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Abstract. This paper addresses the use of the methods
of nonlinear dynamics and chaos theory for building a
predictive chaotic model from time series. The chaotic model
predictions are made by the adaptive local models based on
the dynamical neighbors found in the reconstructed phase
space of the observables. We implemented the univariate
and multivariate chaotic models with direct and multi-steps
prediction techniques and optimized these models using an
exhaustive search method. The built models were tested
for predicting storm surge dynamics for different stormy
conditions in the North Sea, and are compared to neural
network models. The results show that the chaotic models
can generally provide reliable and accurate short-term storm
surge predictions.

1 Introduction

Storm surge is a meteorologically forced long wave motion
which is pushed toward the shore. It is generated by a
combination of meteorological forces of the wind friction
and low air pressure due to a storm (Gonnert et al., 2001), and
oscillates in the period range of a few minutes to a few days.
In the ocean, local wind waves can add to the water level, and
the storm surge can be amplified (or reduced) by interference
with the strictly regular astronomical tides. Extreme coastal
floods can be related to extreme storms, like cyclones or
hurricanes which attack the open coast. In some coastal
areas, such floods can be generated by unusual sequences
of wind set-up and air pressure variations. In addition, wind
driven waves can be superimposed on the storm tide. This
rise in sea level can cause severe flooding in coastal areas,
particularly when the storm tide coincides with the high tides
(Battjes et al., 2002).
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Astronomical tides generally have the large contribution
to the ocean water level variations in open oceans and
many well-exposed coasts. Traditionally, the analysis of
water levels usually employs linear methods that decompose
sea levels into tides and other (usually meteorological)
components. The amplitudes and phases of the tidal
constituents driven by the astronomical motion of the Earth,
Moon and Sun (with known periods) can be estimated by
using Fourier analysis, response analysis or linear regression
methods. In particular, the weakly nonlinear shallow water
waves can be characterized by the Korteweg-de Vries (KdV)
equation (Korteweg and de Vries, 1895) which is an exact
solvable partial differential equation.Zabusky and Kruskal
(1965) found that the KdV equation can be obtained in the
continuum limit of the Fermi-Pasta-Ulam Experiment (Fermi
et al., 1955). They showed that the solitary wave solutions
had behavior similar to the superposition principle, despite
the fact that the waves themselves were highly nonlinear.
In real applications, however, the water level dynamics
in coastal and estuarial swallow-water areas, such as the
Dutch coast, may differ significantly from the astronomical
estimated constituents (superposition principle) – due to the
nonlinear effects that include meteorological forcing, tidal-
current interactions, tidal deformations due to the complex
topography and river discharges (Prandle et al., 1978).

Coastal floods due to storm surges can be predicted
with an accuracy that depends on the accuracy of the
meteorological forecasts. An appropriate numerical weather
model can predict the motion of atmospheric depression with
a satisfactory accuracy in a range of several days. The wind
and air surface pressure fields predicted by this model can be
utilized as some driving forces of the sea motion in a shallow
water model allowing for storm surge predictions. Some
recent updates on the operational storm surge numerical
model with data assimilation in the Netherlands have been
studied byVerlaan et al.(2005).
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Nonetheless, the analyses of the risk of coastal floods are
not straightforward, because an observed flood is not a single
independent event in statistical terms. Rather, the flood is
a consequence of a set of different determinants, like tides,
wind and air pressure, or of a set of sequences of these
factors. Both the mean sea level and the flood height will
vary along the coast and the risk of coastal flood depends on
emergency preparedness planning and the design of coastal
facilities and structures, such as flood embankments. The
ocean water level variations due to various determinants
and their complex interactions show long-term persistence
leading to the correlated extreme events (Alexandersson
et al., 1998; Butler et al., 2007).

Complexity of the described phenomena prompts for
adequate methods to describe them, and one of them is
chaos theory. The most direct link between the concept
of deterministic chaos and the real world is the analysis of
data (time series) from real systems in terms of the theory
of nonlinear dynamics (Tsonis, 1992; Donner and Barbosa,
2008). Note that this approach is, in fact, data-driven,
since it is purely based on the analysis of the observation
data. The initial nonlinear analyses of the ocean water
levels at the Florida coast have been conducted byFrison
et al. (1999). The earlier attempts of the use of chaotic
model (CM) for storm surge predictions were done by
Solomatine et al.(2000), Walton (2005) using univariate
local models. Velickov (2004) extended the method using
multivariate chaotic models and showed that it has reliable
and accurate short-term predictions. This model has been
further improved by applying dimensionality reduction in the
phase space (Siek et al., 2008).

This paper presents the use and implementation of the
nonlinear dynamics and chaos theory for predicting storm
surges. If compared to our earlier work, we advanced the
procedure of building chaotic model by incorporating several
new features: using Cao’s method (Cao, 1997) for better
estimation on dynamical invariants; implementing multi-
step iterative predictions, applying the neighbors distance
cut-off to avoid inclusion of the false dynamical neigh-
bors, adding water level variable into multi-variate chaotic
models, finding the proper number of neighbors using
sensitivity analysis for stormy and non-stormy conditions,
and optimizing the chaotic model parameters (time delay
and embedding dimension). Furthermore, we compare the
prediction performances of the proposed chaotic model with
other models, including artificial neural network (ANN)
models.

The following sections present the basics of storm surge
modeling, nonlinear dynamics and chaos theory, chaotic
model prediction, case study, model results and conclusion.

2 Storm surge modeling

Storm surge modeling has advanced significantly over the
past 30 years which turns out to be very essential to anticipate
the occurrence of coastal flooding. Some advances on
physically-based storm surge modeling have been reported
by Bode and Hardy(1997), Battjes et al. (2002) and
Verlaan et al.(2005). They include: refining computational
grids, utilizing more accurate calibration of models with
better data, using an improved numerical schemes and
incorporating data assimilation technique into the model.

Primary links between the nonlinear dynamics and chaos
theory, and the storm surge model can be described as
follows. The basis of a physically-based storm surge model
which is widely used is the Navier-Stokes shallow water
equations, stating the physical laws of mass and momen-
tum conservations (Dronkers, 1964). These equations are
inherently nonlinear. The sensitive dependence on the initial
and boundary conditions of the dynamical evolution of such
systems, and the broadband and continuous power spectra
are the indicators of deterministic chaos. A mathematical
proof on the existence of chaotic behavior in Navier-Stokes
equations and turbulence has been conducted byLi (2004).
On other hand,Simonnet et al.(2009) analyzed the presence
of bifurcations in ocean, atmospheric and climate models
for understanding the variability of oceanic and atmospheric
flows as well as the climate system. As models, chaos
dynamical systems show rich and even surprising variety
of dynamical structures and solutions. Most appealing for
researchers and practitioners is the fact that the deterministic
chaos provides a prominent explanation for irregular behav-
ior and instabilities in dynamical systems (including storm
surges), which are deterministic in nature.

