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Abstract

Thié report prééents.a proof of the uniqueness of a
parallel three-dimensional shear flow in a channel with
arbitrar& cross section where -the speed of the flow is not
‘less than the highest critical speed. The investigation
k also 1ncludes a two dimensional analysis in which it is
assumed that while the flow velocity varies with the depth,
the density élso depends on the depth; and for this case
the development leads to a formula which gives a.good

approximation to the highest critical speed.
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1. Introduction

Consider an incompressible, inviscid liquid cdntained
in a horizontal, infinitely long straight channel whose cross
section is arbitrary. Suppose that a gravitatiénal force 1is
the only body force which acts.on the 1liquid. The nonlinear
hydrodynamical equations given below in Section 2 show fhat a
uniform parallel flow is a possible steady motion. This kind
of flow 1s defined to be such that the only rion-zero velocity
comppnent is the component \21 1ﬁ‘the axial diréction of the
channel; and vy, although assumed to be independent of the
'longitudinal‘COOrdinate, may be a function of the lateral co-
ordinates of the c¢channel. If the equations are linearized with
respect to a certain parallel flow the resulting linear equations
also admit a similar flow and in particular the uniform parallel
flow.in which the axial Velocity is constant. HoWeVer, according
" to the linear theory, this is not the only possible motion if
the speed of the 1liquid at infinity is less than one Qf a possible
‘set of critical values. For example, if the cross section of
the channel is a rectangle.with depth h and if the speed of the
liquid at'infinity 1s less than the critical speed /gh, where g
is ﬁhe acqeleration due to gravity, then the linear engtions
predict that a progressing wave motion is possible.

A discussion of critical sbeeds 1s necessary for the
analysis of several hydrodynamical problems concerned with

channel flow. They arise in the study of the motion due to a




surface pressure distrubance Which moves in the direction of
the channel with fixed speed either when this problemvis
regarded as a steady state problem or when it is regarded‘as a
Newtonién initial valne problem. In the steady state analysis
of the problem critical speeds arilse not oniy with respect to
the uniqueness of the solution but also with respect to the
admissibility of the linearization. In the Newtonian approach
based on an initial value problem for the linear theory it
turns out, as Stoker [1] showed, that at a critical spped the
veloeity components of the flow become unbounded as time elebses.
The nonlinear theory of a gravitating fluid in a channel leads
to the interpretation of critical speeds as bifurcationlvalnes
at which cnoidal and solitary waves may appeer as well as
parallel flows. _These.examples point to ﬁhe fact that critical
speeds can be defined in different ways. A discuesion of the
various definitions can be found in a paper by Peters and
Stoker [2].

During conversations with the author and about problems
similar to those mentioned aboﬁe J. J. Stoker raised the
following uniqueness question. If a'gravitating liquid confined
to a rectangular channel is in a state of parallel flow wifh a
finite speed not less than the highest critical speed does the
linear tneory show that this flow'is the only possible Steady
motion which is bounded? In the sections which follow we show
that the answer to this question is in the affirmative. We show

this under the assumption that the density of the liquid varies
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ﬁith depth and thaﬁ the liquid 1S:subject to a shear in velocity.
Our method is based of édurSe on an eigenvalue problém Which
possesses only the trivial solﬁtion provided that a parameter of
the problem is‘not less than a certain value. | . "
Weinstein [3] showed that 1f,$(x,y) is a potential function

which 18 required to satisfy

 1° ‘ .- ¢xx(k’y)1'¢yy‘= o, .. =0 <X <
‘ 0<y<1.

2.7 o o d)y(xso) =0,

3. b dx,1) = pb(x,1) , | p>0

and if ko is the unique pOsitivé root of
XO tanh XO =p ,
where p is a constant, then
d(x,y) = [a, cos 7\0 +bo sin A x]cosh ALY

1s'the'6nly'bounded function’Whiéh satisfies the above conditions.
Weinstein's proof of this is based on a completeneés theorém.

In Section 3 of this-paper we uSe Weinsteinls method to analyze
the eigenvalue problem which we defive in'order to discuss the

two-dimensional flow of a gravitating liquid with hon-constant




density and velpgity_each varying with depth. In'the coursé of

the analysis we find a formula which giﬁes an approximation to
the highest eritical speed. '

'Section 4 i1s devoted to an analysis of a.thrée-dimensional
motion of a gravitating liquid of constant density in which the
velocity depends on the coordinateé orthogonal to the direction
of the containing channel which is assumed to have an arbitrary
cross-section. The charaéfer of ‘the eigenvalue problem which we
formulate for this case is different from that presented for the
two-dimensional cése. As a conseQuence, instead of seeking a
method based on a completeness theorem, we base the analysis on
the generalized Fourier transform theoreﬁ which incidentallylcan '
also be used for the case of Section 3 in lieﬁ of Weinstein's

procedure.

