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Abstract

The life-time performance of chemical processes is limited due to changes in the plant
dynamics and disturbance characteristics over time. Such systems often make use of model-
based controllers. When a dynamic change arises over time, a difference occurs between the
dynamic models contained in the controller and the true system dynamics. The difference in
dynamics could deteriorate the performance of a model-based control system. Monitoring the
performance on-line is therefore of importance. Detection of a dynamic plant or disturbance
change occurs by a classical performance monitoring method, which estimates the variance
of the controlled outputs. A change is detected at the moment that a maximum performance
bound is violated.

An important step is to distinguish between control-relevant plant changes and variations
in disturbance characteristics due to different solutions strategies. With an existing perfor-
mance diagnosis method which makes use of closed-loop prediction error identification the
true plant dynamics are identified. Then it is verified whether a performance drop is caused
by a change in control-relevant plant dynamics by making use of hypothesis testing. A set is
considered that contains all plant dynamics which achieve a satisfactory performance and it is
verified whether the identified model is located in or outside the set to make a decision. With
an alternative second decision rule, a heuristic method is used where models are constructed
around the estimated model by making use of a normal distribution. It is verified which
percentage of these models are located outside the set to make a decision. A third decision
rule is used which is a combination of the first and second decision rules and the confidence
is compared between all considered decision rules.

In a simulation case study of a binary distillation column, the performance monitoring
method detects a performance drop satisfactory without creating many false alarms. Fur-
thermore, it is shown that with the heuristic method a significant increase in confidence is
achieved compared to the first decision rule and only a minor difference with respect to the
third decision rule.
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Preface

This thesis is a part of my Master of Science graduation degree. By having a discussion
with my supervisor, the idea of doing my thesis about identification and control of a binary
distillation column arose. During the project multiple ideas have been discussed. Finally,
we came up to investigate a classical performance monitoring and a novel diagnosis method
and tested whether these methods are working properly on multiple-input multiple-output
systems. In a simulation case study simulations are performed by making use of a model of
a MIMO binary distillation column.

For people who are interested in how a performance monitoring and diagnosis method
work, Chapter 2 is recommended. Chapter 3 discusses what a binary distillation column
is, what it does and how to model such a system with a very simplified model. Finally, in
Chapter 4 results are discussed with regard to the application of a performance monitoring
and diagnosis method to a MIMO system.

I am very pleased with the results and I have learnt a lot with regard to doing research,
scientific writing and public speaking. I want to thank my supervisors Dr. Ir. Xavier Bombois
and Max Potters (MSc) for their help and advice.

Stefan Burger
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Chapter 1

Introduction

1-1 Problem Statement

Companies try to keep their costs as low as possible in order to be competitive. In par-
ticular, the operational costs from industrial processes are relatively high and need to be
maintained or possibly lowered in order to remain acceptable. The costs can be indirectly
maintained by monitoring the performance of a system. A performance monitoring method
consist of a cost function which for example makes use of measurements of the controlled
outputs from the past. The data can be used to estimate the variance of the outputs [1]. By
applying a maximum bound on the performance a distinction can be made between satisfac-
tory and degraded performance levels.

In industry models-based controllers are often used to achieve a desirable performance.
These kind of controllers rely on the accuracy of the constructed models, where accuracy can
be defined in terms of the modelling error. At the commissioning stage of a process, the con-
troller is tuned so that the best possible performance is reached, i.e., nominal performance.
Theoretically, the system will operate at nominal performance without developing problems.
In reality it is possible that the performance of model-based control systems will deteriorate
over time. Two causes are considered which could deteriorate the performance of a system
[2]. The first cause is a change in control-relevant plant dynamics. This implies that we
only consider plant changes that deteriorate the performance of our system (e.g. failures of
sensors or actuators are not considered because we assume that these failures can be detected
with existing methods). A control-relevant plant change increases the mismatch between the
plant model contained in the controller and the actual system, such that nominal performance
can not be reached any more. In this case the only solution is to perform a re-identification
experiment to restore the performance of the system. Keep in mind that re-identification of
the plant dynamics is highly expensive and should only be performed when necessary. This
is of importance because the second cause, which are (temporary) variations in disturbance
characteristics, occurs much more often. A full re-identification experiment is a waste of
resources when a change in disturbance characteristics occurs, because it is unlikely to re-
store the systems performance. Instead, one should opt for tuning the controller to reject the
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2 Introduction

disturbances. To be able to perform the correct action after a performance deterioration is
detected, the causes need to be distinguished by making use of a performance diagnosis.

Note that a change in dynamics can deteriorate the performance. For that reason the
performance needs to be monitored on-line. Furthermore, the performance measure should
not be too sensitive, which is the case when using a small amount of measured data. It could
cause the performance monitoring method to detect many false alarms [3]. After an alarm of a
possibly degraded performance is given, a performance diagnosis will be started which creates
undesirable and unnecessary costs in the situation of a false alarm. Also, it is of importance
that a change in plant dynamics or disturbance characteristics is detected as fast as possible
to keep economical costs low. Therefore, the used performance monitoring method should be
thoroughly investigated, such that it is able to meet certain expectations.

1-2 Literature Methodologies

A performance monitoring method is needed to measure the real-time performance of a
system and a performance diagnosis method needs to be used to distinguish between a change
in control-relevant plant dynamics and variations in disturbance characteristics. In literature,
methodologies are found which are able to measure the performance on-line. In e.g. the
survey paper of Isermann [4] a performance monitoring method is shortly explained. This
method is based on obtaining information of the controlled outputs which are checked with
regard to certain tolerances. If the tolerances are violated alarms are generated. Furthermore,
in research of Potters et. al. [5] a performance monitoring method is discussed and applied
to two different processes. They use a performance measure, i.e., a function which considers
multiple issues. These issues are related to operational costs and acceptable product quality.
Here, a trade-of was made between the production costs and so-called constraint violation
costs. In Tyler and Morari [1] and in Basseville and Benveniste [3], detection of output
changes are investigated. An often used classical performance monitoring method is consid-
ered to detect changes in signals/systems by making use of a squared distance measurement
between outputs and set-points within a chosen time window, i.e., it is an estimation of the
power of the measured outputs. Also, in Schäfer and Cinar [6] a same kind of performance
measurement was considered. However, due to a model predictive controller which was used
the performance measure included the computed future control actions and future outputs.
In a simulation case study, the performance which was measured on-line was compared to
the performance of the simulation model by making use of a ratio. It was found that the
performance monitoring method worked well on model-based control systems.

After a detection of a performance deterioration, a performance diagnosis needs to be per-
formed to be able to distinguish between various causes. In literature a distinction is made
between multiple causes by making use of hypothesis testing as explained in Mesbah et. al.
[2], Schäfer and Cinar [6], Gustafsson and Graebe [7] and Frank [8]. To find the cause which
deteriorated the performance, a distinction is made between a change in disturbance char-
acteristics which can seen as hypothesis H0 and a change in control-relevant plant dynamics
which is seen as hypothesis H1. It can be noticed that the true plant dynamics are unknown.
Therefore, in Mesbah et. al. [2] and Frank [8] the decision is based on an estimate of the true
plant dynamics which is obtained via a short closed-loop re-identification experiment.

This thesis will make use of the diagnosis method of Mesbah et. al. [2], because it only
considers changes in control-relevant plant dynamics and variations in disturbance character-
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1-3 Objective 3

istics. Whereas, in, e.g., Basseville and Benveniste [3] or Huang and Tamayo [9] any plant
change that deteriorates the performance is considered. Furthermore, in Ref. [2] a region
is constructed, which contains all plant dynamics which do not deteriorate the closed-loop
performance. The region is called Dadm and is defined by the set of all plant dynamics
that achieve a satisfactory performance with the existing controller and under the original
disturbance characteristics (at commissioning). Hypothesis H1 is only true if the true plant
dynamics are located outside the region Dadm. As mentioned, the true system is unknown and
therefore the decision is based on the closed-loop performance which includes the identified
model of the true dynamics. If the estimated model is found to be outside the region Dadm,
it is also considered that the true system is outside the region. Note that a wrong decision
can be made and that therefore the confidence of making a wrong and correct decision needs
to be assessed.

1-3 Objective

In this thesis an existing performance monitoring method and performance diagnosis are
tested in a simulation case study, where we make use of a model of a multiple-input multiple-
output (MIMO) binary distillation column. First the performance monitoring method of Ref.
[1] is applied to our simulation model because it makes use of a classical performance measure
which makes use of data of the measured outputs. It is investigated whether the performance
can be measured satisfactory. Then a threshold value is applied to create a bound on the
maximum performance and it was investigated whether a control-relevant plant change and
a change in disturbance variations could be detected sufficiently. Also, a trade-off is made
between the sensitivity and the accuracy of the performance measure. A question of interest
is:

To what extent is it possible to detect the considered causes by making use of
the performance monitoring method of Ref. [1] and what issues are of importance
to tune variables within the performance monitoring method?

Secondly, it is considered that a performance deterioration is detected and it is investi-
gated whether the performance diagnosis of Mesbah et. al. [2] could distinguish between the
considered causes. Also, it is analysed how confident the decision will be. This is investigated
by making use of Monte Carlo simulations to obtain a set of data which represents a distri-
bution of many scenarios which can occur. With this second objective a second question of
interest is:

How reliable will the made decision be, of opting for the correct cause, when
applying the performance diagnosis methodology of Ref. [2] to a MIMO system?

This chapter introduced the main problems concerning model-based control systems/in-
dustrial processes and states its objectives. The thesis overview is structured as follows. In
section 2-2 the principles of how a performance monitoring method of Ref. [1] can be used is
discussed. A distinction is made between the performance measure used in the performance
monitoring method and in the performance diagnosis. After explanation of the performance
measure the performance diagnosis method is elaborated which distinguishes between a plant
and a disturbance change as discussed in section 2-3. In section 3 a detailed description of the
binary distillation column is given in terms of all the flows and parts in the column and how
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4 Introduction

certain flows affect other system properties when adjusting these flows. Furthermore, in sec-
tion 3-2-2 the system variables are discussed in terms of control and simplifications are made
by considering certain interactions in the system. In section 3-3 a case study is explained
which makes use of a simulation model of a binary distillation column. Also, in section 3-3-3
it is explained how we model a plant change and a disturbance change. Finally, in section 4-2
results of the application of the performance measure and diagnosis method to the simulator
are presented and explained. A final conclusion and future work is given in section 5.
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Chapter 2

Closed-Loop Performance Monitoring
and Diagnosis

2-1 Introduction

As mentioned in the introductory chapter a problem of model-based control systems is
that the performance can deteriorate over time. A performance degradation occurs due to
wear, dirt or any other reason which could affect the process dynamics. Therefore, on a system
in operation the performance needs to be monitored continuously to be able to detect a per-
formance deterioration. The performance can be monitored by making use of a performance
measure, which can be expressed in many different ways. We will express the performance in
terms of the power of the error between the outputs and the set-points as discussed in Ref.
[1]. If a performance deterioration is measured it needs to be investigated what the cause
could be. It is of importance to know the root cause of a performance deterioration, because
each cause requires a different solution strategy. When a wrong strategy is performed, an
undesired increase of economic costs will arise.

A diagnosis will be performed to investigate what the cause of a performance deterioration
could be. In Mesbah et. al. [2] a distinction is made between two control relevant changes
(process dynamics and disturbance characteristics) by making use of hypothesis testing and
closed-loop performance analysis. In Ref. [2] the performance of a closed-loop stable linear
time-invariant single-input single-output (SISO) system was analysed.

This thesis makes use of the performance diagnosis methodology of Mesbah to be able
to find the correct cause which deteriorated the performance of the system. We will analyse
the closed-loop performance of a stable linear time-invariant multiple-input multiple-output
(MIMO) system and investigate whether it is possible, by making use of the diagnosis method-
ology of Ref. [2], to detect the correct cause which induces a performance deterioration.

Both the performance monitoring method as well as the performance diagnosis method-
ology used in this thesis are applicable to systems which operate in closed-loop and are
controlled by linear PI or PID controllers. We solely focus on its application to linear PI
controllers.
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6 Closed-Loop Performance Monitoring and Diagnosis

Figure 2-1: Loop of the performance monitor, diagnosis method and recovery of the system
performance.

A global overview of the loop which is used to monitor the performance detect a per-
formance drop and recover the performance of a system is shown in Fig. 2-1. Here it is
shown whether an action is performed on-line (directly on the true system) or off-line (closed-
loop performance analysis). First, the closed-loop system which will be used throughout this
chapter is shortly discussed in section 2-2 and then a general description is given of the per-
formance measure, i.e., fault detection. Here, we will distinguish between the performance
measure used in the performance diagnosis and a performance measure for on-line perfor-
mance monitoring. Secondly, the performance diagnosis method is explained in section 2-3,
i.e., (start) fault diagnosis. Here, the issues about the control-relevant changes, hypothesis
testing/decision rule, closed-loop performance analysis and the way to recover nominal per-
formance are explained to be able to find the correct cause of a performance deterioration.

2-2 Performance Measure

An open-loop system is considered where the outputs are given by

y(t) = G(z, θ0)u(t) +H(z, θ0)e(t) (2-1)

Here, the inputs are given by u(t), zero-mean white noise signals are given by e(t) with corre-
sponding variance matrix Σe = diag(

[
σ2
e,1...σ

2
e,n

]
) and on the off-diagonal entries the matrix

is zero. The vectors y(t) and e(t) are of size n. The input vector u(t) is of size m. Fur-
thermore, the true system dynamics have been parametrized and G0(z) = G(z, θ0) represents
a linear dynamic model of the true plant dynamics and is given by a discrete-time transfer
matrix of size m × n. Furthermore, H0(z) = H(z, θ0) represents a dynamic filter which is a
diagonal discrete-time transfer matrix of size n × n, is zero on the off-diagonal entries and is
assumed to be monic and minimum-phase. It is assumed that the true process dynamics can
be described by a linearised parametrization denoted byM = {G(z, θ), H(z, θ)}. The linear
dynamic model contains a parameter vector θ = θ0 ∈ Rk which is the only parameter vector
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2-2 Performance Measure 7

Figure 2-2: The closed-loop data generating system is shown with true process dynamics G0(z),
dynamic filter H0(z) and controller C(z). The outputs are given by y(t), the inputs by u(y),
white-noise signals by e(t) and the set-points by r1(t).

with which the true dynamics can be described.
As mentioned, the performance of stable closed-loop MIMO systems will be analysed. There-
fore, we will consider a closed-loop system as depicted in Fig. 2-2. The outputs and the
inputs of the true closed-loop system are given by

y(t) = (I +G(z, θ0)C(z))−1(G(z, θ0)C(z)r1(t) + v(t))
= (I +G(z, θ0)C(z))−1︸ ︷︷ ︸(G(z, θ0)︸ ︷︷ ︸C(z)r1(t) +H(z, θ0)︸ ︷︷ ︸ e(t)) (2-2)

T0(z) G0(z) H0(z)
u(t) = (I + C(z)G(z, θ0))−1︸ ︷︷ ︸(C(z)r1(t)− C(z)H(z, θ0)e(t)) (2-3)

S0(z)

Derivation of Eqs. (2-2) and (2-3) is given in appendix A-1. (.)−1 represents the inverse of a
matrix, C(z) represents the controller which is a discrete-time transfer matrix and closes the
loop as shown in Fig. 2-2. The transfer matrices T0(z) and S0(z) represent the output and
input sensitivity respectively. The set-points are indicated by r1(t) and is of size n.

At commissioning, models of the process and noise dynamics, G(z, θcom) and H(z, θcom)
respectively, are constructed to design the controller C(z). The controller closes the loop
of the true system as shown in Fig. 2-2 and is able to stabilize the true system G0(z). At
commissioning it is known that nominal and good performance is reached for the constructed
discrete closed-loop system {C(z), G(z, θcom), H(z, θcom)} and it is assumed that this also
holds for the true discrete closed-loop system {C(z), G0(z), H0(z)}.

