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APPENDIX A DIMENSIONAL ANALYSIS

The force per unit length of the fluid on the cylinder is a function of
7 variables:

I F = f(t,T,D,Uo,p,v,ks) (A.l)

I
I

Expressed in

t
T
D

Uo

P

v

ks

F

I
I
I
I

the elementary quantities M (mass), L (length) and T (time):

[T)
[T)

[L)

_1
[L*T )

_3
[M*L ]

2 _1
[L *T ]
[L]

_2
[M*T ]

Combination of these terms gives the following dimensionless quantity n:
I
I

n = [T]kl*[T]k2*[L]k3*[L*T-1]k4*[M*L-3]k5*

[L2*T-1]k6*[L]k7*[M*T-2]k8

I thus:

I
I

(A.2 )

n k5+k6 k3+k4-3*k5+2*k6+k7 kl+k2-k4-k6-2*k8= M *L *T (A.3 )

All three exponents have to be equal to zero:

I
I
I
I

k5 kB = 0

= 0
(A. 4)

(A.5 )
+

k3 + k4 - 3*k5 + 2*k6 + k7
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I
I kl + k2 - k4 k6 - 2*k8 = 0 (A. 6)

I
I

According to the Buckingham theorem 8 variables and J elementary numbers
supply B - J = 5 dimensionless numbers:

I
k1 k2 kJ k4 k5 k6 k7 kB

A

t T D Uo P v ks F

"1 1 -1 0 0 0 0 0 0

"z 0 1 -1 1 0 0 0 0

"l 0 0 1 1 0 -1 0 0

". 0 0 -1 -2 -1 0 0 1

", 0 0 -1 0 0 0 1 0 table (A.l)

I
I
I
I
I
I

According te tab1e (A.l), equatiens (A.4)-(A.6) can be selved if:

I
I

t
T (A.7 )

I CA.B)

I UoD

"l = CA.9 )v

". ks (A.10)= --D
I
I
I
I
I
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I
I (A.ll)

I
I

Now the dimensionless force can be expressed as a function of four
dimensionless quantities:

I
I

v
ks
D (A.12)

I
in which

I
t
T

nondimensional time

I Keulegan-Carpenter number = ~!!:~)
D

I
I v Reynoldsnumber

I ks
D

nondimensional roughness

I The Keulegen-Carpenter number K is the ratio of the convective term in the
momentum equation to the inertia term. The Reynolds number Re is the ratio
of the convective term to the viscous term. K and Re can be combined to theI oscillatory Reynolds number ~ = Re

K
=

fDZ

"I
I
I
I
I
I
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I
I APPENDIX B DRAG FORCES IN LAMINAR FLOW

I The drag force exerted on a cylinder oscillating in a fluid is caused
by two phenomena:
1. wall shear stress,
2. pressure in phase with the velocity.

I
I
I

First, the part of the drag force caused by the shear stress will be
calculated.

For a laminar, attached boundary-layer, the velocity profile can be
calculated from the following differential equation (see section 4.4):I

I au au
= -- +at at (B.l)

I with

I (B.2)

I The boundary-conditions are:

I u = 0 at
at

y = 0
u = U y, just outside the boundary-layer (B.3)

I with U = U(9)coswt

I and the coordinates x and y are attached to the moving cylinder.
Af ter integration of eq. (B.l) and application of the boundary-conditions
the velocity profile is obtained:I

I u = ~(9)coswt{1-eXP(-(1+i)~)} (B.4)

I with 6 = v(2v/w) (see Batchelor [4] and Lighthill [17]).
The shear stress at the cylinder surface is:

I
I
I
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I
I

T = pv (au)
o ay y=O

. U(8)
= PV(l+l)-&--coswt (B.5)

I
I

with U(8) = 2Uocos8, with Uo the amplitude of the cylinder velocity.

