
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2010

MSc THESIS

Cost Effective Modular Adders for RNS-based
Processors

Ondy Dharma Indra Sukma

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2010-2010-26

RNS can distribute the computation on long operands over small
word-width RNS functional units able to operate in parallel. This
property is the ground to develop fast arithmetic units. While RNS
can boost addition and multiplication performance, other arithmetic
operations like division, magnitude comparison, and sign detection
are more difficult, when compared with their counterparts in the
conventional binary number system. In view of that RNS is mostly
utilized for special-purpose applications, e.g., digital filters, which
are addition and multiplication dominated. For such applications
the RNS capability to represent large numbers and the carry-free
nature of arithmetic operations are of interest and can potentially
enable fast and low-power arithmetic computation. The overall per-
formance of any RNS based processor is mostly determined by the
selected moduli set and the way the modular operations, i.e., ad-
dition and multiplication, are implemented in hardware (note that
this two issues are intertwined). In this thesis we concentrate on the
design of fast and energy effective modular adders able to compute
|A+B|m = (A+B if A+B < m, if otherwise A+B −m) as they
are the fundamental building block for any RNS processor. We base
our solution on a state of the art approach, i.e., ELM Modular Ad-

dition (ELMMA), which utilize anticipated computation in conjunction with fast parallel prefix addition.
Our method follows the same anticipation principle but reduces the overall complexity by proposing an
alternative design for the adders, which can now directly handle three inputs instead of two. In this way
the initial carry-save addition required for ELMMA for the evaluation of the A+B-m is not longer required
and this may potentially result in faster and more area and power effective designs. To evaluate the impact
of our proposal we considered a number of moduli of practical interest as follows: 2n−(2n−2+1), 2n−2n−2,
and 2n− (2n−3 + 1). For the considered moduli we implemented in VHDL two sets of implementations, i.e.,
one for the state of the art ELMMA and one for our proposal, for the n=16 case. We simulated, debug,
and synthesized the designs using Cadence Encounter RTL Compiler for ASIC Designs for 90 nm CMOS
technology. Our results indicate that for moduli 2n−(2n−2+1), 2n−2n−2, and 2n−(2n−3+1), our proposal
requires 13%, 32%, and 28% smaller area, is 14%, 3%, and 9% faster, and is 15%, 20%, and 13% more
power efficient, respectively, when compared with the state of the art.
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Abstract

I
n the recent years Residue Number Systems (RNS) have received increased interest due to
their ability to limit the carry propagation chain thus to enable parallel and fast arithmetic.
Within RNS any integer is represented with a set of its residues with respect to a given

base that comprises a set of relatively prime integers. In this way RNS can distribute the
computation on long operands over small word-width RNS functional units able to operate in
parallel. Moreover the RNS representation provides some intrinsic support for fault tolerance as
it isolates the individual digits, thus potential errors cannot affect other digits. The first property
is the ground to develop fastarithmetic units, whereas the later one can be utilized to increase
the system fault tolerance. While RNS can boost addition and multiplication performance, other
arithmetic operations like division, magnitude comparison, and sign detection are more difficult,
when compared with their counterparts in the conventional binary number system. In view of that
RNS is mostly utilized for special-purpose applications, e.g., digital filters, which are addition and
multiplication dominated. For such applications the RNS capability to represent large numbers
and the carry-free nature of arithmetic operations are of interest and can potentially enable fast
and low-power arithmetic computation. The overall performance of any RNS based processor is
mostly determined by the selected moduli set and the way the modular operations, i.e., addition
and multiplication, are implemented in hardware (note that this two issues are intertwined).
In this thesis we concentrate on the design of fast and energy effective modular adders able to
compute

|A+B|m =

{
A+B if A+B < m
A+B −m otherwise

as they are the fundamental building block for any RNS processor. We base our solution on
a state of the art approach, i.e., ELM Modular Addition (ELMMA), which utilize anticipated
computation in conjunction with fast parallel prefix addition. Our method follows the same
anticipation principle but reduces the overall complexity by proposing an alternative design for
the adders, which can now directly handle three inputs instead of two. In this way the initial
carry-save addition required for ELMMA for the evaluation of the A+B-m is not longer required
and this may potentially result in faster and more area and power effective designs. To evaluate
the impact of our proposal we considered a number of moduli of practical interest as follows:
2n − (2n−2 + 1), 2n − 2n−2, and 2n − (2n−3 + 1). For the considered moduli we implemented in
VHDL two sets of implementations, i.e., one for the state of the art ELMMA and one for our
proposal, for the n=16 case. We simulated, debug, and synthesized the designs using Cadence
Encounter RTL Compiler for ASIC Designs for 90 nm CMOS technology. Our results indicate
that for moduli 2n − (2n−2 + 1) our proposal requires 13% smaller area, is 14% faster, and is
15% more power efficient when compared with the state of the art. For the moduli set 2n− 2n−2

and for the moduli set 2n− (2n−3 + 1), our proposal is 3% and 9% faster, requires 32% and 28%
lesser area cost, and consumes 20% and 13% lesser power, respectively, when compared with the
state of the art.
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Introduction 1
1.1 Motivation

A Residue Number System (RNS) is characterized by a base which is an N -tuple of
relatively prime integers (mN−1, mN−2, ...,m0) and each mi (i = 0, 1, 2, ..., N − 1) is
called a modulus. An integer X is represented in this system by an N -tuple(xN−1,
xN−2, ..., x0) where xi is a non-negative integer number, computed as the difference of
the X and mi × qi, where qi is the largest integer such that 0 ≤ xi ≤ (m − 1). The
residue of xi with respect to the ith modulus mi is akin to a digit and the entire N
residue representation of X can be viewed as an N -digit number, where the digit set for
the ith position is [0,m1 − 1].

RNS has two most significant advantageous properties: (i) no carry propagation may
occur between the RNS digits during arithmetic operations as addition and multiplica-
tion, and, (ii) potential errors cannot pass the digit boundaries due to the very nature
of the RNS representation with isolates individual digits. The first property provides
the ground to develop fast arithmetic units, whereas the later one can be utilized to
increase the system fault tolerance. While RNS can boost addition and multiplication
performance, other arithmetic operations like division, magnitude comparison, and sign
detection are more difficult [5], when compared with their counterparts in the conven-
tional binary number system. The difficulty is induced by the fact that the RNS digit
does not store any information related to its relative weight to other existing digits, a
property which is utilized to easily compare two numbers, to detect the sign a number
based on its relative magnitude to another number magnitude, and the combination of
those two in order to perform overflow detection. An example to this problem is given
as follows: Given a range of [-420, 419], the sorting result in ascending order of a =
(0|1|3|2)RNS , b = (0|1|4|1)RNS , c = (0|6|2|1)RNS , d = (2|0|0|2)RNS , e = (5|0|1|0)RNS ,
and f = (7|6|4|2)RNS is d(−70) < c(−8) < f(−1) < a(8) < e(21) < b(64). In order to
obtain correct sorting order, RNS number must be converted to digit weighted position,
leading to large overhead. For division, more problematic situation occurs when the
quotient must be denoted as a floating point number.

In view of the previous discussion, RNS is currently not utilized in general computing
purpose but represents an attractive choice for specific-purposed applications which are
addition and multiplication dominated and requires robustness against error. A leading
candidate for the former is in the field of digital signal processing. Finite impulse response
filter and Discrete Fourier Transform are some examples of application which heavily uses
addition and multiplication. The later is an area that was the subject of much research in
early computing era, but faded out from main stream research as the fabrication (CMOS)
technology become more reliable. Now we entered the nano-era and the need of fault
tolerance increases again due to the fact that devices are less reliable and exhibit large

1



2 CHAPTER 1. INTRODUCTION

delay variations thus we can expect a revival of the fault tolerant related RNS research.
In the context of this thesis we concentrate on the RNS capability to provide support
for fast and energy effective computer arithmetic and we do not dive into fault-tolerant
related issues.

The overall performance of any RNS based processor is mostly determined by the se-
lected moduli set and the way the modular operations, i.e., addition and multiplication,
are implemented in hardware. The two issues are very much related as the moduli nature
has a large influence on the structure and complexity of the functional units hardware.
It is well known that some moduli, e.g., 2n and 2n − 1, result in simple modular adders
however one cannot limit the moduli choice only to such restricted moduli due to other
reasons, e.g., the requirement to have a well balanced RNS system. Another challenging
circumstance that RNS is facing is the need to represent large number involved in com-
putation. Referring to the definition of RNS given in the beginning of this chapter, the
number of different representation of N -tupple RNS, i.e, the system dynamic range, is
equal to the product of its moduli, by assuming that all moduli are pairwise relatively
prime one to each other. In order to enable RNS representations of large numbers one
need to increase the the dynamic range which results in more moduli and/or in larger
magnitude for the digits. One can easily observe that the increase of digit magnitude has
a negative effect on the RNS processor performance as it increases the per digit position
computation delay, since even though RNS has no inter digit carries, carry propagation
occur at the digit level and the larger the maximum digit magnitude the slower the
calculation. In view of this fast and optimized conventional binary arithmetic unit are
essential for RNS processors.

In this thesis we concentrate on the design of fast and energy effective modular adders
able to compute

|A+B|m =

{
A+B if A+B < m
A+B −m otherwise

as they are the fundamental building block for any RNS processor.
Up to date many studies have been conducted on fast addition and parallel pre-

fix seems to be the most effective way to construct fast adders. Hence, incorporating
parallel prefix into modular addition can bring direct benefits to the performance of
the modular adder. Many parallel prefix have been introduced under different scheme,
whose performance heavily depends on the construction of carry network. Examples of
some Parallel Prefix Adders (PPA) include Kogge-Stone, Brent-Kung, Han-Carlson, and
Ladner-Fischer [4, 1, 6].

Amongst these existing PPAs, Ladner-Fischer PPA (LFPPA) is considered to provide
the best tradeoffs and has been utilized as a a basic element in the most effective state of
the art modular adder, ELM Modular Adder (ELMMA) [11]. ELMMA is based on the
principle of anticipated computation, i.e., it computes both a+b and a+b−m in parallel
and inherits the LFPPA capability to perform fast additions. Moreover, depending on the
selection of the modulo value m the structure of the design various tradeoffs are possible
in order to decrease the energy consumption and the occupied area. Generally speaking
ELMMA consists of 3 modules: the Simplified Carry Save Adder (SCSA) module, the
ELM module, and the MUX module. The SCSA module functions to perform 3-to-2
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operand reduction, in order to prepare the input fitted to ELM module. In the ELM
module, the two tentative modular additions takes place. Finally, the correct result
is obtained based on the carry out of ELM. As reported in [11], ELMMA is used for
unrestricted modulo addition. When modulo restriction is applied upon ELMMA, the
use of SCSA can be avoided, resulting some extent of area saving, speed and power
improvement.

The main research question we address in this thesis are the following:

• Can we propose an alternative technique for modular addition which can outper-
form ELMMA?

• In case we can, which is the actual impact of our proposal on the modular adder
performance in terms of area, delay, and energy consumption?

1.2 Contribution

We addressed the previously mentioned questions and in this section we present the main
contribution of the thesis, which consist of:

1. We proposed and enhanced ELM Modular Addition (ELMMA), which also utilize
anticipated computation in conjunction with fast parallel prefix addition but re-
duces the overall complexity by proposing and alternative design for the adders.
Our ELM adders can now directly handle three inputs instead of two. In this
way the initial carry-save addition required for ELMMA for the evaluation of the
a+ b−m is not longer required and this may potentially result in faster and more
area and power effective designs.

2. We identified the moduli in the form of (2n − 2n−2), (2n − (2n−2 + 1)), and (2n −
(2n−3 + 1)) as relevant candidates for the modulo adder implementations.

3. For the considered moduli we implemented in VHDL two sets of implementations,
i.e., one for the state of the art ELMMA and one for our proposal, for the n=16
case. We simulated, debug, and synthesized the designs using Cadence Encounter
RTL Compiler for ASIC Designs for 90 nm CMOS technology and our results
indicate the following:

• For the moduli (2n−(2n−2+1)), our scheme is 14% faster, requires 13% lesser
area cost, and consumes 15% lesser power when compared with the ELMMA
algorithm. With respect to compound metrics, the enhanced ELMMA im-
proves the DP, AP, AD, and DDA about 27%, 26%, 25%, 35%, respectively,
when compared with the existing ELMMA.

• For the moduli (2n− 2n−2), our scheme is 3% faster, requires 32% lesser area
cost, and consumes 20% lesser power when compared with the ELMMA algo-
rithm. With respect to compound metrics, the enhanced ELMMA improves
the DP, AP, AD, and DDA about 22%, 33%, 19%, 24%, respectively, when
compared with the existing ELMMA.
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• For the moduli (2n− (2n−3 + 1)), our scheme is 9% faster, requires 28% lesser
area cost, and consumes 13% lesser power when compared with the ELMMA
algorithm. With respect to compound metrics, the enhanced ELMMA im-
proves the DP, AP, AD, and DDA about 22%, 22%, 24%, 27%, respectively,
when compared with the existing ELMMA.

1.3 Thesis Outline

This remainder of the thesis is organized as follows:
Chapter 2 contains a brief overview of Residue Number System (RNS). Modular

adders are also discussed by focussing on implementations for: (1) arbitrary moduli, and
(2) restricted moduli. This chapter is closing with a discussion of several parallel adders
based on the parallel prefix algorithm.

Chapter 3 provides the explanation of ELM algorithm. All signal equations involved
are given, including the theory which support the corresponding equations. An en-
hancement of ELM is presented next by elaborating the extension of this technique in
modular addition. Detailed explanations are given to describe how ELMMA computes
the modulo addition on the based of ELM algorithm. Several properties such as resource
sharing and the depth of the tree are also discussed, exposing the degree of improvement
that ELMMA has if compared with the underlying and some relevant parallel prefix
algorithm.

The enhanced ELMMA scheme is introduced in Chapter 4. The discussion starts
with the additional and/or modified signal equation coming from the consequence of
removing one ELMMA’s block. Detailed supporting arguments for the modification are
also presented, to give clearer description on how the improvement in proposed design is
achieved. Results of synthesis of ELMMA and proposed design obtained from a synthesis
tool are reported. A performance comparison between those design is provided, encom-
passing the improvement of delay, area, and total power. The comparison of compound
metrics is also provided, to give an indication the superiority of the enhanced ELMMA
over state of the art ELMMA in when comparison is performed to the combination of
(delay, area), (delay, power), and (area, power).

Chapter 5 is the closing chapter of this report, containing conclusion and discussion
of future research.



Overview of Residue Number
Systems 2
This chapter provides fundamental information about the basic notions and several im-
portant properties of RNS which will give foundation to the succeeding chapters.

2.1 Weighted Number System

Numbers play an important role in computer systems and are the basis and object
of computer operations. ”The main task of computer is computing, which deals with
numbers all the time” [7]. Digital computers very much depends on the utilized number
systems and the rules which define the relationships among numbers. The commonly
used number systems are decimal and binary number systems, which are examples of
Weighted Number System (WNS). A number system is a WNS if for any number y in
the system, y can be expressed as:

y =
∑n

i=1 xiwi,

where xi is a digit in the permissible digits and wi are consecutive powers of the same
(fixed radix) or different (mixed radix) numbers. The following are the general charac-
teristics of weighted number systems [12]:

• Relative magnitude comparison of 2 numbers can easily be carried out.

• Multiplication and division can be easily manually performed by moving the bi-
nary/decimal point in case of binary or decimal number system.

• The range of the number can easily be extended by the addition of more digit
positions.

• Overflow detection is very easy.

• Analog to digital conversion is very easy.

Despite of all these advantages, WNS based arithmetic has limited performance due
to the fact that it cannot support parallel arithmetic in which all the digits are simulta-
neously processed is not possible. This is due to the fact that in any WNS the addition
requires the propagation of carry values between consecutive digit positions and this
makes it impracticable to implement parallel addition, subtraction, multiplication, and
division. This is a barrier on the speed of arithmetic operations in WNS and attempts
have been made to overcome the speed limitations:

• Speedup the calculation of carries by adding specialized look-ahead carry circuitry.

5



6 CHAPTER 2. OVERVIEW OF RESIDUE NUMBER SYSTEMS

• Rely on alternative number system representations which break/limit the carry
propagation chains.

In this thesis, we focus on the later avenue and address, Residue Number System
(RNS)[12] is such a number system with the following features: parallelism, modularity,
fault tolerance, and carry free operations. In the next section, we present more details
the general RNS background.

2.2 Residue Number System (RNS)

In RNS [9], a number x is represented by the list of its residues with respect to k pairwise
relatively prime moduli (mk−1 ≥ ... ≥ m1 ≥ m0). The residue xi of x with respect to
the ith modulus mi is akin to a digit and the entire k-residue representation of x can
be viewed as a k-digit number, where the digit set for the ith position is [0,mi − 1].
Notationally, given any integer x, the residue xi with respect to mi is computed as:

xi = x mod mi = |x|mi (2.1)

The RNS representation of x can be given by the enclosure of RNS digits in parenthesis.
For example,

x = (2|3|2)RNS(7|5|3) (2.2)

is the RNS representation of 23 with respect to the moduli 7, 5, and 3.

The RNS dynamic range is represented by the product of all k relatively prime
moduli (M = m0×m1...×mk−1). It denotes the interval over which every integer can be
represented by the system without having two numbers with the same representation, viz.
[0, M-1], or any other interval of M consecutive integers. For instance, when a negative
number is desired with symmmetric compotition, the range can be set to [-(M-1)/2,
(M-1)/2] if M is odd, or [-M/2, (M-1)/2] if M is even. The residues of negative numbers
are evaluated by complementing each of the digits xi with respect to its corresponding
modulus mi.