2-2-1 Performance Analysis of a Closed-Loop System

For a closed-loop system as given by Eq. (2-2) the performance can be formulated in
more than one way. To express the performance of the closed-loop system we will consider
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8 Closed-Loop Performance Monitoring and Diagnosis

Ref. [1]. The difference in power between the measured outputs y(t) and the set-points r1(t)
is considered, where r1(t) is considered to be a constant. Before a formulation can be given
which can be used as a performance measure, Eq. (2-2) needs to be rewritten to show what
power contributions are of importance. Subtract r1(t) from Eq. (2-2) to define the error
signal, which gives

y(t)− r1(t) = −(I +G(z, θ)C(z))−1r1(t)︸ ︷︷ ︸+ (I +G(z, θ)C(z))−1H(z, θ)e(t)︸ ︷︷ ︸ (2-4)

transient (T (t)) steady state (R(t))

The derivation is given in appendix A-3. The first term of Eq. (2-4) on the r.h.s. represents
the transient behaviour of the system. For a stable closed-loop system the transient response
tends to zero if the time tends to infinity under the assumptions that r1(t) is constant and
that there is an integrator in the system (which there is due to the integrator term of the PI-
controllers). Therefore, the transient response will be neglected and not taken into account.
The second part of Eq. (2-4) of the r.h.s. represents the steady state response which is of more
importance. It is seen by the term H(z, θ)e(t) that the steady state response is influenced by
the disturbances in the system. It implies that we deal with a disturbance rejection problem
and not a tracking problem. We will only consider the power contributions which corresponds
to the steady state response. The steady state response is given by the signal R(t). Before
the power can be computed, first the power spectrum is computed for the difference of y(t)
and r1(t) for the steady state response and is given by

Φy−r1(ω) = R(ejω)∗Φe(ω)R(ejω) with Φe(ω) =


σ2
e,1 0

. . .
0 σ2

e,n

 . (2-5)

Here (.)∗ represent the complex conjugate of a matrix. The performance measure is then
expressed in terms of the the power of the difference y(t)− r1(t) (and add up the elements of
it). The latter is given by the following equation

J(C(z), G(z, θ), H(z, θ)) = 1
2π

∫ π

−π
trace (Φy−r1(ω)) dω

= 1
2π

∫ π

−π
trace

(
R(ejω)∗Φe(ω)R(ejω)

)
dω. (2-6)

In case that Φe(ω) = σ2
eIn, where In is a n × n identity matrix, the total power as computed

by Eq. (2-6) can also be defined by taking the squared two norm which is then given by

J(C(z), G(z, θ), H(z, θ)) =
∣∣∣∣∣∣(I +G(z, θ)C(z))−1H(z, θ)

∣∣∣∣∣∣2
2
σ2
e . (2-7)

It needs to be established for which performance level a system is still able to produce products
with an acceptable quality. Therefore, a threshold value β will be used and it will be verified
whether the performance measure of Eq. (2-7) of the closed-loop system violates the threshold
value. The threshold value β is chosen in such a way that it accounts for the maximum
allowable performance in the closed-loop system for which the product quality is acceptable.
If the performance of the closed-loop is found to be J(C(z), G(z, θ), H(z, θ)) < β, with this
system an acceptable quality level will be achieved and if the performance level is equal or
larger than β a performance deterioration is measured.
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2-2 Performance Measure 9

2-2-2 Performance Monitoring

The performance measure as given by the expression in Eq. (2-7) computes the total
power of the difference of y(t)− r1(t) of the closed-loop system and will be used as a measure
for the diagnosis methodology. However, over time the power of the closed-loop system
can increase due to a change in the process dynamics G0(z) or a change in the disturbance
characteristics H0(z). For that reason the performance needs to be monitored continuously.
Performance monitoring will be used to detect performance deteriorations on-line. To be able
to detect a performance degradation a performance measure will be used which is chosen to
be an estimate of the power of the closed-loop system as given by Eq. (2-7). Information
of the error between the measured outputs y(t) and set-points r1(t) are used. The outputs
will be measured over a time window from a time in the past kpast until a time know. By
sampling with a sample time Ts the time window contains Nwin data points. The measured
data points can be used to compute the power of the error between the measured outputs
and the chosen set-points. An often used classical performance measure as explained in Refs.
[1, 3] to monitor the real-time performance, is given by

Ĵ(k) = 1
Nwin

n∑
j=1

k∑
i=k−Nwin

(yj(i)− r1,j(i))T
(
yj(i)− r1,j(i)

)
for k ∈ N (2-8)

Here, yj(i) = y(i) represents the measured discrete-time output signals and r1,j(i) = r1(i)
the fixed set-point signals. There will be a difference between the measured outputs and set-
points due to disturbances and white-noise contained in the system. It is also possible that
there exists an off-set between the measured outputs w.r.t. the set-points. However, this the-
sis discusses closed-loop systems which includes an integrating action in the controller. The
integrating action ensures that the off-set decreases to zero. Changes in the plant dynamics
G0(z) or changes in the noise characteristics H0(z) will affect the performance measure in a
negative way. The performance could deteriorate due to an increase in variance of the mea-
sured outputs y(i). If the variance increases, the difference between y(i) and r1(i) increases
which implies that the cost Ĵ(k) will also increase.

In case of a system in operation the performance can deteriorate over time. It needs to
be defined at what moment a performance deterioration should be measured with the per-
formance measure given by Eq. (2-8). In a similar way as applying a maximum bound on
Eq. (2-7), a threshold value β is applied on the performance measure as given by Eq. (2-8).
Despite the fact the performance measured by Eq. (2-8) is an estimate of Eq. (2-7) it is
assumed that the estimate is close enough to make use of the same threshold value β. Thus
for nominal performance it is found that Ĵ(k) < β.

As discussed, the cost Ĵ(k) is measured for a certain discrete time window. It is of
importance to choose this window correctly. A trade-off is made between two issues to find a
desirable window size. The trade-off comprises the choice of the sensitivity of the performance
measure (by considering the size of the window measured between kpast until know) and the
accuracy of the detected performance deterioration. When taking a window which is too
small the performance measure becomes very sensitive. This implies that the cost function
may detect a performance drop which in reality is only a small fluctuation in the output
compositions. The measured performance deterioration in this case could lead to a wrong
conclusion which should be avoided. On the other hand, when taking the window too large
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10 Closed-Loop Performance Monitoring and Diagnosis

the opposite will happen. For a long period of time no deviations are detected, while in reality
the performance is already deteriorated. Detecting the performance deterioration late implies
that costs will increase for a longer period of time. Therefore, it is of importance to choose
a window which is not sensitive for small composition fluctuations but sensitive enough to
detect a real performance deterioration as quickly as possible.

2-3 Performance Diagnosis

As discussed earlier we need to distinguish between multiple causes which induce a per-
formance deterioration. This is required because each cause has its own solution strategy
to bring the deteriorated performance back to its nominal values. In the next sections it is
explained what changes will be considered which cause the performance to deteriorate and
how the performance diagnosis methodology is able to distinguish between the considered
control relevant changes.

2-3-1 Control-Relevant System Changes

This thesis considers two causes which induce a performance deterioration and are dis-
cussed by the following two cases:

1) Change in disturbance characteristics.
In the first case, the performance deteriorates due to changes in disturbance character-
istics H0(z) as shown in Fig. 2-3 (left). Note that there could occur slight changes in
the true process dynamics G0(z). However, these small changes in G0(z) alone do not
cause the performance to deteriorate.

2) Change in control-relevant plant dynamics.
In the second case, the performance deteriorates due to changes in plant dynamics G0(z)
as presented in Fig. 2-3 (right). In this case the disturbance characteristics could also
change slightly but does not induce a performance drop.

Note that in reality a change in disturbance characteristics occurs more often than a change in
control-relevant plant dynamics. This possibly needs to be taken into account when making
a decision. In the introductory chapter it was mentioned that each cause has its own solution
strategy to restore nominal performance and for that reason a distinction needs to be made
between both causes. The next section elaborates on that issue.

2-3-2 Hypothesis Testing and Decision Rule

Hypothesis testing will be used in the performance diagnosis to discriminate between the
two causes. The hypotheses which will be adopted are based on the following definition.
Definition 1: Given the original disturbance characteristics H(z, θcom) and existing con-
troller C(z) in the closed-loop system, the domain Dadm represents the set of all transfer
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2-3 Performance Diagnosis 11

Figure 2-3: Left: the closed-loop model represents the case that a performance drop occurs
due to changes in noise characteristics. The performance could change slightly due to changes in
plant dynamics but does not deteriorate due to this possibly slight change. Right: the closed-loop
model represents the case that a performance drop occurs due to changes in plant dynamics. The
noise characteristics could also induce slight changes in performance, however, it does not induce
the performance to deteriorate.

functions G(z, θ) which are stabilized by controller C(z) and are able to achieve nominal
performance, i.e., J(C(z), G(z, θ), H(z, θcom)) < β (given by Eq. (2-7)). This set is given by

Dadm = {G(z, θ)|J(C(z), G(z, θ), H(z, θcom) < β} with [C(z) G(z, θ)] stable. (2-9)

These requirements are met at the commissioning stage, i.e., G0(z) ∈ Dadm at commissioning.
To be able to distinguish between both causes and show the importance of set Dadm with

regard to the hypotheses which we will adopt, the performance will be analysed for two
closed-loop systems. The first closed-loop system is a fictive system where the true system
G0(z) is considered which operates under the original disturbance characteristics H(z, θcom).
The second closed-loop system which we will consider is the real system with the true plant
model G0(z) and true disturbance characteristics H0(z). The fictive closed-loop system and
real closed-loop system are denoted by, respectively:

1 : {C(z), G0(z), H(z, θcom)} 2 : {C(z), G0(z), H0(z)} (2-10)

If for both closed-loop systems the performance is smaller than β it implies that there is no
performance deterioration. Then consider that in the fictive closed-loop system the perfor-
mance J(C(z), G0(z), H(z, θcom)) < β and the performance in the real closed-loop system
will be J(C(z), G0(z), H0(z)) ≥ β. From the fictive closed-loop system it immediately implies
that G0(z) did not deteriorated the performance. The performance deterioration is caused
by changes in the disturbance characteristics H0(z) as is found from the true closed-loop sys-
tem. The true system is located in set Dadm, as shown in Fig. 2-4 (left), because it achieves
nominal performance under the original disturbance characteristics H(z, θcom). If in both
closed-loop systems the performance is equal or larger than β it implies that the performance
deterioration is caused by changes in G0(z). In this case the true system G0(z) /∈ Dadm as
shown in Fig. 2-4 (right), because the performance of the closed-loop system is deteriorated
even under the original disturbance characteristics H(z, θcom).

Hypothesis testing can be used to verify that the true system G0(z) is located in-or out-
side set Dadm. Both situations are depicted in Fig. 2-4 and the following hypotheses are
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12 Closed-Loop Performance Monitoring and Diagnosis

Figure 2-4: Left: All plant models inside set Dadm gives good performance. This is also the
case for the true plant model G0(z) which lies inside set Dadm. Right: the true system G0(z)
lies outside set Dadm and will lead to a deteriorated performance

adopted:

H0 : G0(z) ∈ Dadm (change in disturbance characteristics)
H1 : G0(z) /∈ Dadm (change in plant dynamics) (2-11)

The hypotheses are based on the true system dynamics G0(z) which is normally unknown.
Therefore, it is not directly possible to make a clear distinction between the two causes and
opt for one of the two adopted hypotheses as given in (2-11). To be able to make a distinction
between the two causes, and find out whether the true system G0(z) is in or outside the set
Dadm we will make use of an estimation of the true system dynamics and verify whether this
model is contained in the set Dadm.

A short closed-loop identification experiment is carried out on the true system as depicted
in Fig. 2-1 (start fault diagnosis). A closed-loop identification experiment is performed,
by making use of the direct closed-loop method (see Refs. [10, 11]), to estimate a plant
model G(z, θ̂N ) which describes the possibly changed process dynamics. The true system
G0(z) is excited by the signals rex(t) as shown in Fig. 2-5 for t = 0...N − 1 and data set
ZN = {u(t), y(t)|t = 0...N − 1} is collected. We assume that the true system dynamics can
be described by a full order model structure M = {G(z, θ), H(z, θ)}. Furthermore, there
exists only one possible parameter vector θ0 for which the full order model structure is able
to describe the true system dynamics.
To estimate models in the set M, the predictor and the prediction error are considered
respectively:

ŷ(t) = H(z, θ)−1G(z, θ)u(t) +
(
I −H(z, θ)−1

)
y(t), (2-12)

ε(t, θ) = y(t)− ŷ(t) = H(z, θ)−1(y(t)−G(z, θ)u(t)). (2-13)

Here, y(t) is given by Eq. (2-2) and u(t) is given by Eq. (2-3). The parameters which need
to be estimated are contained in parameter vector θ̂N and can be computed by minimizing
the prediction error as given by the criterion:

θ̂N = arg min
θ
VN (θ, ZN ) = arg min

θ

1
N

N−1∑
t=0

ε(t, θ)T ε(t, θ). (2-14)
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2-3 Performance Diagnosis 13

Figure 2-5: Closed-loop system with the controller given by C(z), the true system dynamics by
G0(z) and the noise characteristics by H0(z). The excitation signal is rex(t), reference signal
r(t), input signal u(t), output signal y(t) and white noise signal e(t) with variance Σe.

The identified parameter vector θ̂N is asymptotically normally distributed around the true
parameter vector θ0 provided that N is sufficiently large, i.e., θ̂N ∼ N (θ0, Pθ). Here Pθ is
a strictly positive definite variance matrix and is according to Ref. [12] for the MIMO case
given by

P−1
θ = EΥ(t, θ0)Σ−1

e ΥT (t, θ0). (2-15)

Here, Σ−1
e represents the covariance of e(t) and is given in section 2-2. Furthermore, the

columns of matrix Υ(t, θ0) are represented by υTi (t, θ0) = dŷ(t,θ)
dθ (i = 1, ...,m). For further

derivation see appendix A-5 and Ref. [12].
As already mentioned the true system dynamics G0(z) are unknown and it is not

possible to choose for a hypothesis given by (2-11). Therefore, the decision will be based on
the identified model G(z, θ̂N ) and verify whether this model is contained in set Dadm. The
decision rule which is used to choose for one of the hypotheses is given as

G(z, θ̂N ) ∈ Dadm → H0 (change in disturbance characteristics)
G(z, θ̂N ) /∈ Dadm → H1 (change in plant dynamics) (2-16)

To verify whether the estimated model is located in or outside Dadm, as given in the de-
cision rule (2-16), the performance of the closed-loop system

[
C(z), G(z, θ̂N ), H(z, θ̂N )

]
will

be analysed. This is shown in Fig. 2-1 by the off-line fault diagnosis. Due to the fact that
the estimated plant model, the original noise characteristics and the controller are all known
it is rather easy to compute the performance J(C(z), G(z, θ̂N ), H(z, θcom)) as given by Eq.
(2-7). It will be verified whether the estimated model is in or outside the set Dadm as defined
by the decision rule given in (2-16).

Keep in mind that the decision, made with the decision rule (2-16), is based on the esti-
mated modelG(z, θ̂N ). It is possible that with the estimated modelG(z, θ̂N ) a different perfor-
mance is measured with respect to the true systemG0(z), i.e., J(C(z), G(z, θ̂N ), H(z, θ̂N )) > β
whereas J(C(z), G0(z), H0(z)) ≥ β. For that reason it is possible that a wrong hypothesis
is accepted to be true. In Fig. 2-6 two erroneous decisions are shown. On the left it can
be seen that hypothesis H0 is accepted to be true because G(z, θ̂N ) ∈ Dadm. However, the
true system G0(z) is outside the set Dadm. This implies that a performance deterioration
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14 Closed-Loop Performance Monitoring and Diagnosis

Figure 2-6: Erroneous decisions can be made. Left: the estimated model is located in set Dadm

whereas the true system lies outside this set. Right: the estimated model is located outside set
Dadm whereas the true system lies inside this set.

is caused due to a change in plant dynamics, while the cause is chosen to be a change in
disturbance characteristics. On the right it is shown that the identified model G(z, θ̂N ) is
located outside set Dadm because it does not achieve nominal performance under the original
noise characteristics and the cause is chosen to be a plant change. Whereas, in this situation
the true system is located in set Dadm and the performance is actually deteriorated due to a
change in disturbance characteristics.
It is shown that various wrong decisions can be made and therefore it is of importance to
assess the confidence of opting for the correct hypothesis. The confidence will be assessed
by performing a simulation case study. Within the next section the closed-loop performance
analysis will be expanded and a method will be explained which possibly decrease the number
of erroneous decisions.

2-3-3 Increase Confidence and Introduction of an Alternative Decision Rule

In the previous section it was discussed that after a performance deterioration is detected,
first, an identification experiment is carried out on the true system. Secondly, by analysing
the performance of the closed-loop system

{
C(z), G(z, θ̂N ), H(z, θcom)

}
we are able to verify

whether the estimated model G(z, θ̂N ) is located in or out the set Dadm. However, this is not
sufficient due to the erroneous situations which could occur. Therefore, the diagnosis will be
expanded and we introduce an alternative decision rule and a change in decision rule (2-16).

To increase the confidence it is possible to constructing a confidence region as discusses
in Mesbah et al. [2]. A confidence region can be build by considering a normal distribution
as given by θ̂N ∼ N (θ0, Pθ). The true parameter set θ0 is contained in the uncertainty
ellipsoid for a pre-specified probability level Pr(χ2(k) < X ) = α. As discussed in Ref. [13]
the uncertainty ellipsoid is given by

U = {θ|(θ − θ̂N )TP−1
θ (θ − θ̂N ) < X}. (2-17)

Here X ∈ R and χ2(k) is a chi-square distribution with k degrees of freedom, where k
represents the amount of parameters contained in the parameter set θ̂N . The confidence
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2-3 Performance Diagnosis 15

region with uncertainty ellipsoid is given by

D(θ̂N , Pθ) = {G(z, θ)|θ ∈ U}. (2-18)

As discussed in Mesbah et al. [2] an uncertainty ellipsoid is created with a probability level
of α = 95%. This implies that the true system is located inside the constructed ellipsoid
D(θ̂N , Pθ) with probability level α. If the whole ellipsoid is inside Dadm, for a probability of
at least 95% it can be adopted that the true system G0(z) is located inside Dadm. However,
in Ref. [2] it was mentioned that if the ellipsoid is not totally located in or outside the set
Dadm the likelihood measure which is used becomes misleading. To be able to create any
indication of confidence of the choice which will be made, even in the situation that the
estimated model is close to the edge of the set Dadm, a heuristic method will be applied. This
method is possibly less confident than with a confidence region, however this method can be
used in any situation even when G(z, θ̂N ) is on the edge of Dadm. Instead of considering a
confidence region and verifying the worst and best case performance to obtain an estimation
of the confidence of opting for the correct hypothesis, our decision will be based on replacing
the confidence region D(θ̂N , Pθ) by n discrete parameter vectors θ. The discrete parameters
can be constructed by generating n values ∆θ by making use of a normal distribution with
mean zero and variance Pθ (from the estimated parameter vector). The realizations of ∆θ
can be generated by

∆θ(i) ∼ N (0, Pθ) (i = 1...n). (2-19)
The parameter vectors are then constructed by

θ(i) = θ̂N + ∆θ(i) (i = 1...n). (2-20)

The constructed models G(z, θ(i)) are located around the estimated model G(z, θ̂N ). It
needs to be verified how likely it is of choosing a hypothesis correctly with the discrete
method. This can be achieved by analysing/computing the performance of the closed-loop
system

{
C(z), G(z, θ(i)), H(z, θcom)

}
for each constructed parameter vector as given in Eq.

