speeds and floating car data. But they cannot fuse loopaft@yprovide traffic den-
sity. To tackle this issue, this chapter proposed a new diigoifor fusingspeedandflow
from local detectors with individudravel timesmeasured by AVI systems. Travel times
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from in-car GPS or cameras can provide average journey sppeed a few road segments
but fails to provide the traffic details on each segment. Ldejectors can provide local
traffic information, but there are biased errors in speedson@s and the error in vehicle
counts is accumulated over the time. The proposed algorékphoits the strength of
each type of data and avoids their weakness. In contrasetoftan-used traffic fusion
techniques presented in Chap&ithis algorithm needs very few assumptions on traffic
behavior but can fuse more types of data.

The validation shows this fusion algorithm can improve tegneation accuracy by up
to 10 times. On the basis of synthetic ‘ground-truth’ dat&, demonstrated how this
algorithm is able to successfully correct strongly biasedrspeed measurements. It is
able to improve the estimation accuracy up to ten times, ecgedising MARE from 33%
to 3.3%, descreasing errors in travel time estimation fr@ conds to 6.6 seconds.



Chapter 9

Synthesis: a data fusion framework

In this thesis, four methods have been proposed to fuse-suiltice traffic data. These
methods are all based on the data-data consistency appieacbéach method, there are
separate validations and specific applications. This enaptl discuss issues regarding
the applications of these four methods. We will discuss Hogé four methods are used
in different conditions and how they can work with other atig-existing methods.

9.1 Synthesis and comparison of data-data consistency
methods

PISCIT, TravRes and ITSF all deal with travel times that cornenfcamera data or floa-
ting car data. The previous chapters have already givenaldations of these methods
under almost the same experiment setup and data assumpdidoop detectors are ins-
talled on the about 10 kilometer road stretch on A4 in the Bidéimds. The synthetic
‘observed’ speeds from loop detectors have relative eob82% over the whole region
and errors of 64% over the region where the ground-truthdspaee lower than 50kmph.
The virtually installed cameras are spaced 5 kilometers;hvtapture 10% vehicles. In
PISCIT validation, the added floating cars have polling r&t@0oseconds. In the valida-
tions, the travel times and flow are not made to be biased oneous.

In this section, the main validation results are put togetheompare their performance
when different data combinations are used. T&Rshows the result when travel times
(camera data and FCD of polling rate 60 seconds) and locablspse fused by PIS-
CIT. Table9.3and9.4 shows the performance when only travel times are fused Imgusi
TravRes. Tabl®.5 shows the result when travel times (camera data), localdspaed

143
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Table 9.1: Brief on the proposed algorithms in the book basedata-data consistency
approach

Method name function input output
ITSF Fuse travel times, time-spacel-S  speeds| T-S speeds; T;
speeds and flow all toge-travel times;| S density
ther. The output is time-spageTl-S flow
speed plots and density plots
TravRes Mainly fuse floating car data travel times T-S speeds
of low-polling rates. The out;
put is time-space speed plats
with high accuracy and little
bias.
PISCIT Remove much of the bias inT-S  speeds| T-S speeds
the initial time-space speedtravel times
plots by using travel times
from e.g. cameras. The bias-
free time-space speed plots
can be achieved after fusion
FlowRes Fuse low-resolution positio-T-S  speeds] T-S  speeds
ning data with initially meaq sampled flow; posterior dis-
sured time-space speeds. Therior  speed tribution and
output is time-space speeds distribution error variance
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Figure 9.1: MARE on speed estimation under different cases.
case 1: ITSF with 10% camera travel times + loop speeds + tréfie
case 2: TravRes with 2% FCD
case 3: TravRes with 5% FCD
case 4: TravRes with 10% FCD
case 5: PISCIT with 10% camera data + loop speeds
case 6: PISCIT with 10% camera data + 1% FCD + loop speeds
case 7: PISCIT with 10% camera data + 5% FCD + loop speeds

flow measured by loop detectors.

Table 9.2: The result from PISICT.
MARE without travel time information is 32.3% (global)and@% (speeds lower

50kmph).
Penetration of FCD added 10% | 5% 25%| 1% | 0.5% | 0%
MARE on speeds (global) 2.5% | 2.65% | 2.9% | 3.5% | 4.2% | 4.8%
MARE on low speeds<50kmph)| 5.6% | 6.3% | 7.7% | 9.3% | 10.2% | 10.8%

By using PISCIT, fusing FCD of penetration 1%, camera data (paten 10%) and loop
speeds leads to 3.5% relative error over the whole spacerredihe similar result of
MARE 3.7% can be achieved by using TravRes to fuse 10% FCD. Bulhéoestimation
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Table 9.3: The result from TravRes.
MARE of speed estimation over the whole time-space region.

