

MSc THESIS

Cost Effective Modular Adders for RNS-based Processors

Ondy Dharma Indra Sukma

CE-MS-2010-2010-26

Abstract

RNS can distribute the computation on long operands over small word-width RNS functional units able to operate in parallel. This property is the ground to develop fast arithmetic units. While RNS can boost addition and multiplication performance, other arithmetic operations like division, magnitude comparison, and sign detection are more difficult, when compared with their counterparts in the conventional binary number system. In view of that RNS is mostly utilized for special-purpose applications, e.g., digital filters, which are addition and multiplication dominated. For such applications the RNS capability to represent large numbers and the carry-free nature of arithmetic operations are of interest and can potentially enable fast and low-power arithmetic computation. The overall performance of any RNS based processor is mostly determined by the selected moduli set and the way the modular operations, i.e., addition and multiplication, are implemented in hardware (note that this two issues are intertwined). In this thesis we concentrate on the design of fast and energy effective modular adders able to compute $|A+B|_{m}=(A+B$ if $A+B<m$, if otherwise $A+B-m)$ as they are the fundamental building block for any RNS processor. We base our solution on a state of the art approach, i.e., ELM Modular Addition (ELMMA), which utilize anticipated computation in conjunction with fast parallel prefix addition. Our method follows the same anticipation principle but reduces the overall complexity by proposing an alternative design for the adders, which can now directly handle three inputs instead of two. In this way the initial carry-save addition required for ELMMA for the evaluation of the A+B-m is not longer required and this may potentially result in faster and more area and power effective designs. To evaluate the impact of our proposal we considered a number of moduli of practical interest as follows: $2^{n}-\left(2^{n-2}+1\right), 2^{n}-2^{n-2}$, and $2^{n}-\left(2^{n-3}+1\right)$. For the considered moduli we implemented in VHDL two sets of implementations, i.e., one for the state of the art ELMMA and one for our proposal, for the $n=16$ case. We simulated, debug, and synthesized the designs using Cadence Encounter RTL Compiler for ASIC Designs for 90 nm CMOS technology. Our results indicate that for moduli $2^{n}-\left(2^{n-2}+1\right), 2^{n}-2^{n-2}$, and $2^{n}-\left(2^{n-3}+1\right)$, our proposal requires $13 \%, 32 \%$, and 28% smaller area, is $14 \%, 3 \%$, and 9% faster, and is $15 \%, 20 \%$, and 13% more

 power efficient, respectively, when compared with the state of the art.Delft University of Technology

Cost Effective Modular Adders for RNS-based Processors

THESIS

submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER ENGINEERING
by

Ondy Dharma Indra Sukma
born in Medan, Indonesia

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

by Ondy Dharma Indra Sukma

Abstract

In the recent years Residue Number Systems (RNS) have received increased interest due to their ability to limit the carry propagation chain thus to enable parallel and fast arithmetic. Within RNS any integer is represented with a set of its residues with respect to a given base that comprises a set of relatively prime integers. In this way RNS can distribute the computation on long operands over small word-width RNS functional units able to operate in parallel. Moreover the RNS representation provides some intrinsic support for fault tolerance as it isolates the individual digits, thus potential errors cannot affect other digits. The first property is the ground to develop fastarithmetic units, whereas the later one can be utilized to increase the system fault tolerance. While RNS can boost addition and multiplication performance, other arithmetic operations like division, magnitude comparison, and sign detection are more difficult, when compared with their counterparts in the conventional binary number system. In view of that RNS is mostly utilized for special-purpose applications, e.g., digital filters, which are addition and multiplication dominated. For such applications the RNS capability to represent large numbers and the carry-free nature of arithmetic operations are of interest and can potentially enable fast and low-power arithmetic computation. The overall performance of any RNS based processor is mostly determined by the selected moduli set and the way the modular operations, i.e., addition and multiplication, are implemented in hardware (note that this two issues are intertwined). In this thesis we concentrate on the design of fast and energy effective modular adders able to compute

$$
|A+B|_{m}= \begin{cases}A+B & \text { if } A+B<m \\ A+B-m & \text { otherwise }\end{cases}
$$

as they are the fundamental building block for any RNS processor. We base our solution on a state of the art approach, i.e., ELM Modular Addition (ELMMA), which utilize anticipated computation in conjunction with fast parallel prefix addition. Our method follows the same anticipation principle but reduces the overall complexity by proposing an alternative design for the adders, which can now directly handle three inputs instead of two. In this way the initial carry-save addition required for ELMMA for the evaluation of the $A+B-m$ is not longer required and this may potentially result in faster and more area and power effective designs. To evaluate the impact of our proposal we considered a number of moduli of practical interest as follows: $2^{n}-\left(2^{n-2}+1\right), 2^{n}-2^{n-2}$, and $2^{n}-\left(2^{n-3}+1\right)$. For the considered moduli we implemented in VHDL two sets of implementations, i.e., one for the state of the art ELMMA and one for our proposal, for the $\mathrm{n}=16$ case. We simulated, debug, and synthesized the designs using Cadence Encounter RTL Compiler for ASIC Designs for 90 nm CMOS technology. Our results indicate that for moduli $2^{n}-\left(2^{n-2}+1\right)$ our proposal requires 13% smaller area, is 14% faster, and is 15% more power efficient when compared with the state of the art. For the moduli set $2^{n}-2^{n-2}$ and for the moduli set $2^{n}-\left(2^{n-3}+1\right)$, our proposal is 3% and 9% faster, requires 32% and 28% lesser area cost, and consumes 20% and 13% lesser power, respectively, when compared with the state of the art.

