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ABSTRACT The current navigation systems used in many autonomous mobile robotic applications, like
unmanned vehicles, are always equipped with various sensors to get accurate navigation results. The
key point is to fuse the information from different sensors efficiently. However, different sensors provide
asynchronous measurements, some of which even appear to be nonlinear. Moreover, some sensors are
vulnerable in specific environments, e.g., GPS signal is likely to work poorly in interior space, underground,
and tall buildings. We propose a multi-sensor information fusion method based on a factor graph to fuse
all available asynchronous sensor information and efficiently and accurately calculate a navigation solution.
Assuming the sensor measurements and navigation states in a navigation system as factor nodes and variable
nodes in a factor graph, respectively, the update of the states can be implemented in the framework of the
factor graph. The proposed method is experimentally validated using two different datasets. A comparison
with Federated Filter, which has been widely used in integrated navigation systems, demonstrates the
proposed method’s effectiveness. Additionally, analyzing the navigation results with data loss verifies that
the proposed method could achieve sensor plug and play in software.

INDEX TERMS Integrated navigation, multi-sensor, information fusion, factor graph, plug and play.

I. INTRODUCTION
Autonomous mobile robotic systems have been applied in
various fields, e.g., health, transportation, and military [1].
Accurate and reliable navigation is essential in such systems
and has become a topic of significant research interest [2].
Compared with the early inertial navigation systems in which
the inertial measurement unit (IMU) is the prime sensor,
current systems are always equipped with additional sen-
sors to get more accurate and reliable navigation solutions.
Although the combination of different sensors can improve
navigation accuracy, the asynchronism and nonlinearity of
sensor measurements make it difficult to fuse multi-sensor
information efficiently [3].

Since its proposal in 1960, Kalman Filter (KF) has been
widely used to solve many difficult and complicated infor-
mation fusion problems [4]. However, the classical Kalman
Filter can only be applied in linear systems. Although in
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the following decades, Extended Kalman Filter (EKF) and
Unscented Kalman Filter (UKF) were proposed for nonlinear
systems [5]–[10], with the increasing number of sensors in the
navigation system, these centralized filters [11] can result in
an enormous computational burden and poor fault tolerance
[12]. Recently, some work has been proposed to improve the
performance of KF in the navigation system. Hailiang et al.
presented a novel robust single GPS navigation algorithm
based on dead reckoning and strong tracking filter [13]. More
recently, an unconventional multi-sensor integration strategy
based on the kinematic trajectorymodel was proposed in [14].
To solve the dilemma of navigation accuracy and compu-
tation cost, Speyer et al. proposed the idea of a decentral-
ized filter and developed it for optimal estimation problems
[15]–[21]. In 1987, Federated Filter (FF) was presented and
became a representative of a decentralized filter because of its
flexibility, stability, and good fault tolerance capacity [22].
Yuan et al. presented a federated extended finite impulse
response filter to obtain accurate position information [23].
However, in practical applications, an integrated navigation
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system always consists of multi-rate sensors. Thus, Federated
Filter needs time registration before fusing the information
[24], which complicates the fusion process. Even if the fed-
erated filter in [25] improved the time registration process,
it still takes some time.

In a multi-sensor integrated navigation system, there are
always some cases when some sensors are unavailable.
It requires the navigation system to react quickly and recover
the navigation accuracy in a short time. Hailiang et al. pre-
sented a novel robust fault-tolerant federated filter to improve
the stability of the navigation system [26]. Kai-wei et al.
proposed new strategies for the integrated navigation system
to achieve Simultaneous Localization andMapping (SLAM),
especially in GNSS challenging environments where GNSS
signals are blocked [27]. This work only considers the situ-
ation that the GNSS signal is blocked, and the fusion frame-
work needs reconstruction when the sensor signal is lost.
Wei et al. presented an integrated positioning methodology
for train navigation application to solve the problem of posi-
tioning during BeiDou navigation satellite system (BDS)
outages [28]. This work utilizes a switch module to transfer
between two navigation systems with and without BDS sig-
nal, which means the navigation system needs to be recon-
structed once a specific sensor is unavailable. Although the
federated filter is exploited for its flexibility and capability
in fault toleration, it needs to reconstruct its framework when
sensors are added or removed. Therefore, it is worthwhile to
propose a multi-sensor information fusion method to achieve
real-time adaptive information fusion.

A recent study in monocular visual-inertial navigation
has shown that optimization-based approaches outperform
filtering methods in terms of accuracy [29]. As one of the
optimization-based methods, the factor graph has recently
been used in SLAM and navigation problems. Since 2006,
Michael et al. have presented a series of Simultaneous
Smoothing and Mapping (SAM) algorithms for robot SLAM
problem [30]–[33]. Sven et al. applied a factor graph to the
Unmanned Aerial Vehicle (UAV) navigation system [34].
Inspired by the idea of SAM algorithms, Han-Pang et al.
proposed an integrated navigation system based on a factor
graph for a robot, which includes 57 different sensors [35].
More recently, David et al. employed the context of so-called
‘‘Dynamic Networks’’ to fuse the processing of the image,
raw inertial, and GNSS observations for UAV applications
[36]. Qinghua et al. presented a factor graph-based naviga-
tion method for Micro Unmanned Aerial Vehicle (MUAV)
[37]. Xiao-kai et al. proposed an INS/Odometer integrated
navigation algorithm based on factor graph for the vehicle
integrated navigation system, but there are only two sen-
sors in the system [38]. Although it has been shown that
factor graph-based methods have good performance in pro-
cessing asynchronous data, the current work mostly focuses
on small-scenario, low-dynamic SLAM problems and is
almost verified through simulation. There is no real-world
large-scenario experiment with more than three sensors
so far.

This paper proposes a multi-sensor information fusion
approach based on a factor graph for integrated navigation
systems. Specifically, we make the following contributions.
• We present a method that uses a factor graph for fast
computation of the navigation state estimation. The
first step towards this goal is constructing the factor
graph framework for the multi-sensor navigation sys-
tem. We analyze the different sensors’ measurement
models and formulate corresponding factors. Then we
build the factor graph framework for the integrated
navigation systems in the experiments.