2.1 Study area: the North Sea

The North Sea lies between Norway, Denmark, Germany,
the Netherlands, Belgium, France and Great Britain. It
links up with the Atlantic Ocean to the north and also the
southwest, via the English Channel. The total surface area is
approximately 750 000 km2 and the total volume 94 000 km3.
The North Sea has a dynamically active regime dominated by
strong tides and frequent passages of mid-latitude synoptic
weather systems (Droppert et al., 2001). The waters are
mostly shallow (depth<150 m) in the region. As tides from
the deep Atlantic Ocean enter the North West European shelf,
they propagate around the coast in the form of long gravity
waves. High tides occur approximately every twelve hours.
The main tidal stream enters the North Sea along the Scottish
coast. As a result, the level difference between high tide
and low tide is not the same everywhere. The actual tidal
difference depends not only on the positions of the Sun and
the Moon, but also determined by the weather, and primarily
by the wind and surface air pressure. North-westerly storms
are notorious. The rise on any particular occasion depends
on the direction, the force and the duration of the storm.
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The extreme storm surges in the North Sea is much
affected by the role of the North Atlantic Oscillation (NAO)
variability (Woodworth et al., 2007). The North Atlantic
atmospheric variability is mainly driven by the NAO with
an NAO index defined by the difference between normalized
sea-level pressures between the Azores High and Icelandic
Low. The periods with large positive index correspond to
strong westerly winds which often strikes the Dutch Coast.

For the Netherlands, the accurate forecasting of storm
surges is very important because of the possible coastal
floods since the large areas of the land lie below sea level.
These areas are most densely populated and important for
the economy. Since the disastrous storm of 1953, the dikes
and storm surge barriers in the delta area and along the
Dutch coast have been systematically improved. These dikes
and barriers should be operated (i.e. open/close) properly
on the right time to avoid the barrier breaking. For this
purpose, the accurate and reliable predictive models for the
ocean water level and surge are critically required. Another
important reason for having accurate forecasts of sea levels
is the needs of navigation: the vessels waiting to enter the
Port of Rotterdam need these to ensure safe passage through
the entrance channel since draft of some of them is close to
the depth of the channel.

2.2 Data description

Water level, surge, atmospheric pressure and wind
speed/direction data from seven coastal stations along the
Dutch coast are monitored and provided by the North Sea
Directorate (Directie Noordzee, DNZ). The water levels are
sampled at 0.0167 Hz and averaged over period of 10 min.
In the data we had at our disposal each time series begins
on 1 January 1990 and is available until 31 March 1996,
which results in 337 249 continuous samples in total for
10 min times series, and 54 768 for the averaged hourly
times series. Due to the experienced limitations of the used
software to handle extremely large data sets of 10-min data,
hourly data is used for all further analysis and building the
chaotic model. The surge data is obtained by subtracting the
observed water level with tide (astronomical forces) based on
harmonic analysis, formulated as:

surge= water level(observed)− tides (1)

In this paper, we concentrate on predicting the surges at
the Hoek van Holland (HVH) tidal station, which is located
at the entrance of the Rotterdam harbour. The possible
inclusion of the spatial information from neighboring sta-
tions is also investigated for building the multivariate chaotic
model. We explored the information from Europlatform
(EPF) and K13 because in practice the observations from
these two stations often become reference for the expert
judgement concerning the possible extreme storm surges
at HVH location in relations to the forecasts produced by
the Dutch operational storm surge model (DCSM/WAQUA).

Fig. 1. The North Sea region and the locations of the principal
Dutch meteorological stations.

Table 1. Data description from tidal stations in the Dutch Coast
(1990–1996).

Code Station Water levels Surges
Name Max Var. Max Var.

range range
(cm) (cm2

×103) (cm) (cm2
×103)

EPF Euro platform 438 3.87 357 0.563
HVH Hoek v Holland 471 4.63 358 0.708
K13 K13 platform 468 2.68 332 0.773

Figure 1 shows the North Sea region and the locations of
the main tidal stations. Geographically, the EPF station
is closer to the HVH station than the K13 station. The
storm surge moves from the English Channel (South) to the
North striking the western part of Dutch Coast, hence the
EPF location is a good position in open sea to measure the
storm surges or water levels before they reach to the Port of
Rotterdam (Hoek van Holland). This information is required
for the preparation before a coastal flood occurs.

Relationship between the long-shore winds, surge, water
level, and air pressure difference time series data at HVH
location is presented in Fig.2. Table 1 illustrates the
statistical description of the data from the three tidal stations
used in this work. In order to evaluate the model performance
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Table 2. Data separation for surge time series into training, cross-validation and testing data sets for non-stormy and stormy conditions.
Cross-validation data sets are used to find the optimal parameters of chaotic model using exhaustive search method.

Date Non-stormy periods Stormy periods
Time Train Test Train Test

Cross-validation data sets

Start 1 Jan 1990 00:00 11 May 1994 15:00 1 Jan 1990 00:00 19 Jan 1994 03:00
End 11 May 1994 14:00 28 May 1994 07:00 19 Jan 1994 02:00 4 Feb 1994 19:00

Verification data sets

Start 1 Jan 1990 00:00 1 Jun 1995 23:00 1 Jan 1990 00:00 27 Nov 1994 17:00
End 1 Jun 1995 22:00 31 Aug 1995 23:00 27 Nov 1994 16:00 25 Feb 1995 15:00

0 500 1000 1500
−50

0

50

P
re

s.
di

ff.
(m

b)

0 500 1000 1500
−50

0

50

W
in

d 
sp

ee
d 

(m
/s

)

0 500 1000 1500
−200

0

200

S
ur

ge
 (

cm
)

0 500 1000 1500
−500

0

500

Time samples (hrs)

W
at

er
 le

ve
l (

cm
)

Fig. 2. The relationship between the long-shore winds, surge, water
level, and air pressure difference time series at Hoek van Holland
location.

for various conditions, the surge data is divided into cross-
validation (CV) and verification data sets for non-stormy
and stormy conditions as listed in Table2 and depicted
on Figs. 3 and 4, respectively. Each of these data sets
consists of training and testing data sets. The cross-validation
data sets are utilized for finding the optimal parameters
of chaotic model using exhaustive search method. After
being optimized, the prediction performance of the chaotic
model was investigated using verification data sets for
various stormy conditions. The rest of observed time series
(1 September 1995 till 31 March 1996) is not used for model
prediction.