2.3 Modular Adders

Essentially speaking, modular adders are built using similar principles as the traditional
binary adders. All improvement techniques found in binary addition can be utilized to
construct modular adders [8]. Further improvements can be obtained from the fact that
the modulus is known at design time. Modulo adders can be categorized into two groups,
depending on the type of modulus they are designed for: (a) arbitrary (unrestricted)
moduli and (b) restricted moduli.

2.3.1 Arbitrary Moduli

The result of adding, modulo-m, two numbers, A and B, (those can be digits of a residue
representation but also two positive integers smaller than m), where 0 ≤ A,B < m, is
defined as [8]:
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Figure 2.1: Arbitrary basic modulo-m adder

|A+B|m =

{
A+B if A+B < m
A+B −m otherwise

(2.3)

The design of a modulo m adder may be based on Equation ( 2.3). The most straight-
forward implementation is realized by assigning one adder to compute the addition of A
and B and a second adder to compute the subtraction of the modulus m from the previ-
ous addition result as depicted in Figure 2.1. We note that the result of the comparison
of the addition result and the modulus is computed as cout and this signal is utilized to
select the right output value. If the addition of A and B is less than m, then this is the
correct result. If otherwise, the addition of A and B is corrected by the subtraction of
m to produce the correct result. We note that this computation can be also achieved
with one adder only at the expense of a slightly increased delay and a register and two
multiplexors.

By replacing the subtrahend m with an addition of additive inverse of m mod 2n,
t(=2n −m), Equation ( 2.3) can be rewritten as follows:

|A+B|m =

{
A+B if A+B < 2n

A+B + t otherwise
(2.4)
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2.3.2 Restricted Moduli

Moduli in the form of 2n − 1, 2n, and 2n + 1 are a special moduli because they greatly
simplify the modular adder hardware implementation. Designing adders for moduli 2n

requires no extra work since the correct result is always produced for both cases in
Equation ( 2.3) by the first adder in Figure 2.1. This holds true due to the fact that
the substraction of 2n is equivalent with dropping the carry out of the A+ B addition.
Thus by just ignoring this carry the first adder always produces the correct result.. To
design an adder with modulo 2n−1 adder, the scheme of arbitrary adders can be used by
replacing the complement m with constant 1. Essentially speaking the idea is to ignore
the carry out of the A + B addition but in this case an extra 1 has to be compensated
somehow as by dropping the carry out we subtracted 2n instead of 2n− 1. By assuming
that the underlying adder is a carry ripple adder and it is reused as suggested at the
end of the previous section, the correct addition is obtained by feeding back the carry
generated by the addition of A and B. The implementation of 2n + 1 modulo adders also
depends on the underlying conventional adder. In this case, to reduce the additional logic,
arithmetic operation modulo 2n + 1 has frequently been implemented through the use of
a different representation, e.g., diminished one representation. With the diminished-one
representation, the addition of two numbers, A and B, with diminished-one equivalents
Â (= A − 1) and B̂ (=B-1), is A + B = (Â + 1) + (B̂ + 1) = (Â + B̂ + 1) + 1. If
Â+ B̂ + 1 < 2n+1, then the result is correct in diminished-one form; if otherwise, 2n + 1
must be subtracted to get the correct result. The main drawback of the diminished-one
representation is that it requires conversion of the operands and results.

2.4 Parallel Prefix Adders

Parallel-prefix adders allow more efficient implementations of the carry-lookahead tech-
nique and are, essentially, variants of carry-lookahead adders. Indeed, in current tech-
nology, parallel-prefix adders are among the best adders, with respect to area × time,
and are particularly suited for high-speed addition of large numbers. The construction
of parallel prefix adders is based on carry operator, ¢, which is defined as follows:

(G”, P”) ¢(G′, P ′) = (G” + P”G′, P”P ′) (2.5)

where P”, P’ and G”, G’ indicate propagate and generate signal, respectively. The
fundamental of carry operator is represented in Figure 2.2.

A parallel prefix can be represented as a graph consisting of carry operator nodes.
For the sake of supporting the explanation of ELM algorithm in Chapter 3, the Ladner
Fischer Parallel Prefix Adder (LFPPA) [3] is presented because it has similar scheme to
ELM. Figure 2.3 graphically represent the connection of carry operator node in LFPPA
for the case of n = 8. All the signals produced by this LFPPA along the addition
computation are given as follows:

Stage 0:
pi,i = ai ⊕ bi, gi,i = aibi, where 0 ≤ i ≤ 7.
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Figure 2.2: Carry Operator

Stage 1:
gi,i−1 = gi + pigi−1, where i = 1, 3, 5, 7.
pi,i−1 = pipi−1, where i = 3, 5, 7.

Stage 2:
g2,0 = p2g1,0 g3,0 = g3,2 + p3,2g1,0
g6,4 = p6g5,4 g7,4 = g7,6 + p7,6g5,4
p6,4 = p6p5,4 p7,4 = p7,4p5,4

Stage 3:
g4,0 = g4 + p4g3,0 g5,0 = g5,4 + p5,4g3,0
g6,0 = g6,4 + p6,4g3,0 g7,0 = g7,4 + p7,4g3,0

In the particular case of modular addition, parallel prefix can be easiliy modified for
addition with respect to the special moduli 2n−1 and 2n +1 [8]. Furthermore, if modulo
addition is constructed for arbitrary moduli, the concurrent computation of A+ B and
A + B + t (t = correction term) can be fully supported by parallel prefix as suggested
in [8]. Worth to mention that for a certain type of parallel prefix algorithms, there is a
possibility to let those concurrent additions performed by shared resources as suggested
in [11]. Note that this also leads to the reduction of power consumption as the parallel
prefix adder occupies less area while preserving the computation speed.

2.5 Conclusion

In this chapter we briefly discussed how Residue Number Systems can be utilized in order
to alleviate the speed limitation due to carry propagation. By selecting relatively smaller
digits to represent large number, RNS can perform fast computation. Furthermore,
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Figure 2.3: Ladner Fischer Adder

since no carry propagation produced in each RNS digit when operating arithmetic (e.g.,
addition), each digit can be processed independently and results are not affected by
other digit positions if error occurs. We also analyzed the modulo addition operation
and its implementation via especially in addition, well-know conventional binary addition
methods and algorithms. We gave special attention to the utilization of parallel prefix
algorithms to perform modular addition for arbitrary and restricted modulo adder, as
depending on the characteristic of carry operator network that the parallel prefix has,
this approach can result in a fast, small, and power-efficient modular adders.



ELM Modular Adder
(ELMMA) 3
In this chapter, detailed information about the ELM algorithm [13] and the construction
of ELMMA based on ELM tree [11] are given, including the derivation of equations, the
equations to compute propagate, generate, and partial sum signals, and the components
utilized in the construction of the modular adder trees.

3.1 ELM

The ELM algorithm utilizes a binary tree of simple processors to perform standard
binary addition [13]. The structure of the tree is depicted in Figure 3.1 for the case
8-bit operands. Inputs are received at the lowest leaves of the tree, which compute
the partial sums for each bit position. At this level, the partial sums are equal to the
propagate signals. These partial sums are then passed up to the next level of the tree.
Each leaf also computes a generate signal and passes it up to the next level. At higher
levels of the tree, nodes receive partial sums from the adjacent lower level, as well as
information necessary to update the partial sums at that level of the tree. New partial
sums and update information are computed, which are passed up to the next higher level
of the tree.

Figure 3.1: ELM block diagram for n = 8

11
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Figure 3.2: Internal Node ELM Calculations

The key to the algorithm is the computation which occurs at internal nodes, which
is graphically described in Figure 3.2. The edge from node C to node A passes up
the partial sums for its subtree, the generalized generate for its entire subtree and the
generalized propagates for each bit of its subtree. Node B passes similar information, for
its subtree, to node A. Computations at node A combine the information passed from
node B and C to produce psi, G(r, p), and P (i, p) for its subtree. Note that node A
requires does not have to do any processing to produce psp through psq−1, nor P (p, p)
through P (q − 1, p) and these signals may be passed up to the node at the next higher
level directly. The remaining bits are computed according with Equation ( 3.1), ( 3.2),
( 3.3).

GA(r, p) = GB(r, q) + PB(r, q)GC(q − 1, p) (3.1)

PA(q + j, p) = PB(q + j, q)PC(q − 1, p) (3.2)

psAq+j = psBq+j ⊕ P (Bq + j − 1, q)GC(q − 1, p) (3.3)

The rightmost node of each level is required to neither pass up propagate signal nor
partial sums. The propagate signals present in these nodes are not used any longer in
the higher levels of the tree. In fact, its partial sums are the actual sum bits, because
the subtree includes the least significant bits of the addition. This implies that the carry
coming from the rightmost node is the actual carry-in to bit i and not merely a partial
carry. The complete design for the considered 8-bit adder can be implemented as follows:

Stage 0:

0psi = pi,i = ai ⊕ bi, gi,i = aibi, where 0 ≤ i ≤ 7.
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Figure 3.3: ELM Adder Cell Inputs

Stage 1:

1psi = pi,i ⊕ gi−1,i−1, where i = 1, 3, 5, 7.
gi,i−1 = gi + pigi−1,
pi,i−1 = pipi−1, where i = 3, 5, 7.

Stage 2:

2ps2 =0 ps2 ⊕ g1,0, 2ps3 =1 ps3 ⊕ p2,2g1,0, g3,0 = g3,2 + p3,2g1,0,

2ps6 =0 ps6 ⊕ g5,4, 2ps7 =1 ps7 ⊕ p6,6g5,4, g7,4 = g7,6 + p7,6g5,4,
p6,4 = p6,6p5,4 p7,4 = p7,6p5,4

Stage 3:

3ps4 =0 ps4 ⊕ g3,0, 3ps5 =1 ps5 ⊕ p4,4g3,0,
3ps6 =2 ps6 ⊕ p5,4g3,0, 3ps7 =2 ps7 + p6,4g3,0,
cout = g7,0 = g7,4 ⊕ p7,4g3,0

In view of the previous discution, the implementation of any ELM adder can be done
by using the following cells: The E cell which performs the function ps ⊕ G, the S cell
which performs the function of ps⊕ PG, the P cell which computes PQ, and the G cell
which computes G+PH. The E and S cell functions to update a partial sum, P updates
the propagate signal block, P (i, j), and G computes new generate signal block, G(i, j).
Figure 3.3 present previously mentioned the cells and their inputs.

3.2 ELM Modular Adder

By using Equation ( 2.4), modular addition can be implemented by performing concur-
rent addition of x+y and x+y+t and selecting the correct result based on the carry-out
signal produced by the three-operand addition. Three blocks are required to compute
RNS addition: (1) the Simplified Carry Save Adder (SCSA) module, (2) the ELMMA
tree, and (3) the MUX module [11] (Fig. 3.4).
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Figure 3.4: Block Representation of ELMMA Adder

3.2.1 The SCSA Module

The SCSA module is used to convert the three operand addition x+y+t to two operands
so that ELM tree architecture can be subsequently used to perform fast modular addition.
The structure is a simplified version of the conventional CSA, where the extent of the
simplification is highly dependent upon the binary realization of t. The simplification of
CSA is given in the following description.

Let si and ci+1 respectively denote the sum and carry outputs form the ith Full Adder
(FA) in the CSA, then

si = xi ⊕ yi ⊕ ti (3.4)

ci+1 = xiyi ⊕ xiti ⊕ yiti (3.5)

where xi, yi, and ti represent the input bits to the FA and⊕ represents the XOR operator.
If the input bit ti assumes the value 0, then writing si as xs,i and ci+1 as yc,i+1, Equation
( 3.4) and ( 3.5) become:

xs,i = xi ⊕ yi (3.6)

yc,i+1 = xiyi (3.7)

Similiarly, if ti is 1, then Equation ( 3.4) and ( 3.5) can be written as:
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x′s,i = xi ⊕ yi (3.8)

y′c,i+1 = xi + yi (3.9)

From Equation ( 3.6) and ( 3.7) it can be seen that for the case ti = 0, the sum and
carry bits for the sum x+ y+ t are identical to the sum and carry bits one would obtain
for the sum x+y. Note that for a modulus m, where the binary representation of t has b
ones, the signal bus x′s and y′c contains b bits (b ≤ n− 1,m 6= 2n), as depicted in Figure
3.4. A prime symbol is given to all signals involved in the computation of x+ y + t, to
easily distinguish them from the sum of two operand (x + y). In addition, as it can be
noticed that for n bit moduli, the Most Significant Bit (MSB) of t, i.e., tn−1, is always
zero, hence yc,n forms the partial output carry information for the addition x+ y. This
is because the subtraction with the additive inverse which has bit one at bit position
n− 1 will decrease the number of utilized bit by one.

3.2.2 The ELMMA Tree

This module is the core for ELMMA. To describe the structure of the tree, an example
is presented in Figure 3.5. The idea behind the structure is to compute both sums x+y
and x + y + t in parallel and then using the carry resulting from the sum x + y + t to
determine the correct sum. The ELMMA tree thus consists of two overlapped ELM tree,
where the extent of overlapping depends on the binary form of t. Let label the tree of
x + y as tree A and of x + y + t as tree B. To give a clear separation between signal
coming from tree A and B, the both trees are drawn using different line pattern (see
Figure 3.5).

Tree A is completely identified by conjoining the thinly-dashed nodes/branches of the
ELMMA tree with the solid-lined nodes/branches. Note that the solid-lined nodes and
branches comprise of hardware shared between both addition tree. Hence, node 0, 1, 2, 3,
4, 5, and 6 form the ELM tree that computes the sum x+ y. The processing done in the
nodes at each level is identical to the computation of ELM’s signals, with the exception
that node 6 does not compute the carry-out. Tree B is constructed in a similar manner
to the combination of the dashed nodes/branches and the shared nodes/branches. This
means that this tree consists of nodes 0’, 1’, 2, 3, 4’, 5, and 6’. The input bits to tree
B differ from those in tree A at the same position due to applying different equation to
compute generate and propagate/partial sum at the lowest level of tree.

The carry from the addition of x + y + t, c′out, is then found by taking the logical
OR of the carry produced from the SCSA module, yc,5, and the generate signal covering
bit position 1 to 4 which is obtained from the calculation of three operand addition.
In general, for an n bit modulus, c′out is produced from the logic OR operation between
generate signal coming out from SCSA at bit position n−1 (yc,n) and the carry generated
from tree B in the ELMMA tree over bit position 1 to n − 1. Both of these signals are
mutually exclusive for m 6= 2n, where n = dlog2me.

The width of the tree is equal to n− 1, resulting in the tree of dlog2(n− 1)e depth.
This means that even with the SCSA module, the depth of the modular adder struc-



16 CHAPTER 3. ELM MODULAR ADDER (ELMMA)

Figure 3.5: ELMMA Tree Block Diagram for m=29.

ture(excluding the MUX unit) is equal to that of an n bit ELM binary adder, a property
that makes it a very fast modular adder implementations.

3.2.3 The MUX Module

This module consists of a number of 2-to-1 multiplexerss that are used to select the
sum bits generated by the two additions performed in the ELMMA tree. The c′out signal
drives the multiplexer select port for all the multiplexers and it therefore has a maximum
fan-out of n.

Connecting those three blocks as shown in Figure 3.4 results in the construction
of ELMMA structure. To be able to present detailed ELMMA design, while keeping it
comprehendable, we assumed in the following as an example of modular addition for the
case of m = 29 (see Figure 3.5).

Stage 0 (SCSA):

0psi = pi,i = ai ⊕ bi, gi,i = aibi, where 0 ≤ i ≤ 4.

0ps
′
0 = p′0,0 = a0 ⊕ b0, g′0,0 = a0 + b0

0ps
′
1 = p′1,1 = a1 ⊕ b1, g′1,1 = a1 + b1

Stage 1:
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Figure 3.6: Cells used to compute the sum and carry when ti = 1.

1psi = 0psi ⊕ gi−1,i−1, gi,i = pi,igi−1,i−1, where 1 ≤ i ≤ 4.

1ps
′
1 = 0ps

′
1 ⊕ g′0,0, g′1,1 = p′1,1g

′
0,0

1ps
′
2 = 0ps2 ⊕ g′1,1, g′2,2 = p2,2g

′
1,1

Stage 2:

2ps2 = 1ps2 ⊕ g1,1, g2,1 = g2,2 + p2,2g1,1,

2ps4 = 1ps4 ⊕ g3,3, g4,3 = g4,4 + p4,4g3,3, p4,3 = p4,4p3,3

2ps
′
2 = 1ps2 ⊕ g′1,1, g′2,1 = g2,2 + p2,2g

′
1,0,

Stage 3:

3ps3 = 1ps3 ⊕ g2,1, 3ps4 = 2ps4 ⊕ p3,3g2,1

3ps
′
3 = 1ps3 ⊕ g′2,1, 3ps

′
4 = 2ps4 ⊕ p3,3g′2,1

c′out = g′4,1 = g4,3 + p4,3g
′
2,1

Referring to all the signals required to compute the two concurrent additions,
ELMMA can be implemented by using all existing cells required by ELM and another
additional cells, i.e., the E′ and the O cell, to perform the 3-to-2 operand compression
in the SCSA stage. Figure 3.6 presents the inputs to the additional cell required by
ELMMA.

3.3 Conclusion

In this chapter we first discussed ELM which can be considered as an enhancement
of Ladner Fischer Parallel Prefix Adder (LFPPA). The enhancement is obtained by
incorporating partial sum calculation along the generation of intermediate signal. The
modification applied in ELM leads to reduction of one computation stage when compared
with LFPPA. Subsequently, we presented the ELM Modular Adder (ELMMA), a state
of the art modular addition scheme which builds upon ELM. ELMMA is a computation
anticipation based approach which is result in a fast adder with less power utilization due
to the fact that resource sharing is enabled for the adders computing the two concurrent
additions required for the modular addition are performed. In the next chapter we
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introduce our proposal to further improve ELMMA performance measured in terms of
area, delay an power consumption and present some experimental results.