I
To calculate the drag force caused by the shear stress, the component

of the wall shear stress which has the direct ion in which the cylinder is
moving should be taken (see fig. 1):

I 2UocosZ8
= pV(l+i)----&---coswt (B.6)

I Only the part of this component of the wall shear stress which is in phase
with the velocity can cause drag. Integration around the cylinder of
eq. (B.6) gives the following drag force:I

I
I

Uo
Fdls = 2"PV&-Rcoswt (B.7)

I
I

In an irrotational flow field, the net work done on the body by the
pressure is zero, because the pressure from the inviscid fluid on the body
is 900 out of phase with the cylinder velocity. Therefore no work can be
done by the pressure field on the body (see Batchelor [4]).

In this study however, we consider a fluid with a certain viscosity,
and there is a drag force caused by a part of the normal stress which is in
phase with the velocity. To calculate this drag force, a close analysis of
the Stokes theory (see Stokes [27]) is needed.

Stokes solved equation (B.l) and calculated the total force on a
cylinder by integrating the normal and shear stresses over the cylinder-
surface. He showed that the drag forces caused by the shear stresses (Fdls)

and the normal stresses (Fdlp) have the same magnitude, 50 that the total

drag force equals:

I
I
I
I
I
I
I
I
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I
I A

Uo
F = 4"pV--Rcoswt (B. 8)

I
dl 5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
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I
I APPENDIX C DISPLACEMENT THICKNESS

I
I

I

In this Appendix the principle of the displacement thickness will be
explained.

The displacement thickness will be calculated for a fixed cylinder in
oscillating flow. This is different from most of the other derivations in
this report, in which the cylinder oscillates. For the physical
understanding of the principle of displacement thickness, this does not make
any difference.

Within the boundary-layer on the cylinder, there is a defect of volume
flow, relative to the volume flow outside the boundary-layer (see fig. 40).
This defect of volume flow for a laminar boundary-layer is, using
cylindrical coordinates (see Lighthill (17):

I

I
I
I
I

(C.l )

in which U = U eiwt is the external flow outside the boundary-layer and ~~~

I
is the pressure gradient, that oscillates the flow. For u, the laminar
boundary-layer velocity profile has been used.

In order to simplify the calculations on a cylinder with a boundary-
layer with rotational, visous flow, the principle of the displacement
thickness can be used (see Lighthill (17). Thus one works with an enlarged
cylinder with radius R+Ö1, which is assumed to move in an irrotational,

I
I
I
I

inviscid fluid. The total force on the enlarged cylinder is the same as the
force on the original cylinder. In order to satisfy this definition, Ö1 is

given by:

(C.2)

I
I

The external flow also equals:

I
I
I
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I
I _1 aD

u = (piw) (- --~)ra8 (C.3)

I
I

Using equations (C.l) through (C.3) gives 61 as:

I
6 = y(~-)= (l-i)y(~-)1 lW 2w

(C.4)

Note that 61 is complex. Thus the interpretation of displacement thickness,

I
I

valid for steady flow, namely that the influence of the viscous boundary-
layer on the flow is as if irrotational flow is flowing along a displaced
solid boundary is not valid anymore. Mathematically however, the solution
for 61 is still correct. The imaginary part of 61 causes a component of the

I
I
I

cylinder velocity in phase with the pressure. Therefore, the pressure can do
work and contributes to the drag force.

Since we assume potential flow around the enlarged cylinder, there is
no shear stress in the calculation. The drag force on the cylinder is only
caused by the pressure. The total force on the cylinder is:

I " a~F = 2 J p--Rcos8d9o at (C.S)

I
I

(C.S) shows the stream function according to Bernoulli, integrated along a
streamline around the cylinder. In this equation:

(C.6)

I
Uo is the amplitude of the cylinder velocity.