Fig. 2. The relationship between the long-shore winds, surge, water level, and air pressure difference time series

at Hoek van Holland location.
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Fig. 3. The relationship between the observed water level, tide and surge time series data during stormy period

at Hoek van Holland location.
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Fig. 3. The relationship between the observed water level, tide and
surge time series data during stormy period at Hoek van Holland
location.

14-Jun-1995 12:00 15-Jun-1995 20:00 17-Jun-1995 04:00 18-Jun-1995 12:00 19-Jun-1995 20:00
-200

-150

-100

-50

0

50

100

150

200

250

300

 Time (hourly)

 O
bs

er
ve

d 
se

a 
le

ve
ls

, t
id

es
 a

nd
 s

ur
ge

s 
(c

m
)

 

 

 
Tides
Sea levels
Surges

Fig. 4. The relationship between the observed water level, tide and surge time series data during non-stormy

period at Hoek van Holland location.
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Fig. 4. The relationship between the observed water level, tide
and surge time series data during non-stormy period at Hoek van
Holland location.
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This data separation was made based on the analysis
of recurrence plot and visual inspection in time-domain
time series. The recurrence plot is used to visualize the
recurrences in a dynamical system, which it has capabilities
to detect the presence of homogeneity, intermittency and
transition in a time series (Marwan et al., 2007).

3 Nonlinear dynamics and chaos theory

3.1 Dynamical system

A dynamical system can be defined as a set of rules or
mathematical equations that describe the time evolution of
the system states given some initial conditions or knowledge
of its previous history. Some examples of dynamical system
are the Navier-Stokes equations and Newton’s equations for
the motion of a particle with suitably specified forces. These
dynamical systems can often be expressed bym-first order
ordinary differential equationsdx/dt = f(x(t)) or in discrete
time t = n1t by maps of the formxn+1 = f(xn). This time
evolution is defined in some phase space. Such nonlinear
systems can exhibit deterministic chaos which comprises a
class of a signal intermediate between regular sinusoidal or
quasi-periodic motions and unpredictable or truly stochastic
behavior (Lorenz, 1963). The main reason for applying
chaos theory is the existence of methods permitting to predict
the future positions of the system in the state space.

3.2 Phase space reconstruction: method of time-delay
embedding

The most important phase space reconstruction technique
is the method of time delays, which is known as Takens’
embedding theorem (Takens, 1981). Vectors in a new space
or embedding space are formed by the time delayed values
of the scalar measurements. According to Takens’ theorem,
the dynamics of a time series can be fully embedded in the
m-dimensional phase space defined by the delayed vectors:

Yt =
{
xt ,xt−τ ,xt−2τ ,...,xt−(m−1)τ

}
(2)

whereτ is the delay time. The lowest possible dimension of
such manifold is called an embedding dimension.

3.3 Finding appropriate time delay

In real applications, the delay timeτ needs to be appropri-
ately chosen in order to fully capture the structure of the
attractor. This can be achieved by embedding the attractor
in a smooth manifold. The straightforward choice ofτ is
usually made with the help of the zero-crossing autocorrela-
tion function. However, in the terms of nonlinear methods,
the choice ofτ associated with the first minimum of the time
delayed mutual information based on the Shanon’s entropy
(Fraser and Swinney, 1986) demonstrates good performance
in reconstructing the system dynamics from the observables.
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Fig. 5. Autocorrelation function (dotted line with circles) and
mutual information (solid line with triangles) as a function of time
lags suggesting the optimal time delay is 10 h.

Figure5 shows the autocorrelation and mutual information
of the surges at HVH. The autocorrelation function has slow
decay until time lag 18 and further oscillates in a small
ranger=[0.25, 0.35]. This implies the presence of long-
term correlations in the analyzed time series data. The first
minimum of the mutual information which characterizes the
nonlinear relationships between time-lag variables is found
to be a better criterion for the choice of optimal time delay
than the zero-crossing autocorrelation (that measures linear
dependency only). The first minimum of mutual information
happens at delayτ = 10 h.

3.4 Self-similarity: dimension

Attractors of deterministic chaotic systems exhibit an un-
usual kind of self-similarity and show structure on all length
scales, thus possessing non-integer or fractal dimensions. A
proper embedding dimension has to be searched, such that
the structure of the attractor becomes invariant. The most
widely used fractal dimension quantifier is the correlation
dimensiondc, which is based on the correlation integral
or function analysis (Grassberger and Procaccia, 1983).
Correlation functionCm(r) for the distance range ofr
available from the time series and several embedding di-
mensionsm is inspected for the signatures of self-similarity
by estimating the slope of logC(r) versus logr plot. If
the time series describes the dynamics of an attractor, then
for positive values ofr, the correlation integralC(r) scales
to the radiusr by the power lowC(r) ∼= αrν , where ν

is called correlation exponent andα is a constant. For a
random process, the correlation exponentν varies linearly
with the increasing ofm, without reaching a saturation
value. On the other hand, for deterministic process, the
value ofν saturates and becomes independent for increasing
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Fig. 6. Correlation integral (sum) with the increasing embedding dimensions for the hourly surge time series

at Hoek van Holland. The correlation integral was computed for different embedding dimensions (the line with

squares corresponds to embedding dimension 2 and the line with star corresponds to embedding dimension 20).
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Fig. 6. Correlation integral (sum) with the increasing embedding
dimensions for the hourly surge time series at Hoek van Holland.
The correlation integral was computed for different embedding
dimensions (the line with squares corresponds to embedding
dimension 2 and the line with star corresponds to embedding
dimension 20).

embedding dimensionm. Obtaining a non-integer saturation
value dc for a time series demonstrates fractal scaling and
indicates possible chaotic behavior.