Penetration Polling rate| MARE with naive | MARE with TravRes
10% 120sec 15.4% 7.4%

10% 60sec 9.1% 3.7%

10% 30sec 5.4% 2.7%

5% 120sec 16.8% 9.5%

5% 60sec 9.8% 3.9%

5% 30sec 5.7% 2.6%

2% 120sec 17.7% 12.3%

2% 60sec 11.4% 6.3%

2% 30sec 7.2% 3.1%

Table 9.4: The result from TravRes.
MARE of low-speed estimation (speeds are lower than 50kmph).

Penetration Polling rate| MARE with naive | MARE with TravRes
10% 120sec 38.9% 11.8%
10% 60sec 23.4% 7.0%
10% 30sec 13.8% 6.5%
5% 120sec 44% 17.3%
5% 60sec 24.9% 7.5%
5% 30sec 15% 6.6%
2% 120sec 50% 29%
2% 60sec 33.5% 14.2%
2% 30sec 20% 7.9%
Table 9.5: The result from ITSF
Measured type MARE (before)| MARE (after)
MARE on speeds (global) | 33.7% 3.3%
MARE on speeds<{50kmph)| 63.4% 3.4%
MARE on density 24.1% 3.46%
MARE on travel times 26.9% 0.74%
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of low-speeds (lower than 50kmph), TravRes outperforms PIS@ih the MARE 7.0%

v.s. 9.3%. Even with FCD penetration of 5%, TravRes can outp@rPISCIT with the

MARE 7.5% v.s. 9.3% over the low speed region. When more FCD a@ nsPISCIT,

PISCIT will achieve better results. If the FCD pernetrati@erio 5% in PISCIT, PISCIT
can give MARE of 2.65% (global) and 6.3% (lower speeds) with Ri&lbetration 5%.
The same result can be achieved by TravRes with FCD penentEdih and polling rate
30 seconds.

Compared with PISCIT and TravRes, ITSF is able to fuse anotiper of data—traffic
flow, which leads to further improvements in results. As siemable 9.5 MARE in

low-speed region is only 3.4%, while PISCIT can only achiev&RE 5.6% in low-speed
region by fusing FCD pentration 10%, camera data (10% peiwtjand local speeds.

FlowRes is able to fuse low-resolution positioning data freireless networks. When
it works with other methods such as PISCIT, TravRes or ITSF, aeelio deal with
inconsistency issue. In wireless networks, base stationaoger a road segment with
length e.g. 3 kilometers. With TP data, FlowRes can only edtnthe average speeds
on this 3-kilometer road segment. But in PISCIT or other meshadoad stretch may be
divided into segments with length about 500 meters. As dtrgba road segment defined
in different methods have different space boundary, whead$ to space inconsistency.
In addition to space inconsistency, there is time incoesst. For example, the reporting
time or rate from wireless networks may not be synchronizél the ones from loop
detectors. As a result, we need to upgrade the low-resalditioe-space cell to high-
resolution time-space cell. Figug2 show one time-space cell defined in FlowRes may
partially or completely cover several time-space cellsraefiin other methods.

Time-space cell Time-space cell
Space A in FlowRes in PISCIT, etc
» A
Segment
i+
Segment
j
Time
_

timei timei+1

Figure 9.2: Time-space consistency when FlowRes works with otéghods

This issue can be easily dealt with by establishing lineaiaggns and then giving best



148 9 Synthesis: a data fusion framework

estimation with regression techniques.

> w(i (i, j) =" + e (9.1)

and equations

v, ) = v, 7) + (i, j) (9.2)

for (i, 7) in the shadowed region!” is the average speed over the shadowed time-space
region, which is given by FlowResuv°(z, j) is the estimated speeds in the time-space
region (i, 7), which is given by PISCIT, TravRes, etc. Since the shadoweidmenay

only partially cover some regiofi, j), we appenduv(i, j) as weight. Particularlyy(, j)
satisfiesy " w(i, j) = 1for (i, j) in the shadowed region.is the error involved in””, and
e(i, j) represents the error in speed estimation from other methbus best estimation
v(i, 7) can be achieved by using linear regression techniques.

9.2 Data fusion framework

As presented in Chapt&r there are some other fusion methods that have been prgposed
such as ‘EKF plus traffic model’, “Treiber filter plus trafficadel’, etc. We don't ne-
cessarily intend to replace these methods by our propos#tbdse On the contrary, the
proposed algorithms or methods can be well used to enrichlteady-existing methods
and work along with these methods.