Enhanced ELM Modular
Addition 4
The basic idea behind our proposal is to eliminate the initial reduction stage required
by the state of the art ELMMA approach. This may potentially result in area and delay
savings under the conditions that this removal is not heavily affecting the complexity of
the ELM trees. In the chapter we first introduce our basic scheme and than we present it
in more details for some moduli of practical interest. Finally, we present three practical
implementations and compare their performance with the one of equivalent ELMMA
implementations.

4.1 Eliminating the Simplified Carry Save Adder

In the ELMMA algorithm described in the previous chapter, the Simplified Carry Save
Adder (SCSA) is used to perform 3-to-2 operand compression in order to fit the sum of
three operand as input for the ELM tree. As one might observe, the SCSA is employed
to the addition of two operand to serve the purpose of taking the advantage of resource
sharing when inputs originating from two and three operand addition enter the ELM
module. Two cases can be distingushed here with respect the computation latency and
signal complexity, based on the form of ELMMA’s additive inverse, t. For the case
of ti = 0, the use of SCSA block can be avoided because the resutl of three operand
addition is exactly the same to the two operand addition. This leads to area saving
and latency reduction of one Full Adder (FA) when the SCSA module is removed from
ELMMA scheme. On the other hand, the presence of the SCSA module in the case of
ti = 1 is certainly required since the signals produced from the operand reduction of two
and three operand are different. Certain equations can be obviously developed to either
link the intermediate signal of three operand addition with signals produced by two
operands or compute the intermediate signal of three operand addition without utilizing
the SCSA block. However, simple signal equation cannot be maintained for every case
and excessive new equations leads to the performance drawback. Therefore, this thesis
focuses the improvement only to the choice of restricted moduli, which is dominantly
influenced to the bit one appearance in t.

As mentioned in previous chapter, the E′ and O cells are used to compress the sum
of three operand. In the case of SCSA block removal, the computation of three operand
addition is performed in the ELMA tree, to replace signal computation performed in
SCSA module. As shown in Table 4.1, the mutual exclusive relation between propagate
and generate signals cannot be preserved anymore when the input a = b = 1. This
condition leads to the generation of Ambiguous Carry Ripple (ACR) when the assoiated
bit position receives carry-in generated from previous position. Detailed explanation to
this will be presented in next subsection.

ACR occurs when a generate signal affects more than one digit. In Figure 4.1, it is

19
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Table 4.1: Propagate and Generate Signal in the Absence of SCSA

a b p g p’ g’

0 0 0 0 1 0
0 1 1 0 0 1
1 0 1 0 0 1
1 1 1 1 1 1

Figure 4.1: The Ripple of Ambiguous Carry

shown that when propagate and generate signals are equal to 1, the carry generated at
certain digit position may influence one subsequent digit or the digit after the next one.
The worse ACR even could take place if t contains a series of consecutive one. In this
case, the ambiguous carry could be generated in every digit position, except at the Least
Significat Bit (LSB). Consequently, the signal complexity increases significantly and no
benefit could be obtained in this case. Nevertheless, an improvement obtained from the
SCSA saving becomes obvious if the ambiguous carry can be minimized in order to keep
the signal complexity low. In this thesis, we achieve this by applying certain restricted
moduli to the ELMMA scheme.

4.2 Proposed Scheme For Certain Restricted Moduli

A significant reduction of ACR occurs if the additive inverse, t, is not allowed to have
bit with value of 1 in consecutive positions and the position of that bit is closed to the
Most Significant Bit (MSB). By assuming the carry-in of the modulo addition is equal to
0, the additive inverse with bit 1 discovered at the LSB will not have any impact to the
emergence of the ambiguous carry signal. Applying this restriction of moduli selection,
the additive inverse is in the form of 010...1, 010...0, and 001...1 for modulus in the form
of 2n − 2n−2, 2n − (2n−2 + 1), and 2n − (2n−3 + 1), respectively. Thus, the moduli of
interest include: 2n− 2n−2, 2n− (2n−2 + 1), and 2n− (2n−3 + 1). Although the selection
of the moduli depends on the strategy to minimize the ACR, one modulus selection falls
to the one which is reported in [10]. Furthermore, as one can observe in Table 4.2,
modulus in the form of 2n− (2n−2 + 1) is relatively prime to 2n− (2n−3 + 1) for n within
the span of {3, 16}. Another possibility of proposed moduli utilization is to incorporate
it with the famous modulus in the form of 2n in order to present a set containing three
relatively pairwise moduli.
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Table 4.2: Number Factorization for the Corresponding Modulo

n 2n − (2n−2 + 1) Fact. 2n − (2n−2) Fact. 2n − (2n−3 + 1) Fact.

3 5 5 6 2,3 6 2,3
4 11 11 12 2,3 13 13
5 23 23 24 2,3 27 3
6 47 47 48 2,3 55 5,11
7 95 5,19 96 2,3 111 3,37
8 191 191 192 2,3 223 223
9 383 383 384 2,3 447 3149
10 767 13,59 768 2,3 895 5,179
11 1535 5,307 1536 2,3 1791 3,199
12 3071 3071 3072 2,3 3583 3583
13 6143 6143 6144 2,3 7167 3,2389
14 12287 11,1117 12288 2,3 14335 5,47,61
15 24575 5,983 24576 2,3 28671 3,19,503
16 49151 23,2137 49152 2,3 57343 11,13,401

4.2.1 Moduli 2n − 2n−2 and 2n − (2n−2 + 1)

For modulus 2n−2n−2, bit 1 is discovered at position n−2 while for modulus 2n−(2n−2+
1), bit 1 is discovered at positions n-2 and 1. For both moduli, resource sharing will be
obtained for signal computation from bit position n−3 down to 2 in the best case. Since
the computation signal of modulus 2n − (2n−2 + 1) is a superset of modulus 2n − 2n−2,
thus a complete signal generation is presented only for the modulus 2n − (2n−2 + 1).

Although SCSA is no longer used in this scheme, almost all signal equations remain
intact when compared with ELMMA’s equations. The absence of SCSA only affects
the signal equation for position n − 2 and greater. To clearly explain the developed
signal modification, we utilized n = 16. Fig. 4.2 delineates all signal generation for
modulo 49151. As shown in the picture, bold-printed signals are associated with the
computation of three operand addition, whereas the remaining signals used in the tree
of three operand addition come from the signal network of two operand addition.

To retain the modulo addition produced correctly, new signal equation is introduced
for propagate signal of bit 15 to 14. One can observe that partial sum, propagate, and
generate signal at bit position 14 and the block containing bit position 14 remain the
same, thus it does not require any modification, since the mutual exclusive within bit
position 13,0 never violate. The formulation of mutually exclusive relation of the p and
g is expressed as follows:

pi + gi = pi ⊕ pi, (4.1)

where 0 ≤ i ≤ 13. Equation ( 4.1) ensures that all generate signals can be transmitted
properly to each bit position in the range of {14,0} during the construction of carry
network in ELM tree. Hence, new signal formulation will only take place to the case
of updating the partial sum at bit position 15 and propagating the generate signal over
block {15,14}. Specifically to the case of n = 2m, no additional equation is required to
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Figure 4.2: Proposed Signal generation for modulo 49151

be derived, since the partial signal of bit position 15 always receives a correct generate
signal coming out from bit position 14 at the Stage 1. For general case, partial sum of
bit position 15 has to be updated first to guarantee that the accumulation of parallel
prefix is performed correctly. Thus, the equation which has to applied in general case is
expressed as:

psn−1 = pn−1 ⊕ gn−1 (4.2)

The modification of new propagate signal for block of bit 15 and 14 is denoted as:

1p
′
1514 = (0p

′
15 + 0g14)0p

′
14 (4.3)

Equation ( 4.3) implies that propagate signal at bit position 15 does not solely depends
on its own input, but it is also influenced by the coming carry-in generated at bit position
14 of two operand addition. The modification aims to allow bit position 14 propagates
generate signal over bit 15 when it receives carry-in when it also enables to propagate
carry-in and generates carry-out at the same time (0p

′
14 = 0g

′
14 = 1). Another signal

which needs an attention is the partial sum at bit position 15 in stage 0 (0ps
′
15). In

this stage, it is assumed that partial sum of bit 15 always receives carry-in produced by
bit position 14. Then the correction is made when bit position 14 propagates carry-in.
The latter condition holds true since bit position 15 (or each bit position, in general
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case) receives carry-in with the value of 1 only once because of the mutual exclusive
relation between propagate and generate signal (when a position generates carry-out,
the propagate signal at the bit position or the block of propagate signal containing the
bit position is always zero because of the mutual exclusive relation between propagate
and generate signal in the case of the sum of two operand).

4.2.2 Modulus 2n − (2n−3 + 1)

The proposed ELMMA for modulus 2n − (2n−3 + 1) is derived by applying local 3-to-2
operand reduction. Consequently, the delay of the proposed ELMMA increases. From
Fig. 4.3, it can be observed that more intermediate signals must be computed at Stage
0 and Stage 1, resulting in higher area cost when compared with existing ELMMA at
this point. The signal equations are derived by applying the following:

1. At Stage 0, all propagate and generate signals are computed. No signal equation
modification is found here.

2. At Stage 1, partial sum of position 14 is updated to let it store a correct value after
it receives carry-in coming from previous block. The propagate signal is denoted
as: 1ps

′
14 = 0p14 ⊕ 0g

′
13. A new signal definition, 1h

′
1514, is introduced, aiming to

hold generate signal affecting bit position 15. The 1h
′
1514 is denoted as the product

of 0h14 and 0g
′
13.

3. At Stage 2, partial sum at bit position 14 is updated when generate signal is
produced from bit position 13 and 12 (2ps14 = 1ps

′
14 ⊕ 1g

′
1312). Because a carry

save addition is performed to bit position 14 and 15 at Stage 1, the calculation of
propagate, generate, and partial sum signal which contains value of bit position 15
and 14 are defined as:

2p
′
1412 = 1ps

′
14 ⊕ 1ps

′
14 1g

′
1312 ⊕ 1h1514

2g1512 = 1g1514 + 1ps15 1h
′
1514

2h
′
1514 = 1ps15 1ps

′
14 1g

′
1312

2p
′
1412 = 1ps

′
14 1p

′
1312 1g

′
1312

2p
′
1512 = 1ps15 1ps14 1g

′
1312

4. In Stage 3 and 4, all signals are computed with the same equations as we have in
the existing ELMMA algorithm. The carry-out of proposed ELMMA is obtained
as the OR result of 2h

′
1514 and 4g

′
150.

4.3 Experimental Results

Two sets of designs, state of the art and enhanced ELMMA, have been developed in
VHDL for three cases: 2n − (2n−2 + 1), 2n − 2n−2, and 2n − (2n−3 + 1) with n = 16.
After careful simulations and debug we synthesized all the designs, using the Cadence
Encounter RTL Compiler for ASIC Designs at 90 nm CMOS technology. The perfor-
mance of all designs measured in terms of area, delay and power has been estimated.
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Figure 4.3: Signal Generation on the Scheme of Proposed Design for m = 57343

Table 4.3 summarizes the synthesis results for the moduli 2n−(2n−2+1), 2n−2n−2, and
2n − (2n−3 + 1) for the case of n = 16, , thus modulo 49151, 49152, and 57343, respec-
tively. Our results indicate that the SCSA removal applied in the proposed ELMMA
improves the speed of computation while occupying smaller area and consuming less
power. Based on the simple metrics with rescpect to Delay(D), Area(A), and Power(P),
the enhanced ELMMA for modulo 49151 has relatively balance improvement in its three
aspects, spanning between 13%-15% improvement. In the remaining moduli forms, the
chart indicates the signifiicant improvement in area saving, followed by the power ef-
ficiency. This holds true, since the target of improvement is to remove the utilization
of SCSA, which significantly affect the total area required for the enhanced ELMMA.
To further asses the implication of our proposal, we also compared the two type of de-
signs in terms of compound metrics as Power x Delay (PD), Area x Delay (AD), Area x
Power (AP), and Area x Delay2 (DDA). The improvement in percentage of the enhanced
ELMMA over the state of the art one is presented in Figure 4.5. The chart indicates
that the savings of each metric is larger than 20%, with the average savings of 23%, 25%,
and 26% in DP, AP, and DDA, respectively. The detail synthesis result for all three cases
is provided as appendix.
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Table 4.3: Synthesis Result for n=16

m
Delay (ps) Area (Cell Area) Power(µW)
Proposed ELMMA Proposed ELMMA Proposed ELMMA

49151 1050 1227 857 986 50061 59170
49152 913 943 640 767 34239 42937
57343 1132 1256 895 1001 51485 59695

Figure 4.4: Enhanced vs Standard ELMMA Improvement in Terms of Simple Metrics.

4.4 Conclusion

Moduli restriction is applied on the state of the art modulo adder, ELMMA, resulting
to the enhanced ELMMA design. The strategy of selecting the moduli is presented,

Figure 4.5: Enhanced vs Standard ELMMA Improvement in Terms of Compound Met-
rics.
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coming up with the moduli selection in the form of (2n − (2n−2 + 1)), (2n − 2n−2), and
(2n − (2n−3 + 1)). The simplest modification is found in the case of (2n − (2n−2 + 1))
and (2n − 2n−2), where one modified equation is found at the bit position 15. Modulus
in the form of 2n − (2n−3 + 1) have more complicated signals due to the need to pass
on the information of ambiguous carry ripple which could occur from position 2n−3.
For the case of modulus 49151, the proposed ELMMA requires 13% smaller area, 14%
faster, and 15% more power efficient when compared with existing ELMMA design. In
other modulus case, proposed ELMMA is more cost efficient especially in power and
area, while the improvement of the speed is slightly better than existing one. From the
compound metrics result, the enhanced ELMMA outperform the existing one with 23%,
25%, 25%, and 26% of average of DP, AD, AP, and DDA saving.
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5.1 Summary

Chapter 2 discussed fundamental information about the basic notions and several im-
portant properties of RNS which gives the base for the succeeding chapters. First, the
definition of Weighted Number System (WNS) and general characteristic is presented.
Then the explanation of WNS limitation is described, focusing to the speed limitation
due carry propagation. Next, RNS is introduced as one of the answer to eliminate carry
propagation and thus speed up the computation. A brief explanation of RNS advantages
and disadvantages are presented, leading to the conclusion that the use of RNS in special
purpose application and the need to make modular based operation more efficient when
operating in large digit number. The chapter was closed with the introduction of parallel
prefix addition as the underlying algorithm applied in state of the art modular adder,
ELMMA.

Chapter 3 presented an overview of ELM, a parallel prefix which is claimed to have
higher performance than other parallel prefix adder. Signal generation involved in the
ELM computation is also provided, which requires one less stage to complete compu-
tation when compared with the Ladner Fischer adder. Subsequently, we presented the
ELM Modular Adder (ELMMA), a state of the art modular addition scheme which builds
upon ELM. ELMMA is a computation anticipation based approach which is result in a
fast adder with less power utilization due to the fact that resource sharing is enabled for
the adders computing the two concurrent additions required for the modular addition
are performed.

A new enhanced ELM modular adder was presented in Chapter 4. The discussion
opened with the idea behind the enhanced ELMMA, that is to eliminate the simplified
carry save adder module. An improvement can be obtained when moduli restriction is
applied to ELMMA, to minimize the generation of ambiguous carry ripple. Applying the
strategy to select the moduli, the performance of enhanced ELMMA adder in the form of
moduli 2n−2n−2, 2n−(2n−2+1), and 2n−(2n−3+1) are investigated. As indicated by the
synthesis tool, the largest on average improvement of enhanced ELMMA can be seen on
the area saving, followed by power consumption, and then delay. For the case of modulus
49151, the proposed ELMMA requires 13% smaller area, 14% faster, and 15% more power
efficient when compared with existing ELMMA design. In other modulus case, proposed
ELMMA is more cost efficient especially in power and area, while the improvement of
the speed is slightly better than existing one. The comparison of compound metrics is
also provided, to give an indication the superiority of the enhanced ELMMA over state
of the art ELMMA in when comparison is performed to the combination of (delay, area),
(delay, power), and (area, power). From the compound metrics result, the enhanced
ELMMA outperform the existing one with 23%, 25%, 25%, and 26% of average DP, AD,

27
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AP, and DDA saving.

5.2 Major Contributions

In this thesis, we presented a number of novel modulo adders. Our overall achievements
can be summarized by the following:

• We identify the moduli in the form of (2n − 2n−2), (2n − (2n−2 + 1)), and (2n −
(2n−3 + 1)) as relevant candidates for the modulo adder implementations. The
moduli selection is based on the scenario of minimizing ambiguous carry ripple
and the the utilization of the moduli in practice.

• We estimate the performance of state of the art and the enhanced ELMMA. We
simulated, debug, and synthesized the designs using Cadence Encounter RTL Com-
piler for ASIC Designs for 90 nm CMOS technology and the results indicate

– For the moduli (2n−(2n−2+1)), our scheme is 14% faster, 13% lesser area cost,
and consumes 15% lesser power when compared with the ELMMA algorithm.
With respect to compound metrics, the enhanced ELMMA improves the DP,
AP, AD, and DDA about 27%, 26%, 25%, 35%, respectively, when compared
to the existing ELMMA.

– For the moduli (2n − 2n−2), our scheme is 3% faster, 32% lesser area cost,
and consumes 20% lesser power when compared with the ELMMA algorithm.
With respect to compound metrics, the enhanced ELMMA improves the DP,
AP, AD, and DDA about 22%, 33%, 19%, 24%, respectively, when compared
to the existing ELMMA.

– For the moduli (2n−(2n−3+1)), our scheme is 9% faster, 28% lesser area cost,
and consumes 13% lesser power when compared with the ELMMA algorithm.
With respect to compound metrics, the enhanced ELMMA improves the DP,
AP, AD, and DDA about 22%, 22%, 24%, 27%, respectively, when compared
to the existing ELMMA.

