On the Emergence of Biologically-Plausible Representation in Recurrent Neural Networks for Navigation

Version of August 4, 2019

Daan Zeeuwe
On the Emergence of Biologically-Plausible Representation in Recurrent Neural Networks for Navigation

THESIS

submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Daan Zeeuwe
born in Amsterdam, the Netherlands

TU Delft
Interactive Intelligence Research Group
Faculty EWI, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl
Cover picture: While a significant portion of researchers focuses on the mathematical inspiration and optimization of neural networks, somehow we increasingly overlook biological inspiration and the cognitive science concepts which are part of the past, present and future of artificial intelligence.
On the Emergence of Biologically-Plausible Representation in Recurrent Neural Networks for Navigation

Author: Duan Zeeuwe
Student id: 4624750
Email: d.zeeuwe@student.tudelft.nl

Abstract

Biologically plausible representations have been found to emerge in particular recurrent neural networks when training on path-integration [1, 2]. This report explores factors influencing the occurrence of entorhinal-like representations in recurrent neural networks. Reproducing simplified models from existing studies and created a hybrid model to explore additional factors, including the input features, structural properties, and regularization techniques in recurrent neural networks. Additional experiments evaluate the difference in training performance when entorhinal-like representations are introduced to a recurrent neural network. This report also assesses existing and experimental visualization techniques in their ability to visualize the performance and representation of recurrent neurons. While some experiments show specialized representations, mostly due to regularization; none of the experiments showed typical entorhinal-like representation. These results show how sensitive the emergence of biologically-plausible representations is to network conditions and training procedure, casting some doubt on the generality of the conclusions proposed in earlier work.

Thesis Committee:

Chair: Prof. Dr. C. M. Jonker, Faculty EWI, TU Delft
University supervisor: Dr. J. D. Broekens, Faculty LIACS, Leiden University
Committee Member: Dr. Ing. J. Kober, Faculty 3mE, TU Delft
Preface

In the summer of 2018, I was looking for inspiration on how to improve artificial intelligence and robotics. By coincidence, I stumbled upon textbooks on psychology and neuroscience and decided to look into the material. At first sight, it seemed fascinating, but I was not able to apply this knowledge directly to develop more sophisticated models. During the fall I came across the papers by DeepMind and especially the article by Banino et al. on “Vector-based Navigation using Grid-like Representations in Artificial Agents”. Their work relied on psychological theory and neuroscientific models to perform artificial navigation. The work by Banino et al. and DeepMind showed me how cognitive science inspiration could apply to artificial intelligence. Their research inspired me to look beyond the current capabilities of artificial intelligence and use other cognitive science disciplines to provide a diverse balance for developing modern robotics.

Most popular models for robot perception, localization, and actions rely on mathematical models, which carry implicit constraints on performance and generality. However, developments surrounding recurrent neural networks and deep reinforcement learning could finally show advances in human-like robotics. This development would enable the advancement of cognitive robotics to look towards incorporating efforts of cognitive science instead of building exclusively on mathematical constructs.

This thesis explores the papers by Banino et al. and Cueva and Wei, who made similar claims on the emergence of entorhinal-like representation in recurrent neural networks. Currently, it is unknown why, how, and when this representation emerges in neural networks. Understanding the underlying dynamics of entorhinal-like representation, especially in recurrent neural networks, could be the first step to allow the artificial intelligence community and neuroscience researchers to collaborate. Creating a new research community called “Artificial Neuroscience” or “Neuroscience-inspired Artificial Intelligence”.

The problem with current artificial intelligence and neuroscience research is that the gap between the research communities is quite large. Both artificial intelligence and neuroscience papers require a strong academic background in each research field. Also, the diffusion of artificial intelligence to and from neuroscience is minimal, which enlarges the gap even further. Hopefully, continued development and shared collaboration between artificial intelligence and neuroscience could set an example for reuniting cognitive science disciplines.
This past year I have been able to interact with several excellent professionals and academics, which have inspired and motivated me to continue my path towards developing human-like robotics. I want to thank my friends and family for their continued support, and they inspire me to work harder every day to realize my vision for the future. Moreover, I want to especially thank Joost Broekens for his persistence and guidance during the research, development, and writing process of this thesis.

Daan Zeeuwe
Delft, the Netherlands
August 4, 2019
Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
 1.1 Motivation ... 2
 1.2 Research scope .. 3

2 Literature Review 5
 2.1 Background .. 5
 2.2 Related work ... 8

3 Methodology 13
 3.1 Simulation Data .. 13
 3.2 Base Model .. 14
 3.3 Visualization Techniques 14
 3.4 Experimental Factors ... 17
 3.5 Summary .. 21

4 Results 23
 4.1 Replication Studies .. 23
 4.2 Hybrid Baseline Model ... 28
 4.3 Input Features ... 30
 4.4 Structural Properties .. 36
 4.5 Regularization Techniques 43
 4.6 Entorhinal Performance .. 49
 4.7 Summary .. 54

5 Discussion and Conclusion 55
Contents

5.1 Study Reflection ... 55
5.2 Conclusions .. 57
5.3 Future research ... 58

Bibliography .. 59

A Cognitive Science Background 93
A.1 Cognition through Foraging 93
A.2 Cognitive Mapping 93
A.3 Role of the Hippocampus 94
A.4 Progress in Deep Learning 95

B Cognitive Research Impact on Artificial Intelligence 97

C Experimental Base Model 101

D Theoretical Model Entorhinal-like Representation 103
D.1 Place cells .. 103
D.2 Grid cells ... 103
D.3 Head-direction cells 104
D.4 Border cells .. 104
D.5 Speed cells ... 105

E Research Design .. 107

F Additional Analysis 111
F.1 Open-Source Models 111
F.2 Robust Representation 113
F.3 Combined Experiment 113

G Experiment Baseline Configurations 117
List of Figures

1.1 **Simplified representation of grid- and place cell activation**
Grid- and place cell activity occurs in the entorhinal cortex and hippocampus, respectively. A place cell (orange) is only active in one location. Whereas grid cell (blue) activation patterns resemble hexagonal grids spanning the environment. While most research is done on rats moving in small environments, the same representation has been found to relate to memory function and navigation in humans [3, 4, 5]. This image was taken from the Nobel Price website without consent of the publisher.

2.1 **Entorhinal and Hippocampal cell diversity**
Grid-, place- and border cells are characterized by a particular spatial activation pattern. Additionally, the head-direction cell is activated by the facing direction of the animal, and the speed cell scales linearly to the running speed. The image was taken from [2] without consent of the publisher.

2.2 **Overview of LSTM and GRU cell**
LSTM’s have three gates, two of which control the state, and the output gate controls the output state. The GRU uses two gates to adjust the recurrent state, which is also the output of the cell. The images were taken from a blog without the consent of the publishers.

2.3 **Grid cell spatial activation measure**
Each entorhinal grid cells has a scale associated with the activation pattern [11]. Experiments record the neural activity spikes (representing red dots) during navigation. The activity spikes are processed using a Gaussian filter to create a spatial activity rate map, which is used for analysis. The image was taken from [7] and [12] without the consent of the publishers.
2.4 Banino et al.’s architecture
The LSTM is fed input data consisting of speed \vec{u}_t and the split directional velocity input $\sin(\phi_t)$ and $\cos(\phi_t)$. The recurrent cell is initialized using the initial place cell \vec{c}_0 and head direction \vec{h}_0 distributions. The output of 128 LSTM cells is fed to a linear bottleneck layer \vec{g}_t consisting of 512 neurons. The bottleneck layer output is split into two linear layers (\vec{y}_t and \vec{z}_t) responsible for predicting the 256 place cell \vec{c}_t and 12 head-direction cell \vec{h}_t activations. The image were taken from [1] without consent of the publishers. 10

2.5 Cueva and Wei’s architecture
Cueva and Wei’s model trains their 100 recurrent neurons by using the speed and direction features to predict the x- and y-position of the agent’s trajectory. The recurrent cell uses a Continuous-Time Recurrent Neural Network (CTRNN). The image was taken from [2] without the consent of the publishers. 11

3.1 Example batch of 25 trajectories
The agent moves towards an attractor to simulate a 100-step trajectory. 14

3.2 Basic performance plots 15
3.3 Spatial activity plots 16
3.4 Non-spatial activity plots 17
3.5 Additional performance plots 18

3.6 Ray-tracing calculation
The agent in gray observes a fixed number of sampled ray-traces from the environment. The ray-tracing method uses a wall color-coding system to reflect the approximate location of the agent. Each ray trace hits a particular wall segment and uses the wall index as a feature. 19

3.7 Dropout progression
All three Dropout techniques have a different Dropout probability progression over time. No neurons are dropped out with a probability of 0.0, and all neurons are silenced with a probability of 1. Standard Dropout has a fixed Dropout probability rate of 0.5. Curriculum Dropout exponentially increases the Dropout probability until it reaches the 0.5 threshold. Conversely, the Curriculum Dropout algorithm exponentially decreases the Dropout probability over time until no neurons are silenced anymore. 20

4.1 Banino et al. simplified model
The simplified model trains using (1) the split direction input approach, (2) the network predicts the activity of place- and head-direction cells associated with the trajectory, (3) LSTM uses 128 neurons, (4) bottleneck layer of 512 neurons, and (5) the model predicts 256 place cell and 12 head-direction cell activations. 24

4.2 Representation from simplified Banino et al. model
Replicating Banino et al’s model through non-essential simplifications results in head-direction-like representation in most neurons. 24

viii
4.3 Performance results for the simplified model of Banino et al.
Replicating Banino et al.’s model through non-essential simplifications results in initialization problems, leading to fast convergence to a local minima. 25

4.4 Cueva and Wei simplified model
Cueva and Wei’s model contains four essential aspects, the model uses (1) orthogonal recurrent weight initialization, (2) 100 recurrent neurons, (3) a Continuous-Time Recurrent Neural Network (CTRNN), and (4) the recurrent layer is connected to the output layer. 26

4.5 Simplified Cueva and Wei model representations
Replicating Cueva and Wei’s model through non-essential simplifications results in partial linear dependence on head-direction. 26

4.6 Simplified Cueva and Wei model performance results
Replicating Cueva and Wei’s model through non-essential simplifications results in good network generalization performance. 27

4.7 Baseline model
The standard experimental setup consists of 25 LSTM neurons and a linear output layer. 28

4.8 Hybrid baseline representation and performance
The hybrid baseline model results in spatial- and directional activity and provides good path-integration performance. Each plot cell visualizes the average (a) spatial, (b) velocity, (c) directional activity for an artificial neuron. 29

4.9 Input feature approaches testing losses
The loss plot visualizes the trained loss differences between input feature approaches. The direction, ray-tracing, and input ray-tracing approach can improve path-integration performance in recurrent neural networks. 30

4.10 Split direction and noisy input feature model
The changes to the experiment include the use of split direction and noisy input. The approaches replace the input data and initialize with the starting position. 30

4.11 Split direction input representation and performance
The split direction input method separates the original angular input into its x- and y-components. The spatial activity plot shows predominantly linear spatial activity gradients and directional dependence. 31

4.12 Noisy input representation and performance
Noisy input introduces additional noise to the velocity and direction. The spatial activity plots show both linear spatial activity gradients and linear directional activity gradients. 32

4.13 Input ray-tracing model
The changes to the experiment include the use of ray-tracing as initialization and input source. The first experiment replaces the input with ray-tracing, and the second experiment combines ray-tracing with the original input. 33
LIST OF FIGURES

4.14 **Ray-tracing Spatial activity plot**
This ray-tracing experiment replaces the velocity and directional input by vision-like features from the environment. Each plot cell visualizes the average spatial activity for an artificial neuron. The first-person wall-color coding features create non-linear spatial activity gradients for a wide range of recurrent neurons. Although some cells stay linearly or stochastically activated.

4.15 **Default and ray-tracing input spatial and non-spatial plots**
The input and ray-tracing approach adds the vision-like features to the velocity and directional input. The neurons show predominantly a combination of spatial or directional linear activity gradients, with some recurrent neurons showing head-direction-like activation patterns.

4.16 **Structural properties experimentation model**
Various aspects of the model are explored, such as network architecture and training procedures.

4.17 **Network attribute and training procedure experiments performance**
The loss plots visualize the trained loss differences between learning rates. Several experiments have explored the performance differences for network architectures and training procedures.

4.18 **GRU recurrent cell representation**
The GRU cell representation consists of both directionally tuned neurons and linear spatial activity gradients.

4.19 **81 hidden units representation**
The representation for 81 neurons shows mainly linear spatial activity gradients. Increasing the number of neurons reduces the directional dependencies, increases the representational diversity, and distributes the spatial influence over more neurons.

4.20 **Uniform recurrent initialization representation**
Using uniform recurrent initialization results in both noisy and linear spatial activity gradients. The improved performance is likely due to the simplified two-dimensional integration possible in two of the recurrent neurons.

4.21 **Learning rate 0.01 representation**
A learning rate of 0.01 facilitates both noisy and linear spatial activity gradients. The performance improvement is quite likely to be caused by combination of the spatially activated recurrent neurons, already providing the spatial basis functions for path-integration.

4.22 **Optimizer experiments**
RMSProp representation consists of both noisy and linear spatial activity gradients. The slight improvements of the RMSProp optimizer is likely due to the spatial specialization due to linear spatial activity gradients of a small set of neurons.
4.23 **Regularization model**
The three essential changes to the experimental model include the recurrent regularization methods, Dropout, and additional regularization losses. Recurrent Regularization applies limitations on the recurrent output. Dropout stochastically silences neurons in the output layer. Regularization loss penalizes the network weights and/or state of recurrent neurons. 43

4.24 **Regularization experiments performance**
The loss plots visualizes the trained loss differences between regularization loss approaches. Dropout, regularization loss, and recurrent regularization experiments were executed to determine the influence of regularization techniques on performance. 44

4.25 **Dropin regularization experiments**
The spatial representation of Curriculum Dropin consists of typical activation behavior of recurrent neurons. Showing both directional and spatially activated recurrent neurons. 45

4.26 **Regularization loss experiments**
Metabolic regularization achieves similar performance to having no regularization at all. According to the representational plots, the application of the unweighted Metabolic constraint did not lead to biologically-inspired representation. 46

4.27 **Recurrent regularization experiments**
The spatial representation of Winner-Takes-All consists of local specialization among neurons. 47

4.28 **Neural Fatigue experiments representation and performance**
The competitive nature of Neural Fatigues shares the spatial activations between neurons, but this results in suboptimal performance. 47

4.29 **Entorhinal simulation model**
Basic setup for replacing the input data with entorhinal-like representation. 49

4.30 **Entorhinal input replacement losses**
The loss plot visualizes the trained loss of between input replacement techniques inspired by entorhinal-like representation. Input techniques differences shows that the border- and place cells are more optimal compared to the baseline configuration (default). 50

4.31 **Entorhinal border cell input representation and performance**
Border cell input replacement performs best compared to other entorhinal-like representation. Possibly the dominant spatial activation and shared influence of multiple neurons is part of this improvement. 50

4.32 **Entorhinal place cell input representation and performance**
The recurrent cell maintains and combines place-like representations, which creates a small clusters of spatial activity patterns, providing good path-integration performance. 51
LIST OF FIGURES

4.33 **Entorhinal recurrent replacement losses**
The loss plot visualizes the trained loss differences between recurrent cell replacement techniques inspired by entorhinal-like representation. The testing loss shows only improved performance for border- and grid-like cells. 52

4.34 **Entorhinal multi-scale recurrent replacement border cell**
The recurrent cell is replaced by border-like representation, which creates shared spatial activity patterns, providing good path-integration performance. 53

4.35 **Recurrent entorhinal multi-scale grid cell**
The recurrent cell is replaced by grid-like representation, which creates shared activity patterns, providing good path-integration performance. 53

A.1 **Sketch of the essential cortices in the medial temporal lobe interacting with the hippocampus.**
The processing stream flows from the parahippocampal and perirhinal cortex to the entorhinal cortex. From there, the information is passed on to the hippocampus. The image was copied without permission from original publisher Purves D, Brannon E, Cabeza R, et al. Principles of Cognitive Neuroscience. Sunderland, MA: Sinauer Associates; 2008 taken from [13]. 95

D.1 Place and grid-like cell activation patterns. 104

D.2 Head-direction and border-like cell activation patterns. 105

D.3 **Speed activation**
Nine artificial speed cells show velocity-based specialization using a random bias. 105

E.1 **Related Work Research Design**
Earlier work experiments rely on the simplified Banino et al. and Cueva and Wei model. The proprietary vision module and dynamic regularization weighting from these models can be factored out. Banino et al.’s proprietary vision module is optional since Cueva and Wei did not rely on a vision source. Also, the dynamic regularization weighting by Cueva and Wei only improved the clarity of emergent representation but was not essential for the emergence of entorhinal-like representation, according to their appendix. 108

E.2 **Factors Research Design**
Factors include analysis of input features, structural properties, and regularization techniques. The experiments showed no emergence of entorhinal-like representation; thus, we must reflect on the use of entorhinal-like representation in recurrent neural networks. Additional analysis, if such entorhinal-like representation were present, would be able to single out factors or a mixture of factors responsible for the emergence of entorhinal-like representation. 109
E.3 **Performance Impact Research Design**

The previous experiments did not show emergent representation; therefore, this experiment has to rely on simulated entorhinal-like representation. Results indicate that replacing the input with entorhinal-like representation improves training performance for border- and place-like cells. Additionally, the training performance of replaced recurrent representation showed improvements over regular training for border- and grid-like cells. Thus, entorhinal-like representation performs better compared to regular, unstructured representations.