• We perform two real-world experiments to verify the
proposed method’s effectiveness in small and large sce-
narios. One is based on the KITTI dataset, and the other
one is based on a dataset collected by our laboratory.

• We investigate the sensor plug and play experiment to
prove that the proposed method can react quickly in
different environments. For example, when the GPS
signal is poor or unavailable in some cases, the pro-
posed method can continue fusing other available sensor
information in a short time.

The rest of the paper is organized as follows. In Section II,
we present a brief introduction about the factor graph and
Bayesian maximum a posterior. Section III introduces the
multi-sensor information fusion method based on the fac-
tor graph. Experimental results are presented and analyzed
in Section IV, followed by the conclusions summarized in
Section V.

II. BACKGROUND
This section introduces the concepts of factor graph and
Bayesian maximum a posteriori used to build the navigation
system’s factor graph framework.

A. FACTOR GRAPH
A factor graph is a bipartite graph representing the factor-
ization of a function. Given a factorization of a function
g(θ1, . . . , θn):

g(θ1, . . . , θn) =
m∏
i∈I

fi(2i), (1)

where 2i ⊆ {θ1, . . . , θn}, the corresponding factor graph
G = (2,F,E) consists of variable nodes 2 = {θ1, . . . , θn},
factor nodes F = {f1, . . . , fm}, and edges E . The edges
depend on the factorization i.e., there is an undirected
edge between factor node fi and variable node θj iff
θj ∈ 2i.
For example, consider a function that can be factorized

as:

g(θ1, θ2, θ3, θ4) = f1(θ1)f2(θ2, θ3, θ4)f3(θ3), (2)

with a corresponding factor graph shown in Fig. 1. In the
figure, each circle represents a variable node and each black
dot represents a factor node. The line between circle and dot
indicates the relationship between the corresponding variable
and factor node.
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FIGURE 1. An example of a factor graph.

B. BAYESIAN MAXIMUM A POSTERIORI
In Bayesian statistics, a maximum a posteriori (MAP) prob-
ability estimate is an estimate of an unknown quantity that
equals the mode of the posterior distribution [39]. The MAP
can be used to obtain a point estimate of an unobserved
quantity based on empirical data. It is closely related to the
method of maximum likelihood (ML) estimation. However,
it employs an augmented optimization objective that incor-
porates a prior distribution (that quantifies the additional
information available through prior knowledge of a related
event) over the quantity we want to estimate. MAP estimation
can, therefore, be seen as a regularization of the maximum
likelihood estimation.

Let us assume that we want to estimate an unobserved
population parameter θ based on observations x. Let f be the
sampling distribution of x, so that f (x|θ ) is the probability
of x when the underlying population parameter is θ . Then
the function θ 7→ f (x|θ ) is known as the likelihood function
and the estimate θ̂MLE (x) = argmaxθ f (x|θ ) is the maximum
likelihood estimate of θ .

Next, assume that a prior distribution g over θ exists. So the
θ can be treated as a random variable in Bayesian statistics.
The posterior distribution of θ can be calculated using Bayes’
theorem:

θ 7→ f (θ |x) =
f (x|θ )g(θ )∫

2
f (x|ϑ)g(ϑ)dϑ

, (3)

where g is density function of θ , 2 is the domain of g.
The method of maximum a posteriori estimation then esti-

mates θ as the mode of the posterior distribution of this
random variable:
θ̂MAP(x) = argmax

θ

f (θ |x) = argmax
θ

f (x|θ )g(θ )∫
2
f (x|ϑ)g(ϑ)dϑ

= argmax
θ

f (x|θ )g(θ ), (4)

where the denominator of the posterior distribution (so-called
marginal likelihood) is always positive and does not depend
on θ and therefore plays no role in the optimization.

III. INFORMATION FUSION METHOD BASED ON FACTOR
GRAPH
Based on the factor graph and maximum a posteriori as
presented in Section II, we now propose the multi-sensor
information fusion method for an integrated navigation sys-
tem using the factor graph. This section first defines the
optimal navigation solution as a maximum a posteriori esti-
mation of the navigation state. Second, we construct the fac-
tor graph framework for an integrated navigation system by
analyzing measurement models in various navigation sensors
and formulating corresponding sensor factors. Furthermore,
we utilize the Gaussian-Newton iteration method to solve

the nonlinear optimization problem. As a result, the pro-
posed method can fuse asynchronous, nonlinear multi-sensor
information efficiently.

A. MAXIMUM A POSTERIORI OF NAVIGATION STATE
Based on the idea of factor graph mentioned in Section II-A,
we can construct a factor graph for integrated navigation
system. In the graph, factor nodes and variable nodes stand
for sensor measurements and navigation states, respectively.
By calculating the maximum a posteriori estimation of joint
probability distribution function for navigation states in a
period of time, we can get the optimal estimate of navigation
states with all available asynchronous multi-sensor data. The
state variable set with the maximum a posteriori probability
is considered as follows:

X̂0:k = argmax
X0:k

p(X0:k |Z1:k ), (5)

where X0:k is the state variable set from t0 till tk , Z1:k is
the measurement set from all available sensors till tk , and
X̂0:k is the maximum a posteriori estimation calculated by
maximizing the right side of (5). According to the Bayes
formula, (5) can be factorized as:
p(X0:k |Z1:k )

=
p(Zk |X0:k )p(Xk |Xk−1)

p(Zk )
· p(X0:k−1|Z1:k−1)

=
p(Zk |X0:k )p(Xk |Xk−1)

p(Zk )
·
p(Zk−1|X0:k−1)p(Xk−1|Xk−2)

p(Zk−1)
·p(X0:k−2|Z1:k−2)

=
p(Zk |X0:k )p(Xk |Xk−1)

p(Zk )
·
p(Zk−1|X0:k−1)p(Xk−1|Xk−2)

p(Zk−1)