5.3 Future Directions

In this section, we present some future directions that could further improve RNS arith-
metic.

• Given that for the moduli 2n− (2n−2 + 1), 2n− 2n−2, and 2n− (2n−3 + 1), efficient
modulo adders have been presented, it will be interesting to find out if efficient
modulo multipliers can be designed using these moduli.

• Moduli 2n− 2n−2 and 2n− (2n−2− 1) can be denoted as 3.2n and 3.2n + 1, respec-
tively. The new moduli forms imply that the modulo addition of 2n − (2n−2 − 1)
can be obtained from the modulo addition of 2n − 2n−2 by restricting zero to be
the valid input for the addtion, in order to fully map all number representation of
modulo 2n − (2n−2 − 1) to modulo 2n − 2n−2 [2]. Diminished one representation
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can be used to support the restriction and new ELMMA design can be developed
based on the representation of diminished one representation. The same approach
can be applied to modulo (2n − (2n−3 + 1)).
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Synthesis Result for Modulo
49151 A

Table A.1: Area of the existing ELMMA for modulo 49151

Instance Cells Cell Area
l4ps15p 2 8
l4ps15 2 8
l4ps14p 2 8
l4ps14 2 8
l4ps13p 2 8
l4ps13 2 8
l4ps12p 2 8
l4ps12 2 8
l4ps11p 2 8
l4ps11 2 8
l4ps10p 2 8
l4ps10 2 8
l3ps8p 2 8
l3ps8 2 8
l3ps7p 2 8
l3ps7 2 8
l3ps6p 2 8
l3ps6 2 8
l3ps15p 2 8
l3ps15 2 8
l3ps14p 2 8
l3ps14 2 8
l2ps8 2 8
l2ps4p 2 8
l2ps4 2 8
l2ps12 2 8
xs yc bit0 15 gen[9].xs scsa 1 7
xs yc bit0 15 gen[8].xs scsa 1 7
xs yc bit0 15 gen[7].xs scsa 1 7
xs yc bit0 15 gen[6].xs scsa 1 7
xs yc bit0 15 gen[5].xs scsa 1 7
xs yc bit0 15 gen[4].xs scsa 1 7
xs yc bit0 15 gen[3].xs scsa 1 7
xs yc bit0 15 gen[2].xs scsa 1 7
xs yc bit0 15 gen[1].xs scsa 1 7
xs yc bit0 15 gen[15].xs scsa 1 7
xs yc bit0 15 gen[14].xs scsa 1 7
xs yc bit0 15 gen[13].xs scsa 1 7
xs yc bit0 15 gen[12].xs scsa 1 7
xs yc bit0 15 gen[11].xs scsa 1 7
xs yc bit0 15 gen[10].xs scsa 1 7
xs yc bit0 15 gen[0].xs scsa 1 7
p g n0 to n15 level0 gen[9].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[8].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[7].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[6].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[5].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[4].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[3].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[2].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[1].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[15].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[14].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[13].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[12].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[11].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[10].p n1 to n15 level0 1 7
l4ps9p 1 7
l4ps9 1 7
l3ps5p 1 7
l3ps5 1 7
l3ps13 1 7
l2ps7 1 7
l2ps3p 1 7
l2ps3 1 7
l2ps15p 1 7
l2ps15 1 7
l2ps11 1 7
l1ps8 1 7
Continued on Next Page. . .
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Table A.1 – Continued

Instance Cells Cell Area
l1ps6 1 7
l1ps4 1 7
l1ps2p 1 7
l1ps2 1 7
l1ps14p 1 7
l1ps14 1 7
l1ps12 1 7
l1ps10 1 7
l0p1p 1 7
l0p15p 1 7
l0p14p 1 7
MUX bit9 1 6
MUX bit8 1 6
MUX bit7 1 6
MUX bit6 1 6
MUX bit5 1 6
MUX bit4 1 6
MUX bit3 1 6
MUX bit2 1 6
MUX bit15 1 6
MUX bit14 1 6
MUX bit13 1 6
MUX bit12 1 6
MUX bit11 1 6
MUX bit10 1 6
MUX bit1 1 6
MUX bit0 1 6
xsp bit14 1 6
xsp bit0 1 6
l4g151p 1 5
l3g81p 1 5
l3g81 1 5
l3g159p 1 5
l2g85 1 5
l2g41p 1 5
l2g41 1 5
l2g1513p 1 5
l2g129 1 5
l1g87 1 5
l1g65 1 5
l1g43 1 5
l1g21p 1 5
l1g21 1 5
l1g1413p 1 5
l1g1413 1 5
l1g1211 1 5
l1g109 1 5
ycp bit15 1 4
ycp bit1 1 4
xs yc bit0 15 gen[9].yc scsa 1 4
xs yc bit0 15 gen[8].yc scsa 1 4
xs yc bit0 15 gen[7].yc scsa 1 4
xs yc bit0 15 gen[6].yc scsa 1 4
xs yc bit0 15 gen[5].yc scsa 1 4
xs yc bit0 15 gen[4].yc scsa 1 4
xs yc bit0 15 gen[3].yc scsa 1 4
xs yc bit0 15 gen[2].yc scsa 1 4
xs yc bit0 15 gen[1].yc scsa 1 4
xs yc bit0 15 gen[15].yc scsa 1 4
xs yc bit0 15 gen[14].yc scsa 1 4
xs yc bit0 15 gen[13].yc scsa 1 4
xs yc bit0 15 gen[12].yc scsa 1 4
xs yc bit0 15 gen[11].yc scsa 1 4
xs yc bit0 15 gen[10].yc scsa 1 4
xs yc bit0 15 gen[0].yc scsa 1 4
p g n0 to n15 level0 gen[9].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[8].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[7].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[6].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[5].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[4].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[3].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[2].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[1].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[14].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[13].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[12].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[11].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[10].g n1 to n15 level0 1 4
l3p159p 1 4
l3p149p 1 4
l3p149 1 4
l3p139 1 4
l2p85 1 4
Continued on Next Page. . .
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Table A.1 – Continued

Instance Cells Cell Area
l2p75 1 4
l2p1513p 1 4
l2p129 1 4
l2p119 1 4
l1p87 1 4
l1p65 1 4
l1p43 1 4
l1p1413p 1 4
l1p1413 1 4
l1p1211 1 4
l1p109 1 4
l0g1p 1 4
l0g15p 1 4
l0g14p 1 4
cout prime 1 4
Total 194 986

Table A.2: Area of the proposed ELMMA for modulo 49151

Instance Cells Cell Area
l4ps9p 2 8
l4ps9 2 8
l4ps15p 2 8
l4ps15 2 8
l4ps14p 2 8
l4ps14 2 8
l4ps13p 2 8
l4ps13 2 8
l4ps12p 2 8
l4ps12 2 8
l4ps11p 2 8
l4ps11 2 8
l4ps10p 2 8
l4ps10 2 8
l3ps7p 2 8
l3ps7 2 8
l3ps6p 2 8
l3ps6 2 8
l3ps5p 2 8
l3ps5 2 8
l3ps15p 2 8
l3ps15 2 8
l3ps14p 2 8
l3ps14 2 8
l3ps13 2 8
l2ps7 2 8
l2ps3p 2 8
l2ps3 2 8
l2ps15p 2 8
l2ps15 2 8
l2ps11 2 8
xs yc bit0 15 gen[9].xs scsa 1 7
xs yc bit0 15 gen[8].xs scsa 1 7
xs yc bit0 15 gen[7].xs scsa 1 7
xs yc bit0 15 gen[6].xs scsa 1 7
xs yc bit0 15 gen[5].xs scsa 1 7
xs yc bit0 15 gen[4].xs scsa 1 7
xs yc bit0 15 gen[3].xs scsa 1 7
xs yc bit0 15 gen[2].xs scsa 1 7
xs yc bit0 15 gen[1].xs scsa 1 7
xs yc bit0 15 gen[15].xs scsa 1 7
xs yc bit0 15 gen[14].xs scsa 1 7
xs yc bit0 15 gen[13].xs scsa 1 7
xs yc bit0 15 gen[12].xs scsa 1 7
xs yc bit0 15 gen[11].xs scsa 1 7
xs yc bit0 15 gen[10].xs scsa 1 7
xs yc bit0 15 gen[0].xs scsa 1 7
l4ps8p 1 7
l4ps8 1 7
l3ps4p 1 7
l3ps4 1 7
l3ps12 1 7
l2ps6 1 7
l2ps2p 1 7
l2ps2 1 7
l2ps14p 1 7
l2ps14 1 7
l2ps10 1 7
l1ps9 1 7
l1ps7 1 7
l1ps5 1 7
Continued on Next Page. . .
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Table A.2 – Continued

Instance Cells Cell Area
l1ps3 1 7
l1ps1p 1 7
l1ps15p 1 7
l1ps15 1 7
l1ps13 1 7
l1ps11 1 7
l1ps1 1 7
MUX bit9 1 6
MUX bit8 1 6
MUX bit7 1 6
MUX bit6 1 6
MUX bit5 1 6
MUX bit4 1 6
MUX bit3 1 6
MUX bit2 1 6
MUX bit15 1 6
MUX bit14 1 6
MUX bit13 1 6
MUX bit12 1 6
MUX bit11 1 6
MUX bit10 1 6
MUX bit1 1 6
MUX bit0 1 6
xsp bit14 1 6
xsp bit0 1 6
l4g151p 1 5
l3g70p 1 5
l3g70 1 5
l3g158p 1 5
l2g74 1 5
l2g30p 1 5
l2g30 1 5
l2g1512p 1 5
l2g118 1 5
l1p1514p 1 5
l1g98 1 5
l1g76 1 5
l1g54 1 5
l1g32 1 5
l1g1514p 1 5
l1g1312 1 5
l1g1110 1 5
l1g10p 1 5
l1g10 1 5
ycp bit14 1 4
ycp bit0 1 4
xs yc bit0 15 gen[9].yc scsa 1 4
xs yc bit0 15 gen[8].yc scsa 1 4
xs yc bit0 15 gen[7].yc scsa 1 4
xs yc bit0 15 gen[6].yc scsa 1 4
xs yc bit0 15 gen[5].yc scsa 1 4
xs yc bit0 15 gen[4].yc scsa 1 4
xs yc bit0 15 gen[3].yc scsa 1 4
xs yc bit0 15 gen[2].yc scsa 1 4
xs yc bit0 15 gen[1].yc scsa 1 4
xs yc bit0 15 gen[15].yc scsa 1 4
xs yc bit0 15 gen[14].yc scsa 1 4
xs yc bit0 15 gen[13].yc scsa 1 4
xs yc bit0 15 gen[12].yc scsa 1 4
xs yc bit0 15 gen[11].yc scsa 1 4
xs yc bit0 15 gen[10].yc scsa 1 4
xs yc bit0 15 gen[0].yc scsa 1 4
l3p158p 1 4
l3p148p 1 4
l3p148 1 4
l3p138 1 4
l3p128 1 4
l2p74 1 4
l2p64 1 4
l2p1512p 1 4
l2p1412p 1 4
l2p1412 1 4
l2p118 1 4
l2p108 1 4
l1p98 1 4
l1p76 1 4
l1p54 1 4
l1p32 1 4
l1p1312 1 4
l1p1110 1 4
Total 172 857
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Table A.3: Timing of the existing ELMMA for modulo 49151

Pin Fanout
Load

Delay
(ps)

Arrival
(ps)

yin[3] 2 0 0
xs yc bit0 15 gen[3].xs scsa/G

g10/A2 0 0
g10/Z 2 121 121

xs yc bit0 15 gen[3].xs scsa/Eout
p g n0 to n15 level0 gen[3].p n1 to n15 level0/ps

g10/A2 0 121
g10/Z 5 171 292

p g n0 to n15 level0 gen[3].p n1 to n15 level0/Eout
l1p43/Q

g8/A1 0 292
g8/Z 2 81 373

l1p43/Pout
l2g41p/P

g14/A2 0 373
g14/Z 5 98 471

l2g41p/Gout
l3g81p/H

g14/A1 0 471
g14/Z 8 134 605

l3g81p/Gout
l4g151p/H

g14/A1 0 605
g14/Z 1 76 681

l4g151p/Gout
cout prime/x

g2/A1 0 681
g2/Z 16 390 1071

cout prime/Oout
MUX bit0/sel

g23/S 0 1071
g23/Z 1 156 1227

MUX bit0/pout
elmmaout[0] 0 1227

Table A.4: Timing of the proposed ELMMA for modulo 49151

Pin Fanout
Load

Delay
(ps)

Arrival
(ps)

yin[2] 2 0 0
xs yc bit0 15 gen[2].xs scsa/G

g10/A2 0 0
g10/Z 5 158 158

xs yc bit0 15 gen[2].xs scsa/Eout
l1p32/Q

g8/A1 0 158
g8/Z 2 81 239

l1p32/Pout
l2g30p/P

g14/A2 0 239
g14/Z 5 98 337

l2g30p/Gout
l3g70p/H

g14/A1 0 337
g14/Z 9 142 479

l3g70p/Gout
l4g151p/H

g14/A1 0 479
g14/Z 16 415 894

l4g151p/Gout
MUX bit0/sel

g23/S 0 894
g23/Z 1 156 1050

MUX bit0/pout
elmmaout[0] 0 1050

Table A.5: Total power of the existing ELMMA for modulo 49151

Instance Cells Leakage Power
(nW)

Dyanmic Power
(nW)

Total Power (nW)

l0p15p 1 0.937 626.662 627.599
l0p1p 1 0.932 389.899 390.832
xs yc bit0..en[2].xs scsa 1 0.922 302.453 303.374
xs yc bit0..en[6].xs scsa 1 0.922 264.646 265.568
xs yc bit0..en[3].xs scsa 1 0.922 302.437 303.358
Continued on Next Page. . .
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Table A.5 – Continued

Instance Cells Leakage Power
(nW)

Dyanmic Power
(nW)

Total Power (nW)

xs yc bit0..en[4].xs scsa 1 0.922 302.437 303.358
xs yc bit0..en[5].xs scsa 1 0.922 302.437 303.358
xs yc bit0..n[11].xs scsa 1 0.921 264.630 265.552
xs yc bit0..n[12].xs scsa 1 0.921 302.435 303.356
xs yc bit0..n[14].xs scsa 1 0.921 302.435 303.356
xs yc bit0..n[15].xs scsa 1 0.921 351.249 352.171
xs yc bit0..en[1].xs scsa 1 0.921 392.924 393.845
xs yc bit0..en[8].xs scsa 1 0.921 302.435 303.356
xs yc bit0..en[9].xs scsa 1 0.921 302.435 303.356
xs yc bit0..n[10].xs scsa 1 0.921 302.432 303.354
xs yc bit0..en[0].xs scsa 1 0.921 250.226 251.148
xs yc bit0..en[7].xs scsa 1 0.921 302.414 303.335
xs yc bit0..n[13].xs scsa 1 0.921 264.610 265.531
l1ps2p 1 0.921 509.040 509.961
p g n0 to ..to n15 level0 1 0.920 319.973 320.892
p g n0 to ..to n15 level0 1 0.919 636.713 637.632
p g n0 to ..to n15 level0 1 0.919 494.619 495.537
p g n0 to ..to n15 level0 1 0.918 416.148 417.066
p g n0 to ..to n15 level0 1 0.918 581.401 582.319
p g n0 to ..to n15 level0 1 0.917 564.845 565.762
p g n0 to ..to n15 level0 1 0.917 454.774 455.691
p g n0 to ..to n15 level0 1 0.916 532.371 533.286
l0p14p 1 0.916 536.635 537.551
p g n0 to ..to n15 level0 1 0.915 630.972 631.887
p g n0 to ..to n15 level0 1 0.915 448.413 449.328
p g n0 to ..to n15 level0 1 0.915 799.270 800.185
p g n0 to ..to n15 level0 1 0.915 689.099 690.014
p g n0 to ..to n15 level0 1 0.914 570.969 571.884
l1ps8 1 0.914 443.922 444.836
p g n0 to ..to n15 level0 1 0.913 624.459 625.372
p g n0 to ..to n15 level0 1 0.913 482.933 483.846
l1ps12 1 0.913 485.558 486.471
l1ps14p 1 0.913 561.215 562.127
l1ps14 1 0.913 560.930 561.843
l1ps2 1 0.912 393.890 394.802
l2ps3p 1 0.912 492.460 493.372
l1ps6 1 0.912 602.245 603.157
l1ps10 1 0.912 671.280 672.192
l1ps4 1 0.912 573.796 574.708
l3ps5p 1 0.911 420.452 421.364
l3ps5 1 0.911 382.090 383.002
l3ps13 1 0.908 767.154 768.063
l2ps15 1 0.908 513.019 513.927
l2ps3 1 0.908 474.239 475.147
l2ps15p 1 0.907 543.010 543.917
l4ps9 1 0.906 443.203 444.110
l4ps9p 1 0.906 449.880 450.786
l2ps11 1 0.904 608.946 609.851
l2ps7 1 0.898 639.272 640.170
MUX bit15 1 0.633 375.492 376.125
MUX bit0 1 0.633 354.280 354.913
MUX bit10 1 0.632 335.973 336.606
MUX bit14 1 0.632 483.496 484.129
MUX bit6 1 0.632 302.021 302.653
MUX bit13 1 0.632 357.362 357.993
MUX bit3 1 0.631 338.929 339.561
MUX bit11 1 0.631 301.579 302.210
MUX bit4 1 0.631 320.303 320.933
l0g15p 1 0.625 215.172 215.797
MUX bit12 1 0.625 338.482 339.107
MUX bit2 1 0.623 319.853 320.475
l0g1p 1 0.618 293.128 293.746
MUX bit8 1 0.618 318.197 318.815
l1p1211 1 0.617 388.063 388.680
l1p87 1 0.615 387.956 388.572
MUX bit9 1 0.614 317.111 317.725
MUX bit1 1 0.612 262.208 262.820
MUX bit5 1 0.610 297.901 298.511
MUX bit7 1 0.609 315.639 316.248
l1p109 1 0.599 418.861 419.460
l1p65 1 0.598 459.550 460.148
xs yc bit0..en[3].yc scsa 1 0.597 114.636 115.232
xs yc bit0..en[4].yc scsa 1 0.597 229.271 229.868
xs yc bit0..en[5].yc scsa 1 0.597 152.847 153.444
xs yc bit0..en[2].yc scsa 1 0.597 114.629 115.225
xs yc bit0..en[6].yc scsa 1 0.597 152.838 153.435
xs yc bit0..n[11].yc scsa 1 0.597 114.633 115.230
xs yc bit0..n[12].yc scsa 1 0.597 114.633 115.230
xs yc bit0..n[14].yc scsa 1 0.597 97.057 97.654
xs yc bit0..n[15].yc scsa 1 0.597 108.708 109.305
xs yc bit0..en[1].yc scsa 1 0.597 114.633 115.230
xs yc bit0..en[8].yc scsa 1 0.597 114.633 115.230
xs yc bit0..en[9].yc scsa 1 0.597 191.056 191.652
Continued on Next Page. . .
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Table A.5 – Continued