One of important features in our methods is that they aretalpeovide much less-biased
time-space speed and density plots. These plots can beaisetidr calibrate parameters
(e.g. critical speed) in traffic models such as the fundaaieiigram. These models and
parameters play a critical role in e.g. Extended Kalmanr§iltg Treiber filter. Recal-
ling the attributes of Kalman filters, the noises in the emumst are not supposed to have
structural bias but only random errors. Therefore, the wiulmm PISCIT or TravRes
can be taken as ‘bias-free measurements’ for Kalman-bised methods. Furthermore,
the method FlowRes provides not only speed estimation botlaéserror variance in this
speed estimation. The error estimation is equally imporéanstate estimation, which
helps to determine the confidence on the estimation and c#akbe as input for traffic
prediction.

These ‘model-data consistency’ approaches can also botgrio the proposed methods
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Figure 9.3: Application of fusion tools in the traffic system
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in this thesis. The travel time data from cameras or floati@gnsay not have enough
time-space coverage for traffic estimation. Also the loofed®rs may not be installed
for about 500 meters as in South-Holland. In many countloeg detectors on freeways
may be sparsely installed. Due to lack of enough coverageopf dletectors, floating cars
and cameras, the methods like PISCIT, TravRes or ITSF can nétwll or even does
not work at all. As a result, the reconstructed time-spaoesgbr the proposed methods
will have a lot of blank regions. In order to fill in these blardgions, we can use many
model-based methods like Kalman-filter-based methods eb@r-filter-based methods.
For example,we can use Kalman-filter-based methods to secmh an initial time-space
speed plots when loop detectors are sparsely installedn PHeCIT method is used to
remove the bias in the initial estimation. Following th&igde less biased results can be
re-used by e.g. Kalman-filter-based methods to re-estithateaffic states.

In sum, all the methods are not exclusive to one another. ®rahtrary, they need to
collaborate to achieve better estimation results. All ¢heethods can make a tool box
of traffic data fusion. As shown in Figu@3, they are able to process the current data
as well historical data from different sensors. This took ptays a very critical role in
traffic state estimation, prediction and optimization.

9.3 Summary

This chapter mainly compare the applications of the proggasethods and further ap-
plications combined with already-existing methods. Weyagive a rough guideline to

the applications of these methods in the different conastiand how they can work toge-
ther for more advanced application. Although no real-ljpplecation has been given, the
broad application potential of the proposed methods candaelg seen.



Chapter 10

Conclusions and recommendations

Reliable and accurate estimation of traffic state variabies fthe available traffic data
plays an important role in traffic management practice amnehse. State estimation on
the basis of multiple data sources is a challenging taskesmany of the variables of
interest, such as space mean speed or traffic density, da@oberved directly and must
be deduced from the data which are available. Moreover,\thidahle data from various
sources (loop detectors, floating car data or automatedleatentification systems) dif-
fer largely in terms of quality, reliability, availabilitgnd even spatiotemporal semantics,
which renders state estimation on the basis of multiple siatiaces even more problema-
tic.

In this thesis a new traffic data fusion paradigm based ondai@consistency is proposed
and several example data fusion algorithms in line with tlew paradigm are presented.
In this final chapter we will highlight the main conclusiomglgrovide recommendations
for practical application as well as directions for futuesearch.

10.1 Conclusions

10.1.1 Main conclusions

The main conclusion of this thesis is that the proposed -data consistency’ (DDC)
paradigm works, and that it provides a parsimonious andstofsamework for fusing
data from different sources, even if these data have fundtaitedifferent spatiotemporal
semantics. Methods based on the DDC paradigm are chaeactday the fact that one
data source is used to constrain or correct the state vasialelduced from a second data

151
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source using as few additional assumptions (parametergdssble. This new DDC
paradigm for traffic state estimation and data fusion haswar advantages over classic
data fusion paradigms.

In the first place we can conclude that DDC algorithms requoieding (much) less as-

sumptions than classic state estimation and data fusioragipes such as recursive fil-
tering methods (Kalman filtering, particle filtering, nudgitechniques). These recur-
sive approaches essentially use a model-data consistaragigm, in which process and
observation models are required to specify the relatignbbiween state variables and
between state variables and observations respectivelin @dotess and observation mo-
dels are typically parameterized and make many implicitexplicit assumptions about

the data. For example, the speed-density relationship insedursive data assimilation

techniques is a coarse and noisy observation model andyamgderdetermined in free

flow conditions. The DDC methods developed in this thesisamdg simple parameter-

free physical laws (e.g. travel time = distance / speed and#laensity x speed), and a
minimum number of assumptions with respect to the data dsasiom methods.

