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Abstract

Theory of Carrier Adjusted DGPS Positioning Approach
and Some Experimental Results

The DGPS technique can greatly reduce or even eliminate biases in GPS observations and
consequently provide quite precise relative positioning accuracy. It has been, therefore, paid
more and more attention in many real-time positioning applications. The performance of
DGPS positioning is a function of three elements: 1) generation of differential GPS
corrections at a known DGPS reference station; 2) transmission of the corrections to mobile
stations; and 3) computation of the mobile position.

This research derives a new algorithm for generating differential corrections, which has some
distinct features. First, it directly uses code and carrier observations in the measurement model
of a Kalman filter, so that the input measurements of the filter are not correlated in time if
code and carrier observations can be assumed to have no time correlation. This makes it
possible to use a simple stochastic observation model and to use the standard algorithm of the
Kalman filter. Second, the algorithm accounts for biases like multipath errors and instrumental
delays in code observations. It explicitly shows how code biases affect differential corrections
when dual or single frequency data is used. Third, the algorithm can be easily integrated with
a quality control procedure, so that the quality of the estimated states can be guaranteed with
a certain probability. Fourth, in addition to generation of differential corrections, it also
produces the change of jonospheric delays and that of code biases with time. It can, therefore,
be used to investigate properties of ionospheric delays and code biases. Finally, all state
estimates including differential correction are not affected by the opposite influence of
ionospheric delay on code and carrier observations.

On the basis of data collected by TurboRogue SNR-8000, Trimble 4000 SSE and Trimble
4000 SST receivers, this research also investigates the relationship between satellite elevation
and the precision of code observations. It turns out that the deterioration of code precision
with decreasing elevation is very obvious at low elevation. When satellite elevation increases,
the precision becomes more and more stable. The change of the code precision with satellite
elevation can quite well be modelled by an exponential function of the form y=ag+a, -exp{-
x/xo}, where y (the RMS error), a, and a, have units of metres, and x (elevation) and x, are
in degrees. For different types of receivers and different types of code observables, the
parameters a,, a, and x, may be different.

By using code and carrier data with a sampling interval of one second, the dynamic behaviour
of SA clock errors and that of ionospheric delays can well be modelled by quadratic and

linear functions, respectively. The modelling accuracy is within a few millimetres.

An alternative algorithm for computation of mobile positions is developed. This algorithm can
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be applied at a mobile site when code and carrier observations are available. The algorithm
directly uses code and carrier observations, rather than carrier filtered code observations, as
inputs, therefore the stochastic model of observations can be easily specified. The algorithm
can be applied in the case that the dynamic behaviour of mobile positions and receiver clock
biases can or cannot be modelled. In the former case, the algorithm provides recursive
estimates of mobile positions. Whereas in the latter case, it provides instantaneous estimates
of mobile positions. In addition, the algorithm can also be integrated with a real time quality
control procedure so as to ensure the quality of position estimates with a certain probability.
Since in the use of the algorithm there always exist redundant observations unless the position
parameters are inestimable, the quality control can even be performed when only four
satellites are tracked.

By the use of data collected at a 100-km baseline, DGPS positioning experiments show that
when dual-frequency data is used in both reference and mobile stations, half-metre
instantaneous positioning accuracy can be achieved. While the data used in the mobile station
is replaced by single-frequency data (L1 code and carrier), the accuracy can be still better
than 7.5 decimeters. In addition, the use of an elevation-dependent standard deviation for code
observations can improve DGPS positioning accuracies and it is more important to use dual-
frequency data at a reference station than at a mobile station.

When ephemeris errors, vertical ionospheric delays, and vertical tropospheric delays are less
than 10, 4.5, and 2.6 metres, respectively, using three reference stations in a 500x500 km’®
area can reduce the effect of ephemeris errors to one decimeter, ionospheric delays to less
than two decimeters, and tropospheric delays to less than 2.5 decimeters. If a tropospheric
delay model is used, the tropospheric delays can be further reduced to less than one
decimeter.

GPS observation equations can be expanded into Taylor series which contain only up to first-
order derivative quantities. Since the Taylor expansion does not contain the travel time of a
GPS signal, solving it does not need iterations or code observations for the determination of
the transmission time of the GPS signal. As a result, the use of the Taylor expansion can save
computing time and can avoid the impact of any gross errors in code observations on
determining satellite positions and satellite-clock biases, and consequently on computed
observations.
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Chapter 1

Introduction

1.1 Overview of the Global Positioning System

The Global Positioning System (GPS) is a satellite-based, all-weather radio navigation
system developed by the US Department of Defense to enable unlimited number of users
with the proper equipments to determine their position, velocity, and time in a common
reference system, anywhere on or near the Earth. Simply speaking, GPS can be divided
into three major segments: space segment, control segment and user segment [NATO
1991a].

The space segment consists of a nominal constellation of 21 operational satellites plus 3
active on-orbit spares which are used to ensure system availability. The 21+3 satellites are
placed in six orbital planes with inclination relative to the equator of 55° and the orbit
heights are 20,200 km. The satellites complete an orbit in approximately 12 hours and the
same satellite becomes visible at the same location on the ground 4 minutes earlier each
day because of a 4 minutes per day difference between the satellite orbit time and the
rotation of the earth [NATO 1991a]. Each satellite transmits unique navigational signals.

The control segment includes a master control station located at the Consolidated Space
Operations Centre in Colorado Springs and 5 worldwide monitor stations at Hawaii,
Colorado Springs, Ascension Island in the South Atlantic Ocean, Diego Garcia in the
Indian Ocean, and Kwajalein in the North Pacific Ocean [Gouldman et al. 1989]. The
main tasks of the control segment are to track the GPS satellites and provide them with
periodic updates of corrections to their ephemeris and their clock-bias errors.

The user segment consists of a variety of military and civilian GPS receivers located on
the ground, in the air, in space, and aboard ships, which are capable of receiving,
decoding, and processing the GPS satellite signals. They include stand-alone receiver sets,
as well as equipment integrated with or embedded into other systems. Since there are
various user applications including navigation, positioning, time transfer, and surveying
etc., GPS receivers for different applications can vary significantly in design and function
[NATO 1991a).

The navigational signals transmitted by each GPS satellite consist of two types of codes,
that is, the P code (Precision code) for military users and the C/A code
(Coarse/Acquisition code) for civilian users. The P code is transmitted on two frequencies,
which are the L1 at 1575.42 MHz (=154x10.23 MHz, equivalent to a wavelength of about
19 cm) and the L2 at 1227.60 MHz (=120x10.23 MHz, equivalent to a wavelength of
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about 24 cm). The C/A code is transmitted only on the L1 frequency and its fundamental
purpose is to allow a rapid acquisition of the P code. Both L1 and L2 carriers are
modulated with the navigation message, which is a data stream of 30 seconds long,
broadcast continuously, containing satellite ephemerides, clock parameters, and general
system status.

1.2 Differential GPS

Like many types of observations, GPS observations include systematic errors and random
noises, for example, satellite clock biases, effect of ephemeris errors, atmospheric delays.
In addition, for reasons of U.S. security, a program called Selective Availability (SA) is
implemented in GPS so that unauthorized (civilian) users can only obtain 100 m horizontal
positioning accuracy with a probability of 95% [NATO 1991a].

For many real-time positioning applications, such as maritime navigation in inland
waterways and constricted harbours, the GPS absolute positioning accuracy of about 100
metres is not sufficient [Alsip et al. 1992]. Most of the positioning errors are caused by
biases in the observations, due to SA as well as orbital and atmospheric errors. These
biases can be reduced or even eliminated when relative, rather than absolute, positions are
determined. Real-time relative positioning with GPS is usually referred to as DGPS
(Differential GPS) [Beser and Parkinson 1982], [Blackwell 1985].

Basically, the DGPS principle is as follows: a GPS reference receiver located at a station,
of which the coordinates are known, continuously collects range measurements from all
visible satellites, The biases in the observations can be determined by taking the difference
between the measured distance and the computed distance from the known station and
satellite positions. The observations of mobile GPS receivers (i.e., receivers at unknown
locations) in the vicinity of the reference receiver will be contaminated by biases similar
to those computed at the reference station. Therefore, if the biases computed at the
reference station are transmitted to the mobile receivers, they can subtract these from their
measurements, thus allowing them to considerably improve their positioning accuracy. The
biases, computed and transmitted for these purposes, are known as differential corrections
(DCs). They can be applied within a radius of a few hundred kilometres from the
reference station [NATO 1991a]. Depending upon the distance to the reference station,
DGPS positioning accuracies of 1~10 metres are possible [Pietraszewski et al. 1988],
[Forbes et al. 1994].

The very simple procedure for computing DCs, as indicated above, has however some
drawbacks. Firstly, the precision of the DCs is not better than that of the GPS code
observations itself. Therefore the mobile user cannot profit by using carrier observations in
order to get better precision. Secondly, gross errors in the measurements at the reference
station will be included in the DCs, thereby affecting all DGPS users of these corrections.
Thirdly, there will always be some latency in the transmission of DCs. Thus, the user is
always using "old” corrections. Several procedures have been suggested in the literature to
overcome all or some of these problems, which will be discussed later. But it can be seen
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from the discussion that how to correctly generate DCs still needs to be further
investigated.

With increasing the distance, the positioning accuracy will deteriorate, because the effect
of ephemeris errors and atmospheric (ionospheric and tropospheric) delays at a user site
cannot be sufficiently reduced by using the DCs computed at the reference station.
Investigations and field tests have shown that using a network of DGPS reference stations
is an economic and efficient way to overcome the spatial decorrelation of DCs [Bakker
and Lapucha 1994].

1.3 Outline of this dissertation

The primary objective of this dissertation is to develop a new approach for real time
DGPS positioning. This approach consists of a new algorithm for generating DCs at a
reference station and an algorithm for determining mobile positions at a mobile site. In
addition, the dissertation also quantitatively discusses the reduction of three main biases in
GPS observations by the use of a network of reference stations. Furthermore, it presents
the Taylor expansion of GPS observation equations. It could be worthwhile to mention
that part of the work presented herein has been reported in [Jin 1995a, 1995b, 1995c¢], [Jin
et al. 1995}, [Jin and de Jong 1995, 1996a, 1996b] and [Jin 1996a, 1996b].

The dissertation will start in Chapter 2 with a review of the Kalman filter theory and the
procedure of real-time model testing, followed by the concepts of internal and external
reliability. In the next chapter, some existing algorithms for generation of DCs will be
discussed. By using the Kalman filter theory, Chapter 4 will first derive an alternative
algorithm for generation of DCs and next integrate the algorithm with a real-time quality
control procedure. It will successively analyse how a priori input parameters of the filter
affect the estimated precision of DCs and the performance of the quality control procedure
in terms of reliability measures. By using real data and the algorithm presented in Chapter
4, Chapter 5 will investigate the validation of dynamic models chosen for DCs and for
ionospheric delays, the dynamic behaviour of code biases, the performance of the real-time
model testing, and the accuracy of DC prediction. Since in data processing the stochastic
model of observations plays an important role, Chapter 6 will investigate the relationship
between satellite elevation and the precision of GPS code observations. Chapter 7 will
derive an alternative algorithm for DGPS positioning at a mobile station and show how
positioning accuracies vary with the number of GPS observables used at reference and
user stations and how the accuracy can be improved by choosing an elevation-dependent,
instead of constant, standard deviation for code observations. Chapter 8 will extend the
DGPS positioning research from the situation based on only one reference station to that
based on a local DGPS network. It will individually show the reduction of the effects of
ephemeris errors, ionospheric delays, and tropospheric delays by using multiple reference
stations. Chapter 9, of which the topic is somewhat basic and independent, will show why
and how we expand GPS observation equations into Taylor series which include only up
to first-order derivative quantities. Finally, Chapter 10 summarizes some main conclusions
of this research.






Chapter 2

Kalman filter and
model testing procedure

The Kalman filter is a recursive data-processing procedure based on the well known least
squares principle. Since in GPS positioning applications real-time solutions are required,
the Kalman filter is a natural choice and is now widely used in GPS data processing. Like
the least squares algorithm, the Kalman filter is not very robust against unspecified model
errors. Therefore it is necessary to augment the Kalman filter with a procedure for the
detection, identification, and adaptation of model errors. This chapter first reviews the
Kalman filter. Next, it reviews the recursive procedure for the Detection, Identification,
and Adaptation of model errors, known as the DIA procedure and introduced by Teunissen
(19902, 1990b). Finally the measures of internal and external reliability, which are related
to the DIA procedure, are given.

2.1 Linear Kalman filter

In many time-dependent applications, the dynamics of a system, such as the positions of a
vehicle, can be modelled. In the Kalman filter this information can be used along with
measurements of the system. The Kalman filter consists of a dynamic model and a
measurement model. For reasons of GPS applications, we restrict our discussion here on
the discrete time linear(ized) dynamic and measurement models. One can refer to [Gelb
1974] for a more general case. The dynamic model is of the form

X = %, *dy k=12, .. 2.1
where
x,: n-dimensional state vector at time k
D, ;.: nxn state transition matrix from time k-1 to k
d,: n-dimensional vector of system dynamic noises
The measurement model is of the form

Y, = Ax,ve, 22)

where
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Y. my-dimensional vector of measurements
A, myxn design matrix
e¢,. m-dimensional vector of measurement noises

Assume that the initial state x, is distributed as N(xmo, Qo) and is uncorrelated with dk
and e, for all k. d, is distributed as N(O, Qd ) and d; is uncorrelated with d, for k#l; e, is
distributed as N(0, Q, ) and e, is uncorrelatéd with ¢, for kzl; and d; is uncorrelated with
e forall k, L

The problem we are faced with is to estimate the state vector at time k using a linear
estimator based on all observations up to and including time k. Furthermore, the estimator
must be ’best’ in a certain sense. Kalman (1960) was the first who solved the problem
based on the principle of minimum mean square error. It can be shown, however, (see,
e.g., [Koch 1982], [Teunissen and Salzmann 1988]) that under certain assumptions,
criterions like maximum likelihood and least squares lead to identical results.

The estimation procedure of the Kalman filter basically consists of two steps: the time
update and the measurement update. The time update of the state estimator and its error
covariance matrix are given by

X1 = P P11 2.3)

Q1 = q’k,k—IQk-llk-I(D;,k*l+ng @4)
where

fk‘k: measurement update of the state estimator at time k
Qi error covariance matrix of ’Ek|k

Equation (2.3) gives the best unbiased estimator of the state at time % using all
observations prior to time & in the sense of minimum mean square error of the estimation.
The time update equation is also known as the one-step prediction equation.

Now, by using the predicted state, the so-called predicted residuals can be computed from
the vector of observations, i.e.

e = Ve Aie (2.5)

with, if the model is valid

E{v,} =0 and Efvyv/} = §,, s (2.6)

where
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Q, = Q, +A4,Qu 4, @.7)

The measurement update of the state estimator and its error covariance matrix are then
given by

Lo = X1t Kivy 2.8)
Qi = (- Ke Ay et 29

where
K, = Q4 Q,, (2.10)

is the so-called Kalman gain matrix.

Equation (2.8) gives the best estimator of the state at time & using both £y and y,. The
measurement update equation is also known as the filter equation.

2.2 Recursive model testing procedure

The Kalman filter produces recursively optimal estimators of the state vector with well
defined statistical properties. The state estimators are unbiased, are Gaussian distributed,
and have minimum variances within the class of linear unbiased estimators. It is important
to realize, however, that the optimality is only guaranteed as long as the assumptions
underlying the mathematical model hold. Misspecifications in the model will invalidate the
results of the estimation and thus also any conclusions based on them. It is therefore of
importance to have some tools to verify the validity of the working hypothesis, denoted by
H,, made for the dynamic model and the measurement model.

An important role in the process of model testing can be played by predicted residuals.
The knowledge of their distribution under H, enables us to test the validity of the assumed
mathematical model.

The DIA testing procedure consists of three steps:

i) Detection: an overall model test is carried out to detect if an unspecified model error
has occurred.

ii) Identification: in the case that an unspecified model error is detected, various
alternative hypotheses are evaluated to identify the most likely error source.

iii) Adaptation: after identification of the most likely error source, the filter is adapted and
the adverse effects of a model error are removed from the state vector estimate.
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2.2.1 Detection of model errors

The objective of the detection step is to test the overall validity of the mathematical model
under H, For practical reasons a distinction is made between local and global overall
model tests. The local overall model test tests the validity of the model at a single epoch
k, whereas the global overall model test tests the validity of the model in the time interval
[%, 1]. In the following, only the local overall model test, which will be used later, is
addressed, for the global overall model test one can refer to [Teunissen 1990a, 1990b].

Assume that the validation of the null hypothesis H, has been verified up to time &-1.
What we need to detect at time &k is whether an unspecified model error has occurred at
the present time. Therefore, the null and alternative hypotheses are

k
Hy: E{y)=4.x, and E{d} =xk—d>klk_1xk_l @.11)
H): E{y,) =Ax+Vy, and E{d) =x,-®,, x,  +Vd,
or, when expressed in terms of predicted residuals

Hy: v, ~ N(O, Q,) and H,: v, ~ N(W, Q,) (2.12)

with Vy, = Vy, in the case of the model error in the measurement model or Vv, = A,Vd,
in the case of the model error in the dynamic model.

Assume that the m,-dimension vector Vv, can be written as
W, =CV (2.13)
k

where Cv, is a known mxb matrix of full rank » and V is an unknown model error vector

of dimension b. The appropriate test statistic for testing H, against H, reads then
[Teunissen and Salzmann 1989}

* -1 * ~-1 -l -1
T* = vQ,C, (Cv,‘ka cvk) C,Q,v, (2.14)

which is distributed under H, and H, as

Hy: T~ %%(b,0) and H,: T~ x%(b, 1) (2.15)

with non-centrality parameter

1 =ve,Qlcv (2.16)

In most cases, it is impossible to be sure if the class of the alternative hypotheses
specified by C, indeed contains the true hypothesis. In order to test the overall validity of
the local hypothesis H¥, the mean Wy = C,V of v, under H}* should remain completely
unspecified. This implies mathematically that the matrix Cvk should be chosen to be a
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square and regular matrix. Thus C, can be eliminated from (2.14), which results in the
local overall model test statistic

* ~-1
T* = vQ, v, (2.17)
Since the mean of T* under H, equals the redundancy m, (i.e., the number of observables
at time k), the dependency of the mean of T* under H, on the possibly time varying

number of observables can be eliminated by normalizing (2.17) as

Tion = ~— (2.18)

which is the normalized form of the local overall model (LOM) test statistic.

In the case of

Tk 5 xi(mk,o) 2.19)
or
Tiou > F (m,,=,0) (2.20)

we may at the confidence level of 1-o reject the null hypothesis H, of (2.11) and consider
that an unspecified local model error is present at time .

2.2.2 Identification of model errors

The next step after detection is the identification of the most likely alternative hypothesis.
As with detection, identification is based on the test statistic (2.14). For identification,
however, candidate alternative hypotheses need to be specified explicitly. This
specification is non-trivial and probably the most difficult task in the process of quality
control. It depends to a great extent on the experience and one’s knowledge of the
dynamic and measurement models. In the following the discussion is restricted to model
etrors in the measurement model. The theory is, however, applicable for the case of model
errors in the dynamic model as well. For the case that the local alternative hypothesis H *
of (2.11) is restricted to the measurement model, we denote C by C,. It follows from
(2.11) that the local alternative hypotheses read
Hf: E{y,} = Ax,+CV 221

This class of alternative hypotheses can be seen to model a slip in the mean of the vector
of observables at time k. The dimension b of the vector V in (2.21) depends on the
alternative hypotheses considered and can range from 1 to m, for identification purposes.
Here we mainly consider the case b = 1, that is, the case of a single model error. But the
theory is also applicable to the case of multiple model errors [Teunissen 1990b].
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With b = 1, the model error vector V reduces to a scalar and the matrix C, reduces to an
my-dimensional vector, which is denoted by c,. It follows from taking the square-root of
(2.14) that

-1
Ck Qv,‘ Vi

- (2.22)
(c,: » lck)m

This is the local slippage test statistic for the identification of a single local model error.
The identification procedure works as follows: the test statistic #* is computed for each of
the candidate one-dimensional alternative hypotheses. The alternative hypothesis for which
|t*| is at a maximum, is then considered the one that contains the most likely model
error. Since ¢#* is distributed under Hy* and H} as

lk

N(O, 1) under H,

bk 1 (2.23)
2

N(V(ckQ ck) , 1) under H)

the likelihood of the most likely model error can be tested by comparing |¢¥| with the
critical value Ng4 (O 1) (ie., the upper —-percentage point of the standard normal
distribution). If |t *| 2 Na(0, 1), the correspondmg most likely model error can be

2
considered at confidence level of 1-a to have occurred.

In most cases, one does not know in advance if only one or more unspecified model errors
are present at time k. Therefore, the case of multiple model errors should also be
considered. This can be handled as follows: first, all one dimensional test statistics are
computed and the most likely hypothesis is identified. After this model error has been
removed, the remaining test statistics are computed again, and the new most likely model
error can be identified. It continues until the local overall model test is accepted.

2.2.3 Adaptation of the recursive filter

After identification of the most likely alternative hypothesis, adaptation of the recursive
filter is required to eliminate the presence of biases in the filtered states. In order to be
able to adapt the filter, we first need an estimate of the model error V. The best linear
unbiased estimator of the b-dimensional vector V under H,} can be computed directly from
predicted residuals and reads

( CQ,C ) 'c;o;lv, (2.24)
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o - (ciosicy! @29

Note that when only a single error is identified, its estimator can be computed directly
from the local slippage test statistic as

. tk
v (2.26)

* ~=1 172
(ec@ie

The adapted filtered state at time k reads

. 20 &

x,flk = xk|k-KkaVk (2.27)
and its error variance and covariance are given by

0 gk
Qclx = Qe+ KC, Qe CLK; (2.28)
Qfa V" = _KkaQVk

kik>
where

fka: filtered state estimator corresponding to H*

f,:?k: filtered state estimator corresponding to H,*

2.3 Internal and external reliability

Besides testing for possible model errors, one is usually also interested in the size of the
biases which can be detected with the tests described in the previous section. Also the
influence of undetected errors on the estimation results is of interest.

2.3.1 Internal reliability

Internal reliability is a measure of the model error that can be detected by the test statistic
t* of (2.22) with a certain probability [Baarda 1968], [Teunissen 1989]. In order to design
a statistical testing procedure that gives a reasonable protection against both type I (false
alarm) and type II (missed detection) errors, one needs to specify not only the level of
significance of the statistical test but also the power of it, which are denoted by o, and v,
respectively. o, is actually equal to the probability of false alarm, whereas the testing
power 7, is the probability of rejecting the null hypothesis H, when an alternative
hypothesis H, is true.
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Suppose at time k, there is an unspecified model error V in the measurement vector y,, i.e.

Efy) = Ax,+cV (2.29)

thus from (2.5) we arrive at
E{v,} = ¢,V (2.30)

It follows from (2.16) that the non-centrality parameter A, reads
Ay = (€)' Q) eV 2.31)

Based on the given significance level ¢, and the power ¥, of the statistical test, the non-
centrality parameter can be computed by the inverse power function [Baarda 1968],
[Teunissen 1990a] as

Ao = Ma=eg, b=1, y=y,) 2.32)

where b is the number of degrees of freedom.

Since ¢, is a vector, it follows from (2.31) that the size of the unspecified model error that
can be detected by the one-dimensional test statistic ¢* for a certain level of significance
o, and with power ¥, is equal to

1
Vv = _’\ol_ 2 (2.33)
Cy Q,,ik C;

This is called the minimum detectable bias (MDB) [Teunissen 1990a] and is a measure for
the internal reliability.

2.3.2 External reliability

External reliability is the influence of an undetected model error on state estimates [Baarda
1968], [Teunissen 1989]. Obviously there is a probability that an unspecified model error
can not be successfully identified by the test statistic #* with a certain probability.
Different undetected model errors have different impacts on state estimates. It is, therefore,
important to know how large the effect of a particular model error is on the state vector or
functions thereof.

As can be seen from state estimation equation (2.8), the biases in state estimates caused by
a slip with the size of the MDB V in an observation read
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Vi, = KoV (2.34)

Often not the bias vector kalk itself but its significance is analysed, because the analysis

of the bias vector kalk is complicated by the large amount of numbers involved. A

measure of the significance of the bias in the state vector is the Bias to Noise Ratio
(BNR) [Salzmann 1993}, i.e.

a* -1 oa

Usually one is only concerned with the impact of an unspecified model error on a
particular function of states. In this case, one can represent these linear(ized) functions of
interest by a matrix F . The BNR pertaining to these functions follows from (2.34) as

Ape = (F*VE, ) (F Q) "F ' Viy, (2.36)

F°%
Obviously, (2.35) is a special case of (2.36) with F equal to the unit matrix.

In practice one usually analyses the square root of the BNR (1)12’2 or A;’?f) to facilitate a

direct comparison with the ratio between the biases V&£ and the standard deviations of the
(filtered) states [Salzmann 1993].






Chapter 3

Discussion of existing algorithms
for generating differential corrections

Currently, based on the type(s) of observations used in the measurement model, there are
three types of algorithms for the generation of DCs, which can be classified into

* algorithm based on code observations

* algorithms based on carrier-filtered code observations

* algorithm based on code observations and sequential differences of carrier
observations

This chapter individually reviews and discusses these algorithms

3.1 Algorithm based on code observations

This algorithm is fundamental for the generation of DCs, though no literature explicitly
discussed it.

Let us write the L1 GPS code observation in unit of length at time #, as

P@t,) = p(@t,) +c(dTz,) —dt(tk)) +VPh(,) +1(t,) + V(L) +e(t,) (3.1

For the sake of simplicity, we replace ¢, by the subscript £ and thus (3.1) becomes
P, = pk+c(di—dtk)+Vkeph+1k+vlim+€k 3-2)
where

P,: L1 code observation (m)
p;: satellite-receiver range computed from ephemeris data and station coordinates
(m)
¢ : speed of light (m/s)
dT,: receiver clock bias (s)
dt,: satellite clock bias (including SA clock error) (s)
V. effect of ephemeris error (including SA orbit error) plus a priori coordinate
error of station (m)
I: ionospheric delay (m)



16 Theory of Carrier Adjusted DGPS Positioning Approach

V. °: tropospheric delay (m)
€&, code observation noise (m)

By using the broadcast navigation data, the approximate value df,’ for df, can be
computed. The DC is defined as (cf. [Loomis et al. 1989] and [RTCM SC-104 1994])

V, = c{dT,-8,)+ VP +1,+V;" 33)

where
8t,: correction to dt,°
Thus it follows from (3.2) and (3.3) that
P,- pk+c~dt2 = V,+e, (34)

Actually, this equation can already be used to compute DCs but the precision of this DC is
not better than that of code observations itself. If the DC estimate is filtered, the precision
and reliability can be improved.
As confirmed in Section 5.2, since all the quantities contained in V, are quite stable within
a period of a few seconds, the third order time derivative of DCs, denoted by V,, can be

modeled as a zero-mean white noise process with constant spectral density gg (having the
unit of m?s®), i.e., (Brown and Hwang 1992]

EV} =0 (3.5
Gas(t) = qgb(1) (3.6)

where 8(7) is the delta function [Gelb 1974].

Now we arrive at the following dynamic model for DCs (see Appendix A)'

1,2
vl |1 At EAt" Ve [dg,

AR v ,
LK 1 Ag (K "1, (3.7
Vi ) Vi dv&
Xk o a4,
kk-1

with

! Whenever a matrix appears with missing elements, then the elements are zero.
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E{d) =0 (38
(zlom,f SYM.
* 1,4 1,3
E{dkdl } =6ledk’ Qdk = qV §Atk §Atk (3-9)
%At: %At: Az, J

where

A: backwards differencing operator (e.g. Af, = £,
SYM.: indication of a symmetric matrix

In the case that the observation noise €, is a time independent random error with standard
deviation ©,, then the measurement model reads

Pk‘Pk+c'd72 =[1 0 O)x, + ¢

—_—— — —_— (3.10)
Vi A, €
with
E{e} =0 3.11)
E{ eke;} = 6]([Qy’ Qy = oz (3-12)

Based on the above dynamic and measurement models, the optimal solutions can be
recursively obtained by using the Kalman filter algorithm. The initial values of the state
vector and its corresponding error covariance matrix can be obtained from a batch least
squares solution using three epochs of data.

One of the properties of this algorithm is that it only needs code observations. Therefore it
is very simple but on the other hand the DC estimate is still quite noisy. In addition,
because of using a dynamic model for DCs, the DC can be predicted, although the
prediction is not that accurate. Finally, this algorithm can be combined with the DIA
quality control procedure reviewed in Chapter 2.

It should be pointed out that although it is widely assumed in GPS data reduction that
GPS observation noises are time independent random errors, the assumption may not be
realistic in practice. It was reported in [van Dierendonck 1995] that the technique of
carrier-aided code tracking has been widely used in GPS receivers, therefore the code
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observations provided by most receivers are probably carrier filtered code observations,
rather than the raw code observations we expect. Since the goal of this dissertation is not
to challenge the assumption and instead is to discuss under this assumption what is the
proper way to perform DGPS positioning, the assumption will be accepted here and
afterwards. In addition, it will be shown later that to reduce the effect of code observation
noises by using carrier observations, one does not need to use carrier-filtered code
observations and can do better if the raw code and carrier observations are used.
Therefore, GPS receivers should in fact provide users with raw code and -carrier
observations.