2. Formglatign

Let a gravitating, incompreésible, and inviscid liquid with
density p be confined to an infinitely long horizontal channel
whose cross section is constant. Suppose that the equilibrium
free surface of the liquid is planar and that it coincides with
the horizontal xl,xjaplane of a cartesian refefencg frame whose
xl-axis is taken parallel to the rigidlcylinder which forms the
channei.' With the positive direction of the xz-ax1s taken to be

upward, let the channel wall be defined by




=. Q(x3)
and let the free surface be given by

}xé E‘F(xl,XB;t)

Let g denote the gravitational acceleration,_let T denote the

- pressure, and let us use Vis V2, v3.to denote the velocity
components of a liquid particle,.while t stands for tine. In.
terms of these quantities the elementary theory of hydrodynamics
predicts that if the gravitational force is the only force
acting'then‘the motion of the liquid 1s defined by the‘COﬁtindity

equation

ov Bv v
1 k ﬁ_? + 3= 0o ,.

B aX2 Bx3

- {2.1)

the incompressibility condition

lo.: ‘ ¥ - dp_ _
(22) | | v S5 +Y?3xa +“v3§% 0.,

the momentum equations

v dv v v
1 : 1 1 1y or
P TS T e, T, T T o
ov ov ov, ov |
, 2 .2 2y L _ g O
(2.3) ,P‘sr“’l'g”esrg”sm)‘ PE - 5%,
o oV, | -Bv ) OV a; | N H
: b ; 3 > ; 3y - _ OT
Pl * 1o e s, T e ) T T a




. the kinematic boundary conditions

(2-4) Y2 = V3 g

the dynamlic free surface condition
(2.6) o W(Xi,F,Xj,t) =0,

- plus initial conditions at t = O, and conditions which specify
the behavior of the 1liquid at distances arbitrarily far from .
the origin. o . |

The above equations can be writfen in dimensionless form
if we introduce a typical length in the vertical direction, say h,

and the dimensionless quantities

-1 \ -1 -1

X = .th | o y = ..fx2h : s Z = x3l'l : ',
ug =V (gh) -1z Ug ='Vé(éh)‘1/2'} uy = vé(gh)'l/2 ,
r = (den) , £y =rmn} , aq=an?! .“. ,

= tlg/mY?

where 3 1is some fixednquantity with the dimensions_of density.:“
In terms of these quantities the equation of the channel

wall is




y = alz) ,-
the equation bf the free'sgrface is
¥ = £1(x,2,7) ,

and the basic hydrodynamical equations are

ou

' -1 2 -
(2.7) & ty Tw =0
R Y Y
T R A R
ou ou o du, Ju o
1 1 1 R RN 1
Tty * gy YU = - Py s

du, du, du,, du,, . omy
. duw, duL 3u 3w
j SR | ) 5y = _~ 1
Pl t Yoy T U5 = - P g s
with the boundary conditions
| ey 2
(2.10) P up = Uz 5=
| d3f Bfi afi"
(2.11) M2t 3 YUy taroo
and
(2.12) m (x,£,,2,7) = 0 .
7




This system is. satisfied by the quantities

o 7 +v (y,z)
(w, = u(y,2) =- —
' /egn
(2.13) < u, =0, uy = o, fl =0,

0
\ p = EPO(Y) s M =\/ﬁ Pofnldn ,
y

where ¥ 1s constant and Vs is a continuous non—negative function.‘
- They define a steady parallelzﬁbtion in the channel and we will
refer to this flow as the equilibrium flow. The velocity v _(y,z)
gives the transverse shear in the axial veloéity component and it
1s also a measure of the departure of the flow from a uniform
state defined by the velocity 7.._The fﬁnctioﬁ'po(y) measures the
variation in density with the depth and we suppose that it does
not decréase;as the depth 1lncreases so that.with‘respect to our
coordinate éystem the derivative pé(Y)‘if it exlsts satisfies
deolv)
ay =
Let us proceed to 1inearize the equations (2.7)-{2.12) with

‘respect to the flow given by (2.13). That is, let us write




u; = u{y,z)+u , , %? p(y)+0

o
(2.14) u, =V, T =f Polnlan+p ,
y
' u3=w s fl = f(x,z) ,

and assume steady motion. Lét us substitute these quantities in
equations (2.7)-(2.12) énd neglect terms which involve products
of two or more factors from the set.u, vV, W, d, p and f. The

result of the linearization of the equations (2.7)-(2.9) is

(.2.15) Uy Vo + W, =

Il
o]

(_2.‘16) ul_o xt oy = 0

po(uouxﬂ'goyV +POZW)~= - P
(2.17) Pty Y = - 6-p
‘pu W, = =D

00X

The condition at the channel wall is

With respect to the free surface conditions (2.11), (2.12) they
become conditions to be satisfied at y = 0. In place of (2.11)

we have




(2.19) v(x,0,z) = uo(O,z)fx(x,z) ,

and from {2.12) we have

o .
f po(n)dn + p(x,f,z) =0
£ o

which after differentiation and removal of second order terms

becomes

(2.20) - -p lO)f (x,2) + b (%,0,2) = o_;

Notice that if v = O, w = O, the linearized equations are again
satisfied b& a flow of the type (2.13).