(2-20) and to verify in this way whether the plant model G(z, θ(i)) is located in or outside the
set Dadm. The percentage of models that are outside Dadm is computed by

F̂ rout = Number of realizations when G(z, θ(i)) /∈ Dadm
n

· 100%. (2-21)

Models inside the set Dadm is computed by the percentage F̂ rin = 100− F̂ rout.
We want to investigate how likely it will be that the true system G0(z) is in or out the set
Dadm. To be able to increase the confidence for the choice which will be made, consider a
threshold ν which represents the percentage of models that should at least be outside Dadm
to opt for hypothesis H1. The threshold ν is a constant value somewhere between 0 and
100 which, in a simulation case study, is optimized to find the largest confidence of opting a
hypothesis correctly. For a percentage F̂ rout < ν%, hypothesis H0 is more likely to be the
correct hypothesis and is thus chosen. When percentage F̂ rout is larger than ν%, it is more
likely that the true system is outside set Dadm. Therefore, when percentage F̂ rout is large
(≥ ν%) hypothesis H1 is chosen to be true. Summarizing the above the alternative hypothesis
will become:
Alternative decision rule:{

F̂ rout = [0, ν)% → pick H0
F̂ rout = [ν, 100]% → pick H1

(2-22)
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16 Closed-Loop Performance Monitoring and Diagnosis

Figure 2-7: Upper left: The estimated G(z, θ̂N ) /∈ Dadm and it is found that F̂ rout < ν. Then
hypothesis H0 is chosen. Upper right: The estimated G(z, θ̂N ) /∈ Dadm and it is found that
F̂ rout ≥ ν. Therefore, hypothesis H1 is chosen. Lower left: The estimated model is found to be
G(z, θ̂N ) ∈ Dadm and F̂ rout < ν, thus hypothesis H0 is chosen. Lower Right: The estimated
model is found to be G(z, θ̂N ) ∈ Dadm and F̂ rout ≥ ν, thus hypothesis H1 is chosen.

An example is shown in Fig. 2-7 for all cases which can occur when the decision is based on
(2-22). In the upper left it is shown that most of the models G(z, θ(i)) are located inside set
Dadm (F̂ rout < ν%) and therefore hypothesis H0 is chosen (even when G(z, θ̂N ) /∈ Dadm). In
the upper right, most of the models around the estimated model are located outside set Dadm
(F̂ rout ≥ ν%) and based on this observation hypothesis H1 is assumed to be true. In the
lower left figure it is obviously found that F̂ rout < ν% and hypothesis H0 is chosen. Finally,
in the lower right figure it can be seen that most of the models are outside the set Dadm and
thus hypothesis H1 is chosen (even when G(z, θ̂N ) ∈ Dadm).

As earlier mentioned in section 2-3-1, due to the fact that in reality a change in distur-
bance characteristics appears much more often it is preferred to opt for a disturbance change.
Furthermore, it was also mentioned that there is a large difference in economic costs with
respect to the cause of a performance deterioration and the recovery of the systems perfor-
mance. When opting for the wrong hypothesis it will be less costly when opting for hypothesis
H0 while H1 is true instead of opting for hypothesis H1 while H0 is true. This increases the
need of creating a preference for a change in disturbance characteristics even more. The latter
can be taken into account by adjusting the decision rule of (2-16) and incorporating (2-22).
it will be implemented as follows. We choose for hypothesis H0 when the estimated model
G(z, θ̂N ) is located in Dadm. When the estimated model G(z, θ̂N ) is not located in Dadm the
decision is based on the percentage of models which are outside Dadm as computed by Eq.
(2-21) and given by the decision from (2-22). The changed decision rule to make a decision
between hypothesis H0 or H1 is given by
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2-3 Performance Diagnosis 17

Changed decision rule with preference for H0:

G(z, θ̂N ) ∈ Dadm → pick H0

G(z, θ̂N ) /∈ Dadm

{
F̂ rout < ν%
F̂ rout ≥ ν%

→ pick H0
→ pick H1

(2-23)

The decision rule which is based on the estimated model only as given in (2-16) is different
from the decision rule given by (2-23). The decision rule as described in (2-23) will lead to a
preference for hypothesis H0, which implies it is more likely to opt for hypothesis H0 while
H1 is true. On the other hand, it becomes less likely of choosing hypothesis H1 while H0 is
true which is a preferred situation to minimize economic costs. With this decision rule it will
be more likely to have the situations as shown in Fig. 2-7 (the upper left, upper right and
the lower left figure). The case shown in the lower right figure is with decision rule (2-23)
excluded to create the preference for hypothesis H0.

2-3-4 Recovery of the System Performance

Finally, it is of importance to know what needs to be done after a hypothesis is chosen.
The last and most obvious question in the diagnosis therefore will be: what should be done
when a decision is made and one of the hypotheses is chosen?

We have discussed the two situations where a change in disturbance characteristics and
a change in control-relevant plant dynamics could cause the performance to deteriorate.
Throughout the previous sections the importance of why a distinction needs to be made
is discussed. As shown in Fig. 2-1 the last step is to recover nominal performance within the
system.

In the first case of section 2-3-1, a (temporary) change in disturbance characteristics is
considered. If the change is only temporary and shorter than a certain amount of time noth-
ing should be done. However, if it seems not to be temporary it is possible to re-tune the
controller.

In the second situation when it is found that the plant dynamics have changed, a full re-
identification experiment needs to be performed. Within this experiment the changed plant
dynamics are identified and new models are estimated. For model-based control systems pos-
sibly re-tuning of the controller is necessary. After estimation of the models and/or re-tuning
of the controller it should be possible to operate at nominal performance again.

To summarize the methodologies; when a performance monitoring method is applied to a
system we are able measure the performance on-line and detect a performance deterioration
automatically. Secondly, a diagnosis method needs to be applied. With the diagnosis method
it is automatically decided what the most likely origin of a performance deterioration will be.
Finally, when a hypothesis is assumed to be true a decision can be made what should be done
to resolve the problem. Detecting a performance deterioration, perform a diagnosis, opt for
a cause and restore the systems performance needs to be performed as quickly as possible to
achieve nominal performance again and at the same moment to minimize the costs.

The described methodologies are tested in a case study on a multiple-input multiple-
output system. The MIMO system used is a binary distillation column. Within the case
study, simulations are performed which mimic the dynamic behaviour of a binary distillation
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18 Closed-Loop Performance Monitoring and Diagnosis

column. First, the binary distillation column is discussed in more detail which is done in the
next chapter, and secondly, results of the case study are treated.
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Chapter 3

A Binary Distillation Column

3-1 Introduction

This chapter focusses on the system which will be used to test the methodologies of the
previous chapter. This thesis solely focus on a binary distillation column which is a MIMO
system. In section 3-2 a more detailed explanation is given about the distillation column
and its parameters. Furthermore, the separation process is described in more detail. Section
3-2-2, shortly explains the system variables in terms of control and the control configuration
and simplification of the system. To mimic the behaviour of a binary distillation column a
simulation model is used. In section 3-3 a simulation model is elaborated which describes the
true system dynamics. Also, the controller is given and both the plant model and controller
are discretized. The way of modelling a change in process dynamics and disturbance charac-
teristics is explained in section 3-3-3. Finally, in a simulator analysis it is explained whether
the designed discrete controller is able to cope with the disturbances in the system and it is
investigated whether the closed-loop behaviour is intuitively correct by making comparisons
with models found in literature.

3-2 Processes in the Binary Distillation Column

A binary distillation column consist of a condenser, a reflux drum, a reboiler and the
large distillation tower as shown in Fig. 3-1 which are all interconnected in a certain way.
Distillation is a process which is often used in industry. In general binary means that the
mixture/feed that enters the distillation column consists of two components. This is called
the binary feed, indicated by F , which can be separated into two individual components; a
"heavy" and a "light" component in terms of molecular weight. The feed flow has a composition
zF which is given as the more volatile component, i.e., the component which has the lowest
molecular weight and thus the lowest boiling point. Note that the boiling point of both
components can be close to each other. In this case the evaporation rate of both compositions
will be almost the same. Even in this case it is possible to separate the mixture into two
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20 A Binary Distillation Column

Figure 3-1: Binary distillation column with reflux and reboil flows L and V .

components, yet it is more difficult. The feed mixture is separated into two different products
called the bottom flow B and the distillate flow D. Here, the bottom flow represents the high
molecular weight or less volatile product with impurity composition xB and the distillate flow
represents the low molecular weight or more volatile product with purity composition yD.
With two components a relative volatility can be computed which is defined as:

κ = (ki/li)
(kj/lj)

(3-1)

Here, ki represents the more volatile component and kj the less volatile component in the
vapour phase and li the more volatile component and lj the less volatile component in the
liquid phase at a vapour-liquid equilibrium. Furthermore, it is shown that the distillation
column contains trays which are represented by the numbers 1...NT , as shown in Fig. 3-1. A
tray can be seen as a shallow flat receptacle with a raised edge to keep the liquid mixture in
for short amount of time, as presented by Fig. 3-2. In this figure the liquid flow and vapour
flow at a tray i are presented by Li and Vi, respectively.
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3-2 Processes in the Binary Distillation Column 21

Figure 3-2: Three trays i, i+ 1 and i+ 2 are shown. It can be seen that the liquid flow Li flows
over the edge towards the bottom of the column and the vapour flow Vi rises through the liquid
towards the top of the column.

3-2-1 Separation

To be able to separate the two components, a large part of the flow which leaves the
bottom of the distillation column is heated. Heating of the liquid flow is done in a reboiler
(where Qr represents the heat input of the reboiler) until the liquid flow vaporizes. Then
the vapour flow is fed back to the column as reboil flow V and the vapour gasses will rise
through the column. At each tray the vapour flow will exchange heat, i.e., the liquid flow with
lower temperature will absorb heat from the vapour flow which has a higher temperature.
The heat exchange occurs due to the fact that the vapour flow V flows through the liquid
at each tray, as shown in Fig. 3-2. The vapour flow will slightly cool down at each tray
and the high molecular weight component contained in the vapour flow will partly condense.
From the liquid flow, which slightly increases in temperature, the more volatile component
will partly vaporize and rises towards the top. Over time, the liquid mixture contained in the
feed flow will be separated into a liquid flow which mostly contains the high molecular weight
component (which flows down the tray ladder) and a vapour flow which mostly contains the
low volatile component (which will climb the ladder of trays). NT trays are used to separate
the mixture into a liquid and a vapour flow. The number of trays (NT ) which are at least
needed to reach a certain purity can be calculated by making use of the McCabe Thiele
Method, as discussed in Ref. [14]. At the top of the column the more volatile vapour flow,
flows out of the column as indicated by VT . This vapour flow will be completely condensed
by making use of a total condenser by cooling, i.e., absorbing heat from the vapour flow with
cooling input Qc. The liquefied vapour is collected in a reflux drum. From the reflux drum
the liquid flow, which mostly contains the low molecular weight component with impurities
of the high molecular weight component, partly leaves the system as distillate flow D and is
partly fed back to the column as reflux flow indicated by L. As mentioned the top vapour
flow VT is condensed in a condenser and will be collected in a reflux drum once it is liquid.
The liquid level in this drum is controlled individually in order to maintain the liquid level to
be almost constant. Enrichment of the distillate flow also occurs by increasing the reflux flow
L compared to the output flow D. The ratio between these variables is called the reflux ratio,
i.e., r = L/D. Almost the same is done at the bottom of the column. Here the outgoing flow
at the bottom of the column will be separated in the bottom flow B and the reboil flow V .
After heating the liquid flow, the vapour reboil flow is fed back to the column. By enlarging
the reboil flow V compared to the bottom flow B the output flow B will be more enriched
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22 A Binary Distillation Column

with the high molecular weight component. The ratio between the reboil flow V and the
bottom flow B is given by the reboil ratio s = V/B.

3-2-2 Process Variables and Control Configuration

To keep a binary distillation process running safely, certain variables needs to be con-
trolled, i.e., controlled variables (CVs). To adjust the CVs, other variables can be manipulated
which are the so-called manipulated variables MVs. Furthermore, there are disturbance vari-
ables (DVs) acting on the system (e.g. the feed rate F and feed composition zF ). In the
case of the binary distillation column there are five variables which need to be stabilized
around a certain set-point and there are five variables which can be manipulated in order
to stabilize the system. The controlled variables are y = (yD xB LD LB P )T . Here,
the reflux drum liquid level is given by LD, the distillation column liquid level is indicated
by LB and the pressure in the column is represented by P . The manipulated variables are
u = (L V D B VT )T . Often the following assumptions are used.

- The pressure P can almost be kept constant by only manipulating the top vapour flow
VT . (There are multiple pressure control techniques as shown in Ref. [15])

- The two liquid levels, one in the reflux drum LD and one in the distillation column LB,
can be controlled by using two of the four remaining manipulated variables.

By making use of these assumptions, two MVs remain to control two CVs. When for example
the liquid levels are controlled by the distillate and bottom flow D and B the CVs and MVs
become respectively:

CV s :
[
yD
xB

]
MV s :

[
L
V

]
. (3-2)

This is called the LV-control configuration and is the configuration that we will consider in
this thesis. Note that in literature various control configurations are discussed (see Refs.
[16, 17]).

Within this section the necessary basics are presented in terms of what a binary distillation
column is and for what reasons it is used. The next section treats a case study in which a
simulator will be discussed. The simulator represents a binary distillation column which is
used to perform simulations of the behaviour of such a column. Within the simulation model
the LV-control configuration is used.

3-3 Simulating a Binary Distillation Column

Throughout this chapter the closed-loop binary distillation column is considered as shown
in Fig. 3-3. Here, G0(s) represents the true continuous time plant dynamics and C(s) rep-
resents the continuous time controller. The signals r1,1(t) and r1,2(t) are reference/set-point
signals applied to the output compositions, er1(t) and er2(t) are the error signals which are fed
to the controller, rex,1(t) and rex,2(t) are excitation signals used to perform a re-identification
experiment when a performance drop is measured and a diagnosis is performed. disturbances
are added to the system via the signals v1(t) and v2(t). The signals u1(t) and u2(t) are the
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Figure 3-3: Closed-loop configuration of a binary distillation column.

input signals and y1(t) = yD and y2(t) = xB are the measured output compositions from the
distillate and bottom flows.

3-3-1 Distillation Column Model and Controller

To mimic the behaviour of a binary distillation column, we will consider a dynamic model
from Skogestad [18]. This model has the following properties: the distillation column contains
NT = 41 trays, a total condenser and a reboiler. Assumptions are that there are constant
molar flows (for each vaporized mole of liquid also a mole of vapour is condensed), constant
relative volatility κ = 1.5 between the two components and the pressure P is assumed to
be constant. The feed enters the column at tray 21, the feed flow is F = 1kmolmin with feed
composition of zF = 0.5 mole fraction.

Skogestad described the quite complex non-linear process by a first-order linear model,
as discussed in Ref. [18]. The first-order linear model is given by

G0(s) = 1
1 + 75s

[
0.878 −0.864
1.082 −1.096

]
. (3-3)

The model given in (3-3) represents a good simplification of the binary distillation column as
described above. A non-linear model could be used, however, the simplified model as shown
in (3-3) represents the behaviour of a binary distillation column close enough for the purposes
needed in this thesis (more of the closed-loop behaviour is shown in the simulator analysis).
Emphasis is put on the application of a performance monitor and diagnosis method to a
MIMO system.

Within the simulation of the distillation column, the outputs track pre-chosen set-points.
The top composition yD needs to track a purity set-point of r1,1 = 0.95 and the bottom
composition xB needs to track an impurity set-point of r1,2 = 0.05. To keep the outputs of
the distillation column close around the set-points, the outputs need to be controlled which
is done by two PI-controllers.
With the proportional gain and the integrating term the rise time will be decreased and the
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24 A Binary Distillation Column

steady state offset from both compositions will be eliminated. The controller C(s) is given
by two independent PI-controllers. The continuous time controller is given by

C(s) =
(
kp1 + ki1

s 0
0 kp2 + ki2

s

)
(3-4)

The values of both PI-controllers are given in Table 3-1. The values of both controllers could

Table 3-1: Values of both PI-controllers are shown.

kp ki

PI 1 1.523 0.142
PI 2 -2.830 -0.206

not be found by a heuristic method as for example the Ziegler-Nichols tuning rules because it
is based on SISO systems. Therefore, tuning of both PI-controllers is performed by making
use of Matlab/Simulink. Matlab chooses PID gains such that a balance is created between
response time and bandwidth (performance) and phase margin (robustness). In the section
about the simulator analysis the closed-loop behaviour is discussed. First the plant model
and controller will be discretized.