3.2 Algorithms based on carrier filtered code observations

This algorithm is widely found in the literature, for instance [van Dierendonck 1993],
[Landau 1993}, [Breeuwer et al. 1993] and [Casewell et al. 1994]. It consists of two steps.
In the first step, code observations are filtered by carrier observations. Next, the carrier
filtered code observations are used to generate DCs. Since the second step is identical to
the algorithm based on code observations, the discussion on this algorithm will focus on
the aspect of filtering code observations by carrier observations.

A carrier observation has much smaller noise than a code observation. It has been shown
in the literature, for example [Hatch 1982], [Goad 1990], [Ashjace 1990], and [Teunissen
1991], that filtering code observations by carrier observations is an efficient way to reduce
code observation noises. In the following, some widely discussed approaches of filtering
code observations by carrier observations for the generation of DCs will be addressed
individually.

3.2.1 Carrier filtered code observations without an ionosphere model

This approach was introduced by Hatch (1982). Let us write the L1 and L2 carrier
observation equations in units of length as

Ay = Pk+c(di_dtk)+V1:Ph'1k+vl:m'}‘1N+nk @13

b, = pyre(dT,-dt)+ VP -r I+ V- AN+, (3.14)
where

Ay Ay: wave lengths corresponding to the L1 and L2 frequencies (m)
b, ék: L1 and L2 carrier observations (cycles)
r : squared ratio of the L1 and L2 frequencies
N, N: L1 and L2 carrier ambiguities (cycles), which are real numbers
N> fip: L1 and L2 carrier observation noises (m)




3. Discussion on existing algorithms for generating differential corrections 19

Usually when the difference of carrier phases at two epochs is taken, it is referred to as a
delta range. Denoting L1 and L2 delta ranges over the interval (f,, ) by D, ,, and
Dk_l, ¢ We have

D, = MAd, = Ap,+c(AdT,-Adt)+ AV - AL+ AV,  +An, (319

15,:_1,,‘ = 4,AQ, = Ap,+c(AdT,-Adty)+ AV -rAL+ AV +Af,  (316)

From D, , Lk and D -1, k7 the ionosphere-free delta range, denoted by Dk 1> Teads
c r 1 =
Diip = ka-l,k T le,k—l

Ap, +c(AdT, - Adty)+ AV + AV +

1 ..
-—— A (B.17n
r-1 e

Making use of the L1 delta range and the ionosphere-free delta range, we can map the
carrier range differences into equivalent code range differences as follows

- < —
Mk—L,k' 2Dk-1,k Dk—l,k

= Ap,+c(AdT,- Adt)+ AV AL+ AV - Tt

2 .-
1A% (3.18)

A
N~ 1

The quantity M, , , has the important property that it contains the same information as P, -
P, , but with much smaller noise.

At the initial epoch, the carrier filtered code observation can be chosen to be the raw code
observation, i.e., Po[o = P,. From then on, the predicted code observation Pk!k , can be
computed by

Py = Poipr* My k=12, (3.19)
where
Pk—1|k-1: carrier filtered code observation at epoch k-1
Then the carrier filtered code observation at epoch k is given by
Py =P k-1 ¥ FIE(P;‘ -Pyyy) (3.20)

Since the carrier observation is only limitedly more accurate than the code observation
while the epoch number k can be infinite, it makes sense to replace the coefficient of

P, Pk|k , in the above equation by the variance ratio of carrier and code observations and

that of Pk‘H by 1 minus the variance ratio in case processing epoch k is over the variance
ratio of code and carrier observations [Hatch 1982].
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It should be pointed out that the estimator given by (3.20) is not a strict recursive least-
squares estimator, since the assumption that the variance of carrier observations is zero is
implicitly made. The theoretical strict expression for L1 carrier filtered code should be

2., 2
A . o +ka R
Poe = Pryer * *—2——% (Pk _Pklk-l) (3.21)
k(oe+a?)

where o, is the standard deviation of L1 carrier observations. For more details one can
refer to [Teunissen 1991].

Based on the above discussion, it can be seen that the precision of the carrier filtered code
observation 15k ¢ Will become better and better with increasing epoch k and both code and
carrier filtered code observations contain the same information. The most essential
difference between the L1 and L2 carrier filtered observation Isk,t and the raw code
observation P, is that the former has a lower noise than the latter. It should be noted that
the assumption of cycle-slip free L1 and L2 carrier observations underlies the above
filtering procedure. When cycle slips occur, the filtering procedure needs to be re-
initialized. Apparently the above discussion is based on the case that L1 code and LI as
well as L2 carrier observations are available. When L2 code observations are available
they can also be filtered by using a similar procedure. But then correlations are introduced,
not only between the L1 or L2 filtered code observations at different epochs, but also
between the L1 and L2 filtered code observations.

This approach has the property of simplicity, and moreover the L1 and L2 carrier filtered
code observation produced by this filtering approach is not affected by the opposite
influence of ionosphere on code and carrier observations. But on the other hand, making
use of this approach to filter code observations needs dual-frequency carrier observations.

Since some receivers can only provide single frequency data, some authors have discussed
the filtering of L1 code observations by L1 carrier observations only (e.g. [Goad 1990],
[Ashjace 1990]). When only single frequency code and carrier observations are available,
the ionosphere-free delta range ch-llk cannot be obtained any more. In this case, replacing
M,, ; in (3.19) by D, , gives the predicted code observation

PA"V"l = Isk—l k-1 +Dk-1,k (3.22)

and the single-frequency carrier filtered code observation can be obtained by (3.20) and
(3.22) (cf. [Loomis et al. 1989] and [Landau 1993]).

Note that since the ionosphere has opposite effects (delay and advance) on code and
carrier observations, the L1 carrier filtered code observation is affected differently by
ionospheric delays than the raw L1 code observation, which is the major problem of the
L1 carrier filtered code observations [Loomis et al. 1989], [Landau 1993]. It was shown in
[Loomis et al. 1989] that after about 30-minute filtering, biases in single-frequency carrier
filtered code observations resulting from the opposite effect of ionosphere on code and
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carrier may be greater than code noises themselves. In [de Jong 1990] the following
expression for L1 carrier filtered code observations can be found, which shows explicitly
the ionospheric delay

k-1

pklk = pere(dT—dry) + ,f""+v/:m‘k—l_<21k+%z;1j+noise (3.23)
i

To reduce the opposite effect of ionosphere, one can restart the filtering periodically, but
each restart causes carrier filtered code noises to go back to the original code noise level.
To make a compromise between these, Ashjaece (1990) introduced a technique called
"Dual Ramp smoothing" for filtering code observations by the use of carrier observations.
For each satellite in view, two ramps (or filters) are used (see Figure 3.1) and they have
the same input code and carrier observations at each epoch. Initially and also after each
loss of lock, both ramps restart at the same time. After N epochs ramp 2 resets and the
filtering continues with ramp 1. After 2N filtering epochs ramp 1 restarts and the filtering
continues with ramp 2 that has already filtered N epochs. There is a jump when switching
between ramps. Except for the first N epochs, the ramp having filtered at least N epochs is
used to produce carrier filtered code observations. In [Ashjaee 1990], a value for N of 100
is proposed, and in this case the jump, due to switching between ramps, may cause a
change of about a few centimetres in range.

# OF SMOOTHINGS

NUMBER OF EPOCHS

Figure 3.1: Illustration of "Dual Ramp” smoothing,
after [Ashjaee 1990].

3.2.2 Carrier filtered code observations with an ionosphere model

This approach can be applied to both single-frequency data [Goad 1990] and dual-
frequency data [Euler and Goad 1991). The main property of this approach is that a simple
exponential decay dynamic model, which is shown below, is used to model ionospheric
delays. Since there is no fundamental difference between the applications of this approach
to single-frequency data and dual-frequency data, the following discussion will be based
on the single-frequency case.

In general, by using the ionosphere model parameters broadcast by a GPS satellite, the
ionospheric delay can be corrected for at least 50% [Klobuchar 1987], [Feess and Stephens
1987]. Let
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1= I)+81, (3.29)

By = pyro(dl,-dt)+ Vg (3.25)

where

1" approximation of 7, computed from the broadcast information (m)
31 correction to ° (m)

Then it follows with (3.2), (3.13), (3.24) and (3.25) that L1 code and carrier observations
corrected for ionospheric delay, denoted by P,° and ¢,°, read

P; =B, + 8I, +¢, (3.26)

A df = B,-8I,-A N+q (3.27)
1Yk k k 1 k

where P’ = P,-1 and ¢,° = ¢, +1YA,.

Since B,, 8/, and AN are not individually estimable with only L1 code and carrier
observations, (3.26) and (3.27) are rewritten into

Py = (B,+8I)+(81,-81)+e, (3.28)
Ay = (By+8L,)~(81,-81,)-(A,N+281)+n, (3.29

In matrix notation the above two equations can be written as

B, +8I,

PC

kc = ltl ! 0} blk-all + [Ek
Ay -1 -1y Ne2sr| (M (3.30)
5T 4 .

Yi k x, €

Since B, is usually hard to predict and both AN and 81, are constants as long as tracking
of the satellite signals is maintained and since to a certain period the uncertainty in the
broadcast ionospheric delay prediction model can be assumed to linearly increase with
prediction time, the following dynamic model is built up

Xy = @y v, (3.31)

with
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1
o, - -k (3.32)
b €
1
Eid} =0 (3.33)
o]
Qdk - (Qs Atk 2 (3.34)
0

where T and @, are constants. It is indicated in [Goad 1990} that the above model is rather
insensitive to the value of T since the dynamic noise component will dominate, but no
specific choice for it is given. With respect to @,, it is suggested to be chosen as 0.25
m/min for very quiet periods or 1.0 m/min for periods of moderate to high solar activity.

At each epoch a carrier filtered code observation can be computed by adding the first two
states in x,, i.e. P =B,+0I,. Obviously, it will not be affected by the opposite effects of
the ionosphere on code and carrier observations. Numerical results show that by using this
method the noise of the code observations can be reduced by about 50% [Goad 1990].

It should be pointed out that the dynamic model used for the ionospheric delay, i.e.,

24 (3.35)
8, =e ° oL _,+w
with
ka = (QSA’k)Z 3.36)

is not consistent because it is proved below that the variance of system dynamic noises
from epoch [ to k in one step does not lead to the same result as that in several steps.

Consider the variances of system dynamic noises from k-2 to k in one and two steps. It

follows from (3.35) that the state transition equation from epochs -2 to k-1 reads
Sl (3.37)
8L, =e * B _,+w,,

Inserting (3.37) into (3.35) gives the state transition equation from epochs k-2 to k
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_ Arrg Ay (3.38)
8, =e ° O, +e Tw_ tw,

from which it can be seen that the dynamic noise from epochs k-2 to k in two steps,

denoted by w ™, reads
At
wo ——1—" 3.39)
w* =e Tw,_ +tw,
Thus its variance is
285,
—_ T
Qum =e *Q, +Q, (3.40)
248,

e © (QAr Y +QArL)

As is easy to see, the variance of system dynamic noises from epochs £-2 to k in one step,
denoted by w “*, reads

Qwou = (Q:(Atk_l"'Atk))z (3'41)

which is not equal to Q, . Therefore, the dynamic model specified by (3.35) and (3.36)
is not consistent.

As can be seen from the above discussion, when dual-frequency data is available, one can
obtain carrier filtered code observations which are not affected by the opposite effect of
ionosphere on code and carrier observations. Whereas, when only single-frequency data is
available, one either can only obtain carrier filtered code observations which are affected
by the opposite effect of ionosphere on code and carrier or must use a dynamic model for
ionospheric delays to overcome the opposite effect. Since carrier filtered code observations
are always correlated in time no matter single or dual frequency data is available, strictly
speaking, the correlation should be taken into account when the filtered observations are
used. But in practice it is difficult to explicitly show the stochastic model of the filtered
observations and therefore they are usually ignored.

3.3 Algorithm based on code observations and sequential differences of
carrier observations

This algorithm, described in [Loomis 1986], [Loomis et al. 1989], uses code observations
and sequential differences of carrier observations as measurements and uses a dynamic
model for ionospheric delays. The original algorithm, which is discussed below, is based
on single-frequency data. However, it can also be applied to dual frequency observations.

As shown in the previous section, the delta range A,A¢, can be formed from two carrier
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observations at times £, and &, which is given below again

M A, = Ap, +c(AdT, - Adt)+ AV - AL + AV, + An, (3.42)

With (3.3) (the definition of DC) it follows that
M A, -Ap,+cAdr, = AV,-2AI,+An, (3.43)

Applying a constant-acceleration dynamic model for the DC (i.e. V,) as in Section 3.1 and
assuming that the expectation of the rate of change of ionospheric delays is constant with
spectral density gy, [Loomis 1986] and [Loomis et al. 1989] arrive at the following
dynamic model

[ 1,2
.V" 1 Az, EAtk 0 .V"'l de
Yk _ 1 Atk 0 Yk—l N dvk
\/A V| ¥ |dg, (3.44)
i ) AN I 7
k k-1 1
— L 1- — -~
X -1 da,
Qi
with
953 SYM.
20
95, 4 99, 3
Q,-|8 3 (3.45)
45,3 495, 2
0 0 0 gy
and the measurement model
P,-p,-cdty 100 0
MAG-Apredtd| T |0 A, 0 -24s,[* * % (3.46)

— v

Vi Ak

with
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(1t02)* 0
0 107

m? (3.47)

Q-

From a practical point of view, this is a good algorithm to generate DCs when only single
frequency data is available, because the corrections are not affected by the opposite effect
of ionosphere on code and carrier observations. There are, however, some remarks which
have to be made.

First of all, from the assumptions that DCs have a constant acceleration and that the
ionospheric delays have a constant velocity, it follows that

AV, = V-V,
) 1a
= (Vi * Vi A+ ‘Z‘quAtlf *dg) -V,

. le, .2
= Vi A+ 'Z‘VHA‘k +dy,

- le
(V= Vi1 A, —dg )AL, + EVHAt: +dy,
. 1 . 2
- V8t~ 29, -d) A} ~d e, v,

AL, - %m £ +dy, ~dy At + %d;,kAt,f

- 'V,‘At,‘—%VkAt,f+ 1 -Ar, %At: 0la, (3.48)
and
AL = I,-1,_,
= I'k_lAtk+d,Jt
= [ At -d; At +d, (3.49)

Therefore, after inserting (3.48) and (3.49) into (3.43) and combining the result with (3.4)
the measurement model (3.46) should be
1 0 0 0

1

0 O 0 0] 0
- ) v + | & [ ) d,
Ye =10 At -5 A4 241, k L

+
Any "1 -, —;—At: 2Azk} 2|4

| (3.50)

v

v

A, e,

which shows the observation noise e, is correlated with the dynamic noise d,. Therefore,
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strictly speaking the standard algorithm of the Kalman filter cannot be used in this
algorithm.

Secondly, since DCs are functions of ionospheric delays, the covariance matrix (3.45) of
system dynamic noises should be

39 a5 SYM.
20
Boptt Bag
0, - 8 3 (3.51)
&
g, 3 495, 2
-G—Atk 7Atk qﬁAtk

%im: gy, 0 gsAL

Thirdly, although this algorithm can generate DCs which are not affected by the opposite
effect of ionosphere on code and carrier observations even in the single frequency case,
the correlations between delta ranges in time are still ignored. It was reported in [Roberts
and Cross 1993] that ignoring the correlations will result in too optimistic precision for
state estimates.






Chapter 4

Algorithm for generating carrier
adjusted differential corrections and
implementation of quality control

This chapter consists of three sections. First, it derives a new algorithm for generating DCs,
which are referred to as carrier adjusted DCs, analogously to [Teunissen 1991]. Next, it shows
how to integrate this algorithm with the recursive quality control procedure discussed in
Chapter 2. Finally, it analyses the effect of input a priori parameters of the algorithm on the
estimated precision and reliability.

4.1 Dynamic model and measurement model

For the algorithm which is derived in this section, we introduce a bias term in each of the L1
and L2 code observation equations presented in Chapter 3 as follows

P, = p,rc(dT,-dt)+ P vV +b, e, CRY;
B, = py+c(dTy-dty+V& +r1, + V" +b,+&, 4.2)
where

b, L1 code observation bias (m)

.. L2 code observation (m)

.. L2 code observation bias (m)

. L2 code observation noise (m)

As will be shown in Section 7.2, the L1 and L2 code biases b, and Ek may be significantly
present in L1 and L2 code observations, respectively, and they may behave differently for
different receivers and different observation environments. Without introducing b, and b; in
L1 and L2 code observation equations, code observation noises may be biased and their time
series may appear to have linear and/or periodic behaviour. Whereas after introducing a code-
bias parameter in a code observation equation, code observation noises become unbiased
random noises. The L1 and L2 code biases b, and Ek consist of all systematic errors in a code
observation, which could have resulted from, for example, multipath and instrumental delays.
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With the improvement of GPS receivers and antenna designs, this bias may become less and
less significant in the future. Note that when the code bias b, is present in an L1 code
observation, the DC computed by the algorithm based on code observations (see Section 3.1)
is actually not what one expects, instead it is a DC biased by b, , i.e., V,+b,. In that algorithm
(as well as other existing algorithms), the code bias is implicitly assumed to be zero. The
biased DC includes the effect of the code bias b,, which is varying with time, and its
corresponding rate of change and acceleration are affected by the dynamic behaviour of the
code biases. Incidentally, a quantity similar to code biases b, and Ek is defined as inter-
frequency bias in [Chao et al. 1995a] and [Chao et al. 1995b].

The L1 and L2 carrier observation equations, which were already discussed in Chapter 3, are

A, = ppre(dT,-dt)+ V" P L +V -4 N+, 4.3)

Ay = pptc(dTy-de)+ VP -r 1 + V- AN+, @4

Let us denote the combination of receiver-clock bias, correction to the approximate value of
satellite-clock bias, effect of ephemeris error and tropospheric delay by §,, i.e.

= cdT,-8t)+ VP + V" 4.5)

According to the definition of the DC (see (3.3)), the DC can then be expressed as
V, = 5.+, 4.6)

Combining (4.1) to (4.4) with (4.5) gives the following system of code and carrier observation
equations

'S
Prpyrediy | 11 0 010 1: ,
hbeppredty| |1 -1 -1 0 0 OfMN| In, @n
Ldpredy| |1 -r 0 -1 0 o||AN| |
P,-p, +cdty 1 r 0 001 bf &

.ka

The ambiguities N and N are constant in time, provided that no cycle slips occur in L1 and
L2 carrier observations, respectively. All other parameters generally change with time and
have to be solved every epoch. Equation (4.7) cannot be used directly because the number
of unknowns is larger than that of observations, regardless of the number of epochs for which
data is available. It is, however, possible to estimate the variations of b, and b with respect
to b, and bo, respecuvely This can be achieved by the following parameter transformauon
which results in
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This system can be solved for every epoch. For epoch k=0, the first four parameters are

computed, and for the remaining epochs parameters 1, 2, 5 and 6 are solved, while parameters
3 and 4 are constant.

In order to improve the precision of the estimates of the parameters and also to produce the
rate of change of DCs along with the DCs themselves, we introduce dynamic models for S
I, b, and b~k. It will be shown in Section 5.2 that the third-order time derivative of S, and
the second-order time derivative of ,, denoted by § « and I, respectively, can be modelled
as zero-mean white noise processes with constant spectral densities g¢ (m?%s®) and g; (m?s’).
The second-order time derivatives of b, and b,, denoted by b, and b,, can be modelled as

zero-mean white noise processes with the same constant spectral density a; (m?s’).
Therefore, it follows from (4.9) that the estimable state vector related to epoch k (k>0) reads
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r 1, o « 1 1.
[Sk+ r_lbo_ﬁbo St S Ik_,__Tb0+—r,_1b0 I,

*

AN+ !"—lb -71» A N+mb —:—*}-b b-b, b, by-b, B, (4.10)
The corresponding original non-estimable state vector is
4.11)

S, S, S I I. AN MN b, b, B, b, b, b

Our goal is to compute DCs. Additionally, it is preferred to build up a model that links the

L2 code bias Ek only with the L2 code observable so that the model can easily be adapted
to situations when the L2 code observable is missing or L2 and/or L1 carrier is missing. For
these purposes, a transformation has to be applied to (4.10) or (4.11). For reasons of
convenience, we transform (4.11) as follows

Vitby 100100 0 0000 1 o'-sk-
Ve 010010 0 0000 0 0|
Aslzcvz; 001000 0 0000 0 O |g
1+
k 00010L 0 0000 L ofk
i2 2 2 4
G| [P00010 0 0000 0 0 AN
2V .
¥ |-looot100 Loooo0o-L o
; r+1 r+l b,
by-b, | @12)
- . b
=7 | loooi1oo 0 o000 =L L|%
b,-b, r-1 r-1} b,
B, 000000 0 1000 -1 0.
b,-b, 000000 0 0100 0 O "
. 000000 0 0010 o0 ~-1]%
bi 000000 0 0001 0 o |l%]
T

Note that the first transformed state is the sum of the first two parameters of (4.9), i.e.
1 1 - .
Y, +by=8,+I,+b, (S +r—1b r_1b0]+(1k~:bo+nbk]. The rate of change of V, is the

sum of the rates of change of S, and I, i.e. V, = S,+1,.
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It follows from (4.12) and (4.7) that the measurement model for the Kalman filter we use
reads

’- Vk+b0

Popyrcdiy| [1OO OO0 O 0 1000 i}
Abeperedd 10020 o 0 000 of .22V

A,0,-p,rcdll 100 0 0 -¢+1) 0 0000 bi | | @13
. __0 "0 €
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S———— ; b _b
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b,-b,
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—_—
X
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E{ek} =0 4.14)
[ 2
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02
. _ n 4.15)
E{eke,} = 6“Qy, Qy_ 2
95
céJ

For the sake of simplicity, herein the measurement noises are assumed not only to be
uncorrelated among observables and epochs but also to have constant standard deviations. It
will be shown in Chapter 6, however, that the standard deviation of code observations is a
function of satellite elevation.

To derive the dynamic model for x,, we need to note that N and N are constant like b, and

50, unless a cycle slip occurs. The second-order time derivative of DCs Vk is equal to that

of the ionosphere-free DCs S'k, because I'; is a white noise and is included in the dynamic
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noise term. The three ionospheric-delay related states in the transformed state vector, i.e.

~ b-F
. A1N+bo, . A,N+b, and 1,- 0~

2 r+1 r-1
(4.12) that the dynamic noise of the state vector x, from epoch k-1 to k is that of the original
non-estimable vector (4.11) premultiplied by the transformation matrix T. Thus the dynamic

model reads

, have the same rate ik. In addition, it follows from
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where
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and the explicit form of Qd,, in (4.18) can be found in [Jin 1995a].

Incidentally, an alternative derivation of the above dynamic model was given in [Jin 1995a,
1996a].

On the basis of the above dynamic and measurement models, the recursive optimal solutions
can be obtained by using the Kalman filter algorithm. The initial values of the filter state and
its error covariance matrix can be determined by solving the first three epochs simultaneously
by least squares.

Note that when L2 code observations are not available, the dynamic and measurement models
can be adapted either by simply removmg the columns and rows related to Pk, bk, 0, or bk

AN+b, N+b AN +b
from the models or by substituting I+ » Iyt and I.-1I, for I+
A N+b, by-b, 2 r+l
I+ and [ - in the state vector (of course their coefficients in the models also

r+1 r-

need to be appropriately changed) and then removing the columns and rows related to Isk, Ek,
50, or 5/: from the models. The difference between these two kinds of adaptation is discussed
in Section 7.2.2. Most reference stations are probably equipped with dual frequency receivers,
when DCs need to be generated. But there may be situations when DCs have to be generated
by using only single frequency data. By removing all L2-frequency related quantities (i.e. P,,
bk, bo, bk, d)k and N) from the dynamic and measurement models, it can be found that the
variation of the L1 code bias with respect to its initial value is no longer estimable. In this
case, the above dynamic and measurement models should be adapted by combining the code
bias b, with the DC V,. More specifically, if the types of observables available are L1 code
and carrier, the equations (4.12), (4.13), (4.15), (4.16) and (4.18) should be replaced by the
following ones, respectively
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The explicit form of Qdk in (4.18") can be found in [Jin 1995a).

. _ AN+by  A,N+b, by-b,
Note that the three ionospheric-delay related states I+ 7 L+ and/

r+l Eop

in the state vector x, can be used to analyse the variation of ionospheric delays. Often dual-
frequency GPS code observations are used to estimate the first-order ionospheric delay.
Strictly speaking, it should only be done in the case that L1 and L2 code biases are absent
or the same or negligible. In general, by using dual frequency GPS code observations, one
can only estimate the first-order ionospheric delay contaminated by code biases &, and 5k (or
by=bo

r-1

b, and l;o), like the state I,-

The time-varying states S, I,, b, and 51: are affected by different factors. The ionosphere-free
DC §; is related with receiver and satellite clock biases (including SA clock errors),
ephemeris errors (including SA orbit errors) and tropospheric delays. The ionospheric delay
I, is related with the condition of the ionosphere. The code biases b, and Ek are related with
receivers, antennas and the observation environment.

There are some essential differences in the generation of carrier adjusted DCs and of their
rates of changes between using dual frequency data and using single frequency data. In the
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former case, the carrier adjusted DCs at all epochs are biased by a constant which is the
initial value of L1 code bias (see (4.13)); their rates of changes are not biased. In the latter
case, the DCs and their rates are biased by L1 code biases and the rates of the changes of the
biases at the same epochs (see (4.13"), respectively. Thus, the quality of the rates of carrier
adjusted DCs based on dual frequency data is much better than that based on single frequency
data. It should be noted that when code biases become negligible, this algorithm can still be
used after simply removing the columns and rows related to code biases and their rates of
changes. Both carrier adjusted DCs and their rates of change are then no longer biased.

Apart from the above properties, there are some differences between the algorithm presented
here and other published ones. First of all, this new algorithm directly uses code and carrier
observations in the measurement model of a Kalman filter, so that the measurements are not
correlated in time if code and carrier observations can be assumed to have no time
correlations. This makes it possible to use a simple stochastic observation model and to use
the standard algorithm of the Kalman filter. Secondly, the algorithm accounts for biases like
multipath errors and instrumental delays in code observations. It explicitly shows how code
biases affect carrier adjusted DCs when dual or single frequency data are used. Thirdly, in
addition to generating carrier adjusted DCs, it can also be used to analyse the significance of
code biases and to produce information related to the ionosphere (e.g. the variation of
ionospheric delays and their rates of change). Finally, all state estimates including carrier
adjusted DC are not affected by the opposite influence of ionospheric delay on code and
carrier observations.

Note that when code biases are present, one can only obtain DCs biased by b, or b,. Since
the bias b, or b, will not be the same for reference and mobil stations, it cannot be cancelled
when DCs are applied by a mobil user. It will be shown in Section 5.3 that code biases are
usually different from satellite to satellite, they will, therefore, result in a bias in the estimate
of user’s position when DCs are used at the user site. This is one of the prices we pay for the
use of DCs.

4.2 Implementation of quality control

In Section 2.2, we reviewed how to perform model testing so that the assumptions underlying
the models (or say, the null hypothesis H,) can be validated and optimal estimated states can
be obtained. This section discusses the implementation of the model testing theory for
generation of carrier adjusted DCs.

Suppose in the detection step the null hypothesis H, of (2.12) is rejected by the LOM test
(2.20). What we need to do is to identify the model error. The identification step is based on
the so-called conventional alternative hypothesis or data snooping [Baarda 1968] in
combination with the local slippage test statistic (2.22). The model error which is tested is
V,=¢cV (4.20)

with
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¢ =[0-010-0] @.21)
mgx

L element i

In other words, the residuals are tested one by one so that all outliers in the observations can
be identified. Note that state slippages in dynamic processes are not accounted for here.

For m, predicted residuals, we have m, independent local slippage test statistics (2.22). The
alternative hypothesis for which |¢/| is at a maximum is then considered as the one that
contains the most likely model error. Determine j such that

j = {i] £ =max{ ¢! | ™1} 4.22)

In the case that

[t/] > N«(0,1) ' (4.23)
2

one may accept the alternative hypothesis H, of (2.23) at confidence level of 1-o and consider
predicted residual j in v, to be the most likely predicted residual containing the detected
model error. Since other residuals may also contain unspecified model errors, remove

predicted residual j and corresponding covariances from v, and ka, respectively, and repeat

the same procedure as above until (4.23) is not fulfilled for any of the remaining predicted
residuals any more.

After identification of the most likely alternative hypotheses, the recursive filter needs to be
adapted. In Section 2.2, a general adaptation procedure has been described . But for the
particular filter we are considering here, the adaptation can be simplified. Consider the general
case that L1 and L2 code and carrier observables are available, i.e. m=4. It will be shown
later that the adaptation procedure can be applied to any case, as long as L1 code observable
is available.

Depending on accepted alternative hypotheses j from (2.23), the adaptation can be carried out
for different cases as follows.