Our object now 1is to show that if the speéd ¥ is not less
than a certain highest critical value then the‘only-possible
bounded solution of the problém formulated by the equations (2.15)-

(2.20) 1is the one which defines an equilibrium flow, (2.13).

3. Two-dimensional Mgti_og'- Rectangular Channel

If

where vo is continuous; 1if

10




= p,(¥)

e
O
|

w=0

and 1f the remalning quantities in the equations (2.15)-(2.20)
‘are 1ndependent of z, then these equations define a two-
- dimensional motion which may be interpreted as a two-dimensional

flow in a rectangular channel. For this case the basic linearized

equations are

(3.1) : _ ux-i-vy = O»
_(3}2) | . vqu%A-Vpoy =0

(3.3) po(uoux-+uoyv)'= - pvx
_(3'4) - : p§uovx - - G;'pY ’

'If the depth of the channel is h the equation of the bottom in
our dimensionless varlables is y = -1 and since the vertiecal

'velocity component must vanish there we musf have
(3.5) . v(x,-1) = 0 .
Corresponding to the free surféce

(3.6) - oy = 2(x)

the linearized free surface conditions

11




(3.7) v(x,0) = u (0)f, (x)

(3.8) -po(0)f, + p,(x,0) = O

must be satisfied.

For the analysis of the two-dimensional equations we will
work with the dependent variable,v/uo which we denote by A(x,y).
The elimination of u, p and g from these equations shows that
X(X Y) = V(X,‘Y)
? uo(y) _

must satisfy

(3.9) % (pougxx) + 335—, (pc;ug?(y)e PoyX =0, -1 <y -0,

=00 < X < ®

'With the boundary conditions

i3.1o) | ) | | 7('(x,-1) =0
(3.11) | | ug(O) ’Xy(x‘,o) - X(x,0) =0-.
We turn now t6 the method of Weinstein [3] and replace
| % (pous A )

2

in equation {3.9) with -Aepouow(y); while we replace j(y and 7;
respectively with wy énd Y. This formulates and introduces the

following standard eigenvalue problem:

12




(3.12) 2 (p uivy) - po ¥(y) = 220 uly 1<y <o

(3.13) ¥(-1) =
(3.14)  u2(0)9,(0) - #(0) =

Here, the eigenvalues-depend on the magnitude of 7 and the eigen-

functions must satisfy the orthogonality relation
0 , |
2
[ ety r2isyv (v (v)ay -
-1 , ‘

-where w and w are the eigenfunctions-which.correspond
respectively to the eigenvalues X and k It is easy to see
that if k is an eigenvalue then so is -X . Besides this, it is
not difficult to verify that the eigenvalues X are elther real
or pure imaginary numbers. It is known that there can be only a
finite number of eigenvalues in any bounded domain of the complex
.K -plane. It is also well known that the above second order

| system defines a complete set of eigenfunctions {w (y)} such that
a twice differentiable function G{y) can be expanded in the

Fourler series

©
a{y) = %;g a v, (y) .

13




It follows from the above remarks that for any fixed value

of x, X{x,y) has the unique expansion

Uo y)

X (x,y) = Wy 2 o)y 1sy=<o.

Here, the coefficient an(x) is

0 |
ap(x) = [ po(y)u2() A (=, 300 (v)ay
-1 -

and as a function of x it must satisfy

2 0 o

d an(;) _

-2 Poly Xax¥nd¥
dx : 1 - :

0 - .
- [ 6 0ouB Ay - PoyX Ty
R

=- *ﬁ f“’éugx-”’ndy-' |

1 : :

Hence the coefficlent an(x)'must_satisfy

daan(x) 2 7
7 +Aa (x) =0
from which N
an(x) = a_ cos knx + b sin'Kn(x) , A, £ 0
(3.15)
ao(x) = a, + bx o, A, =0 .

14




This shows that if X (%,y) is to be bounded everywhere then if

aj does not correspond to a real eigenvalue we must take a, = 0.