A large size of data set is commonly needed to compute
the correlation dimensiondc. However, there is no consistent
agreement on how many data can sufficiently provide the
accurate estimation of the correlation dimension. Some
authors likeSmith(1988), Theiler(1990) andRuelle(1990)
suggest differently on the minimum size of data set required
for estimating correlation dimension. For correlation di-
mension 8.5, the size of data set used here is sufficient to
estimate the correlation dimension (Ruelle (1990)). The
size of 54 768 data points of the hourly surge time series
from 1 January 1990 till 31 March 1996 is larger than the
minimum data set size 10dc/2 suggested byRuelle (1990)
which is about 17 783 data points. Please also note that the
data set in this work was obtained from the real observations
representing the physical processes in nature, and not merely
on the basis of the uniform-random model. Nonetheless, we
consent that the larger size of data sets might be needed for
better estimation of correlation dimension.

Figure 6 visualizes the power law scaling between the
correlation integral/sumC(r) and the length scalesr. The
correlation integral was computed for different embedding
dimensions (the line with squares corresponds tom = 2 and
the line with star corresponds tom = 20). After embedding
dimension m ≈ 12− 14 lines become parallel and thus
the slope (correlation exponent) saturates. There is no
anomalous or wide fluctuation found in the slope of the
scaling region in the correlation integral plot. Figure7 shows

Fig. 6. Correlation integral (sum) with the increasing embedding dimensions for the hourly surge time series

at Hoek van Holland. The correlation integral was computed for different embedding dimensions (the line with
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Fig. 7. Relationship between the correlation exponentν and embedding dimensionm. Correlation exponent
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22

Fig. 7. Relationship between the correlation exponentν and
embedding dimensionm. Correlation exponent increases with an
increase of the embedded dimension up to a certain value and
further saturates. The saturation value of the correlation exponent,
that is the correlation dimension, is about 8.5.

that the correlation exponent increases with an increase
of the embedded dimension up to a certain value and
further saturates. The saturation value of the correlation
exponents/dimensions using the proper time delay of 10 h is
8.5. This indicates the presence of an attractor in the surge
dynamics.

Reconstruction of an attractor from a time series of observ-
ables should be embedded in the proper dimensionality of
the manifold such that the structure of the attractor becomes
invariant. According to Taken’s embedding theorem (1981),
if the dimension of the manifold containing the attractor is
dc, then the embedding dimension ism > 2dc+1 to preserve
the topological properties of the attractor in the phase space.
This implies that the embedding dimension of 18 is required
to unfold the attractor of the surge dynamics. On other hand,
Kennel et al.(1992) recommends the minimum embedding
dimension ofm > dc. This specifies that the embedding
dimension of 8 or 9 is sufficient. These results, however,
need to be verified by other embedding dimension estimators
as described in the following sections.

3.5 False nearest neighbors

A method to determine the minimal sufficient embedding
dimensionm, so called the false nearest neighbor (FNN)
method, was proposed byKennel et al.(1992). The false
neighbors are the points projected into neighborhoods of
other points to which they do not belong as neighbors in
higher dimensions. Figure8 shows that the percentage of
the FNN drops to about 1% with the embedding dimensions
of m = 8 and remains unchanged for a further increase in
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Fig. 8. The false nearest neighbors fractions as a function of
embedding dimension.

the embedding dimension. This result is consistent with the
estimation using correlation dimension based on the rule of
Kennel et al.(1992) suggesting that the minimum embedding
dimension ism > dc.

The FNN algorithm has a drawback associated with the
subjective choice of the threshold in order to ensure a
correct distinction between low-dimensional chaotic data
and noise. Different time series data may have different
threshold values. These imply that it is very difficult and even
impossible to give an appropriate and reasonable threshold
value which is independent of the dimensionm and each
trajectory point, as well as the considered time series data. To
avoid this, Cao proposed a modified algorithm, sometimes
called the averaged false neighbors (AFN) method (Cao,
1997). Cao’s approach is based on the estimation of two
parametersE1 and E∗ which are basically derived from
the quantities defined by the FNN method. Based on the
construction of the time delay vectors from the time seriesx1,
x2,...,xN , an m-dimensional vector is defined byyi(m) =

(xi,xi+τ ,xi+2τ ,...,xi+(m−1)τ ), wherei = 1,2,...,N − (m−

1)τ andτ is the time delay. Similarly to the FNN method,
the AFN approach defines the quantity

a(i,m)=
‖yi(m+1)−yn(i,m)(m+1)‖

‖yi(m)−yn(i,m)(m)‖
(3)

where ‖ . ‖ is the maximum norm,yi(m + 1) is the i-th
reconstructed vector for embedding dimensionm andn(i,m)

is an integer such that them-dimensional time-delay vector
yn(i,m)(m) is the nearest neighbor ofyi(m). Subsequently,
the quantity ofE1 is formulated as the mean value of all
FNN distancea(i,m)

E(m) =
1

N −mτ

N−mτ∑
i=1

a(i,m) (4)
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Fig. 9. Minimum embedding dimension estimated by Cao’s method
with τ = 10 andk = 1.

The E(m) depends only on the dimensionm and the time
delayτ . The variation fromm tom+1 can be investigated by
E1(m) = E(m+1)/E(m). TheE1(m) stops changing when
m is greater than some valuem0 if the time series comes
from an attractor. Thenm0 +1 is the minimum embedding
dimension to be obtained. It is necessary to define another
quantityE∗ which is useful to distinguish deterministic from
stochastic time series, formulated as

E∗(m) =
1

N −mτ

N−mτ∑
i=1

|xi+mτ −xn(i,m)+mτ | (5)

These quantities are computed for different, progressively
increasing values of the embedding dimensionm. Then the
global behaviors ofE1 andE∗ as functions of dimensionm
are respectively used to estimate the minimum embedding
dimension and to determine the nature (stochastic vs. deter-
ministic) of the underlying dynamical process generating the
time series. Figure9 shows the saturated line ofE1 can be
obtained starting from the dimensionm ≈ 10−12 for surges
at HVH. We set the number of neighborsk = 1. There is no
existence of the straight lines ofE∗ implying that the surge
dynamics is driven by deterministic behaviors.

