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Abstract. This paper addresses the use of the methods Astronomical tides generally have the large contribution
of nonlinear dynamics and chaos theory for building ato the ocean water level variations in open oceans and
predictive chaotic model from time series. The chaotic modelmany well-exposed coasts. Traditionally, the analysis of
predictions are made by the adaptive local models based owater levels usually employs linear methods that decompose
the dynamical neighbors found in the reconstructed phaseea levels into tides and other (usually meteorological)
space of the observables. We implemented the univariateomponents. The amplitudes and phases of the tidal
and multivariate chaotic models with direct and multi-steps constituents driven by the astronomical motion of the Earth,
prediction techniques and optimized these models using aMoon and Sun (with known periods) can be estimated by
exhaustive search method. The built models were testedsing Fourier analysis, response analysis or linear regression
for predicting storm surge dynamics for different stormy methods. In particular, the weakly nonlinear shallow water
conditions in the North Sea, and are compared to neuralvaves can be characterized by the Korteweg-de Vries (KdV)
network models. The results show that the chaotic modelequation Korteweg and de Vrigsl895 which is an exact
can generally provide reliable and accurate short-term stornsolvable partial differential equatiorzabusky and Kruskal
surge predictions. (1965 found that the KdV equation can be obtained in the
continuum limit of the Fermi-Pasta-Ulam ExperimeRe(mi

et al, 1955. They showed that the solitary wave solutions
had behavior similar to the superposition principle, despite

. . . the fact that the waves themselves were highly nonlinear.
Storm surge is a meteorologically forced long wave motion o ;
In real applications, however, the water level dynamics

which is pushed toward the shore. It is generated by a .
L . . - In coastal and estuarial swallow-water areas, such as the
combination of meteorological forces of the wind friction

. Dutch coast, may differ significantly from the astronomical
and low air pressure due to a stor®dnnert et al.2001), and . > may 9 1y o
: : : : estimated constituents (superposition principle) — due to the
oscillates in the period range of a few minutes to a few days. . . . . )
) nonlinear effects that include meteorological forcing, tidal-
In the ocean, local wind waves can add to the water level, and . : . :
current interactions, tidal deformations due to the complex

the storm surge can be amplified (or reduced) by interferenc . .
with the strictly regular astronomical tides. Extreme coastaﬁo?ggzsi Tyff:)r(l)c(ijgszglst%hirt%ﬁegSE:; ai‘ir??é predicted

floods can be related to extreme storms, like cyclones or ith an accuracy that depends on the accuracy of the

hurricanes which attack the open coast. In some coastal . . .
meteorological forecasts. An appropriate numerical weather

areas, such floods can be generated by unusual sequences . . . . .
. ; . " - model can predict the motion of atmospheric depression with

of wind set-up and air pressure variations. In addition, wind ; . .
. . . .a satisfactory accuracy in a range of several days. The wind
driven waves can be superimposed on the storm tide. Thig ) . . X
L L and air surface pressure fields predicted by this model can be
rise in sea level can cause severe flooding in coastal areas

particularly when the storm tide coincides with the high tides utilized as some dnymg forces of the sea mot]op in a shallow
(Battjes et al.2002) water model allowing for storm surge predictions. Some

recent updates on the operational storm surge numerical
model with data assimilation in the Netherlands have been
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Nonetheless, the analyses of the risk of coastal floods ar@ Storm surge modeling

not straightforward, because an observed flood is not a single

independent event in statistical terms. Rather, the flood jst0'™M surge modeling has advanced significantly over the
a consequence of a set of different determinants, like tidesPast 30years which turns out to be very essential to anticipate

wind and air pressure, or of a set of sequences of thesH'® occurrence of coastal ﬂooding.. Some advances on
factors. Both the mean sea level and the flood height willPhYsically-based storm surge modeling have been reported
vary along the coast and the risk of coastal flood depends offy Bode and Hardy(1997), Batt.jes et al.(2002 and
emergency preparedness planning and the design of coast¥friaan et al(2003. They include: refining computational
facilities and structures, such as flood embankments. Thrds, utilizing more accurate calibration of models with
ocean water level variations due to various determinantL€tter data, using an improved numerical schemes and
and their complex interactions show long-term persistencdncorporating data assimilation technique into the model.

leading to the correlated extreme evenfdekandersson Primary links between the nonlinear dynamics and chaos
et al, 1998 Butler et al, 2007). theory, and the storm surge model can be described as

Complexity of the described phenomena prompts forfllows. The basis of a physically-based storm surge model
adequate methods to describe them, and one of them iwhich is widely used is the Navier-Stokes shallow water
chaos theory. The most direct link between the concepfduations, stating the physical laws of mass and momen-
of deterministic chaos and the real world is the analysis oftUM conservationsjronkers 1964. These equations are
data (time series) from real systems in terms of the th(:)c)r))nherently nonlinear. The sensitive dependence on the initial
of nonlinear dynamicsTsonis 1992 Donner and Barbosa and boundary conditions of the dynamical evolution of such
2008. Note that this approach is, in fact, data-driven, systems, and the broadband and continuous power spectra

since it is purely based on the analysis of the observatior:™® the indicators of deterministic chaos. A mathematical
data. The initial nonlinear analyses of the ocean waterprOOf on the existence of chaotic behavior in Navier-Stokes

