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Abstract

This report presents a Proof of the uniqueness of a

parallel three-dimensional shear flow in a Channel with

arbitrary cross section Where the speed of the flow is not

leas than the highest critical speed. The investigation

also includes a two-dimensional analysis in Which it is

assumed that While, the flow velocity Varies with the depth,

the density also depends on the depth; and for-this case

the development leads to a formula which gives a good

approximation to the highest critical speed.
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1. Introduction

Consider an incompressible, inviscid liquid contained

in a horizontal, infinitely long straight Channel whose cross

section is arbitrary. Suppose that a gravitational force is

the only bOdy force Which acts on the liquid. The nonlinear

hydrodynamicai equations given beloW in Section 2 show that a

uniform parallel flow is A possible steady motion. This kind

of flow i8 defined to be such that the only non-zero velocity

component i8 the component vl in the axial direction of the

channel.; and vl, although assumed to be independent of the

longitudinal. coordinate, May be a function- of the lateral co-

ordinates of the Channel. If the equations are linearized: with

respect to a certain parallel flow the resulting linear equations

also admit a similar flow and in particular the uniform parallel

flow in which the axial ' reloolty i8 constant. However, according

to the linear theory, this IS not the only possible motion if

the speed of the liquid at infinity is less than one of a possible

set of critical values. For example, if the CTOS8 section of

the channel is a rectangle with depth h and If the speed of the

liquid at infinity is less than the critical speed ATT, where g

is the acceleration due to gravity, then the linear equations

predict that a progressing wave motion is possible.

A discussion of critical speeds is necessary for the

analysis of several hydrodynamical problems concerned with

Channel flow. They arise in the study of the motion due to a



surface pressure distrubance which moves in the direction of

the channel with fixed speed either when this problem is

regarded as & steady state problem or when it is regarded as a

Newtonian initial value problem. In the steady state analysis

of the problem critical speeds arise not only with respect to

the uniqueness of the solution but also with respect to the

admissibility of the linearization. In the Newtonian approach

based on an initial value problem for the linear theory it

turns out, as Stoker [1] showed, that at a critical spped the

velocity components of the flow become unbounded as time elapses.

The nonlinear theory of a gravitating fluid in a channel leads

to the interpretation of critical speeds as bifurcation values

at which cnoidal and solitary waves may appear as well as

parallel flows. These examples point to the fact that critical

speeds can be defined in different ways. A discussion of the

various definitions can be found in a paper by Peters and

Stoker [2].

During conversations with the author and about problems

similar to those mentioned above J. J. Stoker raised the

following uniqueness question. If a gravitating liquid confined

to a rectangular channel is in a state of parallel flow with a

finite speed not less than the highest critical speed does the

linear theory show that this flow is the only possible steady

Motion Which is bounded? In the Sections which follow we show

that the answer to this question is in the affirmative. We show

this under the assumption that the density of the liquid varies
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with depth and that the liquid is subject to a Shear in velocity.

Our method i8 based of COutte on an eigenvalue problem which

possesses only the trivial solution provided that a parameter of

the problem is not less than a certain. value.

Weinstein [3] showed that if4(X,y) i8 a potential function

which is required to satisfy

1.
(I) (x y) +XX = 0 , -co <x<co

(I) (x,1) = P4(x01 p > 0

and if
Ao is the unique pOsitiVe root of

Ao tanh A = p

Where p is a constant, then

cos A0 +b sin
Ao

cobh A0yo

is the only bounded function 'Which satisfies the above conditions.

Weinstein's proof of this is based on a completeness theorem.

In Section 3 of this paper we use WeinStein.'s method to analyze

the eigenvalue problem which we derive in order to discuss the

two-dimensional flow of a gravitating liquid with non-constant

0 < y <

2. x,0 = o ,



density and velocity each varying with depth. In the course of

the analysis we find a formula which gives an approximation to

the highest Critical speed.

Section 4 is devoted to an analysis of 0_ three-dimensional

motion of a gravitating liquid of constant density in which the

velocity depends on the coordinates orthogonal to the direction

of the containing channel which is assumed to have an arbitrary

cross section. The character of the eigenValUe.problem Which we

formulate for this case is different from that presented for the

two-dimensional case. As a consequence, instead of seeking a

method based on a coMpleteness theorem, we base the analysis on

the generalized Fourier transform theorem Which incidentally can

also be used for the case of Section 3 in lieu of Weinstein's

procedure.