· . . . ·
p(Z1|X0:1)p(X1|X0)

p(Z1)
· p(X0)

= p(X0)
k∏
i=1

p(Xi|Xi−1)p(Zi|X0:k,i)
p(Zi)

, (6)

And because the joint probability distribution function can
be factorized in terms of a priori information and individual
process and measurement models. Such a factorization can
be finally written as:

p(X0:k |Z1:k ) = p(X0)
k∏
i=1

[
p(Xi|Xi−1, ci−1,Z IMUi )p(ci|ci−1)

∏
Z ji∈Zi\Z

IMU
i

p(Z ji |X
j
0:k,i)

]
, (7)

where p(X0) is the prior information, p(Xi|Xi−1, ci−1,Z IMUi ),
p(ci|ci−1) are the probability distribution of navigation state
and calibration parameter in the inertial navigation system,
respectively. Finally, p(Z ji |X

j
0:k,i) is the probability distribu-

tion of other navigation sensors’ measurements. For exam-
ple, if Z ji is a GPS measurement, X j0:k,i is simply {Xi}.
This factorization process is similar to that in the factor
graph - from a global function to the product of local func-
tions. Therefore, it is reasonable and feasible to apply fac-
tor graph to multi-sensor information fusion in integrated
navigation system.
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In the factor graph, assume that f (.) represents the local
probability distribution function, then (6) can be written as:

p(X0:k |Z1:k ) ∝
k∏
i

fi(X0:k,i), (8)

where X0:k,i is the subset of the state set X0:k , local function
fi is related to error function err(X0:k,i,Zi). So fi can be
formulated as:

fi(X0:k,i) = d(erri(X0:k,i,Zi)), (9)

where d(.) is the cost function.
Assuming a Gaussian noise model, (8) can be written as:

fi(X0:k,i) = exp(−
1
2

∥∥erri(X0:k,i,Zi)∥∥2∑
i
), (10)

where ‖.‖2∑ denotes the squared Mahalanobis distance, and∑
i is the measurement noise covariance matrix at time ti.

So, calculating the maximum a posteriori estimation in (5)

is equal to minimizing
k∑
i

∥∥erri(X0:k,i,Zi)∥∥2∑
i
:

X̂0:k = argmax
X0:k

p(X0:k |Z1:k )

= argmin
X0:k

1
2

k∑
i

∥∥erri(X0:k,i,Zi)∥∥2∑
i
. (11)

In practical navigation system, the error function
err(X0:k,i,Zi) can be represented as Zi − Hi(X0:k,i), where
Hi(.) is the measurement model of the corresponding sensors
to predict sensor measurements given a set of states. Then
the error function captures the error between the predicted
measurements Hi(X0:k,i) and the actual measurements Zi
received from sensors.

B. FACTOR GRAPH FRAMEWORK FOR INTEGRATED
NAVIGATION SYSTEM
Based on the formulations given in Section III-A, we can
construct the factor graph framework for different integrated
navigation systems. In the framework, the factor nodes are
local functions f (.) in (7) and the variable nodes are navi-
gation states X0,X1, . . . ,Xk and inertial calibration param-
eters c0, c1, . . . , ck . Since different sensors have different
measurement models, we need to present a distinct factor
node formulation for each sensor. Considering the sensors
used in our experiments, we analyze measurement models in
IMU, Global Positioning System (GPS), BeiDou Navigation
Satellite System (BDS), baro-altimeter, visual odometer, and
odometer.

1) IMU FACTOR
For inertial measurement unit, the time evolution of the nav-
igation state X can be described by the following continuous
nonlinear differential equation:

Ẋ = H IMU
c (X , fb, ωb), (12)

where fb and ωb are the specific force and the angular accel-
eration, respectively, measured by the inertial sensors in body
frame.

The IMU calibration parameters represented by c are used
to compensate for the bias error of IMU measurement fb,
ωb according to the assumed IMU error model. It is usually
estimated at the same time when the navigation state is esti-
mated. Furthermore, the time evolution of c can be described
as follows:

ċ = gc(c). (13)

A given IMU measurement Z IMUi =
{
f bi , ω

b
i

}
relates the

navigation states at two consecutive time instances ti−1 and
ti. The discrete representation of (12) and (13) is:

Xi = H IMU (Xi−1, ci−1,Z IMUi )+ N IMU

ci = g(ci−1)+ N bias, (14)

where navigation state Xi is predicted by current inertial mea-
surement Z IMUi and previous state and calibration parameter
Xi−1, ci−1. Calibration parameter ci is updated on ci−1.

Based on the representation of error function and (9),
the conventional IMU factor f IMU and bias factor f bias can
be given as:

f IMU (Xi−1, ci−1,Xi)

= d(Xi − H IMU (Xi−1, ci−1,Z IMUi ))

= exp
(
−
1
2

∥∥∥Xi − H IMU (Xi−1, ci−1,Z IMUi )
∥∥∥2∑

i

)
,

(15)

f bias(ci−1, ci)

= d(ci − g(ci−1))

= exp
(
−
1
2
‖ci − g(ci−1)‖2∑

i

)
, (16)

where we can find that the IMU factor is related with the
current state, previous state and bias, while the bias factor is
related with the current and previous bias. The corresponding
factor graph with IMU and bias factors is shown in Fig. 2
(a). In general, estimating the state variables at IMU fre-
quency that is very high is infeasible. Instead, consecutive
IMUmeasurements can be combined into an equivalent IMU
factor [29], [40], relating between two distant navigation and
calibration nodes, which can reduce the cost of computa-
tional complexity dramatically by decreasing the number of
variable nodes in factor graph, as shown in Fig. 2 (b).