¢ j=1 or j=4 This is most likely corresponding to the situation that the L1 and/or L2 code
measurement contains an outlier. In this case one can simply eliminate predicted residual j
from the residual vector v, and then continue the measurement update by using the other
residuals.

*j=2 or j=3 This case happens most likely due to the occurrence of a cycle slip or an outlier
in the L1 and/or L2 carrier measurement. When a cycle slip occurs in a carrier measurement,
a new ambiguity is introduced. As can be seen from the measurement model, the L1-carrier
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A N+b, ANE, o
and I+ T which contain their own
r—-
ambiguities respectively. In this case the Ll-carrier or L2-carrier related state should be
reinitialized (see [Jin 1995a]) and the filter can continue the measurement update by using the
other unbiased predicted residuals. It can be expected that if the unspecified model error is

an outlier instead of a cycle slip, this adaptation will be repeated in the following epoch.

and L2-carrier related states are I+

* j=1, j=2, j=3, and j=4 Since all predicted residuals are considered to have an unspecified
model error in this case, it is probably caused by a slip in the state of the DC V, (e.g., a jump

) . . . AN+b, A 2N~ +b, .
in the receiver clock bias). In this case, the states V,+b,, I, + L+ ,b-by andb,-b
k 2 ko k70

should be reinitialized.

We have discussed how to adapt the recursive filter in such three cases that an unspecified
model error occurs in the code measurement, in the carrier measurement, and in all
measurements. Apparently if unspecified model errors occur in some of code and carrier
measurements, the adaptation of the recursive filter can still be done in the same way. In
short, if an unspecified model error is identified in a code predicted residual, then exclude the
residual in the measurement update; if an unspecified model error is identified in a carrier
predicted residual, then initialize its carrier ambiguity related state; but if an unspecified
model error is identified in all measurements, then reinitialize all states related to the
measurements.

4.3 Effect of input parameters on estimated precision and reliability

For all algorithms used to generate DCs, it is essential that outliers, cycle slips and other
model errors can be detected in time. Because of this reason, the algorithm for carrier
adjusted DCs uses the DIA quality control procedure. This section investigates the influence
of the input parameters of the algorithm on the DC and DC-rate precision and on the internal
and external reliability of code and carrier observations. Through these investigations, we also
show the usual sizes of the precision and the reliability.

As can be seen from Chapter 2 and the previous two sections, the estimated precision (i.e.
covariance matrix) of DCs and DC rates (i.e. rate of change of DCs) is function of

* processing epoch k

* observation interval A,

* spectral densities g;, g¢ and g;
* variances of observables Q,

* number and types of observables

The MDB and BNR related with the local slippage test statistic ¢' are functions of the above
parameters plus
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* significance level o,
¢ power of the test v,

Following the suggestions of [LGR 1982], we choose o, and v, to be 0.001 and 0.8,
respectively. To show how sensitive the precision of DC and DC-rate, MDB and BNR are to
the above parameters and how they vary when these parameters vary in realistic ranges, the
following analysis is based on the case of three observables (i.e. L1 code and L1 as well as
L2 carrier). As will be shown at the end of this section, using four observables (i.e. L1 and
L2 code and carrier) cannot much improve the precision and the reliability based on three
observables.

Figures 4.1 and 4.2 illustrate the behaviour of the MDB of the L1 carrier and L1 code
observables as a function of processing epoch. As can be seen from Figure 4.1, during the
first few epochs after filter initialization the L1 carrier MDB decreases very quickly with
increasing processing epoch. Then it becomes quite stable. The basic behaviour of the L1
code MDB shown in Figure 4.2 is quite similar to that of the L1 carrier MDB, except that
the L1 code MDB needs more time than the L1 carrier MDB to reach a steady state. It has
been found that the effects of the processing epoch k on the L2 carrier MDB and on the DC-
rate standard deviation are very similar to that on the L1 carrier MDB. The effect on the DC
standard deviation is similar to that on the L1 code MDB and the behaviour of the BNR is
similar to the corresponding MDB. Therefore, it can be concluded that the DC and DC-rate
precision, MDBs and BNRs become quite stable after few epochs of processing since filter
initialization. This is an important property because the precision and the reliability can be
approximately regarded as constants, after the first few epochs of processing since filter
initialization.

Tables 4.1 to 4.6 show the variations of DC and DC-rate standard deviations, MDB and
BNR'" by choosing only one parameter as a variable, while keeping the other parameters
fixed. The BNRs are computed from the three DC related states, i.e. DC itself, DC rate and
DC acceleration (i.e., the second-order time derivative of DCs), and this can be realized by
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Figure 4.1: L1 carrier MDB over processing epoch with
sampling interval of 1 second.
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Figure 4.2: L1 code MDB over processing epoch with sampling
interval of 1 second.

choosing the matrix F in (2.36) as

F= 1 @.24)

As can be seen from Table 4.1, the spectral density of dynamic noises of ionosphere-free DCs
has no visible effect on the DC precision and on the L1 code MDB, and it has only a small
effect on the MDBs of L1 and L2 carriers. The effect on the DC-rate precision and on all
BNRs is larger. When the spectral density is increasing from 10 to 10" m%s’, the DC-rate
precision and the L1 code BNR'” are deteriorating and the MDBs of L1 and L2 carriers are
slightly increasing. The L1 and L2 carrier BNR"s behave differently. With increasing the
spectral density they are first increasing and then decreasing. This is because the BNR is the

ratio between the external reliability kal x (see equation (2.34)) and the corresponding state

precision and both the numerator and denominator will increase when the spectral density
increases. By increasing the spectral density, the increase of the BNR means that the bias
VA, ;. 1s increasing faster than the standard deviation of the state estimate, whereas a decrease
of it means that the bias is increasing slower than the standard deviation of the state estimate.
Concerning the stability of the DC precision and L1 code MDB against the spectral density,
it is because the initial estimate of DC is determined by the L1 code measurement, whose
precision dominates the DC precision. Note the big difference in the reliability between code
and carrier observables. The L1 code MDB is much larger than L1 and L2 carrier MDBs,
whereas the L1 code BNR'? is much smaller than the L1 and L2 carrier BNR"%s. From this
property it can be concluded that the contribution of the L1 code observation to the
measurement update of the DC related states is much smaller than that of the L1 or L2 carrier
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observation. In fact, we can even see from the L1 code extremely small BNR that L1 code
observations hardly play a role in the measurement update of DC related states. One final
remark should be given for the difference between the L1 and L2 carrier reliability. In all the
cases concerned in the table, the L1 and L2 carrier MDBs are always the same but the L1
carrier BNR' is always larger than the L2 carrier MDB. Therefore, the contributions of L1
and L2 carrier observations to the measurement update of the DC related states are not the
same and the former is larger than the latter. The reason for this is that the L1 and L2 carrier
observation equations have different coefficients in the measurement update model.

Table 4.2 shows the effect of the spectral density of dynamic noises of ionospheric delays on
the precision, MDBs and BNRs. As can be seen from this table, the effect is quite similar to
that of ionosphere-free DCs. When the spectral density increases from 10 to 107 m%s’, the
DC precision is very stable, and the DC-rate standard deviation, L1 code MDB and BNR'?,
and L1 and L2 carrier MDBs increase very slowly. The variation of the spectral density has
opposite impacts on L1 and L2 carrier BNRs. By increasing the spectral density, the L1
carrier BNR' increases whereas the L2 carrier BNR'? decreases.

Table 4.3 shows the effect of the spectral density of dynamic noises of code biases on the DC
as well as DC-rate precision, MDBs and BNRs. This spectral density has visible effect only
on the DC precision and the L1 code MDB as well, and it has very small effect on the L1
code BNR and no visible effect on the MDBs and BNRs of L1 and L2 carriers. When it
increases from 10 to 10 m%s’, the standard deviation of DCs varies from about 0.3 to 0.5
m and the L1 code MDB from about 6.6 to 7.4 m. Since the precision of carrier observations
is much better than that of code observations, the DC-rate estimate is almost fully determined
by carrier measurements. Therefore, code observations can hardly play any role in the DC-rate
estimation and the spectral density of code-bias noises has little effect on the precision of DC-
rate estimates.

Table 4.4 displays the influence of the standard deviation of L1 carrier observations on the
DC and DC-rate precision, MDBs and BNRs. By varying the standard deviation, the DC
precision and L1 code MDB are very stable and the L1 code BNR has only a small change.
The influence of the standard deviation on the DC-rate precision and carrier MDBs as well
as BNRs is obvious. When the standard deviation is increasing, the L1 and L2 carrier MDBs
and the L2 carrier BNR are increasing but the L1 carrier BNR is decreasing. The impact of
the L2 carrier standard deviation on the DC and DC-rate precision, MDBs and BNRs is very
similar to that of the L1 carrier standard deviation. The difference in the impact between code
and carrier precision is that the code precision has only visible impact on the DC precision
and the code MDB and BNR, whereas the carrier precision has only impact on the DC-rate
precision and the carrier MDB and BNR. Note that when the standard deviation is chosen as
0.004 m, the L1 carrier BNR" is smaller than the L2 carrier BNR' and they are 2.457 and
3.098, respectively. This is because the standard deviation of L2 carrier observations is chosen
as 0.003 m, which is smaller than that of L1 carrier observations. -
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m? L1 Code L1 Carrier L2 Carrier
(=) | oy m) 0y (ws)
s MDB (m) BNR" | MDB(m) BNR" |MDB(m) BNR"
10 0.429 0.002 6.868 0.006 0.017 2.963 0.017 1.932
10 0.429 0.003 6.868 0.006 0.018 3.102 0.018 2.342
10 0.429 0.006 6.868 0.005 0.019 2.886 0.019 2.366
10° 0.429 0.010 6.868 0.004 0.019 2.192 0.019 1.867
10? 0.429 0.026 6.868 0.002 0.019 1.075 0.019 0.926
10" 0.429 0.078 6.868 0.001 0.019 0.370 0.019 0.320
with: Q," = diag(1.5, 0.003, 0.003) m; qy=10* m¥s’ gg=10° m¥%s®% A =1sand
400 epochs of processing after the filter initialization.

Table 4.1: The variations of DC and DC-rate standard deviations, MDB and BNR"? with the spectral density
of dynamic noises of ionosphere-free DCs.

m? L1 Code L1 Carrier L2 Carrier
() [ 0y m) oy (ms)
s MDB (m) BNR" | MDB (m) BNR"™ |MDB (m) BNR"
10° 0.429 0.003 6.868 0.004 0.017 2.870 0.017 2.614
10°% 0.429 0.003 6.868 0.006 0.018 3.102 0.018 2.342
107 0.429 0.004 6.869 0.010 0.019 3.420 0.019 1.576

with: @,'? = diag(1.5, 0.003, 0.003) m; q¢ = 10° m¥s’; q; =10° m%s’; At,=1sand
400 epochs of processing after the filter initialization.

Table 4.2: The variations of DC and DC-rate standard deviations, MDB and BNR'? with the spectral density
of dynamic noises of ionospheric delays.

m2 L1 Code L1 Carrier L2 Carrier
%) apm oy (i)

s MDB (m) BNR'Y | MDB(m) BNR" |MDB (m) BNR'"

10+ 0.337 0.003 6.567 0.007 0.018 3.102 0.018 2.342

10° 0.429 0.003 6.868 0.006 0.018 3.102 0.018 2.342

10? 0.531 0.003 7.440 0.005 0.018 3.102 0.018 2.342

with: Q)" = diag(1.5, 0.003, 0.003) m; gy = 10® m¥s’; g¢=10° m’fs%, Aty =1sand
400 epochs of processing after the filter initialization.

Table 4.3: The variations of DC and DC-rate standard deviations, MDB and BNR'? with the spectral density
of dynamic noises of code biases.
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L1 Code L1 Carrier L2 Carrier
o (m)| ogm Oy (mfs)
n v v 1”2 T 1”2
MDB (m) BNR MDB (m) BNR MDB (m) BNR
0.004 0.429 0.004 6.868 0.006 0.022 2.457 0.020 3.098
0.003 0.429 0.003 6.868 0.006 0.018 3.102 0.018 2.342
0.002 0.429 0.003 6.868 0.005 0.015 4,253 0.016 1.440
0.001 0.429 0.002 6.868 0.003 0.012 6.816 0.014 0.392
with: Q' = diag(1.5, ***, 0.003) m; g; = 10* m'/s%; g = 10° m’ss%; gy = 107 m¥s’;

At, =1 s and 400 epochs of processing after the filter initialization.

Table 4.4: The variations of DC and DC-rate standard deviations, MDB and BNR with the standard deviation
of L1 carrier observable.

L1 Code L1 Carrier L2 Carrier
86 | o, m o )
MDB (m) BNR"Y | MDB (m) BNRY | MDB (m) BNR"
1 0.429 0.003 6.868 0.006 0.018 3.102 0.018 2.342
2 0.521 0.004 7.367 0.006 0.020 2.989 0.020 1.869
3 0.576 0.005 7.833 0.005 0.021 2.382 0.021 1.137

with: Qy”z = diag(1.5, 0.003, 0.003) m; g = 10% m¥s; ds= 107 m¥s%; q; = 107 m¥s?
and 400 epochs of processing after the filter initialization.

Table 4.5: The variations of DC and DC-rate standard deviations, MDB and BNR'* with the sampling interval.

L1 Code L1 Carrier L2 Carrier L2 Code
Number of oy (m) oy (mfs)
observables MDB (m) BNRY|MDB (m) BNR'[MDB (m) BNR'"|MDB (m) BNR'"
1 0747 0140 | 7147 2375
2 0646 009 | 6868 1973 | 0034 3237
3 0420 0003 | 6868 0006 | 0018 3.102 | 0018 2342
4 0413 0003 | 6868 0006 | 0018 3102 | 0018 2342 | 6868  0.006

with: @,'? = diag(1.5, 0.003, 0.003, 1.5) m; q;= 10* m¥s?; qg = 10° m¥s; gz = 107 m¥s*, At =15
and 400 epochs of processing after the filter initialization.

Table 4.6: The variations of DC and DC-rate standard deviations, MDB and BNR'? with the number of

observables.
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The sampling interval of the observations has a quite significant effect on the precision,
MDBs and BNRs considered here. As can be seen from Table 4.5, with increasing sampling
interval, both DC and DC-rate standard deviations and all MDBs are increasing. The BNRs
are slightly decreasing, but this is because it is a ratio.

The variations of standard deviations of DCs and DC-rates, MDBs and BNRs with the
number of observables can be found in Table 4.6. Obviously, the greater the number of
observables available, the better the precision, the MDBs and BNRs, except that using L2
code observations along with L1 code and L1 as well as L2 carrier observations has only a
small contribution to the DC precision. The improvement of the DC and DC-rate precision
is significant by using carrier observations along with L1 code observations. In addition, using
L2 carrier observations along with L1 code and carrier observations can make important
contributions to the DC and DC-rate precision, L1 code BNR and L1 carrier MDB as well.
Note that when the number of observables increases from two to three, the L1 code BNR"?
decreases sharply from 1.973 to 0.006 but the corresponding MDB remains the same. From
this we can conclude that the biases caused by the L1 code MDB in DC related states with
three observables available are much smaller than those with two observables available. In
other words, when the types of observables are L1 code and carrier, L1 code observations can
still play certain roles in the measurement update of DC related states. But when L2 carrier
observable is used as well, L1 code observations can hardly make any contributions to the
measurement update. In this case, the only role played by L1 code observations in the DC
estimation is the determination of the initial DC state.

Based on the above analysis, some properties of the DC and DC-rate precision and the
reliability of code and carrier observations can be concluded. First, in addition to the sampling
interval and the number of observables, the DC precision and L1 code MDB are mainly
determined by the L1 code precision and the spectral density of dynamic noises of code
biases, whereas the DC-rate precision and carrier MDBs are mainly determined by the L1 and
L2 carrier precision and the spectral densities of dynamic noises of ionospheric delays and
ionosphere-free DCs. Second, using L2 code along with L1 code and L1 as well as L2 carrier
observations does not improve the DC-rate precision and the MDBs and BNR s of the other
three types of observations. Third, the DC and DC-rate precision and the MDBs and BNR'%s
of code and carrier observations are quite insensitive to the choices of the spectral densities
45, gy and g;, when they are varying within a realistic range. Therefore, their approximations
are good enough for generation of DCs, since the state estimates are not sensitive to their
choices either ({Brown and Hwang 1992], [Roberts and Cross 1993]). Fourth, in most cases
the L1 code BNR" is very small, therefore the impact of an undetected model error with size
of MDB in code observations is negligible. Fifth, the main role played by L1 code
observations in the estimation of DC-related states is in the determination of the initial DC
and they can hardly make contributions in the measurement update of DC-related states,
especially when three or more observables are available. Sixth, carrier observations dominate
the measurement update of DC-related states. When L1 and L2 observations have the same
precision, the contribution of L1 carrier observations to the measurement update is larger than
that of L2 carrier observations.



Chapter 5

Some numerical results and discussion

The previous chapter derived the algorithm for carrier adjusted DCs and showed how this
algorithm can be integrated with the DIA quality control procedure. By using the
algorithm and real data, this chapter investigates the modelling of dynamic behaviours of
SA clock errors and ionospheric delays, the dynamic behaviour of code biases, the
performance of the real time model testing, and the accuracy of DC prediction.

5.1 Description of data sets

This section gives details of the data that has been used in this and next chapters and of
the choices of the a priori parameters for processing the data.

5.1.1 TurboRogue SNR-8000 data

This data consists of two files and each of them contains three hours of observations
collected by a TurboRogue SNR-8000 receiver on 29 June 1993 at a known station in
Kootwijk of The Netherlands. Four types of observations in the data were used: P-code
and carrier on L1 and L2. The sampling interval of the data was one second and an
external rubidium clock with a day stability of 5-10"'? (Allan variance [Fruehauf 1991])
was used during the data collection. Based on the processing results of the data, it was
concluded that SA was present in most Block II satellites during the data collection.

In the processing of the data, the a priori standard deviations of code and carrier
observations were chosen to be 0.3 and 0.003 m, and the spectral densities of dynamic
noises of ionosphere-free DCs, ionospheric delays and code biases were chosen to be 107
m*/s’, 10° m%s® and 10° m?%s®, respectively.

5.1.2 Trimble 4000 SSE data

Soon after GPS was officially declared to be at the phase of initial operational capability,
a campaign with four Trimble 4000 SSE receivers was conducted. At this time AS was
not active. The campaign consisted of five sessions of one hour. The first four sessions
took place on 11 December 1993, while the last session was on 12 December 1993. Four
receivers simultaneously occupied the known stations YPO1, YPO5, YP0O7 and YPO8 which
are located along a runway at a former air force base near Delft, except for the third
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session, when the receiver at YPO5 was removed to DEI8 (a station in Delft). The
distances between YPO1, YPO5, YPO7 and YPO8 are from 100 to 700 metres and DE18 is
six kilometres apart from them. At YPOl a kinematic L1/L2 antenna was used in the
collection of the data, whereas at the other stations geodetic L1/L2 antennas were used.
The main difference between these two types of antennas is that there is a ground plane in
a geodetic L1/L2 antenna so as to reduce multipath effects on the observations. The
sampling interval of the data was one second and the types of observables used were P-
code and carrier on L1 and L2.

The a priori parameters were chosen to be the same as those for the TurboRogue SNR-
8000 data, except that the spectral density of the dynamic noises of ionosphere-free DCs
was replaced by 0.1 m?%s’, since no stable clock was available.

5.1.3 Trimble 4000 SSE data under AS conditions

This Trimble 4000 SSE data was simultaneously collected on 5 May 1994 (when AS was
turned on) at stations YPOl, DE18 and YPOS. The observations at YPOl and DEIS8
consisted of six one-hour sessions, and those at YPO8 of three one-hour sessions. The
sampling interval of the data was one second. Since under AS conditions P1 and P2 codes
are encrypted, the types of observations available in the data are Cl (i.e. C/A) code, L1
and L2 carriers, and C2 (the combination of C1 and the difference between the two
encrypted P1 and P2 codes denoted by Y1 and Y2, i.e. C2=C1+(Y2-Y1)).

5.2 Validation of dynamic models

In the previous chapter, we assumed that the third-order time derivatives of ionosphere-
free DCs and the second-order time derivatives of ionospheric delays are random noises.
In other words, we use a quadratic function to model the dynamic behaviour of
ionosphere-free DCs and a linear function to model that of ionospheric delays. Since
ionosphere-free DCs are functions of many factors such as receiver and satellite clock
biases, tropospheric delays and since ionospheric delays are functions of satellite elevation
and' observation time, etc., it is necessary to study how well the dynamic behaviour of
ionosphere-free DCs and that of ionospheric delays can be modelled by such quadratic and
linear functions.

Of all terms contained in a DC, satellite clock biases under SA condition (i.e. SA clock
errors) and receiver clock biases are the least stable. Since the receiver clock bias at a
reference station has the same effect on all DCs related to different satellites, it affects
only the estimate of the receiver clock bias at a DGPS user station when the corrections
are applied. It has no impact on estimates of user positions. Therefore, whether or not the
dynamic behaviour of receiver clock biases in DCs can well be modelled is not important
for DGPS positioning applications. This means that the least stable terms that we need to
account for in the modelling of ionosphere-free DCs are SA clock errors.
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As we know, the carrier predicted residuals consist of carrier observation noises and
prediction errors of ionosphere-free DCs and ionospheric delays. Therefore, the difference
between the accuracy of carrier predicted residuals and that of carrier observations reflects
the accuracy of the modelling of DCs and ionospheric delays. The accuracy of carrier
observations is usually in the order of a few millimetres. The accuracy of the residuals can
m 1
be estimated by their RMS error, i.e. (12 Wl?)5, where w,, i=1,...,m, are the residuals.
mi-

Table 5.1 presents RMS errors of nine groups of carrier predicted residuals. Each group is
related to a particular satellite. The data was collected by a TurboRogue SNR-8000
receiver and its details were already given in Section 5.1.1. It was confirmed that the
mean of each group of the residuals was zero. Figure 5.1 gives a histogram of the
residuals related to satellite 29. As can be seen from Table 5.1, all RMS errors range from
0.001 to 0.003 metres, which means that the accuracy of carrier predicted residuals is
consistent with the accuracy of carrier observations. In other words, this shows that the
prediction errors of ionosphere-free DCs and ionospheric delays are at most of the order of
a few millimetres. In addition, it can be seen from Figure 5.1 that the predicted residuals
are quite well normally distributed. This shows that the prediction errors consist of random
noises. Since in the data collection a good external clock was used, the dynamic behaviour
of DCs was dominated by SA clock errors rather than receiver clock biases. Therefore, the
dynamic behaviours of SA clock errors and ionospheric delays can indeed well be
modelled by quadratic and linear functions, respectively.

Satellite number Number of residuals RMS (m)

15 1024 0.002
7 3576 0.003
25 3259 0.003
14 8165 0.003
13 8280 0.001
29 10470 0.003
24 7634 0.002
19 5640 0.002
16 2240 0.002

Table 5.1: RMS errors of carrier predicted residuals.

5.3 Dynamic behaviour of code biases

As indicated in the previous chapter, one property of carrier adjusted DCs is that code
biases can be accounted for in the generation of DCs. This section gives some examples of
the properties of code biases based on data collected by Trimble 4000 SSE and
TurboRogue SNR-8000 receivers. In addition, two plots of code predicted residuals
without and with the impact of code biases are also presented.
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Figure 5.1: A histogram of carrier predicted residuals.

"

Figures 5.2 to 5.5 show P1 and P2 code biases found in a Trimble 4000 SSE data set. The
data was collected on 12 December 1993 at the known station YPO5; more details about
the data were given in Section 5.1.2. Figures 5.2 and 5.3 plot the dynamic behaviour of P2
and P1 code biases for one satellite at the same period. It can be easily seen from Figure
5.2 that the P2 code biases show a periodic behaviour plus a trend and that the size finally
reaches about one metre within one hour. The behaviour of the P1 code biases shown in
Figure 5.3 is quite different from that of the P2 code biases. For example, the periodic
behaviour in the P1 code biases is less obvious than in the P2 code biases and the size in
the former, which is about 0.7 meters within one hour, is smaller than that in the latter.
But the trends of the P1 and P2 code biases are quite similar.

Figure 5.4 illustrates the behaviour of the P2 code biases in observations from satellite 19.
Its main property is the comparatively high frequency in the code biases. Figure 5.5
graphs the Pl code biases in satellite 21 observations, where the trend is rather
insignificant.

Figure 5.6 shows the Cl code biases found in a Trimble 4000 SSE data set. The data was
collected on 5 May 1994 at the known station YPOl and their details can be found in
Section 5.1.3. As graphed in the figure, the behaviour of the C1 code biases is dominated
by a trend, the maximum size of which reaches about 1.5 metres. After the filter starts, the
code bias linearly increases until epoch 3200, then it decreases again.

Figure 5.7 shows the P2 code biases found in a TurboRogue SNR-8000 data set, details of
which were given in Section 5.1.1. As can be seen from the figure, there is hardly any
trend in the P2 code biases although periodic variations are apparent.

On the basis of the same data and the same a priori parameters as Figure 5.6, Figures 5.8
and 5.9 illustrate the C1 code predicted residuals without and with the impact of code
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biases, respectively. The only difference in processing the data between these two figures
is that Figure 5.8 is based on a filter in which code biases were taken into account,
whereas Figure 5.9 is based on a filter where code biases were ignored. Obviously, the
predicted residuals shown in Figure 5.8 seem quite normal, which were confirmed by their
zero mean. This means that the measurement and dynamic models of the filter are correct.
However, the residuals shown in Figure 5.9 are clearly biased by a trend, which is actually
the trend appearing in Figure 5.6. Therefore, when code bias are significantly present in
code observations, it is necessary to introduce a code-bias parameter in the filter so that
the effect of the bias on code predicted residuals and consequently on the estimated states
can be avoided or reduced. The code bias parameter can be modelled by a dynamic model
with constant velocity.

A few remarks should be made. First of all, the code biases shown in Figures 5.2 to 5.7
are actually the variation of the code biases with respect to the code bias at the initial
epochs. They are not the absolute biases in the code observation at the corresponding
epochs. Second, the periodic behaviour of code biases are likely caused by multipath
effects. Since multipath errors may have different frequencies, the periods of code biases
may not be the same for different satellites observed at the same time. Third, the size and
behaviour of code biases on L1 and L2 frequencies may not be the same for the same
satellite. Fourth, when code biases are significantly present, introducing code-bias
parameters with a constant-velocity dynamic model can efficiently reduce the effect of
code biases on code predicted residuals and in turn on estimated states.

5.4 Performance of real time model testing

In Section 4.2, we discussed how to carry out real time model testing along with the
generation of carrier adjusted DCs. This section uses a small TurboRogue SNR-8000 data
set to show some examples of the testing performance.

The data set used in this section was collected at the same location as the two data sets
described in Section 5.1.1, but one day later. The data collection lasted only seven
minutes. At the beginning of the collection there were five satellites (i.e., satellites 15, 14,
1, 7, and 31) in view and two minutes later one more satellite (i.e. satellite 29) became
visible. Since it will be shown in the next chapter that there is an apparent relationship
between satellite elevation and the precision of code observations, Table 5.2 gives the
information on the elevations of the satellites.

Table 5.3 shows the sensitivity of the mean of the normalized LOM test statistic to the
standard deviations of code and carrier observations and to the spectral densities of
dynamic noises of ionospheric delays, ionosphere-free DCs and code biases. Note that the
five statistical parameters Gz, C.omierr 4> 4> and gy are chosen to be 0.3 m, 0.003 m,
10® m%s®, 10° m%s’ and 10 m%s®, respectively, when they are not treated as variables in
the analysis. In the choices of the code standard deviation, we accounted for the results of
the relationship between satellite elevation and the precision of code observations to be
shown in Section 6.3. In other words, choosing the code standard deviations to be 0.07,
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Satellite number Elevation (deg)
15 76.0 - 72.7
14 523 -554
1 304 - 285
7 26.7 - 29.0
31 17.9 - 14.8
29 142-173

Table 5.2: The Varying ranges of satellite
elevations.

0.15 and 0.30 m is because satellites 15, 1 and 31 are at elevations of about 70°, 30°, and
15°, respectively. Therefore these three standard deviations can be considered as realistic
choices for the three satellites. Here the difference in the standard deviation between Pl
and P2 code observables is ignored. As can be seen from the table, the mean of the LOM
test statistic is quite sensitive to the choices of the standard deviations of both code and
carrier observations. By increasing one of the standard deviations, all of the means
decrease with no exception. For example, when the code standard deviation increases from
0.07 to 0.15 and 0.30 m, the mean of the LOM test statistics of satellite 15 decreases from
0.21 to 0.06 and 0.02, respectively. When the carrier standard deviation increases from
0.001 to 0.002 and 0.003 m, the mean decrease from 0.07 to 0.03 and 0.02. From a
theoretical point of view, if all statistical parameters are correctly chosen and the specified
dynamic and measurement models are valid, the mean should be close to its expectation
value of one. But as can be seen from the results in Table 5.3, the means are always a bit
too small, when the code standard deviation is correctly chosen. For instance, when the
code standard deviations of satellites 15, 1 and 31 are chosen to be 0.07, 0.15 and 0.30 m,
respectively, their corresponding means are 0.21, 0.60 and 0.66, i.e., all of them are less
than one. It is not clear yet what are the reasons to cause the mean of the LOM test
statistic to be too small. Some possible reasons might be that the real code and carrier
observation noises are not normally distributed; there are correlations between observables;
code and carrier observations are correlated in time; or others.