F.1 **Deep Mind’s original model spatial activity results**

Each plot cell visualizes the average spatial activity for an artificial neuron. The cells initially have no spatially activated representation. During the training procedure, the cells generate non-linear and even grid-like representations — the grid-like cells developed around epoch 100.

F.2 **DeepMind replicated model results by Stefano Rosà**

The training performance shows average path integration performance, and the representation highlights sophisticated non-linear activation patterns.

F.3 **Cueva and Wei replicated model results by Unity Technologies**

The predicted path of the agent shows consistent path integration performance, and the cell representation show linear spatially activated neurons.

F.4 **Representation of repeated experiments**

Both the distribution and frequency of spatially activated neurons are consistent between experiments.

F.5 **Model architecture**

The model consists of the GRU recurrent cell, uniform recurrent initialization, ray-tracing and default input, 81 recurrent neurons, and recurrent regularization.

F.6 **Repeated combined experimental results**

The representation evolves until the loss optimization stagnates. The representation saturates around epoch 500, and only minor changes to the representation develop at epoch 1000.

F.7 **Repeated combined experimental results**

Each plot cell visualizes the average spatial activity for an artificial neuron. The representation evolves until the performance stagnates. The representation saturates around epoch 50, and only minor changes to the representation develop at epoch 100.
Chapter 1

Introduction

Mobile robotics relies on artificial navigation to transition towards intelligent autonomous behavior [14, 15]. Modern robot navigation research uses deep learning approaches, such as deep reinforcement learning and recurrent neural networks to navigate autonomously [16, 17, 18, 19, 20, 21, 22]. While this research is promising, some researchers have expressed their concern on the generality of the proposed methods [23, 24, 25, 26]. An exciting novel approach tries to alleviate these problems by relying on biological inspiration to develop artificial navigation [1, 2, 27, 28].

Artificial navigation algorithms can use inspiration from the psychological construct of spatial cognition [29, 30]. Spatial cognition is dominated by the cognitive map theory, which originated in the study by E. C. Tolman and colleagues from 1948 [31]. The cognitive map theory proposes a shared mental representation underlying spatial knowledge, such as localization, navigation, and planning [3]. Tolman's findings inspired O'Keefe and other researchers to associate the cognitive map with the hippocampus [32, 33, 34]. Research into the neuroscientific origins led to the discovery of: grid [6], place [7], head-direction [10], speed [9] and border cells [8] (for more information on cell activation patterns see Figure 2.1). Those cell archetypes primarily occur in the entorhinal cortex and relay information to the hippocampus. Therefore, related cell representations are typically called entorhinal-like representation [1]. Each cell type contributes to the diverse geometric representation crucial for navigation [35]. For more information on the basic spatial representations of grid and place cells, see Figure 1.1.

Recent studies have drawn parallels between emergent representations in artificial neural networks and entorhinal-like representations [36, 37]. More specifically, studies by DeepMind [1] and Columbia University [2] have published results regarding the emergence of entorhinal-like representation in recurrent neural networks. Both studies [1, 2] report on comparable conceptual representations in their neural networks, despite model differences between the studies. The research groups used different model architectures and regularization techniques, which constrains deep learning networks to prevent the model from significantly overfitting on the input data. The training differences caused both studies to reflect adversely on the role of regularization and its link to causing emergent represen-

1. INTRODUCTION

Figure 1.1: Simplified representation of grid- and place cell activation

Grid- and place cell activity occurs in the entorhinal cortex and hippocampus, respectively. A place cell (orange) is only active in one location. Whereas grid cell (blue) activation patterns resemble hexagonal grids spanning the environment. While most research is done on rats moving in small environments, the same representation has been found to relate to memory function and navigation in humans [3, 4, 5]. This image was taken from the Nobel Price website without consent of the publisher.

Grid- and place cell activity occurs in the entorhinal cortex and hippocampus, respectively. A place cell (orange) is only active in one location. Whereas grid cell (blue) activation patterns resemble hexagonal grids spanning the environment. While most research is done on rats moving in small environments, the same representation has been found to relate to memory function and navigation in humans [3, 4, 5]. This image was taken from the Nobel Price website without consent of the publisher.

1.1 Motivation

Not only is entorhinal-like representation involved in spatial navigation, but also non-spatial tasks, such as temporal context [38], social relations [39], and imagination [4]. Thus, research into entorhinal-like representation can inspire solutions for memory-, conceptual-, and planning problems [40]. Moreover, entorhinal-like representation is associated with general problem-solving [29, 41, 42, 43]. Identifying the potential of entorhinal-like representation in deep learning could help to develop new theories for solving artificial intelligence problems [43].

One of the most challenging deep learning problems relates to cognitive-behavioral tasks [44]. Taking inspiration from psychology and neuroscience research helps tackle complex problems [45]. Most popular strategies for deep learning (convolutional neural networks [46], recurrent neural networks [37], and deep reinforcement learning [47]) are based on inspiration from neuroscientific observations. Machine learning researchers can
1.2 Research scope

learn from other research disciplines to develop new and improved algorithms [48]. Taking inspiration from cognitive science research is not aimed at replicating biologically-plausible algorithms, but at diversifying existing approaches for solving artificial intelligence problems [49].

Neuroscience and artificial intelligence can both benefit from reciprocal research on biologically inspired algorithms [50, 51]. For example, patients with Alzheimer’s disease experience problems remembering the past, and planning for the future [52, 53]. Developing theories on the interaction between grid cells and other entorhinal-like representations can lead to new insights into Alzheimer’s disease [4]. These theories require extensive research on the interaction between the entorhinal cortex and hippocampal cells. Obtaining this type of information in an artificial setting could become more cost-effective compared to testing with animals in the coming ten years [54].

One of the applications that can benefit from biological inspiration is artificial navigation. A large portion of artificial navigation applications is dependent on Simultaneous Localization And Mapping [55]. These applications require constructing new models for unknown locations or revising the model in dynamic environments. Inspiration for autonomous navigation can come from models using entorhinal-like representations, which are theorized to provide context-independent navigation [56]. Additional features of entorhinal-like representation include uncertainty minimization [57] and path-integration [28], which integrates historical data about the direction and speed to represent the current position. Both error correction and localization are necessary for planning in dynamic environments. Thus, future models using entorhinal-like representation in neural networks could potentially replace Simultaneous Localization And Mapping to develop generalizable models for spatial navigation [58].

1.2 Research scope

The purpose of this study is to investigate factors responsible for the emergence of entorhinal-like representation in recurrent neural networks and determine its training performance.

This research effort aims to achieve three specific goals left by previous studies. These goals include: (1) determine the ability to reproduce reported results using models that are similar to the ones used in previous studies, (2) investigating which factors are responsible for the emergence of entorhinal-like representation, and (3) quantifying the performance difference of entorhinal-like representation in recurrent neural networks.

The executed experiments try to answer the following related research questions:

1. Is it possible to replicate emergent entorhinal-like representations using non-essential simplifications of earlier work models?

2. What factors can influence the emergence of entorhinal-like representation in recurrent neural networks?
 a) Are input factors, such as compound features, input noise, or ray-tracing, essential for generating entorhinal-like representation?
1. **Introduction**

b) Does optimizing structural properties, including the recurrent layer architecture, learning rate, or training optimizer, result in emergent entorhinal-like representation?

c) Can regularization promote entorhinal-like specialization among neurons, for instance, in the case of recurrent regularization, regularization losses, or Dropout?

3. Does entorhinal-like representation in recurrent neural networks improve path-integration performance?

A limiting factor of this study is that the spontaneous emergence of entorhinal-like representation in recurrent neural networks has no theoretical background. Without this background, it is almost impossible to generalize the conclusions of this study to other network configurations. This study is part of an exploratory research effort since the amount of related research is limited, and the research topic is entangled with various under-researched and challenging problem domains, such as neural network analysis and biologically-plausible representation in neural networks. Exploring various factors requires extensive experimentation, which commands vast resources. This limitation causes experiments to use a slightly higher learning rate compared to earlier work to converge quicker. More experimental setups are explored due to the ability to train faster, but still reach converged performance with the different network models.
Chapter 2

Literature Review

Related research and recent developments regarding the emergence of entorhinal-like representation in recurrent neural networks are explored and discussed in this literature review. First, introducing necessary background information on the function and diversity of entorhinal-like representation, and then follow up on the computational basics of recurrent neural networks. The related work section discusses developments surrounding neural network analysis, regularization techniques, and recent work integrating these techniques to observe artificial entorhinal-like representation.

2.1 Background

The concept of emerging entorhinal-like representation originates from cognitive map theory in psychology. The cognitive map theory motivated researchers to investigate the biological basis of spatial cognition, which led to discoveries in the entorhinal cortex and hippocampus regarding specialized spatial and non-spatial cells. Following these discoveries, neuroscience researchers proposed different theoretical models explaining the behavior of individual cells [56, 59, 60, 61, 62] and spatial cognition in general [58, 63, 64, 65]. Lately, researchers turned to deep learning models to replicate entorhinal-like representation using recurrent neural networks and regularization techniques. The following sections aim to provide a sufficient foundation towards understanding the recent interest in artificial entorhinal-like representations for spatial navigation.

2.1.1 Entorhinal Cells

The discovery of grid cells in 2005 [12] encouraged new research opportunities for investigating the behavior of association cortices (parietal-, temporal-, and occipital lobes) [66]. More specifically, the internal representation of navigation in the medial entorhinal cortex and hippocampus [66]. The neuronal representation of space in the medial entorhinal cortex is quite diverse, consisting of: grid cells, border cells, head-direction cells, and speed cells [67]. However, the hippocampus is mainly occupied by place cells [7], for more information on the representation of spatial and non-spatial cells, see Figure 2.1.
2. Literature Review

Figure 2.1: Entorhinal and Hippocampal cell diversity
Grid-, place- and border cells are characterized by a particular spatial activation pattern. Additionally, the head-direction cell is activated by the facing direction of the animal, and the speed cell scales linearly to the running speed. The image was taken from [2] without consent of the publisher.

The underlying spatial representation in the brain relies on grid-, place-, and border cells; these geometric cell types allow self-motion cues to keep stability in the absence of visual cues [6]. Grid cells occur in the entorhinal cortex and are characterized by a hexagonal activity pattern, which can represent large environments and are not limited by the boundaries of the environment [68]. The hexagonal activation function of grid cells is proposed to provide the basis for goal-based navigation [35] and also facilitates an independent context source for path-integration [69]. Various models have used inhibitory competitive network interactions which are believed to underlie grid cell activations [66]. Place cells are hippocampal cells, and their activity is associated with a distinct location [70, 71]. The place cell is theorized to emerge from the summation of various grid cell scales [72]. The place representation could provide conjunctive information [29] since place cells are also necessary for the periodic firing of grid cells [6]. Additionally, place cells can remap their local activity patterns, allowing a place cell to represent distinct places in different contexts [10]. The last spatially active cell type is the border cell, which encodes the boundaries of the environment [8]. The activation of the border cell depends on the barriers, obstructions or other movement restrictions [70, 73, 74].

Additionally, speed cells and head-direction cells encode biological stimuli to support spatial representations [59, 66]. Head-direction cells are only active within a small angular range and follow a Gaussian-like activation pattern [10]. The head-direction cells are responsible for providing a directional signal during navigation [10]. Speed cells express a linear relationship between instantaneous velocity and cell activity [9]. This velocity-based activity allows speed cells to interact with head-direction cells and grid cells to perform path-integration [75, 76, 77]. The entorhinal-like cell representations serve to represent places, head-direction, speed, and grid-like structures. These specializations encode statistical regularities in spatial navigation [78, 79], and possibly encoding abstract representations of state spaces [80, 81]. The abstract representations could generalize to other aspects of cognition [38, 82] not necessarily linked to spatial domains [43, 83, 84, 85].

Appendix A contains additional information about entorhinal-like representation and the significance of other cognitive science disciplines for spatial navigation.
2.1. Background

2.1.2 Recurrent Neural Networks

Recurrent neural networks (RNN) enable sequence processing and temporal prediction through learning the temporal context representation [86]. Natural language processing uses recurrent neural networks to process and predict words; but recurrent neural networks also improve performance for general temporal prediction problems [87], such as path-integration [22]. The recurrent architecture predicts the output based on the recurrent state and input data. However, recurrent neural networks can experience exploding or vanishing gradient problems during training. These gradient problems cause excessive weight oscillations preventing the network from learning long-term associations [88, 89].

Gated recurrent architectures [90] and regularization techniques [91, 92, 93] can mitigate most of the gradient problems. Gated recurrent networks, including the long short-term memory (LSTM) [94] and gated recurrent unit (GRU) [95], prevent the vanishing gradient problem through multiplicative gate units [94]. Additionally, the clipping regularization technique limits the gradients by scaling down the gradients if they are above a certain threshold [88], restricting exploding gradient problems.

Multiplicative gates learn to control the flow of information to and from the recurrent cell state. An LSTM has three trainable gates: forget gate, input gate, and output gate. GRU’s have a similar setup compared to LSTM’s, but only have a reset gate and update gate to revise the hidden state [96]. The forget or reset gate learns what proportion of the previous hidden state is preserved before integrating the current input and predicting the output. The input or update gate incorporates the input data with the recurrent state. The output gate (LSTM only) learns to convert the recurrent state and input features to produce an output vector. For more on the architectural differences between LSTM and GRU, see Figure 2.2.

![Figure 2.2: Overview of LSTM and GRU cell](image)

LSTM’s have three gates, two of which control the state, and the output gate controls the output state. The GRU uses two gates to adjust the recurrent state, which is also the output of the cell. The images were taken from a blog without the consent of the publishers.
2. LITERATURE REVIEW

Figure 2.3: Grid cell spatial activation measure
Each entorhinal grid cell has a scale associated with the activation pattern [11]. Experiments record the neural activity spikes (representing red dots) during navigation. The activity spikes are processed using a Gaussian filter to create a spatial activity rate map, which is used for analysis. The image was taken from [7] and [12] without the consent of the publishers.

2.2 Related work

This section first introduces neural network analysis approaches and regularization techniques. This introduction enables discussing the regularized recurrent neural network models necessary for experimentation.

2.2.1 Recurrent Neural Network Analysis

Visualizing neural networks can help with the scientific understanding of grid cells by investigating the occurrence and frequency of different neuron representations [97, 98, 99]. Especially time-based visualization techniques are necessary for understanding the gradual emergence and progressive interaction between recurrent neurons.

The standard approach for visualizing training performance in neural networks is loss visualization. Plotting the evolution of loss throughout the training process can show over- and under-fitting performance using the difference between the testing and training error. These observations are necessary for adjusting the hyper-parameters or trying out different network approaches. However, sudden spikes or significant variance in the loss cannot be directly explained solely based on differences in the model setup [100]; therefore, researching other interpretable analysis and visualization techniques is necessary [101].

Neuroscientific studies regarding entorhinal and hippocampal cells use spatial or directional activation plots [6, 80] to visualize entorhinal-like representation. The activity plots average and filter the neural activity of animals to generate a continuous activation plot, see Figure 2.3. Artificial intelligence researchers use this approach to visualize the average spatial- and direction-dependent activity of recurrent- and linear layer neurons [1, 2].

Artificial intelligence researchers have significantly expanded the diversity of neural network visualization techniques over the past decade [102]. Some visualization approaches use input-dependent activation [103, 104] to characterize the activity of neural networks. These methods visualize the preferred activation patterns of trained kernels in convolutional neural networks. Other researchers apply projection-based techniques [96, 105] to

cluster neural activity patterns. For example, dimensionality-reduction enables visualization of clustered neural activity. This technique could help classify the different emerging entorhinal cell types and determine when these cells initially emerged. This approach would be helpful when entorhinal-like representation emerges consistently in recurrent neural networks but is currently not directly applicable.

Currently missing from the analysis techniques is a straightforward approach to visualize the interaction between neurons. An explanation for this deficiency is that neural networks suffer from unexplainably and incomprehensibility [106]. This phenomenon makes interaction analysis complicated since it requires tracking, relating, and visualizing dynamic high-dimensional states in neural networks. The ability to visualize causal links between neurons would improve our understanding of neural interactions in the recurrent neural network, necessary for the analysis of emergent entorhinal-like representation.

Despite widespread neural network experimentation in the past thirty years, visualizing and understanding the behavior of deeper neural networks have only recently been systematically studied [107]. Despite this recent progress, researchers have not yet established the essential experimentation tools to explain the role of joint activity in neural networks necessary for understanding emergent entorhinal-like representation in recurrent networks.

2.2.2 Regularization Techniques

Regularization techniques reduce the ability of a learning model to overfit on the training data. Generally, regularization is any supplementary technique aimed at improving generalization performance during training [108].