2. Formulation

Let a gravitating., incompressible, and inviscid liquid with

density p be confined to an infinitely long horizontal channel

whose cross section is constant. Suppose that the equilibrium

free surface of the liquid is planar and that it coincides with

the horizontall' x3
-,plane of a carteslan reference frame whose

- -

x1-axis is taken parallel to the rigid cylinder which forms the

channel. With the positive direction of the x2-axis taken to be

upward, let the channel wall be defined by



(2.1)

the incompressibility condition

(2.2)

the momentum equations

11 6v].'cri .7rV1 .F.-ci + v 5----- 7 'T-+
2 + v -) -ux2

6x1 ')v2vv.37es f 2 //2
v2(2.3)

v1 )c,
A-

V2 .N--
+ v3 .;7g . _ pg _ . ....7 ,

ir_3 v
3

3 7c2 )r
+ v1 + v

TET. 2
+

v )

-x2 3 3

v + v +
1 .2 )c2

1 v2
v
3 _ n6X1Nx1C2 3

= 0 ,

and let the free surface given by

= F(xl,x3

Let g denote the gravitational acceleration, let r denote the

pressure, and let US use v1 V2, v3 to denote the velocity

components of a liquid particle, while t stands for time. In

terms of these quantities the elementary theory of hydrodynamics

predicts that if the gravitational force Is the only force

acting then the motion Of the liquid is defined by the dontinuity

equation



.
the kinematic boundary conditions

(2.4) 3 7e;

(25)

the dynaMic free surface condition

(2.6) r(x,

= x h
.1

6

,= .1 , .3

,

Y = x2h-1

- (gh)-312 u2 - 2

- Fh-11T1 = ITChh)

T = t(g/h)1/2

plus initial conditions at t = 0, and cOnditions which specify

the behavior of the liquid at distances arbitrarily far from

the origin.
The above equatiOns can be written in dimensionless form

if we introduce a typical length in the vertical direction; say h,

and the d1mensionle8s quantities

-1z = x h -3

3(gh
-1 2

-1
= Q.h

Where riS is some fixed quantity with the dimensions of density.

In terms of these quantities the equation of the channel

wall is



= q(z)

the equation of the free surface is

Y

and the basic hydrodynamical equations are

(2.7)

(2.8)

6111 6111 6111 6111

u2 U3

(2.9) p(Tv= ul u2 + u2 -i2)
6112

"TE- 2 Ur "

3
6u
.3

u2 u3 We)x y

with the boundary conditions

(2.10) = u3

(2.11)

and

(242)

1.11 .6u2 au3
+ + = 0 ,

U1 x + U + u3 - = vy z

f 6f1 1
12 = i-357 u3

,z ,T) = 0.

3_671.

67r
1-p-,

6f1
ÔT



This system is satisfied by the quantities

4 -7= u y,
1 o

(2.13)

P = P'p0(y)

+ vo y z

8

,rgra

U3 * 0

where 7 i8 constant and vo is a continuous non-negative function.

They define a steady parallel mcition in the channel and we will

refer to this flow as the equilibriUM fling. The velocity vo(y,z)

gives the transverse shear in the axial velocity component and it

is also a measure of the departure of the flow from a uniform

state defined by the velOcity 7. The function p0(y) measures the

variation in density with the depth and we suppose that it does

not decrease as the depth increases so that with respect to our

coordinate system the derivative p(y) if it exists satisfies

dpo (y)

dr

Let us proceed to linearize the equations (2.7)-(2.12) with

respect to the flow given by (2.13). That is, let us write



(2.14)

(2.17)

ul = uo(Y,z) +u

U2 = '

=w

and assume steady motion. Let us substitute these quantities in

equations (2.7)-(2.12) and neglect terms Which involve products

of two or more factors from the set u, V, Iv, p and f. The

result of the linearization of the equations (2.7)-(2.9) is

ux +vy + w = 0z

uo
+vp = 0

x oy

The condition at the channel wall is

(2.18) V = w

With respect to the free Surface conditions (2.11), (2.12) they

become conditions to be satisfied at y = 0. In place of (2.11)

we have

= Po(Y) + ,

'1?"