J

If k =0 1is an eigenvalue the corresponding term 1n the develop-

ment of X = v/uO is

(a,+ b x)¥ (¥)

Since

the corresponding termnin the development of u is
. 'x2 |
:-(aox +'bO ;F)‘llloy +fo(y).

but this 1s unbounded as x —> ® and therefore for a bounded
motion we.musf take o, = O; It is now aPparent that our preblem
is reduced to‘a study of how y affects the disposition of the
eigehvalues of the system of equations (3.12)-(3.14)}- |

In order to study these eigehvalues let us convert the
equation (3.12) namely

g% Pt owy(y) 'wa‘=,K2pou§w s o L=y =0

into an integral equation. 1If we integrate (3.12) from y to zero

we find

15




po{0uE10)¥, 0 - p, (¥)ully)uy (¥)

: , 0
= 5 0I(0) - o 1IWx) - [ pln)¥y (ndan
+ ‘>\2f po(n)ug(ﬂ_)w(n)dn

y B

from which, by usiﬁg ug(o)wy(o) -¥{0) = 0, we obtain
e
o TV (7) = o (7)9(5) + [ oy lndvy (m)an
y
=22 [ pytnuinwtnlan -
y
Since ¥{-1) = 0, ‘the last equation can be written
po(Y)ug:(y)ilfy(Y) = pol(¥) f ¥, (nddn +f Po(M)¥, (n)an
- | -
0 n |
a2 [ pgmuBtm) [ vgledatan
vy ' -1
which after an integration.by'parts yields
o (72, (9) = o) [ wotmdan + [ o tn)v, tmyan
-1 . v
T o
[ egtendierae - [ v teae
-1

| -
N A N RO IO
L 0 y

16




or, after a rearrahgement,
) 0] S
Po(y)ug(y)wy(y) = po(y)k/y ¥y (n)dn +k/‘ Po (M)¥; (n)dn
' -1 y '

-0 I y
[ eoterterae- [ v (nran
-2 Jyv -1

. 0 0
+ [ wm- [ pol&)us(e)atan
y. 1

If we sef
& = Vo137 uy(¥)¥,(y)

the last equation becomes

d>(y) --( ) f bldan _, 1 RO d>(n)dn

v u (n)/p T /ogTTug(v) 4 a (M)
[ estenzoee 5 \
y . jp ¢(n)dn

5 . Voo [¥Tu, (y) "1 u (n)/pg ) }

- A ' . N
0
W - —4(n)__ (€)u?(£)dta
Pty Tu, (¥) 3/; u (n)/p_(m' f PolBlug n

J

Now if we introduce the symmetfic kernels

17




Yeneal

-l <n=<y
y)/ omlug(n)
A
— y <n <20
uo(.y)/po(v)uo(n)
f po()uBlE)at
-1 < 1 < v
u (y)u SVPTY )po(n)
ko (¥,M57) =
f oo (£)uz(E)at
v < T] < O
ug (y)u (n)/7, (y)p Tn)
we find the integral equation
(3.16)  4(y) =f 1(y,n,7)d>(n)dn - %2/‘ Q(y,n,y)é(n)dn
-1 | =1

as one which is equivalent to the differential system (3.12)-
(3.14).

" There 1s no loss of generality in-assuming-that :

0
f b2(y)ay =
-1

Then if we multiply (3.16) by é{y) and integrate from -1 to O

'we have

18




0 o | 0 0
1432 [ 4t5) [ ptymibtmianay = [ 6 [ ty,mibtnianay -
-1 -1 -1 -1

The integral on the left hand side of the last equation is equal

to
| : [y | b(n) °
o (y)u3(y) —_oin)dy | 4o
[1 ° 0y wtaegtaT |
so thaf

0 y o
1+ A2 (vl _$(9)dn d
[1 PO ya\y | f uo(n.); poT y.

e §

0 - 0
,=\/‘ ¢(y)‘/‘ k) (y,n)¢{n)dnay
] -1

An applicatiOn of Schwartz's inequality gives

S 0 . y 2
2 2 _ 6{n)dn .
- 1+ P, (y)u (y) - dy
. \Z; ° ° k[; uo(n)’pohJ _

. 2
= JF Jf ki {y,n)dndy
-1 -1

The integral of kf(y,n) is

0 [y ¥
QK/H E%EZl L/y dn dy

-1 uO(Y) -1 po(n)ug(ﬁ)

Hencée we see that

19




v :
(¥)u ( ) Vo dlq)an | av
JF PotVT%o Y /ﬂ (n){p CO I Y

(3.17) .

/[JF (y) \/y e ‘@ﬂgf dy - 1 .