Laboratory Codenumber
 : Computer Engineering
 : CE-MS-2010-2010-26

Committee Members :

Advisor:	Sorin Cotofana, CE, TU Delft
Chairperson:	Koen Bertels, CE, TU Delft
Member:	Rene van Leuken, CE, TU Delft
Member:	Arjan van Genderen, CE, TU Delft
Member:	Sorin Cotofana, CE, TU Delft

To my wife and daughter for their unflagging support

Contents

List of Figures vii
List of Tables ix
Acknowledgements xi
1 Introduction 1
1.1 Motivation 1
1.2 Contribution 3
1.3 Thesis Outline 4
2 Overview of Residue Number Systems 5
2.1 Weighted Number System 5
2.2 Residue Number System (RNS) 6
2.3 Modular Adders 6
2.3.1 Arbitrary Moduli 6
2.3.2 Restricted Moduli 8
2.4 Parallel Prefix Adders 8
2.5 Conclusion 9
3 ELM Modular Adder (ELMMA) 11
3.1 ELM 11
3.2 ELM Modular Adder 13
3.2.1 The SCSA Module 14
3.2.2 The ELMMA Tree 15
3.2.3 The MUX Module 16
3.3 Conclusion 17
4 Enhanced ELM Modular Addition 19
4.1 Eliminating the Simplified Carry Save Adder 19
4.2 Proposed Scheme For Certain Restricted Moduli 20
4.2.1 Moduli $2^{n}-2^{n-2}$ and $2^{n}-\left(2^{n-2}+1\right)$ 21
4.2.2 Modulus $2^{n}-\left(2^{n-3}+1\right)$ 23
4.3 Experimental Results 23
4.4 Conclusion 25
5 Conclusions 27
5.1 Summary 27
5.2 Major Contributions 28
5.3 Future Directions 28
Bibliography 31
A Synthesis Result for Modulo 49151 33
B Synthesis Result for Modulo 49152 43
C Synthesis Result for Modulo 57343 51

List of Figures

2.1 Arbitrary basic modulo- m adder 7
2.2 Carry Operator 9
2.3 Ladner Fischer Adder 10
3.1 ELM block diagram for $\mathrm{n}=8$ 11
3.2 Internal Node ELM Calculations 12
3.3 ELM Adder Cell Inputs 13
3.4 Block Representation of ELMMA Adder 14
3.5 ELMMA Tree Block Diagram for $\mathrm{m}=29$. 16
3.6 Cells used to compute the sum and carry when $t_{i}=1$. 17
4.1 The Ripple of Ambiguous Carry 20
4.2 Proposed Signal generation for modulo 49151 22
4.3 Signal Generation on the Scheme of Proposed Design for $\mathrm{m}=57343$ 24
4.4 Enhanced vs Standard ELMMA Improvement in Terms of Simple Metrics. 25
4.5 Enhanced vs Standard ELMMA Improvement in Terms of Compound Metrics 25

List of Tables

4.1 Propagate and Generate Signal in the Absence of SCSA 20
4.2 Number Factorization for the Corresponding Modulo 21
4.3 Synthesis Result for $\mathrm{n}=16$ 25
A. 1 Area of the existing ELMMA for modulo 49151 33
A. 2 Area of the proposed ELMMA for modulo 49151 35
A. 3 Timing of the existing ELMMA for modulo 49151 37
A. 4 Timing of the proposed ELMMA for modulo 49151 37
A. 5 Total power of the existing ELMMA for modulo 49151 37
A. 6 Total power of the proposed ELMMA for modulo 49151 40
B. 1 Area of the existing ELMMA for modulo 49152 43
B. 2 Area of the proposed ELMMA for modulo 49152 44
B. 3 Timing of the existing ELMMA for modulo 49152 46
B. 4 Timing of the proposed ELMMA for modulo 49152 46
B. 5 Total power of the existing ELMMA for modulo 49152 47
B. 6 Total power of the proposed ELMMA for modulo 49152 48
C. 1 Area of the existing ELMMA for modulo 57343 51
C. 2 Area of the proposed ELMMA for modulo 57343 53
C. 3 Timing of the existing ELMMA for modulo 57343 55
C. 4 Timing of the proposed ELMMA for modulo 57343 55
C. 5 Total power of the existing ELMMA for modulo 57343 56
C. 6 Total power of the proposed ELMMA for modulo 57343 58

Acknowledgements

First and foremost I offer my heartily gratitude to my supervisor, Sorin Cotofana, who has guided me through the completion of my thesis and working in my own way. I attribute the level of my Masters degree to his encouragement and effort and without him this thesis would not have been completed or written. My sincere thanks also goes to Kazeem Gbolagade for the fruitful discussion and thesis document feedback despite distance working.

I would like to thank my dearly love wife and daughter for being there as the source of inspiring spirit to complete this thesis.

Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the project.

Ondy Dharma Indra Sukma
Delft, The Netherlands
August 26, 2010

Introduction

1.1 Motivation

A Residue Number System (RNS) is characterized by a base which is an N-tuple of relatively prime integers ($m_{N-1}, m_{N-2}, \ldots, m_{0}$) and each $m_{i}(i=0,1,2, \ldots, N-1)$ is called a modulus. An integer X is represented in this system by an N-tuple(x_{N-1}, x_{N-2}, \ldots, x_{0}) where x_{i} is a non-negative integer number, computed as the difference of the X and $m_{i} \times q_{i}$, where q_{i} is the largest integer such that $0 \leq x_{i} \leq(m-1)$. The residue of x_{i} with respect to the $i^{\text {th }}$ modulus m_{i} is akin to a digit and the entire N residue representation of X can be viewed as an N-digit number, where the digit set for the $i^{\text {th }}$ position is $\left[0, m_{1}-1\right]$.

RNS has two most significant advantageous properties: (i) no carry propagation may occur between the RNS digits during arithmetic operations as addition and multiplication, and, (ii) potential errors cannot pass the digit boundaries due to the very nature of the RNS representation with isolates individual digits. The first property provides the ground to develop fast arithmetic units, whereas the later one can be utilized to increase the system fault tolerance. While RNS can boost addition and multiplication performance, other arithmetic operations like division, magnitude comparison, and sign detection are more difficult [5], when compared with their counterparts in the conventional binary number system. The difficulty is induced by the fact that the RNS digit does not store any information related to its relative weight to other existing digits, a property which is utilized to easily compare two numbers, to detect the sign a number based on its relative magnitude to another number magnitude, and the combination of those two in order to perform overflow detection. An example to this problem is given as follows: Given a range of $[-420,419]$, the sorting result in ascending order of $a=$ $(0|1| 3 \mid 2)_{R N S}, b=(0|1| 4 \mid 1)_{R N S}, c=(0|6| 2 \mid 1)_{R N S}, d=(2|0| 0 \mid 2)_{R N S}, e=(5|0| 1 \mid 0)_{R N S}$, and $f=(7|6| 4 \mid 2)_{R N S}$ is $d(-70)<c(-8)<f(-1)<a(8)<e(21)<b(64)$. In order to obtain correct sorting order, RNS number must be converted to digit weighted position, leading to large overhead. For division, more problematic situation occurs when the quotient must be denoted as a floating point number.