2) GPS FACTOR
The GPS measurement equation is given by:

ZGPSi = HGPS (Xi)+ NGPS , (17)

where NGPS is the measurement noise and HGPS is the mea-
surement function, relating themeasurement ZGPSi to stateXi.
The above equation defines the GPS factor f GPS :

f GPS (Xi) = d(ZGPSi − HGPS (Xi))

= exp
(
−
1
2

∥∥∥ZGPSi − HGPS (Xi)
∥∥∥2∑

i

)
, (18)
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FIGURE 2. Examples of a factor graph in inertial navigation system:
(a) Factor graph with conventional IMU and bias factors; (b) An
equivalent factor graph to (a) when using one equivalent IMU factor
instead of three conventional IMU factors between X1 and X3.

FIGURE 3. Example of a factor graph in INS/GPS integrated navigation
system.

which is only related with the current navigation state Xi.
Fig. 3 shows a factor graph of an INS/GPS integrated naviga-
tion system in which IMU and GPS measurements are added
into the graph with different frequencies. Note, BDS factor
and baro-altimeter factor equations are similar to the GPS
factor equation.

3) VISUAL ODOMETER FACTOR
Visual odometer has become popular in current navigation
systems [41] as it allows us to estimate the relative trans-
formation between two stereo frames, assuming a known
baseline. Based on this relative transformation information,
we can get the current position of the target. The visual
odometer measurement model can be given by:

ZVOij = HVO(Xi,Xj)+ NVO, (19)

where ZVOij is the measurement based on state set
{
Xi,Xj

}
and NVO is measurement noise. The corresponding visual
odometer factor is:

f VO(Xi,Xj) = d(ZVOij − H
VO(Xi,Xj))

= exp
(
−
1
2

∥∥∥ZVOij − HVO(Xi,Xj)
∥∥∥2∑) . (20)

Fig. 4 is an example of a factor graph in IMU/Visual
odometer integrated navigation system. Odometer factor
equation is similar to visual odometer factor equation.

C. COST FUNCTION LINEARIZATION
As many sensor measurements in integrated navigation sys-
tem appear to have a nonlinear character, (10) is a nonlinear
least square problem. We use the Gaussian-Newton iteration
method to solve this optimization problem. By Taylor-series
expansion, we can transform this nonlinear problem into

FIGURE 4. Example of a factor graph in INS/Visual Odometer integrated
navigation system.

Algorithm 1 Navigation State Update Process Based on
Factor Graph
Input: original state variable set X0:k , measurements so far
Z1:k , threshold η
Output: maximum a posterior estimation of state variable set
X̂0:k
Initialize: X0:k ← 0

for t ← 1 to k do
f IMU (Xt ,Xt−1, ct ) ← d(Xt −

H IMU
t (Xt−1, ct−1,Z IMUt ))
f bias(ct , ct−1)← d(ct − g(ct−1))
for j← 1 to Nsensors do

f sensorj ← d(Z jt − H
j
t (X

j
0:k,t ))

end for
end for
while

∥∥∥J (X̂0:k )10:k − b(X̂0:k )
∥∥∥2 > η do

J (X̂0:k ), b(X̂0:k )←
k∑
t=1

∥∥Ht (X0:k,t )− Zt∥∥2∑
1̂0:k ← argmin

∥∥∥J (X̂0:k )10:k − b(X̂0:k )
∥∥∥2

X̂0:k ← X̂0:k + 1̂0:k
end while

linear problem and get the optimal state increment estimation:

1̂0:k = argmin
10:k

∥∥∥J (X̂0:k )10:k − b(X̂0:k )
∥∥∥2 , (21)

where J (X̂0:k ) is the sparse Jacobian matrix, 10:k is the state
increment matrix till time tk , and b(X̂0:k ) is the residual matrix
given the measurements so far. Once 1̂0:k is calculated,
the new optimal state estimate can be updated by X̂0:k+10:k ,
which is then used as the linearization point in the next itera-
tion. Alg. 1 presents the pseudocode for the navigation state
updating algorithm based on factor graph. In Alg. 1, Z IMUt is
the IMU measurement at time t and Z jt is the measurement
of sensor j at time t . Zt is all of the sensors’ measurement
at time t so Z IMUt ,Z jt ∈ Zt . Similarly, H IMU

t is the function
relating between the measurement Z IMUt and previous state
Xt−1 to the current state Xt . H

j
t is the measurement function

of sensor j relating between the measurement Z jt to the state
Xt and H IMU

t ,H j
t ∈ Ht . The calculating process of navi-

gation state estimation based on factor graph is as follows:

12048 VOLUME 9, 2021



J. Xu et al.: Multi-Sensor Information Fusion Method Based on Factor Graph for Integrated Navigation System

TABLE 1. Structure parameters of the stereo camera in the KITTI dataset.

TABLE 2. Measurement error of navigation sensors in the KITTI dataset.

1) Formulate the global cost function
k∑
t=1

∥∥Ht (X0:k,t )− Zt∥∥2∑
based on sensors’ measurement function H IMU

t and H j
t .

2) Calculate the sparse Jacobian matrix and state increment
matrix. 3) Get the optimal state increment estimation by

minimizing
∥∥∥J (X̂0:k )10:k − b(X̂0:k )

∥∥∥2. 4) Update the state
estimate. 5) Repeat step 2) to 4) until∥∥∥J (X̂0:k )10:k − b(X̂0:k )

∥∥∥2 > η.

IV. EXPERIMENTS
To verify the proposed multi-sensor information fusion
method’s performance, we conduct two experiments. The
first experiment confirms the navigation accuracy of the pro-
posed method in both small and large scenarios. The second
experiment’s goal is to prove that our method can achieve
sensor plug and play in software, which means when some
sensors are unavailable in specific environments, the pro-
posed method can still achieve accurate navigation solu-
tions. Our experiments were run on a single core of an Intel
i5-4210 processor with a 2.40GHz clock rate and 6GiB of
RAM.