I Thus the amplitude of the force is (with eq. (C.4) for 61):

I
I

(C.7)

Note that 6~ is negligible in comparison with RZ and 2R61•

I
I
I
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I
I The amplitude of the inertia force, which is in phase with the acceleration

of the cylinder, equals:

I
I

1F. = ~pwU R2(l+2(-----»
1 0 v(~~) (C.8 )

I

In this equation, the first part is the mass-inertia of the volume of the
cylinder, and the second part is the added-mass inertia of the fluid.
The amplitude of the drag force, which is in phase with the cylinder
velocity, equals:

I

I 4F = ~pwU R2(-----)
d 0 v(~~) (C. 9)

I in which ~ is the oscillatory Reynolds number.
Comparison of eq. (C.9) and (B.8) shows that the principle of the

displacement-thickness is correct, and that it is much easier to use in drag
force calculations. ~ _ i)

ÎI
I
I
I
I
I
I
I
I
I
I
I
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I
I APPENDIX D WORK METHOD

I

I

The total work done by the flow around the cylinder can be calculated
from the momentum equations.

If U is the velocity in x-direction just outside the boundary-layer,
the momentum equation in x-direction outside the boundary-layer is:

~

I

I ~E =ax piwU (D.l)

I
I

In this equation U is, using potential flow:

U( t) (D.2 )

I Regarding the flow up to Y = ~ with ~ larger than the boundary-layer
thickness (see fig. 2), and using the displacement-thickness principle, t~~
momentum equation becomes (see appendix Cl:I

I
I

(D. 3 )

Subtracting eq. (D.l), integrated over ~-61:

I
I
I

- ~E(~-6 ) = piwU(~-61)ax 1
(D.4 )

yields:

(- ~E)(-6 ) = "0ax 1
(D.5)

I
I

The rate of doing work in the boundary-layer (per unit surface area) is:

W( t) = (- ~E)U(t-6 ) = u.,êx "1 0
(D. 6)

I
I
I
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I
I Note that to calculate this rate of doing work, only the real parts of the

equations should be taken. The mean rate of doing work is:

I
I (0.7)

I To calculate the mean rate of doing work per unit length of the cylinder,
this expression should be integrated around the cylinder surface:

I -*W = (0.8)

I This expression should be equal to the mean rate of doing work, per unit
length of the cylinder, of the drag force:I

I (0.9)

I
I
I
I

Now the drag force can be calculated.
The derivation made~ove, is valid for laminar and (partly) turbulent

1 c./J...L. .. fboundary- ayers. We ~ol the expresslons ln the case 0 a laminar
boundary-layer. The expression for the shear stress then is:

(0.10)

Substituting the real parts of eq. (0.2) and (0.10) in eq. (0.8) gives:

I
(0.11)

I
I
I

In the case of a laminar boundary-layer, eq. (0.9) becomes:

(0.12)

I
or

I
I
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I
I

(0.13)

I
I Substituting eq. (0.11) in eq. (0.13) yields for the drag force:

I (0.14)

I This expression is the same as the one obtained in Appendix B
The work method presented here is based on eq. (0.7) which later will

be used to calculate the drag force on an oscillating cylinder including
laminar, partly laminar partly turbulent, and completely turbulent boundary-
layer flow (see Appendix E).

I
I
I
I
I
I
I
I
I
I
I
I
I
I
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I
I APPENDIX E WORK AND DRAGFORCE CALCULATIONS

I
I

As explained in section 5.3, the flow around the cylinder is laminar
between 9 = 8 1 and 8 = ~/2. In order to calculate the mean rate of doingcr

I
work of that part of the cylinder which has a laminar boundary-layer, the
integration limits are 8 1 and ~/2:cr

I = 4 8 J"/2ToU Rd8
crI

(E.l)

I Integration yields the following expression:

I
I

2PV(2VW)U~R(~/2 - O.5sin28 1- 9 1)cr cr (E.2)

I
This equals:

I (E.3)

I This yields for the drag force caused by the laminar part of the boundary-
layer flow:

I (E.4)

I The result for this part of the dragforce is therefore:

I = 4v(2vw)pUoR(~/2 - O.5sin26 1- 8 1)cr cr (E.5)