3.6 Lyapunov exponents

The Lyapunov exponents characterize the exponential insta-
bility or the average rates of divergence or convergence of
nearby trajectories in phase space, and therefore, measure
how predictable or unpredictable the dynamical system is.
The spectrum of Lyapunov exponents (λi) can be computed
based on the work ofSano and Sawada(1985). If at
least one Lyapunov exponent is positive, then the dynamical
system is characterized by deterministic chaos. If no positive
Lyapunov exponent exists, then there is no exponential
divergence, and thus the long-time predictability of the
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Fig. 10. The largest Lyapunov exponent (lines with circles) is
positive and the sum of global Lyapunov exponents (lines with
triangle) is negative.

dynamical system is guaranteed. The Lyapunov spectrum for
the surge time series data is presented in Fig.10. The largest
value of Lyapunov exponents is estimated to beλ1 = 0.08
which indicates a loss of information of 0.08 bits/hour during
the dynamical evolution of the system, and thus loss of pre-
dictive capabilities. The Lyapunov spectrum contains a large
negative exponentλ6 = −0.75 which indicates presence of
strong dissipation mechanisms in the surge dynamics. The
presence of positive Lyapunov exponents and the fact that
sums of Lyapunov exponents are negative (−1.48), provide
strong evidence that the surge dynamics in the North Sea
is driven by deterministic chaos. Furthermore, Lyapunov
dimension of a strange attractor can be approximated from
the Lyapunov spectrum based on Kaplan-Yorkes conjecture
(Kaplan and Yorke, 1979). The existence of a fractal Kaplan-
Yorke dimension which is estimated to be 4.1 indicates
deterministic chaos in the surge dynamics.

However, the existence of two positive Lyapunov expo-
nents (Fig.10) denotes the hyperchaotic behavior of the
attractor in the surge dynamics. The first hyperchaotic 4-D
flow system was introduced byRössler(1979). This kind
of dynamical system requires at least a 4-D phase space
to unfold the attractor. The reasons of the presence of
hyperchaotic behavior in the surge dynamics can be due to
some noise in the measurement and the inherently complex
interactions between forces which induces storm surges. We
could not find any reference about a reliable method for
distinguishing between chaos and hyperchaos in a noisy time
series, so this aspect would need further research.

4 Chaotic model prediction

The ultimate goal of constructing a chaotic model in this
work is to use it for prediction, which in terms of phase
space representation of dynamics means extrapolation of

the trajectory by modeling the dynamical evolution of the
system in time. Therefore, in this context, the concept of
learning models from data, like a nonlinear regression is
typically utilized to estimate the reconstructed trajectory in
phase space. To model a deterministic chaotic system, one
has to accurately reconstruct anm-dimensional phase space
with time delayτ from univariate or multivariate time series
of the observables. Since the time series data are discretely
sampled over time, the underlying dynamics is described by
a deterministic model in phase space, which is always a map
of the following form:

Y t+1 = ft (Y t ) (6)

where Y t are the delayed vectors (states) of{
xt ,xt−τ ,xt−2τ ,...,xt−(m−1)τ

}
formed by the time series of

observables embedded into anm-dimensional phase space
with a proper time delayτ = υ1t (υ is time index in integer
values). In order to predict the next state of a dynamical
system, one needs to find an estimator of the regression
function so that the prediction ofxt+1 can be estimated by

x̂t+1 = f̂t (Y t ) (7)

After these general considerations, the next step is to find
the proper approximation of the model, expressed through
its structure, capacity and a criterion for the quality of
the model which is to be learned from the data in the
reconstructed phase space. Global and local models are two
possibilities to consider when choosing the model structure
for approximating the true mapping function (Casdagli,
1989). The basic idea of the local approximation methods
is to use only the states close to present state in phase space
in order to make predictions (Farmer and Sidorowich, 1987).
Thus, such models have to learn neighborhood relations from
the data and map them forward in time. In order to predict
the value of the observablext+T , which is part of the state
vector Y t+T whereT is some time horizon in the future,
based on the state vectorsY t and past history embedded in
the reconstructed phase space,k nearest neighbors ofY t are
found on the basis of some norm‖Y t −Y t∗‖, with t∗ < t

(t is a discrete time step). Depending on the number of
the neighbors considered, and the type of the local mapping
chosen, several variations of the local approximation method
are possible. The local zeroth, linear, quadratic and 3rd-order
polynomial models have been implemented and used in this
work. Based on the identified and reconstructed dynamics of
the surges at HVH, an attempt was made to build an accurate
predictive model utilizing local modeling approach and the
notion of dynamical neighbors as depicted in Fig.11.

In addition, a multi-step iterative prediction method
was developed and utilized in this work. The multi-step
prediction technique consists of making repeated one-step
predictions up to the desired horizon. It predicts only one-
step ahead using the estimate of the output of the current
prediction as the input to the prediction of the next time
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Fig. 11. (a)Time-domain time series of the sea levels at Hoek van Holland. Future state or prediction (black empty circle marking) can
be estimated by the self-similarity of the current point (black markings) with previous time-lag data points as defined in the phase space
reconstruction (τ = 3, m = 3). Current point has self-similarity (behavior) to the previous points (triangle and box markings) as indicated by
left-arrow dashed lines.(b) Phase space reconstruction and the description of searching dynamical neighbors and their dynamical evolution
in the past allowing for predicting the future evolution of the dynamics using local modeling. In this example, the real sea level data
reconstructed in 3-D phase space withτ = 3 h is utilized. Three data points (“star and diamond” markings) in time-domain time series are
represented as a single point in phase space. Prediction is made by searching the dynamical neighbors (triangle and box markings) of the
current point (black circle marking) in phase space and extrapolating the future state by using a local predictive model constructed based on
dynamical neighbors.

step until the predictionk-steps ahead is made. The multi-
step prediction technique demonstrates better prediction
performance than the direct prediction method (Box et al.,
1994; Kugiumtzis et al., 1998). One of the benefits of using
the multi-step prediction is that the dynamical neighbors can
be selected iteratively for each one-step prediction. Thus,
in most cases, this procedure is able to avoid taking the
false neighbors which may produce larger deviations of the
neighbor trajectory projections into the future states.