7r1 =f Po()thl+P

f = f(x,z) ,

Po(uoux +uoyv +UOzw) = Px

p110VX -

POUOWX PZ'



(2.19) v(x,0,z) u0(0,z)fx(x,z)

and from (2,12) we have

0

Jr PoWan + P(xyf,Z) = 0

which after differentiation and removal of second order terms

becOme8

(2.20) (0)fx(x4) +.P(x'04) =

Notice that if v = 0 w = 0, the linearized equations are again

satisfied by a flow Of the type (2.13).

Our Object now is to show that if the speed y is not less

than a certain highest critical value then the only possible

bounded solution of the problem formulated by the equations (2.15)-

(2.20) is the One Which defines an equilibrium flow, (2.13).

3. Two-dimensional Motion. Rectangular: Channel

If

uo = up(y)

where Vo 3_8 cohtinuoUt; if

10
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PO = PO(Y)

W 0

and if the remaining quantities In the equations (2.15)-(2.20)

are independent of z, then these equations define a two-

dimensional motion which may be interpreted as a two-dimensional

flow in a rectangular channel. For this case the basic linearized

equations are

ux
+ vy = 0

u cr. + vp = 00 x oy

Po(uoux +uoyv) = Px

p u v = 6- _ T1.0 0 x z-y

"If the depth of the channel is h the equation of the bottom

our dimensionless variables is y = -1 And since the Vertical

velocity component must vanish there we must have

(3.5) v(x.,-1) = 0 .

Corresponding to the free surface

(3.6) y f(x)

the linearized free surface conditions

11



(39)

(3.11)

With the boundary conditions

(3.10) -2((x,-1

2
p u
o o

12

2
u( O) 7(y(x,0)- ((x,0) 0.

Poy7( -1 < y - 0
-00 < X < 03

We turn now to the method of Weinstein [3] and replace

Tx- (pou.2xx)

In equation (3.9) With0u2*(y); While we replace -) and 1._0 Y

respectively with * and *. This formUlates and introduces the
Y

following standard eigeftvalue problem:

(3.7) v(x0) u0(0)f(x)

(3.8) -p0(0)fx + px(x,0) = 0

must be satisfied.

For the analysis of the two-dimensional equations we will

work with the dependent variable v/U0 whioh we denote by ?C(x,y).

The elimination of u, p and a from these equations Shows that

i((x,Y) =

Must satisfy



2(3.12) (Pouo*y

0

Jr A (Y) (Y)*m(Y)*n(Y)dY =

-where *n and *m are the eigenfunctions which.correspond

respectively to the eigenvalue8 Nn and It is easy to see .

that if N is an eigenvalue then. so is -Nn Besides this, it is

not difficult to verify that the.eigenvalues Nn are either real

or pure Imaginary number's. It is known that there can be only a

finite number of elgenvalues in any bounded domain of the complex

?-plane. It is also weil-knOwn:that the above Second order

system defines a complete set of eigenfunctions bi/ (y)1 Such that

a twice differentiable function G(y) can be expanded in the

Fourier series

QD

G(Y) = an*n(y)

1

m n

m = n

(3.13) 7/4 1

(3.14) uo2(o)*y(o) - *(o) = o .

Here, the eigenvalues-dePend on the magnitude of y and the eigen-

functions must satisfy .the orthogonality relation

- Po *cy) x2P0115



It follows from the above remarks that for any fixed value

of x, x y) has the unique expansion

i OD

.)((x2Y) = an(X)*n(Y) y

Here, the coefficient an(x) Is

an(x) jr p (y)u!(y),((x,y *n(y)dy

and as a function of x it must satisfy

2 0
d an(x) r
7;7-- =

P0110 XXX/IrldY

0

a ( )
.a0 + box

112..1/
- -33F r0 0 y

-1
0

A2
p0uo2x*1.oyLf

Hence the cdefficient an(x) must satisfy

2
d a (x) 2

n
A'f\n-n141-1 7÷." -

dx

from which

a(x) an
cos 7\x+b sn'T (x)

(3.15)

2

1//ndy

0



This shows that if ')((x,y) is to be bounded everywhere then if

a does not correspond to a.real eigenvalue we must take a ()

If -T = 0 is an eigenvalue the corresponding term in the develop-

ment of /. v/uo is

+ b0X)4/0(Y)

u = -v
Y

the corresponding term in the development of u is

Since

-(aox +bo i-x2)*0

15

but this is unbounded as x op and therefore for a bounded

motion we must take ao = 0. It is now apparent that our problem

is reduced to a Study of how y affects the disposition of the

eigenvalues of the system of equations (3.12)-(3.14).