3-3-2 Discretization

When a diagnosis is performed a re-identification experiment will be performed and a
discrete model is estimated. Therefore, our simulator will also use a discrete plant model and
discrete controller. For discretization a sample time needs to be used. The sample time is
more or less related to the (closed-loop) bandwidth of the system which for this system will
be close to ωBW = 5 · 10−3 rad/s. According to Ref. [19] to assure that the performance
of a digital controller will match the performance of a continuous time controller a sampling
time of at least 20 times the (closed-loop) bandwidth needs to be used. With this result
we find a sampling rate of (20 · 5 · 10−3)/2π = 0.0159Hz, which gives a sampling time of
Ts = 1/0.0159 ≈ 1 min. The continuous time system and controller are discretized by making
use of zero order hold and become:

G0(z) = 1
z − 0.98

(
1.16 −1.14
1.43 −1.45

)
10−2 (3-5)

C(z) =
(
kp1z+(ki1·Ts−kp1)

z−1 0
0 kp2z+(ki2·Ts−kp2)

z−1

)
(3-6)

In the true system there are always disturbances acting on the controlled outputs. System
disturbances occur due to fluctuations of the feed flow or feed flow compositions or due to
measurement noise. In the simulator the disturbances and noisy behaviour is mimicked by
applying stochastic noise on the measured outputs. In the model of the binary distillation
column there are two zero-mean white noise signals e1(t) and e2(t) (as shown in Fig. 3-4)
which are both chosen to have a variance of σ2

e = 3.75e − 5 and is filtered by a first-order
filter. In the nominal situation the disturbances are presented by a quite noisy signal (for a
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Figure 3-4: The discrete closed-loop system is shown of a distillation column which is stabilized
by two PI-controllers (C(z)). Here, G0(z) represents the discrete process dynamics and H0(z)
the discrete noise model.

Figure 3-5: The power spectrum for both disturbance signals v1(t) (left) and v2(t) (right) are
shown in the situation of nominal performance.

disturbance change more high frequencies will be filtered out as discussed later). The discrete
noise filter H0(z), as shown in Fig. 3-4, is given by:

H0(z) =
[
z+0.05
z−0.60 0

0 z+0.05
z−0.60

]
. (3-7)

The variance of the disturbance signals v1(t) and v2(t) are of order σ2
v = 6.25 · 10−5 and the

spectrum is shown in Fig. 3-5. It can be seen that for frequencies larger than 10−1rad/s the
magnitude decreases. All frequencies smaller than 10−1rad/s are taken into account to create
lower frequency disturbances combined with a noisy behaviour and are applied by signals
v1(t) and v2(t). The lower frequency output disturbances could correspond to e.g. changes
in feed flow F or in feed composition zF and measurement noise.

In reality a dynamic change or a change in disturbance characteristics could appear at
any time. However, in a simulation environment a dynamic change needs to be applied in
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26 A Binary Distillation Column

order to let the performance of the system decrease. How the considered changes are modelled
is discussed in the next section.

3-3-3 Modelling Changes

The performance monitoring and diagnosis methods as explained in chapter 2 are applied
to the simulation model of the binary distillation column. These methods are tested by
applying a plant change or disturbance change to the simulator. As mentioned, within the
simulation model a change needs to be applied to create a performance deterioration. A
change can be modelled for each of the two causes and is discussed in the following sections.

3-3-3-1 Plant Change

Over time the performance of a distillation column deteriorate. To simulate a performance
drop caused by a plant change we will rotate the inputs of the system. Rotation of the inputs
causes a larger variance on the outputs of the system. In Fig. 3-6 it is shown that there
is an extra block ("rotation") added which rotates the inputs of the system. A rotation is
applied to the input signals u1(t) and u2(t) by making use of rotation angle ψ. The rotation is
implemented by making use of a rotation matrix and the rotated input signals are constructed
by: (

u1,rot(t)
u2,rot(t)

)
=
(
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

)(
u1(t)
u2(t)

)
=
(
cos(ψ)u1(t)− sin(ψ)u2(t)
sin(ψ)u1(t) + cos(ψ)u2(t)

)
. (3-8)

In the nominal case ψ = 0 rad and ui,rot(t) = ui(t) for i = 1, 2. When a plant change
is applied to the system, the input signals are rotated by a chosen value of ψ = −π/8rad.
This value is chosen such that the variance of the measured outputs increase more or less
by a factor of order two to three. To show the difference between the true system and the
dynamics of the rotated system, we will analyse the magnitude at each frequency. Therefore,
in Fig. 3-7 the magnitude at each frequency is shown for both models. Here, it can be seen
that the magnitude at each frequency from input u1(t) to both outputs will be increased due
to the rotation and from input u2(t) to both outputs, the magnitude at each frequency will
be decreased. Note, that the difference between both models is not large and therefore, in
the performance diagnosis the re-identification length or power should be chosen with care to
obtain an accurate estimate of the true system dynamics and to make the correct decision.

3-3-3-2 Disturbance Change

It is also possible that a performance drop is caused by variations in disturbance char-
acteristics. A change in disturbance characteristics is actually very easy to implement in a
simulation model. The variance of a white-noise signal can be increased and/or a different dis-
turbance model can be implemented. To incorporate a change in disturbance characteristics
in our simulation we will change the parameters of the noise transfer matrix, i.e.,

H0(z) =
[
z−0.05
z−0.85 0

0 z−0.05
z−0.85

]
. (3-9)

S.J. Burger 1367110 Master of Science Thesis



3-3 Simulating a Binary Distillation Column 27

Figure 3-6: Closed-loop system with rotated inputs to the plant G0(z). The deteriorated true
plant is indicated by G0,rot(z).

Figure 3-7: Magnitude-frequency plot for both the discrete model G0(z) and rotated model
G0,rot(z).

By this change the variance of the outputs increase also more or less by a factor of two to
three1 and thus the performance Ĵ(k) will violate the threshold value β.

1The plant and disturbance change are chosen such that a relatively small performance deterioration occurs.
If a small performance deterioration can be detected and the cause can be determined, a larger performance
deterioration will of course be detected.
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28 A Binary Distillation Column

Figure 3-8: The spectrum for both disturbance signals v1(t) (left) and v2(t) (right) are shown
in the situation of a change in disturbance characteristics.

The spectrum of the disturbances are shown in Fig. 3-5 for a system with nominal
performance. In case of a disturbance change, the power of both disturbances v1(t) and v2(t)
are of order σ2

v = 1.25 · 10−4 and the changed spectrum of both signals is shown in Fig.
3-8. It can be seen that compared to the original spectrum that the magnitude is larger
for lower frequencies and creates larger disturbances. The low frequent disturbances with a
larger magnitude affect the system and deteriorate the system performance. Due to these
larger disturbances the performance will deteriorate.

3-3-3-3 Identification of System Changes

After a performance drop is created, the performance diagnosis method is applied and
a short re-identification needs to be performed for this purpose2. To identify the system
dynamics, excitation signals ui(t) (for i = 1, 2) are applied which are white-noise signals with
variance of σ2

r = 1 · 10−2 and data ZNid = [ui(t), yi(t)|t = 0...Nid − 1] is collected. To have
a consistent estimate, a full-order model structure (Box-Jenkins) will be used to estimate a
model for the plant dynamics and an independent model for the variations in disturbance
characteristics3. By trial and error, the model structure used for re-identification is chosen
to be:

y1(t) = b11z
−1

1 + f11z−1u1(t) + b12z
−1

1 + f12z−1u2(t) + 1 + c1z
−1

1 + d1z−1 e1(t) (3-10)

y2(t) = b21z
−1

1 + f21z−1u1(t) + b22z
−1

1 + f22z−1u2(t) + 1 + c2z
−1

1 + d2z−1 e2(t). (3-11)

2The direct closed-loop identification method is applied as explained in section 2-3-2.
3The diagnosis method tries to make a distinction between the two causes by making use of independent

plant and disturbance dynamics, as explained in section 2-3.
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Here, [b11, b12, b21, b22, c1, c2, d1, d2, f11, f12, f21, f22] are the parameters which need to be es-
timated by making use of the criterion as given by Eq. (2-14). In the next section the
closed-loop behaviour is discussed and it is verified whether the designed controller is able to
cope with the chosen noise characteristics.

3-3-4 Simulator Analysis

This section elaborates on the simulator model and a short model analysis is made. In the
next section a system that operates at nominal performance is analysed and also the situations
when a disturbance or a plant change occurs will be discussed. This is done to verify that
the discrete simulation model react more or less in the same way as a true distillation column
would do. It is important to notice that the closed-loop behaviour depends on the designed
PI-controllers. The system has fixed set-points and therefore, using the controller for reference
tracking is less important. However, the behaviour will be shown for a set-point change and
compared with models from literature. Secondly, more important is that the controller is able
to cope with input uncertainty which arises e.g. due to modelling errors and is able to reject
output disturbances due to e.g. changes in the feed flow or feed composition which could
affect the system outputs.

3-3-4-1 Set-point Change

It will be shown what output behaviour is found with the simulator when a set-point
change is applied (this is defined as an in or decrease of a set-point by 0.02). A set-point
change is applied and the second set-point is kept unchanged to show the influence of each
set-point change to each output. Secondly, both set-points are changed at the same time to
show the influence at both outputs.

First, we discuss the behaviour when changing one set-point at a time. In this case the
discrete system as shown in Fig. 3-4 is simulated for 40 time samples (Note that the noise
signals e1(t), e2(t) will not be used and are chosen to be zero). The set-points for t<0 are
r1,1(t) = 0.95 and r1,2(t) = 0.05. At time t=0 the set-point corresponding to the top com-
position is changed to r1,1(t) = 0.97 and r1,2(t) = 0.05 remains unchanged. In Fig. 3-9
(Upper left) it is shown what happens to both output compositions. The purity of the top
composition (shown by the blue line) directly increases and settles around 25 time samples
at the chosen set-point of 0.97. Due to the interconnection between the top and the bottom
of the column also the purity of the bottom product decreases for a while4 (which is shown
by the green line). This is caused by the fact that it is easy to decrease the purity of one
product and increase the purity of the other product.

Secondly, the same simulation is performed but this time set-point r1,1(t) = 0.95 is kept
unchanged and at time t=0, set-point r1,2(t) is increased to 0.07. In Fig. 3-9 (Upper right)
again both compositions are shown (top composition in blue and bottom composition in
green). Here, it is seen that the bottom composition directly increases and settles around 21
time samples. Also, in this case due to the interconnection between the top and the bottom of
the column, the top composition increases for a short amount of time and settles at its fixed

4When the purity of the bottom product decreases it implies that the bottom composition increases, because
the composition is given in terms of the more volatile product.
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Figure 3-9: Upper left: A set-point change is applied onto the top composition at time t=0 and
both output responses are shown. A settling time of around 25 time samples is found for the top
composition. Upper right: A set-point change is applied onto the bottom composition at time
t=0 and both output responses are shown. Also, a settling time of around 25 time samples is
found for the bottom composition. Bottom: various set-point changes are applied to show the
influence on both outputs.

set-point value at time sample 22. Furthermore, it is shown that the bottom composition
reacts faster on a set-point change than the top composition. This is caused by the larger
gain kp2 in the second PI controller.

The third simulation runs for 360 time samples. In this case both set-points are changed.
At time samples [0, 30, 120, 210, 300] the set-points are r1,1(t) = [0.95, 0.97, 0.95, 0.97, 0.95]
and r1,2(t) = [0.05, 0.03, 0.05, 0.07, 0.05] respectively to create all possible situations. In
Fig. 3-9 (Bottom) again both compositions are shown (top composition in blue and bottom
composition in green). At the first set-point change at time t=30 samples both product
purities will increase. Due to the faster response of the bottom composition and the intercon-
nection between the top and the bottom of the column, the top composition first decreases
and within five time samples the top composition increases as what it should do. At the
moment the top composition increases, the bottom composition is influenced as shown by the
bump at time sample 35. Finally, both compositions settles within 30 time samples. It will
take more time due to the fact that both product purities need to increase at the same time.
At time sample 120 more or less the same behaviour is found but in the opposite direction.
The bottom composition increases faster which let the top composition increase for a short
amount of time and at the moment the top composition decreases the bottom composition
react on the decrease as shown by the bump at time sample 125. At time sample 210, the
purity of the top product increases and the purity of the bottom product decreases, i.e., both
compositions increase at the same time. Due to the faster response of the bottom composition
and the increase of both compositions at the same time, the bottom composition overshoots
its corresponding set-point but settles faster w.r.t. a single set-point change as shown in Fig.
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3-9 (Upper right). Due to the combined set-point change in the same (positive) direction
both changes react faster and settles within a shorter amount of time samples which is near
20 time samples for both compositions. The last change at time sample 300 react also more
or less the same but in the opposite direction and also settles in about 20 time samples.

3-3-4-2 Output Disturbances and Uncertainty

As mentioned, the outputs of a binary distillation column are often quite noisy which
is caused by all kind of disturbances. Therefore, output disturbance rejection is important
for such a system. The sensitivity of the system is of importance to shown what frequencies
are amplified (or attenuated). The output sensitivity function is given by S(z) = (I +
G0(z)C(z))−1. In Fig. 3-10 the magnitude between each disturbance input and measured
outputs at each frequency is shown. Here, it can be seen from disturbance input v1(t) to
output yD and from disturbance input v2(t) to output xB that the maximum magnitude
is near zero dB at high frequencies. The maximum value near zero dB implies that noise
and disturbances in the system will almost not be amplified by the feedback controller. In
fact for frequencies smaller than 10−1rad/s there is only attenuation of the noise in the
system. Besides the sensitivity of the system we will also look at the system outputs and the
corresponding control actions and how they react on output disturbances. Also, uncertainty
in the system is taken into account to assure that the controller is able to cope with the
output disturbances on the nominal system and even in the situations a plant or disturbance
change occurs. Keep in mind that uncertainty for the original system G0(z) is different w.r.t.
a system where a plant change occurs. For the original system the uncertainty can be seen
as e.g. the modelling errors, which are considered to be quite small. The uncertainty of the
model is defined by:

G(z, θ) = 1
z − (0.985 + c)

(
1.16 + a −1.14 + b
1.43 + a −1.45 + b

)
, (3-12)

where, a represent ±10% uncertainty on the parameters of input one, b represent ±10% un-
certainty on the parameter of input two. The uncertainties are chosen such that the physical
couplings between the transfer function elements remain intact. In this way it is possible to
analyse e.g. that a = +10% uncertainty and b = −10% or vice versa. Parameter c represents
only a small uncertainty of ±1%. Note that by making use of larger values the system could
become unstable due to a pole which will be smaller than −1.

For a system where a dynamic change occurs, nothing is known about the changed dy-
namics. The unknown changed plant dynamics have, compared to the original model and
w.r.t. the true system dynamics a larger error. Furthermore, each time a plant change occurs
the plant dynamics will be different which causes more uncertainty in the system.
On the simulator, a plant change occurs by rotating the inputs of the system. The error
between the rotated system and the true dynamics will be larger than the modelling errors of
the original plant model (the larger error causes the performance deterioration). Note that
we make use of one rotation angle ψ, which implies that the applied plant change is more
or less the same every time. However, in reality each dynamic change is different. To take
uncertainty into account w.r.t. the rotation it is possible to consider that there is uncertainty
in the rotation angle ψ, which is given by

ψ = −π/8 ± 10%
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Figure 3-10: Sensitivity function from each input to each output.

This influences the rotation of the inputs u1(t) and u2(t) as given by Eq. (3-8).
The next step is to show the behaviour of the worst case system (within the range of the
chosen uncertainties), i.e., the worst system performance and verify whether the controller
can handle the output disturbances. If so, then the controller is assumed to be sufficient
robust even for a considered plant or disturbance change.
Nominal situation

The discrete closed-loop system as shown in Fig. 3-4 will be considered where the process
dynamics are given by (3-5) and controller is given by (3-6). The signals e1(t) and e2(t) are
applied to the system as shown in Fig. 3-4 and are two white-noise signals which are filtered
by H0(z) as given by (3-7). The white-noise signals both have a variance of 3.75 · 10−5. The
variance of the disturbance signals v1(t) and v2(t) is of order 6.5 · 10−5. Both outputs have
fixed set-points of r1,1(t) = 0.95 and r1,2(t) = 0.05. The distillation column will be simulated
for 300 time samples to show the influence of the applied disturbances to the outputs of the
system and the corresponding control action.

In Fig. 3-11 (Upper left) the top composition is shown and in Fig. 3-11 (Upper right)
the bottom composition is shown for 300 time samples in case of the worst case consid-
ered uncertainty for the nominal situation (which is a = −10%, b = +10% and c = +1%
uncertainty). The top composition fluctuates around its set-point of 0.95 and the bottom
composition around it set-point of 0.05. Keep in mind that when a performance deterioration
occurs these fluctuations will increase. Both the top and bottom compositions have a variance
of order 7.0 ·10−5, the performance is then J̄(k) = 1.4 ·10−4. In Fig. 3-11 (Lower left) and in
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Figure 3-11: Upper left: the top composition is shown for 300 time samples for the worst
case uncertainty scenario in case of nominal performance. Upper right: the bottom composition
is shown also for 300 time samples for the worst case uncertainty scenario in case of nominal
performance. Lower left: the control action is shown which corresponds to the top composition
yD. Lower Right: the control action is shown which corresponds to the bottom composition xB .

Fig. 3-11 (Lower right) the corresponding control action is given for the top composition yD
and bottom composition xB. When the top composition is measured and found to be larger
than the chosen set-point the control action decreases in order to decrease the composition
and thus the purity of the top product. On the other hand, if the bottom composition is
larger than its set-point the control action needs to increase. This implies that the purity of
the bottom product is lower than what it should be and needs to be increased. The latter
can be seen in Fig. 3-11 (Upper and Lower left), where the control action at time sample
interval t = [50, 100] is relatively large because the top composition is in the same interval
below its set-points of 0.95. Also, between the interval of [250, 270] the top composition
is below its set-point and the control action therefore increases. The same is shown for the
bottom composition in Fig. 3-11 (Upper and Lower right). On the interval of [90, 120] time
samples the bottom composition is smaller than its corresponding set-point and less control
action is needed because the purity should decrease. At the interval of [250, 300] the bottom
composition is larger than its set-point which implies that the purity needs to be increased
what is done by the increasing control action.
Furthermore, it is shown that the controller does not react very aggressively to the distur-
bances in the system which can be seen by the small variations in control actions. It is
important that the noise will not be amplified too much. As found with the sensitivity func-
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tion almost no amplification of disturbance characteristics occurs. Finally, it can be seen
that the compositions are quite close around its set-points and that the disturbances are suf-
ficiently rejected by the controller.