Figure 12 illustrates a comparison between direct and
multi-step predictions for the surge dynamics inm-
dimensional phase space. In this example, we notice
beforehand from the observed data that the surge in the
next 2 h would raise up. Suppose trajectory b is the one to

be predicted for 2-steps ahead and trajectories a, c and d
are the neighbor candidates of trajectory b. Thek-NN
procedure used for finding the neighbors is executed once
in direct prediction andh-times (h is the prediction horizon)
in multi-step prediction techniques. The trajectory a is a
true neighbor and being chosen by bothk-NN procedures.
On other hand, the trajectory c is a false neighbor which
is actually close to trajectory b and selected in the first
k-NN procedure, but not in the secondk-NN procedure.
The trajectory d is the reverse case of trajectory c. Hence,
the projection of trajectory b into 2-steps (hours) ahead
using direct prediction method produces incorrect prediction
(predicting the decreasing surge). This happens due to the
inclusion of false neighbor c which subsequently results in

www.nonlin-processes-geophys.net/17/405/2010/ Nonlin. Processes Geophys., 17, 405–420, 2010
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(a)

Fig. 12.A descriptive comparison between (a) direct prediction and (b) multi-step prediction inm-dimensional

phase space. This illustrates that the multi-step prediction can avoid from taking the false neighbor (trajectory

c) which may result in wrong projection of the trajectoryb to the future states (prediction).
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Fig. 12.A descriptive comparison between (a) direct prediction and (b) multi-step prediction inm-dimensional

phase space. This illustrates that the multi-step prediction can avoid from taking the false neighbor (trajectory

c) which may result in wrong projection of the trajectoryb to the future states (prediction).
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Fig. 12. A descriptive comparison between(a) direct prediction and(b) multi-step prediction inm-dimensional phase space. This illustrates
that the multi-step prediction can avoid from taking the false neighbor (trajectory c) which may result in wrong projection of the trajectory b
to the future states (prediction).

building a “false” local model. In contrast, the multi-step
prediction is able to predict the increasing surge correctly
because the false neighbor c can be avoided (not selected)
in the secondk-NN procedure.

5 Model setup

5.1 Neural networks

Backpropagation multi-layer perceptron (MLP) with
Levenberg-Marquardt training rule (Haykin, 2008) was
utilized and trained using the same input structure as the
chaotic model inputs. The number of hidden neurons of
ANN was selected using the exhaustive search in the range
[1∼10]. The optimal MLPs structures are listed in Table3
for univariate NN and Table4 for multivariate NN.

5.2 Univariate chaotic model

The nonlinear analysis of the surge time series as described in
Sect. 3 recommends the appropriate values of time delay and
embedding dimension to beτ = 10 andm = 8 as identified
by the analysis of correlation dimension and false nearest
neighbors, andm ≈ 10− 12 by the Cao’s method. These
proper values ofτ andm obtained by the nonlinear analysis
becomes a reference for the procedure to exhaustively
search for the optimal values of time delay and embedding
dimension for predictions. The reason of using exhaustive
search optimization is that the objective of building a chaotic
model is not only to identify and characterize the chaotic
behavior of the surge dynamics, but also to predict the future
states of surges using local modeling. Furthermore, the
accuracy of some existing estimators for determining the
proper values ofτ and m is argued by some researchers
(Cao, 1997; Schreiber, 1999; Hegger et al., 1999). The
discrete time series used in this work, which is obtained
from the real observations in nature, may not be perfect

Table 3. Univariate chaotic model and neural network perfor-
mances on verification data sets with various optimal parameter
settings (τ , m) using exhaustive search method.

Univariate models Prediction horizons
(RMS Errors) 1 h 3 h 6 h 10 h 12 h

Chaotic models

Stormy τ , m 1, 5 1, 7 3, 6 1, 10 2, 6
(k=13) CV 12.35 12.91 24.38 38.51 45.15

Verif. 11.11 11.94 21.69 30.44 34.42

Non-stormy τ , m 1, 9 1, 5 1, 7 4, 6 12, 9
(k=80) CV 5.09 5.35 7.56 9.04 9.94

Verif. 5.87 6.00 8.46 10.81 11.86

Neural networks

Stormy No.hidden 10 7 5 10 9
CV 10.93 21.30 28.47 35.09 39.43
Verif. 10.72 19.46 22.34 30.00 31.50

Non-stormy No.hidden 6 10 10 7 6
CV 4.55 6.15 7.09 8.47 8.32
Verif. 5.22 7.18 8.09 9.46 9.45

(incomplete and noisy). This results in imprecise estimations
of theτ andm and becomes subjective. The other reason is
that most of the methods in nonlinear time series analysis
originate from the analysis of the continuous dynamical
system described by the differential equations with some
assumptions and simplifications. In contrast, the observed
time series is obtained from the real natural phenomena
and may contain the information of more complex system
and physical interactions. In addition, the presence of
hyperchaotic behavior in the surge dynamics requests more
care in determining the proper values ofτ andm. Therefore,
we utilized an exhaustive search optimization technique to
find the optimal values ofτ andm based on the predictive
performance of the chaotic model.
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Table 4. Multivariate chaotic model and neural network performances on verification data sets with various optimal parameter settings (τ ,
m) using exhaustive search method.

Multivariate Phase Space Reconstruction Multivariate Chaotic Models Multivariate Neural Networks

PHoriz Surge WL Surge Wind Press RMSE RMSE No. RMSE RMSE

(hours) (hvh) (hvh) (epf) (hvh) (hvh)
τ , m τ , m τ , m τ , m τ , m k (CV) (Verif.) Hid. (CV) (Verif.)

Stormy condition
1 10, 8 4, 6 1, 5 5, 5 4, 5 13 15.52 8.81 5 6.48 6.53
3 10, 8 4, 6 3, 4 2, 2 1, 4 13 22.21 11.99 7 15.87 16.78
6 10, 8 4, 6 3, 5 4, 5 5, 2 13 37.96 21.12 8 22.24 20.45
10 10, 8 4, 6 3, 5 5, 5 5, 3 13 43.45 31.32 8 28.05 30.37
12 10, 8 4, 6 4, 4 3, 2 1, 2 13 47.28 34.80 8 28.74 28.09

Non-stormy condition
1 10, 8 4, 6 1, 4 2, 4 1, 5 80 3.40 4.79 5 4.20 4.76
3 10, 8 4, 6 1, 2 2, 4 2, 5 80 2.94 6.59 6 7.75 8.69
6 10, 8 4, 6 1, 5 4, 2 5, 5 80 6.69 8.05 2 9.75 11.02
10 10, 8 4, 6 1, 5 5, 2 1, 2 80 8.02 10.52 7 9.96 10.84
12 10, 8 4, 6 1, 4 5, 2 5, 3 80 6.59 10.73 4 10.96 12.37

The other important parameter for building a chaotic
model is the number of neighbors (k). Sensitivity analysis
was performed to find the properk values for non-stormy
and stormy conditions. The sensitivity analysis was per-
formed by setting up the chaotic model parameters for the
surges (with fixedτ = 10 andm = 8) andk run from 1 to
2000. Subsequently, the exhaustive search optimization was
executed using the optimalk-value for finding the optimal
values ofτ andm. The 3rd-order polynomial local models
were built based on the dynamical neighbors. This model
shows better predictive performance for the local model
in comparison to the zeroth, linear and quadratic models.
Additionally, we use also filtered out the neighbors that are
far (in Euclidean sense) from the current point – treating
them as false neighbors. The procedure is as follows:

1. Define the number of neigbhours (k).

2. Find thek-nearest neigbhours of the current state in the
phase space.

3. Remove the discovered neighbors if these neighbors
have distance to the current state larger than twice the
distance for the 1-nearest neighbor.