A. DATASETS
In the first experiment, two real-world datasets are used for
small scenario and large scenario, respectively:
• KITTI. KITTI Vision Benchmark Suite [42] is a
dataset captured from an autonomous vehicle platform
‘‘Annieway’’ by traveling around different kinds of areas
in Karlsruhe, Germany. These areas can be classified
into four categories: city, residential, road, and campus.
This platform is equipped with a stereo camera, IMU,
and a differential GPS/INS system. The differential
GPS/INS data provides a highly accurate ground truth
position. The structure parameters of the stereo cam-
era are shown in Table. 1. The KITTI dataset provides
stereo calibration information, so no additional calibra-
tion nodes were required for the stereo factors. The
measurement errors of every sensor in this navigation
system are shown in Table. 2. To verify the performance

FIGURE 5. Hardware structure of the ground vehicle navigation system.

in the small scenario, we chose a part of a residential
dataset that can be downloaded from [43] to carry out
the first experiment. The length of the entire trajectory
was about 700m, and the driving time was 100 s.

• SX. To further test the proposed method’s performance
on the real-world large-scenario environment, we cap-
tured real-world data by driving a vehicle in the mid-
dle area of Shanxi province, China, and we called
this dataset ‘‘SX’’. The vehicle was equipped with
IMU, BDS, odometer, baro-altimeter, and a differential
GPS/INS system, which provided the ground truth data.
The navigation system’s hardware architecture to obtain
this dataset is shown in Fig. 5, and the parameters of
these sensors are shown in Table. 3. The whole trajec-
tory was about 27,383m long, and the whole driving
time was 1359 s. The first half trajectory was nearly a
straight line that cannot verify the proposed method’s
performance properly. Thus, we chose the second half
trajectory (13,582m) containing several turns to analyze
the performance.

B. ACCURACY EXPERIMENT
The Federated Filter (FF) has been widely used in integrated
navigation systems, which is a near-optimal estimator for
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TABLE 3. Measurement error of navigation sensors in the SX dataset.

FIGURE 6. The multi-sensor fusion framework based on factor graph for two datasets: (a) The factor graph of the navigation system based on the KITTI
dataset. In this framework, based on the update frequency of GPS, stereo cameras, and IMU, between navigation state X0 and X10, there are two GPS
factors, ten visual odometer factors, and ten equivalent IMU factors. Specifically, ten consecutive IMU measurements are combined into an equivalent
IMU factor. (b) The factor graph of the navigation system based on the SX dataset. According to the update frequency of sensors in the system, between
state X0 and X10 there are two BDS factors, ten equivalent IMU factors, one visual odometer factor, and two baro-altimeter factors. Same as the KITTI
dataset, ten consecutive IMU measurements are combined into an equivalent IMU factor in this system.

decentralized, multi-sensor data fusion [44]. To verify the
performance of the proposed method from the accuracy per-
spective, we compared the navigation results of the factor
graph method and FF. This experiment is based on two
datasets mentioned in Section IV-A, one for small scenarios
and the other for large scenarios. According to the sensor
information given in Table. 2 and Table. 3, we can construct
the factor graph framework for these two navigation systems,
as shown in Fig. 6.

1) RESULTS ON KITTI
Fig. 7 presents the results of the proposed method, FF, and the
ground truth in Google RoadMap on the KITTI dataset. From
the results, it is clear that the proposed method had a smaller
error in each turning than FF. Especially in the third and fifth
turning, the error in FF is increasing for a considerable period.
This is caused by the uncertainty of the system model in FF
during the turning periods. Furthermore, the vehicle is easily
affected by the hybrid of Gaussian noise and non-Gaussian
noise in the natural environment, so there are some deviations
in both methods.

Fig. 8 illustrates the position and velocity error of these two
methods. Recall, the closer the curve is to zero, the better is
the effect of the estimation. From the position error curve,
we can see that FF has a more considerable fluctuation in
x and y directions, while in the vertical direction, FF has a
smaller error. Finally, from the velocity error curve, it is clear
that FF fluctuates more in all directions.

To quantify the navigation error, we calculate root-mean-
square error (RMSE) of position and velocity for these two
methods, as shown in Table. 4. The improvement of the factor
graph method is obvious: (1) it can be seen that the factor
graph method has higher position accuracy than FF in x and

FIGURE 7. Trajectories for the ground truth, factor graph method, and
Federated Filter on KITTI dataset.

y directions, reducing to less than 1.5m in RMSE. Simultane-
ously, in the vertical direction, FF has a smaller error; (2) as
for the velocity error, the factor graph method improves in all
directions. More precisely, in horizontal directions, the factor
graph method’s error is approximately half of FF. Thus, this
experiment proves that the factor graph method can reach
more precise navigation results in a small scenario than FF.

2) RESULTS ON SX
The navigation results on the SX dataset are shown in Fig. 9.
As presented in the enlarged drawing of the first 100 s of
the trajectory, the proposed method had a considerable drift.
We believe this is because, in the proposed algorithm, we ini-
tialized the velocity of the experimental vehicle as zero,
while the true velocity was not zero (recall, we start fusing
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FIGURE 8. Comparison curves of factor graph method and Federated Filter on the KITTI dataset: (a) Position error curves; (b) Velocity
error curves.

TABLE 4. Navigation error of factor graph method and Federated Filter on the KITTI dataset.

FIGURE 9. Trajectories for the ground truth, factor graph method, and
Federated Filter on the SX dataset.

the measurements from the middle of the trajectory, not the
beginning). In the rest of the trajectory, the proposed method
has a slight deviation from the ground truth.

The position error of the two methods after the first 100 s is
illustrated in Fig. 10 and Table. 5, where we can find that the
proposed method has better performance than FF. Consistent
with the KITTI dataset results, in x and y directions, the factor
graph method has smaller errors than FF, and its RMSE
reduces to less than 2m. Furthermore, the improvement in
horizontal directions is better than the vertical direction.

From the experimental results, we can find that the SX
dataset results are somewhat worse than the KITTI dataset
because, in this experiment, there is no high-precise visual
odometer to be combined to get the navigation result. How-
ever, we can still conclude that the proposed method also
shows superiority over FF in the large scenario.

FIGURE 10. Position error curves of two methods on the SX dataset.