Change in disturbance characteristics

Due to the importance of disturbance rejection, the influence of a change in disturbance
characteristics will also be shown for the worst case uncertainty, i.e., the largest system
performance (which is the same as in the nominal case, i.e., a = −10%, b = +10% and
c = +1% uncertainty). Again, the discrete closed-loop system as shown in Fig. 3-4 will be
considered with plant model (3-5) and controller (3-6). As explained in section 2-3-1 the
disturbance model will be changed to the model shown in (3-9). The output disturbances
e1(t) and e2(t) are given by two white-noise signals which both have a variance of 3.75 · 10−5.
The variance of the disturbance signals v1(t) and v2(t) are of order 1.2 · 10−4, which is almost
an increase of two w.r.t. the nominal disturbances. Both outputs have fixed set-points of
r1,1(t) = 0.95 and r1,2(t) = 0.05. The distillation column will be simulated for 300 time
samples to show the influence of the changed disturbances to the outputs of the system.

In Fig. 3-12 (Upper left) the measured top composition is shown and in Fig. 3-12 (Upper
right) the measured bottom composition is shown for the worst case uncertainty situation.
The variance of both compositions increased by a factor two to 1.35 · 10−4.
The change in disturbance characteristics can be seen in Fig. 3-12 by the larger fluctuations
in the system outputs. Especially, for the top composition it is shown at time sample 75
and 250, that the composition decreases quite much. On the other hand, due to the large
connection between the top and the bottom, the bottom composition increases quite much at
time sample 250. These changes can also be seen in Figs. 3-12 (Lower left and right) which
represent the corresponding control action. The control action also fluctuates more due to
the change in disturbance characteristics. Even with the change in disturbance characteristics
and the input uncertainty, the controller can handle the disturbances acting on the outputs
of the system satisfactory.

Change in plant dynamics

Also, for a plant change with the worst case considered uncertainty5, the output behaviour
will be shown. Consider the discrete system as shown in Fig. 3-4 with plant model (3-5) and
controller (3-6). The largest rotation angle ψ = −π/8 · 1.1 is considered which causes the
largest performance degradation. The signals e1(t) and e2(t) are applied to the system as
shown in Fig. 3-4 and are two white-noise signals which are filtered by H0(z) as given by
(3-7). The white-noise signals both have a variance of 3.75 · 10−5. The variance of the
disturbance signals v1(t) and v2(t) is of order 6.5 · 10−5. Both outputs have fixed set-points
of r1,1(t) = 0.95 and r1,2(t) = 0.05. The distillation column will be simulated for 300 time
samples.

In Fig. 3-13 (Upper left and right) the top and bottom compositions yD and xB are
shown. The plant change/rotation causes the outputs to fluctuate up and down with a more
sinusoidal behaviour. This is also shown for the corresponding control actions which are
shown in Fig. 3-13 (Lower left and right). At time sample 75, the control action u1(t)
increases to increase the top composition. The bottom composition also increases, due to the

5This is the case for the largest possible angle ψ, due to the fact that for a larger rotation the performance
degrades more.
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3-3 Simulating a Binary Distillation Column 35

Figure 3-12: Upper left: the top composition is shown for 300 time samples for the worst case
uncertainty scenario in case of a disturbance change. Upper right: the bottom composition is
shown also for 300 time samples for the worst case uncertainty scenario in case of a disturbance
change. Lower left: the control action is shown which corresponds to the top composition yD.
Lower Right: the control action is shown which corresponds to the bottom composition xB .

increase of the top composition. At time sample 100, also the control action u2(t) starts to
increase to decrease the bottom composition. Furthermore, it is shown that the control action
u1(t) is much smaller than u2(t) when we compare those values with the nominal situation.
This is caused by the rotation. By considering (3-8) it can be computed that u1,rot(t) =
cos(1.1 ·−π/8) ·14.1−sin(1.1 ·−π/8) ·37 = 28.3 which is near u1(t) from the nominal situation
(the factor 1.1 represents the worst considered case +10% uncertainty). The same can be
done for the second output, which is u2,rot(t) = sin(1.1·−π/8)·14.1+cos(1.1·−π/8)·37 = 27.7
and also approaches the values of u2(t) from the nominal situation. It is shown that even if a
plant change occurs and uncertainty is taken into account the controller is able to cope with
these changes. Only, a more sluggish output behaviour arises, which is logical because the
controller is designed on the original model and not on the changed plant dynamics. It seems
that the controller is capable of handling a plant change sufficiently.

3-3-4-3 Discussion

From these results of the set-point changes it is found that the system react in the way
as what was expected. If we compare the results of the set-point changes with the behaviour
as found in literature (see Refs. [15, 18, 20]) it can be concluded that the system behaves
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36 A Binary Distillation Column

Figure 3-13: Upper left: the top composition is shown for 300 time samples for the worst case
uncertainty scenario in case of a plant change. Upper right: the bottom composition is shown
also for 300 time samples for the worst case uncertainty scenario in case of a plant change. Lower
left: the control action is shown which corresponds to the top composition yD. Lower Right: the
control action is shown which corresponds to the bottom composition xB .

and react in the same way on set-point changes. Furthermore, it is found that the designed
controller is able to cope with the applied disturbance characteristics satisfactory. The closed-
loop system does almost not amplify the disturbance characteristics, which is desired. Also,
a change in plant dynamics can be handled satisfactory. Even with input uncertainty the
controller is able to cope with the output disturbances and also in case of a plant change
with uncertainties (on the rotation angle), the controller is capable of handle these situations
sufficient. Therefore, the controller is found to be sufficiently robust and the closed-loop
model is found to be a representative model to test the performance monitoring and diagnosis
methodologies on.
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Chapter 4

Numerical Results

4-1 Introduction

This chapter discusses the performed simulations and the results which are obtained
with the simulator. Within this thesis it is investigated if the application of a performance
monitoring and diagnosis method can be applied to a MIMO binary distillation column and
how confident the made decision will be. The window size of the performance monitor is of
importance and it will be investigated what size is an acceptable choice. Within the diagnosis
method a small closed-loop identification experiment is carried out. Therefore, we consider the
identification length to be an important variable and it will be investigated what a desirable
length could be. Finally, multiple decision rules will be compared to increase the confidence
of opting for the correct hypothesis. The simulation set-up and results of the application
of the performance monitoring method to the simulator are discussed in section 4-2 and the
application of the performance diagnosis is discussed in section 4-3.

4-2 Performance Monitor

Within this section results will be discussed concerning the choice of the window size
which is used in the performance monitor. Before that is done, comparisons are made be-
tween systems which operate at nominal performance and systems which have a degraded
performance. In case of a system with a degraded performance, results will be discussed
concerning a plant change and a change in disturbance characteristics. Detection of one of
the two considered changes can be done by making use of the following performance measure
(which is discussed in section 2-2-2):

Ĵ(k) = 1
Nwin

n∑
j=1

k∑
i=k−Nwin

(yj(i)− r1,j(i))T
(
yj(i)− r1,j(i)

)
for k ∈ N (4-1)
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Figure 4-1: The closed-loop system is shown. The controller C(z) is given by (3-6) and the
plant model G0(z) is given by (3-5). The rotation angle (in block ’rotation’) is set to ψ = 0 rad,
for a system which operates at nominal performance or for a system where a disturbance change
is applied. In case of a plant change the angle ψ = −π/8 rad, as discussed in section 2-3-1.

Here, yj(i) represents the measured discrete-time output signals and r1,j(i) the fixed set-point
signals. The performance measure will be used to explain certain phenomena which are found
within the simulation case study.

4-2-1 Nominal Situation

Two changes have been discussed which can occur in model-based control systems. First
we will analyse results of a system which operates at nominal performance. The discrete
closed-loop system as shown in Fig. 4-1 will be considered with plant model G0(z) as given
by (3-5), the controller C(z) as given by (3-6) and noise model H0(z) as given by (3-7). The
rotation angle is set to ψ = 0 rad (no rotation). Stochastic signals are applied to the system
via e1(t) and e2(t) with both a variance of σ2

e = 3.75 ·10−5. Furthermore, the outputs yD and
xB have corresponding set-points of r1,1(t) = 0.95 and r1,2(t) = 0.05. The system is simulated
for 10000 time samples. At time sample t = 10000, a plant change is applied by rotating the
inputs over an angle ψ = −π/8 rad and the simulation is continued for another 10000 time
samples.

In Fig. 4-2 (a) both output compositions are shown after subtraction of the corresponding
set-points. The first 10000 data points shows a system which operates at nominal performance,
where the outputs have a variance of order σ2

yD
= σ2

xB
= 6.5 · 10−5. Figure 4-2 (a) also shows

the output compositions for a system where a plant change is applied. This is shown in the
second 10000 data samples. For the case a plant change is applied, the output variance is
increased to σ2

yD
= σ2

xB
= 1.25 · 10−4 which is almost a factor two.

Again, the same simulation is performed for 10000 time samples in case of the nominal system
and at time sample 10000 the simulation is performed for another 10000 time samples where
the disturbance model H0(z) is changed to (3-9).

In Fig. 4-2 (b) the output compositions are shown after subtraction of the corresponding
set-points. Again, the first 10000 time samples shows the output compositions when the
system operates at nominal performance and almost the same variance is achieved for both
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(a) The performance drop is caused by a plant
change.

(b) The performance drop is caused by a distur-
bance change.

Figure 4-2: Both output compositions are plotted including the corresponding performance and
threshold value. At the first 104 time samples the system operates at nominal performance and
the outputs have a variance of order σ2

yD
= σ2

xB
= 6.5 ·10−5 and for the second 104 time samples

a dynamics change is applied and the variance of the outputs changes to an order of 1.2 · 10−4.

(a) Distillate output composition yD. (b) Bottom output composition xB .

Figure 4-3: Both histograms show the one, two and three standard deviations and the remainder.
The outputs are given for a system operating at nominal performance.

outputs σ2
yD

= σ2
xB

= 6.57 · 10−5. A disturbance change is applied at the second 10000 data
points. Here, the variance increases to σ2

yD
= σ2

xB
= 1.31 · 10−4. At the bottom of both

figures 4-2 (a and b) the performance J̄(k) as computed by Eq. (4-1) is shown including the
threshold value β = 1.60 · 10−4. In case of the nominal situation the measured performance
remains below the chosen threshold value when using a satisfactory value for Nwin. How this
variable is chosen is explained in section 4-2-4.

To show a degradation even better, the measured data of both output compositions yD
and xB for a system that operates at nominal performance as shown in Figs. 4-2 is collected.
In Fig. 4-3, a histogram is shown for both outputs at nominal performance when using the
first 10000 collected data points from the simulation results as shown in Fig. 4-2. Within
the histograms the one, two and three standard deviations and remainder are shown. This is
done to easily show the difference between a system operating at nominal performance and a
system where the performance degraded due to a plant or disturbance change.

Master of Science Thesis S.J. Burger 1367110



40 Numerical Results

(a) Distillate output composition yD. (b) Bottom output composition xB .

Figure 4-4: Both histograms show the one, two and three standard deviations and the remainder.
The outputs are given for a system where a plant change degraded the performance.

4-2-2 Plant Change

The situation when the system operates at nominal performance is compared with the
situation that a plant change occurs. In the previous section the simulation set-up is already
discussed. As shown in Fig. 4-2 (a), the output compositions are shown in the second
10000 data samples. It was found that the variance of the outputs is increased by a factor
two to three. The performance level as shown below the output compositions increased and
violated the threshold value. The degradation of J̄(k) can be explained by the fact that
the difference between the outputs yi(t) and the set-points r1,i(t) (for i = 1, 2) is increased
which implies a larger cost of Eq. (4-1). In Fig. 4-4 histograms are shown in the situation
a plant change occurred which is simulated for 10000 data points (left the top and right
the bottom composition). It can be seen that the standard deviations increased w.r.t. the
nominal case. In table 4-1 the mean values and the values of one standard deviation is shown
for the nominal situation and for the situation that a plant change occurred. Here, it is shown
that the standard deviation of the output composition significantly increased at the moment
a plant change occurs compared to the nominal situation.

4-2-3 Disturbance Change

Finally, the results of a change in disturbance characteristics will be compared with the
results of a system with nominal performance. In Fig. 4-2 (b) the output compositions are
shown in the second 10000 data points. It was found that the variance also increased by a
factor two to three. The increase in the output compositions is detected by the performance
measure (4-1) and the increase in performance is shown in Fig. 4-2 (b) below the output
compositions. In Fig. 4-5, for the collected data set of 10000 time samples of the situation
a disturbance change occurred, a histogram is shown (left the top and right the bottom
composition). By comparing Fig. 4-3 and Fig. 4-5, the difference between the nominal
situation and a disturbance change is obvious. In table 4-1 also the mean values and one
standard deviations of a disturbance change is shown for both output compositions. For this
cause it is seen that these values are also significantly larger than in the nominal situation
and is of the same order as when a plant change occurs. This implies that there is almost
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Table 4-1: The mean value and the one standard deviation is given for a dataset of 104 samples
in case of nominal performance, a plant change and a change in disturbance characteristics.
Histograms with these values are shown in Figs. 4-3, 4-4 and 4-5.

Mean One SD
Nominal situation yD 0.95 ±0.0080

xB 0.05 ±0.0078
Plant change yD 0.95 ±0.0118

xB 0.05 ±0.0107
Disturbance change yD 0.95 ±0.0113

xB 0.05 ±0.0119

no difference in the histograms as shown in Figs. 4-4 and 4-5. Note that even if we are
able to measure a difference between a plant change and a disturbance change on the true
system, in advance it is not known what the cause of the performance deterioration will be.
A performance deterioration (and thus an increase in the measured variance of the output
compositions) will be different each time a performance drop arises. Therefore, we need to
use a diagnosis method to be able to distinguish between the plant and disturbance change.

(a) Distillate output composition yD. (b) Bottom output composition xB .

Figure 4-5: Both histograms show the one, two and three standard deviations and the remainder.
The outputs are given for a system where a change in disturbance characteristics degraded the
performance.

The performance measure Ĵ(k) as given by Eq. (4-1), is capable of detecting both changes
when they occur in a system. Note that in the previous results a satisfying window size is
used of length Nwin = 400 time samples. The size of the window is chosen in a heuristic way
and is explained in more detail in the next section.

4-2-4 Performance Monitoring Method Window Size

In section 2-2-2 it was discussed why the size of the window of the performance monitoring
method is of importance. To explain the importance of the window size we will again analyse
the output compositions of a system which operates at nominal performance and a system
where a plant change occurred. An exact same simulation is performed as discussed in section
4-2-1 and shown in Fig. 4-2 (a), where the discrete closed-loop system as shown in Fig. 4-1
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(a) Both output compositions are shown after subtraction of the corresponding references, i.e., yD−r1,1(t)
and xB − r1,2(t).

(b) The performance measure is shown which corresponds to the data of the measured compositions shown
in Fig. 4-6 (a) with a window size of Nwin = 50. Also, the threshold value β = 1.60 · 10−4 is shown.

(c) The performance measure is shown which corresponds to the data of the measured compositions shown
in Fig. 4-6 (a) with a window size of Nwin = 500. Also, the threshold value β = 1.60 · 10−4 is shown.

(d) The performance measure is shown which corresponds to the data of the measured compositions shown
in Fig. 4-6 (a) with a window size of Nwin = 1000. Also, the threshold value β = 1.60 · 10−4 is shown.

Figure 4-6: For both measured output composition the performance Ĵ(k) is shown for various
window sizes Nwin.
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will be considered with plant model G0(z) as given by (3-5), the controller C(z) as given
by (3-6) and noise model H0(z) as given by (3-7). White-noise is applied to the system via
e1(t) and e2(t) with both a variance of σ2

e = 3.75 · 10−5. Furthermore, the outputs yD and
xB have corresponding set-points of r1,1(t) = 0.95 and r1,2(t) = 0.05. The rotation angle is
set to ψ = 0 rad (no rotation). The system is simulated for 10000 data samples. Then the
simulation is performed for again 10000 data samples but now the inputs are rotated over an
angle ψ = −π/8 rad.

In Fig. 4-6 (a) the measured output compositions yD and xB are shown. In the first
10000 data points the variance of the outputs is of order σ2

yD
= σ2

xB
= 6.5 · 10−5. For the

second 10000 data points the variance of both output compositions increased by a factor two
to three. Furthermore, the performance measure (4-1) is given for three different window
sizes Nwin = 50, 500 and 1000 as shown in Fig. 4-6 (b, c and d) respectively. It is shown
that with a small window Nwin = 50 the performance measure is very sensitive and even
though the system operates at nominal performance, the performance measure Ĵ(k) exceeds
β many times which causes false alarms/detection errors (first 104 data samples). If one or
both output compositions have a temporary decrease in purity due to a stochastic effect, with
a small window size this can be seen as a performance deterioration. However, this is not
desired because a performance diagnosis will be performed at the moment the performance
measure violates the threshold value and unnecessary costs will be made. For that reason
a larger window needs to be chosen. When taking a larger window Nwin = 500 or 1000
time samples it can be seen that the performance measure stays below the threshold value
in the first 10000 data points where the system runs at nominal performance. On the other
hand, in Fig. 4-6 (b, c and d) the grey area shows the time it takes to detect a performance
deterioration. This value increases when using a larger window size. By making use of a
larger window the performance as measured by Eq. (4-1) is averaged over a larger window
Nwin and it will take more time to detect a performance deterioration. However, the time
it takes to detect a performance deterioration should be small due to increasing operational
costs which arise when a performance deterioration occurs. Therefore, a trade-off is made
between the detection time and detection errors because they both depend on the window
size. These variables can be defined as
Detection time:
This variable represents the time it takes from the moment a plant or disturbance change
occurs in the system until the moment a performance drop is actually detected.
Detection errors:
At the moment the system operates at nominal performance it is possible that a performance
deterioration is measured. This is mainly caused due to small fluctuations in the measured
output compositions and/or due to a window size which is chosen too small. The (incorrectly)
measured performance drops are called detection errors.