levels at the Florida coast have been conductedriison ~ €guations and turbulence has been conducteii {£004).
et al. (1999. The earlier attempts of the use of chaotic ©n Other handSimonnet et al(2009 analyzed the presence
model (CM) for storm surge predictions were done by of b|furcat|ons_|n ocean,.atrr]ospherlc a_nd climate mode_ls
Solomatine et al(2000, Walton (2005 using univariate for understanding the va.rlablllty of oceanic and atmospheric
local models. Velickov (2004 extended the method using flows as well as the climate system. As models, chaos
multivariate chaotic models and showed that it has reliabledynamical systems show rich and even surprising variety
and accurate short-term predictions. This model has beefif dynamical structures and solutions. Most appealing for
further improved by applying dimensionality reduction in the researcher; and practitioners is the cht that Fhe deterministic
phase spaceSiek et al, 2008. f:haos p.rowde_s. a prpmlnent e_xplananon for.lrregullar behav-
This paper presents the use and implementation of thd°" and mstgbllltles in dynamlga! systems (including storm
nonlinear dynamics and chaos theory for predicting stormSUrges), which are deterministic in nature.
surges. If compared to our earlier wqu, we adyanced the, 1 Study area: the North Sea
procedure of building chaotic model by incorporating several
new features: using Cao’s metho@gg 1997 for better  The North Sea lies between Norway, Denmark, Germany,
estimation on dynamical invariants; implementing multi- the Netherlands, Belgium, France and Great Britain. It
step iterative predictions, applying the neighbors distancdinks up with the Atlantic Ocean to the north and also the
cut-off to avoid inclusion of the false dynamical neigh- southwest, via the English Channel. The total surface area is
bors, adding water level variable into multi-variate chaotic approximately 750 000 kfrand the total volume 94 000 km
models, finding the proper number of neighbors usingThe North Sea has a dynamically active regime dominated by
sensitivity analysis for stormy and non-stormy conditions, strong tides and frequent passages of mid-latitude synoptic
and optimizing the chaotic model parameters (time delayweather systems (Droppert et al., 2001). The waters are
and embedding dimension). Furthermore, we compare thenostly shallow (deptk:150 m) in the region. As tides from
prediction performances of the proposed chaotic model withthe deep Atlantic Ocean enter the North West European shelf,
other models, including artificial neural network (ANN) they propagate around the coast in the form of long gravity
models. waves. High tides occur approximately every twelve hours.
The following sections present the basics of storm surgeThe main tidal stream enters the North Sea along the Scottish
modeling, nonlinear dynamics and chaos theory, chaoticcoast. As a result, the level difference between high tide
model prediction, case study, model results and conclusion.and low tide is not the same everywhere. The actual tidal
difference depends not only on the positions of the Sun and
the Moon, but also determined by the weather, and primarily
by the wind and surface air pressure. North-westerly storms
are notorious. The rise on any particular occasion depends
on the direction, the force and the duration of the storm.
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The extreme storm surges in the North Sea is much Huibengat
affected by the role of the North Atlantic Oscillation (NAO) Hoom (Tegscnelig) ~— LaUWg[s000
variability (Woodworth et al. 2007). The North Atlantic i Viejand Leauarden Ra—
atmospheric variability is mainly driven by the NAO with [ Ecie |

an NAO index defined by the difference between normalized Texglhors
sea-level pressures between the Azores High and Icelandi(
Low. The periods with large positive index correspond to
strong westerly winds which often strikes the Dutch Coast.
For the Netherlands, the accurate forecasting of storm umyden
surges is very important because of the possible coasta
floods since the large areas of the land lie below sea level,
These areas are most densely populated and important fo
the economy. Since the disastrous storm of 1953, the dike<jiM A
and storm surge barriers in the delta area and along the Limoland Gooroa & TOREST Horwen
Dutch coast have been systematically improved. These dike e
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purpose, the accurate and reliable predictive models for thef ¥ REEEE
ocean water level and surge are critically required. Another g
important reason for having accurate forecasts of sea levelg
is the needs of navigation: the vessels waiting to enter the Maastricht
Port of Rotterdam need these to ensure safe passage throu
the entrance channel since draft of some of them is close to
the depth of the channel.

22 Data description Dutch meteorological stations.

Water level, surge, atmospheric pressure and wind
speed/direction data from seven coastal stations along the

407

Fig. 1. The North Sea region and the locations of the principal

Dutch coast are monitored and provided by the North Sealable 1. Data description from tidal stations in the Dutch Coast

Directorate (Directie Noordzee, DNZ). The water levels are (1990-1996).
sampled at 0.0167 Hz and averaged over period of 10 min.

In the data we had at our disposal each time series begins Code  Station Water levels Surges

. . . Name Max Var. Max Var.
on 1 January 1990 and is available until 31 March 1996, range range
which rgsults in _337 249 continuous samples in total for cm) (cn?x10®) (cm) (cnPx10%)
1'0 min tlmes series, and 54 768 for 'th(.a ayeraged hourly EPF  Euro platform 138 387 357 0563
times series. Due to the experienced limitations of th_e used {vH HoekvHolland 471 4.63 358 0.708
software to handle extremely large data sets of 10-min data, K13 K13 platform 468 2.68 332 0.773

hourly data is used for all further analysis and building the
chaotic model. The surge data is obtained by subtracting the
observed water level with tide (astronomical forces) based on

harmonic analysis, formulated as: Figure 1 shows the North Sea region and the locations of

surge= water level(observeg—tides . ) .
9 ( o is closer to the HVH station than the K13 station.

) the main tidal stations. Geographically, the EPF station
The

In this paper, we concentrate on predicting the surges agtorm surge moves from the English Channel (South) to the
the Hoek van Holland (HVH) tidal station, which is located North striking the western part of Dutch Coast, hence the
at the entrance of the Rotterdam harbour. The possibld=PF location is a good position in open sea to measure the
inclusion of the spatial information from neighboring sta- storm surges or water levels before they reach to the Port of
tions is also investigated for building the multivariate chaotic Rotterdam (Hoek van Holland). This information is required

model. We explored the information from Europlatform for the preparation before a coastal flood occurs.

(EPF) and K13 because in practice the observations from Relationship between the long-shore winds, surge, water
these two stations often become reference for the expetevel, and air pressure difference time series data at HVH

judgement concerning the possible extreme storm surgekcation is presented in Fig2. Table 1 illustrates the

at HVH location in relations to the forecasts produced by statistical description of the data from the three tidal stations
the Dutch operational storm surge model (DCSM/WAQUA). used in this work. In order to evaluate the model performance

www.nonlin-processes-geophys.net/17/405/2010/ Nonlin. Processes Geophys., #2042610
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Table 2. Data separation for surge time series into training, cross-validation and testing data sets for non-stormy and stormy conditions.
Cross-validation data sets are used to find the optimal parameters of chaotic model using exhaustive search method.