U w2ly) 1 Po{nlug(n)

The inequality (3.17) shows that there can be only a finite
number of real eigenValues because 1t requires these to lie in'a
bounded line segment which, as we noted above, cannot contain an
infinite number of eigenvalues. The inequallty {(3.17) aleo.Shows
that if ¥ in

(y) - 7+ v, (¥)
(o] e
» /en
is,taken sufficiently large then the absolute magnitude can be

made as small as we please. In addition, (3.17) shows that if

¥ 18 so large that

. AO - —y =
. Poly) d )
(3.18) 2| 35— | —(—lp—dv =1
4?'uo(Y) ‘Z; po(n)ug(n) B

then the eigenvalues cannot be real and non- zero From what has
been noted above, this means that when (3 18) holds the only
bounded solution of (3.9)-{3.11) is the trivial one

X{x,¥) = v(x,y)/uo(y) = 0. With the vertical velocity component
v equal to zero everywhere the only solutionvof the original

equations {3.1)-{3.8) for the two—dimensienal flow is one of the

20




type-(2.13). In other words, the linear theory lmplies that the

flow
EANGS o
1 =R ? 2 !
g .
fl =0,

p =P ly) '1r1 f p{n)dn

1s a unlque steady two-dimensional,flom if (3.18) holds.

In the foregoing we have made the tacit assumption, which
~ we retain, that if m and M are respectiveiy the minimim and
maximum values of the non- negative continuous function v (y) then
7 does not have a value between -M and -m. Without such an

assumption the‘integral_

v

f'dn

-1 Po(ﬂ)uo(ﬂ)

“would faill to exist.

We are now in a position to define a critical sSpeed as a
speed y = ch which corresponds to a transition from real values
of N to pure imaginary values; This oCcurs when A passes to the
~zero value and as we can see from the integrallequation (3.16)

this takes place when y = Ch is an eigenvalue of the equation

0.
(3.19) ot9) = [ 1y (v.m57)0(n)an
-1

21




It can be seen from (3.15) that c, 1s the limit speed of a wave
motion whose wave length becomes infinite. If y = s is the
highest critical speed there is no real value of A, say %r’
corresponding to a y value y = 7 such that 7p > Co* If there

were the inequality (3.17) would show that we could force 7p to

zero by increasing 7 to some value 7;. This would produce a

critical speed higher than Cq contrary to the assumption that s
is the highest critical spéed. In other words there is no bounded
flow other than the equilibrium flow if y > Co® It is evident

from (3.19) and {3.17) that the formula

0 ¥
(3.20) gh Ff o) f dn dy = 1

[ Tt v ()17 ) o m)le +v (n)1°

provides an estimate for the highest critical speed. This
estimate in general is such that c, X c.

Under some circumstances the formula {3.20) actually yilelds
the highest critical speed. If the density is constant (3.20)

gives

D
eh 2f 1 /}' dn dy =1

L Te+v (917 2] [e+vg(n)]*

which, after an integration, 1is

0

(3.21) gh dy -1.
[1 [e+vy(¥)1°

22




This is a known formula for the critical speeds, c¢c_. = ¢, where

o
the density is constant. For a discussion of this formula and
other ways of deriving it see, for example, Burns [4], or

Peters [5]. If we set vo(y) = 0 in (3.21) we find the well known

result‘c2

= gh for'the critical speed in a rectangular channel
when the density is constant and the equilibrium fioW is without
vorticity.

| If the density is not constant then the assuﬁption {in
order to have stability) is that the deﬂsity does not increase

as y increases. Hence we sée from (3.20) that

l1=gh 2| —2 , /y S < ~ dy
B ‘[; [c%—vo(y)jgr -1 po(n)[c-+vo(n)”?
— o
| ropgly) 1 f’ )
<gh /2 — o . e e S|
B ‘[1 [c+ifo(y)]2 Poly) 4 le +v‘0(n‘)]é v
0 | o
1< g’hf dy .

This means that the highest critical speed for the case of
variable dénsity cannot be greater than the highest critical
speed for constant denéity.

When the flow posse&ses no Qorticit&‘due to a velocity

variation, i.e. vo(y)-: O, the formula (3.20) reduces to

0 v : N

i

: : dn_ 4+ - _C
(5-22) 2J vot) [ a2

23




If the density variation is exponential, say

PO(Y)'= e-Eky.;

we find

- f ¥ oo 4
_{fe*wf‘¥m®W=-%§
-1

-1 gh
1, e 2K R S ,c%
K 2k " 2k°  gn?
and when k 1s small

For k smali this agrees, ub.to and including second order terms,
lwith the approximation ‘to -the highest critical speed given in

Peters and Stoker: [2], namely

EkSh
tan Sn ?-—kg
(3.23) n
2 gh .2
Sn = 2k . ? -k

Equations'(3.23) can be found by explicitly solving (3.19).