Different from the standard deviations of code and carrier observations, the spectral
densities of dynamic noises of ionospheric delays, ionosphere-free DCs, and code biases
have no or very small impact on the mean of the LOM test statistic when they vary in
certain ranges. Therefore, how to choose the spectral densities is not really a problem for
performing real time model testing along with generation of carrier adjusted DCs.

Cycle slips are probably the most likely model errors to appear in carrier observations. In
order to see if such errors can be indeed successfully detected and identified in the model
testing procedure in practice, five testing experiments were conducted by using the same
data as used in Table 5.3 with different size and combinations of simulated errors in L1
and L2 carrier observations. Table 5.4 shows the information on the simulated error(s) and
the LOM testing result of each experiment as well as a LOM testing result without any
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Satellite number

15 14 1 7 31 29

0.07 021 031 140 119 477 443
Coe (m) | 0.15 006 010 060 030 141  1.08
0.30 002 005 042 010 066 030

0001 | 007 017 124 017 163 041
Ouumie M) | 0002 | 003 007 065 011 094 032
0003 | 002 005 042 010 066 030

m? 108 002 005 042 010 066 0.30
9 (=) 107 002 005 041 010 066 0.29
§ 10 002 005 039 009 063 0.29

m? 10 | 002 005 042 010 066 030
95 (=) 10 | 002 004 022 009 043 029
s 10° | 002 003 012 008 032 028

m? 10° 002 005 042 010 066 030
9 (=) 102 . 002 004 041 009 062 026
§ 10" 002 004 039 007 057 0.20

Table 5.3: Means of normalized LOM test statistics based on different standard
deviations and spectral densities.

simulated errors
experiment (cycles) T on
number L1 12
1 1 0 477.57
2 1 1 298.53
3 1 -1 2211.69
4 77 60 1214956.50
5 -77 60 10016474.62
6 0 0 0.02
Note: with the choices of o = 0.001 and ¥ = 0.8, the
critical value Fjy,(4,00,0) = 3.38

Table 5.4: Results of LOM testing experiments with or
without simulated cycle-slip errors in carrier observations.
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simulated errors. Experiment 1 is concerned with a single model error of one cycle slip in
the L1 carrier observation, while experiments 2 and 3 are related to two model errors of
the same or opposite signs with one in the L1 carrier and the other in the L2 carrier. Since
the wave lengths of L1 and L2 carrier are not the same due to the ratio of L1 and L2
frequencies being 77/60, experiments 4 and 5 were designed for testing a special
combination of cycle slips in the L1 and L2 so that they could result in model errors with
the same size and the same or opposite signs. The last experiment was a test without any
simulated errors. As can be seen from Table 5.4, all the simulated cycle-slip model errors
were indeed correctly detected, no matter they occurred as single model errors, multi
model errors, or some special combinations. Moreover, they were also successfully
identified. Therefore, the real time model testing approach discussed in Sections 2.2 and
4.2 can indeed work well with cycle slip model errors.

5.5 Accuracy of differential-correction prediction

Some latency is unavoidable when DCs are applied at a mobile station. Therefore, when a
mobile user is going to use DCs at time ¢, they will actually be using predicted DCs
which are usually computed from DC and DC-rate estimates at time ¢, (f, < ¢,) [Clynch et
al. 1992], [van Dierendonck and Enge 1994). Because of error propagation, the accuracy
of predicted DCs will decrease when the latency (¢, - ¢,) increases. One may wonder, in
this case, how the accuracy of predicted DCs varies with the latency and how large the
maximum latency can be so as to have predicted DCs with a certain accuracy.

Obviously the accuracy variation of predicted DCs can be explored by using the
covariance matrix of DC and DC-rate estimates, provided the actual observation model is
identical to the one assumed in generation of DCs. But because many unexpected factors
may occur in actual observations, such as, measurement correlations in time and in
observables, the theoretical precision of DC and DC-rate estimates may not exactly reflect
the actual accuracies of them. In the following, we will, therefore, investigate the accuracy
of DC prediction by analyzing RMS errors of DC prediction residuals. The RMS error can
be computed as follows.

* Estimate the parameters DC, DC-rate and DC-acceleration for each epoch.

» Choose a latency At.

» Compute the predicted DC at time ¢, (/=Af+1,At+2,...) by using DC and DC-rate
estimates at time & (f,=¢,-Af).

* Compute DC prediction residuals by taking the difference of the predicted and
estimated DCs at time ¢, I=Af+1,At42,....

» Compute the RMS of the residuals

By repeating the above steps, except for the first one for a new latency, all RMS errors of
DC prediction residuals as functions of latency can be obtained.

Note that the RMS error of DC prediction residuals can only reflect the accuracy of DC
prediction rather than the accuracy of predicted DCs, since the latter depends on the
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accuracy of DC and DC-rate estimations as well as on the accuracy of DC prediction.

Figure 5.10 illustrates some typical RMS errors of DC prediction residuals, which were
based on DC and DC-rate estimates obtained by using the data described in Section 5.1.1.
As can be seen from this figure, the RMS errors may vary in two different ways:
quadratically and linearly. It was found that this behaviour difference is related to presence
or absence of SA clock errors. For satellites with SA clock errors, the RMS errors increase
quadratically with increasing latencies; they are about 0.05, 0.2 and 0.5 meters when
latencies are 5, 10 and 15 seconds, respectively. On the other hand, for satellites without
SA clock errors, the RMS errors increase linearly and grow more slowly. For 15 seconds
latency, they are about 0.02 meters.

In most practical cases, DC latencies will be within 15 seconds [Kremer et al. 1990],
[Langley 1994] but sometimes, for instance, when transmitted DCs are not received, old
DCs with ages of tens of seconds may have to be used [Ashkenazi et al. 1994]. Therefore
it would be interesting to know how the accuracy of DC prediction varies when DC
latency is up to one minute. Some examples of the accuracy are give in Figure 5.11, from
which it can be seen that the RMS error of DC prediction residuals is within 8.3 metres
when the latency is one minute.

In order to see how the accuracy of DC prediction will be affected by the use of DC-
acceleration estimates as well, we computed the RMS errors based on not only DC and
DC-rate estimates but also DC-acceleration estimates. The results are plotted in Figures
5.12 and 5.13. Note that the only difference between Figures 5.10 and 5.11 and Figures
5.12 and 5.13 is that DC-acceleration estimates were used in the latter two figures. By
comparing Figures 5.10 and 5.11 with Figures 5.12 and 5.13, it can be seen that for
satellites with SA clock errors implemented, the accuracy of DC prediction is clearly
improved by using DC-acceleration estimates in DC predictions. For example, for 15
seconds latency, the RMS error drops from about 0.38~0.54 metres to about 0.16~0.21
metres. The larger the latency, the more apparent the improvement. Using DC-acceleration
estimates in DC predictions for satellites without SA clock errors, on the contrary, will
worsen the accuracy of DC prediction. For example, for a 15-second latency the RMS
error of the DC prediction increases from 0.02 metres to 0.09 metres due to the use of
DC-acceleration estimates in the DC prediction. But note that the deteriorated accuracies
related to satellites without SA clock errors are still better than the improved ones related
to satellites with SA clock errors.
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Chapter 6

Relationship between satellite elevation
and precision of code observations

6.1 Introduction

In GPS data reduction, the stochastic model of GPS code observations is usually assumed
to be constant, i.c., a fixed value for the standard deviation of code observations is used
for an entire satellite pass. It is shown below, however, that this assumption may not be
realistic and that the precision of code observations may deteriorate with decreasing
satellite elevation. As indicated in [Brown and Hwang 1992], when a priori uncertainty is
not correctly given to a certain extent, it may not have much influence on the estimates of
unknowns (e.g. states of a Kalman filter) but it can result in incorrect variances of the
estimates. Variances of estimates play important roles not only in evaluating the precision
of estimates but also in performing quality control of geodetic networks and navigation
systems [Teunissen 1984, 1990a]. It is, therefore, important to investigate the stochastic
behaviour of GPS code and carrier observations so that correct stochastic models for these
observables can be used in GPS data processing.

Note the difference between the accuracy and the precision of an observation. The former
is the closeness of an estimate (or measurement) to its true (but unknown) value. It,
therefore, depends on both systematic errors and random noises in the observation.
Whereas the latter is the closeness of an estimate to its mean estimate and thus it depends
on only random noises in it (cf. [Mikhail 1976], [NGS 1986] or [GSD 1993]). Since our
goal is to analyse the precision, rather than the accuracy, of code observations, which
often contain significant systematic errors (i.e. code biases), successful isolation of code
observation noises from the systematic errors is the key to the investigation on the
precision of code observations.

This chapter analyses the relationship between satellite elevation and the precision of code
observations. This analysis is based on code predicted residuals computed by using the
algorithm presented in Chapter 4 and on data collected by TurboRogue SNR-8000,
Trimble 4000 SSE and Trimble 4000 SST receivers.

6.2 Analytic approach of the precision of code observations

To analyse the precision of code observations, we need to compute code observation
noises, which are the random part of code observation errors. Since the algorithm for
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carrier adjusted DCs has accounted for all systematic errors in code observations,
estimation of the noises become not only possible but also quite easy.

As can be seen from the dynamic and measurement models given in Chapter 4, code
predicted residuals consist of code observation noises and prediction errors of DCs and
code biases. As already indicated in Section 5.2, the least stable terms in DCs are receiver
clock biases and SA clock errors. It was shown in that section that SA clock errors could
be modelled and predicted quite well under certain conditions and that the modelling
accuracy could be within a few millimetres. Concerning the modelling of receiver clock
biases, it is, of course, very much dependent on the quality of receivers. Based on our
experiments with data collected by Trimble 4000 SSE receivers (see its details in Section
5.1) and data collected by a Trimble 4000 SST receiver, it was found that the modelling
accuracy of receiver clock biases could be within 3 centimetres. Since a code bias is a
combination of all systematic errors in a code observation, its dynamic behaviour is easy
to model and predict. Therefore, the prediction errors of DCs and code biases are
negligible compared with code observation noises and code predicted residuals reflect
appropriately the properties of code observation noises. In order to study the relationship
between satellite elevation and the precision of code observations, we assume that the
relationship at epoch ¢, can be reflected by the code predicted residuals 5 minutes before
and after £,. We choose, therefore, every 10 minutes of code predicted residuals as one
group and for each group the RMS error of the residuals is computed along with the
elevation at the centre of the 10 minute period. Since the code predicted residuals are
dominated by code observation noises, the RMS errors of code predicted residuals are
equivalent to those of code observation noises, i.e. the precision of code observations.

6.3 Numerical results and discussion

Figure 6.1 shows the RMS errors of P1 and P2 code predicted residuals based on the data
described in Section 5.1.1. Note that it has been verified that the choices of the a priori
parameters to a certain extent have no visible impact on the values of the RMS errors, the
standard deviations were still chosen to be constant for computing the RMS errors here
and afterwards. From this figure, the following conclusions can be drawn. First, comparing
Figure 6.1 (a) and (b) shows that the precision of Pl is slightly better than that of P2 at
low elevation. For example, the average of the RMS errors of P1 at 20° elevation is about
0.19 m, whereas the P2 related one is about 0.22 m. Second, the relationship between
satellite elevation and the precision of P code observations is obvious, especially at low
elevations. At elevations of about 15°, the mean of the Pl related RMS errors is about
0.24 m, when the elevation increases to 40°, it decreases to about 0.1 m. Once the
elevation is above 50°, the RMS error becomes more and more stable. Third, as suggested
by [Euler and Goad 1991], the relationship between satellite elevation and the RMS errors
can quite well be modelled by an exponential function like
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Yy = a,+a; expf{ = } (6.1)
Xo

where y (the RMS error), a, and a, have units of metres and x (the elevation) and x, are
in degrees. Obviously, a,+a, is the RMS error at zero-degree elevation, a, approximately
the RMS error at 90° elevation (if x, <« 90°) and -a,/x, the rate of change of the RMS
errors with respect to elevation at zero degrees. The following coefficients were found for
the TurboRogue SNR-8000 data

a, (m) a, (m) x, (deg)
P1 0.065 0.5 15
P2 0.07 0.6 16

Figures 6.2 to 6.5 present the RMS errors related to the Trimble 4000 SSE receivers at
four stations. As can be seen from the figures, the precision of the Pl and P2 code
observations is almost the same at all stations and it decreases quickly at low elevations.
The relationship between satellite elevation and the P-code precision of Trimble 4000 SSE
can also be modelled by an exponential function with the following coefficients

a, (m) a, (m) x, (deg)
P1 0.05 - 0.08 07-10 6-9
P2 0.06 - 0.09 0.7-10 6-7

04
v

0.3 04

02

0.2
RMS error (m)

RMS ercor {m)

e - 2‘0 4‘0 80 80 o ;D 40 SID 80
Sotaliite elevation (deg) Soteilite elevtion (deg)
(a): P1 (b): P2
Figure 6.1: RMS errors of TurboRogue SNR-8000 code predicted residuals; the solid curves are
y=0.065+0.5exp{-x/15} in (a) and y=0.07+0.6-exp{-x/16} in (b).
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Figure 6.2: RMS errors of Trimble 4000 SSE code predicted residuals at station YPOI; the solid curves are

¥=0.06+0.7 exp{-x/9} in (a) and y=0.07+0.9-exp{-x/7} in (b).
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Figure 6.3: RMS errors of Trimble 4000 SSE code predicted residuals at station YPOS; the solid curves are

y=0.08+1.0exp{-x/6} in (a) and y=0.09+1.0-exp{x/6} in (b).
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Figure 6.4: RMS errors of Trimble 4000 SSE code predicted residuals at station YPO7; the solid curves are

¥=0.05+0.8-exp{-x/7} in (a) and y=0.06+0.8-exp{-x/7} in (b).
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Figure 6.5: RMS errors of Trimble 4000 SSE code predicted residuals at station YPOS; the solid curves are
y=0.065+0.7 exp{-x/7} in (a) and y=0.07+0.7 exp(-x/7} in (b).

There are some differences in the RMS errors between the TurboRogue SNR-8000 and the
Trimble 4000 SSE data. First, the P-code precision of the latter is generally better than
that of the former, particularly below 40° elevation. For example, around 30° elevation,
the P-code RMS errors of the TurboRogue SNR-8000 are more than 0.12 m, whereas
those of the Trimble 4000 SSE are in general less than 0.10 m. Note that this difference is
not caused by the different choices of the spectral density of dynamic noises of
ionosphere-free DCs in the processing of the two types of data. It has been verified that
the behaviour of the RMS errors of the TurboRogue data remains the same when the data
is processed with the same input parameters as those chosen for the Trimble 4000 SSE
data. Second, the relationship between satellite elevation and P-code precision for the
Trimble 4000 SSE appears mainly in a smaller elevation range than that for the
TurboRogue SNR-8000.

To investigate the relationship between satellite elevation and the precision of code
observations under AS conditions, Figures 6.6 to 6.8 show the RMS errors of Trimble
4000 SSE C1 and C2 code predicted residuals. Similar to the precision of P-code
observations, the precision of Cl and C2 code observations improves when satellite
elevation increases up to about 50°. As expected, at low elevations, the precision of the
C2 code observations is obviously poorer than that of the C1 code observations. With
increasing elevation, the differences in the precision become smaller and smaller. In other
words, the precision difference between C1 and C2 code observations appears mainly at
low elevations, and the higher the elevation, the closer the precision. Again, the
relationships between satellite elevation and the RMS errors of the C1 and C2 code
predicted residuals can quite well be modelled by the exponential function (6.1); the
coefficients a,, a, and x, read
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Figure 6.6: RMS errors of the Trimble 4000 SSE code predicted residuals at station YPO1; the solid curves are
y=0.12+0.8 -exp{-x/12} in (a) and y=0.13+2.0-exp{-x/11} in (b).
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Figure 6.7: RMS etrors of the Trimble 4000 SSE code predicted residuals at station DE18; the solid curves are
y=0.12+1.1-exp{-x/14} in (a) and y=0.14+3.0-exp{-x/11} in (b).
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Figure 6.8: RMS errors of the Trimble 4000 SSE code predicted residuals at station YP08; the solid curves are
y=0.12+0.9-exp{-x/12} in (a) and y=0.13+2.0-exp{-x/10} in (b).
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a, (m) a, (m) X, (deg)
Cl 0.12 08 -1.1 12-14
C2 0.13-0.14 2.0-3.0 10-11

Figure 6.9 shows the RMS errors of one hour of Trimble 4000 SST C/A code predicted
residuals. The data was collected on 3 October 1991 at the station DE18 and the sampling
interval was one second. The observables used were C/A code and L1 as well as squared
L2 carrier. As can be seen from the figure, the relationship between satellite elevation and
the C/A-code precision is quite obvious below 40° elevation. When satellite elevation
increases from 15° to 25° and then to 40°, the mean of the RMS errors decreases from
about 2.6 to 1.8 and then to 1.4 metres. This relationship can quite well be modelled by
the exponential function y=1.0+3.0exp{-x/25}. Above 40° elevation, the relationship
becomes less significant.

RMS error (m)

Satellite elevation {dag)

Figure 6.9: RMS errors of the Trimble 4000
SST C/A code predicted residuals; the solid
curve is y=1.043.0-exp{-x/25}.

It should be indicated that the analytic approach used here is different from approaches
based on simply a linear combination of code and carrier observations. For instance,
[Euler and Goad 1991] reported a similar analysis based on the RMS errors, within 2°
elevation intervals, of the differences between code range changes and carrier range
changes. Therefore, code bias errors and the opposite influence of the ionosphere on code
and carrier observations were not taken into account there and they were included in the
RMS errors. For the same type of Trimble 4000 SST receivers, the RMS errors shown in
the above reference are about 1.3 (at high elevation) to 2.2 (at low elevation) times those
found here. In addition, as indicated in the same reference, the decrease of code
observation precision at low elevations is probably due to a higher likelihood of
encountering multipath and lower signal-to-noise ratios at these elevations.






Chapter 7

Algorithm for carrier adjusted
DGPS positioning and numerical results

7.1 Introduction

The performance of DGPS positioning is a function of three elements: i) generation of DCs
at a known DGPS reference station, ii) transmission of the corrections from the reference
station to mobile stations, and iii) computation of the mobile position. In Chapter 4, we
discussed how to generate DCs. This chapter focuses on how to compute unknown mobile
positions. As we know, when only code observations are available, the positioning algorithm
is quite simple, particularly in the case of single-epoch positioning. But when both code and
carrier observations are available, it is still of interest to investigate how to integrate these two
types of observables. By using the carrier filtered code observations, one can usually reduce
the effect of code observation noises on estimates of the parameters of interest, such as
position, velocity and time. But it was shown in Chapter 3 that the stochastic model of carrier
filtered code observations is hard to specify correctly, which consequently makes it difficult
to obtain the correct precision of the estimates. As is well known, data processing has two
tasks: i) to estimate the unknown parameters; ii) to estimate the quality of the parameter
estimates. Since precision estimates are used to describe how precise the parameter estimates
are, without them the parameter estimates can be useless in some cases. In addition, the
precision estimate is also important for quality control of a navigation system [Teunissen
1990a]. Therefore, correct precision estimates are as important as optimal parameter estimates.
Furthermore, some methods leads to biased carrier filtered code observations due to the
opposite influence of ionosphere on code and carrier observations. The size of the bias may
sometimes exceed the code observation noise [Loomis et al. 1989].

This chapter first derives in Section 7.2 an alternative DGPS positioning algorithm based on
L1 code and carrier observations, which is referred to as algorithm for carrier adjusted DGPS
positioning, analogously to [Teunissen 1991]. Next, we show in Section 7.3 the effect of the
number of observables used at reference and mobile stations on the positioning accuracy and
investigate the differences in positioning results between using elevation-dependent and
constant standard deviations for code observations. Finally, Section 7.4 will give some
concluding remarks.

7.2 Carrier adjusted DGPS positioning models
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7.2.1 Pesitioning models

When we derived the models for generating carrier adjusted DCs in Chapter 4, we introduced
code-bias parameters in L1 and L2 code observation equations to account for systematic
errors. But now we have to eliminate the parameters, since in the computation of mobile
positions it is no longer possible to separate systematic errors from white noises in code
observations.

Let us write the L1 code and carrier observation equations given in Chapter 3 again as
follows

Pi(t,) = pt,) +c(dT(t) -dt'()) + VP ) + I't) + V™' ey + i) (7D

L) = ') +c(@Te) -de ')+ V() - I't) + V™'t - AN +0ie) (D)
where

i: satellite number, when used as a superscript

By using the broadcast navigation data, the approximate value for d¢‘(t,), denoted by dt io(tk),
can be computed. Analogously to what we did in the derivation of the models for generating
carrier adjusted DCs, define

8t'(t,) = dr'e) -dt"(r,) | | 73
Vaulty) = c{dTt,) - 8t'(t,)) + VP (1) + I't,) + V*°'(2,)
Then it follows from (7.1), (7.2) and (7.3) that

PICt) +Vp(ty) +€Ct,) 7.4)
pi(tk) +V;:.(tk) '2Ii(tk) - AlNi +"'Ii(tk)

Pi@)-cdt™ )
Adi(e,) -cde (e,

The DC and its rate of change, as generated at a reference station and transmitted to a user,
read as

Vi) = Vi) + i
dve)  dvie) ) (1.5)
at = @ B2

with
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Ef P:(t) } =0

_F"z(t)_

10 . | (7.6)
E{ mOmo[ _ o ST

P20[10] " o ol

Usually only the rate of change of DCs is used to account for the unavoidable latency when
the corrections are applied at a mobile station [RTCM SC-104 1994]. For reasons of

simplicity, let us assume that the second-order time derivative of the DC V,i(t) is a zero-mean
white noise with spectral density g (m?/s®). Then we arrive at

oA ()

A ERAGRE (% o)

dV,(tp0)
/4

=V (tDC) + l"’l( C) [ + p';(tDC)](tk_tDC)

dV,(tpc)

= Vi(tpc) + — Pt tac) * Biltoc) * B2ltac)( i toc)
= V:(tk) -wi) + p'il(tDC) + l"iz(tuc)(tk'tuc) (7.7)
with
L/ -
Wit - fd Zt(«:) e N( %, C)s) (1.8)

2 2 2 2
OVj(tk) =0 )+ Upil(tpc) +(tk_tDC)20“i(tDC) (% ?pc) 9 i pc)
% 2
= ?(tk‘tpc)3+0";(tbc) Htetpe ) o’ (zDC) (e nc)° ; ‘(tpc) (7.9)
In Appendix B, it is shown that the dynamic noise w () is not correlated with the errors

p';(tDC) and u;(tbc) of the DC estimates.

If we assume that the mobile station is located close to the reference station where the DCs
are generated, it follows that
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Vi) = Vi) +c-8T(,) (7.10)
where 87 is the difference between receiver clock biases at the mobile and reference stations.

Substituting (7.10) into (7.4) and combining it with (7.7) gives

. p'(t,)
A 1 87| [wite,)
Pit)-cdt™) | =1 11 vie) |+|€,) (7.11)
M) -cdre)| (111 2 -1 '@ | |’y
AN
with
I;'i(tk) = ';’vi(tk)+u§(tpc)+(tk_tpc)u;(tpc) (7.12)
Op"(tk) = oe,’i(tk)
1
Pre-multiplying (7.11) by the full-rank transformation matrix |-1 1 gives
-1 1
| [ o'ty |
V(2 1 c8T(,) wice,)
Pi(tk)_c_dtio(tk)_e’i(tk) =111 V:(tk) + ei(tk)_pi(tk) (7-13)
Alq)f(tk)-cd¢f°(tk)-vr"(tk) 11 -2 -1l I't) | |n't)-p@)
AN?

As can be seen from the above equation, V:(tk) is a free variate [Teunissen 1994]. Therefore
(7.13) can be re-written as

. i)
Pt -cdt®w) -Vl | _ [1 1 }c-&T(tk) . ei(tk)—pi(tk)] 7.14)
M) -cdt®@)-Viay| (11 -2 -1 '@ | |n'e) -wia,)
AN

Obviously, in the above system of equations the columns related to pi(t,) and ¢ 8T(t,) are
dependent, so are those related to 7'(t,) and A, N'. It will become clear later, however, that the
dependency between the columns related to the first two parameters does not affect the
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determination of ¢ 8T(%,) and the position parameters contained in p(#,), when four or more
satellites are tracked. To overcome the dependency between the columns related to the last
two parameters, which makes it impossible to estimate /() and A\N' individually, let us
define

I'ey = 1"(:,()+%A1N" (7.15)
Then (7.14) becomes

€itr,) - 1ice,)
n'e,) - 1iey)

Py -cdt™)-V'e)
l1¢i(tk) -cdt io(tk) _‘AV:(tk)

11 pi(t,)
- [ 2J c8T(t,) |+ (7.16)

D20 Py

In order to estimate the mobile position, linearize the satellite-receiver range p' as follows

3 api %) Ax () (7.17)
7

; 0
ity = of (2.) +
Pl = P X =5

where

p': approximate value of p’ computed from the ephemeris data and the approximate
position of the mobile station
Ax; =x;-x0
x;: coordinate of the mobile station in cartesian or geocentric coordinate system
(=1.2,3)
X;: approximate value of x;

Inserting (7.17) into (7.16) yields

907t 9w ) | ||AnE)

A ) .
ey =| 0 > Azgi; LEWTHE (718
* 3’y @) 3w L 8T N0 E)
ox, Ox, ox, I i(tk)
where
i Pi(tk) -cdt io(t[‘) _V,i(tk)"pio(tk) (7.19)
i) = ; ) 2 0 *
A'1¢ (tk)—C'dt (fk)'V,(tk)’P (tk)

In most situations, the dynamic behaviour of mobile positions or receiver clock biases is
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probably hard to model. But there may be cases when the behaviour can be well modelled.
For example, the user is static or moves at sea, or a clock of good quality is available. It is
preferred to built up such function model and stochastic model that can be used in practice
when the dynamic behaviour of unknown parameters can or cannot be modelled, so that in
the former or latter case one can obtain recursive or instantaneous solutions, respectively. It
will be shown later that a random dynamic behaviour can practically be treated as a special
random process. Therefore, in the following derivation of the function and stochastic models,
mobile positions and receiver clock biases are regarded as random processes.

Let us assume that the accelerations of ij, j=1,2,3,¢9T and I * are zero-mean white noises
with spectral densities g, g, and g;, respectively, and that no cycle slips have occurred up
to time #,. Then after noticing that the rate of change of I '(f) equals that of I'(?), for satellite
i we have the following dynamic model

[ Axl(tk) . | Axl(tk_l) -
A% () AX, (4.
sz(tk) K AxZ(tk-l)
A5y | [[Fe A%(t,,)
Axt,) F Axy(t, )| T
. ; d,)
AZ k A%, )| | D5
AR F, Y e (7.20)
c-8T(t,) F, ||c87.| |d'¢)
cﬁT(tk) F 0'610,‘_1)
_____ 11 |
I'e,) I'e,)
Ix(tk) ] I.'(tk_l)
where
oo |t Ak (7.21)
o 1
with
dt)
E(|de)|) = 0 72

di(t)
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St
‘z(tk) d:(tl) * 2| S
E(|d@,) ||dep |} = 8, S, (7.23)
die)l|d'e) 45,
95 |
where
LA sym.
s -3 (7.24)
k 1,2
EM" At

Assuming that code and carrier observation noises are zero-mean time independent random
errors and there is no correlation between them, then the measurement model for satellite
reads

[Ax, ()]

A%(1,)

Ax(,)

507t o % o ) ol o o ﬁzgk;
y i(t ) _ 8x1 ax2 8x3 A.X.,'Z(t:) ei(tk) _ui(tk)}

k i i
") o'ty 8"k c8T(y| ') -1
0 0 010 29 &7

ox, ox, ox, c-811(,) ew"(t“k)

A',) I f(t,c)

RAA,
(7.25)

The above discussion is based on the case of one satellite. If m satellites are tracked, then the
full measurement model reads
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with

.Al(t)l [0 0}

Yt “Tl20
; = ]

y"(,)

[E— Am(tk) l
Ve

11 Ax,(2,)

Efe,) =0

o240 SYM.
ce+o\.7r,(tk) .
2 2. 2

ov,‘(tk) g, +av,,(tk)

E{ee/} = 8,

and the full dynamic model reads

Ax,@,)
Ax ()
Ax, ()
AX,(t)

Az, ()
c871(,)
cd T'(tk)

I'a)
ey

@)
|17 |
X

oZ+oé,,,(tk)

2 2
o v:-(tk) 9,

em(t) (7.26)

(7.27)

(7.28)

SYM.

+oér,,(tk) |
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F
Fy de,)
F, c?(tk)
X, = F, Xt dl(:tk) (7.29)
F ;
k dm(tk)
e
F, dk
‘I’k,k-x
with
E{d,} = 0 (7.30)
Sy
qg Sk
S,
Ef dkd,*} - 5, S, (7.31)
;S
;S |

For the sake of simplicity, herein the measurement noises are assumed not only to be
uncorrelated among observables and epochs but also to have a constant standard deviation.
It was shown in Chapter 6, however, that the standard deviation for code observations should
better be modelled as a function of satellite elevations.