In view of the previous discussion, RNS is currently not utilized in general computing purpose but represents an attractive choice for specific-purposed applications which are addition and multiplication dominated and requires robustness against error. A leading candidate for the former is in the field of digital signal processing. Finite impulse response filter and Discrete Fourier Transform are some examples of application which heavily uses addition and multiplication. The later is an area that was the subject of much research in early computing era, but faded out from main stream research as the fabrication (CMOS) technology become more reliable. Now we entered the nano-era and the need of fault tolerance increases again due to the fact that devices are less reliable and exhibit large
delay variations thus we can expect a revival of the fault tolerant related RNS research. In the context of this thesis we concentrate on the RNS capability to provide support for fast and energy effective computer arithmetic and we do not dive into fault-tolerant related issues.

The overall performance of any RNS based processor is mostly determined by the selected moduli set and the way the modular operations, i.e., addition and multiplication, are implemented in hardware. The two issues are very much related as the moduli nature has a large influence on the structure and complexity of the functional units hardware. It is well known that some moduli, e.g., 2^{n} and $2^{n}-1$, result in simple modular adders however one cannot limit the moduli choice only to such restricted moduli due to other reasons, e.g., the requirement to have a well balanced RNS system. Another challenging circumstance that RNS is facing is the need to represent large number involved in computation. Referring to the definition of RNS given in the beginning of this chapter, the number of different representation of N-tupple RNS, i.e, the system dynamic range, is equal to the product of its moduli, by assuming that all moduli are pairwise relatively prime one to each other. In order to enable RNS representations of large numbers one need to increase the the dynamic range which results in more moduli and/or in larger magnitude for the digits. One can easily observe that the increase of digit magnitude has a negative effect on the RNS processor performance as it increases the per digit position computation delay, since even though RNS has no inter digit carries, carry propagation occur at the digit level and the larger the maximum digit magnitude the slower the calculation. In view of this fast and optimized conventional binary arithmetic unit are essential for RNS processors.

In this thesis we concentrate on the design of fast and energy effective modular adders able to compute

$$
|A+B|_{m}= \begin{cases}A+B & \text { if } A+B<m \\ A+B-m & \text { otherwise }\end{cases}
$$

as they are the fundamental building block for any RNS processor.
Up to date many studies have been conducted on fast addition and parallel prefix seems to be the most effective way to construct fast adders. Hence, incorporating parallel prefix into modular addition can bring direct benefits to the performance of the modular adder. Many parallel prefix have been introduced under different scheme, whose performance heavily depends on the construction of carry network. Examples of some Parallel Prefix Adders (PPA) include Kogge-Stone, Brent-Kung, Han-Carlson, and Ladner-Fischer [4, 1, 6].

Amongst these existing PPAs, Ladner-Fischer PPA (LFPPA) is considered to provide the best tradeoffs and has been utilized as a a basic element in the most effective state of the art modular adder, ELM Modular Adder (ELMMA) [11]. ELMMA is based on the principle of anticipated computation, i.e., it computes both $a+b$ and $a+b-m$ in parallel and inherits the LFPPA capability to perform fast additions. Moreover, depending on the selection of the modulo value m the structure of the design various tradeoffs are possible in order to decrease the energy consumption and the occupied area. Generally speaking ELMMA consists of 3 modules: the Simplified Carry Save Adder (SCSA) module, the ELM module, and the MUX module. The SCSA module functions to perform 3-to-2
operand reduction, in order to prepare the input fitted to ELM module. In the ELM module, the two tentative modular additions takes place. Finally, the correct result is obtained based on the carry out of ELM. As reported in [11], ELMMA is used for unrestricted modulo addition. When modulo restriction is applied upon ELMMA, the use of SCSA can be avoided, resulting some extent of area saving, speed and power improvement.

The main research question we address in this thesis are the following:

- Can we propose an alternative technique for modular addition which can outperform ELMMA?
- In case we can, which is the actual impact of our proposal on the modular adder performance in terms of area, delay, and energy consumption?

1.2 Contribution

We addressed the previously mentioned questions and in this section we present the main contribution of the thesis, which consist of:

1. We proposed and enhanced ELM Modular Addition (ELMMA), which also utilize anticipated computation in conjunction with fast parallel prefix addition but reduces the overall complexity by proposing and alternative design for the adders. Our ELM adders can now directly handle three inputs instead of two. In this way the initial carry-save addition required for ELMMA for the evaluation of the $a+b-m$ is not longer required and this may potentially result in faster and more area and power effective designs.
2. We identified the moduli in the form of $\left(2^{n}-2^{n-2}\right)$, $\left(2^{n}-\left(2^{n-2}+1\right)\right.$), and $\left(2^{n}-\right.$ $\left.\left(2^{n-3}+1\right)\right)$ as relevant candidates for the modulo adder implementations.
3. For the considered moduli we implemented in VHDL two sets of implementations, i.e., one for the state of the art ELMMA and one for our proposal, for the $\mathrm{n}=16$ case. We simulated, debug, and synthesized the designs using Cadence Encounter RTL Compiler for ASIC Designs for 90 nm CMOS technology and our results indicate the following:

- For the moduli $\left(2^{n}-\left(2^{n-2}+1\right)\right)$, our scheme is 14% faster, requires 13% lesser area cost, and consumes 15% lesser power when compared with the ELMMA algorithm. With respect to compound metrics, the enhanced ELMMA improves the $\mathrm{DP}, \mathrm{AP}, \mathrm{AD}$, and DDA about $27 \%, 26 \%, 25 \%, 35 \%$, respectively, when compared with the existing ELMMA.
- For the moduli $\left(2^{n}-2^{n-2}\right)$, our scheme is 3% faster, requires 32% lesser area cost, and consumes 20% lesser power when compared with the ELMMA algorithm. With respect to compound metrics, the enhanced ELMMA improves the DP, AP, AD, and DDA about $22 \%, 33 \%, 19 \%, 24 \%$, respectively, when compared with the existing ELMMA.
- For the moduli $\left(2^{n}-\left(2^{n-3}+1\right)\right)$, our scheme is 9% faster, requires 28% lesser area cost, and consumes 13% lesser power when compared with the ELMMA algorithm. With respect to compound metrics, the enhanced ELMMA improves the DP, AP, AD, and DDA about $22 \%, 22 \%, 24 \%, 27 \%$, respectively, when compared with the existing ELMMA.

1.3 Thesis Outline

This remainder of the thesis is organized as follows:
Chapter 2 contains a brief overview of Residue Number System (RNS). Modular adders are also discussed by focussing on implementations for: (1) arbitrary moduli, and (2) restricted moduli. This chapter is closing with a discussion of several parallel adders based on the parallel prefix algorithm.