Instance Cells Leakage Power
(nW)

Dyanmic Power
(nW)

Total Power (nW)

xs yc bit0..n[10].yc scsa 1 0.596 152.841 153.438
xs yc bit0..en[0].yc scsa 1 0.596 152.847 153.444
xs yc bit0..en[7].yc scsa 1 0.596 76.424 77.020
l1p1413p 1 0.596 336.051 336.648
xs yc bit0..n[13].yc scsa 1 0.596 214.989 215.586
l1p1413 1 0.595 192.700 193.294
l2p75 1 0.593 247.742 248.336
l1p43 1 0.592 224.604 225.196
l2p119 1 0.590 247.515 248.105
p g n0 to ..to n15 level0 1 0.589 164.396 164.985
p g n0 to ..to n15 level0 1 0.587 110.905 111.492
p g n0 to ..to n15 level0 1 0.586 184.765 185.351
p g n0 to ..to n15 level0 1 0.586 134.902 135.487
p g n0 to ..to n15 level0 1 0.585 53.922 54.508
p g n0 to ..to n15 level0 1 0.583 148.300 148.883
p g n0 to ..to n15 level0 1 0.575 74.140 74.715
p g n0 to ..to n15 level0 1 0.574 135.176 135.749
p g n0 to ..to n15 level0 1 0.573 81.117 81.690
l0g14p 1 0.573 136.662 137.235
p g n0 to ..to n15 level0 1 0.572 208.745 209.317
p g n0 to ..to n15 level0 1 0.572 223.317 223.889
l2p85 1 0.571 223.439 224.009
l2p129 1 0.569 364.331 364.900
p g n0 to ..to n15 level0 1 0.567 135.745 136.312
l3p139 1 0.565 61.742 62.307
l2p1513p 1 0.563 97.075 97.638
p g n0 to ..to n15 level0 1 0.559 54.013 54.573
p g n0 to ..to n15 level0 1 0.559 74.035 74.594
l3p149p 1 0.535 0.000 0.535
l3p149 1 0.531 51.982 52.513
l3p159p 1 0.509 0.000 0.509
l1g1211 1 0.503 159.007 159.509
l1g21p 1 0.487 335.696 336.183
l2g129 1 0.482 476.388 476.870
l1g87 1 0.482 111.758 112.240
l1g65 1 0.478 168.887 169.364
l1g21 1 0.474 276.574 277.048
l1g1413p 1 0.474 267.934 268.408
l1g1413 1 0.469 188.933 189.403
l1g109 1 0.464 209.159 209.623
l2g85 1 0.463 231.785 232.248
l1g43 1 0.448 178.102 178.550
l2g41p 1 0.443 388.114 388.558
l2g41 1 0.438 346.732 347.170
l3g81p 1 0.434 455.881 456.315
l3g81 1 0.434 409.964 410.397
l2g1513p 1 0.379 188.993 189.372
cout prime 1 0.368 1402.140 1402.508
l3g159p 1 0.353 193.670 194.023
l4g151p 1 0.349 189.031 189.380
ycp bit1 1 0.317 126.004 126.322
ycp bit15 1 0.317 157.512 157.829
l3ps6p 2 0.033 393.704 393.736
l3ps6 2 0.033 354.461 354.494
l4ps10 2 0.032 438.901 438.933
l4ps10p 2 0.032 444.948 444.980
l2ps8 2 0.032 603.842 603.874
l2ps12 2 0.032 656.288 656.321
l2ps4p 2 0.032 437.005 437.037
l3ps14p 2 0.032 583.328 583.360
l3ps14 2 0.032 576.186 576.218
l2ps4 2 0.032 395.873 395.905
l3ps7p 2 0.032 402.658 402.690
l3ps7 2 0.032 396.793 396.824
l3ps15p 2 0.031 561.787 561.818
l3ps8p 2 0.031 373.940 373.971
l3ps8 2 0.031 368.305 368.336
l4ps11 2 0.031 370.395 370.425
l4ps11p 2 0.031 375.767 375.798
l3ps15 2 0.031 484.437 484.468
l4ps12 2 0.031 401.777 401.807
l4ps12p 2 0.031 407.737 407.767
l4ps13 2 0.030 417.292 417.322
l4ps13p 2 0.030 423.858 423.888
l4ps14p 2 0.030 435.096 435.126
l4ps14 2 0.030 425.986 426.016
l4ps15 2 0.030 379.134 379.164
l4ps15p 2 0.030 423.208 423.238
xsp bit14 1 0.023 205.231 205.254
xsp bit0 1 0.023 157.523 157.546
Total 194 98.057 59072.305 59170.361
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Table A.6: Total power of the proposed ELMMA for modulo 49151

Instance Cells Leakage Power
(nW)

Dyanmic Power
(nW)

Total Power (nW)

l1ps15p 1 0.937 478.994 479.932
l1ps1p 1 0.932 389.901 390.833
l2ps2p 1 0.929 502.811 503.740
l3ps4p 1 0.923 469.380 470.303
l3ps4 1 0.922 462.832 463.754
xs yc bit0..en[2].xs scsa 1 0.922 493.720 494.642
xs yc bit0..en[6].xs scsa 1 0.922 367.267 368.188
xs yc bit0..en[3].xs scsa 1 0.922 351.274 352.195
xs yc bit0..en[4].xs scsa 1 0.922 493.702 494.623
xs yc bit0..en[5].xs scsa 1 0.922 351.274 352.195
xs yc bit0..n[11].xs scsa 1 0.921 307.363 308.284
xs yc bit0..n[12].xs scsa 1 0.921 419.714 420.636
xs yc bit0..n[14].xs scsa 1 0.921 378.040 378.961
xs yc bit0..n[15].xs scsa 1 0.921 401.801 402.723
xs yc bit0..en[1].xs scsa 1 0.921 401.801 402.723
xs yc bit0..en[8].xs scsa 1 0.921 493.700 494.621
xs yc bit0..en[9].xs scsa 1 0.921 351.272 352.193
xs yc bit0..n[10].xs scsa 1 0.921 419.712 420.633
xs yc bit0..en[0].xs scsa 1 0.921 250.226 251.148
xs yc bit0..en[7].xs scsa 1 0.921 351.251 352.173
xs yc bit0..n[13].xs scsa 1 0.921 307.343 308.264
l3ps12 1 0.921 734.366 735.287
l1ps1 1 0.920 319.987 320.906
l1ps7 1 0.919 443.585 444.504
l4ps8 1 0.919 462.083 463.001
l4ps8p 1 0.919 468.894 469.813
l1ps15 1 0.918 412.072 412.990
l1ps11 1 0.918 404.421 405.339
l1ps13 1 0.915 370.769 371.685
l1ps5 1 0.915 597.411 598.326
l2ps14 1 0.915 531.030 531.945
l2ps14p 1 0.915 553.406 554.321
l1ps9 1 0.915 518.495 519.410
l1ps3 1 0.913 469.443 470.357
l2ps6 1 0.912 581.630 582.542
l2ps2 1 0.911 353.057 353.968
l2ps10 1 0.911 621.672 622.583
MUX bit15 1 0.633 375.323 375.956
MUX bit0 1 0.633 353.986 354.619
MUX bit10 1 0.632 335.828 336.461
MUX bit14 1 0.632 483.255 483.887
MUX bit6 1 0.632 301.870 302.502
MUX bit13 1 0.632 357.203 357.834
MUX bit3 1 0.631 338.762 339.393
MUX bit11 1 0.631 301.426 302.057
MUX bit4 1 0.631 320.156 320.787
MUX bit12 1 0.625 338.333 338.959
MUX bit2 1 0.623 319.548 320.171
MUX bit8 1 0.618 318.086 318.704
MUX bit9 1 0.614 316.944 317.558
l1p98 1 0.614 334.391 335.005
MUX bit1 1 0.612 262.079 262.692
MUX bit5 1 0.610 297.779 298.389
MUX bit7 1 0.609 315.497 316.107
l1p54 1 0.606 334.422 335.028
l1p32 1 0.606 321.707 322.314
l1p1110 1 0.603 193.704 194.307
l1p1312 1 0.600 472.311 472.911
xs yc bit0..en[3].yc scsa 1 0.597 82.728 83.324
xs yc bit0..en[4].yc scsa 1 0.597 227.052 227.648
xs yc bit0..en[5].yc scsa 1 0.597 110.304 110.900
xs yc bit0..en[2].yc scsa 1 0.597 113.519 114.116
xs yc bit0..en[6].yc scsa 1 0.597 151.359 151.955
xs yc bit0..n[11].yc scsa 1 0.597 82.725 83.322
xs yc bit0..n[12].yc scsa 1 0.597 113.524 114.120
xs yc bit0..n[14].yc scsa 1 0.597 113.524 114.120
xs yc bit0..n[15].yc scsa 1 0.597 110.301 110.897
xs yc bit0..en[1].yc scsa 1 0.597 100.640 101.236
xs yc bit0..en[8].yc scsa 1 0.597 113.524 114.120
xs yc bit0..en[9].yc scsa 1 0.597 137.876 138.472
xs yc bit0..n[10].yc scsa 1 0.596 151.362 151.958
xs yc bit0..en[0].yc scsa 1 0.596 151.368 151.964
xs yc bit0..en[7].yc scsa 1 0.596 55.152 55.748
xs yc bit0..n[13].yc scsa 1 0.596 110.301 110.897
l1p76 1 0.595 258.365 258.959
l2p108 1 0.586 217.966 218.552
l2p1412 1 0.579 222.119 222.698
l2p1412p 1 0.577 160.926 161.504
l2p118 1 0.575 286.562 287.137
l3p128 1 0.573 123.605 124.178
l2p64 1 0.571 217.917 218.488
l2p1512p 1 0.562 96.771 97.333
Continued on Next Page. . .
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Table A.6 – Continued

Instance Cells Leakage Power
(nW)

Dyanmic Power
(nW)

Total Power (nW)

l2p74 1 0.555 161.156 161.710
l3p138 1 0.534 31.152 31.686
l3p148 1 0.528 26.261 26.789
l3p148p 1 0.509 0.000 0.509
l3p158p 1 0.507 0.000 0.507
l1g1514p 1 0.493 195.210 195.703
l1g10p 1 0.485 262.731 263.216
l1g10 1 0.467 168.105 168.572
l1g1110 1 0.465 135.720 136.185
l1g76 1 0.464 110.549 111.013
l1g98 1 0.459 207.391 207.850
l1p1514p 1 0.452 264.185 264.637
l1g54 1 0.450 204.833 205.283
l1g1312 1 0.447 358.074 358.521
l1g32 1 0.432 145.301 145.734
l2g118 1 0.428 470.892 471.321
l2g30p 1 0.425 342.814 343.239
l2g30 1 0.416 346.290 346.706
l2g74 1 0.414 233.348 233.761
l3g70p 1 0.407 491.549 491.956
l3g70 1 0.406 445.488 445.895
l2g1512p 1 0.332 166.424 166.756
l3g158p 1 0.320 169.828 170.148
l4g151p 1 0.318 1434.894 1435.212
ycp bit0 1 0.317 124.499 124.817
ycp bit14 1 0.317 155.630 155.947
l2ps3p 2 0.034 462.598 462.632
l4ps9 2 0.034 431.179 431.212
l4ps9p 2 0.034 436.848 436.882
l3ps5p 2 0.033 420.570 420.604
l3ps5 2 0.033 381.634 381.667
l3ps13 2 0.033 734.187 734.220
l2ps3 2 0.033 440.870 440.903
l3ps6p 2 0.033 394.448 394.480
l3ps6 2 0.033 355.190 355.222
l2ps15p 2 0.032 521.257 521.290
l4ps10 2 0.032 439.376 439.409
l4ps10p 2 0.032 445.451 445.483
l2ps15 2 0.032 479.853 479.885
l2ps11 2 0.032 592.349 592.381
l3ps7p 2 0.032 399.255 399.287
l2ps7 2 0.032 623.866 623.898
l3ps14p 2 0.032 582.444 582.476
l3ps7 2 0.032 393.605 393.637
l3ps14 2 0.032 575.695 575.727
l3ps15 2 0.032 472.227 472.259
l4ps11 2 0.031 367.335 367.366
l4ps11p 2 0.031 372.562 372.593
l4ps12 2 0.031 404.828 404.859
l4ps12p 2 0.031 410.999 411.030
l4ps13 2 0.031 413.272 413.303
l4ps13p 2 0.031 419.620 419.650
l3ps15p 2 0.031 548.845 548.876
l4ps14p 2 0.031 435.052 435.083
l4ps15p 2 0.031 423.207 423.237
l4ps14 2 0.031 425.937 425.967
l4ps15 2 0.031 379.084 379.115
xsp bit14 1 0.023 325.562 325.585
xsp bit0 1 0.023 157.523 157.546
Total 172 73.621 49987.489 50061.11
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Synthesis Result for Modulo
49152 B

Table B.1: Area of the existing ELMMA for modulo 49152

Instance Cells Cell Area
l4ps15p 2 8
l4ps15 2 8
l4ps14p 2 8
l4ps14 2 8
l4ps13 2 8
l4ps12 2 8
l4ps11 2 8
l4ps10 2 8
l3ps8 2 8
l3ps7 2 8
l3ps6 2 8
l3ps15p 2 8
l3ps15 2 8
l3ps14p 2 8
l3ps14 2 8
l2ps8 2 8
l2ps4 2 8
l2ps12 2 8
xs yc bit0 15 gen[9].xs scsa 1 7
xs yc bit0 15 gen[8].xs scsa 1 7
xs yc bit0 15 gen[7].xs scsa 1 7
xs yc bit0 15 gen[6].xs scsa 1 7
xs yc bit0 15 gen[5].xs scsa 1 7
xs yc bit0 15 gen[4].xs scsa 1 7
xs yc bit0 15 gen[3].xs scsa 1 7
xs yc bit0 15 gen[2].xs scsa 1 7
xs yc bit0 15 gen[1].xs scsa 1 7
xs yc bit0 15 gen[15].xs scsa 1 7
xs yc bit0 15 gen[14].xs scsa 1 7
xs yc bit0 15 gen[13].xs scsa 1 7
xs yc bit0 15 gen[12].xs scsa 1 7
xs yc bit0 15 gen[11].xs scsa 1 7
xs yc bit0 15 gen[10].xs scsa 1 7
xs yc bit0 15 gen[0].xs scsa 1 7
p g n0 to n15 level0 gen[9].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[8].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[7].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[6].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[5].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[4].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[3].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[2].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[1].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[15].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[14].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[13].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[12].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[11].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[10].p n1 to n15 level0 1 7
l4ps9 1 7
l3ps5 1 7
l3ps13 1 7
l2ps7 1 7
l2ps3 1 7
l2ps15p 1 7
l2ps15 1 7
l2ps11 1 7
l1ps8 1 7
l1ps6 1 7
l1ps4 1 7
l1ps2 1 7
l1ps14p 1 7
l1ps14 1 7
l1ps12 1 7
l1ps10 1 7
l0p15p 1 7
l0p14p 1 7
MUX bit15 1 6
MUX bit14 1 6
xsp bit14 1 6
Continued on Next Page. . .
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Table B.1 – Continued

Instance Cells Cell Area
l4g151p 1 5
l3g81 1 5
l3g159p 1 5
l2g85 1 5
l2g41 1 5
l2g1513p 1 5
l2g129 1 5
l1g87 1 5
l1g65 1 5
l1g43 1 5
l1g21 1 5
l1g1413p 1 5
l1g1413 1 5
l1g1211 1 5
l1g109 1 5
ycp bit15 1 4
xs yc bit0 15 gen[9].yc scsa 1 4
xs yc bit0 15 gen[8].yc scsa 1 4
xs yc bit0 15 gen[7].yc scsa 1 4
xs yc bit0 15 gen[6].yc scsa 1 4
xs yc bit0 15 gen[5].yc scsa 1 4
xs yc bit0 15 gen[4].yc scsa 1 4
xs yc bit0 15 gen[3].yc scsa 1 4
xs yc bit0 15 gen[2].yc scsa 1 4
xs yc bit0 15 gen[1].yc scsa 1 4
xs yc bit0 15 gen[15].yc scsa 1 4
xs yc bit0 15 gen[14].yc scsa 1 4
xs yc bit0 15 gen[13].yc scsa 1 4
xs yc bit0 15 gen[12].yc scsa 1 4
xs yc bit0 15 gen[11].yc scsa 1 4
xs yc bit0 15 gen[10].yc scsa 1 4
xs yc bit0 15 gen[0].yc scsa 1 4
p g n0 to n15 level0 gen[9].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[8].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[7].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[6].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[5].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[4].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[3].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[2].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[1].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[14].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[13].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[12].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[11].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[10].g n1 to n15 level0 1 4
l3p159p 1 4
l3p149p 1 4
l3p149 1 4
l3p139 1 4
l2p85 1 4
l2p75 1 4
l2p1513p 1 4
l2p129 1 4
l2p119 1 4
l1p87 1 4
l1p65 1 4
l1p43 1 4
l1p1413p 1 4
l1p1413 1 4
l1p1211 1 4
l1p109 1 4
l0g15p 1 4
l0g14p 1 4
cout prime 1 4
Total 153 767