I
I

The same method will be applied to calculate the drag force caused by
the turbulent part of the boundary-layer flow. Now a quadratical relation
between the shear stress and the velocity will be used (see section 5.2):

I
I
I
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I
I (E.6)

I In a different way:

I T.= Tolcos~coswt-sin~sinwtl(cos~coswt-sin~sinwt) (E. 7)

I f is the turbulent smooth or turbulent rough friction factor, f or f ,~w ws wr

I is the phase difference between the outer flow and the wall shear stress and

TO is the amplitude of the turbulent shear stress at the wall, which can be

I derived from equation (E.6). As can be seen from figure 10, the work done by
the turbulent part of the boundary-layer, with a relatively smooth surface,
has to be calculated by integrating from 8 = 0 to 8 = 8 2. The work done bycrI

I
the turbulent part of the boundary-Iayer, with a relatively rough surface,
can be calculated by integrating between 8 = 8cr2 and 8 = 8crl. Working this

out gives for the work done by the turbulent part of the boundary-Iayer with
smooth surface:I

I 8 AA

-* cr2 I IW = 401 UTocoswt cos(wt+~) cos(wt+~)Rd8ts (E. 8)

I with a friction factor fws

I This is for cos(wt+~) > 0:

I 8 AAw:s= 4.1 cr2UTo(COSZ~COs3wt-2cos~sin~cosZwtsinwt+sinz~sinlwtcoswt)Rd8

I
(E. 9 )

and for cos(wt+~) < 0:

I 8 AAw* = 401 cr2UTo(-COS1~COS3wt+2cos~sin~cos2wtsinwt-sin2~sin2wtcoswt)Rd8ts

I (E.IO)

I
I
I
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I
I Solving cos(wt+~) = 0, yields for given values of w and ~,

I
*t = t . Then the solution of eq. (E.9) and (E.10) is:

I
I *

+ l/3sin2~ - l/3COS2~)[Sin3wtJt* IRd9
t -T/2

(E.ll)

I * *The parts between [J are integrals from t to t - T/2 in which T is the
period of the motion.

The same as above can be done for the rough surface. The difference is,
that 9 2 and 9 1 are the integration limits and that f has to be used.cr cr wrI

I The contribution to the drag force can be calculated from:

I -*
W = F Uts dts 0

(E.l2)

I Now a different expression for the drag force has to be used, because in a
turbulent boundary-layer flow, the drag force is quadratically related to
the velocity of the cylinder:I

I (E.l3)

I
I

-*For Wts' expression (E.ll) should be used.

For the rough surface, exactly the same can be done.
The total drag force equals:

I
I

(E.l4)

I The subscripts dl, dts and dtr, denote drag laminar, drag turbulent smooth
and drag turbulent rough.

I
I
I
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I
I APPENDIX F FLAT PLATE FRICTION FACTORS

I

I

This analysis on friction factors is restricted to oscillating flow on
flat beds. When applying this theory to flow around a cylinder, it is not
valid directly. However, in this study a momentum.equation is used which
describes the flow as if the surface of the cylinder locally is a flat bed.
Therefore, the flat bed friction factors may be used, though they have to be
determined locally.

Note that the next part of this appendix will deal with oscillating
flow over a fixed bed. In most parts of this report the flow caused by an
oscillating cylinder in a still fluid is described. Physically however,
there is no difference, whether the flow oscillates, or the bed, if
coordinates are used fixed to the surface.

I

I
I
I The friction factor f for oscillating flow over a flat bed can bew

I defined as:

I
Al

To = O.5fwPU (F.I)

I The momentum equation for the boundary-Iayer is (see section 4.4):

I au au= -- +at at
aTI __~~

p ay (F.2)

I The solution for the shear stress in case of an oscillating laminar flow is
given by Stokes (see appendix B):

I
I

(F.3)

I
I

in which ~ = fDl/v.