The ability to generalize between the training and test data revolves around the ratio between the number of model weights and the number of training samples [109]. This concept of generalization relies on the bias-variance trade-off [110]. The model performance trade-off for reducing the loss variance through regularization will cause an increase in the loss bias and vice versa. Balancing the loss variance and bias of the model improves generalization between the training and test set. Managing the performance trade-offs is essential when there is not enough training data available to offset the number of free variables in the training model [109].

A neural network uses the total loss $L(w)$ of the model to optimize the network weights w, and this total loss consists of two components: prediction loss and regularization loss. In recurrent neural networks, the prediction loss usually calculates the difference between the target output and predicted values for each time-step t in the horizon T. A common approach for calculating the prediction loss is the least-squares metric. Neural network regularization is provided through the regularization loss. This loss is defined by a regularization metric $R(w)$ and is scaled by a regularization constant λ to control the balance between the prediction loss and regularization loss.

$$L(w) = \frac{1}{T} \sum_{t=0}^{T} (y_{t}^{\text{pred}} - y_{t}^{\text{target}})^2 + \lambda \cdot R(w)$$

The most common regularization approach is called weight decay, which penalizes the weights of a neural network layer. Large weights are often the result of over-fitting on
the training data, thus preventing larger weights can improve generalization performance. Another common regularization approach is called Dropout [108]. Dropout temporally silences random units in a hidden layer [111, 112, 113]. The Dropout approach samples from a Bernoulli distribution to decide which features are silenced [115, 117]. Standard Dropout silences around half of the features each training iteration [114, 116]. This approach reduces the co-adaptation between neurons necessary for generalization [118].

2.2.3 Recurrent Neural Network Models

Banino et al. [1] reported on the emergence of grid-like representations using a recurrent neural network in 2016. Training their model follows three steps. First, the spatial trajectory is preprocessed to generate simulated place and head-direction cell activations. Second, the recurrent cell is initialized with the simulated place and head-direction cell activations from the initial position of the trajectory. Third, the model is then trained to predict the activation of simulated place and head-direction cells throughout the trajectory based on the velocity, direction, and processed visual features. Banino et al. developed a proprietary vision module to process the first-person perspective of the agent traveling through their DeepMind Lab simulator [119].

The successive layer between the recurrent cell and the output of the network, called the bottleneck layer, was regularized using Dropout and developed grid-like representations. Banino et al. concluded that Dropout was responsible for the development of emergent grid-like representation. Banino et al. argued that the introduction of noise through Dropout could lead to error-correction provided by emergent entorhinal-like representation. For more information on the Banino et al. model see Figure 2.4.

![Figure 2.4: Banino et al.’s architecture](image)

The LSTM is fed input data consisting of speed \(\vec{u}_t \) and the split directional velocity input \(\sin(\phi_t) \) and \(\cos(\phi_t) \). The recurrent cell is initialized using the initial place cell \(\vec{c}_0 \) and head direction \(\vec{h}_0 \) distributions. The output of 128 LSTM cells is fed to a linear bottleneck layer consisting of 512 neurons. The bottleneck layer output is split into two linear layers \(\vec{y}_t \) and \(\vec{z}_t \) responsible for predicting the 256 place cell \(\vec{c}_t \) and 12 head-direction cell \(\vec{h}_t \) activations. The image were taken from [1] without consent of the publishers.
2.2. Related work

Cueva and Wei’s model trains their 100 recurrent neurons by using the speed and direction features to predict the x- and y-position of the agent’s trajectory. The recurrent cell uses a Continuous-Time Recurrent Neural Network (CTRNN). The image was taken from [2] without the consent of the publishers.

Cueva and Wei followed up with their own recurrent neural network model in 2018, claiming biologically inspired regularization can support emerging entorhinal-like representation [2], see Figure 2.5. The biologically inspired regularization technique uses a metabolic incentive to penalize large recurrent weights. Their proposed method is called the Metabolic constraint and applies weight decay on the input weights, output weights, and the state of the recurrent neural network. The resulting representation shows grid-, border-, and band-like activity, and is consistent with formal models of entorhinal-like representation [120]. Cueva and Wei claim that the Metabolic constraint can create efficient coding in recurrent networks. The efficient coding hypothesis is generally associated with the compressed representation for sensory coding, which enables efficient and optimized signaling in the brain [22, 121, 122, 123, 124]. Recurrent weight decay in the Metabolic constraint simulates similar restrictions on neural communication, which could force neurons to communicate with other neurons more effectively [125].

Both Banino et al. [1] and Cueva and Wei [2] apply regularization to obtain entorhinal-like representation. However, both vary in argumentation why regularization is the main reason for the emergence of entorhinal-like representation. Both the Dropout approach by Banino et al. [1] and the Metabolic constraint by Cueva and Wei [2] are based on biologically-plausible mechanisms for emerging representation. Reducing the reliance on other neurons through Dropout leads to sparse representation [114]. Also, the Metabolic constraint on the recurrent weights and state could force the recurrent neurons to specialize and create sparse activity patterns. Both approaches seem equally plausible for causing emerging entorhinal-like representation. Thus it is surprising why both studies reflected adversely on the applied regularization techniques and its role in emergent entorhinal-like representation.
2. Literature Review

2.2.4 Summary

The construct of spatial cognition relies on psychological theory, which ultimately led to neurobiological observations and computational models in neuroscience. Modern artificial intelligence research can use cognitive science inspirations to investigate complex problems, such as modeling different cognitive abilities, including spatial navigation [34].

The results from Banino et al. [1] and Cueva and Wei [2] point to biologically plausible representation in recurrent neural networks during path-integration. The studies reported emergent entorhinal-like representation when regularizing their recurrent neural network. However, the studies have not systematically linked which aspect of regularization is responsible for the emergent entorhinal-like representation, nor explored the performance difference of entorhinal-like representation in recurrent neural networks. Thus, the exact role of regularization and its relation to biologically plausible representation is still unclear.

The following chapter provides a closer look at the experimental setup and analysis techniques used in this study.
Chapter 3

Methodology

The goal of this thesis is to investigate factors responsible for the emergence of entorhinal-like representation in recurrent neural networks and determine its influence on training performance. Preparing this study requires (1) data acquisition through simulation, (2) a configurable base model used for performing experimentation, (3) visualization techniques, and (4) experimental test variables.

3.1 Simulation Data

Banino et al. [1] used rat-like motion strategies to train their deep learning model. Their data sampling approach included a realistic rat-like motion strategy [126] to generate biologically-plausible velocity and directional data. Cueva and Wei used Brownian-like motion models to simulate mostly straight stochastic movement data. Both strategies [1, 2] focus on randomly moving within the environment and avoiding wall collisions. However, the proposed simulation approach in this thesis uses a 2D attractor-based approach. While there are many 3D navigational simulators made from game engines [119, 127, 128, 129, 130, 131], basic path-integration only requires generating two-dimensional trajectories; and this 2D setup allows for faster simulation of trajectories. The 2D attractor-based approach generates a position (attractor), which will be the navigational target for the agent. The simulator generates a new attractor whenever the agent reaches the attractor position.

The simulated agent creates a linear trajectory towards the attractor to simulate goal-based behavior. If the agent comes close to the border, then the speed is reduced, allowing the agent to turn away from environmental boundaries. The simulated trajectories provide velocity, direction, and positional data, which are used for training and testing the recurrent neural network models. An example subset of the trajectories is displayed in Figure 3.1.

A training dataset of 100,000 trajectories is generated before experimentation to avoid data generation during the training process. The test set for each experiment is generated separately from the prerecorded trajectories dataset to avoid overlapping training and test sets. The training and testing process uses small batches of 100 trajectories to determine the total network loss.
3. **Methodology**

3.1 Example batch of 25 trajectories

The agent moves towards an attractor to simulate a 100-step trajectory.

3.2 Base Model

TensorFlow was used for this project to implement the neural network models. The same base model is used for all training experiments and adapts to each experimental setup. The base model was constructed using TensorFlow 1.12 with NVIDIA GPU support; this enabled significant recurrent neural network training speedup. Each experiment is characterized by a configuration file, which indicates the recurrent cell, intermediate neural layers, and training procedures used. For an elaborate discussion of the base model details, see appendix Appendix C.

3.3 Visualization Techniques

The upcoming data analysis methods elaborate on traditional- and experimental visualization techniques. Each technique enables studying either the training performance or representation of artificial neurons in neural networks.

Analysis of spatial and non-spatial plots are indexed using a Cartesian coordinate system. Neurons will be referenced using a coordinate \([x, y]\), where \(x\) and \(y\) are the indexes of the neuron in the plot. All neurons have non-negative indexes, and the top-left neuron is referred to as neuron \([0, 0]\).

3.3.1 Loss

Measuring the training performance of neural networks is usually done through least-squares loss (Figure 3.2a). This loss technique calculates the squared difference between the predicted output and target output [109]. While loss visualization compares the training performance of different training setups directly, it does not provide insight into neural activity and representation.
3.3. Visualization Techniques

(a) Loss plot
The loss plot visualizes the training loss differences between different models. The x-axis depicts the number of training iterations, and the y-axis plots the training or testing loss.

(b) Average performance plot
The time-dependent loss is calculated using the average loss for each trajectory time-step. Both the initialization performance and linear error accumulation are important for performance analysis.

Figure 3.2: Basic performance plots

3.3.2 Average Performance

One way to expand on the loss plot is to visualize the average loss of the models through time. The average performance plot calculates the average difference between the predicted output and target output for each time-step in the trajectory (Figure 3.2b). Visualizing the time-dependent loss helps analyze the network capacity by observing both the initial performance (the first few time-steps) and linear error accumulation through time.

3.3.3 Spatial Activity

Various studies regarding entorhinal-like representation investigate neural representations using spatial activity plots [35]. Spatial activity plots (Figure 3.3a) visualize the average activity for each neuron throughout the environment. This visualization technique uses spatial bins to group the activity of each neuron within a spatial environment and calculate the average activity per spatial bin. Observations of stable spatial activation patterns can lead to subjective hypotheses on the neural activation strategy.

3.3.4 Spatial Influence

A new experimental impact analysis method proposed in this thesis quantifies the influence of neurons on other neural layers. The spatial influence plot (Figure 3.3b) calculates the scaled activation for each recurrent neuron using the weights of the subsequent linear output layer.

\[u(t) = \tan(x(t)) \]

\[I(t) = \sum_{i=0}^{N_{linear}} |u(t) \cdot W_i|_{linear} | \]

3. METHODOLOGY

(a) **Spatial activity plot**
The 5x5 plot cells visualize 25 distinct neurons. Each plot cell visualizes the average spatial activity for an artificial neuron. The spatial activity is measured by binning the neural activity $u(t)$ over the entire environment $E \in (-1,1)^2$. Each plot cell pixel represents a spatially binned average of the neural activity.

(b) **Spatial influence plot**
Each plot cell visualizes the average spatial influence of an artificial neuron. The spatial influence plot bins the neural influence $I(t)$ over the entire environment $E \in (-1,1)^2$. Each plot cell pixel represents a spatially binned average of the neural influence.

Figure 3.3: Spatial activity plots

Multiplying the recurrent neural activity $u(t)$ with the individual weights from the successive output layer determines the absolute neural influence $I(t)$ for predicting the output. This method measures the contribution of representation by highlighting useful activation patterns in recurrent neurons.

3.3.5 Non-spatial Activity

Non-spatial activity plots were used by Cueva and Wei [2] to quantify the speed and directional tuning of neurons. This approach measures the dependence on input data through velocity- or direction-dependent activity per neuron (Figure 3.4a and Figure 3.4b). The non-spatial activity plot bins the neural activity $u(t)$ for each input variable to estimate the average activity per neuron. Visualizing velocity- and direction-dependent activity helps to analyze the underlying neural activation strategy from a non-spatial perspective.

3.3.6 Maximum Activity

Measuring the functional specialization of different neurons is difficult even for smaller networks. Analyzing the spatial activation patterns in a network of 25 neurons is already cumbersome. Therefore, this thesis introduces a maximum activity plot, which can highlight spatially distinct activity for the most active neuron per visualization bin (Figure 3.5a). This plot provides a quick insight into the underlying activation patterns of neurons, especially in the case of extensive neural networks.
3.4. Experimental Factors

The investigated factors split into three categories: (1) input features, (2) structural properties, and (3) regularization techniques. The input features discuss alternative strategies for processing input, which are used to train recurrent neural networks. The structural properties include recurrent layer configurations and training procedures. Lastly, the regularization techniques include traditional and experimental approaches for imposing constraints on recurrent networks.

3.4.1 Input Features

Input features are essential for deep learning network performance. Especially input features with multiple modalities aid the feature extraction process of neural networks [132, 133]. The improved feature extraction process enables networks to find better hierarchi-
3. **Methodology**

(a) **Maximum spatial plot**
Visualizes the most active neuron per spatial bin. Each color represents a different neuron, see the legend on the bottom of the plot. The maximum spatial activity plot helps to quickly analyze the spatial specialization among neurons.

(b) **Trajectory performance plot**
The overlapping trajectories are visualized with the target path in green and the predicted path in red. Visualizing the trajectory differences helps to analyze performance problems. The shape and smoothness of the trajectories can signal training problems.

Figure 3.5: Additional performance plots

cal features for optimizing performance [134]. Proper multi-modal input features could be necessary for emerging entorhinal-like representation.

The default path-integration features consist of speed and directional input. The following approaches are designed to explore additional input features: (1) data reorganization, (2) adding noise, and (3) ray-tracing.

Starting with the data reorganization method called split direction proposed by Banino et al. [1]. This approach separates the angular velocity into two separate features. The \(x \)- and \(y \)-components are extracted from the agent’s angular velocity \(\dot{\phi} \) to reduce the complexity of path-integration.

\[
x = \cos(\dot{\phi}) \quad y = \sin(\dot{\phi})
\]

The second approach adds noise to the input, which could provide the necessary conditions for generating entorhinal-like representation according to research by Banino et al. [1]. They claim that Dropout introduces noise to their network, which they noted was essential for emerging entorhinal-like representation. This technique is introduced to evaluate the noise introduction hypothesis and its relation to emergent entorhinal-like representation.

The latter approach, called ray-tracing, introduces vision-like features. Ray-tracing uses a color-coding system for the walls around the agent. The color-coding system creates a biologically-inspired encoding for each location in the environment. Each ray-trace is a separate feature that provides a readout of the wall color. The color-coding process is visualized in Figure 3.6.
3.4. Experimental Factors

The agent in gray observes a fixed number of sampled ray-traces from the environment. The ray-tracing method uses a wall color-coding system to reflect the approximate location of the agent. Each ray trace hits a particular wall segment and uses the wall index as a feature.

Figure 3.6: Ray-tracing calculation

3.4.2 Structural Properties

The experimental factors include structural properties, such as network architecture and training procedures. The network architectures and training procedures are responsible for a large part of the performance [135]. Moreover, training for optimal solutions is associated with efficient representation [122], which could lead to sparse activation patterns, such as entorhinal-like representation [35].

The explored recurrent neural network properties are: the number of hidden recurrent neurons, recurrent cell type, and recurrent initialization. The number of hidden neurons influences the maximum capacity of neural networks, and the increase in network complexity allows the model to find more complex solutions to the problem [136, 137]. Furthermore, exploring the performance of different recurrent cells (LSTM, GRU, and RNN) helps visualize the functional variations between recurrent architectures. Additionally, recurrent initialization strategies have an essential role in finding the optimal solution in neural networks [138]. Therefore including alternative initialization strategies explores additional differences in training performance.

Another critical aspect of network optimization is the selection of the learning rate and training optimizer. The learning rate was determined to be the most critical hyper-parameter to tune [135]. Additionally, an incorrectly tuned training optimizer will prevent the network from learning optimally [138]. Both training procedures are essential for optimizing recurrent neural network performance.

3.4.3 Regularization Techniques

Regularization was essential for causing emergent entorhinal-like representation, according to Banino et al. [1] and Cueva and Wei [2]. The experimental factors include usual regularization techniques, such as Dropout and weight decay. These approaches are implemented to test both the training performance and the ability to create emergent representation. Additionally, some new regularization techniques are introduced to be able to address additional hypotheses.

Several Dropout techniques are tested to reduce the co-adaptation between neurons
3. Methodology

Figure 3.7: Dropout progression
All three Dropout techniques have a different Dropout probability progression over time. No neurons are dropped out with a probability of 0.0, and all neurons are silenced with a probability of 1. Standard Dropout has a fixed Dropout probability rate of 0.5. Curriculum Dropout exponentially increases the Dropout probability until it reaches the 0.5 threshold. Conversely, the Curriculum Drop-in algorithm exponentially decreases the Dropout probability over time until no neurons are silenced anymore.

[114]. Standard Dropout stochastically silences a fixed proportion of the neurons within a network layer. Curriculum Dropout is becoming a popular alternative approach, which progressively increases the Dropout probability until it reaches the standard Dropout probability, thus increasingly silencing more neurons [135]. A spin-off idea called Curriculum Drop-in is introduced in this thesis. This approach starts with the standard Dropout probability, and reduces the Dropout probability over time, thus silencing fewer neurons over time. For more information on the Dropout probability progression, see Figure 3.7.