Table B.2: Area of the proposed ELMMA for modulo 49152

Instance Cells Cell Area
l4ps9 2 8
l4ps15p 2 8
l4ps15 2 8
l4ps14p 2 8
l4ps14 2 8
l4ps13 2 8
l4ps12 2 8
l4ps11 2 8
l4ps10 2 8
l3ps7 2 8
l3ps6 2 8
Continued on Next Page. . .
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Table B.2 – Continued

Instance Cells Cell Area
l3ps5 2 8
l3ps15p 2 8
l3ps15 2 8
l3ps14p 2 8
l3ps14 2 8
l3ps13 2 8
l2ps7 2 8
l2ps3 2 8
l2ps15p 2 8
l2ps15 2 8
l2ps11 2 8
xs yc bit0 15 gen[9].xs scsa 1 7
xs yc bit0 15 gen[8].xs scsa 1 7
xs yc bit0 15 gen[7].xs scsa 1 7
xs yc bit0 15 gen[6].xs scsa 1 7
xs yc bit0 15 gen[5].xs scsa 1 7
xs yc bit0 15 gen[4].xs scsa 1 7
xs yc bit0 15 gen[3].xs scsa 1 7
xs yc bit0 15 gen[2].xs scsa 1 7
xs yc bit0 15 gen[1].xs scsa 1 7
xs yc bit0 15 gen[15].xs scsa 1 7
xs yc bit0 15 gen[14].xs scsa 1 7
xs yc bit0 15 gen[13].xs scsa 1 7
xs yc bit0 15 gen[12].xs scsa 1 7
xs yc bit0 15 gen[11].xs scsa 1 7
xs yc bit0 15 gen[10].xs scsa 1 7
xs yc bit0 15 gen[0].xs scsa 1 7
l4ps8 1 7
l3ps4 1 7
l3ps12 1 7
l2ps6 1 7
l2ps2 1 7
l2ps14p 1 7
l2ps14 1 7
l2ps10 1 7
l1ps9 1 7
l1ps7 1 7
l1ps5 1 7
l1ps3 1 7
l1ps15p 1 7
l1ps15 1 7
l1ps13 1 7
l1ps11 1 7
l1ps1 1 7
MUX bit15 1 6
MUX bit14 1 6
xsp bit14 1 6
l4g151p 1 5
l3g70 1 5
l3g158p 1 5
l2g74 1 5
l2g30 1 5
l2g1512p 1 5
l2g118 1 5
l1p1514p 1 5
l1g98 1 5
l1g76 1 5
l1g54 1 5
l1g32 1 5
l1g1514p 1 5
l1g1312 1 5
l1g1110 1 5
l1g10 1 5
ycp bit14 1 4
xs yc bit0 15 gen[9].yc scsa 1 4
xs yc bit0 15 gen[8].yc scsa 1 4
xs yc bit0 15 gen[7].yc scsa 1 4
xs yc bit0 15 gen[6].yc scsa 1 4
xs yc bit0 15 gen[5].yc scsa 1 4
xs yc bit0 15 gen[4].yc scsa 1 4
xs yc bit0 15 gen[3].yc scsa 1 4
xs yc bit0 15 gen[2].yc scsa 1 4
xs yc bit0 15 gen[1].yc scsa 1 4
xs yc bit0 15 gen[15].yc scsa 1 4
xs yc bit0 15 gen[14].yc scsa 1 4
xs yc bit0 15 gen[13].yc scsa 1 4
xs yc bit0 15 gen[12].yc scsa 1 4
xs yc bit0 15 gen[11].yc scsa 1 4
xs yc bit0 15 gen[10].yc scsa 1 4
xs yc bit0 15 gen[0].yc scsa 1 4
l3p158p 1 4
l3p148p 1 4
l3p148 1 4
l3p138 1 4
Continued on Next Page. . .
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Table B.2 – Continued

Instance Cells Cell Area
l3p128 1 4
l2p74 1 4
l2p64 1 4
l2p1512p 1 4
l2p1412p 1 4
l2p1412 1 4
l2p118 1 4
l2p108 1 4
l1p98 1 4
l1p76 1 4
l1p54 1 4
l1p32 1 4
l1p1312 1 4
l1p1110 1 4
Total 131 640

Table B.3: Timing of the existing ELMMA for modulo 49152

Pin Fanout
Load

Delay
(ps)

Arrival
(ps)

yin[10] 2 0 0
xs yc bit0 15 gen[10].xs scsa/G

g10/A2 0 0
g10/Z 2 121 121

xs yc bit0 15 gen[10].xs scsa/Eout
p g n0 to n15 level0 gen[10].p n1 to n15 level0/ps

g10/A2 0 121
g10/Z 3 137 259

p g n0 to n15 level0 gen[10].p n1 to n15 level0/Eout
l1g109/P

g14/A1 0 259
g14/Z 3 88 347

l1g109/Gout
l2g129/H

g14/A1 0 347
g14/Z 6 112 458

l2g129/Gout
l3ps14p/G

g31/A2 0 458
g31/ZN 2 87 546
g30/A2 0 546
g30/ZN 2 155 701

l3ps14p/Sout
l4ps14p/ps

g30/A1 0 701
g30/ZN 1 152 853

l4ps14p/Sout
MUX bit14/pin1

g23/I1 0 853
g23/Z 1 90 943

MUX bit14/pout
elmmaout[14] 0 943

Table B.4: Timing of the proposed ELMMA for modulo 49152

Pin Fanout
Load

Delay
(ps)

Arrival
(ps)

yin[14] 5 0 0
xsp bit14/y

g12/B1 0 0
g12/ZN 4 223 223

xsp bit14/notEout
l2ps15p/P

g31/A1 0 223
g31/ZN 2 140 363
g30/A2 0 363
g30/ZN 2 165 528

l2ps15p/Sout
l3ps15p/ps

g30/A2 0 528
g30/ZN 2 153 681

l3ps15p/Sout
l4ps15p/ps

g30/A2 0 681
g30/ZN 1 142 823

l4ps15p/Sout
MUX bit15/pin1
Continued on Next Page. . .
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Table B.4 – Continued

Pin Fanout
Load

Delay
(ps)

Arrival
(ps)

g23/I1 0 823
g23/Z 1 90 913

MUX bit15/pout
elmmaout[15] 0 913

Table B.5: Total power of the existing ELMMA for modulo 49152

Instance Cells Leakage Power
(nW)

Dyanmic Power
(nW)

Total Power (nW)

l0p15p 1 0.937 626.662 627.599
xs yc bit0..en[2].xs scsa 1 0.922 302.453 303.374
xs yc bit0..en[6].xs scsa 1 0.922 264.646 265.568
xs yc bit0..en[3].xs scsa 1 0.922 302.437 303.358
xs yc bit0..en[4].xs scsa 1 0.922 302.437 303.358
xs yc bit0..en[5].xs scsa 1 0.922 302.437 303.358
xs yc bit0..n[11].xs scsa 1 0.921 264.630 265.552
xs yc bit0..n[12].xs scsa 1 0.921 302.435 303.356
xs yc bit0..n[14].xs scsa 1 0.921 302.435 303.356
xs yc bit0..n[15].xs scsa 1 0.921 351.249 352.171
xs yc bit0..en[1].xs scsa 1 0.921 302.435 303.356
xs yc bit0..en[8].xs scsa 1 0.921 302.435 303.356
xs yc bit0..en[9].xs scsa 1 0.921 302.435 303.356
xs yc bit0..n[10].xs scsa 1 0.921 302.432 303.354
xs yc bit0..en[0].xs scsa 1 0.921 210.457 211.379
xs yc bit0..en[7].xs scsa 1 0.921 302.414 303.335
xs yc bit0..n[13].xs scsa 1 0.921 264.610 265.531
p g n0 to ..to n15 level0 1 0.920 269.196 270.115
p g n0 to ..to n15 level0 1 0.919 636.713 637.632
p g n0 to ..to n15 level0 1 0.919 494.493 495.412
p g n0 to ..to n15 level0 1 0.918 416.148 417.066
p g n0 to ..to n15 level0 1 0.918 581.401 582.319
p g n0 to ..to n15 level0 1 0.917 437.353 438.270
p g n0 to ..to n15 level0 1 0.917 454.774 455.691
p g n0 to ..to n15 level0 1 0.916 532.371 533.286
l0p14p 1 0.916 536.635 537.551
p g n0 to ..to n15 level0 1 0.915 630.972 631.887
p g n0 to ..to n15 level0 1 0.915 448.413 449.328
p g n0 to ..to n15 level0 1 0.915 611.595 612.510
p g n0 to ..to n15 level0 1 0.915 530.424 531.339
p g n0 to ..to n15 level0 1 0.914 570.820 571.734
l1ps8 1 0.914 443.922 444.836
p g n0 to ..to n15 level0 1 0.913 480.280 481.193
p g n0 to ..to n15 level0 1 0.913 482.809 483.722
l1ps12 1 0.913 485.558 486.471
l1ps14p 1 0.913 561.215 562.127
l1ps14 1 0.913 560.930 561.843
l1ps2 1 0.912 333.489 334.401
l1ps6 1 0.912 475.367 476.279
l1ps10 1 0.912 535.093 536.005
l1ps4 1 0.912 457.060 457.971
l3ps5 1 0.911 311.689 312.600
l3ps13 1 0.908 600.099 601.008
l2ps15 1 0.908 513.019 513.927
l2ps3 1 0.908 388.211 389.119
l2ps15p 1 0.907 543.010 543.917
l4ps9 1 0.906 364.254 365.160
l2ps11 1 0.904 471.215 472.120
l2ps7 1 0.898 491.754 492.652
MUX bit15 1 0.633 341.627 342.260
MUX bit14 1 0.632 435.302 435.934
l0g15p 1 0.625 215.172 215.797
l1p1211 1 0.617 388.063 388.680
l1p87 1 0.615 387.956 388.572
l1p109 1 0.602 367.072 367.674
l1p65 1 0.600 405.060 405.659
xs yc bit0..en[3].yc scsa 1 0.597 114.636 115.232
xs yc bit0..en[4].yc scsa 1 0.597 229.271 229.868
xs yc bit0..en[5].yc scsa 1 0.597 152.847 153.444
xs yc bit0..en[2].yc scsa 1 0.597 114.629 115.225
xs yc bit0..en[6].yc scsa 1 0.597 152.838 153.435
xs yc bit0..n[11].yc scsa 1 0.597 114.633 115.230
xs yc bit0..n[12].yc scsa 1 0.597 114.633 115.230
xs yc bit0..n[14].yc scsa 1 0.597 97.057 97.654
xs yc bit0..n[15].yc scsa 1 0.597 108.708 109.305
xs yc bit0..en[1].yc scsa 1 0.597 114.633 115.230
xs yc bit0..en[8].yc scsa 1 0.597 114.633 115.230
xs yc bit0..en[9].yc scsa 1 0.597 191.056 191.652
xs yc bit0..n[10].yc scsa 1 0.596 152.841 153.438
xs yc bit0..en[0].yc scsa 1 0.596 152.847 153.444
xs yc bit0..en[7].yc scsa 1 0.596 76.424 77.020
l1p1413p 1 0.596 336.051 336.648
Continued on Next Page. . .
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Table B.5 – Continued

Instance Cells Leakage Power
(nW)

Dyanmic Power
(nW)

Total Power (nW)

xs yc bit0..n[13].yc scsa 1 0.596 214.989 215.586
l1p1413 1 0.595 192.700 193.294
l2p75 1 0.593 208.097 208.691
l1p43 1 0.592 191.962 192.554
l2p119 1 0.590 207.832 208.422
p g n0 to ..to n15 level0 1 0.589 135.566 136.155
p g n0 to ..to n15 level0 1 0.587 110.905 111.492
p g n0 to ..to n15 level0 1 0.586 184.765 185.351
p g n0 to ..to n15 level0 1 0.586 134.902 135.487
p g n0 to ..to n15 level0 1 0.585 53.922 54.508
p g n0 to ..to n15 level0 1 0.583 148.300 148.883
p g n0 to ..to n15 level0 1 0.575 74.140 74.715
p g n0 to ..to n15 level0 1 0.574 135.176 135.749
p g n0 to ..to n15 level0 1 0.573 81.117 81.690
l0g14p 1 0.573 136.662 137.235
p g n0 to ..to n15 level0 1 0.572 208.745 209.317
p g n0 to ..to n15 level0 1 0.572 223.317 223.889
l2p85 1 0.571 185.628 186.199
l2p129 1 0.569 330.813 331.383
p g n0 to ..to n15 level0 1 0.567 135.745 136.312
l3p139 1 0.565 61.740 62.305
l2p1513p 1 0.563 97.075 97.638
p g n0 to ..to n15 level0 1 0.559 54.013 54.573
p g n0 to ..to n15 level0 1 0.559 74.035 74.594
l3p149p 1 0.535 0.000 0.535
l3p149 1 0.531 51.917 52.448
l3p159p 1 0.509 0.000 0.509
l1g1211 1 0.503 159.007 159.509
l2g129 1 0.482 476.388 476.870
l1g87 1 0.482 111.758 112.240
l1g65 1 0.478 168.884 169.362
l1g21 1 0.474 271.229 271.703
l1g1413p 1 0.474 267.934 268.408
l1g1413 1 0.469 188.933 189.403
l1g109 1 0.464 209.157 209.621
l2g85 1 0.463 185.179 185.642
l1g43 1 0.448 142.838 143.286
l2g41 1 0.437 347.879 348.316
l3g81 1 0.434 526.287 526.720
l2g1513p 1 0.379 188.993 189.372
cout prime 1 0.368 269.360 269.728
l3g159p 1 0.353 193.670 194.023
l4g151p 1 0.349 189.031 189.380
ycp bit15 1 0.317 157.512 157.829
l3ps6 2 0.033 290.214 290.247
l4ps10 2 0.032 359.397 359.430
l2ps8 2 0.032 448.561 448.593
l2ps12 2 0.032 502.774 502.807
l3ps14p 2 0.032 583.328 583.360
l3ps14 2 0.032 576.186 576.218
l2ps4 2 0.032 321.680 321.712
l3ps7 2 0.032 322.561 322.592
l3ps15p 2 0.031 561.787 561.818
l3ps8 2 0.031 284.447 284.478
l4ps11 2 0.031 301.080 301.110
l3ps15 2 0.031 484.437 484.468
l4ps12 2 0.031 320.969 321.000
l4ps13 2 0.030 333.608 333.638
l4ps14p 2 0.030 435.069 435.099
l4ps14 2 0.030 425.949 425.979
l4ps15 2 0.030 379.097 379.127
l4ps15p 2 0.030 423.208 423.238
xsp bit14 1 0.023 205.231 205.254
Total 153 82.169 42854.753 42936.922

Table B.6: Total power of the proposed ELMMA for modulo 49152

Instance Cells Leakage Power
(nW)

Dyanmic Power
(nW)

Total Power (nW)

l1ps15p 1 0.937 478.994 479.932
l3ps4 1 0.922 383.032 383.954
xs yc bit0..en[2].xs scsa 1 0.922 378.058 378.980
xs yc bit0..en[6].xs scsa 1 0.922 367.267 368.188
xs yc bit0..en[3].xs scsa 1 0.922 351.177 352.099
xs yc bit0..en[4].xs scsa 1 0.922 378.042 378.964
xs yc bit0..en[5].xs scsa 1 0.922 351.177 352.099
xs yc bit0..n[11].xs scsa 1 0.921 307.363 308.284
xs yc bit0..n[12].xs scsa 1 0.921 419.714 420.636
xs yc bit0..n[14].xs scsa 1 0.921 378.040 378.961
xs yc bit0..n[15].xs scsa 1 0.921 401.801 402.723
xs yc bit0..en[1].xs scsa 1 0.921 308.404 309.326
Continued on Next Page. . .
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Table B.6 – Continued

Instance Cells Leakage Power
(nW)

Dyanmic Power
(nW)