Secondly, the DDC approaches solve the spatio-tempogiraknt problem of recur-
sive techniques. This problem occurs when the availabke stairces have incompatible
spatiotemporal semantics. The best example of semagtioatbmpatible data involves
travel times (from AVI systems or partial vehicle traje@s!) and spot mean speeds (from
local detectors). Classic data fusion approaches basedcarsiee filtering require ob-
servation equations to link the first to the latter, whichhistcase is impossible, since
the relationship between travel times and spot speeds isrdetérmined. The various
algorithms presented in this thesis solve the problem hbygusie first data source (tra-
vel times) as a constraint to re-estimate the second (spets). This effectively results
in much less-biased and accurate spatiotemporal speedsasna direct consequence -
also in improved travel time records without resorting tonpdicated observation models.
Note that all DDC methods are designed to reconstruct agesjpgeds, flows and/or den-
sities on small spatiotemporal areas of lengti’ and period size\T, in the sense of
Edie Definition Edie(1965)

10.1.2 Conclusions related to the presented algorithms

In this thesis four DDC algorithms were designed and vadida® he methods developed
are

e PISCIT: a method for traffic speed reconstruction based am ppeeds and indivi-
dual travel time
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e TravRes: a method for traffic speed reconstruction basedawelttime of low-
polling rates.

e FlowRes: a method for traffic speed re-estimation based ofréswiution positio-
ning FCD and prior speeds

e ITSF: a method for speed and density reconstruction basedtaffic flow, speed
and individual travel times.

Based on the research in this thesis, the following conahsstan be drawn. The PISCIT
method fuses (possibly biased) spot mean speeds with dudiviravel time records and
uses the second to constrain and correct the first. From sultseve can conclude that
it is effective in removing much of the bias in local speed suwaments. The result is
a much less-biased spatiotemporal map of average speedsTrahRes method fuses
travel time (or average speed) records from a percentagae pehicles which may pro-
vide these records at arbitrary polling rates T. The methsad allows incorporation of
spot speeds, which is used as prior information. Again thia dee used as constraints
for additional data such that no assumptions need to be madeecactual vehicle tra-
jectories (e.g. that vehicles drive with constant speefisdm our results we conclude
that the method results in much-less biased estimates tbsgaporal mean speeds for
penetration rates above 10%, in which polling rates may fiamy 30 seconds to 120
seconds. Based on synthetic data, it is found that classicadetmay lead to errors of
30% in speed estimations and error of 50% in lower speed (pbkestimation. TravRes
doubles or even triples the estimation accuracy. The Flowfthod also provides a so-
lution for optimally using data from probe vehicles but takeslightly different approach
and uses different data. FlowRes is able to fuse low-reswoiygositioning data (e.g. from
mobile phones) to reconstruct spatiotemporal mean sp&émsRes takes low-resolution
positioning data as sampled flow, and fuses the sampled flthwl@gcal speeds by using
a Bayesian update rule. The validation shows that the methndiecrease the relative
error in speed estimation from 41% to 10.5%. The ITSF methoall§i builds on the
same ideas as the PISCIT method, but further takes traffic flom@ut. As a result,
it can provide more accurate speed estimations than PIS@flicplarly for low-speed
estimation. Additionally, ITSF provides a means to alsaneste traffic density. As far
as we know, this is the only viable reliable alternative fensiity estimation aside from
the much more elaborate recursive filtering approaches (€agman filtering, particle
filtering) discussed earlier
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10.2 Implications and recommendations

The methods based on the data data consistency paradigeientfcally new and pro-
vide practical solutions for problems which cannot be asisld by existing methods.
Below we list a number of implications and recommendatiom$@th science and prac-

tice

Since the data-data consistency approaches only make essrgdsumptions, we
recommend scientists to use this approach in the early stagtic theory and
model development in case ground-truth data (in the Edieegeare not available.

We also strongly recommend scientists from various diswgl (traffic theory, but
also control and systems engineering) to consider dataaatsistency methods
as a viable alternative to well-known traditional apprexie.g. Kalman-filter-
based approach). We believe that in many cases it is pogsiliiled appropriate
consistency criteria and to find a data assimilation metloachieve this consis-
tency. Additionally, one may use the results of such a DDChoetn traditional
recursive filtering.

Although the problem of time averaging local traffic data hasn acknowledged
widely, still quite a few traffic data collection systems tisee averaging, leading
to biased speeds and density estimates. We strongly recodhmethods based
on data-data consistency to remove this bias, instead of @gjain parameterized
methods for this purpose.