On the basis of the above dynamic and measurement models, solutions of the state vector can
be recursively obtained by using the standard Kalman filter algorithm. The initial values of
the filter state vector and their covariance matrix can be determined by solving the first two
epochs simultaneously by least squares.

7.2.2 Discussion

In the previous sub-section, we derived the carrier adjusted DGPS positioning models based
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on the assumptions that L1 code and carrier observations are available and that the dynamic
behaviours of both receiver clock biases and mobile positions can be modelled. Although in
many cases the assumption on the dynamic behaviours may not be realistic, it may not be a
problem. in practice. As we know, the spectral density is a measure of the uncertainty of
dynamic noises. A large spectral density represents great dynamic noises, i.e., a rather random
dynamic behaviour. Whereas a small spectral density represents less dynamic noises, i.e., a
quite smooth dynamic behaviour. Therefore, when the dynamic behaviour of mobile positions
or receiver clock biases cannot be well modelled, it can be in practice approximately treated
as a random process with a very large spectral density. Whereas, when mobile positions are
static, their dynamic behaviour can be considered as a random process with a spectral density
of zero [Axelrad and Brown 1996]. It can be proved that for a random process with an
infinite variance of dynamic noises, its solutions by using a Kalman filter are equivalent to
the least-square simultaneous solutions, when there are enough observations at a single epoch.
Therefore, the previously derived positioning models can be applied when the dynamic
behaviours of receiver clock biases and mobile positions can or cannot well be modelled. In
the former case, the models can sufficiently use the dynamic information in the estimation
of mobile positions so as to provide recursive solutions of mobile positions. In the latter case,
the models can provide single-epoch solutions.

In the derivation of the positioning models, we assumed that the second-order time derivatives
of both mobile positions and receiver clock biases are zero-mean white noises. In fact, the
assumption can also be others like, for example, the first-order time derivatives of mobile
positions and the third-order time derivatives of receiver clock biases are zero-mean white
noises. Naturally, in this case the measurement and dynamic models need to be adapted
appropriately.

It is probably the most usual situation that DGPS mobile stations are equipped with single
frequency receivers. But it is possible that dual frequency data is available at a mobile station.
It is shown in Appendix C that in this case the positioning models can be easily adapted.

Since the positioning models directly use code and carrier observations as inputs, the
stochastic observation model has a simple structure and can be easily specified. In addition,
as long as four or more satellites are tracked, the positioning models always (except for the
initial two epochs) have redundancy, even though no dynamic models are introduced for
mobile positions and receiver clock biases. Let us look at such a situation that only four
satellites are tracked and no dynamic models are introduced for the position and clock bias
states. The states to be estimated are the three position components Ax(t,), j=1,...,3, the clock
bias ¢ 87(t,), the four pairs of satellite related parameters 1 (tk) (combmatlon of L1 carrier

ambiguity and ionospheric delay) and 7'(¢ ( ) (rate of change of ionospheric delays), i=1,...,4.
Therefore, the total number of states is 12. The measurements that are available in this case
consxst of two types: the four pairs of L1 code and camer observations P(t) and ¢(t),

i=1,....4; and the four pairs of predicted observations I (t,clt,‘ ) and I (tkltk D, =14,
Therefore, the total number of measurements is 16. Thus the redundancy is 4. Note that the
predicted observations result from the modelling of the dynamic behaviour of ionospheric
delays and the constant property of the carrier ambiguity. Concerning the modelling of
ionospheric delays, it was shown in Chapter 5 that the modelling accuracy could be within
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a few millimetres. As can be easily seen, the redundancy is actually identical to the number
of tracked satellites multiplied by the number of carrier observables, no matter dynamic
models are introduced for mobile positions and receiver clock biases or not.

Another important property of the carrier adjusted positioning models is that they are easy to
integrate with the DIA quality control procedure as shown in Sections 2.2 and 4.2 so that the
quality of position estimates can be assured with a certain probability. Since the positioning
models always have redundancy unless the position parameters are not estimable, the quality
control procedure can even be performed when only four satellites are tracked. With respect
to the performance of quality control at DGPS mobile stations, more investigations need to
be conducted in the future.

Note that the approach used in the previous derivation to solve the problem that the
ionospheric delay 7(f,) and the L1 carrier ambiguity A, N’ are not individually estimable is
to combine them into a new state (see (7.15)). In fact the problem can also be solved by
estimating the change of 1(#,) with respect to I(f,) and a combination of AN* and I'(t,).
From a theoretical point of view, the latter should be used since the solutions based on the
former are only sub-optimal [Hwang and Brown 1990]. But the former has the advantage that
it reduces the order of the filter (one state per satellite) and consequently saves computational
time and memory. Since most DGPS users may need real-time solutions by the use of only
personal computers, the compromise on the optimality was assumed necessary in the
derivation of the positioning models.

7.3 DGPS positioning experiments

7.3.1 Data description and choices of a priori parameters

The GPS data used in this chapter was collected at two known stations: DE18 in Delft and
KO25 in Kootwijk, The Netherlands, on 7 June 1995. At the DE18 station a Trimble 4000
SSE receiver was used, whereas at the KO25 station a TurboRogue SNR-8000 receiver was
used. The data collection lasted one hour from 8:00 to 9:00 UTC and the sampling interval
was one second. During the data collection, the cut-off angle was 10° at the two stations and
there were seven to eight satellites in view. Figure 7.1 pictures the information on the number
of visible satellites and DOP values versus time. It was found that during the data collection,
both AS and SA were active. Since under AS condition P1 and P2 codes are encrypted, the
types of observables available in the RINEX data were Cl (i.e. C/A) code, L1 and L2
carriers, and C2 code. The distance between the two stations is about 100 kilometres.

The DE18 station was chosen as a reference station and the KO25 station as a mobile station.
The Trimble 4000 SSE data collected at the reference station was processed by using the
algorithm for carrier adjusted DCs. The TurboRogue SNR-8000 data collected at the mobile
station was processed by using the algorithm derived in the previous section. In order to see
the positioning accuracy in the worst case that 2 DGPS user is in random dynamic conditions,
we computed the single-epoch positioning accuracy by assuming that the dynamic behaviours
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Figure 7.1: Number of visible satellites and PDOP, VDOP
and HDOP values at the KO25 station.

of both mobile positions and receiver clock biases could not be modelled. The latency
between computing the DCs and applying them was chosen to be five seconds. In addition,
to investigate the importance of choosing an elevation-dependent standard deviation for code
observations, the processing was carried out twice with the two sets of a priori parameters
given in Table 7.1.

Set 1 Set 2

Reference Mobile Reference Mobile
0, =0.12+41.3¢"*m |0, =03+1.0e"*m [o0,=03m 0,=05m
g, = 0.003 m g, = 0.003 m o, = 0.003 m o, = 0.003 m
0; = 0.003 m 0, = 0.003 m 0, = 0.003 m 0; = 0.003 m
0, =0.15+1.3¢*"*m |0, =05+1.0e"“m 0,=05m 0, =08m
gy = 10° m%s’ g; = 10° m¥s’ g; = 10° m’s’ | g; = 10° m¥s’
gg = 107 m%s’ q, = 10* m%s gy =102 m’s’ | g, = 10* m%s
gz = 10° m%s’ g, = 10* m¥s q; =107 ms® | g, = 10° m¥s
El: satellite elevation

Table 7.1: Two sets of a priori parameters used in DGPS positioning experiments.

Note that the only difference between these two sets of a priori parameters is that at both
reference and mobile stations, set 1 accounts for the information of satellite elevation in the
standard deviation of code observations, whereas set 2 does not. In addition, it is worth
mentioning that [Ashkenazi et al. 1994] reported the similar work to account for the satellite
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elevation information in DGPS positioning, but no details can be found in the reference.

7.3.2 Numerical results and discussion

Based on different types of observables used at the reference and mobile stations, Table 7.2
shows the RMS errors of DGPS positioning experiments in north, east, and height components
by using set 1 of a priori parameters. As an example, Figures 7.2 to 7.4 show the typical
behaviour of the positioning errors in north, east and height components based on three
observables (i.e. L1 code and L1 as well as L2 carrier) at the reference station and only one
observable (i.e. L1 code) at the mobile station.

As can be seen from Table 7.2, the improvement of the positioning accuracy by using carrier
observations along with L1 code observations is evident. For example, when three observables
were used at the reference station, the RMS error in the position component was 0.912 metres
in the case of only one observable used at the mobile station, and it decreased to 0.738 metres

Number of observables used at reference station

1 2 3 4

north 0.833 m 0.588 m 0441 m 0443 m
east 0.489 m 0.329 m 0.259 m 0.258 m
1 height 1.279 m 0.900 m 0.755 m 0.753 m

position 1.603 m 1.124 m 0912 m 0911 m

north 0.778 m 0.506 m 0335 m 0.337 m
east 0454 m 0.262 m 0.180 m 0.179 m
2 height 1.207 m 0.793 m 0.632 m 0.629 m

position 1.506 m 0.976 m 0.738 m 0.736 m

north 0.754 m 0481 m 0.237 m 0.238 m
east 0.438 m 0.228 m 0.107 m 0.106 m
3 height 1.153 m 0.687 m 0425 m 0.422 m

position 1.446 m 0.869 m 0.498 m 0.496 m

north 0.754 m 0481 m 0237 m 0238 m
cast 0.438 m 0228 m 0.107 m 0.106 m
4 height 1.153 m 0.687 m 0.425 m 0.422 m

position 1.446 m 0.869 m 0.498 m 0.496 m

Number of observables used at mobile station

Table 7.2: RMS errors of DGPS positioning experiments with an elevation-
dependent standard deviation for code observations.
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Figure 7.2: DGPS positioning errors in the north component.
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Figure 7.3: DGPS positioning errors in the east component.
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Figure 7.4: DGPS positioning errors in the height component.
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in the case of two observables (i.e. L1 code and carrier) used at the mobile station. Moreover,
the use of carrier observations is more important at the reference station than at the mobile
station. For instance, the RMS error in the position component was 1.506 metres when one
observable was used at the reference station and two observables at the mobile station,
whereas it was improved to 1.124 metres when two observables were used at the reference
station and one observable at the mobile station. The reason for these phenomena is that when
only L1 code observations were used at the reference station, code noises had great influences
on the estimates of both DCs and correction rates. When such noisy estimates were applied
at the mobile station, the noises were propagated to the corrected code and carrier
observations. This then made the positioning errors include noises in code observations
collected at reference and mobile stations. Whereas when carrier observations were used at
the reference station, carrier observations played much greater roles than code observations
in the generation of DCs, since the former are much more precise than the latter. In this case,
the estimates of DCs and particular correction rates were much less noisy. When these
estimates were applied at the mobile station, the corrected observations were actually not
affected by code noises from the reference station. This then made the positioning errors be
less or much less than those in the previous case. In short, in the case of carrier observations
used at the mobile station, the positioning errors mainly resulted from code noises at both
reference and mobile stations. Whereas, in the case of carrier observations used at the
reference station, the positioning errors mainly resulted from code noises at only the mobile
station. Therefore, using carrier observations is more important in the generation of DCs than
in the estimation of mobile positions.

Additionally, we can also see from Table 7.2 that the RMS error related to four observables
(i-e. L1 and L2 code and carrier) used at the mobile or reference station is either identical or
very close to its corresponding one related to three observables used at the same station. This
means that the use of L2 code observations along with L1 code and L1 as well as L2 carrier
observations at the reference or mobile station cannot make real contributions to the
positioning accuracy. As we know, when very precise L1 and L2 carrier observations are
used, the estimated parameters (e.g. DC or mobile position) obtain much greater contributions
from the carrier observations than from code observations. Therefore, when L1 and L2 carrier
observations have already been used along with L1 code observations, adding L2 code
observations at the reference or mobile station cannot really improve the positioning accuracy.

Furthermore, Table 7.2 shows that the use of different types of receivers at reference and
mobile stations may not be a problem in DGPS positioning applications, since the positioning
accuracies in all cases concerned were better than two metres, which were based on the use
of a Trimble 4000 SSE receiver at the reference station and the use of a TurboRogue SNR-
8000 receiver at the mobile station.

Table 7.3 gives the RMS errors of DGPS positioning experiments by using set 2 of a priori
parameters. After comparisons of this table with Table 7.2, it can be seen that when single-
frequency data (i.e. L1 code alone or along with carrier) was used at the reference or mobile
station, choosing an elevation-dependent standard deviation for code observations can clearly
improve the positioning accuracy, particularly in the height component. Table 7.4 shows the
difference between the RMS errors in the position component by using sets 1 and 2 of a
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Number of observables used at reference station
1 2 3 4
north 0931 m 06l1lm 0445m 0.446 m
east 0.574 m 0358 m 0271l m 0271 m
5 1 height 1.536 m 1038m 0836m 0835m
8 position | 1.886m  1257m 0985 m 0985 m
(]
’.-g north 0.880 m 0520m 0332m 0333 m
g east 0.537 m 0.284m 0.168 m 0.168 m
® 2 height 1.465 m 0910m 0695 m 0.692m
=
§ position 1.791 m 1.077m 078 m  0.78 m
_’% north 0.853 m 0490m 0220m 0220 m
2 east 0.515 m 0239m 0081lm 008l m
E 3 height 1.391 m 0773m 0429m 0427 m
5]
3 position L.711 m 0946 m 0489 m 0487 m
St
'é north 0.853 m 0490m 0220m 0220m
2 east 0.515 m 0237m 0081 m 0.081 m
4 height 1391 m 0773 m 0428 m 0427 m
position 1711 m 0945m 0488 m 0487 m

Table 7.3: RMS errors of DGPS positioning experiments with a constant

standard deviation for code observations.

# of observables used at reference station
1 2 3 4
o g
§ 2 1 0283 m 0.133m | 0073 m | 0.074 m
~
§ % 2 0.285 m 0.10Ilm | 0050 m | 0.050 m
o =
o "é 3 | 0265m | 0077m | -009m | -009m
o
* 8 4 0.265 m 0076 m | -009m | -009m"

Table 7.4: Improvement of DGPS positioning accuracy by choosing
an elevation-dependent standard deviation for code observations.
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priori parameters. As can be seen from this table, when only one observable was used at the
reference station, it was particularly important to choose an elevation-dependent standard
deviation for code observations, no matter how many number of observables were used at the
mobile station. When using more and more types of carrier observables at the reference
station, the improvement of the accuracy by choosing an elevation-dependent standard
deviation for code observations became smaller and smaller. When the types of observables
used at both reference and mobile stations included L1 and L2 carriers, choosing an elevation-
dependent standard deviation for code observations could not improve the positioning
accuracy any more. Again, this is because code observations could not play an important role
in the estimation of the position parameters and therefore precisely choosing the standard
deviation for code observations became less important.

Note that the improvement of the positioning accuracy by choosing an elevation-dependent
standard deviation for code observations may vary with many factors, for example, the
number of satellites at low elevations, the quality of the receivers, the observation
environment, and the number of carrier observables in uses. In our DGPS positioning
experiments the greatest improvement we found was about three decimeters. In some cases
it may be greater.

By using three observables at the reference station and only one observable at the mobile
station, Figures 7.5 and 7.6 illustrate the DGPS positioning precision obtained from the
covariance matrix in north, east and height components. Figure 7.5 was based on set 1 of a
priori parameters, whereas Figure 7.6 was based on set 2 of a priori parameters. The sudden
jump of the precision at about epoch 500 was because of a rising satellite, whereas those after
epoch 2500 were because the tracking of a satellite at low elevation stopped and then started
again at the reference station. In other words, the sudden changes of the precision after epoch
2500 resulted from the quality of DCs instead of some reasons related to the mobile station.

By comparing Figures 7.5 and 7.6 as well as the RMS errors given in Tables 7.2 and 7.3, a
number of properties of the precision can be stated. First of all, when a satellite rises, the
change of the precision based on an elevation-dependent standard deviation for code
observations is less than that based on a constant standard deviation for code observations.
For example, the changes of the precision at about epoch 500 due to a rising satellite were
about 7, 3 and 18 centimetres in north, east and height components respectively, when set 1
of a priori parameters were used, whereas they increased to 14, 11 and 40 centimetres, when
set 2 of a priori parameters were used. The reason of this phenomenon is that a rising or
setting satellite is always at very low elevation and it can, therefore, only make less or much
less contributions to the precision than other satellites, when an elevation-dependent standard
deviation for code observations is used. Whereas when a constant standard deviation for code
observations is used, a rising or setting satellite can make the same contributions to the
precision as other satellites. Thus, choosing an elevation-dependent standard deviation for
code observations can make the precision more insensitive to the sudden change of
constellation geometry caused by rising and setting satellites.

Secondly, the precision based on an elevation-dependent standard deviation for code
observations, particularly in the height component, is clearly better than that based on a
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constant standard deviation for code observations. Let us take the precision at the middle
epoch of the whole observation period (i.e. epoch 1800) as an example. In Figure 7.5, the
precision in north, east and height components are 0.42, 0.29 and 0.77 metres respectively.
While in Figure 7.6, they are 0.43, 0.31 and 0.94 meters respectively. Obviously, the
difference in the height component is greater than those in the horizontal components. This
is consistent with the conclusions obtained in the previous analysis of the RMS errors in
Tables 7.2 and 7.3.

Thirdly, the precision based on an elevation-dependent or constant standard deviation for code
observations is in general quite consistent with the RMS errors (i.e. the accuracy), but the
consistency in the former case is still better than that in the latter case. Strictly speaking, it
is hard to compare the RMS error in Table 7.2 or 7.3 with the precision in Figure 7.5 or 7.6,
because the RMS error is a measure of the positioning accuracy concerned with the whole
observation period, whereas the precision describes the accuracy at a particular epoch. It may
be, however, acceptable to choose the precision at the middle epoch as the average precision
over the whole observation period, so that we can compare the RMS error with the precision.
Based on sets 1 and 2 of a priori parameters, Table 7.5 shows the RMS errors, the precision
at epoch 1800 and their differences in such a typical positioning case that three observables
were used at the reference station and only one observable was used at the mobile station. As
can be seen from the table, when set 1 of a priori parameters was uvsed, the difference
between the RMS error and the precision in each of the north, east and height components
was really small. Whereas when set 2 of a priori parameters was used, the difference in the
height component increased. This means that when an elevation-dependent standard deviation
for code observations was used, the precision more precisely reflected the accuracy than when
a constant standard deviation for code observations was used.

Set Component RMS error (m) | Precision (m) | Difference (m)
North 0.44 0.42 0.02
1 East 0.26 0.29 -0.03
Height 0.76 0.77 -0.01
North 0.45 0.43 0.02
2 East 0.27 0.31 -0.04
Height 0.84 0.94 -0.10

Table 7.5: Difference between the RMS error and the precision in the use of
an elevation-dependent or a constant standard deviation for code observations.

7.4 Concluding remarks

We have developed the algorithm for carrier adjusted DGPS positioning. This algorithm can
be applied by a DGPS user when code as well as carrier observations are available. Since the
algorithm directly uses code and carrier observations in the measurement model of a Kalman
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filter, the stochastic model of observations has a simple structure and can be easily specified.
The algorithm always has, except for the initialization of the filter, redundancy as long as four
or more satellites are tracked. Therefore, it can integrate well with the DIA quality control
procedure so as to guarantee the quality of position estimates with a certain probability. The
algorithm can take into account the dynamic behaviour of mobile positions and that of
receiver clock biases. When the dynamic behaviour of mobile positions can be modelled, the
algorithm can provide recursive solutions for the positions. When the behaviour cannot be
modelled, it can provide instantaneous solutions.

By using the algorithm and real GPS data collected at a 100-km baseline, some DGPS
positioning experiments have been conducted. In general, using carrier observations along
with code observations at the reference or mobile station can indeed improve the DGPS
positioning accuracy. But using carrier observations is more important at the reference station
than at the mobile station. The greater the number of carrier observables used in generating
DCs, the more significant the improvement of the positioning accuracy. Note that this does
not mean the greater the number of observables, the better the accuracy, because adding L2
code observations to L1 code and L1 as well as L2 carrier observations at the reference or
mobile station will not actually improve the positioning accuracy.

It is important to account for the satellite elevation in choosing the standard deviation of code
observations, particularly when code observations make important contributions in the
estimation of unknown parameters. It has been shown that choosing an elevation-dependent
standard deviation for code observations can improve the DGPS positioning accuracy. The
improvement is related to the number of carrier observables used at reference and mobile
stations. When only code observations were available at the reference station, the
improvement was the most significant. When L1 code and L1 as well as L2 carrier
observations were available in both reference and mobile stations, choosing an elevation-
dependent standard deviation for code observations is less important.

For a 100-km baseline with a PDOP value of about 2, half-metre single epoch positioning
accuracy was achieved, when L1 code and L1 as well as L2 carrier observations were used
at both reference and mobile stations. When the observations used at the mobile station were
replaced by L1 code and carrier, the positioning accuracy was better than 7.5 decimeters.




Chapter 8

Reduction of GPS observation biases
by using a local DGPS network

8.1 Introduction

In the previous chapters, we mainly investigated how to design a local DGPS positioning
system from the points of generating DCs at a DGPS reference station and computing mobile
positions at user sites. The operation of local DGPS positioning systems is based on the basic
premise that the primary error sources of the system are spatially correlated. By the use of
such a system, one needs only one reference station, but the user distance to the station is
usually limited to be within a few hundred kilometres, if metre-level positioning accuracy is
required [NATO 1991a]. With increasing distances, the positioning accuracy will deteriorate,
because the effect of ephemeris errors and atmospheric (ionospheric and tropospheric) delays
at a user site cannot be sufficiently reduced by using the DCs computed at the reference
station.

Investigations have shown that using a network of DGPS reference stations is an economic
and efficient way to overcome the spatial decorrelation of DCs. From the standpoint of
algorithms, there are two basic types of networks [Loomis et al. 1991]. The simpler type is
the local (or say, common view) network (see, e.g., [Tang et al. 1989] and [Mueller 1994a});
and the more complex type is the wide area network (see, e.g., [Brown 1989], [Kee et al.
1991] and [Ashkenazi et al. 1993]). The algorithms used in these two types of networks are
sometimes referred to as measurement domain algorithms and state-space domain algorithms,
respectively [Mueller 1994b]. In addition to the difference in algorithms, these two types of
networks are also different in many other aspects such as the size of the network, the
communication link, and the type of corrections [Loomis et al. 1991]. Both local and wide-
area DGPS networks have advantages and disadvantages.

Many field tests and analyses of the positioning accuracy by using DGPS or a DGPS network
have been conducted under various conditions (see, e.g. [McNally et al. 1991}, [Clynch et al.
1992], [de Cevins and Ponsot 1995], [Lachapelle et al. 1995]). But most of them have a
common property that the analyses were conducted in state (for example, position parameters
x, y, and z) domain. One advantage of the analyses is that they can directly address the issue
with which we are most concerned, i.e., positioning accuracy. But the result of the analyses
is highly depended on a certain satellite constellation and consequently the conclusions of the
analyses are generally only applicable for a particular constellation. In addition, since the
analyses are based on positioning errors, which are functions of a combination of all error
sources, it is usually hard to show the main error source of the positioning errors in certain
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situations.

This chapter focuses on the subject of local DGPS networks. We will first in Section 8.2
discuss the computation of DC vectors. Next, we will individually analyse how well the effect
of ephemeris errors, ionospheric delays, and tropospheric delays at a user station can be i
reduced by using the correction vector. Finally, we will quantitatively give some concluding

remarks.

8.2 Computation of differential correction vectors

Assume that at », reference stations n * satellites have been simultaneously observed and the
DC Vji (i=1,...,n%; j=1,...,n,) and its rate of change as well as its acceleration (i.e., the second-
order time derivative of DCs) have been computed at each of these reference stations. By
means of a communication link, all the DCs are transmitted to a master station, which can
be one of the #, reference stations, for instance, station 1. Since a DC is related to its position,
it can be expressed as

g T 81
Y i TR ) 5 ) &b

where x, y and z are coordinates in the WGS 84 system or in a local coordinate system.
Assume that the area occupied by the n, reference stations is so large that the first-order
derivatives of a DC with respect to x, y, and z should be accounted for but the second as well
as higher order derivatives of a DC with respect to x, y, and z are negligible, for a certain
positioning accuracy. Let us define

i i i
PRI S A SV R.A | 8.2)
ax dy oz
It follows from (8.1) that for a DGPS network with four reference stations, we have
vi-vi] |Ax Ay, Az, p
Vi-vi| = |Ax, Ay, Azp ®8.3)
v,-V, Ax, Ay, Az

or

-1

2 Ax, Ay, Az) [gi_y!

b = Ax;; Ayg A23 V;—Vli 8.4)
i L

¢ Ax, Ay, Az,| |V4-V;

where Ax=x;x,, Ay=y;y, and Az=z-z,.
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An appropriate DC vector concerning satellite i reads
(Vi ¥ &' b' ct) 8.5)

Some remarks should be made. First, @', b’ and ¢’ are the gradients of a DC with respect to
x, y, and z, respectively, and they are coefficients of a hyper (3 dimensional) plane which is
fitted to DCs in the area. Second, the difference in DCs between reference stations j and 1
for a particular satellite does not include the satellite clock bias. It is, therefore, only a
function of the differences of ephemeris errors, tropospheric delays, ionospheric delays, and
receiver clock biases between these two stations, so are a‘, b and ¢’. Third, the difference
of receiver clock biases included in (V;-V,’) has the same effect on a’, b and ¢', i=1,...,n°,
for all satellites, thus it will only result in a bias in the estimate of the receiver clock bias of
a user, after they have been applied at the user site. It will not affect the estimate of user
positions. Fourth, since ephemeris errors and atmospheric (including tropospheric and
ionospheric) delays are generally very stable for a period of a few seconds, which is the usual
interval used to generate DCs, and since any prediction errors of receiver clock biases in DCs
have no effect on the estimate of user position, the rates of changes of the coefficients a’, b
“and ¢ are not necessarily computed and transmitted along with them. Fifth, the number of
reference stations can be less than four and it depends on the number of the gradients which
need to be taken into account at the considered area. For example, when the area is so small
that the effect of ephemeris errors, tropospheric delays, and ionospheric delays can be
regarded as quantities independent of user locations, one reference station is sufficient. When
the area is a quite long and narrow zone, one may only need to consider a one-dimensional
effect on the DC. Therefore the number of reference stations can be two. For a rather large
but flat area, one may need three reference stations so that the variation of DCs in north and
east components can be accounted for. Sixth, the above DGPS network design is based on
the essential assumption that the second and higher order derivatives of a DC with respect to
x, y, and z are negligible, thus the area covered by the reference stations should not be too
large. Finally, it can be shown that the above algorithm for DC vectors is equivalent to the
algorithm given in [Loomis et al. 1991].

Apparently, within a certain area and a certain required positioning accuracy, one can always
assume that DCs vary linearly with positions. But one may immediately wonder for how large
area how well the effect of ephemeris errors and atmospheric delays can be reduced by using
the DC. vector and how much improvement one can expect by using multiple reference
stations instead of only one reference station.

8.3 Reduction of effect of ephemeris errors in a local DGPS network

Consider the situation (see Figure 8.1) that a satellite S at location S, is believed to be at
location S,,..c and a user station is apart from a reference station at distance &. Beser and
Parkinson (1982) derived the following upper bound for the correction error introduced by
using, at the user station, the DC calculated at the reference station
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Figure 8.1: The effect of satellite
orbit error on reference and user
stations, after [Beser and Parkinson

1982].
le] < 98 osa (8.6)
r
with
e = Ar-Ar @®.7
or
le] < %5 8.8)
r

for a=0, i.e., the ephemeris error 4 is an along or cross track offset.

In the following, we give a similar upper bound for the correction error in the case of a
DGPS network. We assume that in the DGPS network area, the effect of height differences
on DCs is negligible and that only those, due to horizontal differences in east and/or north
component, denoted by x and y respectively, have to be accounted for. Therefore, we only
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need three reference stations to determine the coefficients a’ and b’ for a linear function fitted
to DCs in this area.

It follows from

Ax, Ay, 1

5 -

that the DC applied by a user located at (x;, y;) reads

V.-V, 8.9
Va - V:

Ax, Ay,

& a
Vi = Vi [ax; Ayl
Y slAx A Ax, Ay,|" v,-V,
= 1+[ x; yj] Ax, Ay, v,-V, (8.10)
Note that the superscript i standing for the satellite is omitted here and below.
Obviously, its error reads
Ax, Ay 'y -y
7 -V = (V.- 21 8.11)
ViV = (Vi) +[Ax; Ayl Ax, Ay, %V

The DC error VJ—VJ results from four sources: the error of estimated effect of ephemeris

errors, that of estimated ionospheric delays, that of estimated tropospheric delays, and a
combination of receiver clock biases at all reference stations and the user station. Again since

the last error source in YA7J—V] has no effect on the estimates of user positions, we are only

concerned with the error sizes of the remaining three sources. Note that the second term on
the right-hand side of (8.11) is the contribution of reference stations 2 and 3 and it plays the
role to compensate the spatial decorrelation of DCs. In the case of local DGPS positioning,
only one reference station is used and therefore there is only the first term on the right-hand
side of (8.11).