24




It should be pointed ouf that our results hold for an
equilibrium flow which is COmposed_of-hdmogeneous layers. At
an interface where the density is discontinubus, sat at y = -r,
the linear theory requires continuity in the vertical velocity
compbnent-and the pressure. 1In terms of ¥%{y) the interface

conditions'are

¥(-r - 0) = y{-r +0)

pol-r - 0 [ug(-r)¥y(-r -0) - ¥{-r - 0) ]

= p(-r+ 0).[u.§(-r)¢/y(-r +0) - ¥(-r+0)]

It can be verified that these conditions are automatically
Satisfied by the integrailequation (3.16). It is sufficient here
to confine the discussion to the case of a medium:ﬁith Just two
layers and.vo-; 0. Suppose that the lower layer is defined by}
-1-r < y < -r where the density pé is Py = 1, and that the upper
layer is defined'by_-f‘< y. < O.where'the density is Py = po < 1.
In terms of the original variables the depth of the lower layer
is h and the depth of the upper layer is H = rh so that r is the
ratio of the depth of the upper layer to that of the lower layer
and the corresponding density ratio'is pb/l = Po < 1l. The
integral equation for ¥(y) is

0 0
¢{y) =f ki (y,m37)¢(n)an - A% f ko (y,m357)6(n)dn
-1-r , -l-r

25




- where

bly) = Jpo(y)fuo(y)wy(y) :

The equation which prevails for A = O and determines the critical

speeds 1is
. .
5 = [ rglynsblnian
' -1l-r
‘OI' . |
d )an d
dly) = _%—T;T _ bln)dan 1 J[ VfiﬂfTTi?) n

» VPN u(n) u (y)/po( 2

If v, = O so that u, = v//Eh we have

2 , d{n)dn , 1 — .
¢( ) = /ATT) + = | Ve ImId{n)an .
TR [“/m—r /mﬂvs/; Pol |

This leads to the féllbwing;l If 4l-ar'<7y < -r we have

2¢(y) —k/W ¢(n)dn + po\/‘ ¢(n)dn

-l<T .-
and afﬁer'integration
(3.24) Jr bly)ay = JF ¢(n)dn + po\/‘ ${n)an .
-1-r -1l-r
- If -r <y < O we have
26




2oty = o, [ blnlan +f bln)an
-1l-r
or

(3.25) f $(y)dy = rpof é(n)an + r'f ${n)an .

-1-r

We cannot have both of the integrals

0 ‘ -r
[ $(y)dy and f $(y)ay
-r -l-r

equal to zero because this would imply ¢ = O and ¥ = 0. Hence
the determinant of the equations (3.24) and (3.25) must be zero.

This gives
(3 26) uu- (1+ r)u2-+r(1-vp ) =0
. . 0 - : o = R o - - >
an equation which defines two critical speeds. It 1s the same

as that given by Peters and Stoker [2]. The higher critical

speed is given by

c 1+r +7/Q1-7r)2+ bp r
gh 2

2
0

= jl '+ Pzékor +71>.~2

This should be compared with the estimate of the higher critical

speed which comes from (3.20) namely
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§§=/f Po‘y’f _(ﬂTdy-
=1l-r
=/ [ f d'r]dy+p f f dndy +f fdndy
-l-r -l-r ._—r -1‘r :
2

S mae—-
=h = /1 +2por+r.
~which confirms the fact that for the higher critical speed Cqr

coris such that cO :_c._

4. Three-dimensional Motion. Channel with Arbitrary Cross

Section

This part of the paper is concerned with a three-dimensional
case of our problem in which a liquid of constant density is con-
finea to a channel whose crOss‘séction is like that shown in

!

‘Fig. k.1, | yi

Figure 4.l
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The linearized equations for the motion come from (2.15)-(2.20)

by setting
Po =1
=20
7+ v, (y,2)
u =
o /&R
They are '
‘r UgUx tUoyV +Uy, W = - Py
uovx = - Py
(4.1) | <
‘ ' UoWx = - P
L U Fvotw, =0

At the channel wall given by y = q(z) we mustihave

(v.2) v=w,

- If the equation of the free surface is

y = f(x,z)

the linearized free surface conditions, to be satisfied at y = O

are

v(x,0,z) = u (0,z)f_(x,z)

(4.3)
-fx(x,z) + px(x,O,z) =0 .

29
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It seems that the easiest way to conduct an analysis of
the above equations is to regard the dynamic pressure p as the
fundamental dependent variable. For any point in the‘bounded

domain D the pressure p nust satisfy.

- 3%\, 3 (P, 3 (%
(4.4) H(f&) +37(;%>+ B?(;g>= 0 .
o/ o o

In addition the followlng boundary conditions must be satisfied.

v' .
(4.5) | - | |
T On S: “py(xfo,z)-f ugpxx(x,o,z)l= 0.