Therefore, To = v2pv~U (F.4)

which yields fwl
2= iRë (F.5)

I
I
I
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I
I

with Re = Ua
v (F.6)

I
I

in which a is the local amplitude of mot ion.
In the laminar case, the wall shear stress is linearly related to the
velocity according to eg. (F.3), so the expression for the wall shear,

I stress, To at y = 0 is:

I (F.7)

I This expression has no restriction with respect to the roughness of the
surface.

I

I

In case of a turbulent boundary-layer flow, there is no analytical
description of the wall shear stress and friction factor.

There are, however, a few models available which describe the velocity
profile in the boundary-layer under certain assumptions, and supply friction
factors that can be used in eg. (F.l). Furthermore, empirical formulations
for the friction factor are available which are directly obtained from
experiments.

In case of a turbulent boundary-layer flow, there is a division between
smooth and rough beds. First, we will examine the smooth beds.

Kajiura (see (26) uses a so-called eddy-viscosity model to describe
the shear stress:

I

I
I
I au

T = PE--ay (F.B)

I with E the eddy-viscosity. He presumes E to be constant in time, though
experiments show that E is a function of time (Horikawa 196B, see [26]).
Kajiura splits the flow into three layers with different eddy-viscosities
and obtains an expression for the wall shear stress To' Ris result in terms

I
I of friction factors is:

I 1------ +B.lvf ws
1log--- = -0.135 + 10gvRevfws

(F.9)

I
I
I
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I
I with a shear stress that varies sinusoidally in time (see eq. (F.8».

Jonsson (1967), see [26], has developed a model with a wall layer and a
defect layer with the following conditions:I

I wall layer = f (~-)u* ks (F.IO)u

I defect layer (F.II)

I
I

Twith u* = y{-) the shear stress velocity. Thus Jonsson presumes a wall
p

reg ion in which the velocity is determined by local conditions (eq. (F.lO»
and a defect layer in which the velocity is independent of the ViSCOSi~
{eq. (F.ll». With help from eq. (F.I) the following expression for the
friction factor is obtained:

~, ö'~,I
I
I

_0 Z
f = O.09*Re •ws (F.12)

I

In Jonsson's theory, the shear stress varies quadratically in time due to
the use of the shear stress velocity.

Another model of the turbulent boundary-layer is the mixing length
model (see section 3.1). This model also predicts the shear stress to vary
quadratically in time:

I

I z
T = pIo m (F.13)

I
I.

in which 1 is the mixing length.m

I
Since the experiments show that a variation of the shear stress

quadratically in time is more realistic than a linear relationship, we will
use eq. (F.12) to compute the friction factor in a turbulent flow on smooth
beds.

I
I
I
I
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I
I Kajiura (1968, see [26]) has developed his three layer model with

eddy-viscosities for rough beds also. This resulted in the following
expression for the friction factors:I

I 1+ log----4vfwr
(F.14)

I Jonsson suggests the semi-emperical formula:

I (F.lS)

I

I

which is very similar to eq. (F.14).
By using a mixing length model for the boundary-layer, Bakker (see [3])

develops another equation for the friction factor that has the same
character.

I
In view of the fact that the Jonsson model is used in the smooth

I
turbulent case, because the shear stress varies quadratically in time, we
will also use his equation (F.lS) for the rough turbulent case. Swart has
rewritten this equation in the following form:

I
I

f wr
a _0 l'

= 0.002Sl*exp[S.2l*(ks) • ] (F.16)

I for a < 1.S7
ks

f = 0.3wr

I
I
I
I
I
I
I
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I
I
I

APPENDIX G THE CONVECTIVE TERM

I The momentum equation in x-direction for a laminar boundary-layer on a
flat surface is (see section 3.3):

I au au auät + u äi + v äy = (G.l)

I
I

For the outer (potential) flow the shear stress vanishes, and the momentum
equation reads:

I 1 ~E
p ax (G.2)

I Since the pressure is the same inside and outside the boundary-layer,
equations (G.l) and (G.2) can be combined:

I
I

au au au
at + u ax + v ay =

au oU 02U
at + u ox + v oy2 (G.3)

I
The integration of the equation of motion for the boundary-layer, eq. (G.3),
cannot be done straight away because it includes non-linear convective
terms. To estimate the influence of the convective terms on the flow field

I and the drag force, expansion series can be used to calculate successive
approximations of the velocity-profile:

I (G.4)

I and of the shear stress:

I (G.S)

I Note that r
D

is not the wall shear stress.