TABLE 5. Navigation error of factor graph method and Federated Filter on
the SX dataset.

C. SENSOR PLUG AND PLAY EXPERIMENT
Since there are always cases when some particular sensors are
unavailable, the navigation system needs to react quickly and
recover the required navigation accuracy in a short time. This
experiment uses the second dataset - SX to perform a sensor
plug and play experiment. We divided the whole trajectory
into five sections, and in each section, we assume there is
20 s of BDS signal loss. The exact starting and ending points
of these five-time slots are shown in Table. 6. We calculate
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TABLE 6. Starting and ending time of five time slots without BDS Signal
on the SX dataset.

FIGURE 11. Navigation results of factor graph method and Federated
Filter with signal loss on the SX dataset.

the navigation solution with BDS signal loss utilizing FF and
the factor graph method. The navigation results are shown
in Fig. 11.

By enlarging two navigation results in the first and third
signal loss time slots (858 s to 878 s and 969 s to 989 s),
we can find that the factor graph method can react in a short
time and reduce navigation error quickly while FF needs
more time to regain a precise result. Especially when the
signal is lost, the error of FF increases immediately to a
significant degree. The position error with signal loss of two
methods is shown in Fig. 12, and the RMSE results are
presented in Table. 7. It can be seen that the performance
of both methods degrades with the signal loss, but the factor
graph method drops less in navigation accuracy, and it can
still guarantee accuracy around 3m. This experiment shows
that: (1) for the factor graph-based method, the navigation
accuracy is worse without the BDS signal at the beginning,
but in general, the navigation results are still precise; (2) FF
gets larger position error than the factor graph method when
there are some sensors unavailable; (3) factor graphmethod is
more effective for multi-sensor information fusion in various
environments.

This experiment can also illustrate the stability of the
proposed method. RMSE is a frequently used measure of
the differences between values predicted by a model or an
estimator, so it is reasonable to use RMSE to compare the
stability of the methods. It can be seen from Table. 7 that
when signal losing occurs, position RMSE of the factor graph
based method increases by 63.84%, 82.41%, 46.77% in east-
ern, northern, and vertical directions respectively, and for the
federated filter, it increases by 160.65%, 172.36%, 21.60% in

FIGURE 12. Position error curve of two methods with signal loss on the
SX dataset.

TABLE 7. Navigation error of two methods with/without BDS signal loss
on the SX dataset.

the three directions respectively. Therefore, the factor graph
method is more stable than FF in a complex environment.

D. TIMING PERFORMANCE
In addition to navigation accuracy, the timing performance
of the proposed method is also considered to evaluate
and analyze the effectiveness of the proposed method
comprehensively.

The experiments of the two methods were carried out
50 times for each dataset. The average computational time
is shown in the Table. 8. It can be seen from Table. 8 that
the proposed method takes less fusion time for the navigation
solution than the federated filter on both two datasets. The
calculated fusion time of the twomethods is shown in Fig. 13.
It is obvious that the computational cost of the proposed
method is much smaller than that in the federated filter.
Specifically, the average fusion time of the factor graph is
62.05% and 66.16% of the federated filter on KITTI and
SX datasets respectively. It can also be seen intuitively from
Fig. 13 that under the situation with signal loss, the factor
graph method can cost less time to recover, i.e., compared
with the fusion time without signal loss, it takes 1.18% more
time for factor graph based method to get the navigation
solution while federated filter takes 7.27%more time. That is
because once there are new navigation measurements added
to the integrated navigation system, the proposed method in
this paper only needs to add corresponding factors, while
the federated filter needs to rebuild the algorithm model.
Therefore, the proposed method not only can process data
more efficiently but also have better expansibility.
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TABLE 8. Time consumptions of two methods based on the two datasets.

FIGURE 13. Comparison of fusion time of two methods based on KITTI
dataset and SX dataset (with/without signal loss).

V. CONCLUSION
In this paper, we study the multi-sensor information fusion
method in the integrated navigation systems. To perform
efficient information fusion, we proposed an approach based
on the factor graph topology. The constructed factor graph
framework can clearly illustrate the relationship between
the navigation states and sensor measurements, making it
easier to calculate the optimal navigation results with asyn-
chronous data. By linearizing the cost function, we can also
fuse nonlinear information. Furthermore, when some sensors
become unavailable, the algorithm’s only change is to stop
adding the corresponding factors to the graph, which is an
outstanding advantage compared with conventional filtering
methods. Two experiments have been performed to prove the
proposed method’s effectiveness, and the results suggest that
our proposed method outperforms the popular Federated Fil-
ter. Additionally, the sensor plug and play experiment further
validates the factor graph method’s good performance in a
complex environment. Due to the limitations of experimental
conditions, we only fuse four navigation sensors in this paper.
In future work, we plan to increase the number of navigation
sensors in the integrated navigation system.

REFERENCES
[1] D. Floreano, J. Godjevac, A. Martinoli, F. Mondada, and J. D. Nicoud,

‘‘Design, control, and applications of autonomous mobile robots,’’ in
Advances in Intelligent Autonomous Systems. Dordrecht, The Netherlands:
Springer, 1999, pp. 159–186.

[2] M. B. Alatise and G. P. Hancke, ‘‘A review on challenges of autonomous
mobile robot and sensor fusion methods,’’ IEEE Access, vol. 8,
pp. 39830–39846, 2020, doi: 10.1109/access.2020.2975643.

[3] V. Indelman, S. Williams, M. Kaess, and F. Dellaert, ‘‘Information
fusion in navigation systems via factor graph based incremental smooth-
ing,’’ Robot. Auto. Syst., vol. 61, no. 8, pp. 721–738, Aug. 2013, doi:
10.1016/j.robot.2013.05.001.

[4] R. E. Kalman, ‘‘A new approach to linear filtering and prediction
problems,’’ J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960, doi:
10.1115/1.3662552.

[5] H. W. Sorenson and A. R. Stubberud, ‘‘Non-linear filtering by approxima-
tion of the a posteriori density,’’ Int. J. Control, vol. 8, no. 1, pp. 33–51,
Jul. 1968, doi: 10.1080/00207176808905650.