First the detection time and secondly the detection errors is investigated to find a sat-
isfying window size. For both variables, Monte Carlo simulations will be used. This implies
that one or more variables will be changed each simulation to collect a distribution of data
in terms of the variables which will be investigated. This distribution/data set represents
a large range of scenarios which could occur. The discrete closed-loop system as shown
in Fig. 4-1 is used with controller C(z) (3-6), plant model G0(z) (3-5) and noise model
H0(z) (3-7). Set-points are fixed at r1,1(t) = 0.95 and r1,2(t) = 0.05. For each window size
Nwin = [50, 100, 200, 300, 400, 500, 750, 1000] time samples, 100 simulations are per-
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formed and stochastic signals are applied via e1(t) and e2(t) and both have a variance of
σ2
e = 3.75 · 10−5.

4-2-4-1 Detection Time

In each simulation the system runs first for 10000 time samples at nominal performance
and at time sample t = 10000 a plant change is applied with a rotation of ψ = −π/8 rad.
Then the simulation is continued for another 10000 data samples. In Fig. 4-7 the window
size is plotted against the time it takes to detect a performance degradation, i.e., detection
time. The plot shows the mean value and the standard deviation found from 100 simulations
for each window size. As expected and found in Fig. 4-6 (b, c and d), the detection time
increases as the window size increases and an almost linear increasing behaviour is found with
respect to the window size. To explain the increase of the mean values of the detection time
with respect to the window size we will make use of the performance measure as given by
Eq. (4-1). It is shown that the sum for i = 1, ..., Nwin of the distance between yj(i) and
r1,j(i) for j = 1, ..., 2 is averaged over the total window length given by the factor 1

Nwin
(and

thus the performance which depends on those variables). The performance will be averaged
over more data points when a larger window size Nwin is chosen. By making use of a large
window (Nwin ≈ 1000) for a longer period of time, data points where the system operated at
nominal performance are taken into account. For example, with an average detection time
of 300 time samples for a window size of Nwin = 1000 still 700 data points are taken into
account where the system operated at nominal performance. Compared to a window size
of Nwin = 100 samples, an average detection time of 35 data points are needed to detect
a performance deterioration and only 65 data points are taken into account for which the
system operated at nominal performance. By averaging over more data points implies that
it will take more time until a performance deterioration is actually detected. Therefore, a
performance deterioration is measured rather late with a large window compared to a small
window size.

Furthermore, in Fig. 4-7 it is seen that the standard deviation increases when the window
size increases, which is counter-intuitive due to an increasing window size. The increase can
be explained by the fact that the detection time also depends on the size of the measured
performance change. When the system runs at nominal performance and suddenly a change
occurs in the system such that the performance increases, with a small window (Nwin ≈ 50)
this is (almost) always measured within a small number of time samples (detection time < 100
data points) due to its sensitivity (independently of a small or large change Ĵ(k) ≈ 2 ·10−4 or
Ĵ(k) ≈ 1 ·10−3 respectively). As shown in Fig. 4-6 (a) the performance is quite fluctuating up
and down. The large peaks can also be seen as a large performance degradation and the lower
area just above β as a small performance degradation. A large window (Nwin ≈ 750 ∼ 1000)
averages over more data points. This implies that a small performance deterioration will be
detected at a later time moment because it will be averaged out for a longer period of time.
On the other hand a large performance deterioration has a larger weight in the summation of
the performance measure Ĵ(k) (4-1) and will be detected at an earlier time moment. When a
performance degradation occurs, the measured output compositions will fluctuate more and
also the performance measure as shown in Fig. 4-6 (b, c and d). Each time that a performance
degradation occurs, the size of the degradation will be different. For a larger window the size
of the degradation is more important than for a small window size and could explain the
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Figure 4-7: The window size is plotted against the time it takes to detect a performance degra-
dation. 100 simulations have been performed for each window size and the mean value and one
standard deviation are shown.

increasing standard deviation for larger window sizes.
It is found that the mean detection time of a window size of Nwin = 50 is about 35 time

samples. On the other hand, for a window size of 1000 samples the mean detection time is
roughly ten times larger and varies more. It brings much extra costs with it and therefore,
for this variable the window size should be chosen as small as possible (e.g. a mean value
smaller than 150 time samples because there is a certain amount of operational cost attached
to the length of the detection time).

4-2-4-2 Detection Errors

For the detection errors the same simulations are used as for the previous variable. How-
ever, we only need to investigate the performance measure for different window sizes at nomi-
nal performance. For the window sizes Nwin = [50, 100, 200, 300, 400, 500, 750, 1000] time
samples the number of detection errors are measured. That is done for a certain amount of per-
formance measurements Ĵ(k). The number of sample points of which Ĵ(k) can be computed
depends on the window size and the simulation length of 10000 data points. For the largest
window size Nwin = 1000 the performance can only be measured for 10000 − 1000 = 9000
data points. Whereas for a small window size Nwin = 100 the performance can be measured
for a total of 10000− 100 = 9900 data points, which is 900 more performance measurements
(and thus more detection errors can be measured). To solve that problem for each window
size only the last 9000 performance measurements are taken into account. A percentage is
computed which represent the number of performance measurements in which a detection
error occurs and is given by (#detectionerrors/9000) · 100.

In Fig. 4-6 (b) it is shown that a small window size (Nwin = 50) is very sensitive and
measures many detection errors (in 1.05% of all performance measurements Ĵ(k)). Therefore,
we expect that a large window is more useful, which is the opposite as found for the detec-
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tion time. In Fig. 4-8 the mean value and the one standard deviations represent the total

Figure 4-8: The window size is plotted against the percentage of performance measurement in
which a detection error occurs. An error is detected at the moment that the system operates at
nominal performance and yet the performance exceeds the threshold value β. A reliable perfor-
mance measure is obtained when the number of detection errors is almost zero. 100 simulations
have been performed for each window length and the mean value and one standard deviation is
shown.

amount of detection errors which are measured for different window sizes Nwin. This is done
for 100 simulations for each window size. Here, it can be seen that the amount of detection
errors exponentially increases when the window size is chosen smaller than Nwin = 500 time
samples. The asymptotic behaviour and the decreasing variance can be explained by looking
at the performance measure from Eq. 4-1. The performance measure is basically a measure
of the variance of the outputs. Therefore, we will look at an estimate of the mean value of
a measured output (top composition yD) for one window and its variance which in theory is
computed by1

ȳ(k) = 1
Nwin

Nwin∑
i=1

y(i), with y(i) ∼ N (0.95, σ2
y) (4-2)

According to the central limit theorem the estimate of the mean value is normally distributed
by ȳ(k) ∼ N (0.95, σ2

y/Nwin). It can be seen that the variance decreases by 1/Nwin when the
window size increases. Furthermore, in Fig. 4-9 the distribution for a small and a large window
size are shown. Here, r represents a constant value. For smaller window sizes (Nwin = 50) the
percentage P (ȳ(k) ≥ r) is much larger than for large window sizes (Nwin = 500) as indicated
by the shaded area. For that reason the total cost, computed by Eq. (4-1), is more often
larger for a small window size compared to that from a large window size. This implies that
the threshold value β is more often violated when monitoring with a small window size and
the amount of detection errors increases. The number of detection errors also decreases more
or less by a factor of 1/Nwin which causes the asymptotic behaviour in Fig. 4-8.

1Notice that the performance Ĵ(k) does not use Eq. (4-2) and is only used to explain why the performance
measure more often violates β when a small window size Nwin is chosen.
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Figure 4-9: Normal distributions of the mean value ȳ(k) for different performance measure
window sizes. Shown is the probability P (ȳ(k) ≥ r) which is larger for a smaller window size.

To be able to choose a value for the window size a trade-off is made between the detection
time and the amount of detection errors which occur. It needs to be taken into account that an
increase in costs are involved when starting a performance diagnosis. Therefore, the number
of errors should be as low as possible (near zero) and still have a detection time which is
rather fast. On the other hand, a rather slow detection time also increases operational cost
for a longer period of time. With, e.g. a cost analysis the choice of the window size can be
made. However, nothing is known about any kind of costs and therefore a heuristic choice
is made. For example, the detection should be near zero and the mean detection time needs
to be smaller than 150 time samples. In Fig. 4-7 it is shown that the largest window having
a mean value smaller than 150 samples is the window with Nwin ≈ 450. For ease we have
chosen Nwin = 400 because that is a window size we have used throughout this section and
approaches the window of Nwin = 450 the most. It can also be seen in Fig. 4-8 that with
this window almost no detection errors are made. Therefore, a window size of Nwin = 400 is
a desirable choice.

4-3 Performance Diagnosis

This section examines the choice of the length of a short identification experiment, which
is performed within the performance diagnosis. This is done to estimate model G(z, θ̂Nid)
which is used to make a decision. The found identification length is used in the diagnosis
methodology. Note that it is also possible to vary the power of the excitation signal, but we
have chosen to fix this value and vary the identification length. Furthermore, the decision
rules as given in (2-16), (2-22) and (2-23) which have been discussed in section 2-3 will be
compared to find out for which decision rule the largest confidence is found to opt for the
correct hypothesis.

4-3-1 Identification Length

Within the performance diagnosis method a short identification experiment needs to be
performed to estimate model G(z, θ̂Nid

). The identification length of this experiment is of
importance to estimate a model which can accurately describe the true system dynamics.
The accuracy of the estimated model will be of importance to make a correct decision. An
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estimated model found with a large identification length will describe the true system dy-
namics more accurately than a model found with a short identification length. However, the
costs of a diagnosis should be kept as low as possible. Due to the degraded performance of
the system, e.g. operational cost increase and therefore the identification experiment should
be kept as short as possible.
To find a satisfactory identification length we will perform simulations. The same discrete
closed-loop system as shown in Fig. 4-1 with corresponding discrete models, set-points,
stochastic signals are used as discussed in the previous section about performance monitor-
ing. In the performance diagnosis the direct closed-loop method is used to perform a short
closed-loop identification experiment. Input excitation signals are added to the inputs u1(t)
and u2(t) of the system. These excitation signals are chosen to be white-noise signals with
both a variance of σ2

r = 1 · 10−2. The identification length Nid will be varied by the following
set Nid = [100, 200, 300, 400, 500, 1000, 2000] data points. For each identification length a
simulation is performed and data ZNid = [u(t), y(t)|t = 0, ..., Nid−1] is collected. As discussed
in section 2-3-2, to estimate a model a full-order model structure is used and the criterion as
given in (2-14) is considered.

According to Ref. [11], if an estimated parameter has a variance which is an order of
magnitude smaller, the estimated parameter is required. In table 4-2 the values of each param-
eter is given including the variance for each parameter. This is shown for every identification
length2 and only for a disturbance change. It is found that for each identification length and
for each parameter the order is at least of a magnitude smaller. It seems that the smallest
identification length can be used. This was not expected and therefore we will also take into ac-
count that a decision is based on the closed-loop performance J

(
C(z), G(z, θ̂Nid

), H(z, θcom)
)

with the estimated model H(z, θcom) as given by (3-7)) . To take the closed-loop performance
into account a different analysis will be performed.

The likeliness of opting for the correct decision depends on the accuracy of the estimated
model. An estimated model found with a larger identification length could imply that the
made decision is more likely to be true. Therefore, we try to find a relation between the
identification length and the number of correctly made decisions. We use exactly the same
simulation set-up as for the previous identification experiments. This time, the identification
experiment for each identification length is repeated 100 times and the identification exper-
iments are performed for the situation a plant change occurs and for the situation that a
disturbance change occurs. Then we have chosen to use the decision rule from (2-16) which
is only based on the closed-loop performance with the estimated model G(z, θ̂Nid

). Finally,
it is verified for each simulation whether the estimated model is located in or outside the set
Dadm to make a decision.

In table 4-3, both causes are shown for each considered identification length. For each
identification length 100 simulations are performed and the number of correctly made deci-
sions are shown. As expected, when using a small identification length more wrong decisions
are made. As shown in table 4-2, the variance which correspond to each of the estimated pa-
rameters vary quite much between each identification length. For short identification lengths
the true system can not be described accurate enough by the estimated model each time a
model is estimated. Therefore, there could be quite a difference in performance of the closed-
loop system with the estimated model w.r.t. the closed-loop performance of the true system.

2Except for the identification length of Nid = 2000, because it was found that a smaller identification length
will suffice.
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Table 4-2: Values of each parameter is shown which are contained in the estimated parameter
vectors. Also, the variance of each parameter is given for all identification lengths. This is shown
for a disturbance change.

Parameters . Nid =100 Nid =200 Nid =300
b̄1,1 0.0124 ± 3.63e-06 0.0122 ± 1.62e-06 0.0122 ± 9.69e-07
b̄1,2 -0.0108± 3.30e-06 -0.0107 ± 1.49e-06 -0.0109 ± 9.03e-07
b̄2,1 0.0137 ± 3.74e-06 0.0136 ± 1.68e-06 0.0139 ± 1.06e-06
b̄2,2 -0.0149± 3.57e-06 -0.0146 ± 1.61e-06 -0.0147 ± 1.03e-06
f̄1,1 -0.9445± 2.66e-03 -0.9657 ± 4.73e-04 -0.9787 ± 1.18e-04
f̄1,2 -0.8981 ± 7.46e-03 -0.9524 ± 1.17e-03 -0.9732 ± 1.87e-04
f̄2,1 -0.9079 ± 4.09e-03 -0.9256 ± 1.57e-03 -0.9412 ± 8.26e-04
f̄2,2 -0.9679 ± 1.37e-03 -0.9800 ± 1.64e-04 -0.9831 ± 7.34e-05
Parameters Nid =400 Nid =500 Nid =1000
b̄1,1 0.0122 ± 6.99e-07 0.0122 ± 5.29e-07 0.0117 ± 2.35e-07
b̄1,2 -0.0113 ± 6.41e-07 -0.0112 ± 4.77e-07 -0.0112 ± 2.15e-07
b̄2,1 0.0142 ± 7.32e-07 0.0144 ± 5.70e-07 0.0142 ± 2.45e-07
b̄2,2 -0.0145 ± 6.95e-07 -0.0145 ± 5.36e-07 -0.0146 ± 2.30e-07
f̄1,1 -0.9815 ± 6.17e-05 -0.9817 ± 4.27e-05 -0.9842 ± 1.33e-05
f̄1,2 -0.9761 ± 1.13e-04 -0.9797 ± 6.26e-05 -0.9836 ± 1.34e-05
f̄2,1 -0.9694 ± 1.82e-04 -0.9690 ± 1.26e-04 -0.9851 ± 1.06e-05
f̄2,2 -0.9836 ± 3.20e-05 -0.9847 ± 2.27e-05 -0.9855 ± 7.77e-06

This difference could imply that the true system is located inside the set Dadm whereas the
estimated model is outside the set (or vice versa). A quite large difference is found for the
number of correctly made decisions for small identification lengths Nid = 100 or 200 between
plant and disturbance changes. A plant change is caused by a rotation of the inputs of the
system. In Fig. 3-7 the quite small difference is shown between the true and the rotated plant.
With a small identification length the variance is quite large which implies that it is more
likely to estimate models that are close to the true (not rotated) system. Therefore, more
wrong decisions can be made when the identification length is chosen to short. Furthermore,
it can be seen from the data that for large identification lengths the number of correctly made
decisions tends to 100%. This is explained by the fact that when the identification length
tends to infinity the variance tends to zero and the true system can exactly be described by
the estimated model, i.e., G(z, θ̂Nid

)→ G0(z). This implies that the closed-loop performance
will also be the same and thus the number of correct decisions increase to 100%. This is
reached near an identification length of Nid = 2000 data samples, which is quite large for a
short performance diagnosis identification experiment. Therefore, in a more or less heuristic
way we have chosen a value of near 95% of correct decisions is sufficient. This corresponds
to an identification length of around Nid = 400 data samples which is used to keep diagnosis
costs low. By making use of the found identification length, in the next section the quality
of the made decision will be assessed and various decision rules will be compared.

Master of Science Thesis S.J. Burger 1367110



50 Numerical Results

Table 4-3: For both causes and each considered identification length Nid, the number of correctly
made decisions are shown for 100 simulations for each identification length. The decision is based
on decision rule (2-16).

Cause\ Identification length Nid 100 200 300 400 500 1000 2000
Plant change 55 73 84 92 92 96 99
Disturbance change 86 91 94 97 99 100 100

4-3-2 Increase Confidence of Making the Correct Decision by Comparison of
Three Decision Rules

At this moment we have discussed the performance monitoring method and the choice
of the identification length. As explained in section 2-3-2 and 2-3-3 various decision rules are
introduced. These decision rules will be compared to find the largest confidence to opt for the
correct decision. To be able to make these comparisons we will consider the discrete closed-
loop system as shown in Fig. 4-1 with controller C(z), plant model G0(z) and disturbance
model H0(z) as given by (3-6), (3-5) and (3-7) respectively. The set-points are fixed at
r1,1(t) = 0.95 and r1,2(t) = 0.05. Monte Carlo simulations are performed. Stochastic noise
is applied to the system via the signals e1(t) and e2(t) with a variance of 3.75 · 10−5. In
250 simulations an identification experiment is performed on a system where a plant change
occurred and in 250 simulations an identification experiment is performed on a system where
a disturbance change occurred. A closed-loop identification experiment is performed exactly
the same as explained in the previous section, but this time only the chosen identification
length of Nid = 400 data points is used. For estimation of a model a full-order model structure
is used and the parameters are estimated with the chosen criterion as given by (2-14).