Chapter 3 provides the explanation of ELM algorithm. All signal equations involved are given, including the theory which support the corresponding equations. An enhancement of ELM is presented next by elaborating the extension of this technique in modular addition. Detailed explanations are given to describe how ELMMA computes the modulo addition on the based of ELM algorithm. Several properties such as resource sharing and the depth of the tree are also discussed, exposing the degree of improvement that ELMMA has if compared with the underlying and some relevant parallel prefix algorithm.

The enhanced ELMMA scheme is introduced in Chapter 4. The discussion starts with the additional and/or modified signal equation coming from the consequence of removing one ELMMA's block. Detailed supporting arguments for the modification are also presented, to give clearer description on how the improvement in proposed design is achieved. Results of synthesis of ELMMA and proposed design obtained from a synthesis tool are reported. A performance comparison between those design is provided, encompassing the improvement of delay, area, and total power. The comparison of compound metrics is also provided, to give an indication the superiority of the enhanced ELMMA over state of the art ELMMA in when comparison is performed to the combination of (delay, area), (delay, power), and (area, power).

Chapter 5 is the closing chapter of this report, containing conclusion and discussion of future research.

Overview of Residue Number Systems

This chapter provides fundamental information about the basic notions and several important properties of RNS which will give foundation to the succeeding chapters.

2.1 Weighted Number System

Numbers play an important role in computer systems and are the basis and object of computer operations. "The main task of computer is computing, which deals with numbers all the time" $[7]$. Digital computers very much depends on the utilized number systems and the rules which define the relationships among numbers. The commonly used number systems are decimal and binary number systems, which are examples of Weighted Number System (WNS). A number system is a WNS if for any number y in the system, y can be expressed as:

$$
y=\sum_{i=1}^{n} x_{i} w_{i},
$$

where x_{i} is a digit in the permissible digits and w_{i} are consecutive powers of the same (fixed radix) or different (mixed radix) numbers. The following are the general characteristics of weighted number systems [12]:

- Relative magnitude comparison of 2 numbers can easily be carried out.
- Multiplication and division can be easily manually performed by moving the binary/decimal point in case of binary or decimal number system.
- The range of the number can easily be extended by the addition of more digit positions.
- Overflow detection is very easy.
- Analog to digital conversion is very easy.

Despite of all these advantages, WNS based arithmetic has limited performance due to the fact that it cannot support parallel arithmetic in which all the digits are simultaneously processed is not possible. This is due to the fact that in any WNS the addition requires the propagation of carry values between consecutive digit positions and this makes it impracticable to implement parallel addition, subtraction, multiplication, and division. This is a barrier on the speed of arithmetic operations in WNS and attempts have been made to overcome the speed limitations:

- Speedup the calculation of carries by adding specialized look-ahead carry circuitry.
- Rely on alternative number system representations which break/limit the carry propagation chains.

In this thesis, we focus on the later avenue and address, Residue Number System (RNS)[12] is such a number system with the following features: parallelism, modularity, fault tolerance, and carry free operations. In the next section, we present more details the general RNS background.

2.2 Residue Number System (RNS)

In RNS [9], a number x is represented by the list of its residues with respect to k pairwise relatively prime moduli $\left(m_{k-1} \geq \ldots \geq m_{1} \geq m_{0}\right)$. The residue x_{i} of x with respect to the i th modulus m_{i} is akin to a digit and the entire k-residue representation of x can be viewed as a k-digit number, where the digit set for the i th position is $\left[0, m_{i}-1\right]$. Notationally, given any integer x , the residue x_{i} with respect to m_{i} is computed as:

$$
\begin{equation*}
x_{i}=x \bmod m_{i}=|x|_{m_{i}} \tag{2.1}
\end{equation*}
$$

The RNS representation of x can be given by the enclosure of RNS digits in parenthesis. For example,

$$
\begin{equation*}
x=(2|3| 2)_{R N S(7|5| 3)} \tag{2.2}
\end{equation*}
$$

is the RNS representation of 23 with respect to the moduli 7,5 , and 3 .
The RNS dynamic range is represented by the product of all k relatively prime moduli $\left(M=m_{0} \times m_{1} \ldots \times m_{k-1}\right)$. It denotes the interval over which every integer can be represented by the system without having two numbers with the same representation, viz. $[0, M-1]$, or any other interval of M consecutive integers. For instance, when a negative number is desired with symmmetric compotition, the range can be set to $[-(\mathrm{M}-1) / 2$, (M-1)/2] if M is odd, or $[-\mathrm{M} / 2$, ($\mathrm{M}-1$)/2] if M is even. The residues of negative numbers are evaluated by complementing each of the digits x_{i} with respect to its corresponding modulus m_{i}.

2.3 Modular Adders

Essentially speaking, modular adders are built using similar principles as the traditional binary adders. All improvement techniques found in binary addition can be utilized to construct modular adders [8]. Further improvements can be obtained from the fact that the modulus is known at design time. Modulo adders can be categorized into two groups, depending on the type of modulus they are designed for: (a) arbitrary (unrestricted) moduli and (b) restricted moduli.

2.3.1 Arbitrary Moduli

The result of adding, modulo-m, two numbers, A and B , (those can be digits of a residue representation but also two positive integers smaller than m), where $0 \leq A, B<m$, is defined as [8]:

Figure 2.1: Arbitrary basic modulo- m adder

$$
|A+B|_{m}= \begin{cases}A+B & \text { if } A+B<m \tag{2.3}\\ A+B-m & \text { otherwise }\end{cases}
$$

The design of a modulo m adder may be based on Equation (2.3). The most straightforward implementation is realized by assigning one adder to compute the addition of A and B and a second adder to compute the subtraction of the modulus m from the previous addition result as depicted in Figure 2.1. We note that the result of the comparison of the addition result and the modulus is computed as $c_{\text {out }}$ and this signal is utilized to select the right output value. If the addition of A and B is less than m, then this is the correct result. If otherwise, the addition of A and B is corrected by the subtraction of m to produce the correct result. We note that this computation can be also achieved with one adder only at the expense of a slightly increased delay and a register and two multiplexors.