[6] S. J. Julier and J. K. Uhlmann, ‘‘Unscented filtering and nonlinear estima-
tion,’’ Proc. IEEE, vol. 92, no. 3, pp. 401–422, Mar. 2004.

[7] E.Wan and R. VanDerMerwe, ‘‘The unscented Kalman filter for nonlinear
estimation,’’ inProc. IEEE Adapt. Syst. Signal Process., Commun., Control
Symp., Oct. 2000, pp. 153–158.

[8] Y. Sunahara and K. Yamashita, ‘‘An approximate method of state estima-
tion for non-linear dynamical systems with state-dependent noise,’’ Int. J.
Control, vol. 11, no. 6, pp. 957–972, Jun. 1970.

[9] C. Leondes, J. Peller, and E. Stear, ‘‘Nonlinear smoothing theory,’’ IEEE
Trans. Syst. Sci. Cybern., vol. 6, no. 1, pp. 63–71, 1970.

[10] R. Mehra, ‘‘On-line identification of linear dynamic systems with appli-
cations to Kalman filtering,’’ IEEE Trans. Autom. Control, vol. 16, no. 1,
pp. 12–21, Feb. 1971.

[11] D. Willner, C. Chang, and K. Dunn, ‘‘Kalman filter algorithms for a multi-
sensor system,’’ in Proc. IEEE Conf. Decis. Control Including 15th Symp.
Adapt. Processes, Dec. 1976, pp. 570–574.

[12] S.-L. Sun, ‘‘Multi-sensor optimal information fusion Kalman filters
with applications,’’ Aerosp. Sci. Technol., vol. 8, no. 1, pp. 57–62,
Jan. 2004.

[13] H. Xiong, J. Tang, H. Xu, W. Zhang, and Z. Du, ‘‘A robust single GPS
navigation and positioning algorithm based on strong tracking filtering,’’
IEEE Sensors J., vol. 18, no. 1, pp. 290–298, Jan. 2018.

[14] M. Zhu, F. Yu, S. Xiao, S. Fan, and Z. Wang, ‘‘An improved posteri-
ori variance-covariance components estimation applied to unconventional
GPS and multiple low-cost imus integration strategy,’’ IEEE Access, vol. 7,
pp. 136892–136906, 2019.

[15] J. Speyer, ‘‘Computation and transmission requirements for a decentralized
linear-quadratic-Gaussian control problem,’’ IEEE Trans. Autom. Control,
vol. 24, no. 2, pp. 266–269, Apr. 1979.

[16] T. S. Chang, ‘‘Comments on ‘Computation and transmission require-
ments for a decentralized linear-quadratic-Gaussian control,’’’ IEEE Trans.
Autom. Control, vol. 25, no. 3, pp. 609–610, Jun. 1980.

[17] A. Willsky, M. Bello, D. Castanon, B. Levy, and G. Verghese, ‘‘Com-
bining and updating of local estimates and regional maps along sets of
one-dimensional tracks,’’ IEEE Trans. Autom. Control, vol. 27, no. 4,
pp. 799–813, Aug. 1982.

[18] B. C. Levy, D. A. Castañon, G. C. Verghese, and A. S. Willsky,
‘‘A scattering framework for decentralized estimation problems,’’ Auto-
matica, vol. 19, no. 4, pp. 373–384, Jul. 1983.

[19] D. Castanon and D. Teneketzis, ‘‘Distributed estimation algorithms
for nonlinear systems,’’ IEEE Trans. Autom. Control, vol. 30, no. 5,
pp. 418–425, May 1985.

[20] T. Kerr, ‘‘Decentralized filtering and redundancy management for mul-
tisensor navigation,’’ IEEE Trans. Aerosp. Electron. Syst., vol. AES-23,
no. 1, pp. 83–119, Jan. 1987.

[21] G. Bierman and M. Belzer, ‘‘A decentralized square root information
filter/smoother,’’ in Proc. 24th IEEE Conf. Decis. Control, Dec. 1985,
pp. 1902–1905.

[22] N. A. Carlson, ‘‘Federated square root filter for decentralized parallel pro-
cessors,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 517–525,
May 1990.

[23] Y. Xu, G. Tian, and X. Chen, ‘‘Enhancing INS/UWB integrated posi-
tion estimation using federated EFIR filtering,’’ IEEE Access, vol. 6,
pp. 64461–64469, 2018.

[24] W. Li, H. Leung, and Y. Zhou, ‘‘Space-time registration of radar and
ESM using unscented Kalman filter,’’ IEEE Trans. Aerosp. Electron. Syst.,
vol. 40, no. 3, pp. 824–836, Jul. 2004.

[25] Z. Jiao, ‘‘Research on asynchronous registration method based on
improved unequal-interval federated filter,’’ in Proc. IEEE 3rd Inf.
Technol., Netw., Electron. Autom. Control Conf. (ITNEC), Mar. 2019,
pp. 2320–2323.

[26] H. Xiong, R. Bian, Y. Li, Z. Du, and Z. Mai, ‘‘Fault-tolerant
GNSS/SINS/DVL/CNS integrated navigation and positioning mechanism
based on adaptive information sharing factors,’’ IEEE Syst. J., vol. 14, no. 3,
pp. 3744–3754, Sep. 2020.

[27] K.-W. Chiang, G.-J. Tsai, H.-J. Chu, and N. El-Sheimy, ‘‘Performance
enhancement of INS/GNSS/refreshed-SLAM integration for acceptable
lane-level navigation accuracy,’’ IEEE Trans. Veh. Technol., vol. 69, no. 3,
pp. 2463–2476, Mar. 2020.

[28] W. Jiang, S. Chen, B. Cai, J. Wang, W. ShangGuan, and C. Rizos,
‘‘A multi-sensor positioning method-based train localization system
for low density line,’’ IEEE Trans. Veh. Technol., vol. 67, no. 11,
pp. 10425–10437, Nov. 2018.