Figure13 depicts the six-hours prediction RMS errors of
the chaotic models as a function of the number of neighbors
(k) for non-stormy and stormy conditions. It is seen that
the suitable number of neighbors for predicting surges for
stormy condition is a small value of 13 neighbors and this
value should be smaller than the one (80 neighbors) for non-
stormy condition. This is due to the fact that less appropriate
dynamical neighbors (representing similar surge behavior in
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Fig. 13. Six-hours ahead prediction errors of chaotic models as a function of the number of neighbors (k) for
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Fig. 13. Six-hours ahead prediction errors of chaotic models as a
function of the number of neighbors (k) for non-stormy and stormy
surges (τ = 10,m = 8).

the past) can be found especially during extreme storms.
If more neighbors are considered, the model performance
becomes low due to the inclusion of false neighbors in
constructing local models.

The exhaustive search optimization was performed with
the following settings: time delay in a range of [1∼ 24],
embedding dimension in the range of [2∼ 30], the 3rd -
order polynomial local model and the number of neighbors
k = 13 (for stormy conditions) andk = 80 (for non-stormy
conditions). The prediction horizons are 1, 3, 6, 10, and 12 h.
Each prediction horizon can have different corresponding
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Fig. 14. Univariate chaotic model: RMS errors for 1 h (left) and 10 h (right) prediction horizons during stormy period as a function of time
delay and embedding dimension.
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van Holland with various wind direction (0-180 degrees from North). The strongest influence of the winds on

the surge (correlation coefficient=-0.65) is generated by the120◦ wind component or the north-westerly wind.

Similarly, it is indicated by mutual information.
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Fig. 15.Cross correlation (left) and mutual information (right) between surges at Hoek van Holland and neighboring stations (EPF and K13).
Both techniques show that the EPF surges precedes surges at HVH about 1 hour and the K13 surges has less relationship with HVH surges
and the HVH surges would reach to K13 around 1–1.5 h later.

values of time delay and embedding dimension. The
optimization result is the most accurate chaotic model which
has the lowest RMS error on cross-validation data set. The
cross-validation data sets have a data set of 400 data points
(see Table2): 19 January 1994 03:00 till 4 February 1994
19:00 (time indices of 35500–35900) for stormy condition
and 11 May 1994 15:00 till 28 May 1994 07:00 (time
indices of 38200–38600) for non-stormy condition. This
small size of cross-validation data sets was employed with
considerations of the intensive computation required for the
exhaustive search optimization.

Figure14 shows the RMS errors of the univariate chaotic
model for 1 and 10 h prediction horizons during stormy
period as a function of time delay and embedding dimension
for surges (τ = 10, m = 8) at HVH location. These plots
are different for each prediction horizon and for stormy
and non-stormy conditions. This denotes that the proper
reconstruction of a phase space from a time series does not
only depends on the choice of time delay and embedding
dimension, but also on the prediction horizons. For
example, the optimal time delay and embedding dimension
for univariate chaotic model for predicting 6 h ahead surges

stormy period was obtained:

Y hvh
t+6 =

{
surhvh

t ,surhvh
t−3,surhvh

t−6,surhvh
t−9,surhvh

t−12,surhvh
t−15

}
(8)

whereY hvh
t+6 is the phase space structure for predicting surges

6 h ahead at HVH location, surhvh
t and surhvh

t−3 is the surges
at time t and t − 3, respectively. The complete optimal
univariate chaotic model structures are listed in Table3.

5.3 Multivariate chaotic model

Multivariate chaotic models incorporating the information
about surges at HVH and neighboring stations (EPF and
K13), change in air pressure and wind components were
employed, with the main objective to improve the prediction
accuracy for longer prediction horizons. The relationship
between surges at HVH and EPF/K13 are measured by
the cross-correlation and mutual information as shown in
Fig. 15. Both methods specify that the EPF surge precedes
the surge at HVH about 1 h and the K13 surge has less
relationship with HVH surge and the HVH surge would reach
to K13 around 1–1.5 h later.
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Fig. 16. Cross correlation (left) and mutual information (right) between wind components and surge at Hoek van Holland with various wind
direction (0–180◦ from North). The strongest influence of the winds on the surge (correlation coefficient = –0.65) is generated by the 120◦

wind component or the north-westerly wind. Similarly, it is indicated by mutual information.

The cross-correlation and mutual information functions
on the observed surge data show that the EPF surges have
higher correlations with the HVH surges than the K13
surges. The data from K13 station was not utilized in the
building of multivariate chaotic model because the inclusion
of this information does not improve or even decrease the
chaotic model performance. Our experience indicates that
the use of less-correlated information into a chaotic model
can produce a high-dimensional and more complex structure
of the reconstructed phase space and this often destructs
the smoothness of the trajectories and attractor resulting in
low predictability of the model. Thus, we only include the
information from EPF as inputs to the multivariate chaotic
model.

The other variables that require more analysis are wind
speed and direction. We applied the cross-correlation
and mutual information for acquiring the principal wind
component which has the largest influence to the surges
at HVH location. The various wind directions from 0 to
180 degrees from north were investigated. The strongest
influence of the winds to the observed surges at HVH
location is generated by wind component 120◦ angle from
north with the correlation coefficient−0.65 (see Fig.16).
This component corresponds to the north-westerly wind
which blows from the sea and is approximately perpendicular
to the coastline (Fig.1). Likewise, this relationship is
indicated by the mutual information function (Fig.16).

Multivariate phase space reconstruction of the surge
dynamics using the hourly time series data was solved
technically using a multivariate embedding. The exhaustive
search optimization was employed to find the optimal values
of τ and m for each variable. The general phase space
structure for the surge dynamics at HVH location is defined
as

Y
sur,hvh
t+T =

{
surhvh

τ,m,wlhvh
τ,m,surepf

τ,m,windhvh,120◦
τ,m ,dphvh

τ,m

}
(9)

where Y
sur,hvh
t+T is the phase space structure for predicting

surges with prediction horizonT at HVH location, surhvh
τ,m,

wlhvh
τ,m and dphvh

τ,m are the surge, water level and pressure

difference at HVH location, windhvh,120◦
τ,m is the wind speed

at HVH location with direction 120◦ angle, and surepf
τ,m is the

surges at Euro Platform station.