By replacing the subtrahend m with an addition of additive inverse of $m \bmod 2^{n}$, $t\left(=2^{n}-m\right)$, Equation (2.3) can be rewritten as follows:

$$
|A+B|_{m}= \begin{cases}A+B & \text { if } A+B<2^{n} \tag{2.4}\\ A+B+t & \text { otherwise }\end{cases}
$$

2.3.2 Restricted Moduli

Moduli in the form of $2^{n}-1,2^{n}$, and $2^{n}+1$ are a special moduli because they greatly simplify the modular adder hardware implementation. Designing adders for moduli 2^{n} requires no extra work since the correct result is always produced for both cases in Equation (2.3) by the first adder in Figure 2.1. This holds true due to the fact that the substraction of 2^{n} is equivalent with dropping the carry out of the $A+B$ addition. Thus by just ignoring this carry the first adder always produces the correct result.. To design an adder with modulo $2^{n}-1$ adder, the scheme of arbitrary adders can be used by replacing the complement m with constant 1 . Essentially speaking the idea is to ignore the carry out of the $A+B$ addition but in this case an extra 1 has to be compensated somehow as by dropping the carry out we subtracted 2^{n} instead of $2^{n}-1$. By assuming that the underlying adder is a carry ripple adder and it is reused as suggested at the end of the previous section, the correct addition is obtained by feeding back the carry generated by the addition of A and B . The implementation of $2^{n}+1$ modulo adders also depends on the underlying conventional adder. In this case, to reduce the additional logic, arithmetic operation modulo $2^{n}+1$ has frequently been implemented through the use of a different representation, e.g., diminished one representation. With the diminished-one representation, the addition of two numbers, A and B , with diminished-one equivalents $\hat{A}(=A-1)$ and $\hat{B}(=B-1)$, is $A+B=(\hat{A}+1)+(\hat{B}+1)=(\hat{A}+\hat{B}+1)+1$. If $\hat{A}+\hat{B}+1<2^{n+1}$, then the result is correct in diminished-one form; if otherwise, $2^{n}+1$ must be subtracted to get the correct result. The main drawback of the diminished-one representation is that it requires conversion of the operands and results.

2.4 Parallel Prefix Adders

Parallel-prefix adders allow more efficient implementations of the carry-lookahead technique and are, essentially, variants of carry-lookahead adders. Indeed, in current technology, parallel-prefix adders are among the best adders, with respect to area \times time, and are particularly suited for high-speed addition of large numbers. The construction of parallel prefix adders is based on carry operator, Φ, which is defined as follows:

$$
\begin{equation*}
\left(G^{\prime \prime}, P^{\prime \prime}\right) \Phi\left(G^{\prime}, P^{\prime}\right)=\left(G^{\prime \prime}+P^{\prime \prime} G^{\prime}, P^{\prime \prime} P^{\prime}\right) \tag{2.5}
\end{equation*}
$$

where P", P' and G", G' indicate propagate and generate signal, respectively. The fundamental of carry operator is represented in Figure 2.2.

A parallel prefix can be represented as a graph consisting of carry operator nodes. For the sake of supporting the explanation of ELM algorithm in Chapter 3, the Ladner Fischer Parallel Prefix Adder (LFPPA) [3] is presented because it has similar scheme to ELM. Figure 2.3 graphically represent the connection of carry operator node in LFPPA for the case of $\mathrm{n}=8$. All the signals produced by this LFPPA along the addition computation are given as follows:

Stage 0:

$$
p_{i, i}=a_{i} \oplus b_{i}, \quad g_{i, i}=a_{i} b_{i}, \quad \text { where } 0 \leq i \leq 7
$$

Figure 2.2: Carry Operator

Stage 1:

$$
\begin{array}{ll}
g_{i, i-1}=g_{i}+p_{i} g_{i-1}, & \text { where } i=1,3,5,7 . \\
p_{i, i-1}=p_{i} p_{i-1}, & \text { where } i=3,5,7 .
\end{array}
$$

Stage 2:

$$
\begin{array}{ll}
g_{2,0}=p_{2} g_{1,0} & g_{3,0}=g_{3,2}+p_{3,2} g_{1,0} \\
g_{6,4}=p_{6} g_{5,4} & g_{7,4}=g_{7,6}+p_{7,6} g_{5,4} \\
p_{6,4}=p_{6} p_{5,4} & p_{7,4}=p_{7,4} p_{5,4}
\end{array}
$$

Stage 3:

$$
\begin{array}{ll}
g_{4,0}=g_{4}+p_{4} g_{3,0} & g_{5,0}=g_{5,4}+p_{5,4} g_{3,0} \\
g_{6,0}=g_{6,4}+p_{6,4} g_{3,0} & g_{7,0}=g_{7,4}+p_{7,4} g_{3,0}
\end{array}
$$

In the particular case of modular addition, parallel prefix can be easiliy modified for addition with respect to the special moduli $2^{n}-1$ and $2^{n}+1[8]$. Furthermore, if modulo addition is constructed for arbitrary moduli, the concurrent computation of $A+B$ and $A+B+t(\mathrm{t}=$ correction term $)$ can be fully supported by parallel prefix as suggested in [8]. Worth to mention that for a certain type of parallel prefix algorithms, there is a possibility to let those concurrent additions performed by shared resources as suggested in [11]. Note that this also leads to the reduction of power consumption as the parallel prefix adder occupies less area while preserving the computation speed.

2.5 Conclusion

In this chapter we briefly discussed how Residue Number Systems can be utilized in order to alleviate the speed limitation due to carry propagation. By selecting relatively smaller digits to represent large number, RNS can perform fast computation. Furthermore,

Figure 2.3: Ladner Fischer Adder
since no carry propagation produced in each RNS digit when operating arithmetic (e.g., addition), each digit can be processed independently and results are not affected by other digit positions if error occurs. We also analyzed the modulo addition operation and its implementation via especially in addition, well-know conventional binary addition methods and algorithms. We gave special attention to the utilization of parallel prefix algorithms to perform modular addition for arbitrary and restricted modulo adder, as depending on the characteristic of carry operator network that the parallel prefix has, this approach can result in a fast, small, and power-efficient modular adders.

ELM Modular Adder (ELMMA)

In this chapter, detailed information about the ELM algorithm [13] and the construction of ELMMA based on ELM tree [11] are given, including the derivation of equations, the equations to compute propagate, generate, and partial sum signals, and the components utilized in the construction of the modular adder trees.

3.1 ELM

The ELM algorithm utilizes a binary tree of simple processors to perform standard binary addition [13]. The structure of the tree is depicted in Figure 3.1 for the case 8 -bit operands. Inputs are received at the lowest leaves of the tree, which compute the partial sums for each bit position. At this level, the partial sums are equal to the propagate signals. These partial sums are then passed up to the next level of the tree. Each leaf also computes a generate signal and passes it up to the next level. At higher levels of the tree, nodes receive partial sums from the adjacent lower level, as well as information necessary to update the partial sums at that level of the tree. New partial sums and update information are computed, which are passed up to the next higher level of the tree.