Total Power (nW)

xs yc bit0..en[8].xs scsa 1 0.921 378.040 378.961
xs yc bit0..en[9].xs scsa 1 0.921 351.175 352.096
xs yc bit0..n[10].xs scsa 1 0.921 419.712 420.633
xs yc bit0..en[0].xs scsa 1 0.921 210.457 211.379
xs yc bit0..en[7].xs scsa 1 0.921 351.251 352.173
xs yc bit0..n[13].xs scsa 1 0.921 307.343 308.264
l3ps12 1 0.921 576.760 577.681
l1ps1 1 0.920 269.200 270.120
l1ps7 1 0.919 443.585 444.504
l4ps8 1 0.919 384.778 385.697
l1ps15 1 0.918 412.072 412.990
l1ps11 1 0.918 404.421 405.339
l1ps13 1 0.915 370.769 371.685
l1ps5 1 0.915 470.117 471.032
l2ps14 1 0.915 531.030 531.945
l2ps14p 1 0.915 553.406 554.321
l1ps9 1 0.915 411.028 411.943
l1ps3 1 0.913 371.799 372.712
l2ps6 1 0.912 454.159 455.071
l2ps2 1 0.911 288.088 288.998
l2ps10 1 0.911 484.170 485.080
MUX bit15 1 0.633 341.665 342.298
MUX bit14 1 0.632 435.364 435.996
l1p98 1 0.615 294.404 295.019
l1p32 1 0.611 273.194 273.806
l1p54 1 0.608 294.371 294.979
l1p1110 1 0.603 193.704 194.307
l1p1312 1 0.600 472.311 472.911
xs yc bit0..en[3].yc scsa 1 0.597 82.728 83.324
xs yc bit0..en[4].yc scsa 1 0.597 227.052 227.648
xs yc bit0..en[5].yc scsa 1 0.597 110.304 110.900
xs yc bit0..en[2].yc scsa 1 0.597 113.519 114.116
xs yc bit0..en[6].yc scsa 1 0.597 151.359 151.955
xs yc bit0..n[11].yc scsa 1 0.597 82.725 83.322
xs yc bit0..n[12].yc scsa 1 0.597 113.524 114.120
xs yc bit0..n[14].yc scsa 1 0.597 113.524 114.120
xs yc bit0..n[15].yc scsa 1 0.597 110.301 110.897
xs yc bit0..en[1].yc scsa 1 0.597 82.725 83.322
xs yc bit0..en[8].yc scsa 1 0.597 113.524 114.120
xs yc bit0..en[9].yc scsa 1 0.597 137.876 138.472
xs yc bit0..n[10].yc scsa 1 0.596 151.362 151.958
xs yc bit0..en[0].yc scsa 1 0.596 151.368 151.964
xs yc bit0..en[7].yc scsa 1 0.596 55.152 55.748
xs yc bit0..n[13].yc scsa 1 0.596 110.301 110.897
l1p76 1 0.595 258.365 258.959
l2p108 1 0.586 183.476 184.063
l2p1412 1 0.579 222.119 222.698
l2p1412p 1 0.577 160.926 161.504
l2p118 1 0.575 262.882 263.457
l3p128 1 0.573 103.925 104.499
l2p64 1 0.571 183.420 183.991
l2p1512p 1 0.562 96.771 97.333
l2p74 1 0.555 134.129 134.683
l3p138 1 0.534 31.147 31.682
l3p148 1 0.528 26.236 26.764
l3p148p 1 0.509 0.000 0.509
l3p158p 1 0.507 0.000 0.507
l1g1514p 1 0.493 195.210 195.703
l1g10 1 0.467 164.535 165.002
l1g1110 1 0.465 135.720 136.185
l1g76 1 0.464 110.549 111.013
l1g98 1 0.459 207.389 207.848
l1p1514p 1 0.452 264.185 264.637
l1g54 1 0.450 204.830 205.280
l1g1312 1 0.447 358.074 358.521
l1g32 1 0.432 115.892 116.324
l2g118 1 0.428 470.892 471.321
l2g30 1 0.417 345.575 345.993
l2g74 1 0.414 186.669 187.082
l3g70 1 0.406 561.898 562.304
l2g1512p 1 0.332 166.424 166.756
l3g158p 1 0.320 169.828 170.148
l4g151p 1 0.318 301.280 301.598
ycp bit14 1 0.317 155.630 155.947
l4ps9 2 0.034 356.103 356.136
l3ps5 2 0.033 317.352 317.385
l3ps13 2 0.033 558.785 558.818
l2ps3 2 0.033 361.521 361.554
l3ps6 2 0.033 290.953 290.986
l2ps15p 2 0.032 521.257 521.290
l4ps10 2 0.032 359.997 360.030
l2ps15 2 0.032 479.853 479.885
l2ps11 2 0.032 458.081 458.113
Continued on Next Page. . .
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Table B.6 – Continued

Instance Cells Leakage Power
(nW)

Dyanmic Power
(nW)

Total Power (nW)

l2ps7 2 0.032 468.700 468.732
l3ps14p 2 0.032 569.002 569.034
l3ps14 2 0.032 562.308 562.340
l3ps7 2 0.032 313.929 313.961
l3ps15 2 0.032 460.119 460.151
l4ps11 2 0.031 296.615 296.647
l4ps12 2 0.031 325.914 325.945
l3ps15p 2 0.031 535.193 535.224
l4ps13 2 0.031 317.726 317.756
l4ps14p 2 0.031 417.497 417.528
l4ps15 2 0.030 364.222 364.252
l4ps15p 2 0.030 403.229 403.260
l4ps14 2 0.030 408.821 408.851
xsp bit14 1 0.023 325.562 325.585
Total 131 59.243 34179.260 34238.503



Synthesis Result for Modulo
57343 C

Table C.1: Area of the existing ELMMA for modulo 57343

Instance Cells Cell Area
l4ps15p 2 8
l4ps15 2 8
l4ps14p 2 8
l4ps14 2 8
l4ps13p 2 8
l4ps13 2 8
l4ps12p 2 8
l4ps12 2 8
l4ps11p 2 8
l4ps11 2 8
l4ps10p 2 8
l4ps10 2 8
l3ps8p 2 8
l3ps8 2 8
l3ps7p 2 8
l3ps7 2 8
l3ps6p 2 8
l3ps6 2 8
l3ps15p 2 8
l3ps15 2 8
l3ps14p 2 8
l3ps14 2 8
l2ps8 2 8
l2ps4p 2 8
l2ps4 2 8
l2ps12 2 8
xs yc bit0 15 gen[9].xs scsa 1 7
xs yc bit0 15 gen[8].xs scsa 1 7
xs yc bit0 15 gen[7].xs scsa 1 7
xs yc bit0 15 gen[6].xs scsa 1 7
xs yc bit0 15 gen[5].xs scsa 1 7
xs yc bit0 15 gen[4].xs scsa 1 7
xs yc bit0 15 gen[3].xs scsa 1 7
xs yc bit0 15 gen[2].xs scsa 1 7
xs yc bit0 15 gen[1].xs scsa 1 7
xs yc bit0 15 gen[15].xs scsa 1 7
xs yc bit0 15 gen[14].xs scsa 1 7
xs yc bit0 15 gen[13].xs scsa 1 7
xs yc bit0 15 gen[12].xs scsa 1 7
xs yc bit0 15 gen[11].xs scsa 1 7
xs yc bit0 15 gen[10].xs scsa 1 7
xs yc bit0 15 gen[0].xs scsa 1 7
p g n0 to n15 level0 gen[9].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[8].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[7].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[6].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[5].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[4].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[3].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[2].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[1].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[15].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[14].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[13].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[12].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[11].p n1 to n15 level0 1 7
p g n0 to n15 level0 gen[10].p n1 to n15 level0 1 7
l4ps9p 1 7
l4ps9 1 7
l3ps5p 1 7
l3ps5 1 7
l3ps13p 1 7
l3ps13 1 7
l2ps7 1 7
l2ps3p 1 7
l2ps3 1 7
l2ps15p 1 7
l2ps15 1 7
l2ps11 1 7
l1ps8 1 7
Continued on Next Page. . .
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Table C.1 – Continued

Instance Cells Cell Area
l1ps6 1 7
l1ps4 1 7
l1ps2p 1 7
l1ps2 1 7
l1ps14p 1 7
l1ps14 1 7
l1ps12 1 7
l1ps10 1 7
l0p1p 1 7
l0p14p 1 7
l0p13p 1 7
MUX bit9 1 6
MUX bit8 1 6
MUX bit7 1 6
MUX bit6 1 6
MUX bit5 1 6
MUX bit4 1 6
MUX bit3 1 6
MUX bit2 1 6
MUX bit15 1 6
MUX bit14 1 6
MUX bit13 1 6
MUX bit12 1 6
MUX bit11 1 6
MUX bit10 1 6
MUX bit1 1 6
MUX bit0 1 6
xsp bit13 1 6
xsp bit0 1 6
l4g151p 1 5
l3g81p 1 5
l3g81 1 5
l3g159p 1 5
l2g85 1 5
l2g41p 1 5
l2g41 1 5
l2g1513p 1 5
l2g129 1 5
l1g87 1 5
l1g65 1 5
l1g43 1 5
l1g21p 1 5
l1g21 1 5
l1g1413p 1 5
l1g1413 1 5
l1g1211 1 5
l1g109 1 5
ycp bit14 1 4
ycp bit1 1 4
xs yc bit0 15 gen[9].yc scsa 1 4
xs yc bit0 15 gen[8].yc scsa 1 4
xs yc bit0 15 gen[7].yc scsa 1 4
xs yc bit0 15 gen[6].yc scsa 1 4
xs yc bit0 15 gen[5].yc scsa 1 4
xs yc bit0 15 gen[4].yc scsa 1 4
xs yc bit0 15 gen[3].yc scsa 1 4
xs yc bit0 15 gen[2].yc scsa 1 4
xs yc bit0 15 gen[1].yc scsa 1 4
xs yc bit0 15 gen[15].yc scsa 1 4
xs yc bit0 15 gen[14].yc scsa 1 4
xs yc bit0 15 gen[13].yc scsa 1 4
xs yc bit0 15 gen[12].yc scsa 1 4
xs yc bit0 15 gen[11].yc scsa 1 4
xs yc bit0 15 gen[10].yc scsa 1 4
xs yc bit0 15 gen[0].yc scsa 1 4
p g n0 to n15 level0 gen[9].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[8].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[7].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[6].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[5].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[4].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[3].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[2].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[1].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[15].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[14].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[13].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[12].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[11].g n1 to n15 level0 1 4
p g n0 to n15 level0 gen[10].g n1 to n15 level0 1 4
l3p159p 1 4
l3p149p 1 4
l3p149 1 4
l3p139p 1 4
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Table C.1 – Continued

Instance Cells Cell Area
l3p139 1 4
l2p85 1 4
l2p75 1 4
l2p1513p 1 4
l2p129 1 4
l2p119 1 4
l1p87 1 4
l1p65 1 4
l1p43 1 4
l1p1413p 1 4
l1p1413 1 4
l1p1211 1 4
l1p109 1 4
l0g1p 1 4
l0g14p 1 4
l0g13p 1 4
cout prime 1 4
Total 197 1001

Table C.2: Area of the proposed ELMMA for modulo 57343

Instance Cells Cell Area
l4ps9p 2 8
l4ps9 2 8
l4ps15p 2 8
l4ps15 2 8
l4ps14p 2 8
l4ps14 2 8
l4ps13p 2 8
l4ps13 2 8
l4ps12p 2 8
l4ps12 2 8
l4ps11p 2 8
l4ps11 2 8
l4ps10p 2 8
l4ps10 2 8
l3ps7p 2 8
l3ps7 2 8
l3ps6p 2 8
l3ps6 2 8
l3ps5p 2 8
l3ps5 2 8
l3ps15p 2 8
l3ps15 2 8
l3ps14p 2 8
l3ps14 2 8
l3ps13p 2 8
l3ps13 2 8
l2ps7 2 8
l2ps3p 2 8
l2ps3 2 8
l2ps15 2 8
l2ps11 2 8
xs yc bit0 15 gen[9].xs scsa 1 7
xs yc bit0 15 gen[8].xs scsa 1 7
xs yc bit0 15 gen[7].xs scsa 1 7
xs yc bit0 15 gen[6].xs scsa 1 7
xs yc bit0 15 gen[5].xs scsa 1 7
xs yc bit0 15 gen[4].xs scsa 1 7
xs yc bit0 15 gen[3].xs scsa 1 7
xs yc bit0 15 gen[2].xs scsa 1 7
xs yc bit0 15 gen[1].xs scsa 1 7
xs yc bit0 15 gen[15].xs scsa 1 7
xs yc bit0 15 gen[14].xs scsa 1 7
xs yc bit0 15 gen[13].xs scsa 1 7
xs yc bit0 15 gen[12].xs scsa 1 7
xs yc bit0 15 gen[11].xs scsa 1 7
xs yc bit0 15 gen[10].xs scsa 1 7
xs yc bit0 15 gen[0].xs scsa 1 7
l4ps8p 1 7
l4ps8 1 7
l3ps4p 1 7
l3ps4 1 7
l3ps12 1 7
l2ps6 1 7
l2ps2p 1 7
l2ps2 1 7
l2ps14p 1 7
l2ps14 1 7
l2ps10 1 7
l1ps9 1 7
Continued on Next Page. . .
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Table C.2 – Continued

Instance Cells Cell Area
l1ps7 1 7
l1ps5 1 7
l1ps3 1 7
l1ps1p 1 7
l1ps15 1 7
l1ps14p 1 7
l1ps13p 1 7
l1ps13 1 7
l1ps11 1 7
l1ps1 1 7
MUX bit9 1 6
MUX bit8 1 6
MUX bit7 1 6
MUX bit6 1 6
MUX bit5 1 6
MUX bit4 1 6
MUX bit3 1 6
MUX bit2 1 6
MUX bit15 1 6
MUX bit14 1 6
MUX bit13 1 6
MUX bit12 1 6
MUX bit11 1 6
MUX bit10 1 6
MUX bit1 1 6
MUX bit0 1 6
xsp bit13 1 6
xsp bit0 1 6
l4g150p 1 5
l3g70p 1 5
l3g70 1 5
l3g158p 1 5
l2g74 1 5
l2g30p 1 5
l2g30 1 5
l2g1512p 1 5
l2g118 1 5
l1g98 1 5
l1g76 1 5
l1g54 1 5
l1g32 1 5
l1g1514 1 5
l1g1312 1 5
l1g1110 1 5
l1g10p 1 5
l1g10 1 5
ycp bit13 1 4
ycp bit0 1 4
xs yc bit0 15 gen[9].yc scsa 1 4
xs yc bit0 15 gen[8].yc scsa 1 4
xs yc bit0 15 gen[7].yc scsa 1 4
xs yc bit0 15 gen[6].yc scsa 1 4
xs yc bit0 15 gen[5].yc scsa 1 4
xs yc bit0 15 gen[4].yc scsa 1 4
xs yc bit0 15 gen[3].yc scsa 1 4
xs yc bit0 15 gen[2].yc scsa 1 4
xs yc bit0 15 gen[1].yc scsa 1 4
xs yc bit0 15 gen[15].yc scsa 1 4
xs yc bit0 15 gen[14].yc scsa 1 4
xs yc bit0 15 gen[13].yc scsa 1 4
xs yc bit0 15 gen[12].yc scsa 1 4
xs yc bit0 15 gen[11].yc scsa 1 4
xs yc bit0 15 gen[10].yc scsa 1 4
xs yc bit0 15 gen[0].yc scsa 1 4
l3p158p 1 4
l3p148p 1 4
l3p148 1 4
l3p138p 1 4
l3p138 1 4
l3p128 1 4
l2p74 1 4
l2p64 1 4
l2p1412p 1 4
l2p1412 1 4
l2p118 1 4
l2p108 1 4
l1p98 1 4
l1p76 1 4
l1p54 1 4
l1p32 1 4
l1p1312p 1 4
l1p1312 1 4
l1p1110 1 4
l1h1514p 1 4
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Table C.2 – Continued

Instance Cells Cell Area
l1g1312p 1 4
cout 1 4
Total 181 895

Table C.3: Timing of the existing ELMMA for modulo 57343

Pin Fanout
Load

Delay
(ps)

Arrival
(ps)

yin[3] 2 0 0
xs yc bit0 15 gen[3].xs scsa/G

g10/A2 0 0
g10/Z 2 121 121

xs yc bit0 15 gen[3].xs scsa/Eou
p g n0 to n15 level0 gen[3].p n1 to n15 level0/ps

g10/A2 0 121
g10/Z 5 171 292

p g n0 to n15 level0 gen[3].p n1 to n15 level0/Eout
l1p43/Q

g8/A1 0 292
g8/Z 2 81 373

l1p43/Pout
l2g41/P

g14/A2 0 373
g14/Z 5 98 471

l2g41/Gout
l3g81/H

g14/A1 0 471
g14/Z 11 158 629

l3g81/Gout
l4g151p/H

g14/A1 0 629
g14/Z 1 81 710

l4g151p/Gout
cout prime/x

g2/A1 0 710
g2/Z 16 390 1100

cout prime/Oout
MUX bit0/sel

g23/S 0 1100
g23/Z 1 156 1256

MUX bit0/pout
elmmaout[0] 0 1256

Table C.4: Timing of the proposed ELMMA for modulo 57343

Pin Fanout
Load

Delay
(ps)

Arrival
(ps)

yin[2] 2 0 0
xs yc bit0 15 gen[2].xs scsa/G

g10/A2 0 0
g10/Z 5 158 158

xs yc bit0 15 gen[2].xs scsa/Eout
l1p32/Q

g8/A1 0 158
g8/Z 2 81 239

l1p32/Pout
l2g30/P

g14/A2 0 239
g14/Z 5 98 337

l2g30/Gout
l3g70/H

g14/A1 0 337
g14/Z 12 166 503

l3g70/Gout
l4g150p/H

g14/A1 0 503
g14/Z 1 83 586

l4g150p/Gout
cout/x

g2/A1 0 586
g2/Z 16 390 976

cout/Oout
MUX bit0/sel

g23/S 0 976
g23/Z 1 156 1132

MUX bit0/pout
elmmaout[0] 0 1132
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Table C.5: Total power of the existing ELMMA for modulo 57343

Instance Cells Leakage Power
(nW)

Dyanmic Power
(nW)