The methods developed in this thesis may be used in combmatith other me-
thods. In this sense, data data consistency methods ectestittoolbox of data
fusion algorithms, which can be readily used in both sciemzpractice

The four example algorithms (fusion tools) developed is thesis provide a good
starting point, in that they cover data fusion of the most cmmly available data in
practice to date. These four algorithms are effective imfysow-resolution data,
e.g. travel times, FCD of low polling rates and low-resolntpositioning data.

— When a large amount of local speeds and individual travel tiecerds are
available, the PISCIT method can be used to improve the Ipesdestima-
tion.

— In case partial probe vehicle records are available, theRiega method is re-
commended.

— When additionally also traffic flow information is availabledide local speed
and travel time, the ITSF method is recommended.
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— When a large amount of low-resolution positioning data froirelgss net-
works become available, we can use the FlowRes method.

10.3 Future research

In this final section we will provide some pointers for futuesearch. First of all, more

research is needed to assess the impact of errors in thalaeadata. For example, this
thesis assumes that all travel times are correct. In riglitidividual travel times may be

error-free. Aside from measurement inaccuracies, the weuise of errors (particularly

from AVI systems) relate to vehicles traveling over diffierpaths, or making unobserved
stops. Further research into automated methods for dedgestid resolving these errors is
needed. Similarly, more research is needed into resolviogein traffic flows

e Impact of error in traffic flow. In ITSF method, we also use veglyable traffic flow
data, in which relative errors are smaller than 1%. Indema}) detectors can give
quite reliable flow measurement, but in some time-space®mnegig. near ramps,
the measurement may not be reliable. The future researchdsalzo consider the
impact of error in flow measurements.

e Technology realization in FlowRes. In order to apply FlowRes,have to trace
floating car in cell level for every one minute. Also we havelistinguish vehicles
from pedestrian, and we have to make sure on which road theleet All these
requirements must be met before FlowRes can be used. In ard@hteve this,
there are still some techniques and equipments that neezl deeloped. One of
solution is to invent a in-car dock for mobile phones. Wit support of this dock,
the mobile phone can send a beep signal to a base stationaenginute.

e Convergence in trajectory reconstruction. PISCIT, TravResIaSF all involve
the trajectory reconstruction algorithm. However, we adnheoretically prove the
trajectory will converge in this iteration algorithm. Inh&r words, the convergence
of trajectory cannot be guaranteed. The research on cawesgurns to be a very
important topic when data-data consistency approach @ use

e Design of optimal data composition. This thesis has shoWwatftising more types
of data normally can lead to better estimation result. Egpb of data can partially
contribute to the state estimation. Meanwhile there arésdos different types of
data collection. Therefore, considering the trade-offMeein estimation accuracy
and the cost, we should try to find the optimal data compasitidhat is a very
important topic in practical applications.
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e Design of fusion framework. Data-data consistency apgrasoot a replacement

for other approaches or in conflict with them. The proposethods based on this
approach piece together different types of data in a simphg while the previous
methods normally use traffic models. e.g. first-order andrs@©rder model. All
these methods can be combined together and form a fusiomrark which can
intelligently choose appropriate methods to accompligh @ission under different

scenarios.

Network application. This thesis mainly focuses on traftates estimation on a
single route. When it comes to the network-wide state esiimathe situation be-
comes more complex. For example, travel times from camesgsreier to several
routes in this network. Therefore we have to infer which ecautvehicle travel be-
fore the proposed methods can be used. Also route infererceée achieved by
fusing data from different sources.



Bibliography

Chen, T., Morris, J., and Martin, E. (2004). Particle filteos the estimation of a state
space model. IfProceedings of European Symposium on Computer Aided Process
Engineering

Cheng, P., Qiu, Z., and Ran, B. (2006). Particle filter basefidrsthte estimation using
cell phone network data. lIRroceedings of the IEEE ITSC 2006

Chu, L., Oh, J., and Recker, W. (2005). Adaptive kalman filteseloefreeway travel time
estimation. I84th TRB Annual Meeting, Washington

Claudel, C. G. and Bayen, A. M. (2008). Guaranteed bounds ffiictflow parameters
estimation using mixed lagrangian-eulerian sensingproteedings of the 46th Annual
Allerton Conference on Communication, Control, and Computhtigrton, IL.

Claudel, C. G., Hofleitner, A., Mignerey, N. D., and Bayen, A. K009). Guaranteed
bounds on highway travel times using probe and fixed dataPréceedings of the
Transportation Research Board (TRB), 2009 Washington, R@udry 10-14, 2009

Coifman, B. (2002). Estimating travel times and vehicle ttgees on freeways using
dual loop detectorslransportation Research, 86:351-364.