Stage 3

Figure 3.1: ELM block diagram for $\mathrm{n}=8$

Figure 3.2: Internal Node ELM Calculations

The key to the algorithm is the computation which occurs at internal nodes, which is graphically described in Figure 3.2. The edge from node C to node A passes up the partial sums for its subtree, the generalized generate for its entire subtree and the generalized propagates for each bit of its subtree. Node B passes similar information, for its subtree, to node A. Computations at node A combine the information passed from node B and C to produce $p s_{i}, G(r, p)$, and $P(i, p)$ for its subtree. Note that node A requires does not have to do any processing to produce $p s_{p}$ through $p s_{q-1}$, nor $P(p, p)$ through $P(q-1, p)$ and these signals may be passed up to the node at the next higher level directly. The remaining bits are computed according with Equation (3.1), (3.2), (3.3).

$$
\begin{gather*}
G_{A}(r, p)=G_{B}(r, q)+P_{B}(r, q) G_{C}(q-1, p) \tag{3.1}\\
P_{A}(q+j, p)=P_{B}(q+j, q) P_{C}(q-1, p) \tag{3.2}\\
p s_{q+j}^{A}=p s_{q+j}^{B} \oplus P\left({ }^{B} q+j-1, q\right) G^{C}(q-1, p) \tag{3.3}
\end{gather*}
$$

The rightmost node of each level is required to neither pass up propagate signal nor partial sums. The propagate signals present in these nodes are not used any longer in the higher levels of the tree. In fact, its partial sums are the actual sum bits, because the subtree includes the least significant bits of the addition. This implies that the carry coming from the rightmost node is the actual carry-in to bit i and not merely a partial carry. The complete design for the considered 8 -bit adder can be implemented as follows:

Stage 0:

$$
{ }_{0}{ }^{0 p s_{i}}=p_{i, i}=a_{i} \oplus b_{i}, \quad g_{i, i}=a_{i} b_{i}, \quad \text { where } 0 \leq i \leq 7
$$

Figure 3.3: ELM Adder Cell Inputs

Stage 1:

$$
\begin{array}{ll}
{ }_{1} p s_{i}=p_{i, i} \oplus g_{i-1, i-1}, & \text { where } i=1,3,5,7 . \\
g_{i, i-1}=g_{i}+p_{i} g_{i-1}, & \\
p_{i, i-1}=p_{i} p_{i-1}, & \text { where } i=3,5,7 .
\end{array}
$$

Stage 2:

$$
\begin{array}{lll}
{ }_{2} p s_{2}={ }_{0} p s_{2} \oplus g_{1,0}, & { }_{2} p s_{3}={ }_{1} p s_{3} \oplus p_{2,2} g_{1,0}, & g_{3,0}=g_{3,2}+p_{3,2} g_{1,0}, \\
{ }_{2} p s_{6}={ }_{0} p s_{6} \oplus g_{5,4}, & { }_{2} p s_{7}={ }_{1} p s_{7} \oplus p_{6,6} g_{5,4}, & g_{7,4}=g_{7,6}+p_{7,6} g_{5,4}, \\
p_{6,4}=p_{6,6} p_{5,4} & p_{7,4}=p_{7,6} p_{5,4} &
\end{array}
$$

Stage 3:

$$
\begin{array}{ll}
{ }_{3} p s_{4}={ }_{0} p s_{4} \oplus g_{3,0}, & { }_{3} p s_{5}={ }_{1} p s_{5} \oplus p_{4,4} g_{3,0}, \\
{ }_{3} p s_{6}={ }_{2} p s_{6} \oplus p_{5,4} g_{3,0}, & { }_{3} p s_{7}={ }_{2} p s_{7}+p_{6,4} g_{3,0}, \\
c_{\text {out }}=g_{7,0}=g_{7,4} \oplus p_{7,4} g_{3,0} &
\end{array}
$$

In view of the previous discution, the implementation of any ELM adder can be done by using the following cells: The E cell which performs the function $p s \oplus G$, the S cell which performs the function of $p s \oplus P G$, the P cell which computes $P Q$, and the G cell which computes $G+P H$. The E and S cell functions to update a partial sum, P updates the propagate signal block, $P(i, j)$, and G computes new generate signal block, $G(i, j)$. Figure 3.3 present previously mentioned the cells and their inputs.

3.2 ELM Modular Adder

By using Equation (2.4), modular addition can be implemented by performing concurrent addition of $x+y$ and $x+y+t$ and selecting the correct result based on the carry-out signal produced by the three-operand addition. Three blocks are required to compute RNS addition: (1) the Simplified Carry Save Adder (SCSA) module, (2) the ELMMA tree, and (3) the MUX module [11] (Fig. 3.4).

Figure 3.4: Block Representation of ELMMA Adder

3.2.1 The SCSA Module

The SCSA module is used to convert the three operand addition $x+y+t$ to two operands so that ELM tree architecture can be subsequently used to perform fast modular addition. The structure is a simplified version of the conventional CSA, where the extent of the simplification is highly dependent upon the binary realization of t. The simplification of CSA is given in the following description.

Let s_{i} and c_{i+1} respectively denote the sum and carry outputs form the $i^{\text {th }}$ Full Adder (FA) in the CSA, then

$$
\begin{gather*}
s_{i}=x_{i} \oplus y_{i} \oplus t_{i} \tag{3.4}\\
c_{i+1}=x_{i} y_{i} \oplus x_{i} t_{i} \oplus y_{i} t_{i} \tag{3.5}
\end{gather*}
$$

where x_{i}, y_{i}, and t_{i} represent the input bits to the FA and \oplus represents the XOR operator. If the input bit t_{i} assumes the value 0 , then writing s_{i} as $x_{s, i}$ and c_{i+1} as $y_{c, i+1}$, Equation (3.4) and (3.5) become:

$$
\begin{gather*}
x_{s, i}=x_{i} \oplus y_{i} \tag{3.6}\\
y_{c, i+1}=x_{i} y_{i} \tag{3.7}
\end{gather*}
$$

Similiarly, if t_{i} is 1 , then Equation (3.4) and (3.5) can be written as:

$$
\begin{gather*}
x_{s, i}^{\prime}=\overline{x_{i} \oplus y_{i}} \tag{3.8}\\
y_{c, i+1}^{\prime}=x_{i}+y_{i} \tag{3.9}
\end{gather*}
$$

From Equation (3.6) and (3.7) it can be seen that for the case $t_{i}=0$, the sum and carry bits for the sum $x+y+t$ are identical to the sum and carry bits one would obtain for the sum $x+y$. Note that for a modulus m, where the binary representation of t has b ones, the signal bus x_{s}^{\prime} and y_{c}^{\prime} contains b bits $\left(b \leq n-1, m \neq 2^{n}\right)$, as depicted in Figure 3.4. A prime symbol is given to all signals involved in the computation of $x+y+t$, to easily distinguish them from the sum of two operand $(x+y)$. In addition, as it can be noticed that for n bit moduli, the Most Significant Bit (MSB) of t, i.e., t_{n-1}, is always zero, hence $y_{c, n}$ forms the partial output carry information for the addition $x+y$. This is because the subtraction with the additive inverse which has bit one at bit position $n-1$ will decrease the number of utilized bit by one.