Weight decay is an alternative regularization approach, and is applied in two circumstances: linear weight decay and recurrent weight decay. Linear weight decay penalizes excessively large neural weights, as used by Banino et al.’s [1] bottleneck layer \(W_{\text{bottleneck}} \).

\[
L(w) = \frac{1}{T} \sum_{t=0}^{T} \left(y_{t}^{\text{pred}} - y_{t}^{\text{target}} \right)^2 + \lambda \cdot \frac{1}{N_{\text{weights}}} \sum_{i=0}^{N_{\text{weights}}} (W_{i}^{\text{bottleneck}})^2
\]

Additionally, recurrent weight decay penalizes the recurrent weights. Recurrent weight decay is part of the Metabolic constraint in Cueva and Wei [2], and penalizes recurrent input weights \(W^{in} \), recurrent output weights \(W^{out} \), and recurrent state activation \(u(t) \). Also, a fixed weighted relationship between the Metabolic constraint elements is introduced using \(c_{\text{out}}, c_{\text{in}}, \) and \(c_{\text{recurrent}} \).

\[
L(w) = \frac{1}{T} \sum_{t=0}^{T} \left(y_{t}^{\text{pred}} - y_{t}^{\text{target}} \right)^2 + \lambda \cdot \left(\frac{c_{\text{in}}}{N_{N_{\text{in}}} N_{\text{in}}} \sum_{i,j=0}^{N_{N_{\text{in}}}} (W_{ij}^{in})^2 \right) + \frac{c_{\text{out}}}{N_{N_{\text{out}}} N_{N_{\text{out}}}} \sum_{i,j=0}^{N_{N_{\text{in}}}} (W_{ij}^{out})^2 + \frac{c_{\text{recurrent}}}{N_{T}} \sum_{i,j=0}^{N_{N_{\text{in}}}} (u_{ij}(t))^2
\]
Regularization techniques could force neurons to specialize and minimize collaboration entirely. Winner-Takes-All (WTA) [139] can be used to investigate competition among neurons. This method silences all neurons, except for the highest activated neuron. Thus, WTA forces a small subset of neurons to specialize in their activation pattern [37].

\[a(t) = \max_i (u_i(t)) \]

Alternative Winner-Takes-All strategies exist, such as the soft-competition approach using the softmax function. The softmax approach transforms the neural activity \(u(t) \) using the fraction of the neural activation over the exponential sum of all neural activity. This soft-competition approach can highlight the collaboration between neurons but also silence the activation of redundant neurons.

\[a(t) = \frac{e^{u(t)}}{\sum_{j=0}^{N} e^{u_j(t)}} \]

Additionally, this study introduces a new regularization technique called Neural Fatigue, which is based on the signaling timeout from real neurons. The signaling timeout is the delay between action potentials, in which neurons cannot physically signal [140]. This phenomenon can be translated into artificial neurons by silencing the most active recurrent neuron in the next time-step. This approach should encourage precise timing and activation for each neuron to signal information efficiently [141].

3.5 Summary

The data simulator generates attractor-based agent trajectories to gather velocity, directional, and positional information for the training process. A base model is used to replicate earlier studies, enables investigation of various underlying factors, and measure the effect of entorhinal-like representation on training performance in recurrent neural networks.

Traditional models visualize entorhinal-like representation in recurrent networks using spatial and non-spatial (velocity and direction-based) activity plots. This study introduces new visualization techniques using a maximum activity plot, average performance plot, trajectory performance plot, and spatial influence plot. The analysis diversity is useful for developing a comprehensive understanding of the underlying activation pattern of neurons.

Additionally, input features, structural properties, and regularization techniques are introduced to investigate the factors underlying entorhinal-like representation.

The upcoming chapter outlines the results from the three main research questions testing the representation robustness, underlying factors, and effects on training performance linked to the emergence of entorhinal-like representation in recurrent neural networks.
Chapter 4

Results

The research questions translate into five experiments: (1) replicating earlier work, (2) experimenting with input features, (3) varying structural properties, (4) evaluation of regularization techniques, (5) and analysis of entorhinal-like representation training performance in recurrent neural networks.

4.1 Replication Studies

Earlier work is replicated using models from Banino et al. [1] and Cueva and Wei [2] to investigate emerging grid-like representation in recurrent neural networks. The experiments are designed to answer the question: “Is it possible to replicate emergent entorhinal-like representations using non-essential simplifications of earlier work models?”. A couple of non-essential factors were omitted from the replicated models since they are either proprietary or not related to the emergence of entorhinal-like representation.

The functional differences between the earlier work models are highlighted in Figure 2.4 and Figure 2.5. The main differences between the models are the recurrent neural cell and regularization techniques. Banino et al.’s model used an LSTM gated recurrent network and observed grid-like representation in a bottleneck layer regularized by Dropout. However, Cueva and Wei’s model uses a Continuous-Time Recurrent Neural Network (CTRNN [142]) and concludes that the Metabolic constraint on the recurrent weights and recurrent state was responsible for emergent grid-like representation in recurrent cells.

4.1.1 Banino et al.

The executed experiments aim to reproduce the results from Banino et al. through a simplified model to observe if grid-like representation would emerge. The simplified experiments have to leave out the proprietary vision module by Banino et al., but this should not impair the results of the experiment since Cueva and Wei’s model showed emerging representation without vision. All other experimental details and configurations from the original study were used to train the recurrent neural network. For more information on the experimental setup for the model, see Figure 4.1.
4. RESULTS

Figure 4.1: Banino et al. simplified model
The simplified model trains using (1) the split direction input approach, (2) the network predicts the activity of place- and head-direction cells associated with the trajectory, (3) LSTM uses 128 neurons, (4) bottleneck layer of 512 neurons, and (5) the model predicts 256 place cell and 12 head-direction cell activations.

Banino et al.’s model predicts artificial place- and head-direction cell activations related to the spatial position of the agent. The model is initialized with the initial activations of the place- and head-direction cells and predicts the place- and head-direction cells at the output layer. The softmax cross-entropy loss is used to train on the distribution difference between the predicted and target activity.

The replication results for Banino et al.’s model are visualized using activity plots in Figure 4.2, and performance plots in Figure 4.3.

(a) Spatial activity plot
Each plot cell visualizes the average spatial activity for an artificial neuron. All neurons have stochastic spatial activation patterns.

(b) Velocity activity plot
Each plot cell visualizes the average velocity-dependent neural activity. The representation for each neuron consists of noisy uniform activations.

(c) Direction activity plot
Each plot cell visualizes the average direction-dependent neural activity. Most neurons have directional activity Gaussian peaks, which shows angular velocity specialization.

Figure 4.2: Representation from simplified Banino et al. model
Replicating Banino et al.’s model through non-essential simplifications results in head-direction-like representation in most neurons.
4.1. Replication Studies

The spatial activity plot in Figure 4.2a shows stochastic spatial activation in all neurons. None of the neurons produce geometric shapes in the spatial activity plots. The velocity-dependent activation plot (Figure 4.2b) also shows uniform and noisy neural activations. Similarly to the spatial activity plots, there is no resemblance of any specialization according to the velocity input. However, the directional plot in Figure 4.2c shows angular velocity specialization for almost all neurons. The neurons show preferred directional activity (neuron \([1, 0]\) and \([0, 4]\)) resembling Gaussian-like activation patterns. These patterns are similar to head-direction cells, which have a preferred directional activation range. These results lead us to conclude that head-direction activated cells have emerged, but unfortunately, this does not align with the experimental aim since the intention was to reproduce Banino et al.’s emergent grid-like representations.

The average performance error in Figure 4.3a highlights an unusual spike in the first few trajectory steps. An initialization problem might be the culprit, potentially caused by improper initialization. The loss plot in Figure 4.3b shows that the performance has converged, but very peculiar is the gap between the training and testing error. The test error is usually higher compared to the training error.

![Average performance plot](image1.png)

(a) **Average performance plot**

The time-dependent loss is calculated using the average loss for each trajectory time-step. This plot shows initialization problems, the first few steps have excessively large error compared to the remainder of the trajectory.

![Loss plot](image2.png)

(b) **Loss plot**

The loss plot visualizes the trained loss differences between the training (blue) and testing (orange) error. The loss continues to show training improvements until the performance converges around epoch 15.

Figure 4.3: **Performance results for the simplified model of Banino et al.**

Replicating Banino et al.’s model through non-essential simplifications results in initialization problems, leading to fast convergence to a local minima.

The results from Banino et al.’s simplified model do not replicate the original findings. Neurons show stochastic spatial activity and directional dependence similar to head-direction cells. The lack of grid-like representations is possibly due to the omission of the first-person vision module. These visual features could introduce useful non-linear features related to the spatial position, potentially necessary for entorhinal-like representation.
4. Results

4.1.2 Cueva and Wei

The Metabolic regularization constraint was responsible for the emergence of irregular-, grid-, border-, and band-like representation in Cueva and Wei [2] recurrent neural network. The Metabolic constraint uses weight decay on recurrent input weights, recurrent output weights, and the recurrent state. The simplified model uses Cueva and Wei’s recommended starting weighted relation to train the model. For more information on the simplified model see Figure 4.4.

Figure 4.4: Cueva and Wei simplified model
Cueva and Wei’s model contains four essential aspects, the model uses (1) orthogonal recurrent weight initialization, (2) 100 recurrent neurons, (3) a Continuous-Time Recurrent Neural Network (CTRNN), and (4) the recurrent layer is connected to the output layer.

![Simplified Cueva and Wei model](image)

(a) Spatial activity plot
Each plot cell visualizes the average spatial activity for an artificial neuron. Neurons are partially spatially active, but show no geometric activation patterns.

(b) Velocity activity plot
Each plot cell visualizes the average velocity-dependent neural activity. Cells show uniform activation patterns when averaging activity over velocity.

(c) Direction activity plot
Each plot cell visualizes the average direction-dependent neural activity. Prevalent linear dependence on direction explains spatial and velocity activity irregularities.

Figure 4.5: Simplified Cueva and Wei model representations
Replicating Cueva and Wei’s model through non-essential simplifications results in partial linear dependence on head-direction.
4.1. Replication Studies

Cueva and Wei’s model is trained slightly differently compared to Banino et al.’s model. Each trajectory starts at the center of the environment \((0, 0)\); thus, the model does not require state initialization. Furthermore, the network trains to predict the \(x\)- and \(y\)-coordinate of the agent during the trajectory.

The results are visualized in spatial and non-spatial activity plots in Figure 4.5, and performance plots in Figure 4.6. The spatial activity results in Figure 4.5a from the simplified Cueva and Wei [2] model is less noisy compared to the simplified approach from Banino et al. [1]. The velocity-dependent plot in Figure 4.5b shows a similar uniform activity pattern among recurrent neurons compared to the simplified Banino et al. model. Additionally, a dependence on the direction is noted in Figure 4.5c, see neuron \([3, 1]\) or \([1, 9]\). This directional-dependence would lead us to conclude that a significant part of the network is dependent on head-direction. The activation pattern is linear, and not Gaussian compared to the simplified Banino et al. model. Thus it is not possible to conclude that head-direction-like representation emerged in this model.

![Average performance plot](image1)

(a) **Average performance plot**
The time-dependent loss is calculated using the average loss for each trajectory time-step. The average performance plot shows initialization problems in the first few trajectory time-steps.

![Trajectory performance plot](image2)

(b) **Trajectory performance plot**
The overlapping trajectories are visualized with the target path in green and the predicted path in red. The plot highlights that the model performs close to optimal.

![Loss plot](image3)

(c) **Loss plot**
The loss plot visualizes the trained loss differences between the training (blue) and testing (orange) error. Both the training and testing loss show desirable generalization and speedy convergence.

Figure 4.6: Simplified Cueva and Wei model performance results
Replicating Cueva and Wei’s model through non-essential simplifications results in good network generalization performance.

The average performance plot in Figure 4.6a shows initialization problems in the first few steps, after which the average performance increases almost linearly. The network potentially suffers from improper initialization, even though the network achieves impressive performance loss. This performance is best visualized in the trajectory performance plot in Figure 4.6b. This figure shows that the trajectory overlap is close to optimal. Additionally, the loss plot (Figure 4.6c) shows a good balance between training and testing performance.

Neither experimental results have shown resemblance to the emerging grid-like representation from Banino et al. [1] and Cueva and Wei [2]. Only head-direction cells could be distinguished due to the directional specialization (Gaussian activity peaks) in various recurrent cells in the simplified Banino et al. model.
4. RESULTS

4.2 Hybrid Baseline Model

Exploring the potential factors underlying emergent entorhinal-like representation requires a structured approach. The experiments test three main factors: (1) input features, (2) structural properties, and (3) regularization techniques. These experiments attempt to answer the following research question: “What factors can influence the emergence of entorhinal-like representation in recurrent neural networks?” However, to reflect on the representation requires first introducing a hybrid baseline model to relate the performance and representation of these three factors.

The standard experimental setup consists of 25 LSTM neurons and a linear output layer. The hybrid baseline model is an amalgamation of the Banino et al. [1] and Cueva and Wei’s model [2]. The hybrid baseline uses an LSTM gated recurrent cell, inspired by the work from Banino et al. [1], but uses fewer neurons compared to their original model. The model trains to integrate the position from the velocity and direction, similar to Cueva and Wei’s approach [2]. Thus, training on the difference between the predicted and target trajectories to optimize the neural network weights. For more details on the hybrid baseline model, see Figure 4.7.

The plots in Figure 4.8 visualize the converged performance and representation for the trained model. The baseline configuration results in Figure 4.8a shows stochastic activations (neuron [0, 2]), but mostly linear spatial activation gradients (neuron [1, 2] and [4, 3]). The velocity-dependent plot in Figure 4.8b shows uniform but noisy activation when averaging and binning the recurrent activity based on speed alone.

Furthermore, the direction activity plot in Figure 4.8c shows partial dependence on direction. Mainly due to the linear directional-dependent activity gradients shown in a couple of neurons. For example, neurons [0, 0], [0, 1], and [1, 1] are prime examples of this type of linear activity gradient. The noisy and stochastic spatial activations could be explained by the reliance on other variables, such as direction or velocity. Thus, the network can specialize both in input features (mainly direction) and output dimensionality (spatial).
4.2. Hybrid Baseline Model

Figure 4.8: **Hybrid baseline representation and performance**

The hybrid baseline model results in spatial- and directional activity and provides good path-integration performance. Each plot cell visualizes the average (a) spatial, (b) velocity, (c) directional activity for an artificial neuron.

Looking at the performance plots in Figure 4.8d and Figure 4.8e shows that the network performs close to optimal. Since the average performance plot in Figure 4.8d shows no initialization problems in the first few steps, and the error increases linearly during the trajectory. The spatial trajectory performance in Figure 4.8e shows the network is predicted path is close to the target trajectory with sufficient accuracy. While emerging grid-like representation is lacking, the model seems to provide an excellent candidate for path-integration. Additionally, as seen in the loss plot (Figure 4.8f) the network performance converges quickly to balance performance between training and testing error.
4. Results

4.3 Input Features

The input experiments aim to define the role between input features and generating biologically-plausible representation. The four input features experiments are: separating the input direction into x- and y-component (direction), adding input noise to the velocity and direction (noise), ray-tracing replacing the input data (ray-tracing), and the combination of both input data with ray-tracing (input with ray-tracing).

The results in Figure 4.9 show that the split direction performs better compared to the default baseline. However, the most stable and optimal solution combines the original input with ray-tracing, as seen in the loss comparison plot.

Figure 4.9: Input feature approaches testing losses
The loss plot visualizes the trained loss differences between input feature approaches. The direction, ray-tracing, and input ray-tracing approach can improve path-integration performance in recurrent neural networks.

Figure 4.10: Split direction and noisy input feature model
The changes to the experiment include the use of split direction and noisy input. The approaches replace the input data and initialize with the starting position.
The first two experiments explore the split direction and noisy input features. The architectural differences are laid out in the architectural diagram of Figure 4.10.

4.3.1 Split Direction

This experiment tests if the split direction approach proposed by Banino et al. is associated with better performance and if it might be the key to entorhinal-like representation.

The representation from the split direction technique in Figure 4.11a highlights predominantly linear spatial activity gradients, for example neurons \([1, 1]\) and \([3, 1]\). The velocity-dependent activation in Figure 4.11b shows similar uniform and noisy activation compared to the hybrid baseline configuration. However, the cells in the directional activity plot (Figure 4.11c) show Gaussian-like activity patterns over the angular range (for example neurons \([0, 2]\) and \([1, 3]\)), similar to head-direction cells. The performance improvements are likely due to the predominantly linear spatial activity gradients and directional tuning.

Figure 4.11: Split direction input representation and performance

The split direction input method separates the original angular input into its x- and y-components. The spatial activity plot shows predominantly linear spatial activity gradients and directional dependence.