Cremer, M. and Papageorgiou, M. (1981). Parameter idertifrcéor a traffic flow mo-
del. Automatica17:837-843.

Dailey, D. J., Harn, P., and Lin, P.-J. (1996). Its data fasidechnical Report Research
Project T9903, Task 9, Washington State Transportation Gesiom, Department of
Transportation and the U.S. Department of Transportakederal Highway Adminis-
tration.

Edie, L. (1965). Traffic stream measurements and definitiomBroceedings of the 2nd
International Symposium on the Theory of Traffic Flow

Edie, L. C. (1963). Discussion on traffic stream measurenardsdefinitions. IrProc.
2nd Int. Symp. Theory Traffic Flgwages 139-154.

157



158 Bibliography

Gazis, D. and Knapp, C. (1971). On-line estimation of trafeaslities from time-series
of flow and speedTransportation Scien¢&:283—-301.

Ghosh, D. and Knapp, C. H. (1978). Estimation of traffic vdgalusing a linear model
of traffic flow. Transportation Resear¢ii2(6):395 — 402. ISSN 0041-1647.

Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Naueproach to
nonlinear/non-gaussian bayesian state estimatiotEHEE Proceedings on Radar and
Signal Processing

Hegyi, A., Girimonte, D., Babuska, R., and Schutter, B. (20086)comparison of filter
configurations for freeway traffic state estimation. Aroceedings of the 2006 IEEE
Intelligent Transportation Systems Conference (ITSC 2006)

Herman, R. (1984). Characterizing traffic conditions in urlda@as. Transportation
Science21:101-140.

Herrera, J. C. and Bayen, A. M. (2007). Traffic flow reconstarctising mobile sensors
and loop detector data. Bvth TRB Annual Meeting

Ishikawa, Y., Awaji, T., and Akimoto, K. (1996). Succesiverection of the mean sea
surface height by the simultaneous assimilation of dgftouoy and altimetric data.
Journal of Physical Oceanograph6:23812397.

Kalman, R. E. (1960). A new approach to linear filtering andipton problemsJournal
of Basic Engineering32:35-48.

Kesting, A. and Treiber, M. (2008). Calculating travel tinfemm reconstructed spatio-
temporal traffic data. lProceedings of the 4th International Symposium Networks for
Mobility. Stuttgart.

Kikuchi, S., Miljkovitc, D., and van Zuylen, H. (2000). Examation of methods that
adjust observed traffic volumes on a netwofkansport Research Recqrii717:109—
119.

Knoop, V., Hoogendoorn, S. P., and van Zuylen, H. (2007). iiogd differences between
time mean speed and space mean speetralific and Granular Flow 07

Kohan, R. and Bortoff, S. (1998). An observer for highway tcadiystems. IrDecision
and Control, 1998. Proceedings of the 37th IEEE Conference

Kurkjian, A., Gershwin, S. B., Houpt, P. K., , Willsky, A. S., 6, E. Y., and Greene,
C. S. (1980). Estimation of roadway traffic density on freesvasing presence detector
data. Transportation Scien¢cd 4:232—-261.



Bibliography 159

Laird, D. (1996). Emerging issue in the use of gps for traimaktdata collection. In
National Traffic Data Acquisition Conference

Lindveld, C. and Thijs, R. (1999). On-line travel time estimatusing inductive loop
data: The effect of instrumentation peculiarities on ttdiwee estimation quality. In
Proceedings of the 6th ITS World Congres

Linn, R. J. and Hall, D. L. (1991). A survey of multi-sensor ad#tision systems. In
Proceedings of the SPIE - The International Society for €gptEngineering pages
13-29. Orlando, Florida.

Medbhi, J. (2002) Stochastic Processeblew Age International(P) Ltd.

Meier, J. and Wehlan, H. (2001). Section-wise modelingaifit flow and its application
intraffic state estimation. IRroc. 2001 IEEE Conference on ITS, Oakland,.CA

Michalopoulos, P. and Hourdakis, J. (2001). Review of ndrnisive advanced sensor de-
vices for advanced traffic management systems and receseelyin video detection.
Proceedings of the Institution of Mechanical EngineerstPalournal of Systems and
Control Engineering215(14):345-355.

Mihaylova, L., Boel, R., and Hegyi, A. (2007). Freeway traffgtimation within particle
filtering framework.Automatica 43(2):290 — 300. ISSN 0005-1098.

Nahi, N. E. and Trivedi, A. N. (1973). Recursive estimatiortraffic variables: Section
density and average speéldansportation Scien¢&:269-286.