3.2.2 The ELMMA Tree

This module is the core for ELMMA. To describe the structure of the tree, an example is presented in Figure 3.5. The idea behind the structure is to compute both sums $x+y$ and $x+y+t$ in parallel and then using the carry resulting from the sum $x+y+t$ to determine the correct sum. The ELMMA tree thus consists of two overlapped ELM tree, where the extent of overlapping depends on the binary form of t. Let label the tree of $x+y$ as tree A and of $x+y+t$ as tree B . To give a clear separation between signal coming from tree A and B , the both trees are drawn using different line pattern (see Figure 3.5).

Tree A is completely identified by conjoining the thinly-dashed nodes/branches of the ELMMA tree with the solid-lined nodes/branches. Note that the solid-lined nodes and branches comprise of hardware shared between both addition tree. Hence, node $0,1,2,3$, 4,5 , and 6 form the ELM tree that computes the sum $x+y$. The processing done in the nodes at each level is identical to the computation of ELM's signals, with the exception that node 6 does not compute the carry-out. Tree B is constructed in a similar manner to the combination of the dashed nodes/branches and the shared nodes/branches. This means that this tree consists of nodes $0^{\prime}, 1^{\prime}, 2,3,4^{\prime}, 5$, and 6^{\prime}. The input bits to tree B differ from those in tree A at the same position due to applying different equation to compute generate and propagate/partial sum at the lowest level of tree.

The carry from the addition of $x+y+t, c_{o u t}^{\prime}$, is then found by taking the logical OR of the carry produced from the SCSA module, $y_{c, 5}$, and the generate signal covering bit position 1 to 4 which is obtained from the calculation of three operand addition. In general, for an n bit modulus, $c_{\text {out }}^{\prime}$ is produced from the logic OR operation between generate signal coming out from SCSA at bit position $n-1\left(y_{c, n}\right)$ and the carry generated from tree B in the ELMMA tree over bit position 1 to $n-1$. Both of these signals are mutually exclusive for $m \neq 2^{n}$, where $n=\left\lceil\log _{2} m\right\rceil$.

The width of the tree is equal to $n-1$, resulting in the tree of $\left\lceil\log _{2}(n-1)\right\rceil$ depth. This means that even with the SCSA module, the depth of the modular adder struc-

Figure 3.5: ELMMA Tree Block Diagram for $\mathrm{m}=29$.
ture(excluding the MUX unit) is equal to that of an n bit ELM binary adder, a property that makes it a very fast modular adder implementations.

3.2.3 The MUX Module

This module consists of a number of 2-to-1 multiplexerss that are used to select the sum bits generated by the two additions performed in the ELMMA tree. The $c_{\text {out }}^{\prime}$ signal drives the multiplexer select port for all the multiplexers and it therefore has a maximum fan-out of n.

Connecting those three blocks as shown in Figure 3.4 results in the construction of ELMMA structure. To be able to present detailed ELMMA design, while keeping it comprehendable, we assumed in the following as an example of modular addition for the case of $\mathrm{m}=29$ (see Figure 3.5).

Stage 0 (SCSA):

$$
\begin{array}{lll}
{ }_{0} p s_{i}=p_{i, i}=a_{i} \oplus b_{i}, & g_{i, i}=a_{i} b_{i}, \quad \text { where } 0 \leq i \leq 4 . \\
{ }_{0} p s_{0}^{\prime}=p_{0,0}^{\prime}=\overline{a_{0} \oplus b_{0}}, & g_{0,0}^{\prime}=a_{0}+b_{0} \\
{ }_{0} p s_{1}^{\prime}=p_{1,1}^{\prime}=\overline{a_{1} \oplus b_{1}}, & g_{1,1}^{\prime}=a_{1}+b_{1}
\end{array}
$$

Stage 1:

Figure 3.6: Cells used to compute the sum and carry when $t_{i}=1$.

$$
\begin{array}{rlr}
{ }_{1} p s_{i}={ }_{0} p s_{i} \oplus g_{i-1, i-1}, & g_{i, i}=p_{i, i} g_{i-1, i-1}, \quad \text { where } 1 \leq i \leq 4 . \\
& & \\
{ }_{1} p s_{1}^{\prime} & ={ }_{0} p s_{1}^{\prime} \oplus g_{0,0}^{\prime}, & g_{1,1}^{\prime}=p_{1,1}^{\prime} g_{0,0}^{\prime} \\
{ }_{1} p s_{2}^{\prime} & ={ }_{0} p s_{2} \oplus g_{1,1}^{\prime}, & g_{2,2}^{\prime}=p_{2,2} g_{1,1}^{\prime}
\end{array}
$$

Stage 2:

$$
\begin{aligned}
& { }_{2} p s_{2}={ }_{1} p s_{2} \oplus g_{1,1}, \quad g_{2,1}=g_{2,2}+p_{2,2} g_{1,1}, \\
& { }_{2} p s_{4}={ }_{1} p s_{4} \oplus g_{3,3}, \quad g_{4,3}=g_{4,4}+p_{4,4} g_{3,3}, \quad p_{4,3}=p_{4,4} p_{3,3} \\
& { }_{2} p s_{2}^{\prime}={ }_{1} p s_{2} \oplus g_{1,1}^{\prime}, \quad g_{2,1}^{\prime}=g_{2,2}+p_{2,2} g_{1,0}^{\prime},
\end{aligned}
$$

Stage 3:

$$
\begin{array}{ll}
{ }_{3} p s_{3}={ }_{1} p s_{3} \oplus g_{2,1}, & { }_{3} p s_{4}={ }_{2} p s_{4} \oplus p_{3,3} g_{2,1} \\
{ }_{3} p s_{3}^{\prime}={ }_{1} p s_{3} \oplus g_{2,1}^{\prime}, & { }_{3} p s_{4}^{\prime}={ }_{2} p s_{4} \oplus p_{3,3} g_{2,1}^{\prime} \\
c_{\text {out }}^{\prime}=g_{4,1}^{\prime}=g_{4,3}+p_{4,3} g_{2,1}^{\prime} &
\end{array}
$$

Referring to all the signals required to compute the two concurrent additions, ELMMA can be implemented by using all existing cells required by ELM and another additional cells, i.e., the E^{\prime} and the O cell, to perform the 3 -to- 2 operand compression in the SCSA stage. Figure 3.6 presents the inputs to the additional cell required by ELMMA.