In order to study these eigenvalues let us convert the

equation (3.12) namely

2 2
Ty- pollo*y(Y)- Pouo* '

-1 < y < 0

into an integral equation. If we integrate (3,12) from y to zero

we find



P0(0)11!(0)*y(0) -Po(Y)u!(Y)*y(Y)

P0(0)*(0)- Po(Y)*(Y) -f Poh)*n(n)dn

Jr po(n)u(2)(1)*(n)dn
Y-

from which, by using U!(0)*y(0) -*(0) = 0, we obtain

o

po(y)u:(y)*y(y) p (Y)*(y) +f po(n)* (n)dn

- )2f (n)11!(n)*(n)an

Since *(- = 0 the last equation Can be written

Y o

s0116,(3011p) = poiyi f- 711.1(n)an +f po(n)Vin(n)dn' 2
,

7- Y

o n

_. Jr p0() In) Jr mdedl
Q _. .

-1

Which after an integration by .parts yields

poly)u!csolpycy) (y)jr *fl(n)dn +f P tnN(n)dn

p,;(e)u!m .1/4jr Jude.

*nwir poc0q:codtdn



or, after a rearrangement,

Po(Y)ug(Y)*y(Y) = Po(Y)jr *11(0dT1 +f P0(n)*71()d1
-1

rj po(e) Rm.,/ *icodn
- ?2 J Y -1

0
0

+f vir,(7-0 f p0cou02(emdi,

If We set

(I) = 4)0(7): 1,10(y)*y()

the last equation becOMes

/P (714(i)di
(1)(Y) -

iPotY) ir Codn
J .1:16(1)oal -1 0(0147TT 'P0(Y)u0(Y) y

r o

Jr Po(e)

17

e)id

. r $CrOdn

(y)uo(y) u0(r1)/p0(r)

+ - Jr(I)(n) - - P (e)Ug(e) edn
1

iT7-0110(Y) y uo(nWo(n) n

Now if we introduce the symmetric kernels



(Y Try) =

k2(YAVY) '

ub(Y)Vp (n)uo(n)

V(50(n)

u0(y)A00(Y)u0(n)

0

Jr Po()u2(Udeo

u0(Y)1\10(11)/17-0731-p0(n)

0

Jr po(e)110(e)de

u (Y)uo(n)/P0CY)P0(n)o

we find the integral equation

0 0

(3.16) (I)(Y) =f k 4Y,7101(1)(n)dn -

-1 -1

as one which is equivalent to the differential system (3.12)-

(3.1k).

There is no loss of generality in assuming that

jr (y)dy =

Then if we multiply (3.16) by (1)(y) and integrate from -1 to 0

we have

18

k2(Y,n;Y)4)(n)dn

Y 0



0 0

1+ 7\21 (HA f k2(yoNcrodildy, =f cy) f

The integral on the left hand side of the last equation is equal

to

Jr p (y)u:(y)[ r +Wan2
110(014F7TY-1 o

dy

0

so that

1+ po(y)uo(y) dr 41)-dn
2

dy

Y

-1 u0(0471717

+(y),/' yy 01)(n)dndy

An apPlicatiOn of Schwartz's.inequality gives

0 2

1+ p (y) (y) f +(I-1MT'2

-1 ° u0(017707/7

f0
i

-1 -1

(y Odndy
1 ' .