VOLUME 9, 2021 12053

http://dx.doi.org/10.1109/access.2020.2975643
http://dx.doi.org/10.1016/j.robot.2013.05.001
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1080/00207176808905650


J. Xu et al.: Multi-Sensor Information Fusion Method Based on Factor Graph for Integrated Navigation System

[29] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, ‘‘IMU prein-
tegration on manifold for efficient visual-inertial maximum-a-posteriori
estimation,’’ in Proc. Robot. Sci. Syst., Jul. 2015.

[30] F. Dellaert and M. Kaess, ‘‘Square root SAM: Simultaneous localization
and mapping via square root information smoothing,’’ Int. J. Robot. Res.,
vol. 25, no. 12, pp. 1181–1203, Dec. 2006.

[31] M. Kaess, A. Ranganathan, and F. Dellaert, ‘‘ISAM: Incremental smooth-
ing and mapping,’’ IEEE Trans. Robot., vol. 24, no. 6, pp. 1365–1378,
Dec. 2008.

[32] O. François and P. Leray, ‘‘Learning the tree augmented naive
Bayes classifier from incomplete datasets,’’ presented at the
3rd Eur. Workshop Probabilistic Graph. Models, Jan. 2006,
pp. 91–98.

[33] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, ‘‘ISAM2: Incremental smoothing and mapping using
the Bayes tree,’’ Int. J. Robot. Res., vol. 31, no. 2, pp. 216–235,
Dec. 2011.

[34] S. Lange, N. Sunderhauf, and P. Protzel, ‘‘Incremental smoothing vs.
filtering for sensor fusion on an indoor UAV,’’ in Proc. IEEE Int. Conf.
Robot. Autom., May 2013, pp. 1773–1778.

[35] H.-P. Chiu, X. S. Zhou, L. Carlone, F. Dellaert, S. Samarasekera, and
R. Kumar, ‘‘Constrained optimal selection for multi-sensor robot naviga-
tion using plug-and-play factor graphs,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2014, pp. 663–670.

[36] D. A. Cucci, M. Rehak, and J. Skaloud, ‘‘Bundle adjustment with raw
inertial observations in UAV applications,’’ ISPRS J. Photogramm. Remote
Sens., vol. 130, pp. 1–12, Aug. 2017.

[37] Q. Zeng, W. Chen, J. Liu, and H.Wang, ‘‘An improved multi-sensor fusion
navigation algorithm based on the factor graph,’’ Sensors, vol. 17, no. 3,
p. 641, Mar. 2017.

[38] X.-K. Wei, J. Li, K.-Q. Feng, D.-B. Zhang, Z.-L. Lu, and J.-Q. Li,
‘‘Vehicle INS/odometer integrated navigation algorithm based on factor
graph,’’ in Proc. IEEE Int. Conf. Unmanned Syst. (ICUS), Oct. 2019,
pp. 216–220.

[39] R. Bassett and J. Deride, ‘‘Maximum a posteriori estimators as a limit
of Bayes estimators,’’ Math. Program., vol. 174, nos. 1–2, pp. 129–144,
Jan. 2018.

[40] T. Lupton and S. Sukkarieh, ‘‘Visual-inertial-aided navigation for high-
dynamic motion in built environments without initial conditions,’’ IEEE
Trans. Robot., vol. 28, no. 1, pp. 61–76, Feb. 2012.

[41] Y. Yang, Q. Shen, J. Li, Z. Deng, H. Wang, and X. Gao, ‘‘Position and
attitude estimationmethod integrating visual odometer and GPS,’’ Sensors,
vol. 20, no. 7, p. 2121, Apr. 2020.

[42] A. Geiger, P. Lenz, and R. Urtasun, ‘‘Are we ready for autonomous driving?
The KITTI vision benchmark suite,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 3354–3361.

[43] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, ‘‘Vision meets robotics:
The KITTI dataset,’’ Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237,
Sep. 2013.

[44] H. Xiong, Z. Mai, J. Tang, and F. He, ‘‘Robust GPS/INS/DVL navi-
gation and positioning method using adaptive federated strong tracking
filter based on weighted least square principle,’’ IEEE Access, vol. 7,
pp. 26168–26178, 2019.

JING XU received the B.Eng. degree from Shang-
hai University, China, in 2016, and the M.Eng.
degree from Beihang University, China, in 2019.
She is currently pursuing the Ph.D. degree in
machine learning and cybersecurity with the Fac-
ulty of Electrical Engineering, Mathematics and
Computer Science, Delft University of Technol-
ogy, Delft, The Netherlands. Her Ph.D. thesis was
on the application of machine learning for cyber-
security and also discusses the security of machine
learning methods.

GONGLIU YANG received the Ph.D. degree in
precision instrumentation and mechanism from
Tsinghua University, Beijing, China, in 2004.
He is currently a Professor with the School of
Instrumentation and Optoelectronic Engineering,
Beihang University. His current research inter-
ests include inertial navigation and integrated
navigation.

YIDING SUN received the B.E. degree in mea-
surement and control technology and instrumenta-
tion from Harbin Engineering University, Harbin,
China, in 2015. He is currently pursuing the
Ph.D. degree with the School of Instrumentation
andOptoelectronics Engineering, BeihangUniver-
sity. His current research interests include inertial
navigation and integrated navigation.

STJEPAN PICEK received the Ph.D. degree
in computer science from Radboud University,
Nijmegen, The Netherlands, and the University of
Zagreb, Zagreb, Croatia, in 2015. He was with
the COSIC Group, KU Leuven, Leuven, Belgium.
He was a Postdoctoral Researcher with the MIT
Computer Science and Artificial Intelligence Lab-
oratory (CSAIL), Cambridge, MA, USA. He is
currently an Assistant Professor with the Cyber
Security Research Group, TU Delft, Delft, The

Netherlands. His current research interests include cryptography, machine
learning, and evolutionary computation.

12054 VOLUME 9, 2021