In section 2-3-2 and 2-3-3, three decision rules are discussed which will be compared
to investigate for which decision rule the largest percentage is found of opting a hypothesis
correctly. The decision rule based on the estimated model (only) is given by:
Decision rule 1:

G(z, θ̂Nid
) ∈ Dadm → pick H0

G(z, θ̂Nid
) /∈ Dadm → pick H1

The second decision rule is based on the proposed heuristic method (only) and is given by:
Decision rule 2: {

F̂ rout = [0, ν)% → pick H0
F̂ rout = [ν, 100]% → pick H1

The third decision rule is a combination of the previous two decision rules. First, the estimated
model is considered and dependent on whether the estimated model is located in or outside
set Dadm, the decision could be based on the heuristic method as given by:
Decision rule 3:

G(z, θ̂Nid
) ∈ Dadm → pick H0

G(z, θ̂Nid
) /∈ Dadm

{
F̂ rout < ν%
F̂ rout ≥ ν%

→ pick H0
→ pick H1
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With the first and third decision rules the decision is directly based on the performance of the
closed-loop system

{
C(z), G(z, θ̂Nid

), H(z, θcom)
}

3 as computed by Eq. (2-7). For the third
decision rule when G(z, θ̂Nid

) /∈ Dadm and for the second decision rule, the decision is based
on the heuristic method as discussed in section 2-3-3 where F̂ rout also makes use of the set
Dadm.

To asses the quality of the diagnosis method, we will investigate how often an (in)correct
decision is made. The percentage of opting a hypothesis incorrectly can be computed by

Princorrect = Pr(H1|H0)Pr(H0) + Pr(H0|H1)Pr(H1). (4-3)

Here Pr(H1|H0) represents the percentage that is found when opting for hypothesis H1
while H0 is true. The percentage Pr(H0|H1) represents vice versa of Pr(H1|H0), because
now hypothesis H0 is chosen while H1 is true. Furthermore, the percentages of opting for the
incorrect and correct hypotheses are given by Princorrect and Prcorrect (total of both plant and
disturbance changes). Here, Prcorrect = 1− Princorrect. The percentage Pr(H0) corresponds
to Pr(H0) = 1− Pr(H1) and represents how often a plant or disturbance change occurs.
Furthermore, the ratio of how often a plant or disturbance change occurs is varied. This ratio
is called the plant to disturbance ratio which is varied by the following set:

Plant to Disturbance ratio Pr(H1)
Pr(H0) = [90/10, 70/30, 50/50, 30/70, 10/90]% (4-4)

The percentages Pr(H0) and Pr(H1) from Eq. (4-3) will thus be varied. It is known that a
change in disturbance characteristics occurs more often in a binary distillation column and
a small ratio is obtained. However, when this is not the case the percentages of opting a
hypothesis (in)correctly is different. Therefore, it is also investigated what will happen when
the plant to disturbance ratio will be varied.

4-3-2-1 Decision Rule One

In this section we consider decision rule one which implies that the decision is based on
the performance of the closed-loop system

{
C(z), G(z, θ̂Nid

), H(z, θcom)
}
which is computed

by Eq. (2-7). The performed simulations are used to determine how often an erroneous situ-
ation occurs, i.e., we want to determine Pr(H1|H0) and Pr(H0|H1). First, the performance
is computed with the estimated model in each of the 500 simulations. The closed-loop perfor-
mance of 250 simulations where a plant change occurred are shown in Fig. 4-10a and for the
250 simulations where a disturbance change occurred in Fig. 4-10b. Also the threshold value
β is given in these figures. Here, it is seen that for a plant change in most simulations the
performance is computed between the interval of [1.35 · 10−4, 4.0 · 10−4]. It is detected how
often an erroneous situation occurs. For example, from the 250 simulations where a plant
change occurred, 22 times a wrong decision was made due to a measured performance which
is smaller than β and thus it was found that G(z, θ̂Nid

) ∈ Dadm. This erroneous percentage
is computed by Pr(H0|H1) = 22

250 = 0.088. Thus in 8.8% of the simulations the closed-loop
performance was smaller than β which indicates that in these simulations a wrong hypothesis
is chosen. Note that it is preferred to opt for a disturbance change while a plant change oc-
curs instead of the opposite as explained in section 1. Furthermore, in Fig. 4-10b it is found

3Here, H(z, θcom) is given by (3-7)
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(a) Change of plant dynamics. (b) Change in disturbance characteristics.

Figure 4-10: The closed-loop performance is given for the estimated model G(z, θ̂Nid
), the

original noise characteristics H(z, θcom) and controller C(z). This is shown for 250 simulations
for each of the causes. Decision rule one can be instantly applied with these results.

Table 4-4: With decision rule one the percentages are given when opting the wrong hypothesis
for each cause and percentages are given when opting for incorrect and correct hypotheses (total
correct and incorrect choices for both causes; plant and disturbance change). This is done for
different ratios of how often a plant or disturbance change occurs.

Ratio Plant/Dist change Pr(H0|H1) Pr(H1|H0) Princorrect Prcorrect
90/10 0.088 0.044 0.084 0.916
70/30 0.088 0.044 0.075 0.925
50/50 0.088 0.044 0.066 0.934
30/70 0.088 0.044 0.057 0.943
10/90 0.088 0.044 0.048 0.952

that most of the computed closed-loop performances, when a disturbance change occurred,
are within the interval [1.1 · 10−4, 1.7 · 10−4]. In this case from the 250 simulations where
a disturbance change occurred in only 11 simulations the performance was measured to be
larger than β which implies that G(z, θ̂Nid

) /∈ Dadm. This erroneous percentage is computed
by Pr(H1|H0) = 11

250 = 0.044. Thus in 4.4% of the 250 simulations it was found that a wrong
decision is made. In these cases we do not want to opt for a plant change due to the high costs
which arise. Therefore, this percentage needs to be decreased which can possibly achieved
with the second or third decision rule.

The erroneous decisions can be found in table 4-4 for each plant to disturbance ratio
Pr(H0)
Pr(H1) . The percentage Pr(H0|H1) does not equal Pr(H1|H0) and by varying the plant to
disturbance ratio Pr(H0)

Pr(H1) in Eq. (4-3), a difference arise in Princorrect for each plant to dis-
turbance ratio as shown in table 4-4. Finally, the percentage of correctly made decisions is
found by Prcorrect = 1− Princorrect. Furthermore, it is shown in table 4-4 that a disturbance
change is less often detected incorrectly because the percentage Pr(H1|H0) is smaller than
Pr(H0|H1). This is mainly caused by the choice of β. When β was chosen to be slightly
smaller, from Figs. 4-10a and 4-10b it can be seen that more plant changes will be cho-
sen correctly and more disturbance changes will be chosen incorrectly, i.e., the percentage
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Table 4-5: With decision rule two the percentages are given when opting for the wrong hypothesis
for each scenario and percentages are given when opting for incorrect and correct hypotheses (both
plant and disturbance changes). This is done for different ratios of how often a plant or disturbance
change occurs. The threshold value(s) ν is/are given at the minimum values of Princorrect (and
maximum values of Prcorrect).

Ratio Plant/Dist change ν% Pr(H0|H1) Pr(H1|H0) Princorrect Prcorrect
90/10 54 - 55 0.016 0.14 0.028 0.972
70/30 65 - 67 0.036 0.06 0.043 0.957
50/50 65 - 74 0.064 0.032 0.048 0.952
30/70 78 - 82 0.100 0.004 0.033 0.967
10/90 81 - 82 0.112 0 0.011 0.989

Pr(H0|H1) will decrease and that Pr(H1|H0) will increase.
A minimum percentage of opting a hypothesis correctly is found of 91.6% for the largest

plant to disturbance ratio of 90/10 and a maximum percentage of opting a hypothesis cor-
rectly of 95.2% is found for the smallest plant to disturbance ratio of 10/90.

It is preferred to increase the confidence to opt for the correct hypothesis and therefore
we will make use of the heuristic method and the corresponding decision rules two and three.

4-3-2-2 Decision Rule Two

In case of decision rule two the decision is only based on the heuristic method as discussed
in section 2-3-3 and the percentage F̂ rout as computed by Eq. (2-21). This percentage was
based on the closed-loop performance

{
C(z), G(z, θ(i)), H(z, θcom

}
of i = 1...n constructed

models around the estimated model. In each simulation a different percentage F̂ rout of models
is found which are outside the set Dadm and the number of incorrectly made decisions is based
on the threshold value ν. Therefore, we vary threshold ν from 0 to 100% and compute at
each integer value in between this interval, the percentages of the incorrectly made decisions
Pr(H1|H0) and Pr(H0|H1). For example, from the 250 simulations where a plant change is
applied, at a value ν = 50%, in four simulations a wrong decision is made because F̂ rout < ν.
Thus the percentage Pr(H0|H1) = 4

250 = 0.016 at threshold ν = 50%. The computed value
can be found in Fig. 4-11, at ν = 50%, by the yellow/black dotted line which represents the
percentage Pr(H0|H1). Furthermore, the percentage Pr(H1|H0) is given by the cyan/black
dotted line and is computed in the same way as Pr(H0|H1) and represents the percentage of
incorrectly made decisions when a disturbance change occurred. The remaining lines repre-
sent the percentage of the correctly made decisions Prcorrect for all five plant to disturbance
ratios at all values ν on the interval of [0, 100].

The decreasing shape of the cyan/black dotted percentage line Pr(H1|H0) from 1 to 0
in Fig. 4-11 can be explained by the fact that the decision rule is based on percentage F̂ rout
which on its turn depends on ν. When threshold is ν = 0% it is found that fraction F̂ rout
cannot be smaller than ν and thus there is no possibility to opt for hypothesis H0 and thus
Pr(H1|H0) = 1. When increasing the threshold ν it is found that in more simulations a
correct decision is made and at ν = 81% in all 250 simulations where a disturbance change is
applied a correct decision is made which implies that Pr(H1|H0) = 0.
For a plant change the percentage of incorrectly made decisions Pr(H0|H1), as shown in Fig.
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Figure 4-11: In this plot the percentage of opting a hypothesis correctly or incorrectly is shown.
This is plotted against the minimum percentage of models that should lie outside set Dadm, i.e.,
threshold value ν. The shown values are found by making use of decision rule two.

4-11 by the yellow/black dotted line, increases when ν increases. This is because we opt for a
disturbance change (hypothesis H0) when it is found that F̂ rout < ν. When ν = 0%, all plant
changes are chosen correctly because in this case it is not possible to opt for a disturbance
change.

To explain why the percentage Pr(H1|H0) decreases slower than that percentage Pr(H0|H1)
increases, the following will be considered4. An error is made in case of a disturbance change
when F̂ rout ≥ ν. The slow decreasing behaviour of Pr(H1|H0) implies that in more simula-
tions a percentage F̂ rout is found which are larger than zero (somewhere between 10 and 50
%). This can be caused by the fact that F̂ rout is based on the number of constructed models
G(z, θ(i)) which are outside the set Dadm. This is only the case when these models are located
on the edge of set Dadm or when the variance of the estimated model is large and the con-
structed models are located quite some distance from the estimated model (and thus achieve a
performance larger than β). The percentage Pr(H0|H1) can decrease faster by decreasing the
variance of the estimated parameters which can be achieved by increasing the identification
length or increasing the power of the excitation signal during the re-identification experiment.

The percentages Prcorrect as found in Table 4-5 are computed by 1 − Princorrect, where
Princorrect is computed by Eq. (4-3), and correspond to the maximum percentages of correctly

4These percentages are shown by the cyan/black dotted line and by the yellow/black dotted line in Fig.
4-11 respectively.
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made decisions as shown in Fig. 4-11 for each plant to disturbance ratio. It is the maximum
of the blue solid, magenta dotted, red dashed-dotted, cyan dashed and green solid-dotted
lines. The threshold values ν and percentages Pr(H1|H0) and Pr(H0|H1) as found in Table
4-5 are used to compute the maximum percentages Prcorrect as found in Fig. 4-11, e.g., the
blue solid line with plant to disturbance ratio of 10/90, has its maximum of 0.989 and has
erroneous percentages of Pr(H1|H0) = 0 and Pr(H0|H1) = 0.112 at ν = 81 ∼ 82%. (see
Table 4-5)

For a plant to disturbance ratio of 90/10, the minimum incorrect percentage is Princorrect =
0.028 as computed by Eq. (4-3) and is found for a threshold value ν = 55% and percent-
ages Pr(H1|H0) = 0.016 and Pr(H0|H1) = 0.14. For the smallest plant to disturbance
ratio of 10/90, it is found that the minimum incorrect percentage is at Pr(H1|H0) = 0 and
Pr(H0|H1) = 0.112 with ν = 81% and is given by Princorrect = 0.011.
Note that the percentages Prcorrect from large to small plant to disturbance ratios first de-
creases and for smaller plant to disturbance ratios of 50/50 the percentages increases. This
is caused by the decreasing and increasing behaviour of the percentages Pr(H1|H0) and
Pr(H0|H1) and more or less same increasing and decreasing behaviour of the percentages
Pr(H0) and Pr(H1) to compute Princorrect as given by Eq. (4-3).

4-3-2-3 Decision Rule Three

With the third decision rule we combine the first and second decision rules. The decision
is first based on the performance of the closed-loop system

{
C(z), G(z, θ̂Nid

), H(z, θcom)
}
.

When the performance, computed with Eq. (2-7), is larger than the threshold value β only
than the decision is based on the heuristic method as discussed in section 2-3-3, i.e., decision
rule two. Therefore, the expectations are that with the third decision rule the confidence
of opting for the correct hypothesis will increase w.r.t. decision rule one. Note that when
variable ν = 0% it implies that decision rule three equals decision rule one (because F̂ rout
can not be smaller than zero and thus when G(z, θ̂N ) /∈ Dadm it is not possible to opt for
hypothesis H0).

Again, at each threshold value ν on the interval [0, 100]% the incorrectly made percent-
ages Pr(H1|H0) and Pr(H0|H1) are computed based on decision rule three. For example,
in 250 simulations a disturbance change is applied. At an arbitrarily chosen threshold value
ν = 30%, in eleven simulations a wrong decision is made due to the fact that the closed-loop
performance is larger than β, thus G(z, θ̂Nid) /∈ Dadm and due to F̂ rout ≥ ν. The percentage
is given by 11

250 = 0.044 = 4.4% which represents Pr(H1|H0) and is shown in Fig. 4-12 by
the cyan/black dotted line at ν = 30%. Furthermore, the yellow/black dotted line represents
the percentage Pr(H0|H1) which represent the number of incorrectly made decisions when a
plant change occurred. In the same way as for decision rule two, for each of the plant to dis-
turbance ratios the total percentage of correctly and incorrectly made decisions Prcorrect and
Princorrect are computed. The maximum and minimum of those percentages respectively, can
be found in Table 4-6. The threshold values ν and percentages Pr(H1|H0) and Pr(H0|H1)
are given to compute the minimum and maximum percentages Princorrect and Prcorrect re-
spectively. Prcorrect is shown in Fig. 4-12 for all plant to disturbance ratios as shown by the
blue solid, magenta dotted, red dashed-dotted, cyan dashed and green solid-dotted lines and
for all threshold values ν.

The shape of the cyan/black dotted percentage line Pr(H1|H0) in Fig. 4-12 is totally
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Figure 4-12: In this plot the percentage of opting a hypothesis correctly or incorrectly is shown.
This is plotted against the minimum percentage of models that should lie outside set Dadm, i.e.,
threshold value ν. The shown values are found by making use of decision rule three.

different w.r.t. Fig. 4-11. The maximum percentage of opting a disturbance change incor-
rectly is given by only 4.4% for an interval ν = [0, 35]% and slightly decreases for ν ≥ 35%.
In many simulations the performance of the closed-loop system with the estimated model
G(z, θ̂Nid

) is found to be smaller than β which implies that G(z, θ̂Nid
) ∈ Dadm and hypoth-

esis H0 is chosen. Again, at ν = 80% the percentage Pr(H1|H0) = 0 which was also found
for decision rule two. This is the same because the decrease in Pr(H1|H0) depends on the
threshold ν and in none of the 250 simulations where a disturbance change is applied, a per-
centage larger than F̂ rout = 80% is found. The shape of the yellow/black dotted percentage
line Pr(H0|H1) in Fig. 4-12 almost corresponds to the yellow/black dotted line in Fig. 4-11.
Due to the fact that first a decision is based on the closed-loop performance with the esti-
mated model, it is found that for 22 of the 250 simulations a wrong decision is made. Thus
Pr(H0|H1) = 22

250 = 0.088 = 8.8% as shown in Fig. 4-12 for ν = [0, 55]%. The second wrong
decision which can be made is by finding a percentage F̂ rout which is smaller than ν. When
choosing a threshold ν ≥ 55% more wrong decisions are made as shown by the increasing
yellow/black dotted line in Fig. 4-12.