The integral of 14(70.1) is

0

2fPo(Y) 4n _ dy .

u (y)
-1 o -1 Po(n)11.:(11)

Hence we see that

19

ty,04(n)dndy



(3.17)

(3.18)

0
4TIM1-1.7\2f p (y)uo(Y) Jr

(TO

2 (

014 1 °1

< 1219 Po(Y) Jr clq2 dy - 1
u(y) P (n)uo(n)

20

rg7
u0(y) -

dy

The Inequality (317) allows that there can be only a finite

number of real eigenValues because it requires these to lie In -a

bounded line segment which, as We noted above, cannot contain an

infinite mpaber of eigenvalues. The inequality (3.17) also shows

that if y in

y+ v: (y)
o

is taken sufficiently large then the absolute magnitude can be

made as small as we please. In addition, (3.17) shows that if

y is so large that

0

dY < 12
Po(Y)

LI(-)
2 -

-1 o Y =1 otOuo(n)

then the eigenvalues cannot be real and non-zero. From what has

been noted above, this means that when (3.18) holds the only

bounded solution of (3.9)-(3.11) is the trivial one

)((x,Y) = v(x Y)/110(Y) E 0. With the vertical velocity component

v equal to zero everywhere the only solution of the original

equations (3.1)-(3.8) for the two-dimensional flow is one of the



type (2.13). In other words, the linear theory implies that the

flow

Y+v,-(Y)
u -
1 u2 = 0

JIT

= 0 ,

P = r40(Y)

is a unique steady two-dimensional flow if (3.18) holds.

In the foregoing we have made the tacit assumption, which

we retain, that if m and M are respectively the minimum and

maximum values of the-non-negative continuous function v0(y) then

y does not have a value between -M and -m. Without such an

assumption the integral

ir an

gotOu:(0.

'would fail to exist.

We are now in a position to define a critical speed as a

speecly en which corresponds to a transition from real values

of A to pure imaginary values. This occurs when A passes to the

zero value and as we can see from the integral equation (3.16)

this takes place When y
cn is an eigenvalue of the equation

.0.

(3.19) (Y) dr ki(y,Toy)odll .

21

r =f 01)&11



It can be seen from (3.15) that cn is the limit speed of a wave

motion whose wave length becomes infinite. If y = co is the

highest critical speed there is no real value of T, say Tr,

corresponding to a y value y = yr such that yr >- co. If there

were the inequality (3.17) would show that we could force yr to

zero by increasing yr to some value yl!,. This would produce a

critical speed higher than co contrary to the assumption that co

is the highest critical speed. In other words there is no bounded

flow other than the equilibrium flow if y co. It is evident

from (3.19) and (3.17) that the formula

(3.20) gh 12

(3.21)

0
ir Po(Y) r dli

2 j
dy = 1

[c+ vo(y)] po(n)[c +vo(n)12

provides an estimate for the highest critical speed. This

estimate in general is such that co c.

Under some circumstances the formula (3.20) actually yields

the highest critical speed. If the density is constant (3.20)

gives

h121 1
0

[c +vo(y)]2

which, after an integration, is

22

dn

-1 [c+voh112

0

gh
dy

-
[c+ vo(y)]2

1 .

=1



(3.22)

< ghI2_ po(y)

L-1 [ VO(Y)
2

dy1 < ghf 2
[c + vo(y)]

This means that the highest critical speed for the case of

variable density cannot be greater than the highest critical

speed for constant density.

When the flow possesses no vorticity due to a Velocity

variation, i.e. v0(y) = 0, the fermula (3.20) reduces to

0

2f Po(y)

-1 -1

23

This is a known formula for the critical speeds, co ,= c, where

the density is constant. For a discussion of this formula and

other ways of deriving it see, for example, Burns [4], or

Peters [51. If we set v0(y) = 0 in (3.21) we find the well known

result .c2 = gh for the critical speed in a rectangular Channel

when the density is constant and the equilibrium flow is Without

vorticity.

If the density is not constant then the assumption (in

order to have stability) is that the density does not increase

as y indreases. Hence we See from (3.20) that

Po(Y)
_d_71 -1 gh 12102

[c+ vo(y)] 2 -1 Poirl)(c+vo(n)]

[C +VO(1)/

al d- - c

Po(l) j



If the density variation is exponential, say

we find

and When k is small

4
g2h2

Po(Y) = e-2kY

4

e-2
ir e2ktidndy2

1 g h

-2kP,4
-'2

2k2 -g h2

For k stall, this agrees, up to and Including second order terms,

with the approximation 'to the highest critical speed given in

Peters and Stoker [2, namely

C 1

-"g7 = 37777-c3

In the latter paper the critical Speeds, cn, are, defined by

tan s

(3.23)

2kS

2 --H2-k

gh
= 2k, --2- -

cn

Equations 3.23) can be found by eXplicitly sOlving (3.19).