4.3.2 Noisy Input

Banino et al. motivate the use of Dropout through the hypothesis that it would add noise to the training model, due to the stochastic silencing of random neurons. Therefore adding a small amount of Gaussian noise to our velocity and directional input could replicate the same effect and test their hypothesis.
4. RESULTS

The resulting spatial representation (Figure 4.12a) shows similar stochastic spatial activity patterns compared to the hybrid baseline model. Some of the cells show linear spatial activity gradients, such as neurons [0,0] and [2,2]. However, most neurons have spatially stochastic activity patterns, such as neurons [1,4] and [3,2], these cells could rely on other features. The velocity-dependent activation (Figure 4.12b) shows predominantly uniform but noisy activations. As seen before, speed might not be an informative feature for the simulated dataset. A sufficient number of recurrent cells have specialized in the directional input, as shown in Figure 4.12c. The recurrent cells show linear directional activity gradients, for example in neurons [0,1] and [1,6].

![Spatial activity plots](image1)

(a) Spatial activity plots

Each plot cell visualizes the average spatial activity for an artificial neuron. A moderate amount of neurons show linear spatial activity gradients, but most cell are stochastically activated.

![Velocity activity plots](image2)

(b) Velocity activity plots

Each plot cell visualizes the average velocity-dependent neural activity. Again speed is likely not an informative feature, only showing uniform and noisy velocity-based activations.

![Direction activity plot](image3)

(c) Direction activity plot

Each plot cell visualizes the average direction-dependent neural activity. Most cells shows partial or globally consistent linear directional activity gradients.

Figure 4.12: **Noisy input representation and performance**

Noisy input introduces additional noise to the velocity and direction. The spatial activity plots show both linear spatial activity gradients and linear directional activity gradients.

4.3.3 Ray-tracing

Ray-tracing was designed to explore biologically-inspired input representations. Ray-tracing uses a sparse representation for the environment to encode the current location, through the wall color-coding systems (see subsection 3.4.1). The ray-tracing experiments used 50 ray-trace samples to measure the environment and create features reflecting the approximate location of the agent. The model uses ray-tracing both to initializes the recurrent cell and as input features, as seen in Figure 4.13.
Figure 4.13: **Input ray-tracing model**

The changes to the experiment include the use of ray-tracing as initialization and input source. The first experiment replaces the input with ray-tracing, and the second experiment combines ray-tracing with the original input.

The ray-tracing input replacement experiment results visualized in Figure 4.15a show distinctly different spatial representations. The spatial representation shows signs of consistent curved and linear activity gradient patterns. For example, neurons [0, 3] and [3, 3] shows non-linear gradient activations. Due to the input replacement, it is not possible to plot velocity and directional dependence.

Figure 4.14: **Ray-tracing Spatial activity plot**

This ray-tracing experiment replaces the velocity and directional input by vision-like features from the environment. Each plot cell visualizes the average spatial activity for an artificial neuron. The first-person wall-color coding features create non-linear spatial activity gradients for a wide range of recurrent neurons. Although some cells stay linearly or stochastically activated.

Additionally, combining input with ray-tracing features yields linear spatial activity gradients (Figure 4.15a). Only some of those representations shows slanted activity gradients (neurons [0, 1] and [0, 2]), but most curved activity gradients do not occur anymore. The spa-
Results

Spatial activity is a combination of noisy representation (see neuron $[0, 3]$ and $[4, 3]$) and linear activation gradients (see neuron $[4, 0]$ and $[1, 4]$). The velocity-dependent activity plot (Figure 4.15b) predominantly shows uniform and noisy activation patterns. The representation is very similar to all other experimental results.

The directional activity plot in Figure 4.15c shows specialized directional activity. A portion of the recurrent cells are stochastically active; however, a small fraction shows linear directional activity gradients, such as neuron $[0, 10]$ and $[1, 11]$. Even more special is the occurrence of Gaussian-like activation in neurons $[1, 3]$ and $[1, 7]$. While there is a possibility that head-direction-like representation emerged, it is not prevalent, and thus, it is not possible to directly jump to conclusions about the underlying activity behavior.

![Spatial activity plot](image1)
- Each plot cell visualizes the average spatial activity for an artificial neuron. Neurons show linear spatial activity gradients or have noisy and stochastic activation patterns.

![Velocity activity plots](image2)
- Each plot cell visualizes the average velocity-dependent neural activity. Still no sign of velocity-based specialization due to mostly uniform and noisy speed activated recurrent activity.

![Direction activity plot](image3)
- Each plot cell visualizes the average direction-dependent neural activity. Some neurons are directionally activated and show linear activation gradients and even Gaussian-like representation.

Figure 4.15: Default and ray-tracing input spatial and non-spatial plots

The input and ray-tracing approach adds the vision-like features to the velocity and directional input. The neurons show predominantly a combination of spatial or directional linear activity gradients, with some recurrent neurons showing head-direction-like activation patterns.

Varying the input features have not shown to be beneficial in the search towards grid-like representation. Only showing Gaussian-like directional activity for the split direction and input with ray-tracing approaches, similar to head-direction cells. However, ray-tracing can significantly boost the performance compared to the baseline model. The multi-modal input features results in partial non-linear representation and could potentially provide stepping stones towards entorhinal-like representation. The spatial and directional plots show both positional and direction specialization, thus the combination of both position and direction are critical features for performing path-integration.

The velocity-based activity plot has not shown significant relations between recurrent neural activity and velocity input. Thus future experiments will not refer to velocity activity.
4.3. Input Features

plots since they do not add to the discussion of recurrent activity. Instead, a new approach is introduced using the spatial influence plot to investigate which spatially activated neurons have a significant influence when predicting the output.

While the input experiments have not directly manifested diverse representations similar to the entorhinal cortex, it might require to expand the search to other influential factors in recurrent neural networks. Therefore, the next section focuses on the structural properties of recurrent neural networks.
4.4 Structural Properties

Structural properties involve both network attributes and training procedures. Various papers point to network attribute and training procedures being highly influential for the performance of neural networks; this is especially the case for recurrent networks [135]. Also, the initialization strategy and optimizer choice have a significant influence on the network performance [138]. Therefore optimizing the structural properties of neural networks is an excellent addition to the input feature experiments.

The network attribute experiments use different recurrent cell types, adjust the number of hidden neurons, and change the recurrent weight initialization approach. Furthermore, the training procedures include alternative learning rates and various training optimizers. These model differences are highlighted in Figure 4.16.

Several experiments show slightly improved performance compared to the hybrid baseline configuration (25 LSTM cells using Glorot normal [144] initialization), such as using a GRU cell (Figure 4.17a), increasing the number of hidden units to 81 (Figure 4.17b), and uniform recurrent weight initialization (Figure 4.17c). Additionally, the training performance can improve when using a higher learning rate of 0.01 as opposed to the default 0.001 (Figure 4.17d), and optimize the weights using the RMSProp optimizer (Figure 4.17e).

![Figure 4.16: Structural properties experimentation model](image)
4.4. Structural Properties

(a) **Recurrent Neural Networks**
The GRU (orange) can improve upon the LSTM (blue) baseline configuration.

(b) **Hidden Units**
Using 81 hidden units (purple) can improve upon the 25 hidden units (blue) baseline configuration.

(c) **Recurrent Weight Initialization**
Initializing the recurrent weights uniformly (brown) can slightly improve upon the Glorot normal [144] initialization (blue) baseline configuration.

(d) **Learning Rate**
Having a higher learning rate of 0.01 (green) is slightly better than the 0.001 learning rate (blue) used in the baseline configuration.

(e) **Optimizers**
Optimizing the loss using RMSProp (pink) can achieve a lower loss compared to the Adam optimizer (blue).

Figure 4.17: **Network attribute and training procedure experiments performance**
The loss plots visualize the trained loss differences between learning rates. Several experiments have explored the performance differences for network architectures and training procedures.
4. Results

4.4.1 Recurrent Cell

Varying the recurrent cell types (Figure 4.17a) resulted in poor performance from the RNN cell but showed improvements for the GRU cell compared to the LSTM cell. The spatial representation for the GRU cell in Figure 4.18a is more stochastically activated compared to the hybrid baseline model. The neuron spatial representation consists of stochastically activated cells (such as neuron \([1, 0]\) and \([2, 0]\)) and shows only slight linear spatial activity gradients for some of the cells involved (see neuron \([0, 1]\) and \([2, 2]\)).

![GRU recurrent cell representation](image)

Despite the small portion of the cells showing linear activated gradients, according to the spatial influence plot (Figure 4.18b) these cells influence the output computation the most. Showing that the four directional bands can complement each other to perform path-integration. These activations are not similar to entorhinal-like representation but are reminiscent of the three band-like cells oriented at 0, 60, and 120 degrees presumably underlying grid-like representation [145]. Additionally, the direction activity plot in Figure 4.18c highlights linear directional activity gradients for a decent portion of the recurrent cells. For example neurons \([1, 0]\) and \([0, 2]\) are prime examples of linear directional activation. While most cells are directionally activated, none of the directionally activated neurons seem to influence the output. When looking closer at the spatial influence plot, only the spatially activated neurons show an influence on the output values. The directional specialization could be used for influencing the recurrent state; however, this is not quantified in these sets of experiments.
4.4.2 Hidden Units

The performance improvements for increasing the number of recurrent neurons decreases exponentially, as seen in Figure 4.17b. Despite the diminishing returns, using 81 neurons can still slightly improve upon all other hidden unit configurations.

Changing the number of hidden units is visualized in Figure 4.19a and shows that the ratio of linear and stochastically activated cells is similar to previous experiments. The emerging representation consists mostly of linear spatial activity gradients (see neuron [1, 1] and [2, 3]). Additionally, increasing the number of hidden units does slightly improve the representational diversity, such as introducing non-linear spatial representation in neurons [0, 1] and [1, 6]. Despite the non-linear spatial activity generation, the network does not seem to benefit from representational diversity. The influence plot Figure 4.19b only shows partial linear spatial activation. One neuron ([2, 3]) is very influential, but it might also be the case that there is an imbalance in the influence metric and discounting other spatially consequential neurons. The directional plot shows significantly less directional specialization compared to previous experiments. Some cells show even linear- and Gaussian-like activation patterns ([2, 13] and [2, 16]), but most neurons are not dependent on directional input.

![Spatial activity plot](image1)
![Spatial influence plot](image2)
![Direction activity plot](image3)

(a) **Spatial activity plot**
Each plot cell visualizes the average spatial activity for an artificial neuron. The spatial activity plot shows predominantly linear activity gradients and stochastic spatially active neurons.

(b) **Spatial influence plot**
Each plot cell visualizes the average spatial influence of an artificial neuron. The influence separated into multiple neurons, being influential in the corners of the spatial environment.

(c) **Direction activity plot**
Each plot cell visualizes the average direction-dependent neural activity. Both linear and Gaussian-like directionally active neurons occur in the recurrent neural network.

Figure 4.19: 81 hidden units representation
The representation for 81 neurons shows mainly linear spatial activity gradients. Increasing the number of neurons reduces the directional dependencies, increases the representational diversity, and distributes the spatial influence over more neurons.

4.4.3 Recurrent Initialization

The uniform initialization has a slight performance edge compared to default initialization, see Figure 4.17c. While all other initialization techniques also converge to a similar opti-
mum, it is still interesting to investigate the uniform initialization technique and observe the underlying representation.

The representation in Figure 4.20a, shows widespread stochastic spatial activity (see neuron \([0, 0]\) and \([0, 1]\)) and linear spatial activity (see neuron \([3, 1]\) and \([4, 1]\))). The two linear spatially activated neurons show their influence on the output in Figure 4.20b. The x- and y-activity gradients are ideal for two-dimensional path integration. Potentially causing other neurons to have less spatial influence compared to those spatial basis neurons. The directional plot is quite uneventful, see Figure 4.20c. Some neurons \([0, 0]\) and \([1, 0]\) show directional linear gradients, but most neurons are uniformly active or have noisy activation behavior regarding the directional input features.

Figure 4.20: Uniform recurrent initialization representation
Using uniform recurrent initialization results in both noisy and linear spatial activity gradients. The improved performance is likely due to the simplified two-dimensional integration possible in two of the recurrent neurons.

4.4.4 Learning Rate

The representational differences, according to the change in the learning rate, are depicted in Figure 4.21. The differences are small between the baseline learning rate of 0.001 and a learning rate of 0.01, but we are still interested in the representational differences that could explain the performance gap.

The representation of a higher learning rate (0.01) shows a similar representation compared to the uniform recurrent initialization experiment (Figure 4.21a). Both the noisy spatial activity and linear spatial activity gradients are reoccurring representational phenomena. The linear spatial activity gradients (see neuron \([0, 3]\) and \([3, 3]\)) are very similar to the pre-
4.4. Structural Properties

vious results, creating a two-dimensional integration, with the y-axis activated neuron being slightly slanted. According to the spatial influence plot in Figure 4.21b, these two neurons [0,3] and [3,3] are very influential for predicting the path integrated position. The directional activity plot shows some Gaussian-like activation patterns [0,0] and [1,8], but most neurons are uniformly activated.

Figure 4.21: Learning rate 0.01 representation
A learning rate of 0.01 facilitates both noisy and linear spatial activity gradients. The performance improvement is quite likely to be caused by combination of the spatially activated recurrent neurons, already providing the spatial basis functions for path-integration.

4.4.5 Optimizer

The loss optimizer experiments show comparable performance between the default baseline approach (Adam optimizer) and RMSProp. However, RMSProp shows slight performance benefits over the baseline approach.

The spatial representation for the RMSProp optimizer, in Figure 4.22a, shows common spatial and directional representations. Both showing stochastic (see neuron [0,2] and [2,1]) and linear spatial activity gradients (see neuron [1,2] and [4,3]) in the spatial dimensions. Looking closely at the spatial influence plot (Figure 4.22b), shows a combination of y-component based integration ([4,0]), multiple stripe-like cells ([1,0], [1,2], [3,0] and [4,3]) and one bias cell ([1,1]). Additionally, the directional plot (Figure 4.22c) shows localized directional specialization in some cells but is not directly involved in predicting the output. More research is necessary for connecting the role between directional specialization and spatial activity; unfortunately, these basic plots are not able to uncover this direct relation.
4. **RESULTS**

(a) Spatial activity plot
Each plot cell visualizes the average spatial activity for an artificial neuron. Some recurrent neurons are spatially active, but most neurons show stochastically activated patterns.

(b) Spatial influence plot
Each plot cell visualizes the average spatial influence of an artificial neuron. A small set of neurons show high spatial influence mainly due to their linear spatially activated neurons.

(c) Direction activity plot
Each plot cell visualizes the average direction-dependent neural activity. The recurrent neurons are partially directionally activated, but most neurons are not directly related to directional activity.

Figure 4.22: Optimizer experiments
RMSProp representation consists of both noisy and linear spatial activity gradients. The slight improvements of the RMSProp optimizer is likely due to the spatial specialization due to linear spatial activity gradients of a small set of neurons.

All results regarding the structural properties of recurrent neural networks lack emerging entorhinal-like representation. This inability is not surprising since Banino et al. [1], and Cueva and Wei [2] clearly state their dependence on regularization. This agreement presumes that only regularization could provide the necessary drive within the network to shape and support entorhinal-like representation.
4.5 Regularization Techniques

The regularization technique experiments explore traditional and experimental regularization approaches and their relation to the emergence of entorhinal-like representation. As noted in earlier works, Dropout [1] and the Metabolic constraint [2] could be responsible for the emergence of entorhinal-like representation. It is also possible that other specialization or competitive strategies can produce biologically-plausible representation [6]. Experimental techniques explore various specialization techniques since the majority of neuroscientific studies point to competitive behavior or lateral inhibition required for entorhinal-like representation [58].

The following experiments use traditional (Dropout, recurrent regularization, and regularization loss) and experimental regularization (Winner-Takes-All, Neural Fatigue, and Specialization) approaches to investigate factors for emerging entorhinal-like representation. Figure 4.23 shows the model setup for the different regularization experiments.

Figure 4.23: **Regularization model**
The three essential changes to the experimental model include the recurrent regularization methods, Dropout, and additional regularization losses. Recurrent Regularization applies limitations on the recurrent output. Dropout stochastically silences neurons in the output layer. Regularization loss penalizes the network weights and/or state of recurrent neurons.

The regularization experimental results are shown in Figure 4.24a for Dropout, Figure 4.24b for regularization loss, and Figure 4.24c for recurrent regularization techniques. Dropout experimental results in Figure 4.25 shows that the different dropout technique slightly exceeded performance beyond the baseline. The Metabolic constraint and linear weight regularization show comparable performance to the baseline model in Figure 4.24b. The representation of all three models is very similar; thus, it is possible to pick the Metabolic constraint and reflect on its representation. Figure 4.24c shows the loss for various recurrent regularization techniques. The softmax and absolute regularization approaches show similar performance compared to the baseline model. Both the Winner-Takes-All and Neural Fatigue approaches show suboptimal performance.
4. Results

(a) **Dropout Performance**
According to the experimental comparison, the Drop-in method can slightly improve upon the no Dropout baseline model.

(b) **Recurrent Loss Performance**
According to the experimental comparison the Metabolic regularization option can slightly improve upon not using regularization (none).

(c) **Recurrent Regularization Performance**
According to the experimental comparison, the Winner-Takes-All (WTA) can perform worse compared to the hybrid baseline model. Other techniques perform similarly to the hybrid baseline model, such as absolute and softmax.

Figure 4.24: **Regularization experiments performance**
The loss plots visualizes the trained loss differences between regularization loss approaches. Dropout, regularization loss, and recurrent regularization experiments were executed to determine the influence of regularization techniques on performance.