‘OnL: p,=0.

We use v to denote the unit outward normal to the boundary of D.
If we attempt to follow the method of Weinstein we are led

to this eigenvalue problém. For D:

3 (%), 2 (% )\, 2oulz,y)
F\Z) I\ w
_ ; o’ _

o o]

O_n S 'qby

i

o

ov
>
<

" This, however, 1is not a stahdard éigenvélue‘probiem beéause the
elgenvalue parameter %2 appears in thé boundary condition albng Sj
-{with unusual sign) and S coveré only part of the boundary of D.
Inétead of trylng to establish the existence of a complete}set ofj

eigenfunctions for this case we will proceed by using an alternate
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- method based on the generalized Fourler transform.

Let the right hand transform of p(x,y,z) be

(0]

§(7\,y,'Z) =f eI™ p(x,y,z)dx
0

where Im A = a > 0. TLet the left hand transform of p be

0

' iA :
[] (A,y,2) =Jr et X p{x,y,z)ax
1 ' o |

where Im A = b < 0. By takingifhe magnitudes of a and b
Sufficiently lafge these transfdrms exist for any p of expohential

order. The recovery formula for p is

m +ila

/[
, -0 +ia
_p(x’Y:Z)'=
‘ 00+1b
X ‘ o =3x .
+ﬁ.f e I‘ld)‘
-oo+ib '

The application of the right hand transform to (4.4) and (4.5)

for x > O gives

x s
(4.6) . E‘(L %> 2§ Px (Z 2Z,¥) 17\p(0 z,5)

o O

to be satisfied in D, subject to

(4.7) § =0




on L, and
(4.8) @& = uSA%f + px(O,z;O)ug(Q{é) - 17p(0,2,0)u>(0,z)

on S. Similarly the appiication of the left hand transform to
(4.4) and (4.5) for x < 0O gives |

%, 3&;) kg@i Px(0:2,5)  13p(0,2,7)
= 2 + & .-
N Yo , o : : ué . » uO N

to be satisfied in D, subject to

. §ﬁv =0

on L, and
2 | - | S
B, = UF, - p,{0,2,0)u5(0,2) + 14p(0,2;0)u5(0,2)
on S.

From the equations and boundary conditions whichjﬁ andZﬁ
must satisfy, it 1s evident that N '

§1()"Z’y_)= - §(7\,Z,Y) .

~ Therefore we see that

(490 pluyz) < - & [N Ezya
: c

‘where C is the path C = C; +C, shown in Fig. 4.2. The lines Cy

and C, are parallel to the real axis in the \-plane and their




C, )\-plone
O
Ny
- . —
Ce
Figure 4,2

distances from the real axis can be adjusted to admit functions
p of various exponential orders.
An integral equation formulation for the determination of

:ﬁ can be used to show that it is'expressible as a ratio

§ = ?P(Z,Y;l\_)

[V

in which each of ¥ and w is an entire function of A. If the

‘disposition of the zeros of w{A) is known then the behavior of

p with respect to x can be found from (4.9) by using the theory
of residues. Also, if we require p to be bounded we must choose
the path C in (4.9) so that it contains only real poles of ¥/w -
and if necesséry ¥ must be modified so that these poles are poles
of the first order. Now, the substitution of ¥/w for gjin (4.6)-

(4.8) shows that the zeros of w(A) are just the eigenvalues of
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| 3 /¥%\ 3 /¥\ a2
() &)
: -0

with

_(4.11) : ' 'Wv =0
on L, and
' a2
(4.12) | Vy = U A Y

on S. Hence our problem is again reduced to a study of e,igfena
values. Here; however, we do not need to know anything about the
completenéss of the set of.eigenfunctions. |

For the operator

B2 13 , 313
X -l A
' o o

we have the following identitles

s [ vece) + ] (wzez;ﬂy?yf) - ﬁg as
S D A - D o

e L+S o

(4.14) ff{sz(e)-eEw)} I { _ew}ds

L+S uo

where s 1s the arc leéngth along the bouﬁdary.of D. 'If'i'and'ﬁ
- are the respective conjugates of A and ¥ and if we identify the

conjugates with 0 in the above identities they éhow that

(4.15) (RP-a?) fqgmz ] o
o o\q D Y

3




and

Ca, |
(4.16) %2 f ° Pz - [ f @ _ f [ [wzwzzw,ywy}
aq D Y% D Yo ~

From (4.15) and {4.16) it follows that

| [V T+ v v
(4.17) (32 - 22) /f[ z Zug y y]dzdy -0,
D o) '

and from this we conclude that the elgenvalues are either real
or pure imaginary numbers. It should be noted that if A is an
eigenvalue theh so 1s -A. It should also be noted that A = 0 is
an eigenvalue of (4.10)-(4.12) and that the corresponding eigen-
function is wo = const. ¥ 0. We 1nfef from the last two_observa-

tions that A = O is at least a triple zero of o(A) 1f the speed

Y corresponds to a transition from real elgenvalues to pure

imaginary eigenvalues.