Date Non-stormy periods Stormy periods
Time Train Test Train Test

Cross-validation data sets

Start 1 Jan 1990 00:00 11 May 1994 15:00 1Jan 1990 00:00 19 Jan 1994 03:00
End 11 May 1994 14:00 28 May 1994 07:00 19 Jan 1994 02:00 4 Feb 1994 19:00

Verification data sets

Start 1 Jan 1990 00:00 1 Jun 1995 23:00 1Jan 1990 00:00 27 Nov 1994 17:00
End 1 Jun 1995 22:00 31 Aug 199523:00 27 Nov 1994 16:00 25 Feb 1995 15:00
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for various conditions, the surge data is divided into cross-
validation (CV) and verification data sets for non-stormy
and stormy conditions as listed in Tabfand depicted
on Figs. 3 and 4, respectively. Each of these data sets
consists of training and testing data sets. The cross-validatior
data sets are utilized for finding the optimal parameters © .| ,
of chaotic model using exhaustive search method. After
being optimized, the prediction performance of the chaotic
model was investigated using verification data SetS fOr 14.:5%e51200 15un10952000  17-9un-1995 0400  18-Jun-1995 1200 19-Jun-1995 20:00
various stormy conditions. The rest of observed time series Time (hou)

(1 September 1995 till 31 March 1996) is not used for model
prediction.
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Fig. 4. The relationship between the observed water level, tide
and surge time series data during non-stormy period at Hoek van
Holland location.
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This data separation was made based on the analysi._ 1 ‘ ‘ r
of recurrence plot and visual inspection in time-domain 05 } -—Z—-fnt:jt&(:a(?rirn?;trﬁe:tion,
time series. The recurrence plot is used to visualize the
recurrences in a dynamical system, which it has capabilitiesg ®2
to detect the presence of homogeneity, intermittency ands o
transition in a time seriedMarwan et al.2007).
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mathematical equations that describe the time evolution of 2
the system states given some initial conditions or knowledge

of its previous history. Some examples of dynamical system % 5 10 15 20 25 30 35 40 45 50

Time lags (hours)

are the Navier-Stokes equations and Newton'’s equations foi
the motion of a particle with suitably specified forces. TheseFig. 5. Autocorrelation function (dotted line with circles) and
dynamical systems can often be expressed:kfjrst order ~ mutual information (solid line with triangles) as a function of time
ordinary differential equationgx/dr =f(x(¢)) or in discrete  lags suggesting the optimal time delay is 10 h.

time t =nAt by maps of the fornx,+1 =f(x,). This time

evolution is defined in some phase space. Such nonlinear

systems can exhibit deterministic chaos which comprises digure5 shows the autocorrelation and mutual information
class of a signal intermediate between regular sinusoidal off the surges at HVH. The autocorrelation function has slow
quasi-periodic motions and unpredictable or truly stochasticdecay until time lag 18 and further oscillates in a small
behavior [orenz 1963. The main reason for applying ranger=[0.25, 0.35]. This implies the presence of long-

chaos theory is the existence of methods permitting to predicterm correlations in the analyzed time series data. The first

nonlinear relationships between time-lag variables is found
3.2 Phase space reconstruction: method of time-delay to be a better criterion for the choice of optimal time delay
embedding than the zero-crossing autocorrelation (that measures linear
dependency only). The first minimum of mutual information
The most important phase space reconstruction techniqueappens at delay= 10 h.
is the method of time delays, which is known as Takens’
embedding theorenTékens 1981). Vectors in a new space 3.4 Self-similarity: dimension
or embedding space are formed by the time delayed values
of the scalar measurements. According to Takens’ theoremAttractors of deterministic chaotic systems exhibit an un-
the dynamics of a time series can be fully embedded in thausual kind of self-similarity and show structure on all length
m-dimensional phase space defined by the delayed vectorsiscales, thus possessing non-integer or fractal dimensions. A
proper embedding dimension has to be searched, such that
Vo= {xeXi—r X—2r, o Xi—n-tyr } (2) the structure of the attractor becomes invariant. The most
fwidely used fractal dimension quantifier is the correlation
dimensiond, which is based on the correlation integral
or function analysis Grassberger and Procaccid983.
3.3 Finding appropriate time delay Correlation functionC,,(r) for the distance range of
available from the time series and several embedding di-
In real applications, the delay timeneeds to be appropri- mensionsn is inspected for the signatures of self-similarity
ately chosen in order to fully capture the structure of theby estimating the slope of l@g(r) versus log plot. If
attractor. This can be achieved by embedding the attractothe time series describes the dynamics of an attractor, then
in a smooth manifold. The straightforward choice tofs for positive values of, the correlation integral’(r) scales
usually made with the help of the zero-crossing autocorrelato the radiusr by the power lowC(r) = ar”, wherev
tion function. However, in the terms of nonlinear methods, is called correlation exponent ardis a constant. For a
the choice ofr associated with the first minimum of the time random process, the correlation exponentaries linearly
delayed mutual information based on the Shanon’s entropyith the increasing ofm, without reaching a saturation
(Fraser and Swinney986 demonstrates good performance value. On the other hand, for deterministic process, the
in reconstructing the system dynamics from the observablesvalue ofv saturates and becomes independent for increasing

wherer is the delay time. The lowest possible dimension o
such manifold is called an embedding dimension.

www.nonlin-processes-geophys.net/17/405/2010/ Nonlin. Processes Geophys., #2042610
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log(C(r))

Correlation exponent (v)

0 I I I I I I I I I
2 4 6 8 10 12 14 16 18 20

Embedding dimension (m)

Fig. 6. Correlation integral (sum) with the increasing embedding Fig. 7. Relationship between the correlation exponentnd
dimensions for the hourly surge time series at Hoek van Holland.embedding dimensiom. Correlation exponent increases with an
The correlation integral was computed for different embeddingincrease of the embedded dimension up to a certain value and
dimensions (the line with squares corresponds to embeddindgurther saturates. The saturation value of the correlation exponent,
dimension 2 and the line with star corresponds to embeddinghat is the correlation dimension, is about 8.5.