Ni, D. (2007). Determining traffic-flow characteristics bgfuhition for application in its.
IEEE Transactions on Intelligent Transportation Syste@s

Ni, D. and Wang, H. (2008). Trajectory reconstruction fawtl time estimationJournal
of Intelligent Transportation Systemi2(3):113-125.

Ou, Q., Van Lint, J., and Hoogendoorn, S. (2008). Piecewgerse speed correction by
using individual travel timesTransportation Research Record: Journal of the Trans-
portation Research Boar®049(-1):92-102. 10.3141/2049-11.

Piella, G. (2003). A general framework for multiresolutiomage fusion: from pixels to
regions.Information Fusion4(4):259-280.

Roos, T., Myllymaki, P., and Tirri, H. (2002). A statisticabheling approach to location
estimation.IEEE Transactions on Mobile Computint;59-69.

Simon, D. (2006). Optimal State Estimation: Kalman, H-infinity, and Nonlinegp-A
proaches John Wiley & Sons, New York.



160 Bibliography

Smith, B., Pack, M., Lovell, D., and Sermons, M. (2001). Tgorsation management
application of anonymous mobile call sampling.inrthe 80th Annual Meeting, Trans-
portation Research Board

Smith, M. (2007). Investigation of the performance of waed location technology-based
traffic monitoring systemTransportation Engineeringl13:157-165.

Speyer, J. L. and Chung, W. H. (2008%tochastic processes, estimation, and control
Philadelphia : Society for Industrial and Applied Matherosit

Stipdonk, H., Toorenburg, J., and Postema, M. (2008). Pdeggam distrotion from
traffic parameter averaging. European Transport Conference (ETC)

Szeto, M. W. and Gazis, D. C. (1972). Application of kalmarefilig to the surveillance
and control of traffic systemd RANSPORTATION SCIENC&419-439.

Thiessenhusen, K., Schafer, R., and Lang, T. (2005). Traffia ttom cell phones: A
comparison with loops and probe vehicle data. Technicartemstitute of Transport
Research, German Aerospace Center, Berlin.

Treiber, M. and Helbing, D. (2002). Reconstructing the spagmporal traffic dynamics
from stationary detector dat&ooper@tive Tr@nsport@tion Dyn@mjds3.1-3.24.

Turner, S., Benz, R., and Holdener, D. (1998)avel Time Data Collection HandBook
Federal Highway Administration.

Van Lint, J. and Hoogendoorn, S. P. (2007). The technicalematiomic benefits of data
fusion for real-time monitoring of freeway traffic. World Congress of Transportation
ResearchWCTRS, Berkely, CA, USA.

Van Lint, J., Hoogendoorn, S. P., and van Zuylen, H. J. (2062geway travel time pre-
diction with state-space neural networksthe 81st Annual Meeting of Transportation
Research Board

Van Lint, J. W. C. (2004).Reliable travel time prediction for freewayd RAIL Thesis
series. TUD Technische Universiteit Delft, Delft.

Van Lint, J. W. C. (2006). Reliable real-time framework for ghierm freeway travel
time prediction.Journal of transportation engineering-asd82(12):921-932.

Van Lint, J. W. C. (2010). Empirical evaluation of new robustvel time estimation
algorithms. InCompendium of papers TRB 89th annual meeting, 2010 Washingto
DC.



Bibliography 161

Van Lint, J. W. C. and Hoogendoorn, S. P. (2009). A robust afdieft method for
fusing heterogeneous data from traffic sensors on freevizysiputer Aided Civil and
Infrastructure Engineeringaccepted for publication.

Van Lint, J. W. C., Hoogendoorn, S. P., and Van Zuylen, H. JOR20 Accurate travel
time prediction with state-space neural networks undesimisdata. Transportation
Research Part C: Emerging Technologi&8(5-6):347—-369.

Van Lint, J. W. C. and Van der Zijpp, N. J. (2003). Improving av&l time estimation
algorithm by using dual loop detectorBransportation Research RecoitB55:41-48.

Varshney, P. K. (1997). Multisensor data fusi&iectronics and Communications Engi-
neering Journal(December):245-253.

Wang, Y. and Papageorgiou, M. (2005). Real-time freewayidratate estimation ba-
sed on extended kalman filter: a general approdiglansportation Research Part B:
Methodological 39(2):141 — 167. ISSN 0191-2615.

Wang, Y., Papageorgiou, M., and Messmer, A. (2006). A rea fireeway network traffic
surveillance toollEEE Transactions on control systems technojdgy(1).