4.5.1 **Dropout**
The Dropout regularization is applied to the linear layer weights and silencing about half of the connections from the recurrent state. The Dropout experiments use 49 recurrent neurons instead of 25 neurons to offset the number of dropped out neurons.
4.5. Regularization Techniques

The standard Dropout (default), Curriculum Dropout (dropout), Curriculum Drop-in (dropin), and no Dropout (none) perform similar to each other. However, the Dropout approaches can improve slightly on not using Dropout at all, allowing us to investigate the representation of Curriculum Drop-in, an approach which incrementally reducing the Dropout probability.

Curriculum Drop-in representation is visualized in Figure 4.25. Both spatial activity (Figure 4.25a) and influence activity (Figure 4.25b) plot show noisy ([0, 4] and [2, 3]) and linear ([2, 1] and [6, 0]) spatial activity gradients. Similarly the directional activity plots in Figure 4.25c shows uniform ([1, 1] and [2, 1]) and linear activity ([1, 0] and [2, 8]) gradients. The performance increase for Drop-in, and likely all other Dropout approaches, is due to the increased number of neurons since the representational diversity does not increase compared to the hybrid baseline model without Dropout.

![Spatial activity plot](image1)
![Spatial influence plot](image2)
![Direction activity plot](image3)

(a) **Spatial activity plot**
Each plot cell visualizes the average spatial activity for an artificial neuron. Neurons are typically noisy or linearly activated over the spatial domain.

(b) **Spatial influence plot**
Each plot cell visualizes the average spatial influence of an artificial neuron. The influence measurement highlights several linearly activated neurons and their contribution towards the output.

(c) **Direction activity plot**
Each plot cell visualizes the average direction-dependent neural activity. Neurons are uniformly activated or show slight linear activity gradients.

Figure 4.25: Dropin regularization experiments
The spatial representation of Curriculum Drop-in consists of typical activation behavior of recurrent neurons. Showing both directional and spatially activated recurrent neurons.

4.5.2 Regularization Loss

The regularization loss is added as an additional learning signal to promote auxiliary training objectives. The performance differences between regularization loss approaches are visualized in Figure 4.26. While multiple regularization approaches are performing similarly, it is possible to investigate the underlying representation of the Metabolic constraint to see if the Metabolic constraint itself develops any biologically-inspired representations.

The Metabolic constraint uses weight decay on the recurrent input weights, recurrent output weights, and recurrent state. The Metabolic constraint results highlight both noisy neural activation patterns and linear activity gradients (Figure 4.26a). The developed repre-
4. RESULTS

presentation is similar to structural properties experiments. The spatial representation develops similar linear spatial activity gradient ([1, 3] and [3, 4]), and stochastic spatial activations. The influence plot (Figure 4.26b) mainly highlights the contribution of two neurons ([0, 0] and [3, 3]) providing x- and y-components for spatial integration. The directional plot in Figure 4.26c is also very similar to previous results, providing only partial linear activity gradients ([0, 5] and [1, 4]) but nothing out of the ordinary. The results point to the possibility that the untrained weighted relation between the Metabolic constraint components is not competent enough to generate emerging entorhinal-like representation.

![Spatial activity plot](image1)
![Spatial influence plot](image2)
![Direction activity plot](image3)

(a) **Spatial activity plot**
Each plot cell visualizes the average spatial activity for an artificial neuron. Neurons have both linear and stochastic spatial activity.

(b) **Spatial influence plot**
Each plot cell visualizes the average spatial influence of an artificial neuron. Two neurons are most influential for predicting the output, providing both the x- and y-component for path integration.

(c) **Direction activity plot**
Each plot cell visualizes the average direction-dependent neural activity. A small amount of the neurons shows directional specialization through linear directional activity gradients.

Figure 4.26: **Regularization loss experiments**
Metabolic regularization achieves similar performance to having no regularization at all. According to the representational plots, the application of the unweighted Metabolic constraint did not lead to biologically-inspired representation.

4.5.3 Recurrent Regularization

Recurrent regularization adjusts the output of the recurrent neurons to force specialization between neurons, and tests if the competition is a suitable alternative to the conclusions from Banino et al. [1] and Cueva and Wei [2].

The best performing regularization approaches, such as softmax and Absolute, have similar performance and representation compared to previous experiments. However, Winner-Takes-All and Neural Fatigue showed distinct activity patterns. Winner-Takes-All results in spatial specialization, as seen in the spatial, influence, and directional plot (Figure 4.27). The neurons are mainly activated based on the spatial position of the agent. The maximum activity plot Figure 4.27b signifies the strong spatial specialization through Winner-Takes-All. Unfortunately, the performance is significantly worse compared to other regularization options, thus making it not relevant for future experimentation.
4.5. Regularization Techniques

(a) **Spatial activity plot**
Each plot cell visualizes the average spatial activity for an artificial neuron. Neurons activity is mostly active near border boundaries and spreads towards the center of the environment.

(b) **Maximum spatial plot**
Visualizes the most active neuron per spatial bin. Some neurons are able to specialize in linearly shaped activity cones. Which combined share the entire spatial activation pattern.

(c) **Direction activity plot**
Each plot cell visualizes the average direction-dependent neural activity. Most neurons are insensitive to directional input, because they are uniformly- or stochastically activated regarding direction.

Figure 4.27: **Recurrent regularization experiments**
The spatial representation of Winner-Takes-All consists of local specialization among neurons.

(a) **Spatial activity for Neural Fatigue regularization**
Each plot cell visualizes the average spatial activity for an artificial neuron. The neurons show very local specialization activation patterns.

(b) **Maximum spatial plot**
Visualizes the most active neuron per spatial bin. The maximum spatial plot for the Neural Fatigue regularization technique shows shared specialization across the environment.

(c) **Direction activity plot**
Each plot cell visualizes the average direction-dependent neural activity. Most neurons are never activated, and some are only stochastically activated based on directional input.

Figure 4.28: **Neural Fatigue experiments representation and performance**
The competitive nature of Neural Fatigues shares the spatial activations between neurons, but this results in suboptimal performance.

The Neural Fatigue regularization technique approach (see Figure 4.28) shows similar
activation patterns compared to Winner-Takes-All. Neural Fatigue silences the most active neuron in the next time-step, similar to the neurological phenomenon of the signaling timeout in neurons.

Additionally, the specialization posed by Neural Fatigue shows a similar dependence on spatial activity, as shown in the maximum spatial plot in Figure 4.28b. Less neurons are able to be spatially active (Figure 4.28a) compared to the Winner-Takes-All experiment, however this results in more defined place-like ([0, 2] and [3, 3]) and border-like representation ([4, 3]) in neurons. The directional activity plot Figure 4.28c shows that the cells are not directionally activated at all, only showing stochastically activated neurons.
4.6 Entorhinal Performance

In addition to studying the emergence of entorhinal-like representations themselves, this study also investigates the relation between entorhinal-like representation and performance. Thus addressing the research question: “Does entorhinal-like representation in recurrent neural networks improve path-integration performance?”.

Previous studies lack any conclusive evidence on the effect of entorhinal-like representation. Also, none of the experiments in this thesis show conclusive evidence towards spatial entorhinal-like representation. Additionally, we still do not know if the development of entorhinal-like representation is beneficial for recurrent neural networks. Therefore this section finally attempts to relate entorhinal-like representation with training performance.

The experiment requires to artificially generate entorhinal-like representation to observe the effect of entorhinal-like representation since natural emergence has not been observed in any of the previous experiments. Two approaches are used: replacing input data and replacing the recurrent cell with artificially generated entorhinal-like representation based on trajectory data from the agent. For more information on the model layout, see Figure 4.29.

Figure 4.29: Entorhinal simulation model
Basic setup for replacing the input data with entorhinal-like representation.

The artificially generated entorhinal-like representation simulates the activation pattern of individual cells based on their theoretical activation functions. The cells have a randomly assigned center position or head-direction depending on the cell type on which the activation calculation is performed. Each cell uses available data, such as the spatial position for grid- and place-like cells, the velocity for speed cells, or moving direction for simulating head-direction and border-like cells. For more information on the activation functions for the different artificially generated entorhinal cells, see Appendix D.

4.6.1 Input Features Replacement

Replacing the input data requires generating entorhinal-like representations based on the positional, velocity, and directional data. The input data available during the training process is solely based on the entorhinal-like input features; the directional and velocity data are not
available during training. Each experiment tests a different entorhinal-like representation replacement, consisting of grid, place, border, speed, and head-direction cells.

4. Results

Figure 4.30: Entorhinal input replacement losses
The loss plot visualizes the trained loss of between input replacement techniques inspired by entorhinal-like representation. Input techniques differences shows that the border- and place cells are more optimal compared to the baseline configuration (default).

Figure 4.31: Entorhinal border cell input representation and performance
Border cell input replacement performs best compared to other entorhinal-like representation. Possibly the dominant spatial activation and shared influence of multiple neurons is part of this improvement.

The performance differences are shown in the loss plot (Figure 4.30). From these results, we can conclude that border- and place-like representation can improve over the hy-
brid baseline model. Whereas, the speed, head-direction, and grid-like cells show bad performance or do not significantly improve upon the baseline performance.

Looking more closely at the representation associated with border cells (Figure 4.31) shows that the recurrent cell creates linear and non-linear spatial representation from border-like input. The input variety provided by multiple border-like cells could explain the diversity of spatially activated neurons. Also, the trajectory performance plot (Figure 4.31c) shows robust accuracy and overlap of the predicted and target trajectories. The only explanation available for the improved performance is either the non-linear spatially active neurons or the fact that the influence plot shows more neurons participating in the path-integration process as before (Figure 4.31b).

Place cells are also an excellent approach to replace the input data according to the loss comparisons (Figure 4.30). The spatial activity resulting from a network only trained by place-like input data Figure 4.32a seems to carry-over the blob-like activation pattern. The spatial representation does show consistent confined place-dependent peaks. Again, the spatial influence plot highlights the shared contribution of multiple neurons for prediction the output for path-integration (Figure 4.32b). The performance, according to Figure 4.32c, shows that the trajectory overlap is similar, but less accurate compared to the border-like input replacement approach.

![Spatial activity plot](image1.png)
![Spatial influence plot](image2.png)
![Trajectory performance plot](image3.png)

(a) **Spatial activity plot**
Each plot cell visualizes the average spatial activity for an artificial neuron. The spatial activity plots show reminiscent activation from the place cell input distribution.

(b) **Spatial influence plot**
Each plot cell visualizes the average spatial influence of an artificial neuron. Each cell uses the place-like activation to represent a part of the spatial environment.

(c) **Trajectory performance plot**
The overlapping trajectories are visualized with the target path in green and the predicted path in red. Trajectory prediction has good performance but is more noisy in predicting straight-forward paths.

Figure 4.32: **Entorhinal place cell input representation and performance**
The recurrent cell maintains and combines place-like representations, which creates a small clusters of spatial activity patterns, providing good path-integration performance.
4. Results

4.6.2 Recurrent Cell Replacement

Alternatively, the activity of the recurrent neurons can be replaced using the different entorhinal-like activation distributions. A multi-scale approach is introduced to ensure enough representational diversity. Especially grid cells appear to exist in multiple discrete scales [11]. This scaling could be necessary for achieving scalable solutions, especially when the recurrent cell is bypassed. The multi-scale option replaces the recurrent cell state with entorhinal-like representation based on the position, velocity, and direction of the trajectory. Each cell has a random scale associated with each cell representation.

The multi-scale recurrent replacement results are displayed in Figure 4.33. The border representation performs even better compared to the input replacement approach. Additionally, the multi-scale approach helps grid cells improve compared to the hybrid baseline model.

![Figure 4.33: Entorhinal recurrent replacement losses](image)

The best performing recurrent cell replacement is the border cell. Looking closely at the representation for artificially generated border cells highlights a regular maximum plot pattern (Figure 4.34). The performance of multi-scale border cells is an order of magnitude better compared to the entorhinal input replacement experiments. This performance leap could be due to the linear activation of cells leading to more consistent tracking of positions within the 2D environment.
4.6. Entorhinal Performance

(a) Spatial activity plot
Each plot cell visualizes the average spatial activity for an artificial neuron. Each cell is assigned a particular head-direction angle, which results in direction dependent border-like activity patterns.

(b) Spatial influence plot
Each plot cell visualizes the average spatial influence of an artificial neuron. The spatial influence is shared by many border-like neurons collaborating to provide path-integration capabilities.

(c) Trajectory performance plot
The overlapping trajectories are visualized with the target path in green and the predicted path in red. Predicted trajectories are close to optimal, showing good path-integration performance.

Figure 4.34: Entorhinal multi-scale recurrent replacement border cell
The recurrent cell is replaced by border-like representation, which creates shared spatial activity patterns, providing good path-integration performance.

(a) Spatial activity plot
Each plot cell visualizes the average spatial activity for an artificial neuron. Grid cells have a varying scale allowing the network to train in different granularities.

(b) Spatial influence plot
Each plot cell visualizes the average spatial influence of an artificial neuron. Both place-like and grid-like representations contribute to the output prediction of the agent’s trajectory.

(c) Trajectory performance plot
The overlapping trajectories are visualized with the target path in green and the predicted path in red. The differences between the trajectories are minimal.

Figure 4.35: Recurrent entorhinal multi-scale grid cell
The recurrent cell is replaced by grid-like representation, which creates shared activity patterns, providing good path-integration performance.

The grid-like representation shows slight improvements over the hybrid baseline model.

53
Let us take a closer look at the representation and performance of the grid-like recurrent replacement approach. The spatial activity plot and influence plot in Figure 4.35 indicate that both the large scales and small scales contribute towards path integration. Additionally, the trajectory differences in Figure 4.35c are minimal. Leading us to conclude that both border- and grid-like representation are both suitable improvements for performing path-integration.

These experiments show that individual cells can improve upon the standard performance of path-integration. An important note, however, is the fact that entorhinal-like representation currently relies on output data using the spatial position and environmental shape, which simplifies the path-integration process. It could be possible that the diversity of many entorhinal-like cells can remove this dependency on the trajectory position by integrating spatial information internally. The interaction between entorhinal-like representation could provide an essential role in reducing the performance error and maintaining the stability of grid-like representations.

4.7 Summary

The results discussed simplified models of earlier work, a hybrid baseline model, different input features, additional structural properties, various regularization techniques, and performance evaluation of entorhinal-like representation in recurrent neural networks. All in all, the analysis has not shown consistent results regarding the emergence of entorhinal-like representation in recurrent neural networks. Almost all experiments show similar representations, consisting of linear spatial and directional activation patterns. The regularization technique experiments showed glimpses of specialization; however, the representation is not representative of entorhinal-like representation. The regularization strategies either create extremely local specialization or regular linear spatial activity gradients. Furthermore, experiments with ray-tracing input showed distinct activity representation with several neurons having more arched activation patterns compared to the baseline model. These non-linear activation patterns could eventually lead to entorhinal-like representation; however, at this point in the experimentation, it is not clear whether this pattern will evolve to biologically-plausible representation. Additionally, replacing the input features and recurrent states with entorhinal-like representation can improve performance with border-, place-, and grid-like representation. However, in its current form, it is not directly possible to improve the performance of neural networks due to relying on positional oracle data.

The next chapter finishes up this report by discussing the study and its findings regarding the emergence of entorhinal-like representation in recurrent neural networks.
This thesis analyzed possible factors influencing emerging entorhinal-like representation and performance in recurrent neural networks. This chapter will reflect on the extent that this study was able to uncover this phenomenon using a summary of the study, its findings, implications, conclusions, and recommendations for future research.

5.1 Study Reflection

Neuroscience points to the competitive nature between neurons as a possible explanation for the emergence of entorhinal-like representation [60]. While the Metabolic constraint [2] and Dropout [1] regularization techniques could follow a similar interpretation, the authors claim that regularization is related to the efficient coding hypothesis [122] and the introduction of noise to the network, respectively.

No theoretical models exist regarding the emergence of entorhinal-like representation in recurrent neural networks, and this leads to exhaustive experimentation on the potential factors causing this phenomenon. The experiments are grouped into three clusters: replicating simplified models from previous studies, analyzing potential factors influencing the emergence, and determining the performance difference of entorhinal-like representation in recurrent neural networks.

Replicating previous studies enables investigating the robustness of emergent entorhinal-like representation in simplified network models. The experimental investigation of underlying factors can lead to different hypotheses on the influence of input features, structural properties, and the role of regularization techniques. Additionally, studying the training performance of entorhinal-like representation helps to unveil the potential of the reported emerging representation.

The exhaustive exploration of possible factors did not develop emergent entorhinal-like representation. However, performance experiments highlighted improved path-integration
performance using some of the entorhinal-like representations. For a visual representation of the research design and findings see Appendix E.

5.1.1 Study Findings

While the exhaustive experimentation helped shed light on the research questions, an additional goal of this research was to evaluate different analysis techniques for visualizing the emergence of entorhinal-like representation.