dimension 20).

that the correlation exponent increases with an increase

embedding dimensiom. Obtaining a non-integer saturation of the embedded dimension up to a certain value and
value d; for a time series demonstrates fractal scaling andfurther saturates. The saturation value of the correlation
indicates possible chaotic behavior. exponents/dimensions using the proper time delay of 10h is

A large size of data set is commonly needed to computeB.5. This indicates the presence of an attractor in the surge
the correlation dimensio#.. However, there is no consistent dynamics.
agreement on how many data can sufficiently provide the Reconstruction of an attractor from a time series of observ-
accurate estimation of the correlation dimension. Someables should be embedded in the proper dimensionality of
authors likeSmith (1988, Theiler(1990 andRuelle(1990 the manifold such that the structure of the attractor becomes
suggest differently on the minimum size of data set requiredinvariant. According to Taken’s embedding theorem (1981),
for estimating correlation dimension. For correlation di- if the dimension of the manifold containing the attractor is
mension 8.5, the size of data set used here is sufficient t@,, then the embedding dimensiomis> 2d. + 1 to preserve
estimate the correlation dimensioRuelle (1990). The  the topological properties of the attractor in the phase space.
size of 54768 data points of the hourly surge time seriesThis implies that the embedding dimension of 18 is required
from 1 January 1990 till 31 March 1996 is larger than the to unfold the attractor of the surge dynamics. On other hand,
minimum data set size ¥92 suggested byRuelle (1990 Kennel et al(1992 recommends the minimum embedding
which is about 17 783 data points. Please also note that theimension ofm > d.. This specifies that the embedding
data set in this work was obtained from the real observationglimension of 8 or 9 is sufficient. These results, however,
representing the physical processes in nature, and not mereheed to be verified by other embedding dimension estimators
on the basis of the uniform-random model. Nonetheless, weas described in the following sections.
consent that the larger size of data sets might be needed for
better estimation of correlation dimension. 3.5 False nearest neighbors

Figure 6 visualizes the power law scaling between the
correlation integral/sunC (r) and the length scales The A method to determine the minimal sufficient embedding
correlation integral was computed for different embeddingdimensionm, so called the false nearest neighbor (FNN)
dimensions (the line with squares corresponds:to2 and  method, was proposed ennel et al.(1992. The false
the line with star corresponds te=20). After embedding neighbors are the points projected into neighborhoods of
dimensionm ~ 12— 14 lines become parallel and thus other points to which they do not belong as neighbors in
the slope (correlation exponent) saturates. There is ndigher dimensions. Figur8 shows that the percentage of
anomalous or wide fluctuation found in the slope of the the FNN drops to about 1% with the embedding dimensions
scaling region in the correlation integral plot. Figidrehows  of m =8 and remains unchanged for a further increase in
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Fig. 8. The false nearest neighbors fractions as a function ofWith r=10andc=1.

embedding dimension.

) ) The E(m) depends only on the dimensian and the time
the embedding dimension. This result is consistent with theye|ay . The variation frommn tom +1 can be investigated by
estimation using correlation dimension based on the rule ofg1 ;) — g (m 4 1)/ E(m). The E1(m) stops changing when
Kennel et al(1992 suggesting that the minimum embedding ,, js greater than some valugy if the time series comes
dimension isn > dg. _ _ from an attractor. Themo+ 1 is the minimum embedding
The FNN algorithm has a drawback associated with thegimension to be obtained. It is necessary to define another

subjective choice of the threshold in order to ensure agyantity £* which is useful to distinguish deterministic from
correct distinction between low-dimensional chaotic datagigchastic time series. formulated as

and noise. Different time series data may have different

threshold values. These imply that itis very difficultand even 1 Nooe

impossible to give an appropriate and reasonable threshol§ (M) = N—mz Z |Xi 4-mz — Xn(im)+me| ()
value which is independent of the dimensianand each i=1

trajectory point, as well as the considered time series data. T@hese quantities are computed for different, progressively
avoid this, Cao proposed a modified algorithm, sometimesncreasing values of the embedding dimensianThen the
called the averaged false neighbors (AFN) methGaq global behaviors o1 andE* as functions of dimensiom
1997. Cao's approach is based on the estimation of twoare respectively used to estimate the minimum embedding
parameterstE1l and E* which are basically derived from dimension and to determine the nature (stochastic vs. deter-
the quantities defined by the FNN method. Based on theministic) of the underlying dynamical process generating the
construction of the time delay vectors from the time sexigs  time series. Figur® shows the saturated line @1 can be

x2,...,xy, anm-dimensional vector is defined by (m) = obtained starting from the dimensien~ 10— 12 for surges
(Xi s Xigr, Xi4 21, - s Xit(m—1)r), Wherei =1,2,...,N — (m — at HVH. We set the number of neighbdrs 1. There is no
1t andr is the time delay. Similarly to the FNN method, existence of the straight lines &* implying that the surge
the AFN approach defines the quantity dynamics is driven by deterministic behaviors.

alim) = llyi (m +1) = ynii,my(m + 1) | 3 36 Lyapunovexponents

lyi (m) = Yn(i,m) (m) |l . .
The Lyapunov exponents characterize the exponential insta-

where || . || is the maximum normy;(m +1) is thei-th  pility or the average rates of divergence or convergence of
reconstructed vector for embedding dimensioandn(i,m)  nearby trajectories in phase space, and therefore, measure
is an integer such that the-dimensional time-delay vector how predictable or unpredictable the dynamical system is.
Yu(i.m)(m) is the nearest neighbor of m). Subsequently, The spectrum of Lyapunov exponents)(can be computed

the quantity of£1 is formulated as the mean value of all pased on the work ofano and Sawad§l989. If at

FNN distanceu (i, m) least one Lyapunov exponent is positive, then the dynamical
Neme system is characterized _by deterministic chaos. If no positiye