I
I
I



I - 21 -

I
I
I

Though expansion series can give an idea of the importance of the
convective terms, one should keep in mind that expansion series are only
allowed when ul « uo' thus when

I au au
u ax « ät or AIR « 1 (G. 6)

I The first solution for u and T, giving Uo and To' is the solution of

I the momentum-equation neglecting the convective terms. The second sOlution,
giving ul and Tl' is the solution of the momentum-equation including the

I convective terms and using the first solution uo:

I cSu cS2uo
= 6t + v -6yZ (G. 7)

I Using the following expression for the outer flow:

I u = U(x)coswt (G. 8)

I
I

yields for uo:

Uo = U(x)~~exp(iwt) (G.9)

I and yields for Vo (by using the equation of continuity):

I
I

(G.lO)

I For ~o and ~~ , which express the dependency of the amplitude of velocity on

I
y, see Schlichting ([231) p.429. This first solution is equal to the Stokes
solution (see [271).

I
I
I
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I
I The second-order approximation can be derived by using Uo and Vo in the

I
convective terms of the complete equation of mot ion:

I
au

(G.ll)= u ax

I This yields for the tangential velocity UI:

I (G.l2)

I For ~a and ~b see Schlichting [23] p.429.

I The solution for UI consists of two parts. The first part, with ~ , is aa

periodic contribution to U, Uil' and the second part, with ~b' is a steady-

I flow contribution, Uil'

I
If this solution is applied to the circular cylinder, with x = ra9, Uil

I
depends on 9 with cos29, due to the term ;(9)~~~~1.The magnitude of Uil is

decreasing with increasing y, due to the form of ~ • At Y = S, ~ damps Uila a

I
with exp(-l). Uil also depends on 9 with cos29. This steady-flow

contribution to the flow around the cylinder is given by Schlichting (see

I
fig. 3).

One can also split the expansion of the shear stress in two parts:

I = pv and = pv ay (G.l3)

I both at y = O.
If Uil and Uil are of the form cos29, this is also the case for Til and Til'I

I
Now that the influence of the convective terms on the velocity-profile

and the shear stress is known, the influence on the drag force on the

I
I
I
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cylinder can be examined. For that purpose, a work method is used (see
Appendix 0). The mean rate of doing work of the total shear stress is:

(G.14)

U is the external inviscid flow just outside the boundary-layer. Both Ull

and u1Z contribute to the external flow. u1Z is not zero at infinity and Ull

is rapidly damping with increasing y, but is not yet zero at y = 5. Thus U

will also consist, like u, of terms Uo' Ul1 and U1zand therefore, the total

work is:

I

(G.15)

I
I

From the Stokes solution, it is known that To and Uo depend on 8 with cos8.

Above is showed that Tll, T1Z' U1l and Ull vary with 8 as cos28. Thus, since

integrating cos8cos28 over 2~ radians gives 0:

(G.16)

I
This expansion-method is only admissible if ul « ua and T1« To' thus if

and and

and (G.17)

so the expression for the work gets:

I
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I
I
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I
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I
I
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(G.18)

From the former equation one can see that the second order term in the
solution for the velocity-profile does not contribute to the drag force.
Brouwer (see [8]) proved this for the second and third order term in a more
complex manner.