5.1.2 Emergent Representation

The replicated experiments showed that the simplified model by Banino et al. [1] and Cueva and Wei [2] was mainly dependent on direction. Since the neurons were mainly active for a particular angle. Both experiments did not show grid-like representations as the original studies claimed. It is possible to conclude that the reported representations are tied to the original model configurations and training process used by both studies [1, 2] which are not directly replicable. This model dependence highlights the fact that the reported models are not robust against model variations and trivial differences in the regularization approach.

The experiments regarding the input features highlighted suboptimal performance when using uni-modal input using velocity and direction input. For example, the multi-modal approach, called ray-tracing, generated non-linear spatial representations and improved performance significantly. The remaining input approaches, splitting the directional variable into two features and introducing noise, were not useful for improving the performance in a recurrent neural network. One interesting thing to note is that the split direction approach allowed the model to learn a Gaussian-like directional dependence, similar to head-direction cells. This observation could be the first sign of emergent entorhinal-like representation, but more research is necessary to either confirm or refute this hypothesis.

Both the network architecture and training procedure are explored in the structural properties experiments. These factors range from the number of hidden cells, recurrent cell type, initialization strategy, learning rate, and optimizer choice. Changing the recurrent cell to a GRU, having more neurons, and using the RMSProp optimizer can optimize the performance. However, these configurations did not develop entorhinal-like representation. Thus concluding that structural properties are essential for optimizing performance, but, they are not directly associated with entorhinal-like representation.

Results regarding regularization showed signs of specialization but were not sufficient to serve as entorhinal-like representation. Both Winner-Takes-All and an experimental regularization approach called Neural Fatigue showed spatially clustered recurrent representation. However, this type of regularization can not replicate the geometric complexity of place or grid-like cells from the entorhinal cortex. Additionally, these techniques performed worse compared to the baseline model. These observations show that regularization can assist the neural activity to specialize spatially; however, our experiments did not show that regularization led to entorhinal-like representation. Previous work and the results from this thesis suggest that regularization, when optimized correctly, could balance the local specialization and global coordination necessary to support entorhinal-like representation.
5.2. Conclusions

The training performance experiments assessed the relation between entorhinal-like representation and recurrent neural network performance. Border- and place-like input representations can improve upon the baseline model. Also, replacing the recurrent output with border-like and grid-like representation has the potential to improve the performance significantly. From these results, it is possible to conclude that the artificial place-, grid-, and border-like representation can improve path-integration performance in recurrent neural networks. However, more work is necessary to remove the oracle, which is central to generating artificial entorhinal-like representation.

5.1.3 Visualization Techniques

Spatial activity plots are widely adopted by researchers to visualize entorhinal-like representation, such as grid-, place-, and border-like cells. The non-spatial activity plot can help formulate alternative hypotheses on the activation strategy of neurons [2, 146]. One aspect missing in these plots is the representational variance. The plots only show the mean spatial activity. Having a low variance for the entire spatial or non-spatial plotting range is necessary for concluding any link between the stated representation and biologically-plausible representation. Despite lacking variance calculation, activity plots will remain one of the most insightful analysis techniques available for detecting the emergence of entorhinal-like representation.

Two new representational plots introduced in this study include the maximum spatial plot and spatial influence plot. The maximum spatial plot helped to aggregate the activity of many neurons in one plot, which presents an overview of the collaboration between neurons. Also, the spatial influence plot provided additional information alongside the spatial activity plot on the value of neural representation.

Lastly, introducing two performance analysis plots (trajectory performance plot and average performance plot) helped to reflect on the training progress during the learning process. These plots helped to visualize adverse training results and robustness of prediction accuracy during experimentation. While these plots do not directly relate to the underlying representation of entorhinal-like representation, the performance analysis is still an essential tool for monitoring the training progress in neural networks.

5.2 Conclusions

While entorhinal-like representation can improve the performance of recurrent neural networks, it is still unclear which factors are responsible for the emergence of biologically-plausible representation. One possible explanation for this phenomenon is regularization, which can ensure competition and specialization among cells necessary for entorhinal-like representation to emerge. However, this thesis was unable to replicate and explore additional factors regarding the emergence of entorhinal-like representation.

Replicating conditions necessary for the emergence of entorhinal-like representation has turned into chasing a white whale. Other studies have shown their occurrence in recurrent neural networks, but this study was not able to replicate similar representations. Nevertheless, the results highlighted essential observations for researching and developing with re-
current neural networks, including verifying better performance through multi-modal input features, performing a structured analysis of recurrent network properties, and introducing alternative regularization techniques for competition and specialization.

5.3 Future research

The two hardest questions left by this study remain the purpose of regularization in emergent entorhinal-like representation and the relationship between representation and performance. Unfortunately, this research was unable to replicate spatial entorhinal-like representation; therefore, the results were not able to verify the specialization hypothesis or other potential roles of representation in recurrent neural networks.

The results should stimulate future research to study the emergence of biologically-plausible representations in recurrent neural networks [147]. Especially the relation between entorhinal-like representation and many other cognitive abilities should motivate investigation into the potential of biologically-plausible representation and the application of entorhinal-like representation in deep learning and cognitive robotics [50, 148].

Perhaps replicating the exact network configurations from Banino et al. [1] and Cueva and Wei [2] is necessary for observing entorhinal-like representation. From there, it is possible to modify the network or introduce new factors in efforts to reduce the differences between reported models and create novel hypotheses on the emergence of entorhinal-like representation. Additionally, the use of realistic behavioral simulation approaches by earlier work could relate to the emergence of biologically-plausible representation, and should not be excluded from strict replication studies.

Border-, grid-, and place-like representation has shown to be more effective at performing path-integration, possibly due to having access to oracle information about the position of the agent. More investigation on these types of representation could lead to removing the oracle and creating stable spatial and non-spatial representation simultaneously. One approach would involve theoretical models to explore this concept more formally before applying it to recurrent neural networks.

In addition to exploring the underlying entorhinal-like representations separately, an alternative ‘diverse’ approach could use a combination of different entorhinal-like representations. This approach is motivated by the fact that spatial navigation requires the entire spectrum of entorhinal-like representations. Especially finding the correct balance between different cell types will be critical for creating stable entorhinal-like representation and assessing the ability to optimizing performance.

Additionally, when the mentioned approaches focused on developing emergent entorhinal-like representation in recurrent neural networks are not productive, then research might require reproducing hippocampal circuits in search of emerging entorhinal-like representation. This research approach would combine the neuroscience paradigm on competitive neural communication [60], possibly through regularization, and the emergence of biologically-plausible representation in deep learning [149, 150].
Bibliography

Bibliography

[96] Yao Ming, Shaozu Cao, Ruixiang Zhang, Zhen Li, Yuanzhe Chen, Yangqiu Song, and Huamin Qu. Understanding Hidden Memories of Recurrent Neural Networks. oct 2017.

[149] Ingmar Kanitscheider and Ila Fiete. Training recurrent networks to generate hypotheses about how the brain solves hard navigation problems. (Nips), 2016.

Bibliography

75

[248] Mary Helen Immordino-yang and Antonio Damasio. We Feel, Therefore We Learn: The Relevance of Affective and Social Neuroscience to Education. 1(1):3–10, 2007.

BIBLIOGRAPHY

Bibliography

[330] Nick Haber, Damian Mrowca, Li Fei-Fei, and Daniel L. K. Yamins. Emergence of Structured Behaviors from Curiosity-Based Intrinsic Motivation. 2018.

BIBLIOGRAPHY

Appendix A

Cognitive Science Background

Cognitive science inspiration for spatial navigation can include various scientific disciplines; however, this background mainly focuses on psychology, neuroscience, and artificial intelligence. We start with theories on the emergence of cognition, and transition to the conceptualization and development of spatial cognition. Furthermore, following up with discussions on the role of the hippocampus and highlighting the rise of deep learning.

A.1 Cognition through Foraging

The cognitive improvements of humans over millions of years eventually led to the development of spatial cognition; however, several theories point to reasons why this happened [151].

One hypothesis for the evolution of cognition comes from dietary changes, as opposed to the established social intelligence hypothesis [152]. Comparisons between different primate dietary strategies show complexity-based food acquisition. For example, bark or leaves from trees are widely available; therefore, simple cognitive strategies suffice. However, relying on patchy fruits or seasoned harvest requires sophisticated memory and spatial navigation for survival. Primates exploiting complex foods are more risk-seeking, perform better on spatial tasks, and have more complex decision-making skills compared to primates with simple diets [151]. These advanced skills are necessary for deciding when to leave a food patch and memorize the location of other food sources.

A.2 Cognitive Mapping

Edward C. Tolman’s work was groundbreaking and questioned: “whether cognition can exist in animals other than humans and, if so, what is it, and how might it be manifested through behavior?” [33].

Tolman’s idea for a cognitive map substantiated due to five maze experiments with rodents, which were inspired by the cognitive learning paradigm he adopted instead of the traditional stimulus-response learning approach. He concluded that animals use a wide
A. COGNITIVE SCIENCE BACKGROUND

range of cues during the initial exposure to the experiment. However, overtraining animals leads to an increasingly smaller and more specific set of cues relevant to the task [31].

The major problem with the theory of the cognitive map comes from animal experimentation results, which can be explained using more straightforward strategies [153]. Path integration could be the underlying mechanism, not the map itself [35, 51, 154]. A prominent aspect of the cognitive mapping theory relates to the use of novel shortcuts. However, testing the novel shortcutting hypothesis is challenging, since animal experiments have to validate that actions are truly novel [155].

Additionally, it is difficult to pinpoint the exact role of the hippocampus and entorhinal cortex in the cognitive map [155, 156, 157], and this also led to various new definitions and interpretations emerging from the cognitive map theory [158, 159]. New definitions and interpretations range from literal map interpretations to the psychological ordering of elements in a spatial setting [32].

A.3 Role of the Hippocampus

Brain functioning relies on signals from the sensory and association cortices. The integration of signals from different cortices and additional signals such as motivation, goals, and rewards have been proposed to be integrated using mixed selectivity encoding [6]. The integration of many signals due to the mixed selectivity theory makes it almost impossible to retrace observed behavior back to the original stimulus [80]. The mammalian hippocampal circuit could potentially be the first non-sensory cognitive function to be understood entirely [160].

The hippocampus receives information from the entorhinal cortex, parahippocampal cortex, and the frontal lobe, which could create and maintain a cognitive map [3]. The parahippocampal cortex is associated with the integration of spatial landmarks [162], and the frontal lobe is responsible for planning routes during active navigation [163]. Both signals are integrated into the hippocampus, enabling goal-based navigation and representation of detours based on landmarks [3]. The representation of the hippocampus is more context-dependent compared to the entorhinal and parahippocampal cortices [164], this leads to more flexible representations of space in the hippocampus [145, 165]. For more information on the interaction between the underlying areas in the medial temporal cortex, see Figure A.1.

The experiments from Tolman inspired numerous researchers, including O’Keefe and Nadel, who associated the neurobiological basis of the hippocampus with the cognitive map theory [38, 161]. Additionally, Redish utilized the cognitive map foundation through research on non-spatial domains [33].

The hippocampal interaction model explains why animals can track vast distances while searching for food [151, 166, 167], which is mainly through the integration of external cues, speed, and direction [58, 168, 169]. The entorhinal-like representation is theorized to aid complex navigation within the medial temporal cortex, such as path-integration and planning [170]. Also, many cells in the hippocampus provide insights into the navigational and memory-related responsibilities of the brain [171, 172], including spatial context, land-
A.4 Progress in Deep Learning

Figure A.1: **Sketch of the essential cortices in the medial temporal lobe interacting with the hippocampus.**

The processing stream flows from the parahippocampal and perirhinal cortex to the entorhinal cortex. From there, the information is passed on to the hippocampus. The image was copied without permission from original publisher Purves D, Brannon E, Cabeza R, et al. Principles of Cognitive Neuroscience. Sunderland, MA: Sinauer Associates; 2008 taken from [13]

marks, and goals [3]. Lesion studies in brain regions surrounding the hippocampus have more detrimental effects on spatial navigation compared to hippocampal lesions [6, 163]. Some studies even proposed that the role of spatial navigation relies on the entorhinal cortex as opposed to the traditional hippocampal model [173].

Space might be just one of many variables underlying the behavior of cells in the entorhinal cortex and hippocampus. Perhaps integrating these different signals creates a cognitive map [38, 173, 174, 175, 176]. Research has already shown that the hippocampus uses both the spatial and time-dependent signals for context- and task-dependent representation [177], which can support episodic memory [178, 179, 180, 181, 182], predict the future [4, 123, 183], and process abstract knowledge [38, 41, 184].

A.4 Progress in Deep Learning

Simple models for artificial neural networks started with the Perceptron model in 1958 [185], followed by Hopfield networks in 1982 [186], and later the Neocognitron model in 1988 [187]. The idea of stacking layers with simplistic neurons has survived two artificial intelligence winters between 1973 and 1993 [46]. This idea is still the conceptual foundation for large neural networks to this day. Each deep learning layer typically contains many neurons; each neuron weights incoming connections and transforms the sum of the input using a non-linear function to output a single value. Connected neurons receive the output and similarly transform the input signals [188]. Each layer of neurons is trained using the back-propagation algorithm.
The back-propagation algorithm is essential for deep learning architectures and enables discovering intricate structures in high-dimensional datasets [134]. Back-propagation uses the model’s loss and calculates partial derivatives for weights in the network. The gradients trickle down the network from output to input, and the gradient direction vector resulting from this process is applied to the network weights to optimize the performance. A popular back-propagation approach for training deep learning architectures is called Stochastic Gradient Descent and calculates the network weight gradients based on a few training examples [134]. Stochastic Gradient Descent was believed to get trapped easily in local minima; however, theoretical evidence shows that the learning algorithm instead gets stuck in numerous suboptimal saddle points, which have no gradient [100].

The widespread adaptation of deep learning was made possible through the developments of efficient data storage, dedicated hardware, and open-source software tools [189]. Modern deep learning experts rely on graphical processing units to perform model optimization concurrently [190], which speeds up the training process.
Appendix B

Cognitive Research Impact on Artificial Intelligence

Understanding how species evolved and developed cognitive abilities over millions of years can inspire artificial intelligence research, for example, the development of cognitive regions in the brain [191, 192, 193, 194] and could relate to the order in which researching general artificial intelligence would be most productive [195].

While the brain is slower than state-of-the-art computer processors, the cortical hierarchy and parallel communication provides an efficient substrate for biological computations [196, 197]. Neuroscience and artificial intelligence have been in a reciprocal relationship, exchanging ideas and algorithms for decades [49, 50, 113, 150, 198, 199, 200]. A worrying trend, however, is that artificial intelligence researchers increasingly reference mostly only other artificial intelligence papers, limiting the diffusion of research to other cognitive science disciplines [201].

Various observations in neuroscience have inspired new algorithms and architectures in artificial intelligence research. Inspiration can come from sparse coding [122, 124, 184], Hebbian learning [67, 140, 167, 202, 203, 204], biological evolution [95, 192, 205, 206, 207, 208, 209, 210, 211, 212], intrinsic motivation [213, 214, 215, 216, 217], curiosity and novelty [218, 219, 220, 221, 222, 223, 224], cognitive control [225, 226, 227, 228, 229], central executive [230, 231, 232], functional connectivity in the brain [233, 234, 235, 236, 237, 238], interactions between cognitive regions [164, 13, 239, 240, 241, 242, 243], social cognitive development [244, 245, 246, 247, 248, 249, 250], brain analysis [251, 252, 253, 254, 255, 256, 257], memory functioning [258, 259, 260, 261], experience replay during sleep [262, 263, 264], abstract context representation [265, 266, 267], cognition [151, 152, 268, 269, 270, 271] and consciousness [272, 273, 274].

These biological inspirations influenced memory systems [275, 276], machine cognition [227, 277, 278, 279, 280, 281, 282], artificial consciousness [222, 283, 284, 285], convolutional neural networks [46, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298], deep neural networks in general [299, 300, 301, 302, 303, 304], robotics [48, 55, 305, 306, 307, 308, 309], and reinforcement learning (RL) [36, 150, 310, 311, 312, 313, 314, 315, 316], through successor representation [16, 30, 317, 318, 319, 320, 321, 322, 323], memory-based RL [324, 325, 326, 327, 328], intrinsic motivation and curiosity in RL [329, 330, 331,
B. Cognitive Research Impact on Artificial Intelligence

Artificial intelligence currently lacks reliable working memory [258], efficient learning strategies [352], and the ability to perform cognitive tasks [45]. Features such as one-shot learning [353, 354] and episodic control [325] are essential for addressing the slow learning problem in deep neural networks. Additionally, developments in modeling working memory through differentiable neural computers could replace prevailing basic memory modules such as the LSTM, to process more complex tasks [328].

Deep learning has significantly expanded the number of trainable architectures over the past fifteen years [355, 356, 357, 358, 359, 360, 361, 362]. Especially architectures involved in applications such as Natural Language [363, 364, 365] and Image Processing [359, 366, 367, 368, 369] have experienced significant improvements. Some architectures take a biological approach through evolutionary- [344, 345, 370, 371, 372, 373, 374], reservoir [375, 376, 377, 378, 379, 380], or hierarchical computing [211, 369, 381, 382, 383, 384, 385]. Additional approaches explicitly encode statistical regularities through abstract reasoning [386, 387, 388, 389, 390, 391], relational reasoning [387, 392, 393, 394, 395], logic [396, 397, 398, 399], and symbolic-based neural networks [221, 400, 401, 350].