E(m)= Z a(i,m) (4) Lyapunov exponent exists, then_ there is no _e_xponentlal
N—mt divergence, and thus the long-time predictability of the

i=1

www.nonlin-processes-geophys.net/17/405/2010/ Nonlin. Processes Geophys., #2042610
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o
N

the trajectory by modeling the dynamical evolution of the
- T — system in time. Therefore, in this context, the concept of
learning models from data, like a nonlinear regression is
typically utilized to estimate the reconstructed trajectory in
phase space. To model a deterministic chaotic system, one
has to accurately reconstruct andimensional phase space
with time delayr from univariate or multivariate time series

of the observables. Since the time series data are discretely
—o—m sampled over time, the underlying dynamics is described by
] a deterministic model in phase space, which is always a map
of the following form:

o
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s T 15 2 25 3 35 4 a5 s where Y, are the delayed vectors (states) of
28 o (e samae 10t {x“xt#,x,,zh ...,Xr—(mfl)f} formed by the time series of

Fig. 10. The largest Lyapunov exponent (lines with circles) is OPservables embedded into andimensional phase space

positive and the sum of global Lyapunov exponents (lines with With a proper time delay = v At (v is time index in integer

triangle) is negative. values). In order to predict the next state of a dynamical
system, one needs to find an estimator of the regression

function so that the prediction af,1 can be estimated by
dynamical system is guaranteed. The Lyapunov spectrum for

the surge time series data is presented in FigThe largest %41 = i) (7)

value of Lyapunov exponents is estimated tohe=0.08 , ) , ,
which indicates a loss of information of 0.08 bits/hour during _ After these general considerations, the next step is to find
the dynamical evolution of the system, and thus loss of pre{h€ Proper approximation of the model, expressed through
dictive capabilities. The Lyapunov spectrum contains a largg!s Structure, capacity and a criterion for the qua|.|ty of
negative exponents = —0.75 which indicates presence of the model which is to be learned from the data in the
strong dissipation mechanisms in the surge dynamics. Th&econstructed phase space. Global and local models are two
presence of positive Lyapunov exponents and the fact thapossibilities to consider when choosing the model structure
sums of Lyapunov exponents are negativd 48), provide  [Of approximating the true mapping functioiCdsdagl
strong evidence that the surge dynamics in the North Seg989- The basic idea of the local approximation methods
is driven by deterministic chaos. Furthermore, Lyapunoy'S {0 Use only the states close to present state in phase space
dimension of a strange attractor can be approximated fronjl 0rder to make predictions-grmer and Sidorowici1987).

the Lyapunov spectrum based on Kaplan-Yorkes conjecturérhus' such models have to learn neighborhood relations from

(Kaplan and Yorke1979. The existence of a fractal Kaplan- the data and map them forward in time. In order to predict
Yorke dimension which is estimated to be 4.1 indicatestn® value of the observable.r, which is part of the state
deterministic chaos in the surge dynamics. vector Y, r whereT is some time horizon in the future,

However, the existence of two positive Lyapunov expo- based on the state vectdrs and past histpry embedded in
nents (Fig.10) denotes the hyperchaotic behavior of the th€ reconstructed phase spacaearest neighbors df*’ are
attractor in the surge dynamics. The first hyperchaotic 4-pfound on the basis of some norfiY, —¥«|, with r* <1
flow system was introduced bjossler(1979. This kind (¢ iS @ discrete time step). Depending on the number of
of dynamical system requires at least a 4-D phase spacg‘e neighbors considered, and the type of the local mapping
to unfold the attractor. The reasons of the presence ofhosen, several variations of the local approximation method
hyperchaotic behavior in the surge dynamics can be due 1gre poss!ble. The local zeroth, I_inear, quadratic and 3rd?ord9r
some noise in the measurement and the inherently compleRelynomial models have been implemented and used in this
interactions between forces which induces storm surges. ngork. Based on the identified and reconstructeq dynamics of
could not find any reference about a reliable method forth® surges at HVH, an attempt was made to build an accurate
distinguishing between chaos and hyperchaos in a noisy tim@redictive model utilizing local modeling approach and the

series, so this aspect would need further research. notion of dynamical neighbors as depicted in Fig.
In addition, a multi-step iterative prediction method

4 Chaotic model prediction was developed and utilized in this work. The multi-step
prediction technique consists of making repeated one-step
The ultimate goal of constructing a chaotic model in this predictions up to the desired horizon. It predicts only one-
work is to use it for prediction, which in terms of phase step ahead using the estimate of the output of the current
space representation of dynamics means extrapolation gbrediction as the input to the prediction of the next time
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Fig. 11. (a) Time-domain time series of the sea levels at Hoek van Holland. Future state or prediction (black empty circle marking) can
be estimated by the self-similarity of the current point (black markings) with previous time-lag data points as defined in the phase space
reconstruction = 3, m = 3). Current point has self-similarity (behavior) to the previous points (triangle and box markings) as indicated by
left-arrow dashed linegb) Phase space reconstruction and the description of searching dynamical neighbors and their dynamical evolution
in the past allowing for predicting the future evolution of the dynamics using local modeling. In this example, the real sea level data
reconstructed in 3-D phase space with 3 h is utilized. Three data points (“star and diamond” markings) in time-domain time series are
represented as a single point in phase space. Prediction is made by searching the dynamical neighbors (triangle and box markings) of th
current point (black circle marking) in phase space and extrapolating the future state by using a local predictive model constructed based on
dynamical neighbors.