Wang, Y., Papageorgiou, M., and Messmer, A. (2008). Rea-firmeway traffic state
estimation based on extended kalman filter: Adaptive céipabiand real data testing.
Transportation Research Part A: Policy and Practid@(10):1340 — 1358. ISSN 0965-
8564.

Wang, Y., Papageorgiou, M., Messmer, A., Coppola, P., Tgim., and Nuzzolo, A.
(2009). An adaptive freeway traffic state estimatdutomatica45(1):10 — 24. ISSN
0005-1098.

Westerman, M. (1995Real-Time Traffic Data Collection for Transportation Teldios
Delft University Press, Delft, The Netherlands.

Willsky, A., Chow, E., Gershwin, S., Greene, C., Houpt, P., &uodkjian, A. (1980).
Dynamic model-based techniques for the detection of imtglen freeways.|[EEE
Transactions on Automatic Contyd5:347-360.

Xiong, N. and Svensson, P. (2002). Multi-sensor managefieenbformation fusion:
issues and approachdaformation Fusion3(2):163—-186.

Yager, R. R. (2004). A framework for multi-source data fusidnformation Sciences
163(1-3):175-200.

Zhao, Y. (2000). Mobile phone location determination asdritpact on intelligent trans-
portation systemdEEE Transactions on Intelligent Transportation SysteinS5—62.



162 Bibliography




Summary

Reliable and accurate estimation of traffic states play amitapt role in traffic manage-
ment and traffic theory development, which therefore hasifstgnt social and scientific
relevance. Data for traffic estimation normally from di#fat sources and have different
types, characteristics, etc, so data fusion techniquegsa@. Traffic state estimation in-
volves fusion of data from different sources. Thereforéadiasion techniques are used.

The subject of this thesis is about traffic data fusion andrhe objective is to propose
more efficient approach and algorithms to accomplish treti@ fusion.

Different types of data have different characteristics anduracy, which causes chal-
lenges. Let us take data from loop detectors as an exampbp. detectors can provide the
speed measures only at certain points on a road (local gpdédusspeed measures from
loop detectors have structural deviation from the grounthtspeeds based on Edie’s de-
finition. The deviation is relatively bigger when the spegdower. This deviation can
lead to the 100% error in density estimation. Similary, satteer types of data, e.g.
floating car data, camera data, etc, have their particularackeristics. It is a challenge
to fuse all kinds of data with different characteristicsnsatics, resolution, accuracy and
reliability.

Although the previous methods have already solved quitevarsdfic data fusion issues,

yet there are quite a few challenges left. For example, dgpatio-temporal alignment

problem, Kalman filter, the most commonly used assimilateminiques for data fusion

can not be well used to fuse travel times and local data. Mgjof these methods need

model calibration that is made through biased data e.g.ediésop speeds, so these
methods are not effective in removing the structural biagata. In sum, previous data
fusion techniques normally involves quite a few assumggtibat they may not fuse many
types of data or give reliable results.

In order to fuse more types of data and give more accuratdtsesie propose a new
approach. This approach is called ‘Data-Data Consistenpprdach. It still needs traffic
models, but these models are simply based on some basicahlsis and very few
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assumptions.

Based on this data-data consistency paradigm, we developrfethods for traffic data
fusion. The first proposed algorithm is called PISCIT whichlie to fuse traffic speeds
from local detectors such as inductive loops with individinavel times measured by
AVI systems. The second is called TravRes which is able torately reconstruct high-
resolution time-space speeds from floating car data (FCtHieves this by iteratively
reconstructing the (unobserved) probe vehicle trajeetdoetween polling time instants,
until the resulting time-space speed map is consistenuggnowith all probe vehicle re-
ports. The above-mentioned two algorithms are concerntdtine low-resolution travel
time data (low polling rates). The third is called FlowResdétls with another type of
data, data which may not only have low time-resolution bsib &lave quite low position-
resolution. Such data cannot pinpoint the accurate pasitid vehicles but can only give
some location-specific information when and where the Vesiare located at the seg-
ment or cell level.This algorithm corrects strongly biageidr speed measurements and
reduces the impact of random errors. it can be easily extetmdit in network-wide
traffic speed estimation. The fourth algorithm is called FT®hich is able to fuse traffic
flow, local speeds and travel times all together. It usesaedaita source: traffic flow.
As a result, more accurate and reliable estimation is aedieempared to the first two
algorithms.

Rather than these four methods, more methods and algoritlamsscdeveloped by follo-

wing data-data consistency paradigm. Furthermore, wegsep data fusion framework,
in which all proposed methods can work with other alreadgteglg methods so that better
estimation can be achieved.
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