Deep learning models are frequently required to learn abstract representations, and multiple modalities [133, 402, 403], due to the increasing application of deep learning in more general problems [404]. While humans naturally generalize experience during abstract tasks, deep learning struggles to exploit similar mechanisms to transfer knowledge [404, 405, 406, 407], learn multiple tasks simultaneously [408, 409, 410], and perform meta-learning [390, 411, 412, 413, 414, 415]. Bridging this gap between machine and natural intelligence requires decomposing problems into commonsense understanding through interactive experiments [49, 416].

Several modeling approaches have attempted to grasp the concept of natural intelligence through developing cognitive architectures [44, 141, 224, 417, 418, 419, 420, 421, 422], including Artificial Life [423, 424, 425, 426], Biophysical Modeling, Connectionism [148], Cognitivism, and Probabilistic Modeling. The approaches for modeling artificial intelligence split into two paradigms: bottom-up emergence and top-down abstraction [147, 273, 427, 428, 429]. None of the mentioned cognitive architectures encapsulate both aspects of learning. The inability to express complex reasoning based on individual neurons is called the computational explanatory gap [171, 280]. Closing this computational explanatory gap enables developing general solutions for artificial intelligence problems [227].

Entorhinal-like representation is associated with various cognitive concepts, such as imagination [349, 430], goal-directed navigation and planning [1, 11, 20, 21, 162, 165, 431, 432, 433, 434], and episodic future thinking [4, 52]. The current state of artificial intelligence cannot solve these problems in general, but entorhinal-like representations can help inspire new algorithms for solving these problems [49, 435, 436]. Also, the ability to solve general problems is of great interest to the artificial general intelligence community [42, 44, 280, 417, 437, 438, 439, 440, 441]. Realizing consistent and prevalent occurrence of entorhinal-like representation in recurrent neural network research could potentially streamline the three major factions in artificial intelligence, which are: robotics, artificial intelligence, and symbolic systems [442].
Even though artificial intelligence is booming [442], researchers are cautious when it comes to developing cognitive or general artificial intelligence [402, 443, 444]. Researchers warn about the sudden arrival, or singularity [445], of widespread artificial cognitive abilities, potentially destroying the inventiveness of humans. This sudden arrival could align with other technological progress [446], such as ambient intelligence [447] and quantum machine learning [125, 448]. One way to keep track of machine intelligence is through developing intelligence tests [15], for example, to determine artificial universal intelligence [449].
Appendix C

Experimental Base Model

All experiments use a unique recurrent neural network base model. Every aspect of the learning process is manipulatable, such as the layer settings, recurrent network properties, and hyper-parameters.

The TensorFlow base model divides the responsibilities of the program into the training model and the trainer. The model defines the architecture of recurrent cells, the individual layers between the input and output data, and regularization approaches. The base model pipeline consists of (1) preparing the recurrent cell, (2) set up the output layer, and (3) optimize the loss. The recurrent cell setup relies on the experiment configuration, which dictates the use of weight initialization, activation function, and cell type. The recurrent cell preparation also includes enabling GPU acceleration to minimize training time. The linear output layer projects the recurrent output to a two-dimensional trajectory. Finally, the optimizer uses the model loss, between the target and predicted trajectories, and the regularization loss to optimize the network using clipped gradients. The trainer has access to the data simulator and can request a new batch for each training epoch. The data preprocessor prepares the batch to fit the input dimensionality and the target distribution. The trainer also executes the training model and gathers data for visualization purposes.

The underlying program operating on the model and trainer manages the configuration and visualization of neural networks during training. The main program starts by reading the batch specifications, baseline configuration, and experiment configuration files. The program then repeats the baseline experiment and other experiments according to the configurations. The results from the experiments are used to compare the loss, performance, and resulting representation from recurrent neurons. The program visualizes the performance and representation of the training model regularly. The visualization approaches also save the plots automatically, allowing users to inspect the progression of the model during and after the training process. The individual plots are combined and animated to create time-based plots, which can be used to reflect on the training progress and representation.
Appendix D

Theoretical Model Entorhinal-like Representation

The following sections describe basic theoretical models for entorhinal cell types used in this thesis. The mathematical formula is similar, but not equal to the implemented function in software. The formula is designed to give a general indication of the activation function for each cell type.

D.1 Place cells

Place cells are modeled using a Gaussian activation function [1] (equation D.1), each cell is assigned its own place center $\mu_{(c)}^i \in \mathbb{R}^2$. The activation resembles the Euclidean distance between the agent’s position $x \in \mathbb{R}^2$ and the place center. The scale of the place cell determines the radius of the place cell. The distribution of place-like activation is measured using the softmax function. The activity for each place cells N is weighted by the sum of all place cell activations (equation D.2).

$$c_i = e^{-\frac{(x-\mu_{(c)}^i)^2}{2(\sigma_{(c)})^2}} \quad (D.1)$$

$$sc_i = \frac{c_i}{\sum_j |N| c_j} \quad (D.2)$$

D.2 Grid cells

Mathematical models for grid cells use a random position $\mu_{(g)}^i \in \mathbb{R}^2$ to center the hexagonal activation pattern (equation D.3). The hexagonal activation pattern is generated using the vector product between the agent’s positional vector and the three basis vectors. The agent’s position vector $x \in \mathbb{R}^2$ is represented by the x- and y-coordinates and the three base vectors κ_j are offset by 0, 60, and 120 degrees [72].

$$g_i = \frac{1}{3} \sum_{j=1}^3 \cos (\kappa_j(x - \mu_{(g)}^i)) \quad (D.3)$$
D. THEORETICAL MODEL ENTORHINAL-LIKE REPRESENTATION

(a) Place activation
Nine artificially generated place-like cells showing Gaussian activation patterns. The place cell activation concentrates on a randomly generated place center.

(b) Grid activation
Hexagonal pattern of nine randomly generated grid-cells. The grid cells have a different grid center leading to slight differences between the activation patterns.

Figure D.1: Place and grid-like cell activation patterns.

D.3 Head-direction cells

The head-direction metric calculates the angular activation [1] (equation D.4), for which each cell is assigned a random angle $\mu_{i}^{(h)} \in [-\pi, \pi]$. The cell activation is calculated using the scalar $\kappa^{(h)}$ and the cosine of the angular difference between the agent’s direction ϕ and the assigned angle. The weighted activation of each cell is defined by the softmax function (equation D.5).

$$h_{i} = \kappa^{(h)} \cos (\phi - \mu_{i}^{(h)}) \quad \text{(D.4)}$$

$$d_{i} = \frac{e^{b_{i}}}{\sum_{j}^{N} e^{b_{j}}} \quad \text{(D.5)}$$

D.4 Border cells

The artificial border cells are modeled using the boundary vector model [73, 126], where each border cell has a preferential activation direction $\mu_{i}^{(b)}$. The angular difference between the boundary wall vectors w and preferential direction together with the wall proximity dictates the activation magnitude. If the preferential activation direction is parallel to the wall vector, then a border-wide activation pattern is generated. This product is scaled by a scalar κ to vary the activation of each border cell.

$$b_{i} = 1 - \max_{j} \left(\frac{w_{j} \cdot \mu_{i}^{(b)}}{\kappa} \right) \quad \text{(D.6)}$$
D.5 Speed cells

(a) **Head-direction activation**
Nine artificial head-direction cells show directional specialization for a random angle.

(b) **Border activation**
Border cells reflect an activation pattern related to the directional preference and the boundary angle.

Figure D.2: Head-direction and border-like cell activation patterns.

Figure D.3: **Speed activation**
Nine artificial speed cells show velocity-based specialization using a random bias.

D.5 Speed cells

Theoretical speed cells are defined using a linear relationship between traveling velocity and spiking frequency [9]. Each speed cell is assigned a base activation $\mu_i^{(s)}$ and the current velocity v determines the velocity-based activation. Additionally, the activation is adjusted with the velocity scale κ.

$$s_i = \frac{(v - \mu_i^{(s)})}{\kappa}$$ \hspace{1cm} (D.7)
Appendix E

Research Design

The figures on the following pages show the research design and progress. The highlighted boxes and arrows shown in the following figures visualize the path taken by this study, and the other options show alternatives research routes. The three different stages of research are visualized in Figure E.1, Figure E.2, and Figure E.3.
Figure E.1: Related Work Research Design

Earlier work experiments rely on the simplified Banino et al. and Cueva and Wei model. The proprietary vision module and dynamic regularization weighting from these models can be factored out. Banino et al.’s proprietary vision module is optional since Cueva and Wei did not rely on a vision source. Also, the dynamic regularization weighting by Cueva and Wei only improved the clarity of emergent representation but was not essential for the emergence of entorhinal-like representation, according to their appendix.
Factors include analysis of input features, structural properties, and regularization techniques. The experiments showed no emergence of entorhinal-like representation; thus, we must reflect on the use of entorhinal-like representation in recurrent neural networks. Additional analysis, if such entorhinal-like representation were present, would be able to single out factors or a mixture of factors responsible for the emergence of entorhinal-like representation.
Figure E.3: **Performance Impact Research Design**

The previous experiments did not show emergent representation; therefore, this experiment has to rely on simulated entorhinal-like representation. Results indicate that replacing the input with entorhinal-like representation improves training performance for border- and place-like cells. Additionally, the training performance of replaced recurrent representation showed improvements over regular training for border- and grid-like cells. Thus, entorhinal-like representation performs better compared to regular, unstructured representations.
Appendix F

Additional Analysis

Additional steps were taken to confirm the results of this study. First, relating results between other open-source models and the model developed in this thesis. Second, the results from repeated experiments are displayed to investigate the consistency and diversity of spatially activated cells. Third, an additional experiment was executed using the best-practices from this study and trained longer to explore optimal training performance.

F.1 Open-Source Models

GitHub provides open-source models for various projects. Artificial intelligence developers and researchers have replicated the models from Banino et al. [1] and Cueva and Wei [2], and open-sourced their models and results.

F.1.1 Banino et al.

DeepMind published their original model from Banino et al. [1] on GitHub\(^1\) together with the original simulation data to generate the grid-like patterns. A partition of the neurons became spatially activated, similar to some of the non-linearly activated neurons from this thesis. Additionally, the results show a subset of neurons representation converged to grid-like activation patterns. Possibly when Rosa’s network is trained longer, then this could result in gradual development of entorhinal-like representation.

Stefano Rosà created his version of the DeepMind model and published it on GitHub\(^2\) as well. The results do not show grid-like patterns, but non-linear spatially activated neurons do occur. Possibly training the network longer can develop entorhinal-like representation just like DeepMind’s original work.

\(^1\)https://github.com/deepmind/grid-cells
\(^2\)https://github.com/R-Stefano/Grid-Cells
F. Additional Analysis

Figure F.1: Deep Mind’s original model spatial activity results
Each plot cell visualizes the average spatial activity for an artificial neuron. The cells initially have no spatially activated representation. During the training procedure, the cells generate non-linear and even grid-like representations — the grid-like cells developed around epoch 100.

Figure F.2: DeepMind replicated model results by Stefano Rosà
The training performance shows average path integration performance, and the representation highlights sophisticated non-linear activation patterns.
F.2. Robust Representation

(a) **Trajectory plot**
Trajectory generation shows similar shapes, but varying accuracy compared to the target trajectories.

(b) **Spatial activity plot**
Each plot cell visualizes the average spatial activity for an artificial neuron.

Figure F.3: **Cueva and Wei replicated model results by Unity Technologies**
The predicted path of the agent shows consistent path integration performance, and the cell representation show linear spatially activated neurons.

F.1.2 Cueva and Wei

Unity Technologies replicated Cueva and Wei’s [2] model using their 3D modeling simulator [131], and published the data and model on GitHub\(^3\). The results show no grid-like representation, but the results are reminiscent of linear spatially activated cells from this thesis.

F.2 Robust Representation

The following figures show the repeated training activation representation for various experiments from this thesis. Each experiment shows consistent activation and comparable spatially activated representations between experiments. We can conclude that the representations are inherent to the network models and training approach.

F.3 Combined Experiment

This experiment integrates the best-performing configurations into one model, see Figure F.5. The model uses the GRU recurrent cell, ray-tracing input combined with regular velocity and direction, has 81 recurrent neurons, initialized uniformly, and uses recurrent regularization. This model created non-linear input representation, but training longer did not result in a more complex representation.

\(^3\)https://github.com/Unity-Technologies/rat-rnn
(a) Repeated Factors Baseline experiment

(b) Repeated ray-tracing experiments

(c) Repeated entorhinal input replacement using place-like cell activation

(d) Repeated entorhinal input replacement using grid-like cell activation

Figure F.4: **Representation of repeated experiments**
Both the distribution and frequency of spatially activated neurons are consistent between experiments.
F.3. Combined Experiment

Figure F.5: **Model architecture**
The model consists of the GRU recurrent cell, uniform recurrent initialization, ray-tracing and default input, 81 recurrent neurons, and recurrent regularization.

- **Average performance plot**: The time-dependent loss is calculated using the average loss for each trajectory time-step. Showing no initialization problems and linearly increasing prediction error over time.
- **Loss plot**: The loss plot visualizes the trained loss differences between training (blue) and testing (orange) error. The loss optimization stagnates around epoch 50.

Figure F.6: **Repeated combined experimental results**
The representation evolves until the loss optimization stagnates. The representation saturates around epoch 500, and only minor changes to the representation develop at epoch 1000.

The loss plot in Figure F.6 shows close to optimal performance. The average performance plot (Figure F.6a) shows proper initialization and linear error accumulation through time. Both aspects are optimal, especially for a path-integration context. Additionally, the loss plot (Figure F.6b) converges quickly to an appropriate solution. The performance improves only slightly over the last 75 epochs. Both the training and testing error follow closely; thus, the underlying representation can generalize between the training and testing set.

The spatial representation evolves quickly in the first few epochs, but representation
Figure F.7: **Repeated combined experimental results**
Each plot cell visualizes the average spatial activity for an artificial neuron. The representation evolves until the performance stagnates. The representation saturates around epoch 50, and only minor changes to the representation develop at epoch 100.

stagnates at the end of the training process (Figure F.7). After initializing the network and training for one epoch, the neurons already show some spatial and directional specialization. Once again, the representation consists of noisy, stochastic, and linearly activated neurons. Each archetype presumably serves to represent the directional and spatial domain during path integration necessary for optimizing the task.
Appendix G

Experiment Baseline Configurations

The configurations in Table G.1 highlight the baseline configuration for earlier work, the factor experimentation process, and entorhinal performance experiments. Sharing the full details for experiments are essential for improving reproducibility [450] of future research.

<table>
<thead>
<tr>
<th>exp_name</th>
<th>DeepMind</th>
<th>CuevaWei</th>
<th>Factors</th>
<th>Entorhinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>num_epochs</td>
<td>30</td>
<td>150</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>num_iter_per_epoch</td>
<td>10000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>episode_length</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>learning_rate</td>
<td>0.00001</td>
<td>0.00001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>batch_size</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>num_trajectories</td>
<td>1000000</td>
<td>100000</td>
<td>100000</td>
<td>100000</td>
</tr>
<tr>
<td>ray_tracing_resolution</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>dimensionality</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>hidden_size</td>
<td>128</td>
<td>100</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>behavior_dataset</td>
<td>free will location</td>
<td>free will</td>
<td>free will location</td>
<td>free will location</td>
</tr>
<tr>
<td>model_data</td>
<td>DeepMind</td>
<td>default</td>
<td>default</td>
<td>default</td>
</tr>
<tr>
<td>recurrent_cell</td>
<td>LSTM</td>
<td>CTRNN</td>
<td>LSTM</td>
<td>GRU</td>
</tr>
<tr>
<td>input_initialization</td>
<td>default</td>
<td>normal</td>
<td>default</td>
<td>default</td>
</tr>
<tr>
<td>recurrent_initialization</td>
<td>default</td>
<td>orthogonal</td>
<td>default</td>
<td>default</td>
</tr>
<tr>
<td>recurrent_activation</td>
<td>default</td>
<td>default</td>
<td>default</td>
<td>default</td>
</tr>
<tr>
<td>output_layer</td>
<td>intermediate</td>
<td>linear</td>
<td>linear</td>
<td>linear</td>
</tr>
<tr>
<td>error_loss</td>
<td>softmax</td>
<td>default</td>
<td>default</td>
<td>default</td>
</tr>
<tr>
<td>regularization_loss</td>
<td>LinearWeights</td>
<td>Metabolic</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>regularization_constant</td>
<td>0.00001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.001</td>
</tr>
<tr>
<td>dropout_type</td>
<td>default</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>optimizer</td>
<td>DeepMindRMS</td>
<td>default</td>
<td>default</td>
<td>default</td>
</tr>
<tr>
<td>gradient_clipping</td>
<td>0.00001</td>
<td>0.0001</td>
<td>0.001</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table G.1: Hyper-parameters and network setup for experiments
The four base configurations above describe the configuration details for the replicated related work, experiments with different factors, and tests determining the effect of entorhinal-like representation during path-integration.