Total Power (nW)

l0p1p 1 0.932 389.899 390.832
l0p14p 1 0.928 491.339 492.267
xs yc bit0..en[2].xs scsa 1 0.922 302.453 303.374
xs yc bit0..en[6].xs scsa 1 0.922 264.646 265.568
xs yc bit0..en[3].xs scsa 1 0.922 302.437 303.358
xs yc bit0..en[4].xs scsa 1 0.922 302.437 303.358
xs yc bit0..en[5].xs scsa 1 0.922 302.437 303.358
xs yc bit0..n[11].xs scsa 1 0.921 264.630 265.552
xs yc bit0..n[12].xs scsa 1 0.921 302.435 303.356
xs yc bit0..n[14].xs scsa 1 0.921 392.924 393.845
xs yc bit0..n[15].xs scsa 1 0.921 302.435 303.356
xs yc bit0..en[1].xs scsa 1 0.921 392.924 393.845
xs yc bit0..en[8].xs scsa 1 0.921 302.435 303.356
xs yc bit0..en[9].xs scsa 1 0.921 302.435 303.356
xs yc bit0..n[10].xs scsa 1 0.921 302.432 303.354
xs yc bit0..en[0].xs scsa 1 0.921 250.226 251.148
xs yc bit0..en[7].xs scsa 1 0.921 302.414 303.335
xs yc bit0..n[13].xs scsa 1 0.921 264.610 265.531
l1ps2p 1 0.921 509.040 509.961
p g n0 to ..to n15 level0 1 0.920 319.973 320.892
p g n0 to ..to n15 level0 1 0.919 636.713 637.632
p g n0 to ..to n15 level0 1 0.919 494.619 495.537
p g n0 to ..to n15 level0 1 0.918 645.873 646.791
p g n0 to ..to n15 level0 1 0.918 581.401 582.319
p g n0 to ..to n15 level0 1 0.917 564.845 565.762
p g n0 to ..to n15 level0 1 0.917 454.774 455.691
l2ps15p 1 0.917 456.404 457.321
p g n0 to ..to n15 level0 1 0.916 533.024 533.940
p g n0 to ..to n15 level0 1 0.915 535.125 536.041
p g n0 to ..to n15 level0 1 0.915 448.413 449.328
l0p13p 1 0.915 538.454 539.369
p g n0 to ..to n15 level0 1 0.915 799.270 800.185
p g n0 to ..to n15 level0 1 0.915 689.099 690.014
p g n0 to ..to n15 level0 1 0.914 570.969 571.884
l1ps8 1 0.914 443.922 444.836
p g n0 to ..to n15 level0 1 0.913 624.459 625.372
p g n0 to ..to n15 level0 1 0.913 482.933 483.846
l1ps12 1 0.913 485.558 486.471
l1ps14 1 0.913 561.006 561.918
l1ps14p 1 0.912 412.807 413.719
l1ps2 1 0.912 393.890 394.802
l2ps3p 1 0.912 492.460 493.372
l1ps6 1 0.912 602.245 603.157
l1ps10 1 0.912 671.280 672.192
l1ps4 1 0.912 573.796 574.708
l3ps5p 1 0.911 420.452 421.364
l3ps5 1 0.911 382.090 383.002
l3ps13 1 0.908 598.320 599.228
l2ps15 1 0.908 516.406 517.314
l3ps13p 1 0.908 598.452 599.360
l2ps3 1 0.908 474.239 475.147
l4ps9 1 0.906 445.897 446.803
l4ps9p 1 0.906 448.100 449.006
l2ps11 1 0.904 608.946 609.851
l2ps7 1 0.898 639.272 640.170
MUX bit0 1 0.631 386.105 386.736
MUX bit14 1 0.631 364.030 364.660
MUX bit10 1 0.631 341.314 341.945
MUX bit6 1 0.630 307.478 308.108
MUX bit3 1 0.630 344.588 345.217
MUX bit15 1 0.629 320.229 320.859
MUX bit11 1 0.629 306.905 307.534
MUX bit4 1 0.629 325.775 326.405
MUX bit13 1 0.628 513.086 513.713
MUX bit12 1 0.623 344.047 344.671
MUX bit2 1 0.621 347.395 348.016
l0g14p 1 0.620 214.866 215.486
l0g1p 1 0.618 293.128 293.746
l1p1211 1 0.617 388.063 388.680
MUX bit8 1 0.616 323.490 324.107
l1p87 1 0.615 387.956 388.572
MUX bit9 1 0.612 322.281 322.893
MUX bit1 1 0.610 289.579 290.189
MUX bit5 1 0.608 303.058 303.666
MUX bit7 1 0.608 320.706 321.313
l1p109 1 0.599 418.861 419.460
l1p65 1 0.598 459.550 460.148
xs yc bit0..en[3].yc scsa 1 0.597 114.636 115.232
xs yc bit0..en[4].yc scsa 1 0.597 229.271 229.868
xs yc bit0..en[5].yc scsa 1 0.597 152.847 153.444
xs yc bit0..en[2].yc scsa 1 0.597 114.629 115.225
xs yc bit0..en[6].yc scsa 1 0.597 152.838 153.435
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Table C.5 – Continued

Instance Cells Leakage Power
(nW)

Dyanmic Power
(nW)

Total Power (nW)

xs yc bit0..n[11].yc scsa 1 0.597 114.633 115.230
xs yc bit0..n[12].yc scsa 1 0.597 161.242 161.839
xs yc bit0..n[14].yc scsa 1 0.597 114.633 115.230
xs yc bit0..n[15].yc scsa 1 0.597 108.708 109.305
xs yc bit0..en[1].yc scsa 1 0.597 114.633 115.230
xs yc bit0..en[8].yc scsa 1 0.597 114.633 115.230
xs yc bit0..en[9].yc scsa 1 0.597 191.056 191.652
xs yc bit0..n[10].yc scsa 1 0.596 152.841 153.438
xs yc bit0..en[0].yc scsa 1 0.596 152.847 153.444
xs yc bit0..en[7].yc scsa 1 0.596 76.424 77.020
xs yc bit0..n[13].yc scsa 1 0.596 152.844 153.441
l1p1413 1 0.595 191.390 191.985
l2p75 1 0.593 247.742 248.336
l1p43 1 0.592 224.604 225.196
l2p119 1 0.590 247.515 248.105
p g n0 to ..to n15 level0 1 0.589 164.396 164.985
l1p1413p 1 0.588 370.686 371.274
p g n0 to ..to n15 level0 1 0.587 110.905 111.492
p g n0 to ..to n15 level0 1 0.586 184.765 185.351
p g n0 to ..to n15 level0 1 0.586 134.902 135.487
p g n0 to ..to n15 level0 1 0.585 53.922 54.508
p g n0 to ..to n15 level0 1 0.585 54.049 54.634
p g n0 to ..to n15 level0 1 0.583 148.300 148.883
p g n0 to ..to n15 level0 1 0.575 74.140 74.715
p g n0 to ..to n15 level0 1 0.574 135.665 136.238
p g n0 to ..to n15 level0 1 0.573 81.117 81.690
p g n0 to ..to n15 level0 1 0.572 147.473 148.044
p g n0 to ..to n15 level0 1 0.572 223.317 223.889
l0g13p 1 0.571 111.212 111.783
l2p85 1 0.571 223.439 224.009
l2p129 1 0.569 400.214 400.784
l3p139p 1 0.569 129.822 130.391
p g n0 to ..to n15 level0 1 0.567 135.745 136.312
l3p139 1 0.565 51.946 52.512
l2p1513p 1 0.563 193.385 193.948
p g n0 to ..to n15 level0 1 0.559 54.013 54.573
p g n0 to ..to n15 level0 1 0.559 74.035 74.594
l3p149 1 0.531 52.059 52.590
l3p149p 1 0.529 52.293 52.823
l3p159p 1 0.508 0.000 0.508
l1g1211 1 0.503 159.007 159.509
l1g21p 1 0.487 335.696 336.183
l2g129 1 0.482 535.091 535.573
l1g87 1 0.482 111.758 112.240
l1g65 1 0.478 168.887 169.364
l1g21 1 0.474 276.574 277.048
l1g1413 1 0.469 189.163 189.632
l1g109 1 0.464 209.159 209.623
l2g85 1 0.463 231.785 232.248
l2g1513p 1 0.456 175.551 176.006
l1g43 1 0.448 178.102 178.550
l2g41p 1 0.443 388.114 388.558
l2g41 1 0.438 346.732 347.170
l3g81p 1 0.43 301.92 302.35
l3g81 1 0.43 559.97 560.41
l1g1413p 1 0.39 245.37 245.75
cout prime 1 0.37 602.61 602.98
l3g159p 1 0.37 192.71 193.08
l4g151p 1 0.36 189.01 189.37
ycp bit14 1 0.32 126.01 126.33
ycp bit1 1 0.32 126 126.32
l3ps6p 2 0.03 393.7 393.74
l3ps6 2 0.03 354.46 354.49
l4ps10 2 0.03 438.21 438.24
l4ps10p 2 0.03 445.25 445.28
l2ps8 2 0.03 603.84 603.87
l2ps12 2 0.03 656.29 656.32
l2ps4p 2 0.03 437.01 437.04
l3ps14p 2 0.03 495.19 495.22
l3ps14 2 0.03 576.08 576.11
l2ps4 2 0.03 395.87 395.91
l3ps7p 2 0.03 402.66 402.69
l3ps7 2 0.03 396.79 396.82
l3ps8p 2 0.03 373.94 373.97
l3ps8 2 0.03 368.31 368.34
l4ps11 2 0.03 370.13 370.16
l4ps11p 2 0.03 375.89 375.92
l3ps15 2 0.03 484.33 484.36
l4ps12 2 0.03 401.57 401.6
l4ps12p 2 0.03 407.83 407.86
l3ps15p 2 0.03 466.66 466.69
l4ps13p 2 0.03 427.29 427.32
l4ps13 2 0.03 419.79 419.82
Continued on Next Page. . .
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Table C.5 – Continued

Instance Cells Leakage Power
(nW)

Dyanmic Power
(nW)

Total Power (nW)

l4ps14p 2 0.03 363.28 363.31
l4ps15p 2 0.03 362.82 362.85
l4ps14 2 0.03 425.94 425.97
l4ps15 2 0.03 379.08 379.11
xsp bit0 1 0.02 157.52 157.55
xsp bit13 1 0.02 179.46 179.48
Total 197 100.078 59593.368 59693.446

Table C.6: Total power of the proposed ELMMA for modulo 57343

Instance Cells Leakage Power
(nW)

Dyanmic Power
(nW)

Total Power (nW)

l1ps1p 1 0.932 389.901 390.833
l2ps2p 1 0.929 502.811 503.740
l1ps14p 1 0.928 533.543 534.471
l3ps4p 1 0.923 469.380 470.303
l3ps4 1 0.922 462.832 463.754
xs yc bit0..en[2].xs scsa 1 0.922 493.720 494.642
xs yc bit0..en[6].xs scsa 1 0.922 367.267 368.188
xs yc bit0..en[3].xs scsa 1 0.922 351.274 352.195
xs yc bit0..en[4].xs scsa 1 0.922 493.702 494.623
xs yc bit0..en[5].xs scsa 1 0.922 351.274 352.195
xs yc bit0..n[11].xs scsa 1 0.921 307.363 308.284
xs yc bit0..n[12].xs scsa 1 0.921 502.444 503.366
xs yc bit0..n[14].xs scsa 1 0.921 467.342 468.263
xs yc bit0..n[15].xs scsa 1 0.921 308.404 309.326
xs yc bit0..en[1].xs scsa 1 0.921 401.801 402.723
xs yc bit0..en[8].xs scsa 1 0.921 493.700 494.621
xs yc bit0..en[9].xs scsa 1 0.921 351.272 352.193
xs yc bit0..n[10].xs scsa 1 0.921 419.712 420.633
xs yc bit0..en[0].xs scsa 1 0.921 250.226 251.148
xs yc bit0..en[7].xs scsa 1 0.921 351.251 352.173
xs yc bit0..n[13].xs scsa 1 0.921 307.343 308.264
l3ps12 1 0.921 737.968 738.889
l1ps1 1 0.920 319.987 320.906
l1ps7 1 0.919 443.585 444.504
l4ps8 1 0.919 465.529 466.448
l4ps8p 1 0.919 466.211 467.129
l1ps15 1 0.918 722.181 723.099
l1ps11 1 0.918 404.421 405.339
l1ps13 1 0.915 370.705 371.621
l1ps13p 1 0.915 376.862 377.778
l1ps5 1 0.915 597.411 598.326
l2ps14 1 0.915 532.878 533.792
l1ps9 1 0.915 518.495 519.410
l1ps3 1 0.913 469.443 470.357
l2ps14p 1 0.912 408.739 409.652
l2ps6 1 0.912 581.630 582.542
l2ps2 1 0.911 353.057 353.968
l2ps10 1 0.911 621.672 622.583
MUX bit0 1 0.631 386.114 386.745
MUX bit14 1 0.631 364.034 364.665
MUX bit10 1 0.631 341.318 341.949
MUX bit6 1 0.630 307.482 308.113
MUX bit3 1 0.630 344.529 345.159
MUX bit15 1 0.629 320.234 320.863
MUX bit11 1 0.629 306.906 307.535
MUX bit4 1 0.629 325.839 326.468
MUX bit13 1 0.628 513.092 513.720
MUX bit12 1 0.623 344.055 344.679
MUX bit2 1 0.621 347.241 347.862
l1h1514p 1 0.620 290.314 290.933
MUX bit8 1 0.616 323.475 324.092
l1p98 1 0.614 334.391 335.005
MUX bit9 1 0.612 322.286 322.898
MUX bit1 1 0.610 289.583 290.194
MUX bit5 1 0.608 303.031 303.639
MUX bit7 1 0.608 320.706 321.314
l1p54 1 0.606 334.422 335.028
l1p32 1 0.606 321.707 322.314
l1p1110 1 0.603 193.704 194.307
l1p1312p 1 0.600 261.544 262.144
l1p1312 1 0.600 335.653 336.252
xs yc bit0..en[3].yc scsa 1 0.597 82.728 83.324
xs yc bit0..en[4].yc scsa 1 0.597 227.052 227.648
xs yc bit0..en[5].yc scsa 1 0.597 110.304 110.900
xs yc bit0..en[2].yc scsa 1 0.597 113.519 114.116
xs yc bit0..en[6].yc scsa 1 0.597 151.359 151.955
xs yc bit0..n[11].yc scsa 1 0.597 82.725 83.322
xs yc bit0..n[12].yc scsa 1 0.597 160.132 160.729
xs yc bit0..n[14].yc scsa 1 0.597 113.524 114.120
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Table C.6 – Continued

Instance Cells Leakage Power
(nW)

Dyanmic Power
(nW)

Total Power (nW)

xs yc bit0..n[15].yc scsa 1 0.597 110.301 110.897
xs yc bit0..en[1].yc scsa 1 0.597 100.640 101.236
xs yc bit0..en[8].yc scsa 1 0.597 113.524 114.120
xs yc bit0..en[9].yc scsa 1 0.597 137.876 138.472
xs yc bit0..n[10].yc scsa 1 0.596 151.362 151.958
xs yc bit0..en[0].yc scsa 1 0.596 151.368 151.964
xs yc bit0..en[7].yc scsa 1 0.596 55.152 55.748
xs yc bit0..n[13].yc scsa 1 0.596 110.301 110.897
l1p76 1 0.595 258.365 258.959
l2p108 1 0.586 217.966 218.552
l2p1412 1 0.579 222.301 222.880
l2p118 1 0.575 315.802 316.376
l3p128 1 0.573 123.749 124.322
l1g1312p 1 0.571 110.723 111.294
l2p64 1 0.571 217.917 218.488
l2p1412p 1 0.566 155.783 156.349
l2p74 1 0.555 161.156 161.710
l3p138p 1 0.542 78.306 78.848
l3p138 1 0.534 26.258 26.792
l3p148 1 0.528 26.285 26.813
l3p148p 1 0.522 52.827 53.349
l3p158p 1 0.508 0.000 0.508
l1g10p 1 0.485 262.731 263.216
l1g1514 1 0.470 114.367 114.837
l1g10 1 0.467 168.105 168.572
l1g1110 1 0.465 135.720 136.185
l1g76 1 0.464 110.549 111.013
l1g98 1 0.459 207.391 207.850
l1g54 1 0.450 204.833 205.283
l1g1312 1 0.447 225.943 226.390
l1g32 1 0.432 145.301 145.734
l2g118 1 0.428 506.695 507.124
l2g30p 1 0.425 342.814 343.239
l2g30 1 0.416 346.290 346.706
l2g74 1 0.414 233.348 233.761
l3g70p 1 0.407 338.910 339.318
l3g70 1 0.406 595.465 595.871
l2g1512p 1 0.406 204.220 204.626
cout 1 0.384 599.153 599.536
l3g158p 1 0.340 193.810 194.149
l4g150p 1 0.325 189.021 189.346
ycp bit13 1 0.318 126.009 126.327
ycp bit0 1 0.317 124.499 124.817
l2ps3p 2 0.034 462.598 462.632
l4ps9 2 0.034 430.329 430.363
l4ps9p 2 0.034 437.273 437.306
l3ps5p 2 0.033 420.570 420.604
l3ps5 2 0.033 381.634 381.667
l3ps13p 2 0.033 573.689 573.723
l3ps13 2 0.033 571.178 571.211
l2ps3 2 0.033 440.870 440.903
l3ps6p 2 0.033 394.448 394.480
l3ps6 2 0.033 355.190 355.222
l4ps10 2 0.032 438.785 438.818
l4ps10p 2 0.032 445.761 445.794
l2ps15 2 0.032 488.053 488.085
l2ps11 2 0.032 592.349 592.381
l3ps7p 2 0.032 399.255 399.287
l2ps7 2 0.032 623.866 623.898
l3ps7 2 0.032 393.605 393.637
l3ps14p 2 0.032 491.450 491.482
l3ps14 2 0.032 576.359 576.391
l3ps15 2 0.032 480.047 480.078
l3ps15p 2 0.031 447.442 447.474
l4ps11 2 0.031 367.134 367.165
l4ps11p 2 0.031 372.669 372.700
l4ps12 2 0.03 404.54 404.57
l4ps12p 2 0.03 410.96 410.99
l4ps13p 2 0.03 422.66 422.69
l4ps13 2 0.03 415.07 415.11
l4ps14p 2 0.03 363.27 363.3
l4ps14 2 0.03 425.92 425.95
l4ps15 2 0.03 379.06 379.09
l4ps15p 2 0.03 348.75 348.78
xsp bit0 1 0.02 157.52 157.55
xsp bit13 1 0.02 215.92 215.94
Total 181 77.565 51407.319 51484.884
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