The next task is to find the optimal values ofτ and
m for each variable in Eq. (9) for building a multivariate
chaotic model using the exhaustive search optimization. The
parameter settings for the exhaustive search optimization
were set as follows. The values ofτ and m for surhvh

τ,m

and wlhvh
τ,m are set with the optimal values as obtained from

the nonlinear analysis, surhvh
τ,m hasτ = 10 andm = 8, whereas

wlhvh
τ,m has τ = 4 andm = 6. These optimal values for the

important variables surhvh
τ,m and wlhvh

τ,m were used as a basis
for optimizing the other variables. This approach reduces
the optimization parameter space and subsequently needs
less computing time. The inclusion of all variables into
the optimization space considerably increases computation
time, but the optimal solution may not provide much better
improvement of the model performance. The optimization
settings for other variables (surepf

τ,m, windhvh,120◦
τ,m , dphvh

τ,m) were
set for the following value ranges:τ = [1∼ 5] andm = [2∼

5]. We employed the 3rd-order polynomial approximation
function as the local model and the number of neighbors of
k = =13 andk = 80 for stormy and non-stormy conditions,
respectively. The prediction horizons are 1, 3, 6, 10 and
12 h. The optimization outcome is the most accurate chaotic
model which has the lowest RMS error on cross-validation
data set. The optimal multivariate chaotic model structures
are summarized in Table4 for different prediction horizons
and stormy and non-stormy conditions. For instance, the op-
timal multivariate phase space reconstruction for predicting
surges with prediction horizon 3 h for stormy condition was
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Fig. 17. The comparison of storm surge predictions between univariate and multivariate chaotic models and neural networks at Hoek van
Holland during stormy period (27 November 1994 till 25 February 1995) based on hourly time series. The prediction horizon is 3 h (top). The
overall RMSE for univariate CM, univariate NN, multivariate CM and multivariate NN are 11.94, 19.46, 11.99 and 16.78 cm, respectively
(bottom).

obtained

Y
sur,hvh
t+3 =

{
surhvh

t ,surhvh
t−10,...,surhvh

t−70,wlhvh
t ,wlhvh

t−4,...,

wlhvh
t−16,surepf

t ,surepf
t−3,...,surepf

t−9,windhvh,120◦
t ,

windhvh,120circ
t−2 ,dphvh

t ,dphvh
t−1,...,dphvh

t−3

}
(10)

where Y
sur,hvh
t+3 is the phase space structure for predicting

surges 3 h ahead at HVH location.

For non-stormy condition, the optimization results indi-
cate that the most appropriate time delay for the variable
surepf

τ,m is 1 h for all prediction horizons (see Table4). This
coincides with the analysis as depicted in Fig.15 showing
that the EPF surges precede surges at HVH about 1–1.5 h.

6 Model results

Table3 summarizes the univariate chaotic model and ANN
model prediction performances. The optimal parameters
for chaotic models (τ , m, k) and neural network models
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(number of hidden neurons) were obtained based on the
model performance (RMS error) on cross-validation data sets
for non-stormy and stormy conditions. Subsequently, we
verified these models on verification data set with various
optimal values ofτ , m, k and number of hidden neurons
based on the prediction horizons and stormy and non-stormy
conditions. These comparison results (up to 12 h prediction)
show that both models have similar prediction accuracy, for
both stormy and non-stormy surge conditions. However, the
chaotic model is able to predict the extreme surges better than
ANN. This is depicted in Fig.17. The chaotic model errors
are more dampened and stable (also during the surge peaks)
than the neural network errors.

Nonetheless, the predictive chaotic model with local mod-
eling may include some false neighbors due to the fact that
the trajectories are very close to each other and the nearest
neighbors found may have different or reverse directions
of the trajectories. This is a practical problem occurring
due to the use of nonlinear discrete time series from the
observables and the use of integer (not fractal) values of
τ and m in phase space reconstruction. In the continuous
dynamical system derived by the differential equations many
less false neighbors are to be found. The possible solutions
for these issues are: to use smaller sampling time of the
surge data (e.g. 10 min) for reducing the sharp oscillations
and thus providing enough points for producing better local
models to handle these oscillations; to implement a mixture
of various local models (e.g. ANN) in the phase space which
may perform better for predicting future trajectories of a
particular condition or regime; to reconstruct the phase space
from a time series using non-equidistance time delay method
which can unfold the attractor better; and to select a larger
size of cross-validation data set.

A multivariate chaotic model (Table4) with inclusion of
various variables (wind, air pressure and neighboring station
information) does not significantly improve the accuracy of
predictions in comparison to a univariate chaotic model.
This is in a way surprising and disappointing. We see
the reason for that in the fact that adding more variables
(observed non-smooth data) to the phase space distorts
the smoothness of trajectories and attractor of the surge
dynamics. This distortion may produce more false nearest
neighbors resulting in less accurate predictions by local
models.

For the location at Hoek van Holland, the overall 3 h
ahead surge prediction errors (RMSE) on verification data
sets during stormy period for univariate CM, univariate NN,
multvariate CM and multivariate NN are 11.94, 19.46, 11.99
and 16.78 cm, respectively. In this respect, the multivariate
chaotic model generally outperforms ANN models because
it uses the other variables, spatial information and local
models for predicting the future surges by identifying the
past behavior of the surge dynamics.

7 Conclusions

Based on the nonlinear chaos analysis, the surge dynamics
along the Dutch coast can be characterized as deterministic
chaos. The presence of the chaotic dynamics together
with the positive Lyapunov exponents implies that there are
limits of predictability for any model. However, short-term
reliable predictions are possible. The chaotic behavior occurs
because the sea levels and surges are the result of a complex,
coupled nonlinear dynamical system. If compared to our
earlier work (Solomatine et al., 2000; Velickov, 2004; Siek
et al., 2008, see Sect. 1) in the present paper we employed
extended data analysis methods and improved algorithms for
predictive models. A chaotic model with local modeling
and multi-step prediction technique demonstrates a good
predictive performance and can serve as an effective tool
for accurate and reliable short-term storm surge predictions.
Further improvements in accuracy are expected if more
sophisticated methods to identify the adequate nearest neigh-
bors are used, and if a data assimilation scheme is added to
the presented method.
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