step until the predictiot-steps ahead is made. The multi- be predicted for 2-steps ahead and trajectories a, ¢ and d
step prediction technique demonstrates better predictiormre the neighbor candidates of trajectory b. THhe&IN
performance than the direct prediction meth&bX et al, procedure used for finding the neighbors is executed once
1994 Kugiumtzis et al. 1998. One of the benefits of using in direct prediction and-times ¢ is the prediction horizon)
the multi-step prediction is that the dynamical neighbors canin multi-step prediction techniques. The trajectory a is a
be selected iteratively for each one-step prediction. Thustrue neighbor and being chosen by b&H#NN procedures.
in most cases, this procedure is able to avoid taking theOn other hand, the trajectory c is a false neighbor which
false neighbors which may produce larger deviations of theis actually close to trajectory b and selected in the first
neighbor trajectory projections into the future states. k-NN procedure, but not in the secokdNN procedure.
The trajectory d is the reverse case of trajectory c. Hence,
Figure 12 illustrates a comparison between direct and the projection of trajectory b into 2-steps (hours) ahead
multi-step predictions for the surge dynamics in-  ysing direct prediction method produces incorrect prediction
dimensional phase space. In this example, we noticqpredicting the decreasing surge). This happens due to the

beforehand from the observed data that the surge in thenclysion of false neighbor ¢ which subsequently results in
next 2 h would raise up. Suppose trajectory b is the one to
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Fig. 12. A descriptive comparison betweéa) direct prediction angb) multi-step prediction imz-dimensional phase space. This illustrates
that the multi-step prediction can avoid from taking the false neighbor (trajectory c) which may result in wrong projection of the trajectory b
to the future states (prediction).

building a *false” local model. In contrast, the multi-step Table 3. Univariate chaotic model and neural network perfor-

prediction is able to predict the increasing surge correctlymances on verification data sets with various optimal parameter
because the false neighbor ¢ can be avoided (not selectedpttings ¢, m) using exhaustive search method.

in the second-NN procedure.

Univariate models Prediction horizons
(RMS Errors) 1h 3h 6h 10h 12h
5 Model setup Chaotic models
5.1 Neural networks (Sktggfl E:\};1 112'.25 112.791 321.638 1é§31.gl 31'5(.515
Verif. 11.11 11.94 21.69 30.44 34.42
Backpropagation multi-layer perceptron (MLP) with Non-stormy 7, m 1,9 1,5 1,7 46 12,9
Levenberg-Marquardt training ruleH&ykin, 2008 was (k=80) cv 509 535 756 9.04 994
utilized and trained using the same input structure as the verif. 587 600 846 1081 11.86
chaotic model inputs. The number of hidden neurons of Neural networks
ANN was selected using the exhaustive search in the range Stormy No.hidden 10 7 5 10 9
[1~10]. The optimal MLPs structures are listed in TaBle cv. 1093 21.30 28.47 3509 39.43
for univariate NN and Tablé for multivariate NN. verit. 10721946 2234 3000 3150
Non-stormy  No.hidden 6 10 10 7 6
5.2 Univariate chaotic model Vel 522 718 608 o 948

The nonlinear analysis of the surge time series as described in
Sect. 3 recommends the appropriate values of time delay and
embedding dimension to be=10 andm =8 as identified

by the analysis of correlation dimension and false nearesfincomplete and noisy). This results in imprecise estimations
neighbors, andn ~ 10— 12 by the Cao's method. These of the r andm and becomes subjective. The other reason is
proper values ot andm obtained by the nonlinear analysis that most of the methods in nonlinear time series analysis
becomes a reference for the procedure to exhaustivelyiginate from the analysis of the continuous dynamical

search for the optimal values of time delay and embeddingsystem described by the differential equations with some
dimension for predictions. The reason of using exhaustive;ssymptions and simplifications. In contrast, the observed
search optimization is that the objective of building a chaoticijme series is obtained from the real natural phenomena

model_ is not only to identify and characterize _the chaotic 5q may contain the information of more complex system
behavior of the surge dynamics, but a_Iso to predict the futurey physical interactions. In addition, the presence of
states of surges using local modeling. ~Furthermore, thgyperchaotic behavior in the surge dynamics requests more
accuracy of some existing estimators for determining thecare in determining the proper valuesrodindm. Therefore,
proper values ofr andm is argued by some researchers e ytjlized an exhaustive search optimization technique to

(Cag 1997 Schreiber 1999 Hegger et al. 1999. The  fing the optimal values of andm based on the predictive
discrete time series used in this work, which is Obta'“edperformance of the chaotic model.

from the real observations in nature, may not be perfect
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Table 4. Multivariate chaotic model and neural network performances on verification data sets with various optimal parametertsettings (
m) using exhaustive search method.

Multivariate Phase Space Reconstruction Multivariate Chaotic Models Multivariate Neural Networks

PHoriz Surge WL  Surge Wind Press RMSE RMSE No. RMSE RMSE
(hours) (hvh) (hvh)  (epf)  (hvh) (hvh)
Lm t,m T,m T,m T,m kK (CV) (Verif.) Hid. (CV) (Verif.)
Stormy condition
1 10, 8 4,6 1,5 5,5 4,5 13 15,52 8.81 5 6.48 6.53
3 10,8 4,6 3,4 2,2 1,4 13 2221 11.99 7 15.87 16.78
6 10, 8 4,6 3,5 4,5 5,2 13 37.96 21.12 8 22.24 20.45
10 10, 8 4,6 3,5 5,5 5,3 13 4345 31.32 8 28.05 30.37
12 10, 8 4,6 4,4 3,2 1,2 13 47.28 34.80 8 28.74 28.09
Non-stormy condition
1 10, 8 4,6 1,4 2,4 1,5 80 3.40 4.79 5 4.20 4.76
3 10, 8 4,6 1,2 2,4 2,5 80 2.94 6.59 6 7.75 8.69
6 10,8 4,6 1,5 4,2 55 80 6.69 8.05 2 9.75 11.02
10 10, 8 4,6 1,5 5,2 1,2 80 8.02 10.52 7 9.96 10.84
12 10, 8 4,6 1,4 5,2 5,3 80 6.59 10.73 4 10.96 12.37
The other important parameter for building a chaotic 2 \ \ \ \
model is the number of neighbork)( Sensitivity analysis € g
was performed to find the propérvalues for non-stormy £ - <
and stormy conditions. The sensitivity analysis was per-% i ai
formed by setting up the chaotic model parameters for the < ! g
surges (with fixedr =10 andm =8) andk run from 1 to § : ‘E
2000. Subsequently, the exhaustive search optimization was}g L g
executed using the optimatvalue for finding the optimal £ %[ '\ i
values oft andm. The 3rd-order polynomial local models £ é
were built based on the dynamical neighbors. This model% _/‘-i' z
shows better predictive performance for the local model & xi PR N e E
in comparison to the zeroth, linear and quadratic models.‘§ B VL N T N T §
Additionally, we use also filtered out the neighbors that are & X80 5
far (in Euclidean sense) from the current point — treating . ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

7.2
H H . 0 20 40 60 80 100 120 140 160 180 200
them as false neighbors. The procedure is as follows: Number of neighbours (k)

1. Define the number of neigbhourk)( Fig. 13. Six-hours ahead prediction errors of chaotic models as a

function of the number of neighborg)(for non-stormy and stormy

2. Find thek-nearest neigbhours of the current state in thesurges( =10,m=8).

phase space.