The threshold value is the most important variable for which the minimum percentage
of incorrectly made decisions Princorrect can be found. For a plant to disturbance ratio equal
or larger than 50/50 it is found that the minimum incorrectly made decisions are made for a
threshold value which is chosen between the interval of [48, 55]%. At these threshold values

S.J. Burger 1367110 Master of Science Thesis



4-3 Performance Diagnosis 57

Table 4-6: With decision rule three the percentages are given when opting the wrong hypothesis
for each scenario and percentages are given when opting for incorrect and correct hypotheses
(both plant and disturbance changes). This is done for different ratios of how often a plant
or disturbance change occurs. The threshold value(s) ν is/are given at the minimum values of
Princorrect (and maximum values of Prcorrect).

Ratio Plant/Dist change ν% Pr(H0|H1) Pr(H1|H0) Princorrect Prcorrect
90/10 48 - 55 0.088 0.032 0.083 0.918
70/30 48 - 55 0.088 0.032 0.071 0.929
50/50 48 - 55 0.088 0.032 0.060 0.940
30/70 80 0.152 0 0.046 0.954
10/90 79 - 81 0.152 0 0.015 0.985

the percentages are Pr(H1|H0) = 0.032 and Pr(H0|H1) = 0.088. For plant to disturbance
ratios larger than 50/50 the number of incorrectly made decisions when a plant change oc-
curs is more important, due to the fact that a plant change occurs more often. Therefore,
with the results as found with decision rule three, Pr(H0|H1) should be as small as possible
which is found for threshold values between [0, 55] %. Then it is verified at which of the found
threshold values ν Pr(H1|H0) is as small as possible. When the plant to disturbance ratio
decreases (smaller than 50/50) a disturbance change occurs more often. For that reason it
is more important that Pr(H1|H0) is as small as possible which it is for threshold values
between ν = [80, 100]%. Secondly, the smallest value of Pr(H0|H1) is found for threshold
value near ν = 80%. It can be noticed that Pr(H0|H1) is for each plant to disturbance ratio
larger than Pr(H1|H0). This is mainly caused by the heuristic method which will be used
when G(z, θ̂Nid

) /∈ Dadm. It is then still possible to opt for hypothesis H0. On the other hand,
it will be more likely to make a wrong decision when a plant change occurs because with this
decision rule hypothesis H1 can only be chosen when G(z, θ̂Nid

) /∈ Dadm and F̂ rout ≥ ν.

4-3-2-4 Comparison of the Decision Rules

As expected, with the first decision rule the smallest confidence is found of opting a
hypothesis correctly for each of the plant to disturbance ratios and compared to decision
rules two and three. As explained in section 2-3-2, various erroneous decisions can occur by
making a decision which is only based on the estimated model G(z, θ̂Nid

).
To increase the confidence of opting for the correct hypothesis and decrease the number

of erroneous situations, a heuristic method was proposed as given in section 2-3-3. With
decision rule two it is, for each plant to disturbance ratio, found that the confidence increased
of opting for the correct decision compared to decision rule one. There is an increase of
1.8% for a plant to disturbance ratio of 50/50 up to an increase of 5.6% for the largest plant
to disturbance ratio of 90/10. Thus by making use of the heuristic method as explained in
section 2-3-3 and choose threshold value ν, the confidence Prcorrect can be increased.

The first and second decision rules are combined to construct decision rule three. With
the third decision rule we created a preference to opt for hypothesis H0. It is found that by
creating this preference, the confidence to opt for the correct decision decreases w.r.t. the
second decision rule. The decrease is caused because the decision is again at first instance
based on the closed-loop performance of the estimated model only. When G(z, θ̂Nid

) /∈ Dadm
the heuristic method is used. The reduction of confidence was found by the upward shift
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of 8.8% of percentage Pr(H0|H1) as shown by the yellow/black dotted line in Fig. 4-12
w.r.t. Fig. 4-11. Therefore, for large plant to disturbance ratios (≥ 50/50), the minimum
incorrectly made decisions as computed by Eq. (4-3) is larger for the results as found in Table
4-6 compared to decision rule two and corresponding Princorrect in Table 4-5. For the plant
to disturbance ratios < 50/50 the increase of Pr(H0|H1) is of less importance due to the fact
that more often a disturbance change occurs (Pr(H1) < Pr(H0)). Therefore, the confidence
is only a slightly smaller for small plant to disturbance ratios compared to decision rule two.
The slightly smaller confidence is shown by Prcorrect in Table 4-6 compared to Prcorrect from
decision rule two and Table 4-5.

Finally, it can be seen that a decision based on the performance of the closed-loop system{
C(z), G(z, θ̂Nid

), H(z, θcom)
}

only, gives less confidence of opting for the correct decision
compared to decision rules two and three. Also, for plant to disturbance ratios ≥ 50/50, deci-
sion rule three has only a slightly larger confidence of making the correct decision compared
to the first decision rule. Furthermore, the third decision rule is compared with the first
decision rule and it is found that an increase of 1 to 3% is obtained for plant to disturbance
ratios < 50/50. Therefore, decision rule three is preferred above decision rule one. With
decision rule two quite more confidence is found for plant to disturbance ratios ≥ 50/50 and
only slightly more confidence is found for ratios of < 50/50. This result shows that making
use of the heuristic method only, the largest confidence is achieved of opting for the correct
decision for each plant to disturbance ratio. However, it is important to have Pr(H1|H0) as
small as possible (near zero). This is not the case for decision rule two for plant to disturbance
ratios of ≥ 50/50. For that reason the chosen decision rule depends on a trade-off between
having less confidence of making the correct decision and making more erroneous decisions
when a disturbance change occurs. Note that this trade-off is made for plant to disturbance
ratios of ≥ 50/50. For smaller plant to disturbance ratios (which mostly occur in a system),
decision rule two achieves a slightly larger confidence than decision rule three and is preferred
to be used when applying the diagnostic tools to a MIMO system such as a binary distillation
column.
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Chapter 5

Conclusions and Future Work

In this thesis existing methodologies have been applied to a simulation model of a (MIMO)
binary distillation column to monitor the performance on-line, detect a performance drop and
find the cause of the performance drop. Also, the confidence of the made decision was anal-
ysed. A problem which can occur in model-based control systems has been discussed. The
main concern is the decreasing performance of MIMO systems due to the occurrence of a
control-relevant plant change or variations in disturbance characteristics over time.

The performance monitoring method of Ref. [1] is based on past measurements of the
controlled outputs. The past measurements were used to estimate the power difference from
the measured outputs and the corresponding set-points. A control-relevant plant or distur-
bance change increases the variance of the controlled outputs which implies that the difference
between the set-point and output increases (and causes a decrease in performance). Further-
more, it was discussed that the number of past measurements are of importance, i.e., the
window size is important. Using a small window size implies that a small number of data
is used. The performance measure will be very sensitive with a small window and could
give many false alarms, i.e., detection errors. When using a large window size, the power is
averaged out for a longer period of time and it takes more time from the moment a change
occurs until a performance drop is detected (detection time).

With the performance diagnosis method of Mesbah et. al. [2] a distinction is made
between the considered causes by making use of hypothesis testing. Hypothesis H0 repre-
sents a disturbance change and hypothesis H1 a control-relevant plant change. Then a region
Dadm is considered that contains all plant dynamics with which a satisfactory closed-loop
performance can be achieved with the existing controller and under the original disturbance
characteristics. Since the true dynamics are unknown a short closed-loop identification will
be performed. On basis of the closed-loop performance with the estimated model one of the
hypotheses is chosen. Furthermore, a heuristic method was used as discussed in section 2-3-3
and an alternative decision rule (given by (2-22)) is introduced to compare the confidence of
the made decision. Finally, a third decision rule consists of a combination of the first and
second decision rules as given by (2-23). To compare the decision rules, the confidence of the
made decision is assessed by performing Monte Carlo simulations.

With the performance monitoring method of Ref. [1] and by applying a threshold on
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the performance, a control-relevant plant change or variations in disturbance characteristics
as discussed in section 3-3-3-1 degrades the performance. The performance then violates the
threshold value which implies that such a change can be detected correctly each time one of
these changes arises. It is discussed that the choice of the window size depends on a trade-off
between the detection time and the detection errors. It is found that the performance measure
having a window size of around 400 data points detects almost no errors and have a relatively
short detection time for the MIMO binary distillation column. Note that a different window
size can be chosen depending on the choice of the importance of one of the issues (detection
errors and detection time).

To investigate how confident we are of making the correct decision, with the performance
diagnosis methodology of Mesbah et. al. [2] various decision rules were compared. This is
done to find the largest confidence of opting for the correct hypothesis. It was found that
with the decision rule, which is based on the heuristic method (2-22), the largest confidence
is achieved to opt for the correct hypothesis. In case that much more disturbance changes
occur over time compared to plant changes, 98.9% of the decisions will be chosen correctly
which is a quite satisfactory result.

It can be concluded that the performance monitoring method is able to measure the
performance on a discrete basis and is able to detect any of the considered performance dete-
riorations. It is found that the diagnostic tools, function sufficiently within a MIMO system
such as a binary distillation column due to the satisfactory confidence of opting for the correct
hypothesis.

In this thesis only one classical performance monitoring method is applied to measure
the performance. In case of a model-based control system, it may occur that a different kind
of performance monitoring method will give a more accurate measure or possibly a faster
detection time and less detection errors. One on-line monitoring method for example makes
use of measured output data and data of the control input signals (i.e., an LQG objective
function) as explained in Ref. [6] or even another method can be used where a trade-off is
made between operational costs and a so-called constraint violation cost as explained in Ref.
[5]. In future work it is possible to compare various performance monitoring methods to find
out which method performs the best in a MIMO system such as a binary distillation column
when considering the detection time and detection errors.

It is argued that the confidence of the made decision in the performance diagnosis partly
depends on the accuracy of the estimated model and partly on the chosen decision rule. Be-
sides increasing the confidence of the decision, economical cost should be kept as small as
possible. What we have done is performing a quite costly re-identification experiment by ex-
citing the whole frequency range. By only exciting the control-relevant dynamics it is possible
to decrease economical costs. It is possible that it will affect the length of the excitation or the
power of the excitation signal. Therefore, in future work it can be investigated whether the
same kind or a higher confidence can be obtained (compared to the results in this thesis), but
with less costly excitation signals (exciting only control-relevant dynamics and using shorter
identification lengths and/or a lower excitation power).
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Appendix A

Derivations

A-1 Closed-loop outputs

The open-loop outputs y(t), the input of system G(z, θ0) and the errors ε(t) are given by

y(t) = G(z, θ0)u(t) +H(z, θ0)e(t). (A-1)
u(t) = C(z)ε(t). (A-2)
ε(t) = r1(t)− y(t). (A-3)

Substitute Eq. (A-3) into Eq. (A-2) which gives

u(t) = C(z)(r1(t)− y(t)). (A-4)

Then substitute Eq. (A-4) into Eq. (A-1) which gives

y(t) = G(z, θ0)C(z)(r1(t)− y(t)) +H(z, θ0)e(t) (A-5)

and rewrite y(t) to the left hand side

(I +G(z, θ0)C(z))y(t) = G(z, θ0)C(z)r1(t) +H(z, θ0)e(t). (A-6)

Finally, we obtain

y(t) = (I +G(z, θ0)C(z))−1(G(z, θ0)C(z)r1(t) +H(z, θ0)e(t)). (A-7)

A-2 Closed-loop inputs

For the closed-loop inputs we will substitute Eq. (A-1) and Eq. (A-3) into Eq. (A-2) which
gives:

u(t) = C(z) (r1(t)−G(z, θ0)u(t)−H(z, θ0)e(t)) . (A-8)
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Then rewrite u(t) to the left hand side

(I + C(z)G(z, θ0))u(t) = C(z)r1(t)− C(z)H(z, θ0)e(t). (A-9)

Finally, we obtain the input signals by

u(t) = (I + C(z)G(z, θ0))−1C(z)r1(t)− (I + C(z)G(z, θ0))−1C(z)H(z, θ0)e(t). (A-10)

A-3 Closed-loop error signal

Start with y(t) from Eq. A-7 and subtract r1(t) gives:

y(t) = (I +G(z, θ0)C(z))−1(G(z, θ0)C(z)r1(t) +H(z, θ0)e(t))
y(t)− r1(t) = (I +G(z, θ0)C(z))−1((G(z, θ0)C(z)− I)r1(t) +H(z, θ0)e(t))

= (I +G(z, θ0)C(z))−1(G(z, θ0)C(z)− (I +G(z, θ0)C(z)))r1(t)
+(I +G(z, θ0)C(z))−1H(z, θ0)e(t)

= −(I +G(z, θ0)C(z))−1r1(t) + (I +G(z, θ0)C(z))−1H(z, θ0)e(t)(A-11)

A-4 Closed-loop inputs with excitation signal

In the open-loop situation the inputs are given by

u(t) = C(z)ε(t) + rex(t). (A-12)

To obtain the closed-loop inputs we substitute Eq. (A-1) and Eq. (A-3) into Eq. (A-2) which
gives:

u(t) = C(z) (r1(t)−G(z, θ0)u(t)−H(z, θ0)e(t)) + rex(t). (A-13)

Replace C(z)r1(t) + rex(t) by r(t) and write u(t) to the left hand side

(I + C(z)G(z, θ0))u(t) = r(t)− C(z)H(z, θ0)e(t). (A-14)

The outputs with excitation signal are then given by

u(t) = (I + C(z)G(z, θ0))−1r(t)− (I + C(z)G(z, θ0))−1C(z)H(z, θ0)e(t). (A-15)

A-5 MIMO covariance matrix

Substitute Eqs. (2-2) and (2-3) in Eq. (2-12) the columns and the transpose of the columns
can be defined for i = 1, ...,m by

υTi (t, θ0) =
dȳ(t, θ)
dθ

= F ir(t, θ0)r(t) + F ie(t, θ0)e(t), (A-16)

υi(t, θ0) = vec(F ir(t, θ0))(Im ⊗ r(t)) + vec(F ie(t, θ0))(Im ⊗ e(t)). (A-17)
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Here, ⊗ represents the tensor product of two vector spaces and vec(.) represents a vectorization
of a matrix. The matrix Υ is given by

Υ(t, θ0) =


υ1(t, θ0)
υ2(t, θ0)

...
υm(t, θ0)

 (A-18)

Furthermore, F ir(t, θ0) and F ie(t, θ0) are

F ir(t, θ0) = H0(z)−1dG(z, θ)
dθi

S(z, θ) i = 1, ...,m (A-19)

F ir(t, θ0) = H0(z)−1
(
dH(z, θ)
dθi

− dG(z, θ)
dθi

S(z, θ)C(z)H0(z)
)

(A-20)
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Abbreviations and Nomenclature

Table A-1: Abbreviations

BJ Box-Jenkins
CV/PV Controlled/Process Variable
DV Disturbance Variable
MIMO Multiple-Input Multiple-Output
MPC Model Predictive Control
MV Manipulated Variable
RGA Relative Gain Array
SISO Single-Input Single-Output

Table A-2: Nomenclature

LATEX Code Symbol Meaning

$B$ B Bottoms flow
$D$ D Distillation flow
$F$ F Feed flow
$L$ L Reflux flow
$V$ V Reboil flow
$V_T$ VT Condensing flow
$z_B$ zB composition of the bottom flow
$z_D$ zD composition of the distillate flow
$z_F$ zF composition of the feed flow
$Q_c$ Qc heat duty of the condenser
$Q_r$ Qr heat duty of the reboiler
$L_D$ LD liquid height in the reflux drum
$L_B$ LB liquid height in the distillation column
$P$ P pressure in the distillation column
$N_T$ NT number of trays contained in the column
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Table A-3: Nomenclature

LATEX Code Symbol Meaning

$r$ r reflux ratio L
D

$s$ s reboil ratio V
B

$\hat{J}(k)$ Ĵ(k) performance measure
$d$ d difference of the absolute value of the mean of

the outputs minus a constraint
$P_{viol}(k)$ Pviol(k) boundary value violation probability
$c_d, c_p$ cd cp weights or cost factors
$N_{win}$ Nwin number of data points measured in one window
$N_{viol}$ Nviol number of data points violating the boundary

value
$\beta$ β threshold value for the performance
$y(k)$ y(k) discrete values of controlled variable
$\bar{y}(k)$ ȳ(k) mean value of the discrete values of y(k)
$u(t)$ u(t) input signal of a system
$e(t)$ e(t) zero-mean white noise signal
$y(t)$ y(t) output signal of a system
$G_0(z)$ G0(z) true transfer function matrix of the process
$G(z,\hat{\theta}_N)$ G(z, θ̂N ) estimated model of the process transfer

function matrix
$H_0(z)$ H0(z) true transfer function matrix of the noise
$H(z,\hat{\theta}_N)$ H(z, θ̂N ) estimated transfer function matrix of the noise
$C(z)$ C(z) controller in closed-loop system
$\theta_0$ θ0 true parameter values
$\hat{\theta}_N$ θ̂N estimated parameter values
$\theta_{com}$ θcom parameter values of the model used at the

commissioning stage
$\mathcal{D}_{adm}$ Dadm set of all transfer functions G(z, θ) which give

nominal performance
$Z^N$ ZN obtained input and output data set
$\epsilon(t)$ ε(t) one-step-ahead prediction error
$\mathcal{M}$ M chosen model parametrization
$\mathcal{S}$ S true system y(t) = G0(z)u(t) + H0(z)e(t)
$\mathcal{G}$ G true process system
$P_{\theta}$ Pθ variance matrix
$\bar{E}$ Ē expectation operator
$\sigma_e^2$ σ2

e variance of signal e(t)
$N, N_{id}$ N,Nid identification length
$\hat{Fr}_{out}$ F̂ rout Number of models which give bad performance
$\nu$ ν threshold value for number of models G(z, θ) /∈

Dadm to opt for a hypothesis
$amp$ amp amplification factor for rotation of input signals
$\psi$ ψ rotation angle of signal u(t)
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