Though the expansion series showed that the drag force does not change
when the convective terms are included in the equation of mot ion, one should
keep in mind that expansion series are only allowed if UI « uo' thus if

AIR « 1. In our model, drag forces are calculated for amplitude upon radius
ratios up to about 2. This means that the use of expansion series to
determine the influence of the convective terms is not allowed.

We have shown that for small AIR ratios the convective terms do not
influence the drag force, as long as the boundary-layer flow is laminar. For
a turbulent boundary-layer flow the same can be done, because then vt may be

used in stead of v. This will yield the same result as for a laminar
boundary-layer.

For the time being, we assume that for larger values of AIR the
convective terms will not influence the drag force either. If necessary,
this assumption will be checked later, For example when theory and
experiments show very different drag forces.
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I APPENDIX H FIXED VERSUS OSCILLATING CYLINDERS

I When the force on a cylinder is measured, one should distinguish an
oscillating cylinder in still water from a fixed cylinder in oscillating
water. The measured forces for the above mentioned cases are different,
due to inertia. Usually, investigators derive the drag and inertia
coefficients Cd and Cm' as they are defined by the Morison equation (see

section 3.2), from their measurements. They even do so when the flow is
still attached to the cylinder. To obtain the right Cd and Cm values from

I
I
I
I
I
I

the measurements, the following equations should be used:

fixed cylinder
auo

F = 0.25 CmP~DZ at + 0.5 CdPDluoluo (H.I)

I oscillating cylinder
auo aUg

F = 0.25 Cap~DZ at + M at + 0.5 CdPDluoluo (H.2)

I in which M is the mass of the cylinder.
The forces are divided in an inertia-part in phase with the

acceleration, and a drag-part in phase with the velocity (see eq. (H.I)
and (H.2). In the eq. (H.l), C can be divided in an inertia coefficient formI

I
I
I
I

the added mass and an inertia coefficient for the fluid displaced by the
cylinder: C = C + I (see Chakrabarti [9]).m a

It turns out that the equation for the force on a fixed cylinder
contains an inertia term caused by the fluid displaced by the cylinder. The
equation for the force on an oscillating cylinder contains an inertia term
caused by the mass of the cylinder itself.

I
I
I
I
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I APPENDIX I WALL EFFECTS

I
I

To estimate the influence of the walion the velocity profile in the
tank, we assume a potential flow. The potential flow around an oscillating
circular cylinder in still fluid is given by the following stream function:

I
I
I
I
I

R2~ = Ucos(wt)*rsin(9) + U -- cos(9)
r

(lol)

when the coordinate system is fixed to the cylinder (see [20).
This yields

RZU9 = Ucos(wt)*cos(9)(1 + rï) (1. 2)

The maximum velocity during a cycle is

I
I

R2
U = U(l + r2max (1. 3)

I
I
I

The velocity at the wall thus becomes 0.013 U with R = 0.2 mand r = 1.75 m.
However, the wall will act as a mirror for the flow. At the wall, the
undisturbed potential flow is U + 0.013 U. The disturbance of the wall will
give a velocity at the wall, relative to the wall, of 0.02 U, in stead of
0.01 U.

I

Comparing this to the wall effects at the tests in a U-tube by Sarpkaya
(see [21), who used a tube of 1.42 m height and a cylinder with a diameter
of 24 cm to achieve large ~-values (about 11000), our deviation seems
reasonable. The velocity at the wall in Sarpkaya's tests was 0.058 U,
compared with 0.02 U in our case.

I
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I
I
I
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I
I APPENDIX J STANDING WAVE

I
I

To calculate the natural frequency of the water in the tank, we calculate
the case of a single standing wave in the tank, see fig. 4.
The wavelength is twice the length of the tank and thus 10 m, and the
waterdepth is 2.5 m.
The velocity of the wave is given byI

I
I
I

c = (~tanh(kh»0.5 (C.2.1)

(see [5]). The Iowest natural frequency is given by:

(C.2.2)

I Using the correct values for our case yields c = 3.8 mis and f
i

= 0.38 Hz.
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