To see the error size of the estimated effect of ephemeris errors at a user station by using a
DC vector, replacing DC V; in the above equation by ranging error Ar; gives

Ax, Ay,|*
Af;-Ar; = -(Ar;-Ar,)+[Ax; Ay)] Ax, Ay,

Ar2 - Arl] (8.12)
J

Ary-Ar,

As is shown in [Jin and de Jong 1996b]
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dcosa,

Ar;-Ar; = 8, 0081, ; 8.13)

1

where 3, ; is the distance between reference station 1 and user station j and g, ; the angle
between the line from reference station 1 to user station j and the line which is orthogonal
to the line from user station j to the satellite. Thus, we arrive at

dcosa, Ax, Ay,["

AF. - Ar.
j; j ’

-6, jcosp ;+ [Ax}. ij]

8, ,cosp,, (8.14)
bl 1,3COS B 5

1 Ax, Ay,

As is shown in Appendix D.1, g, ; can be expressed as a function of satellite elevation and
the horizontal angle of the line from station j to the satellite with respect to the line from
station 1 to station j. Appendix D.2 proves that when the satellite elevation is zero, the error Afj—Arj
is zero. For reasons of simplicity, we analyse the error size in the case of 90° satellite
elevation. Since in this case cosg = 1, (8.14) becomes

-1
dcosa Ax, Ay,|"[s
A=A = -, +[Ax, Ay 61-2} (8.15)
r i’ AX3 Ay, 1,3
or
Ax, Ay '[s
|AF;-Ar| < 4 -8, + [Ax; Ay)] 2 61’2 (8.16)
rl ’ Ax3 Ay3 1,3
A3250 250
e
D
( ., 0)
o, 10;& ® (250, © ‘(500' N

@® master station

A reference station
® user station

e B
(0, -250) (500, -250)

Figure 8.2: A simulated 500x500 km®> DGPS network with three reference stations.
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Let us simulate a 500x500 km* DGPS network with three reference stations as shown in
Figure 8.2 (note that it may not be the best design). Note that r, is approximately 2-10* km
and assume that the ephemeris error d is in the worst direction (along track or cross track).
The maximum remaining effect of ephemeris errors at some user stations of the DGPS
network are given in Table 8.1.

Station Remaining error
A 0.01d
B 0.007d
C 0.0075d
D 0.005d

Table 8.1: Remaining effect of an ephemeris
error with size of d for DGPS network users.

A typical ephemeris error even in SA conditions is usually less than 10 metres [Parkinson and
Enge 1996]. Therefore, it can be seen from Table 8.1 that the effects of such an error in the
worst direction (along track or cross track) on DGPS network users can be reduced to less
than one decimeter. To compare the reductions of effects of ephemeris errors by using DGPS
network and by using local DGPS, let us assume in the local DGPS positioning case the
reference station is located in the ideal position (i.e. the centre) of the simulated 500x500 km®
area. Then it is easy to see in this case the maximum remaining effect of ephemeris errors
in the area is less than 1.8 decimeters. As can be seen from this, using DGPS network can
improve the reduction of the effect of ephemeris errors by using DGPS but the improvement
is rather small.

8.4 Reduction of ionospheric delays in a DGPS network

This section discusses to which extent the ionospheric delay in a DGPS network can be
reduced.

It follows from (8.11) that the remaining ionospheric delay for a DGPS-network user after the
application of a DC vector reads

Ax, Ay,|[

[-1 = ~(I;-1) + [Ax; Ay)]

1
[12 -1 1} (8.17)
J

]3‘11

Ax, Ay,

Following the approach of [van der Marel 1993], we express the difference in ionospheric
delay between two stations as

1.-11=1[ 1 __ 1]+1-1) 1 (8.18)
] Vl ¢

' ’ v; 12
cosz; oSz cosz;
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where I, is the vertical ionospheric delay at station j and z} the zenith distance at the
1on0spherlc point (see Figure D.2 in Appendix D).

Therefore we arrive at

11
. Ax, Ay cosz, cosz,
o= | == -— + [Ax Ay i1
cosz; oSz, Xy Ay, i ;
COSZ; COSZ;
I-I,
IvA_Iv A'x2 Ay2 . Ccos '
-0 4 A, Ay b (8.19)
cosz Axy Ayy| |1 iy
cosz,
For reasons of simplicity, let us define
11
Ax, Ay,]! ' '
2 8Y2| | cosz, cosz
Part 1 = [, |- L 1’ + [Ax; Ay;] 1z2 ll (8.20)
'| | cosz; cosz, Axy Ay, P—
COSZ; COSZ
Iv _IV
2 L
I-I Ax, Ay cosz,
Part 2 = -2 1 4 (Ax, Ay) P ®.21)
COSZj Axs AyS Vi Vi
cosz,

Note that Part 1 is the homogeneous part of the remaining ionospheric delay, which results
from the difference in satellite elevation between the reference stations and between the user
and master stations. If a satellite is observed at the same elevation at both the reference
stations and the user station, this part of the error will be zero. Part 2 is the inhomogeneous
part of the remaining ionospheric delay, which results from the variation of vertical
ionospheric delay at different stations. It will be shown later that the size of the
inhomogeneous part error is normally much smaller than that of the homogeneous part error.

To facilitate the numerical analysis of the Part 2 error, we express I I in (8.21) as [van
der Marel 1993]

dl
I _I = v AIP (8-22)
Vj Vl d[p
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Yt

where

is the gradient of the vertical ionospheric delay at station 1 and Alp;, is a function

of the distance between stations j and 1 and of the zenith distance at station 1; its computing
formula is given in Appendix D.4. Therefore, (8.22) becomes

Alpz’l
da, | Alp, , Ax, Ay, cosz,
Part 2 = -2 iag Ay N 8.23)
P cosz; Axy Ay;| |25
cosz,

For the simulated DGPS network as shown in Figure 8.2, the remaining ionospheric delays
corrected by a DC vector in the network are analysed and the results are given in Table 8.2.

Station Part 1 Part 2(km™) Direction of Satellite
A 0.0181‘,1 10 dI; opposite to master station
dl . .
B 0.0371‘,1 377; from station 2 to master station
d, , .
C 0.0001 Iv1 4 de‘ opposite to master station
D 0.0021‘,1 dI; opposite to master station

Table 8.2: Remaining ionospheric delays in a DGPS network, where Part 1
corresponds to the case that satellite zenith distance is 75° and Part 2 corresponds
to the case that the satellite zenith distance is 70°.

Note that since a satellite may not be observed at the same zenith distance by two stations
if they are not close to each other, a one-degree zenith difference for each 100 kilometre is
assumed in the computation of Table 8.2.

o . Lo . . . dl,
With respect to the sizes of the vertical ionospheric delay Iv, and its gradient a{-’, van der

Ip
Marel and Georgiadou (1994) showed that for the central part of The Netherlands (latitude:
52 °N), the typical vertical ionospheric delay is not more than 4.5 metres and the rate of

il —

change of the vertical ionospheric delay is less than 0.3 m/h, which leads to

03 m/h
2:%:(6356+400) km
12h

the typical Part 1 and Part 2 remaining ionospheric delays in the simulated 500x500 km?
DGPS network are less than twe decimeters and three millimetres, respectively. It can be
shown that if only one reference station is used in the area, the corresponding part 1

= 8-10° m/km. Therefore, even in the case that satellite zenith distance is 75°,
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remaining delay becomes one metre, which is five times as great as that in the DGPS network
case.

Some remarks are worth making. First, the Part 1 remaining ionospheric delay increases when
the zenith distance increases, whereas the Part 2 remaining ionospheric delay reaches its
maximum when the zenith distance is 70° (see Appendix D.5). Therefore, if the cut-off zenith
distance is chosen to be 75°, the Part 1 and Part 2 remaining ionospheric delays will not reach
their maximums at the same time. Second, based on Table 8.2 and on the typical magnitudes

of I and 4, , the size of the Part 1 remaining ionospheric delay is much greater than that

dip’
of the Part 2 remaining ionospheric delay. The latter can, therefore, be ignored in the analysis
of the remaining ionospheric delay in DGPS positioning.

8.5 Reduction of tropospheric delays in a DGPS network

8.5.1 The use of a differential correction vector

From the analysis of the remaining ionospheric delay in a DGPS network, it is easy to see
that after the application of a DC vector, the remaining tropospheric delay in a DGPS network
reads

Ax, Ay,]" v, -V

tro tro
Vs - V1

@Jtro 7 (4 ( A ;’o> + [Ax] ij] Ax3 Ay3 (8-24)

According to [Saastamoinen 1973], the tropospheric delay in metres can be modelled by

gro - 000227] +( 1255 +0‘05)e i tan2z] 8.25)
cosz [ T
or
v = L g _o 002271202 (8.26)
COSZ COSZ
with
v - 0.00227[;; (&TSS oos) } 8.27)
where

Z: zenith distance of the satellite
p: atmospheric pressure (mbar)
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T: temperature (Kelvin)
e: partial pressure of water vapour (mbar)
V" vertical tropospheric delay (m)

Therefore, the difference in tropospheric delays between two stations can be expressed as

tan’z; tan’z
vroyre = vl Lo L | o027 —3 - 2h +(v”°-v"“)___1 3.28)
' {cosz; cosz cosz; COsZ

It will be shown later that the third term on the right-hand side of (8.28) is negligible for GPS
positioning applications. Therefore, it follows from (8.24) and (8.28) that

1 1
Ax, Ay,|! -
..tm_VFro - V:m _ 1 _ 1 +[AxA Ay] 2 2 COSZI (K)SZl
7 ' | | cosz; cosz, 7 Ax, Ay, 1 1

Coszy C€OSZ,

tan’z, tan’z,
- —
_0.00227{-| B _ 107y +[Ax; Ay,] g ]
’ cosz; cosz 7T Ax, Ay, tanzzs_tanzzl

cosz; cosz

For the simulated DGPS network as shown in Figure 8.2, the remaining tropospheric delays
at user locations A, B, C, and D are given in Table 8.3. To assess the size of the remaining
errors, we need the size of the vertical tropospheric delay V,”°. In practice V,” < 2.6 m
[Mueller and Zerbini 1989]. Therefore, it can be seen from Table 8.3 that the size of the
remaining tropospheric delays in the simulated 500x500 km* DGPS network is less than 2.5

Station | max|V"" - V| (m) |Direction of satellite
A 0.06V,f: °-0.017 opposite to master station
B 0.09VZ °-0.017 from station 2 to master station
C 0.09 V:r° - 0.041 opposite to master station
D 0.05 V::o -0.018 opposite to master station

Table 8.3: Remaining tropospheric delays at DGPS network user stations,
where the zenith distance at the station is assumed to be 75° and V,” is in
metres.
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decimeters. If only one reference station is used in the area, the corresponding remaining
tropospheric delays will increase to 1.8 metres, which is seven times greater than the one in
the DGPS network case.

8.5.2 The Use of a tropospheric delay model

As was shown in the previous sub-section, if the tropospheric delay is included in the DC,
the sizes of remaining tropospheric delays in GPS observations can be reduced to a few
decimeters in a DGPS network. For most users this may be sufficient. But it may be still of
interest to investigate if the remaining tropospheric delay can be further reduced.

It follows from (8.27) that

d o dvtro Vtro
Vp+Ap, T+AT,e+Ae) = V(p, T, e) +——Ap+—AT+—" Ae (8.
v (P+Ap ) =V, (. T, e) p P 7 (8.30)
and
dvtro
* 2227100
dp mbar
tro
. -2.84885-£ o ! (8.31)
dar 72 K
dvtro
Y - 113510 B
de mbar

Based on experimental results, Rothacher et al. (1993) suggested to compute meteorological
parameters from a standard atmospheric model rather than using observed values. The
meteorological parameters can be calculated by using the following formulas:

p =l 22610 b ™ mbar
T=T,-6510"h-h) .

RH, 8.32
= So0 SXP{6:396-107( - hy) -37.2465 + 02131667 - 2.56908 10*7%} mbar @32

where

h: station’s orthometric height (m)
RH: relative humidity (%)

and the subscript O indicates the related quantity corresponding to the values at sea level.

Assume that in the DGPS network we are considering, the height differences are within 80
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meters and p, = 1013 mbar, T, = 291 K (i.e. 18 °C), b, = O m, RH, = 70 %. Then the
differences in atmospheric pressure, temperature, and partial pressure of water vapour between
any two stations are not greater than 9.6 mbar, 0.4 K, and 1 mbar, respectively: Therefore,
we arrive at

*_Ap| <0022 m

dv,”
dT
d Vtro
de

8.33
AT| < 00002 m [ (8.33)

Ae| < 1.210% m

which shows that for GPS positioning applications, the last three terms on the right-hand side
of (8.30) can be ignored, i.e.

V7(p+Ap, T+AT, e+Ae) = V°(p, T, e) (8.34)

In other words, the difference in the vertical tropospheric delay between stations at less than
80-metre difference in height is not greater than a few centimetres. If the cut-off elevation is
chosen to be 15°, then the tropospheric delay at the cut-off elevation is about four times the
vertical delay [Saastamoinen 1972). Therefore, even in this case the difference in the
tropospheric delay between two stations is less than nine centimetres, which also shows that
the third term on the right-hand side of (8.28) can be ignored. In addition, it follows from
(8.33) that of the three atmospheric parameters p, T and e, the pressure p plays much bigger
roles than the temperature T and the partial pressure of water vapour e in the tropospheric
delay. The influence of T or e is extremely small.

As can be seen from the above analysis, if the Saastamoinen model is used to correct the
tropospheric delay in DGPS positioning applications, DGPS users do not need to measure
their own atmospheric parameters and they can use the atmospheric parameters measured at
a reference station. This approximation will only introduce a bias of centimetre order in the
correction of the tropospheric delay. Furthermore, the requirements of measuring the
atmospheric parameters at a reference station and transmitting them to mobile users can also
be removed by using a set of standard atmospheric parameters such as p = 1013 mbar, T =
291 K and e = 12 mbar, because it was reported in [Brunner and Tregoning 1994] that the
use of real atmospheric parameters measured at GPS sites does not lead to more accurate GPS
results than the use of standard parameters and a standard model like (8.32).

As a comparison of the above two approaches for the elimination of the tropospheric delay,
some characteristics of them are worth mentioning. The use of a DC vector is simple and can
be implemented by simply combining the tropospheric delay with the ionospheric delay and
the effect of ephemeris errors in DCs. No extra work is needed at all. But its accuracy
depends on the location of the user in the network and in the worst cases it may reach a few
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decimeters. Instead, the use of a tropospheric delay model can provide an accuracy of better
than one decimeter for the correction of the tropospheric delay and the accuracy may be in
practice considered to be independent of the user location in the network, although strictly
speaking it is a function of the height. A drawback of using a tropospheric delay model is that
the elimination of the tropospheric delay is also dependent on the accuracy of the model,
which was not accounted for in the above. Fortunately, this may not be a big problem in
DGPS positioning applications.

8.6 Concluding remarks

We have individually analysed the reductions of the effect of ephemeris errors, ionospheric
delays, and tropospheric delays by using a simulated local DGPS network and local DGPS.
Since the analyses were conducted in the measurement domain, they are independent of
satellite constellation, so are the results of them.

As shown by the simulated DGPS network of 500x500 km?, when ephemeris errors, vertical
ionospheric delays, and vertical tropospheric delays are less than 10, 4.5, and 2.6 metres,
respectively, using three reference stations can reduce the effect of ephemeris errors to less
than one decimeter, ionospheric delays to less than two decimeters and tropospheric delays
to less than 2.5 decimeters. If a tropospheric delay model is used, the tropospheric delays can
be further reduced to one decimeter. For the same area and under the same conditions, if only
one reference station is used, the remaining effect of ephemeris errors, remaining ionospheric
delays, remaining tropospheric delays are less than 0.18, 1, 1.8 metres, respectively.




Chapter 9

Taylor expansion of
GPS observation equations

9.1 Introduction

In order to solve GPS observation equations, one needs to know the transmission time of a
GPS signal, which is usually determined by the use of iterations or code observations. Since
using iterations is rather time consuming, one should try to avoid this approach, especially
in real time GPS applications. It will be shown by a real data set later that a bug of hundreds
of kilometres can be included in a code observation. Therefore using a code observation to
determine the transmission time may result in biased results.

The main objective of this chapter is to show how to avoid the determination of the
transmission time by expanding GPS observations into Taylor series. This chapter consists of
six sections. Section 9.2 discusses the derivation of GPS observation equations. In the next
section, we discuss some existing approaches used to determine the transmission time of a
GPS signal. Section 9.4 will derive the Taylor expansion of GPS observation equations, which
is the key part of this chapter. Since solving the Taylor expansion needs to compute partial
derivatives of the satellite-receiver distance, Section 9.5 will simplify a formula for the
computation. Finally, Section 9.6 will give a summary and some concluding remarks.

Note that the topic of this chapter is somewhat independent from those of the previous
chapters. A few notations used in this chapter are not the same as those in the previous
chapters for the same quantities. But as will be seen later, this will not cause confusions.

9.2 GPS observation equations

The derivation of GPS carrier observation equations can be found in many relevant references
(for example, [Remondi 1985], [King et al. 1985] and [Landau 1988]), but they often have
one common property that some assumptions are made on the stability of satellite clocks. This
section first reviews the derivation of GPS code observation equations and next gives an
alternative derivation of carrier observation equations, which does not need any assumptions
on the stability of satellite clocks.

9.2.1 GPS code observation equations
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The GPS code observable is a measure of the distance between a satellite at the transmission
time of a GPS signal and a receiver at the reception time of the signal. The travel time of the
signal is determined by comparing (correlating) identical Pseudo Random Noise (PRN) codes
generated by the satellite and by the receiver. A code-tracking loop within the receiver is to
shift the internal replica of the PRN code in time until maximum correlation occurs. The PRN
codes generated at the receiver are derived from the receiver’s own clock, and the PRN codes
transmitted by the satellite are generated by the satellite clock. In other words, the code
observable is the difference between the arrival time (in the receiver time frame) and the
transmission time (in the satellite time frame) of a particular signal transmitted by a satellite.
Therefore, the unavoidable timing errors in both the satellite clock and the receiver clock will
cause the code observable to differ from the true distance between the satellite and the
receiver, which will be called satellite-receiver distance herein for simplicity.

Let us define

tz: reception time of a GPS signal in the receiver time frame

t7: transmission time of the GPS signal in the satellite time frame
t,: GPS time corresponding to the receiver time #

t;: GPS time corresponding to the satellite time #,
dt”: receiver clock bias, defined as dt” = tg-1,
dt*: satellite clock bias, defined as dr* = t;-¢,

Then the basic code observable reads [Wells et al. 1987]

tp=tr = (’R*d"(lk))“(tr+dts(tr)) 9.1)
= (tg=tp) +(dt (tg) -dt*(t,))

In this expression, the term (¢ - ¢;) is the travel time (in the GPS time frame) of a signal
from a satellite to a receiver. Because of the effect of atmospheric refraction, it is a function
of the satellite-receiver distance and the tropospheric and ionospheric refractions. If only the
first-order effect of ionospheric delay is taken into account, the travel time (¢, - £;) can be
written in equation as [Leick 1990]

te=ty = T(tg) = % p(,R)+Vno(,R)+f£§TEC(tR) ©.2)

where

t(tg): travel time of a GPS code signal received at t;
p(tr): satellite-receiver geometric distance (m), which is not the satellite-receiver
distance defined before.
TEC(ty): total electron content, in units of 10'° electrons per cubic meter
f: observable related frequency (Hz)

For reasons of simplicity, the GPS time variable ¢ in the travel time t(g) will be omitted




9. Taylor expansion of GPS observation equations 103

in the following derivation.

Inserting the above equation into (9.1) gives
rgs o1 o ﬂmc de’(t.) -dtS(t,- 9.3)
ot = | P+ V7R S TECE) +(dt(t) ~dt )

or

40.3
2 TEC(zg) 94

clta-t7) = pltg) +c{dt"(tg) - de“(tg=)) + V™ (tg) +

Replacing ¢(g-t7) by the L1 code observation P(f), and f by the L1 frequency f;, and
adding the L1 code observation noise €(f;) to the right hand side of (9.4) give the L1 code
observation equation as

P(t = pltg) + ¢ (d (1) ~di (t=)) V™) + L2 TECE) ety (95)
1

Analogously, the L2 code observation equation reads

40.3

2
2

Py =p(ty)+ c-(dt "(t) ~dt (85 -7)) + V™(tg) +

TEC(tp) +&(t))  (9.6)

Since
1t = 22 1EC(Hy -
1
and
L f2
%3750(’3) = %ifTEC(tR) = —%I(t,,) = rid(ty 9.8)
5 LA 5

the L1 and L2 code observation equations read, respectively,

P(tg) =pltg) +c-{dt"(t) ~dt*(tg—1)) + V7°ltg) +I(tg) +€lty) 9.9)

P(tg) = p(tg) +c-(dt (1) ~dt (=) + V"ltg) +1I(2g) +&(tg) 9.10)

9.2.2 GPS carrier observation equations
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The GPS carrier observable is the difference between the phase generated by a receiver
oscillator and that by a satellite oscillator. In equation, the basic form of the carrier observable
reads [Remondi 1985]

B(tg) = '(tg) - O%(t7) 9.11)
where

<I>(tR) carrier phase observable at time #
<I>’(tR) carrier phase generated by the receiver oscillator at g
®%(¢;): carrier phase transmitted by the satellite at time #; and received at tg

In order to let our discussion take place in the GPS time frame, we express <I>’(tR) and
®°(t;) in this frame by defining

D(tg) = §'(tp)
o(t;) = ¢°t,)
D(tg) = dtp)

(9.12)

Note that here ¢ is temporarily not restricted to the L1 carrier observation. Substituting (9.12)
into (9.11) yields

dp) = ¢'(tp) -9°(ty) 913

Note that the difference between ¢(#,) and <I>’(t£) is that the former is evaluated in the GPS
time frame, whereas the latter is in the receiver time frame. For one moment, £, is generally
not equal to tR due to the receiver clock bias, but ¢"(¢;) equals <I>’(zR) For the pair of ¢(¢;)
and ®%(¢7), this property is also valid.

Since at the first (i.e. initial) epoch there is no knowledge to determine the integer count of
the carrier observable, the initial integer-cycle quantity is actually an unknown parameter
[Remondi 1984]. In order to acknowledge this initial integer-cycle ambiguity, denoted by
N@,), (9.13) can be updated to

blte) = O'(tR) - 4°y) +NGt,) ©.14)
It should be pointed out that as long as carrier tracking is maintained, the integer-cycle
ambiguity N(f,) is a constant. After the first observation is made, ¢, ¢° and ¢ are all

continuous quantities, and none of them is restricted to being a fraction of a cycle, and neither
are @, @ and @, of course.

It follows from (9.12) that
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¥tg) = ;) = )+ [ ‘_’%(f’)ldtr 9.15)

0

where

t": time variable in the receiver time frame
f,: receiver time at the initial epoch, which corresponds to the GPS time ¢,

Since the derivative of the phase ®'(¢z") generated by the receiver oscillator with respect to
its own time ¢" is the nominal frequency of the receiver oscillator, denoted by f, which is a
constant, it follows from (9.15) that

4
@'t + [ fdt’

w
O(ty) + fltr 1)
O'(ty) + fltg+dt () - (to+dt ")) |

¥(tz)

(9.16)

Analogous to the derivation of (9.16), it can be shown that the phase ¢*(¢;) transmitted by the
satellite can be written by

¥r) = $°p) +f'[tT+dt () —(:To +dt’(tTo))] 9.17)
where

t, . transmission time (in the GPS time frame) of the carrier signal received at the

i
GPS time ¢,

Inserting (9.16) and (9.17) into (9.14) gives
Btg) =0(t0) +f [t dt () ~{to+dt "(1p))|-°(t7) -f[zT+dz tp)~(ty, ’(ITO))] +N(ty)
~Sl(trtr) vt Eg) =t )| (tg+dt (g b7 -dE (1)) + (o) -4 ) +NG)  (9.18)

Since

te-tr= t(ty) 9.19
fo~tp,= () } -19)

where

©(tg): travel time of a GPS carrier signal received at time ¢,
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(9.18) becomes

b(tg) =f(v(tg) +dt (1) - dt *(t5-1(tp)))
=f{tty) +dt"(tg) ~dt 1y~ T () + &) -y (1)) + N(tp)  (9.20)

or

Bltg) = f(t(t)+dt"(tg) -t "g=1(2,))) + Alty) 9.21)

where the initial carrier observable ambiguity A(t,) is given by

A(to) = N(to )-f (T (to) +dt ’(to) -dt s(to -T (to ))) + ¢r(to) - (bs(to -t (to )] 0.22)

As was shown in [Jin 1995b], the ambiguity can also be expressed by
A(ty) = N(tp) ~f(dt () - dt (1)) + §°(2,) - d°(2,) .23

Some remarks are worth making on the ambiguity. First of all, as can be seen from (9.22),
the initial carrier observable ambiguity is a function of the following six quantities at different
times

* the fractional part of the carrier phase transmitted from the satellite at the initial
epoch &, - T(¢,);

* the satellite clock bias at the epoch ¢, - T(¢,);

* the carrier phase generated by the receiver oscillator at the initial epoch £

* the receiver clock bias at the initial epoch £

* the travel time of the carrier phase signal received at the initial epoch #,, which
depends on the satellite-receiver geometry and atmospheric effects;

* the initial integer-cycle ambiguity which is an arbitrary integer related to
receiver, satellite, and the initial epoch ¢,.

Secondly, it follows from (9.23) that the initial carrier observable ambiguity can also be
understood as a linear combination of the following five quantities at the same time £, (the
initial epoch)

* the fractional part of the carrier phase received from the satellite;
* the initial arbitrary integer-cycle ambiguity;

« the satellite clock bias;

¢ the carrier phase generated by the receiver oscillator;

* the receiver clock bias.

It should be emphasized here that the initial carrier observable ambiguity has a certain
physical meaning which is reflected by expression (9.22). Expression (9.23) only tells us that
the size of the initial carrier observable ambiguity is equivalent to a combination of five other
quantities at the initial epoch ¢, It becomes evident from (9.22) or (9.23) that the initial
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carrier observable ambiguity is a real valued quantity.

Thirdly, the so called carrier observable integer-cycle ambiguity N(%,) is an arbitrary integer
which is related to the satellite, the receiver, and the initial epoch. But it does not include any
information on the satellite-receiver distance.

Now let us return to the derivation of L1 and L2 carrier observation equations. As with code
observables, the travel time of the carrier phase signal from a satellite to a receiver is a
function of the satellite-receiver distance and the tropospheric and ionospheric refractions. The
satellite-receiver distance and the troposphere have the same effect on code and carrier
observables, but the ionosphere has an opposite effect on code and carrier observables with
the same magnitude (usually called group delay and phase advance, respectively) [Hofmann-
Wellenhof et al. 1992]. Based on these properties, it follows from (9.2) that

() = %[p(tR)+Vrro(tR)-%TEC(tR)) 9.24)

Substitution of the above equation into (9.21) yields
_f wrog, y 203 ’ s
$(tp) == | PRI+ (tR)-?TEC(tR) +f(dtT(eg)-at (85 1(1R)) +AlGy)  (9.25)

Again let us make use of the symbol ¢ to represent L1 carrier observable and denote the L1
carrier ambiguity by A. Multiplying both sides of (9.25) by A, (note: A, = ¢ / f) and then
adding the L1 carrier observation noise to its right-hand side gives the L1 carrier observation
equation (in metric units)

A,0() = p() +e-(dr (@) -dt “(t-1(@))+ V7 () -1(t)+ 4 Altp) +n (2) (9.26)
with
Alty) = Nty ~F, (v(tg)+dt (1) ~dt o= <(tp))) + &'tg) -6 tp=1Gp))  O2D)
or

Alty) = Nip) ~f,(dE 7)) + 47(y) - $°(5g) (9.28)

Since the L2 carrier observation equation can be obtained by following the same procedure
as for deriving the L1 carrier observation equation, it is directly given below

AB() = p()+e(d (1) -de - (@EN)+ V@) T IO A Al) +i@) 029
with

A(ty) = Np) £, () +dt"(t) = dt *y-70o)) + § ) -7 O30
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or
Ay = Nty -f, (dt"(5) - dt @) + (1) - $°Cty) 9.31)
where

A: L2 carrier ambiguity (cycles)

N: L2 carrier integer-cycle ambiguity (cycles)

It should be pointed out that strictly speaking, the travel time of a carrier signal is different
from that of a code signal and moreover the travel time of an L1 carrier (and code) is
different from that of an L2 carrier (and code) due to the different impact of the ionosphere.
Therefore the symbol 7 in (9.26) and (9.29) should be considered as two different quantities,
representing the travel times of the L1 and L2 carrier signals, respectively. It will be shown
later, however, that it does not make sense to do so here.

9.3 Discussion on some existing approaches to compute the travel time
of GPS signals

In the previous section, code and carrier observation equations were derived. As can be seen
from them, many parameters are included there, for instance, the satellite-receiver distance
which is a function of satellite and receiver positions, receiver and satellite clock biases, and
some other bias terms like ionospheric and tropospheric delays. For most GPS applications,
satellite positions and satellite clock biases, or their approximate values, at the transmission
time of a GPS signal are usually computed by means of either broadcast ephemeris or precise
ephemeris. In order to determine the transmission time of the signal, one needs to know the
signal travel time from the satellite to the receiver.