3. Remove the discovered neighbors if these neighbors , i
have distance to the current state larger than twice théhe past) can be found esPec'a”y during extreme storms.
distance for the 1-nearest neighbor. If more neighbors are con_S|dere_d, the model pt_arforman_ce
becomes low due to the inclusion of false neighbors in
Figure 13 depicts the six-hours prediction RMS errors of constructing local models.
the chaotic models as a function of the number of neighbors The exhaustive search optimization was performed with
(k) for non-stormy and stormy conditions. It is seen that the following settings: time delay in a range of {124],
the suitable number of neighbors for predicting surges forembedding dimension in the range of 4230], the 3¢-
stormy condition is a small value of 13 neighbors and thisorder polynomial local model and the number of neighbors
value should be smaller than the one (80 neighbors) for nonk =13 (for stormy conditions) an& =80 (for non-stormy
stormy condition. This is due to the fact that less appropriateconditions). The prediction horizons are 1, 3, 6, 10, and 12 h.
dynamical neighbors (representing similar surge behavior irEach prediction horizon can have different corresponding
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Time delay (tau) Embedding dimension (m) Time delay (tau) ¢ Embedding dimension (m)

Fig. 14. Univariate chaotic model: RMS errors for 1 h (left) and 10 h (right) prediction horizons during stormy period as a function of time
delay and embedding dimension.
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Fig. 15. Cross correlation (left) and mutual information (right) between surges at Hoek van Holland and neighboring stations (EPF and K13).
Both techniques show that the EPF surges precedes surges at HVH about 1 hour and the K13 surges has less relationship with HVH surge
and the HVH surges would reach to K13 around 1-1.5h later.

values of time delay and embedding dimension. Thestormy period was obtained:

optimization result is the most accurate chaotic model which

has the lowest RMS error on cross-validation data set. The/™i — sunﬁ“’h,suﬁ‘ﬁg,sunﬁ‘fg,sufﬁg,suﬂqz,suﬂ%] (8)
cross-validation data sets have a data set of 400 data points

(see Table?): 19 January 1994 03:00 till 4 February 1994 whereY /1 is the phase space structure for predicting surges
19:00 (time indices of 3550_0—35900) for stormy cond_ltlon 6 h ahead at HVH location, sttf; and suf¥h, s is the surges
and 11 May 1994 15.00 till 28 May 1994 07:00 (time at time r and r — 3, respectively. The complete optimal

indices.of 38200_386(.)0) _for hon-stormy condition. Thi_s univariate chaotic model structures are listed in Table
small size of cross-validation data sets was employed with

considerations of the intensive computation required for thes 3 Multivariate chaotic model
exhaustive search optimization.

Figure14 shows the RMS errors of the univariate chaotic Multivariate chaotic models incorporating the information
model for 1 and 10h prediction horizons during stormy about surges at HVH and neighboring stations (EPF and
period as a function of time delay and embedding dimensiorK13), change in air pressure and wind components were
for surges £ =10, m=8) at HVH location. These plots employed, with the main objective to improve the prediction
are different for each prediction horizon and for stormy accuracy for longer prediction horizons. The relationship
and non-stormy conditions. This denotes that the propebetween surges at HVH and EPF/K13 are measured by
reconstruction of a phase space from a time series does ndthe cross-correlation and mutual information as shown in
only depends on the choice of time delay and embedding=ig. 15. Both methods specify that the EPF surge precedes
dimension, but also on the prediction horizons. Forthe surge at HVH about 1h and the K13 surge has less
example, the optimal time delay and embedding dimensiorrelationship with HVH surge and the HVH surge would reach
for univariate chaotic model for predicting 6 h ahead surges to K13 around 1-1.5h later.
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Fig. 16. Cross correlation (left) and mutual information (right) between wind components and surge at Hoek van Holland with various wind
direction (0-1860 from North). The strongest influence of the winds on the surge (correlation coefficient=—0.65) is generated by the 120
wind component or the north-westerly wind. Similarly, it is indicated by mutual information.

The cross-correlation and mutual information functions where Yf_‘:;h"h is the phase space structure for predicting

on the observed surge data show that the EPF surges ha‘g@rges with prediction horizof at HVH location, SLﬁWhr,my
higher correlations with the HVH surges than the K13 \,\,N;’vrtl1 and d@\/rg are the surge, water level and pressure
surges. The data from K13 station was not utilized in the jitonce at HVH location, wind*2% is the wind speed
building of multivariate chaotic model because the inclusion . o § f .

of this information does not improve or even decrease theat HVH location with d|rect|qn 120angle, and S@B” is the
chaotic model performance. Our experience indicates thar!r9es at Euro Platform station.
the use of less-correlated information into a chaotic model

d high-di ional and lex struct The next task is to find the optimal values ofand
can produce a high-gimensional and more COmpIeX STUCIUIe, ¢, oach variable in Eq.9) for building a multivariate

of the reconstructed phase space and this often desnu%%aotic model using the exhaustive search optimization. The

the smoothness of the trajectories and attractor resulting ”E)arameter settings for the exhaustive search optimization
low predictability of the model. Thus, we only include the were set as follows. The values of and m for sufvh
. T,m

information from EPF as inputs to the multivariate chaotic vh . . .
model and th,m are set with the optimal values as obtained from