Suppose A = 0 is a simple zero of o) and the only one in

‘a strip )~ which contains the real axis. Then, as we can see

from (4.9), the only bounded solution for p is given by the

residue of

: =1xA T
eV Plz,yn) = & HE.yid)

at A = 0; that is, p = p(z,y). However, if p does not depend on

x the equations (4.4)-(4.5) show that p is constant. With p
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constant it follows from the equations (411)—(4.3) that the flow
must be an equilibrium flow.

Suppose next that the speed y is such that A = 0 1s a triple
zero of @{A) and the only one in ) . For this case, the residue

of

, : ix)
¢-1X7\_ g(z,y;)\,) = e‘ . m’%’;\?,vy,)‘)

at A = 0 would generate unbounded terms for p uniesé Y(z,y;N) = 0;
or'uﬁieSS W(z,y;x)'possesses a double zero at A = 0. If we impose’
elther of these conditions we find'again that p = p(z,y) and this,
as we indicated above, implies an_equilibrium'flow; If A = Olis
‘the only zero of o) in‘z: ; and if it 1s a'zero.of'odd multi-
plicity greater than three; an analysis similar to tﬁe aﬁoVe?leads
%o the same result. In other words, we conclude from this para-
graph and the last one that the equiiibrium‘flbw is the oniy
boundedlfiow if all fhe elgenvalues are pure imaginaries including ’
A = 0. |

With the real eigenvalué Xr we can assoclate the real

eigenfunction ¥. By setting 6 = ¥ in (4.13) we have

(%.18) xf,fe‘:p?dz = xgé‘/‘ :”:.Z+_1[f 95_:2@ .
| . U

By setting 6 = 1 in {4.14) we have’
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(1.19) ) v = [T
: : D

An application of Schwartz's Inequality to the last equation

gives

92 >
() 277 5
qq D o) D o]

With this, (4.18) 1leads to

ay QW g
{2.20) | 7\5 {f Elg .{ Vedz _[{ zpdzl |
41 1

| yE 442
kRl

For the‘case of the rectangular channel ¥ does not depend

on z and the inequality (%4.20) reads

( O 0 2
’ ¥_d
. 2,2 dy :
-1. 7o -1 =1

This shows, as we deduced in a different way in Section 3, that

the critical speed is given by

0 o

dy _
f;z-l
-1 (o}

and that no real non-zero eigenvalue exists if 7 is such that
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<l-

0
(4.22) | JP
. -1

Hence, as we have shown above, for-speeds 7 which satisfy (%.22)

onl&

the only bounded flow is'the equilibrium flow.
When the cross section of the channel 1is arbitrary we can

define the critical speed by requiring

qé a | a4 ‘é
(4.23) [[ L f vedz - [f wdz] =0.
p Y% a4 L 44 :

This implies by virtue of {4.20) that

D Y

-~ or ¥ = const. # 0. With this eigenfunction, (4.23) becomes
(4.24) ' JF dzd3 -
N u
. o]

where b = Ao - q1 is the dimensionless breadth of the channel. The
critical speed defined by (4.24) is the value of 7 which allows
transit from real eigenvalues to pure imaginary values through
A = 0. A more detailed discussion of (4.24) can be found in
Peters [5]. |

Ir l/ug were a negative pafaﬁeter‘then all of the eigenvalues
wouid}have to be pure imaginaries as‘(4.16) would show. Since the

eigenvalues A depend continuously on,l/ug wé conclude that when

38




l/ug.is'Small there must be a corresponding A ¥ of least absolute
magnitude which is either a pure imaginary or a real number which
is small in absolute magnitude. If the magnitude of l/ug is

sufficlently small we cannot satisfy (4.24) because then
ff dzdy <<<bp
D ‘o

and therefore A\* must be a pure imaginary. Now let y in

7 +vo(y,-2)

° Veh

be decreased until 7y satisfies

ghkxyx-__gégi_g. b .

(7 +v,)

The eigenvalue A* must then pass through arcontinuum of imaginary
values until the origin is réached. If we continue to deérease b4

until -

the eigenvalue A* passes to real values.

We can now conclude from the above analysis that if the

oo [] <

D [7'Fvo]

speed ¥ is such that

then no real and non-zero eigenvalue exists and'consequently‘the
only possible bounded flow in the channel with arbitrary cross

section is the equilibrium flow defined in Section 2.
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