Several approaches exist for computing the travel time, e.g., using iterations [Remondi 1985]
or using code observations [NATO 1991b]. As we know, an iteration algorithm usually needs
at least one iteration to reach a solution precise enough and always needs another iteration
to check if the iteration procedure may stop. This means that by the use of any iteration
algorithm, the same computations are usually carried out at least three times. Therefore, using
iterations to determine the travel time of a GPS signal is comparatively time consuming
especially when the broadcast ephemeris as such are used. For real time GPS applications,
this method should be avoided if possible.

Generally speaking, using a code observation to determine the travel time is very simple and
thus very efficient, because the code observable is actually a direct measure of the travel time
of a signal from the satellite to the receiver. But sometimes this method may lead to a badly
biased result, which is shown below. In other words, using a code observation to determine
the travel time of a GPS signal can have the advantages of simplicity and efficiency in most
cases but there is always the risk of being affected by gross errors in the code observation.
In addition, this approach has another drawback, that is, the coefficients of linearized GPS
observation equations are functions of code observations, which makes it difficult (if not
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impossible) to correctly compute the covariance matrix of estimated unknowns.

Table 9.1 shows five sequential epochs of observation data in the RINEX format along with
a header, which was extracted from a real data set. The information about the types of
receiver and antenna, the version of RINEX software used, and the like, is given at the upper
part of the table. Columns 1, 2 and 4 of the data in Table 9.1 are L1 code, L1 carrier and L2
carrier observations, respectively. Columns 3 and 5 are the signal strength of L1 and L2
carrier observations. The first row of each epoch record contains the observation time (year,
month, day, hour, minute, and second), the information whether there was a power failure
since the last epoch or not, the number of satellites tracked, and the tracked satellite numbers.
The first row of each epoch record is followed by row(s) of observations, each row
corresponds to one satellite and they have the same sequence as the tracked satellite numbers
in the first row. For more details on the RINEX format, see [Gurtner 1994].

As can be seen from Table 9.1, during the listed first two epochs the code observation of
satellite 20 decreased about 13470 meters, while during the listed second and third epochs it
suddenly increased about 286320 meters. From then on the code observation returned to
decreasing in the rate of about 13470 meters per epoch again. It can he seen from the record
shown in the table that during the listed five epochs, no correction to the receiver clock was
performed. With respect to the change of the corresponding L1 carrier observation, it appears
reasonably stable. No strange behaviour can be found. In the whole period of the listed five
epochs, the rate of the L1 carrier observation is about -70800 cycles per epoch, and moreover
it can be verified that the L1 carrier observations shown in the table change linearly. Based
on these phenomena, what we may conclude for the data is that the sudden change of the
code observation of satellite 20 at the epoch 91 12 8 20 49 14.977 did not come from the
change of the satellite-receiver distance. Instead one gross error as large as about 300
kilometres (corresponding to 1 millisecond) was included in the code observation. From this
example we can see that a gross error as large as hundreds of kilometres may occur in a code
observation, but the code-observation related carrier observation is still good.

Suppose in the processing of this data set one uses code observations to determine the travel
time of GPS signals. As can be easily seen, the travel time of satellite 20 at the epoch 91 12
8 20 49 14.977 will be very badly distorted, so are the satellite position and in turn the
computed satellite-receiver distance. In the case that there is no quality control in the data
reduction, the final results will certainly be seriously biased. Whereas if there.is quality
contro} in the data reduction, then the actually ’good’ carrier observation would likely be
considered to contain a gross error along with the actually 'bad’ code observation, because
the gross error contained in the code observation will be transferred to the difference between
the computed and observed carrier observations. '

9.4 Taylor expansion of observation equations

As has been made clear in the previous section, using iterations or code observations to
determine the travel time of a GPS signal should not be recommended, particularly in real
time high precision GPS applications. To overcome the difficulties in determining the travel
time, this section expands GPS observation equations into Taylor series so that they can be
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TRRINEXO V1.7 ATUB
SA-test 24 hours l-st session

17835260.521
17601283.388
14071693.521
16556729.216
16111506.763

-23950502.894
-22277821.047
-28919769.623
-13505107.855
-22066154.741
15937410.614 -15851628.573
18157028.724 -141667.975
91 12 8 20 48 59.9770000 O
17842071.357 ~23914736.143
17608230.458 -22241299.676
14065605.802 -28951757.091
16552165.208 -13529080.691
16113126.872 -22057626.568
15926445.435 -15909259.855
18143552.427 -212477.551
91 12 8 20 49 14.9770000 O
17848877.529 -23878961.112
17615173.935 -22204760.929
14059534.310 -28983666.571
16547632.779 -13552898.112
16114771.654 -22048982.152
15915500.552 -15966782.933
=> 18429874.654 -283275.373
91 12 8 20 49 29.9770000 O
17855686.888 -23843174.173
17622140.880 -22168201.270
14053478.841 -29015494.659
16543131.091 -13576556.844
16116441.607 -22040215.966
15904573.575 -16024193.930
18416402.591 -354059.290
91 12 8 20 49 44.9770000 O
17862495.318 -23807376.177
17629099.263 -22131618.032
14047435.247 -29047241.976
16538657.755 -13600057.249
16118131.021 -22031323.806
15893670.161 -16081492.957
18402937.904 -424827.216

1 OBSERVATION DATA
09-DEC-91 12:59

WO IRUTIWAONNUINIIWOAOUNINENIWOA WM DUTUTI-IWAa G U 1o Ul ~d

DE18
761 TRIMBLE 4000 SST 4.53
163 TRIMBLE 4000 SST
3924657.3031 301166.7873 5001866.8972
.1630 .0000 .0000
1 2
3 Ccl1 Ll L2
15
1991 12 8 10 46 30.000000
91 12 8 20 48 44.9770000 O

RINEX VERSION / TYPE
PGM / RUN BY / DATE
COMMENT

MARKER NAME
OBSERVER / AGENCY
REC # / TYPE / VERS
ANT # / TYPE

APPROX POSITION XYZ
ANTENNA: DELTA H/E/N
WAVELENGTH FACT L1/2
# / TYPES OF OBSERV
INTERVAL

TIME OF FIRST OBS

6 2 12 21 23 13 20

-18229562.022

-22321439.

-8733940.
-16934272.
-10563524.

(8]

685
868
357
298

[V« W BNe)

6 2 12 21 23 13 20

-18201691.

-22346364.

-8752621.
-16927627.
-10608431.

o

912

982
007
031
767

v oy

6 212 21 23 13 20

-18173815.

-22371229.

-8771180.
-16920891.
-10653254.

204

w

508
026
142
922

noyvww

6 2 12 21 23 13 20

-18145929.

-22396030.608

-8789615.
-16914060.
-10697990.

395

[\~

403
351
753

Ut OV i 00

6 2 12 21 23 13 20

-18118034.

-22420768.

-8807927.
-16907131.
-10742639.

790 3

777 8
396 4
408 6
331 5

.41712

Table 9.1: An example of RINEX data with a gross error in the code observation of

satellite 20 at epoch 91 12 8 20 49 14.977
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solved without computing the travel time.

This section discusses first the expansion of satellite-receiver distances and next that of
satellite clock biases. Finally it gives the expansion of observation equations.

9.4.1 Expansion of satellite-receiver distances

The distance between a satellite at the GPS time £-t and a receiver at the GPS time ¢, can be
written as

p@ = Irse-1)-r' Ol = V<rit—) -r'@, r'¢-1) -r'@> 9.32)

where

s

r’: position vector of the satellite in an inertial coordinate system

r

r". position vector of the receiver in an inertial coordinate system

Note that the travel time T is a function of ¢ and for a receiver-satellite pair, it will be fixed
when the reception time ¢ of the GPS signal is fixed. Therefore, if the reception time ¢ is used
as a variable of the satellite-receiver distance, T has only one variable. But for convenience,
let us define

plty 1) = i) -r'@)l (9.33)

In order to eliminate the travel time T in the expression of the satellite-receiver distance, we
expand p(¢,.t,) into Taylor series as follows

p(tp tz) =P (t:]’ tg)

p<z:’,z;’>+l[(t,-zf); (A KAPYRS

) 3
¥ (’x“?)a—tl H-n )gz 1
(9.34)

with [€,-1)

8|2}

which is equivalent to

et (1)
p(t, 1) =p(th, 1) + 8::1 2 Ary+ 612 22 At,
L1FPELE) o 18R o PeEE)

Af;
1 L+
2 8:,2 2 8t2 1,0,

with At1=(t1_t?)’ At2=(t2_t§)

At Az, (9.35)

Since
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Pt 1) = <ri(ty)-r'@), ri@,)-r')> (9.36)

we have
ap(tl, ) _

l

200, 1) =2<F7(t), ro(2y)-r()> 9.37)

The partial derivatives of (9.37) with respect to ¢, and ¢, read,

ap(t,t) azp(t9 ) oy s r, ST 27

[_3;1—2} p(ty, 1) i 2 (<r @), r°@)-r@)>-<¢"(t), ¥ (tl)>) 9.38)
3p(t,s 1) 3p(ty, ) Ppit,st) s |
Ttllzu_atlz_i Pl 1) an;t T = —<i), P> 9.39)

It follows from (9.37) that
opl,5) 1
o Pl 2)

<F'(t), ri(t,)-r'(t)> (9.40)

and from (9.38) and (9.40) that

Poltuty -1
or Pt t)

<Fr(t1)9 rs(tz) —rr(tl) >-<r r(t])’ 7 r(t1)>

L SP@), r) -r'e) >

p(t,, 1,)*

9.41)

As can be seen from (9.36), (9.40) and (9.41), replacing r°(t,) by (-r'(¢,)) and r’(t,) by
(-r*(t,) along with ¢, by ¢, and ¢, by ¢, in (9.36), (9.40) and (9.41) gives

oplpt) 1
atz p(tptz)

<F(t,), ri)-r'(t)> 9.42)

Fottpty) 1
at22 p(tp tz)

<F(t), rit) -r't)>+<Fty), rt,)>

_ <fs(t2)a rs(tz) _rr(tl) >

p(t, 1)

(9.43)
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Substituting (9.40) and (9.42) into (9.39) yields

Folut) -1 [ ori psys <T@ 0> <P ), ) )>
- 172 2

9.449)
ad,  pltty)| p(t;, 1))

Before we continue our derivations, let us first have a look at the magnitudes of the above
derivatives. Using Cauchy-Schwarz’ inequality it follows from (9.40) to (9.44) that

Iap(tp tz)’ < 1
| a, | Pty 1)

A7) 1r @) -r ) 1= 177 @) | 049
|20, 1) 1 I @I Ir 5(ty) -r @) Peos®

< 177G ) 1P (2,) - 772 I+ 17 72 1P~
l at12 I P(tl, tz) L 2 t ! o, L ¥

R (O
< eI (9.46)

where 8 is the angle between the vectors F’(z,) and r°(t,)-r’(z)).

|9p(t: )| PR

175@) @) ~r @) 1= 175 | (9.47)
I a, | oty 2 2 1 2
Pt PP I (2, -r (2 ) |Peos?0
| Pt )|, 1 1756 Hr(e) -r e b e - ) T oo
| atz | p(tl’ tZ) p(tp tz)
o PGP
< 1P (9.48)

where 0 is the angle between the vectors 7°(z,) and r*(z,)-r'(z,).

|azp(t1,t2)| 1 {17 :S 27 e S,
| anar, | < p(tl,tz)\"r @) 1A L+ I eIl

_ 2IFTE) 1R @)]
ot 1) 9.49)

Denoting the approximate value of the receiver-clock bias by dt’o(t) and its correction by
d(dt’(t)), then

dt'(t) = di"’(9) +8(dt"(t) (9.50)

With varying satellite elevation, the travel time of a GPS signal will change. But it can be
verified that it is in the range of 0.067 to 0.086 seconds, i.e.
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0.067 s < t < 0.086 s 9.51)

Let us assume that the size of the correction to the approximate value of the receiver-clock

bias is less than one millisecond
(9.52)

|8(dt"@)| < 107 s

and choose
t =t t, =t-1 9.53)
=0=1"-dt”, £=(t"-dt")-1° °=0077 s

then from (9.35), (9.53), (9.50), (9.52), and the definition of the clock bias we arrive at:
|Agy| = |6 =8| = |e-2+dt™| = |-dt"()) +de " ()| = |-8(dt" ()] <1075 O59

ALy = Jt,-1] = |e-1 -{¢"-dt” - 1%)] = |-3(dt"(@®) - (c - 1) (9.55)
< [8¢"@)| + |t -1°<102+0.01 =0.011 s

Taking the following values in an inertial coordinate system ([GPS-WG 1992], [NATO

1991a])
IFr@el = 470 2, 1)) = 0.034 2
s s2
s X 9.56
Il = 410° 2, eyl = 0.6 2 (9-56)
p(,1) > 210" m
then we have:
dp @2 £
9P| L | < 470107 = 047 m 9.57)
1
atl
(9.58)

dp(t, 1)

|At,| < 410°-0011 = 44 m
(912
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Fo(E,,
l p(E] 62) Atf 0034+ 4702 (10 3)2 2.2.10-3 m (9.59)
az , 1032
l_MM; < Ho6+810) 160112 < 8510° m (5.60)
2 a2 2 210
Fp(E,
P &) At |Ar,| < 24704 101030011 < 2105 m (9.61)
ot o, 107

Noises of carrier observations are much less than those of code observations, they are usually
in the order of millimetres. In order to replace the original term of the satellite-receiver
distance in a GPS (code or carrier) observation equation by another one without introducing
any errors greater than GPS observation noises, an expression for the distance should be
accurate at the level of a few millimetres. On the other hand, this also means that any errors
less than one millimetre in such an expression can be ignored.

Substituting (9.53) into (9.35) and then neglecting all second-order derivative quantities which
are less than 8.5-10° m gives

p(,1-7) = p(®, t°—t°)--M§gﬁb(dt’)—§%jﬂ[6(dt')+(‘r—1:°)] 9.62)
1 2

Since

Q) = -i—(p(t, t-2(0)) + V(D) (9.63)

where
Ve atmospheric effect resulted from troposphere and ionosphere

inserting (9.63) into (9.62) yields

NI 1 8p(@t°, 1°-1°)
t,1-1) = p(t%1°-1°) - 8(dr ") == + = |p(°, £°-10) - =T — o (s t-
p(t,t-1) = p( ) = 8( )(atl ath( ™) c a, Pt t-1)
(%, £°-1°) gam , 3p(t% 1°-7%) o

a, a,

1
. (9.64)

Let us assume that the sizes of tropospheric and ionospheric delays are less than 15 and 75
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metres (cf. [Saastamoinen 1973] and [Klobuchar and Doherty 1990]), respectively. Then the
size of the atmospheric delay is less than 90 metres for code observations and 60 metres for
carrier observations, since the effects of troposphere and ionosphere on carrier observations
have opposite signs. It follows from (9.58) that

— 1 410°90 = 12107 m, for the code

1 3p(e, to-ro)vm < 2.99’719-108 (9.65)
¢ or, ——————410°60 = 810 m, for the carrier

2.9979-10°

which is negligible. Therefore (9.64) can be rewritten as
0 0
—

p(t, t-1) = p(° t°—r°)—6(dt’)(
1 2

)p(t09 tO_rO)

1 3p(t°, °-1%) ap(t’,1°-1% ,
e LS Y (2 D R AL )
o, pltt-1)+ a, T (9.66)
ie.
1 3p(t° £°-1%) 0 ,0_.0 n 9,0 0 ,0__0
Te==2 = Tio(z, t-1) = p(t% t%-10) - 8(dr ") — + — [p(e®, -
[ p ar, p(t,1-1) = p( 7°) - 8( )at1 atzp( )
+ ap(toa to_to)TO
a, ©.67)
or
13p¢% -t 0 0 0 n 8 . 8 0 ,0_._0
tt-t) = {1+ 2 7 t°,t°-1°)-6(@@t")| — +—{p (% t°-1
p( ) ( - ar, p( ) -6( )at1 3, p( )
0 ,0__C
L 30,10~ )to} 0.68)
o,
Since
0 ,0__0
132D 1 0. 13400 < o (9.69)
c ¥ | 2997910°
we have
1. 180E% 0=\ | 18p(% ") (13p¢% -1 (9)
c a, c o, c o,

By using the following values
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p(%1%-1%) < 210" m

8 9 .
B(dt")| — +— |p(t°, 1°-1%)| < 1073-(470+4-10°) = 4.47
I ( )( a, atz]p( )< o ) - 447 m ©.71)
< 4-10*-0.077 = 308 m

(Gp @, o
at2

substituting (9.70) into (9.68) and omitting the terms less than 5.8:10° m finally result in the
Taylor expansion of the satellite-receiver distance as

p(,t-1) = l—lap(to’ -7 + 19p(t, %1% 2 p(@°, t°-1%)
’ ¢ ot, c ot, ’

0 ,0__0 0,0_
-8(dt") _6_+i (%, 1°-10) + 1_1 dp(e°, "7 )‘ap(t ,t°-1%) 0 (9.72)
o o, c & | &

Note that

* equation (9.72) is valid within the order of 8.5-10° m under the assumption that
the receiver clock bias correction 8(dt") is less than one millisecond in size, i.e.,
[8(dt™)| < 107 s;

* for a receiver clock bemg accurate up to one millisecond, i.e., |d¢"| < 0.001 s,
the approximation dt™ of the receiver clock bias can simply be chosen to be
Zero.

9.4.2 Expansion of satellite clock biases

In addition to the satellite-receiver distance, the satellite clock bias in a GPS observation
equation is also a function of the travel time of a GPS signal. This section derives the Taylor
expansion of it.

Since the satellite clock bias reads

at’@e) = 1°@0) -t 9.73)

we arrive at
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dr*()) = dt‘(t0)+d(L;:@ (t-1y), with [E-1,) < [t-1,|
t=f
s d(t () -
= dr’(ty) R0 gt) ) =E-(t-to)

= dt*(t,) +[‘-h(% - lL'(t—to)
- dr(ty {%@ - 1L (£-1) ©.74)
that is
drs() = dr*(t)) + @%s’(_t) -1 (-g) (9.75)
dr*(r) ,=5

The derivative of the phase ¢°(f) generated by the satellite oscillator with respect to its own
time £°(¢) is the nominal frequency, denoted by f, i.e.,

ay’® _ f 9.76)
ars()

which is a constant. The derivative of ¢°(f) with respect to the GPS time ¢ is the satellite
frequency, denoted by f°(¢), i.e.,

@D _ s 9.77)
dt /@

Inserting the above two expressions into (9.75) yields

drs(e) = dts(t0)+[—} f‘(t)—l} (t-1,)

b
= dt’(to)+fi(‘;—)ir (-1)) (9.78)

or
ar’@) = dt’(to)+ﬁ;@-(t—to), [E-15] < |t-4,] 9.79)

where
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Of(t): satellite-frequency bias

0 ,0_
Replacing ¢ by (¢-1) and #, by [ta—M] in (9.79) gives
c

wrocy = aps0 PESO-0 8P o o019
ars(t-t) = dt*(t ) 7 t-t’-1+ s
c c

(9.80)
1107 . P10
c

E -to‘T + p(toa tO_TO)
c

<

which reads after noticing (9.53) and (9.54) and the definition of the clock bias (dt'= ¢'- £)

dr*-7) = droe0- L) | ) (_5(dt')-r+_p(to—’ to_to)],

¢ f c 9.81)

p(° %1%
c

<|t-10-t+

E-to—T + P(to, tO—To)
c

From (9.62), (9.57), (9.58), and (9.51) to (9.53), we arrive at

r——‘fg—o’—?:ﬁ = %(p(” t-1)-p(t% 1°-1%)

< lﬂ—ap(“’;()‘fo)'la(dt')h

p(°, t°-19)
: ot

(@ + o -<° l}}

o

2

< — 1 (47010 +410°(10+0.01) )
2.9979-1078 9.82)
< 15107 s

It was reported in [Rocken and Meertens 1991] that

0.001 Hz, SA off
2 Hz, SAon

18F°0)| < { (9.83)

Therefore, we obtain for the L1 observable

£5f‘(§)(~zs(d¢').1+ P’ °-1% )
c

i 0.19-2(103+1.5:107)=3.8:10“m, SA on

9.84)

{0.19-10-3(10-%1.5 107)=1.9:10" m, SA off
<

and for the L2 observable
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lfﬁaf’(é)(—a(dr')—f N I ‘°“°’]
4

{0.244-10-3(10'3 +1.51077) 224107 m, SA off
<
2

0.244-2(10%+1.5:107)=4.9:10%m, SA on

(9.85)

As can be seen from (9.84) and (9.85), even in the case of SA on, the size (multiplied by the
speed of light) of the second term on the right-hand side of (9.81) is less than the carrier
observation noises. Thus we may neglect it and (9.81) is reduced to

dt(t-1) = dtS(tO-L(M) (9.86)

Note that

» in the case of SA off (or the size of satellite frequency bias less than 0.001 Hz),
(9.86) is valid within the order of 2.4-107 m, after being multiplied by the speed
of light;

* in the case of SA on (or the size of satellite frequency bias not greater than two
Hz), (9.86) is valid within the order of 4.9-10* m, after being multiplied by the
speed of light.

9.4.3 Expansion of observation equations

Based on the results derived in the previous two sub-sections, the Taylor expansion of GPS
L1 and L2 code and carrier observation equations can be easily obtained as follow

P(®) =c,;p(t° 1°- %) +c,8(dt ’(t))—c-dt‘(tO——e(—tf’—f——To))+V”°(t) +I(f)+cy+e(®) 9.87)
B(t)=c,p(t° 1°- 1) +c, - 8(dt () —c-dzS(z°-"—(’$fl°))+v”(z)+r-1(z)+c +&@)  (9.88)
1 2 c 3

A B0 =, p (8%, 0~ 1) +c, (A7) -c-d (O~ 2L 1)y
c
+V7(0)-1(t) + A, Aty) +c,+n () (9.89)
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A0 =c, %, 10 10+, B(dr (@) -c-de (10 - LL2 L) Z 9,

*VTO() - I(8) + A, Aty) + ¢+ (D) (9.90)
where
- 1-18p¢% 1% (1 8p0% 1°-10)
¢ = 1-=— +| =
¢ or, c a,
0 9 0 ,0_.0
=c-l—+—|p(,t"-
€y =¢C (atl +622) ( t)
e = [1- 180G -1 (% 0<% o 9.91)
’ c 3t2 J at2
0 = 0077 s
2=t -a@”
8(dt'®) = d’'()-dt”

As can be seen from the previous discussion, the above Taylor expansion of GPS observation
equations has the following properties.

* It does not contain the travel time of a GPS signal, therefore, solving it does not need
iterations or code observations for computing the satellite position and the
satellite-clock bias. Because of this, we can save computing time and avoid the impact
of any gross errors in code observations on determining satellite positions, satellite-
clock biases, and consequently on the computed observations.

* It contains only up to first-order derivative terms, thus it is quite simple.

* The expansion makes it possible to determine the exact coefficients of linearized GPS
observation equations.

* The assumptions underlying the expansion are
— the size of the correction to receiver clock biases is less than one millisecond;
— the size of satellite-frequency bias is not greater than two Hz.

9.5 A simplified expression for the partial derivative of satellite-receiver
distances

In the previous section, the formulas were given to compute the partial derivatives of the
satellite-receiver distance, which are included in the Taylor expansion of GPS observation
equations. The details of the computation can be found in [Jin 1995b]. Although there is no
problem using the formulas as they are, we will show below that for most GPS applications
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the computation of the partial derivative of p(¢,.£,) with respect to ¢, can be further simplified.
Define

r,: position vector of a receiver at the WGS 84 system (body frame)

Q: angle of the x-axis of the WGS 84 system with respect to the x-axis of the convention
inertial system [King et al. 1985], [Seeber 1993]

Q : angular velocity with which the WGS 84 system rotates around the z-axis of the

e
inertial system

Then the position of a receiver in the inertial system reads

r'@ = R(-Q@) r,(®) (9.92)
where
QW = Q,t (9.93)
cosQ -sinQ 0
R(-Q)=[sinQ cosQ 0 (9.94)
0 0 1
Since
PO = o xr @)+ Ry(-Q@)F,®) (9.95)
where
w,=[00 Q[ (9.96)

(see [Jin 1995b]), substituting (9.95) into (9.40) gives

op (et -
P, 15) = 1 <@ xr +Ry(-Q)F,, r*-r">
ot P, 1)
= ———{<,xr",r*>—<w,xr, "> +<Ry(-Q) ), rS-r">) 097
P, 1)

since w,xr" is orthogonal to r’, i.e.
<w,xr’,r’>=0 (9.98)

op(t,, 1)

As can be seen from (9.64), the partial derivative only appears in the coefficient
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of the correction to the receiver clock bias in the Taylor expansion of GPS observation
equations. For most GPS applications, a receiver is either static or moving with speed of less
than 100 m/s in the WGS-84 coordinate system. As we know, for dynamic GPS applications
the sampling interval is generally quite small (a few seconds), therefore in this case it may
be possible to have an approximate value for the receiver clock bias that is accurate up to
10 seconds. Based on these properties, we may assume

1751 = 0
or (9.99)
171 < 100 ™ and |8(d:")| < 105 s
Ry

Thus

|<R(-Q)7),re-r"> s < RO -rI

8(dt)| = |, | |8dt”
| e | oy @Dl =Ilida@n)

< 1001107 = 1023 m _ o (9.100)

which means that the last term in (9.97) is negligible when computing the partial derivative
op(t;, 1))

1
arrive at

for the Taylor expansion of GPS observation equations. Therefore, using (9.98) we

opl,2) -1

<w, xr’, r¥> (9.101)
ot p(t;, 1)

Defining the satellite-position vector r* and the receiver-position vector r” in the inertial
system as

re=[xtyt ) (9.102)
yro= [xr yr zr]*
it follows that
w,xr’ = Qe[—y' x" 0f (9.103)
<w,xr’, r¥> = Qe(—y’x‘+x’y-’) (9.109)
we finally arrive at
3p(e,, ¢ Q
P, t) e _(yrx®-xTy?) (9.105)

o, p(t;,2,)
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There is: one remark on the size of corrections to receiver clock biases. Based on some
numerical results of Trimble 4000 SST receivers, it was found that the maximum rate of the
receiver clock bias is less than 5-107. In this case if the estimate of the receiver clock bias
at epoch k-1, denoted by dt '(t,‘_l), is used as the approximate value of the receiver clock bias
at epoch k, i.e. choosing

@) - d'e, ) (9.106)

then even for a sampling interval of 20 seconds, the correction to the receiver clock bias is
less than 10”° seconds, because

8@t " @) = |de’e)-dt" ()| = |dt"e) -, )|
< 510720 = 107 s (9.107)

Of course, the size of 8(dt"(¢,)) may vary from receiver to receiver and even from time to
time, depending on the stability of the receiver clock. But for most dynamic GPS applications,
the sampling intervals are certainly shorter than 20 seconds and moreover the approximate
value of the receiver clock bias can be further improved by predicting it for the current epoch
instead of choosing its estimate at the previous epoch. In short, inequality (9.100) will be
valid in most GPS applications, therefore (9.105) can be used in general.

9.6 Concluding remarks

Based on the discussions and results in the previous sections, some important points are
summarized below.

* An alternative derivation of carrier observation equations is given. The main
difference between this derivation and many others is that no assumptions are made
on the stability of satellite clocks. In addition, this derivation can clearly show what
a carrier observable ambiguity consists of, so that one can exactly know what is
cancelled in single, double or triple differences of carrier observations.

* It is proved that GPS observation equations can be expressed in the Taylor
expansion which contains only up to first-order derivative quantities.

* Since the Taylor expansion does not contain the travel time of a GPS signal, solving
it does not need iterations or code observations for the determination of the
transmission time of the signal. As a result, the use of the Taylor expansion can save
computing time and can avoid the impacts of any gross errors in code observations
on determining satellite positions and satellite-clock biases, and consequently on the
computed observations. In addition, it makes it possible to determine the exact
coefficients of linearized GPS observation equations.

* The main assumptions underlying the Taylor expansion of GPS observation equations
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are
— the size of the correction to receiver-clock biases is less than one millisecond;
— the size of satellite-frequency biases is less than two Hz.

Two remarks are worth making. First, the Taylor expansion of GPS observation equations has
been used in a DGPS positioning system, which is based on the algorithms for carrier
adjusted DCs and for carrier adjusted DGPS positioning. It has been shown that this approach
works well. Second, many numerical checks have been carried out by computing satellite-
receiver range using two different approaches. One is the above Taylor expansion algorithm
and the other is the algorithm based on code observations. It was found that the differences
between them were about 10” metres.