24



It should be pointed out that our results hold for an

,equilibrium flow Which is COmposed of' homogeneous layers. At

an interface where the density is discontinuous, sat at y = -r,

the linear theory requires continuity in the vertical velocity

component and the pressure. In terms of *(y) the interface

condition's are

///(-r 0) = *(-r +o)

pot-r- 0)[

= po(-r+0)(u02(-r)71/y(-r +0)- I/4-r+ .

It can be verified that these conditions are automatically

satisfied by the integral equation (3.16). It is sufficient here

to confine the discussion to the case of a medium with just two

layers and vo = 0. Suppose that the lower layer is defined by

-1- r < y < -r where the density 1).0 is po = 1, and that the upper

layer is defined by -r < y.< 0. where Vle density is po = pip < 1.

In terms of the original variables the depth of the lower layer

is h and the depth of the upper layer is 11 = rh so that r is the

ratio of the depth of the upper layer to that of the lower layer

and the corresponding density ratio is p.0/1 po < 1. The

integral equation for 711(y) is

((3r) =i kl(Y,n;yg(n)dn - k (y n.ygtrodn2 "
-1-r -1-r

25



where

4)(y) = IFTFT.uo(y)liiy(y)

The equation Which prevails for 2\ = 0 and determines the critical

speeds_ is
0

CY) =i k (Y TrY)+(n)dri1 ' '
-1-r

or

40150 JC gn)dri +. JP7711TV n
(1)(Y) V77.71740 (i) uo(Y)(17077 y-1-

ifvosothatu=yagF we have

(3.24)

u02(1)(Y) = fi0t7Tf
-1-

This leads to the follOwing. If - y -r we have

0

115(yi =f +(n)dri + pof (1)(71)dn

-1-r -r

and after integration

If -r < y < 0 we have

4)(04n f457,17Tain)alv.
ficrrn. /T-077 Y .

-r -r

11:f 4(Y)dY =f gn)dn + Po f (1)(n)dil .

-1-r -1-r -r



-r 0

u5(Y) = Poi CTOcITI +f 4)(n)dri

-1-r -r
or

0 -r 0

(3.25) u02 f (I) (y)dy = rpo f (1)(ri + r f cri)dri .

We cannot have both of the integrals

0 -r

Jr $(y)dy and Jr_ (1)(y)dy

-r -1-r

equal to zero because this would imply = 0 and * = 0. Hence

the determinant of the equations (3.24) and (3.25) must. be zero.

This gives

(3.26) r-(1+ r)u2+ ( - p0) = 0

an equation which defines two critical speeds. It is the same

as that given by Peters and Stoker [2]. The higher critical

speed is given by

Co2

27

< + p r +r2 .

This should be compared with the estimate of the higher critical

speed which comes from (3.20) namely

+ 4por



12f1
Jr didy + poi Jr

rdndy

+f
-l-r -1-r -r =.1- -r

Q2. L./1+2por+r2.70

Which confIrts the fact that for the higher critical Speed co,

C0 is Stich that
co

< c.

Three-dimensional Motion. Channel with Arbitrary Cross

Section

This part of the paper is concerned With a three-dimensional

case of our problem in which a liquid of constant density is con-

fined to a channel whose crOss Section is like that shown in

Fig. 4,1,

po(y) if 011)
.-1-r -1-r

dY

°

V

Figure 4.1
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The linearized equations for the motion come from 2.15)-(2,20)

by setting

-
y+v (y,z)

uo

They are

u u +u v +u w = -o x oy oz Px

u vox

29

+ V +
Wz

=0 .

At the channel wall given by y = q( z) we must have

dq
V= w ---

If the equation of the free surface is

y = f(x,z)

the linearized free surface conditions, to be satisfied at y 0,

are

( 4 . 3) fv(x,0,z)

= u0(0,,z)fx(x,z)

-fx
2) + px(x,0,z) = 0 .



It seems that the easiest way to conduct an analysis of

the above equations is to regard the dynamic pressure p as the

fundamental dependent variable. For any point in the bounded

domain D the pressure p Must satisfy

(4.4)

(45)
On L:

Oh S: p

On *v = 0, I.