The other variables that require more analysis are wind"€ nenlinear analysis, i hast =10 andm =8, whereas
speed and direction. We applied the cross-correlationV™, hast =4 andm=6. These optimal values for the
and mutual information for acquiring the principal wind important variables SD\‘,D and WIQV,L‘ were used as a basis
component which has the largest influence to the surge$or optimizing the other variables. This approach reduces
at HVH location. The various wind directions from 0 to the optimization parameter space and subsequently needs
180degrees from north were investigated. The strongesiess computing time. The inclusion of all variables into
influence of the winds to the observed surges at HVHthe optimization space considerably increases computation
location is generated by wind component 13Agle from  time, but the optimal solution may not provide much better
north with the correlation coefficient0.65 (see Figl16). improvement of the model performance. The optimization
This component corresponds to the north-westerly windsettings for other variables (§@L,wind?,",,r1"12°°,dd;"£)were
which blows from the sea and is approximately perpendicularset for the following value ranges:= [1~ 5] andm =[2~
to the coastline (Figl). Likewise, this relationship is 5]. We employed the 3rd-order polynomial approximation
indicated by the mutual information function (Fitg). function as the local model and the number of neighbors of

Multivariate phase space reconstruction of the surgek==13 andk =80 for stormy and non-stormy conditions,
dynamics using the hourly time series data was solvedespectively. The prediction horizons are 1, 3, 6, 10 and
technically using a multivariate embedding. The exhaustivel2 h. The optimization outcome is the most accurate chaotic
search optimization was employed to find the optimal valuesmodel which has the lowest RMS error on cross-validation
of r andm for each variable. The general phase spacedata set. The optimal multivariate chaotic model structures
structure for the surge dynamics at HVH location is definedare summarized in Tabk for different prediction horizons
as and stormy and non-stormy conditions. For instance, the op-

] timal multivariate phase space reconstruction for predicting
Ytsir’rmh= {SU'J;,VnTva,VnT»SUme,Wind?YnT‘lzoo,dHQ,VnT} ) surges with prediction horizon 3 h for stormy condition was
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Fig. 17. The comparison of storm surge predictions between univariate and multivariate chaotic models and neural networks at Hoek van
Holland during stormy period (27 November 1994 till 25 February 1995) based on hourly time series. The prediction horizon is 3 h (top). The
overall RMSE for univariate CM, univariate NN, multivariate CM and multivariate NN are 11.94, 19.46, 11.99 and 16.78 cm, respectively
(bottom).

obtained For non-stormy condition, the optimization results indi-
cate that the most appropriate time delay for the variable
Yfféh\'h = {sur‘f"h,suﬂl’ﬁqo,...,sur‘,‘!@o,wl?"h,wlff’}l,..., suf®! is 1h for all prediction horizons (see Tabl This
coincides with the analysis as depicted in Fi§.showing
wi™i o suf® sufPl ... sufP wing™h120, that the EPF surges precede surges at HVH about 1-1.5 h.
wind™V120e gavh gohvh g txg} (10) 6 Model results

Table3 summarizes the univariate chaotic model and ANN

where Yfféh"h is the phase space structure for predicting model prediction performances. The optimal parameters
surges 3 h ahead at HVH location. for chaotic models «, m, k) and neural network models
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(number of hidden neurons) were obtained based on thg Conclusions

model performance (RMS error) on cross-validation data sets

for non-stormy and stormy conditions. Subsequently, weBased on the nonlinear chaos analysis, the surge dynamics
verified these models on verification data set with variousalong the Dutch coast can be characterized as deterministic
optimal values oft, m, k and number of hidden neurons chaos. The presence of the chaotic dynamics together
based on the prediction horizons and stormy and non-stormyvith the positive Lyapunov exponents implies that there are
conditions. These comparison results (up to 12 h prediction)imits of predictability for any model. However, short-term
show that both models have similar prediction accuracy, forreliable predictions are possible. The chaotic behavior occurs
both stormy and non-stormy surge conditions. However, thebecause the sea levels and surges are the result of a complex,
chaotic model is able to predict the extreme surges better thagoupled nonlinear dynamical system. If compared to our
ANN. This is depicted in Figl7. The chaotic model errors earlier work Solomatine et a].200Q Velickov, 2004 Siek

are more dampened and stable (also during the surge peaksj al, 2008 see Sect. 1) in the present paper we employed
than the neural network errors. extended data analysis methods and improved algorithms for

Nonetheless, the predictive chaotic model with local mod-predictive models. A chaotic model with local modeling
eling may include some false neighbors due to the fact thagnd multi-step prediction technique demonstrates a good
the trajectories are very close to each other and the nearegredictive performance and can serve as an effective tool
neighbors found may have different or reverse directionsfor accurate and reliable short-term storm surge predictions.
of the trajectories. This is a practical problem occurring Further improvements in accuracy are expected if more
due to the use of nonlinear discrete time series from thesophisticated methods to identify the adequate nearest neigh-
observables and the use of integer (not fractal) values obors are used, and if a data assimilation scheme is added to
T andm in phase space reconstruction. In the continuousthe presented method.
dynamical system derived by the differential equations many
less false neighbors are to be found. The possible solutiondcknowledgementsThe work described in this manuscript was
for these issues are: to use smaller sampling time of thepartly supported by the Delft Cluster Resear(_:h Programme o_f the
surge data (e.g. 10 min) for reducing the sharp oscillationgPutch Government and UNESCO-IHE (project "Safety against
and thus providing enough points for producing better IocalFIoodlng ). Agthors would like also to thank M. Verlaan for very

. L . useful discussion.
models to handle these oscillations; to implement a mixture
of various local models (e.g. AN!\I) in the phage space whichg yited by: O. Talagrand
may perform better for predicting future trajectories of a geyiewed by: R. V. Donner and another anonymous referee
particular condition or regime; to reconstruct the phase space
from a time series using non-equidistance time delay method
which can unfold the attractor better; and to select a largelReferences
size of cross-validation data set.
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