Chapter 10

Conclusions

This research has derived a new algorithm for the generation of carrier adjusted DCs. The
new algorithm has some distinct features. First of all, this algorithm directly uses code and
carrier observations in the measurement model of a Kalman filter, so that the
measurements are not correlated in time if code and carrier observations can be assumed
to have no time correlations. This makes it possible to use a simple stochastic observation
mode] and to use the standard algorithm of the Kalman filter. Secondly, the algorithm
accounts for biases like multipath errors and instrumental delays in code observations. It
explicitly shows how code biases affect carrier adjusted DCs when dual or single
frequency data is used. Thirdly, the algorithm can be easily integrated with the DIA
quality control procedure, so that the quality of the estimated states can be guaranteed
with a certain probability. Fourthly, in addition to generation of DCs, it also produces the
change of ionospheric delays and that of code biases with time. It can, therefore, be used
to investigate properties of ionospheric delays and code biases. Finally, all state estimates
including DCs are not affected by the opposite influence of ionospheric delays on code
and carrier observations.

By using dual-frequency data with a sampling interval of one second, the dynamic
behaviour of SA clock errors and that of ionospheric delays can well be modelled by
quadratic and linear functions, respectively. The modelling accuracy can be within a few
millimetres.

Code biases were found and they may behave linearly and periodically with time. For the
same receiver, code biases related to different satellites may have different behaviours and
those related to the same satellite but observed at different frequencies (i.e. L1 and L2)
may also behave differently.

Model testing experiments with simulated errors showed that cycle slips as small as one
cycle can indeed successfully be detected and identified in real time. The DIA quality
control procedure allows for detection and identification of single as well as multiple
model errors. However the mean of the LOM test statistic is always smaller than its
expectation, and the reasons need to be further investigated.

Based on carrier adjusted DCs, it has been shown that with increasing DC latencies, the
accuracy of DC prediction decreases quadratically when SA clock errors are present and
linearly when SA clock errors are absent. For latencies within 5, 10 and 15 seconds, the
accuracies are usually within 0.05, 0.2 and 0.5 m, respectively. Using DC-acceleration
estimates in the DC prediction can improve or worsen the accuracy when SA clock errors




128 Theory of Carrier Adjusted DGPS Positioning Approach

are present or absent, respectively. But the deteriorated accuracies related to satellites
without; SA clock errors are still better than the improved ones related to satellites with SA
clock errors. For latencies within 15 seconds, the accuracy of DC prediction based on DC-
acceleration estimates can usually be reduced to below 0.2 metres.

By the use of code predicted residuals, the relationship between satellite elevation and the
precision of GPS code observations was investigated, on the basis of data collected by
TurboRogue SNR-8000, Trimble 4000 SSE and Trimble 4000 SST receivers. It turned out
that the decrease of GPS code precision with decreasing elevation is very obvious at low
elevations. When satellite elevation increases, the precision becomes more and more
stable. The relationship between satellite elevation and the precision of code observations
can quite well be modelled by an exponential function of the form y=agta,-exp{-x/x,},
where y (the RMS error), a, and a, have units of metres, and x (elevation) and x, are in
degrees. For different types of receivers and different types of code observables, the
parameters a,, &, and x, may be different.

An algorithm for carrier adjusted DGPS positioning has been developed. This algorithm
can be applied at a mobile site when code and carrier observations are available. The
algorithm directly uses code and carrier observations, rather than carrier filtered code
observations, as input, therefore the stochastic model of observations can be easily
specified. The algorithm can be applied in the case that the dynamic behaviour of mobile
positions and receiver clock biases can or cannot be modelled. In the former case, the
algorithm provides recursive estimates of mobile positions, whereas in the latter case, it
provides instantaneous estimates of mobile positions. Since in the use of the algorithm
there always exist redundancy, the algorithm can particularly well be integrated with a real
time quality control procedure so as to ensure the quality of position estimates with a
certain probability.

Based on data collected at two stations, which were 100 km apart, DGPS positioning
experiments have been carried out by using the algorithms for carrier adjusted DCs and
for carrier adjusted DGPS positioning. When dual-frequency data was used at both
reference and mobile stations, half-metre instantaneous positioning accuracy was achieved.
‘When the data used at the mobile station was replaced by single-frequency data (L1 code
and carrier), the accuracy was still better than 7.5 decimeters. It was shown that the use of
an elevation-dependent standard deviation for code observations can improve DGPS
positioning accuracies and that it is more important to use dual-frequency data at a
reference station than at a mobile station.

When ephemeris errors, vertical ionospheric delays, and vertical tropospheric delays are
less than 10, 4.5, and 2.6 metres, respectively, using three reference stations in a 500x500
km’ area can reduce the effect of ephemeris errors to one decimeter, jonospheric delays to
less than two decimeters, and tropospheric delays to less than 2.5 decimeters. If a
tropospheric delay model is used, the tropospheric delays can be further reduced to less
than one decimeter.

GPS observation equations can be expanded into Taylor series which contain only up to
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first-order derivative quantities. Since the Taylor expansion does not contain the travel
time of a GPS signal, solving it does not need iterations or code observations for the
determination of the transmission time of the GPS signal. As a result, the use of the
Taylor expansion can save computing time and can avoid the impact of any gross errors in
code observations on determining satellite positions and satellite-clock biases, and
consequently on computed observations. In addition, it also makes it possible to determine
the exact coefficients of linearized GPS observation equations.
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Appendix A

Dynamic model with
a constant acceleration or velocity

This appendix derives the dynamic model with a constant acceleration and the dynamic model
with a constant velocity.

A.1 Dynamic model with a constant acceleration

Let S(?) be a random process and its third-order time derivative, denoted by S(0), be a zero-
mean white noise process with constant spectral density gg. It follows that

E{S(0) = 0 4D
E{SS@+1)} = 0g5(1) = g8(1) A2
where g has unit of m?s’ and §(1) is the delta function with the property

[T6@®8(-xdx = Glxp A3

if G(x) is a finite-valued function which is continuous at x = x, [Gelb 1974].
Obviously

§@) = Sty + fto's“(r)dc (A4

thus it follows that
. . t e
SO = ¢+ [ Sxy)dr,
)

= S(t,) +S(t,) -1 + f; 'ft " $(r)drdr, (A.5)

which in turn results in
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S@ = S@,) + fto " 8(z,)dr,

. . Ol @ A6
=S(t,) +S(t,)t-t,) + %S(to)(t—to)z * fz: f'o : flo' S(t)ddr dr, A8

Before continuing the derivation, a formula of transforming a double integral to a single
integral is introduced [Teunissen 1990c].

For any continuous functions f’(x) and k(x), with f "(x) the derivative of f(x) with respect to
x, we have:

[ reorwar = [fohw], - [ 1@k ea A7)

It follows then by substituting

fO)=x, h(x)= fto * u(y)dy A8
into (A.7) that
[ [ uordyete =t uray - [ euten 49
or
[ S wordvaz= [ e-muyax (A.10)

Applying (A-10) to (A.5) and (A.6) gives
S® = S(t) +St) (e-1,) + f‘o "(t-1)S(r)de (A.1D)
G = 5¢,) +s'(to)(z—to)+%s"(to)(z—:o)2+ [ epStepaegr, (412

The double integral in (A.12) can be transformed into a single integral as follows. Since

[ Gyme)Ste e ds, = [\ 8 e i, - [ St pdeds, (413

it follows with (A.10) that
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f,tf,otz =St )dedr, = [ (-8 (A.14)

and with integration by parts that

2 2
Ty Ty AT
[ f o Stdr ], - fto ~ Ste)dz,

f t1:2 f’:zﬂtl)dfld‘rz
)

e 12 .

= -2_-[:0 S(t)dt —];0 E—S(t)d‘c

WP RN
> f'o (2-t)S()dx (A.15)

Substituting (A.13) together with (A.14) and (A.15) into (A.12) yields

S@ = S@ty) +S(te)2-1) + %S'(to)(t~to)2 + % [ t-oSt)ds (A.16)

Usually people are interested in the state transition equations from time £, to ¢, and the
corresponding covariance matrix of system dynamic noises, £, and ¢ in the above expressions

are replaced by ¢, and £, respectively. From the results of (A.16), (A.11) and (A.4), we
arrive at

1,2 -
s oAn ARl | Lo
Sk = Sk-l + f 2 J dt
g Loy |2 ) gens A.17)
i 1 :: S
X, T x.
Qi1 ! %
It follows with (A.1) that
Eld) - 0 (A.18)
and with (A.2) that
E{dd’} = [*[*Q, dtdt (A.19)
{d g} f‘H f,HQn 207

where
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[1
Z(tk_Tl)z(tk_Tz)zqs'b (72_11)

%(tk‘fl)zqs'a (12‘11)

By using (A.3) it follows that

_f’k
L,

k-1

L

Inserting (A.21) into (A.19) then yields
(1

20
1

Eldd) = | 3

& (5 _ fuf=
ftH f'k_lQ“drzdtl - [ N " 0ydr ds,
(%(tk_Tl)z(tk_TZ)zqs'

1

E(tk_Tl)qu'

(1

2_0(tk'tk—1)5qs'
1 1

= E(tk_tk-l)4q§ g(tk_tk-l)aqs'

1 1
g(tk_tk—l)aqs' E(tk_tk—l)zqs" A AN T

1

-t )gs6(t,-1)

At,qu—

1

SYM.

= %(tk_r D(t-1)868(8,-8)  (1,-1 )t~ 7,)a58(t, 1)

SYM.

R N P R Ay

(tk -T 1)‘15" qs

SYM.

SYM.

In addition, it can be seen from (A.2) and (A.3) that
E{d,d)} = 0,

k#1

qs‘5 (72 -7 1)
J

(A.20)

dt,

(A21)

(A.22)

(A.23)
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A.2 Dynamic model with a constant velocity

Assume S(¢) is a random process and its second-order time derivative, denoted by §(t), is a
zero-mean white noise process with constant spectral density gy, i.e.

E{ S(t)} =0 (A.24)
E§0)St+0)} = 0g(7) = g58(1) (A25)

where g¢ has unit of m%/s’.

Based on the above derivation, it can be easily seen that the dynamic model with a constant
velocity reads

Sk] |t A [S;_l} [ (t,c—_.t)s"(t)} @
Sy 1 |18k1] " Jwa| S (A.26)
- [ S———————
xk (Dk,k-l xk—l dk
E{d} =0 (A.27)
1,.3
gAt,‘qj SYM.
E{dkd;) = . , (A.28)
EAtqu' Atkqf
E{dd’} =0, k=l (A.29)






Appendix B

Zero correlations between
dynamic noises and estimate
errors of differential corrections

According to (7.8), the dynamic noise w i(tk) of DCs is a function of dynamic noises of DCs
from time %, to ¢,. It follows from (7.5) that p'l(tDC) is the error of the estimated DC at time
tpc and is, therefore, a function of measurement noises and dynamic noises of DCs from the
initial time of the filter to the time #,.. Since measurement noises are assumed to be
uncorrelated with the dynamic noises, any correlation between w ‘(¢,) and p'l(tDC) can only
result from the correlation between the dynamic noises in them. As we know, a DC is the
sum of an ionosphere-free DC and an ionospheric delay. Thus, a dynamic noise of a DC
consists of a dynamic noise of an ionosphere-free DC and that of an ionospheric delay. In the
generation of DCs, we assume that the dynamic noises of both ionosphere-free DCs and
ionospheric delays are white noises, which means the noises are uncorrelated, if they are not
related to the same time interval. Since the dynamic noises contained in w(#,) is related to
the time interval from £, to £, and those in p,'l(tDC) is related to the time interval from the
initial time of the filter to ¢, thus there is no correlation between w(t,) and p,'l(tDC). In the

same way we can proof the zero correlation between w(t,) and p'z(tDC).






Appendix C

Carrier adjusted DGPS positioning
models based on dual frequency data

Chapter 7 derived the carrier adjusted DGPS positioning models based on L1 code and carrier
observations. This appendix shows how to adapt the positioning models when L2 carrier and
code observations are also available.

C.1 The case of L1 code and carrier plus L2 carrier observations

Let us define the combination of the ionospheric delay and the L2 carrier ambiguity as

fig,) = I‘(tk)+%lzl\7i (C.1)
and denote
Pia)-cdt"(t)-Vi)-0" ) €l,) -1,
Y = |M0'e)-cdt’(6)-Vja)-p 0|, e = |n'e)-wit) (€2)
M@ -cdt(6)-Vie) -0 @) i) -1't,)
'a i° i° i
p' () 0 I’ (t,) 0 dp' ;) 610
ox, ox, ox,
Al = RG o RE o R,y (C3)
ox, ox, ox,
9" () 0 9p" () 0 X 0
ax, 6x2 ox, ]

Then the measurement model reads



148 Theory of Carrier Adjusted DGPS Positioning Approach

00 0

Ay | |20 0

@) 0 0 -(1+n)

y @) 0 0
y,  |AT@) | 20

| 0 0 -(1+n) il(.tk)

[Ax,(2,)]
Ax,(t)
Ax,(t,)
AZ,(t)
1] Axy(t,)
Axy(t,)
c-81(t,)
cd Tttk) e 1(t,c)
it @) e™(t,) (C49)

ey | ——

0
0

with

Efe,} =0
oi+o;’,(tk) SYM.
oé"(tk) 012-' +°é’l(tk)
0t 04il) O3+TLt)

E{ee)} = 8,

and the dynamic model reads

I"@,)
"e)
| 17y |

—
Xg

(C.5)

(C.6)

0+ 0ga(t) SYM.

2 2.2
ov',,(tk) on+ov',,(tk)

2 2 2 2
ov',,(tk) ov’,,,(tk) o,-‘+u\,/,',,,_
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where

with

Fy

da,)
Fe d,)
Fk xk-l+ dl(tk)
F, :
k dm(tk)
"
5 d
F, k
q)k,k—l
1 Az, O
F,=10 1 0
0 At, 1
E{d} = 0
Sk
qf Sk
sk
E{d’ﬂ;} = 6“ qesk
a;S,
arS;

where

(o))

(C8)

(C.9)

(C.10)
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LA SYM.
3
< 1,2
S = 304 A (€.11)
1,3 1,5 1,4
g Lag Las
37 F 27k 37K

Note that the variance of DCs is usually much greater than the variances of L1 and L2 carrier
observations, i.e., oé,(tk) > of' and oé . This makes then the error covariance matrix E{e,e,"}

become numerically singular (i.e. non-invertible). Therefore, when solving for the state vector,
the so-called B-form recursive formulas should. be used, instead of the A-form ones
[Teunissen 1990c].

C.2 The case of L1 and L2 code and carrier observations

Let us define

Pi(t)-cdt x.a(tk) _vri(tk) - pio(tk) AN
M) -cde (1) -V -p"(t,) e (1)

i 1) = -, ) U ) , ei t) =|_, }
Y 2,8’ -cde () -0ty ¢ AC)-1'0)
Blay-cdt’t)-Vie)-0'w) E)-wiey)
{ap'”(zk) 0 ap'y) 0 ap" ) 010
ox, ox, o,
o o °
9" (t,) 0 op" (z,) 0 op' (1) 010
Al = aoxl % % (C.13)
3’ ap”(t 3’
p(k)0 p(,,)o p(,‘)o'10
ox, ox, ox,
ap™(t '@ 9p’(
p(,‘)0 p(,,)o p(k)010
ox, ox, 0x,

Then the measurement model in this case reads
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Ax,(z)
Ax (t,)
Ax,(z)
AX,(2,)
0 0 0 0 1Ax,@,)

AXx,(t,)

20 0 0 fa

Al(tk)| 0 0 —(ler 0 c~67"(tk)
1+ C'ﬁT(tk)

') 00 o0 i === | [ele
folEl e I'ey |+ ¢
Y 00 o o] f'e| "
20 0 olil'e|
00 -(1+n 0 || I'tY

00 0 r1ff_°
— 1@,
A, ")
)
| 1) |

B

yk A m(tk) I

(C.14)
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Ias SYM.
3
a8 4
5= 12 (C17)
1,3 1,2 1,.3
—Ar, —At, —At
3°k gk 3Tk
1,3 1,2 1,3 1,3
—Ad ZA ZAP ZAr
R A A






Appendix D

Four identities and
variation of 22 with zenith distances

!

cos Z

D.1 Proof of

p = arcsin{cosBcosE} 0<6O<m and OsEs% (D.1)

Figure D.1 illustrates the geometric relationships among a reference station, a user station, and
a satellite, where

Satellite

reference station

user station

satellite elevation

horizontal angle of the line PS with respect to the line P\P

distance between user station P and reference station P,

angle between the line PP and the line orthogonal to the line PS through P,
projection of S on the horizontal plane through P

: projection of § on the direction P to S

projection of 8 on the direction P to S’

“XoomyYu

o o

[N

Figure D.1: Geometric relationship among two
stations and a satellite.
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It follows from the figure that

5,
8,

. m
bsmp. OSHSE (D.Z)
dcosO 0<O<m

Since &, is in the vertical plane consisting of the three points S, §” and P, it is orthogonal to
the horizontal line §;. Thus we arrive at

37 = 82-8?

(8 cos p)? - (8 sin6)2

82[(1-sin’p) - (1-cos?6)] D.3)
82cos® - 8%sin’p

8;-8>

which means that 3, is the projection of 8, on the direction P to S, i.e.

8, = 8,cosE D.4)
Inserting (D.4) into (D.2) yields
sinp = cos@cosE 0<O<m and OsEs% (D.5)
from which (D.1) follows.
D.2 Proof of
Afj -Ar; =0 (D.6)

As can be seen from Figure D.1, when E=0, we have p = % ~ ©. This results in
cosp = sinB {D.7)

Without loss of generality, let us assume the x-axis of the local coordinate system directs the
satellite from reference station 1 (i.e. the master station). Then, we have
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él,jcosp.l’j = Ay
cSl’zcosp,l,2 = Ay, (D.8)
8, ;cosp;; = Ay,

Since
-1
Ax, Ay, i 1 Ay, -Ay, (D.9)
Ax, Ay, Ax,Ay,-Ay,Ax,|~-Ax, Ax,
we have
-1
dcoso Ax, Ay,| 7[5, ,cosp
AF-Ar, = 14-8. .co .+ [Ax, Ay. 1.2 1.2
B "1 { 1,08y ; * [Ax; Ay)) Ax, Ay,| [813905H,
Ay, -A
_ dcosa, Ays [Ax; Ay)) Y3 Y2|| Ay,
r 7 Ax,Ay,-Ay,Ax,|-Ax, Ax, ||AYs
dcosa Ax; Ay, 0
= 1_ij+ 25 L) -Ax,Ay,+Ax,Ay
r Ax,Ay,-Ay,Ax, 38Y,Taka),
dcosa, 0
T T {’ij+[ij Ayi][l”
-0 (D.10)
D.3 Proof of
~ . . R . . R .
Ip = R|arcsin{———sinz} -arcsin{——sinz} (D11)
R+h R+r

It can be seen from Figure D.2 that

LP,SO = arcsin{—Xsinz} (D.12)
R+r
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Figure D.2: Zenith distance at the ionospheric point.

LP,OS = 2’ - LP,SO

., R . (D.13)
= 2’ -arcsin{——sinz}
R+r
Since
. R .
f = D.14
sinz' = —"sinz (D.14)
(see, e.g., [Hofmann-Wellenhof 1992)), we arrive at
Ip = R/P,OS
- R(z’ —arcsin{isinz})
R+r
=R arcsin{—R—sinz} -arcsin{—g—sinz}
Reh Rer (D.15)
D.4 Proof of
Alp = R-AB-cosz ! - ! (D.16)
b ((R+h)2 _stinZZb)lﬂ ((R+r)2 _RZSiHZZb}IIZ .

It follows from (D.11) that
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Alp=Ip,-Ip,
. R . ., R . . R . ., R .
=R(atcsm{ msmza} —arcsin{ E;smza} -arcsin{ msmzb} +arcsin { Esmzb})
(D.17)

As can be seen from Figure D.3, AS and BS can be considered parallel lines, due to the great
heights of GPS satellites. Therefore we have

z = Zng D.18)

Thus

Alp = R arcsin{ilfzsin{Zfé—:;}}—arcsin{%sinzb}
~arcsin{ %sin ‘ng} } +arcsin{ F}E; sinzb}] (D.19)
Assume

y = arcsin{asinx} (D.20)

then

arcsin{asin{x +Ax}} = arcsin{asinx,} +Q ‘Ax for small Ax
e=x

= arcsin{asinx,} L 2% p, D.21)

(1 -a 2sinzxo) n

Figure D.3: Difference of zenith distance at
the ionospheric point between two stations,
after [van der Marel 1993].
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By using the above result, it is easy to see (D.16) is valid.

D.5 Variation of —AQL, with the zenith distance
coszZ

Figure D.4 shows the variation of Alp with the zenith distance, on the assumption that the

1

cosz
distance between stations A and B (see Figure D.3) is 1 km. As can be seen from (D.18),

Alp
cosz’
corresponding value in the figure by the distance with units of kilometres. From the figure

when the distance is not 1 km, then can be simply obtained by multiplying the

we can see that AIp, reaches its maximum at the zenith distance of about 70°.
cosz

1

dip / con(z) {km)

0.5
T

2 m % %
2 (deg)

Figure D.4: Variation of Alp/cos 7/, where the

distance between stations A and B is 1 km.




Samenvatting

Met fasemetingen ondersteunde DGPS plaatsbepaling:
theorie en experimentele resultaten

Door het gebruik van DGPS worden systematische fouten in GPS waarnemingen aanzienlijk
gereduceerd of zelfs ge&limineerd, resulterend in nauwkeurige relatieve posities. Er is daarom
veel aandacht besteed aan DGPS in tal van real-time toepassingen. De prestaties van een
DGPS plaatsbepalingssysteem hangen af van de volgende factoren: 1) het genereren van
differentiéle GPS correcties op een bekend DGPS referentiestation; 2) het versturen van de
correcties naar een mobiel station; 3) het berekenen van de posities van het mobiele station.

In deze dissertatie wordt een nieuw algoritme ontwikkeld voor het genereren van differenti€le
correcties. Het algoritme heeft enkele specificke eigenschappen. Ten eerste gebruikt het de
oorspronkelijke code- en fasewaamemingen als invoer voor het waarnemingsmodel van een
Kalman filter. Indien de oorspronkelijke waarnemingen niet gecorreleerd zijn in de tijd, zoals
algemeen wordt aangenomen, kan van een eenvoudig stochastisch model voor de
waarnemingen worden uitgegaan en kan gebruik worden gemaakt van de
standaarduitdrukkingen voor het Kalman filter. Ten tweede brengt het algoritme de effecten
in rekening van systematische fouten, veroorzaakt door multipath en instrumentele
vertragingen, in de codewaarnemingen. Deze effecten kunnen expliciet worden aangetoond
in de differentigle correcties, gegenereerd met een- of twee-frequentie data. Ten derde kan het
algoritme eenvoudig worden geintegreerd met een procedure voor het waarborgen van de
kwaliteit van de geschatte grootheden. Ten vierde worden naast differenti€le correcties ook
de veranderingen in ionosfeer en de systematische fouten in de codewaarnemingen geschat
als functie van de tijd. Het algoritme kan daardoor ook worden gebruikt voor nader onderzoek
naar de eigenschappen van deze grootheden. Ten vijfde worden alle geschatte grootheden niet
beinvloed door het tegengestelde effect van de ionosfeer op code- en fasewaarnemingen.

Gebruik makend van data van TurboRogue SNR-8000, Trimble 4000 SSE en Trimble 4000
SST ontvangers is de relatie onderzocht tussen de elevatie van de satellieten en de precisie
van de codewaarnemingen. De verslechtering van de precisie blijkt het duidelijkst bij lage
elevaties. Wanneer de elevatie toeneemt, wordt de precisie steeds stabieler. De precisie van
de codewaarnemingen als functie van de elevatie kan worden beschreven door de exponenti€le
functie y=ayt+a, exp{-x/x,}, met y (de precisie), g, en a, in meters en x (de elevatie) en x; in
graden. De parameters a,, g, en x, zijn afhankelijk van het type ontvanger en de gebruikte
codewaarnemingen.

Voor code- en fasewaarnemingen, verzameld met een waarnemingsinterval van een seconde,
kan het dynamisch gedrag van de satellietklokfouten (behept met de effecten ten gevolge van
Selective Availability) en de ionosfeer worden beschreven door respectievelijk een
kwadratische en een lineaire functie. De nauwkeurigheid van deze modellen is in de orde van
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grootte van enkele millimeters.

Behalve voor het genereren van differenti€le correcties op een referentiestation, is ook een
alternatief algoritme ontwikkeld voor de bepaling van de posities van een mobiel station. Dit
algoritme kan worden gebruikt indien zowel code- als fasewaarnemingen beschikbaar zijn.
Ook hier worden de oorspronkelijke waarnemingen gebruikt in plaats van bijvoorbeeld enkel
de met de fasewaarnemingen gladgestreken codewaarnemingen, zodat een eenvoudig
stochastisch model kan worden gebruikt. Het algoritme kan zowel worden gebruikt voor het
geval dat het dynamisch gedrag van positie en klok van de ontvanger kan worden
gemodelleerd, als voor het geval dat dit niet zo is. In het eerste geval levert het algoritme
gefilterde schattingen van positie en ontvangerklokfout, in het tweede is het resultaat een
schatting van de instantane waarden van deze grootheden. Het algoritme kan worden
geintegreerd met een real-time procedure voor kwaliteitscontrole. Doordat in dit algoritme
altijd overtalligheid aanwezig is zodra een positie kan worden bepaald, kan de
kwaliteitscontrole zelfs worden uitgevoerd wanneer slechts vier satellicten worden
waargenomen.

Met behulp van de data, verzameld op twee stations op 100 kilometer afstand van elkaar,
wordt aangetoond dat een positienauwkeurigheid van een halve meter kan worden
gerealiseerd, wanneer zowel op het referentie- als op het mobiele station L1 en L2 code- en
fasewaarnemingen worden gebruikt. De nauwkeurigheid neemt af tot 0,75 meter indien op het
mobiele station slechts L1 waamemingen aanwezig zijn. Het gebruik van een stochastisch
model voor de codewaarnemingen dat afhankelijk is van de elevatie van de satellieten draagt
bij tot een verbetering van de positienauwkeurigheid. Verder is het gebruik van
twee-frequentiewaarnemingen belangrijker voor het referentiestation dan voor het mobiele.

Indien een netwerk van referentiestations beschikbaar is, is het mogelijk een correctievector
te berekenen, waarmee de effecten in GPS waarnemingen ten gevolge van baanfouten, de
jonosfeer en de troposfeer kunnen worden gereduceerd. Voor een gebied van 500x500 km?
met drie referentiestations bedragen de restfouten respectievelijk minder dan een decimeter,
twee decimeter en 2,5 decimeter.

De waarnemingsvergelijkingen voor GPS code- en fasemetingen kunnen worden ontwikkeld
in een Taylorreeks met ten hoogste eerste orde afgeleiden. Doordat in de Taylorreeks de
reistijd van het GPS signaal niet voorkomt, is het niet nodig gebruik te maken van iteraties
of codewaarnemingen voor de bepaling van het tijdstip van uitzenden van het signaal.
Ontwikkeling in een Taylorreeks resulteert daarom in een vermindering van de benodigde
rekentijd en vermijdt de invloed van blunders in de codewaarnemingen op de bepaling van
satellietposities en -klokfouten en dus ook op de berekende waarnemingen.
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Propositions
Xin-Xiang JIN

1) Compared with other existing algorithms, the new algorithm for carrier adjusted
differential corrections, which is introduced by this thesis, has the property to provide
optimal solutions under certain conditions. (this thesis)

2) The real-time DIA quality control procedure can be well used at a DGPS reference station
to monitor GPS performance and to detect model errors in GPS observations. When a
good external clock is used at the reference station, cycle slips as small as one cycle in
carrier observations can be detected and identified. (this thesis)

3) The algorithm for carrier adjusted DGPS positioning can be used at a DGPS mobile
station when the dynamic behaviour of receiver clock biases and mobile positions can or
cannot be modelled. In the former case, the algorithm provides recursive solutions of the
positions. In the latter case, the algorithm provides single-epoch solutions. (this thesis)

4) When ephemeris errors, vertical ionospheric delays, and vertical tropospheric delays are
less than 10, 4.5, and 2.6 metres, respectively, using three reference stations in a 500x500
km? area can reduce the effect of ephemeris errors to one decimeter, ionospheric delays
to less than two decimeters, and tropospheric delays to less than 2.5 decimeters. If a
tropospheric delay model is used, the tropospheric delays can be further reduced to less
than one decimeter. (this thesis)

5) GPS observation equations can be expanded into Taylor series which contain only up to
first-order derivative quantities. Since this Taylor expansion does not contain the travel
time of a GPS signal, solving it needs neither iterations nor code measurements for the
determination of the transmission time of the GPS signal. (this thesis)

6) Assumptions like normal distribution and uncorrelation are sometimes incorrectly
interpreted as facts in data processing.

7) Success often depends on both one’s effort and good luck. One should first do his/her
best for his/her ambition and then wait for the chance to come.

8) The more one learns, the less one may find he/she knows.

9) Quite often, the more simple a word or a concept, the more difficult to explain and to
define.

10) Having happy life may only mean that one is satisfied with his/her life and does not
necessarily mean the possession of a beautiful house, a luxurious car, and etc. It may be
correct to say people have better life now than tens of years ago, but it may not be correct
to say people have more happy life now than tens of years ago, since it seems nowadays
people have more to complain.

11) That one needs a job is not only for earning money but also for making life joyful.