2
On S: *sr =

2* .

This,,hoWeVer, is not a standard eigenvalue problem because the

eigenvalue parameter A2 appears in the boundary condition along

.iwith unusual sign) and S covers only part of the boundary of D.

Instead of trying to establish the exiStetice of a complete set of

eigenfunctions for this case We will proceed by using an alternate

In addition the following boundary conditions must be satisfied.

30

(Pz.)-
- 0

x,0,z)+ uo2p (x 0 z

We use v to denote the. unit outward normal to the boundary of D..

If we attempt to follow the method of Weinstein we are led

to this eigenvalue problem. For DI



method based on the generalized Fourier transform.

Let the right hand transform of p(x,y,z) be

OD

(,y ,z) =f eiNx p(x y,z)dx

0

where Im A = a > 0. Let the left hand transform of p be

0

N,y,z) jr eiAx p(x,y,z)dx

-oo

where In A = b < 0. By taking the magnitudes of a and b

Sufficiently large these transforms exist for any p of exponential

order. The recovery formula for p is

co +ia

e dA

_co +ia

gx,Y

The application of the right hand transform to (4.4) and (4 5)

for x 0 gives

(4.6)px(0,z,y) jAp(0,z,y)
-37 ""2")± 2 2

uo
u =o' uo

uo uo

to be satisfied in D, subject to

(4.7) = o

00+ilD

+ Jr
-co -Fib
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on L, and

32

on S. Similarly the application of the left hand transform to

(4,4) and (4,5) for x < 0 gives

7211:1 Px ° z'Y) 1_ nP(0,z,Y)z) 9
(-6 7110 + 7 7 - -"2-u I-7F 4

to be satisfied in D, subject to

=- 0

on L and

ly u27,21 _ p g,011 ,z + iAp(0 ziO)u!(O,z)
0 1

on S.

From the equations and boUndary conditions Which and I
1

must satisfy, it is evident that

z,y) -

Therefore we see that

(4.9) P(x,Y,0 - 701/7 f -ix p za)d.x

where C is the path C = + C2 shown in Fig. 4.2. The lines
C1

and C are parallel to the real aids in the )\-plane and their.

1440 2,0111!(0.4)



Figure 4,2

distances from the real axis can be adjusted to admit functions

p. of various exponential orders.

An Integral equation formulation for the determination of

can be used to show that it is expressible as a ratio

z. *(z,Y0s)
m(X)

in which each of * and m is an entire function of A. If the

disposition of the zeros of m(X) is known then the behavior of

p with respect to x can be found from (4.9) by using the theory

of residues. Also, if we require p to be bounded we must choose

the path C in (4.9) so that it contains only real poles of */m

and if necessary * must be modified so that these poles are poles

of the first order. Now, the substitution of Om for in (4.6)-

(4.8) shows that the zeros of m(?\) are just the eigenvalues of

33
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(4.10)

with

(4.11)

on L, and

(4.12)

On S. Hence our problem is again reduced to a 'study of eigen=

values.- Here, howeVer, we do not need to know anything about the

completeness of the set of. eigenfunctions.

For the operator

we have the following identities

(4.15)

-6E -377.

Oy A2*77
uo

*v °

2'2* = u N *
y o

1 Z) 1
WE -37 17 -3TTuo

firli,(0) fr (!zez H. Ysr)) _jr, *6.v dsJJ -
14- .

o L+S 0

Jr f u-26411 cis

L+S

ff [ipE(e) -eE(*)J

Where s is the arc length along the boundary of D. If N and Tri

are the respective conjugates of N. and * and if we identify the

conjugates with e in the above identities they show that

{q
f ,p7p-dz _ ff 4 . 0

ql D uo



and

-2(4.16)

From (4.15) and (4.16) it follows that

(4.17) (X2
,

r*Jz731dzdy = 0

and from this we conclude that the eigenvalues are either real

or pure imaginary numbers. It should be noted that if A is an

eigenvalue then so is -A. It should also be noted that A = 0 is

an eigenvalue of (4.10)-(4.12) and that the corresponding eigen-

function is *0 = const. X- 0. We infer frot the last two observa-

tions that A = 0 is at least a triple zero of m(A) if the speed

y corresponds to a transition from real eigenvalues to pure

imaginary eigenvalues.

Suppose A = 0 is a simple zero of m(A) and the only one in

a strip": which contains the real axis. Then, as we can see

from (4.9), the only bounded solution for p is given by the

residue of

-ixA*(z,Y0\)e Dz,y;A) -
w(?\.)

at A = 0; that is, p = p(z,y). However, if p does not depend on

x the equations (4.4)-(4.5) show that p is constant. With p
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r" 2
*T z7z y

uo D uo

itn-Pdz
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constant it follows from the equations (441)-(4.3) that the.floW.

must be an equilibrium flow.

Suppose next that the speed y is such that A = 0 is a triple

zero of 0(A) and the only one in E For this case, the residue

of

-ikA
e Zi5r;

at A = ()mould generate unbounded terms for p unless *(Z,y;A) = 0;

or unless *(z,y;A) possesses a double zero at A. 0. If We impose'

either Of these conditions We find again that p = p(z y) and this,

as we indicated Above, implies an eqUilibrium flow. If A = 0 is .

the only zero of &i(A) in E ; and if it is a .Zero.of odd multi-

plicity greater than three; an analysis similar to the aboVe'leadS

to the Same resUlt. In other words, We conclude from this para-

graph and the last one that the equilibrium' flow is the only

bounded flow if all the eigenvalUes are pure imaginaries including

A = 0.

With the real eigenvalue Ar we can associate the real

eigenfunction *. By setting e * in (4.13) we have

(4.18)

q2
A2 f *2

ql

6-ixA /1/(zyY0)
m(A)

r if
*2

D o

By setting e in 4.14) we have

36



(4.19)

(4.20

(4.21)

With this, (4.18). leads to

[hr
1

uo

37

q2

Jr *dz = *
,

q1 D Uo

An application of Schwartz 's inequality to the last equation

gives

1

72.
0 ,[f Uo

q2

*2dz - [f *Oz12

ql

rf -"P
U

o D U
o

?\{
0 0 -

'

0 th2i/

r* () --2. - 1

2
20

, , Jr ay Jr 0,Y Jr rY"'Y
77 ,

u-1 o -1 uo -1 o

For the case of the rectangular channel * does not depend

on z and the inequality (4-20) reads

This Shows, as we deduced it a different way in Section 3, that

the critical speed is given by

JC dy
= 1

u-
-1 o

and that no real non-zero eigenvalue exists if y is such that



(4.22)

Hence, as we have shown above, for speeds y Which satisfy (4.22)

the only bounded flow is the equilibrium flow.

When the Cross section of the channel is arbitrary we can

define the critical speed by requiring

0jr dy

1 uo

c12

Jr [Jr

This implies by virtue of (4.20) that

2+I/2if 0
" u
D 0

or * = const. O. With this eigenfunction, (4.23) becomes

dzdY _ b

D

where b = q2- qi is the dimensionless breadth of the channel. The

Critical Speed defined by (4.24) is the value of y which allows

transit from real eigenvalUes to pure itaginary Values through

= 0. A more detailed discussion of (4.24) can be found in

Peters [5].

If 1/U: were a negative parameter then all of the eigenValues

would have to be pure imaginaries as (4.16) would Show. Since the

eigenvalues A depend continuouSIy on 1/4 we conclude that when

38
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/ 2
1/uo is Small there must be a corresponding X* of least absolute

magnitude Which is either,a pure imaginaryor a real number Which

is stall in absolute magnitude. If the Magnitude of l/ug Is

sufficiently small we cannot satisfy (4.24) because then

dzdy b
72"-

D qo

and therefore X* Must be a. pure imaginary.. Now let y in

+v (y,z)

be decreased until y satisfies

ghff dzdY b .

D
0

The eigenvalue X must then pass through a continuum of imaginary

values until the origin is reached. If we continue to decrease y

until,

gh rr
(y+ v0)

the eigenvalUe X* passes to real values.

NTe can now conclude from the above analysis that if the

speed y is such that

gh dzdy

39

- 2
b

D EY+ vo]

then no real and non-zero eigenvalue exists and consequently the

only possible bounded flow in the channel with arbitrary ,cross

section is the equilibrium flow defined in Section- 2.

uo -
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