3.3 Conclusion

In this chapter we first discussed ELM which can be considered as an enhancement of Ladner Fischer Parallel Prefix Adder (LFPPA). The enhancement is obtained by incorporating partial sum calculation along the generation of intermediate signal. The modification applied in ELM leads to reduction of one computation stage when compared with LFPPA. Subsequently, we presented the ELM Modular Adder (ELMMA), a state of the art modular addition scheme which builds upon ELM. ELMMA is a computation anticipation based approach which is result in a fast adder with less power utilization due to the fact that resource sharing is enabled for the adders computing the two concurrent additions required for the modular addition are performed. In the next chapter we
introduce our proposal to further improve ELMMA performance measured in terms of area, delay an power consumption and present some experimental results.

Enhanced ELM Modular
 Addition

The basic idea behind our proposal is to eliminate the initial reduction stage required by the state of the art ELMMA approach. This may potentially result in area and delay savings under the conditions that this removal is not heavily affecting the complexity of the ELM trees. In the chapter we first introduce our basic scheme and than we present it in more details for some moduli of practical interest. Finally, we present three practical implementations and compare their performance with the one of equivalent ELMMA implementations.

4.1 Eliminating the Simplified Carry Save Adder

In the ELMMA algorithm described in the previous chapter, the Simplified Carry Save Adder (SCSA) is used to perform 3-to-2 operand compression in order to fit the sum of three operand as input for the ELM tree. As one might observe, the SCSA is employed to the addition of two operand to serve the purpose of taking the advantage of resource sharing when inputs originating from two and three operand addition enter the ELM module. Two cases can be distingushed here with respect the computation latency and signal complexity, based on the form of ELMMA's additive inverse, t. For the case of $t_{i}=0$, the use of SCSA block can be avoided because the resutl of three operand addition is exactly the same to the two operand addition. This leads to area saving and latency reduction of one Full Adder (FA) when the SCSA module is removed from ELMMA scheme. On the other hand, the presence of the SCSA module in the case of $t_{i}=1$ is certainly required since the signals produced from the operand reduction of two and three operand are different. Certain equations can be obviously developed to either link the intermediate signal of three operand addition with signals produced by two operands or compute the intermediate signal of three operand addition without utilizing the SCSA block. However, simple signal equation cannot be maintained for every case and excessive new equations leads to the performance drawback. Therefore, this thesis focuses the improvement only to the choice of restricted moduli, which is dominantly influenced to the bit one appearance in t.

As mentioned in previous chapter, the E^{\prime} and O cells are used to compress the sum of three operand. In the case of SCSA block removal, the computation of three operand addition is performed in the ELMA tree, to replace signal computation performed in SCSA module. As shown in Table 4.1, the mutual exclusive relation between propagate and generate signals cannot be preserved anymore when the input $a=b=1$. This condition leads to the generation of Ambiguous Carry Ripple (ACR) when the assoiated bit position receives carry-in generated from previous position. Detailed explanation to this will be presented in next subsection.

ACR occurs when a generate signal affects more than one digit. In Figure 4.1, it is

Table 4.1: Propagate and Generate Signal in the Absence of SCSA

a	b	p	g	p^{\prime}	g^{\prime}
0	0	0	0	1	0
0	1	1	0	0	1
1	0	1	0	0	1
1	1	1	1	1	1

Figure 4.1: The Ripple of Ambiguous Carry
shown that when propagate and generate signals are equal to 1 , the carry generated at certain digit position may influence one subsequent digit or the digit after the next one. The worse ACR even could take place if t contains a series of consecutive one. In this case, the ambiguous carry could be generated in every digit position, except at the Least Significat Bit (LSB). Consequently, the signal complexity increases significantly and no benefit could be obtained in this case. Nevertheless, an improvement obtained from the SCSA saving becomes obvious if the ambiguous carry can be minimized in order to keep the signal complexity low. In this thesis, we achieve this by applying certain restricted moduli to the ELMMA scheme.

4.2 Proposed Scheme For Certain Restricted Moduli

A significant reduction of ACR occurs if the additive inverse, t, is not allowed to have bit with value of 1 in consecutive positions and the position of that bit is closed to the Most Significant Bit (MSB). By assuming the carry-in of the modulo addition is equal to 0 , the additive inverse with bit 1 discovered at the LSB will not have any impact to the emergence of the ambiguous carry signal. Applying this restriction of moduli selection, the additive inverse is in the form of $010 \ldots 1,010 \ldots 0$, and $001 \ldots 1$ for modulus in the form of $2^{n}-2^{n-2}, 2^{n}-\left(2^{n-2}+1\right)$, and $2^{n}-\left(2^{n-3}+1\right)$, respectively. Thus, the moduli of interest include: $2^{n}-2^{n-2}, 2^{n}-\left(2^{n-2}+1\right)$, and $2^{n}-\left(2^{n-3}+1\right)$. Although the selection of the moduli depends on the strategy to minimize the ACR , one modulus selection falls to the one which is reported in [10]. Furthermore, as one can observe in Table 4.2, modulus in the form of $2^{n}-\left(2^{n-2}+1\right)$ is relatively prime to $2^{n}-\left(2^{n-3}+1\right)$ for n within the span of $\{3,16\}$. Another possibility of proposed moduli utilization is to incorporate it with the famous modulus in the form of 2^{n} in order to present a set containing three relatively pairwise moduli.

Table 4.2: Number Factorization for the Corresponding Modulo

n	$2^{n}-\left(2^{n-2}+1\right)$	Fact.	$2^{n}-\left(2^{n-2}\right)$	Fact.	$2^{n}-\left(2^{n-3}+1\right)$	Fact.
3	5	5	6	2,3	6	2,3
4	11	11	12	2,3	13	13
5	23	23	24	2,3	27	3
6	47	47	48	2,3	55	5,11
7	95	5,19	96	2,3	111	3,37
8	191	191	192	2,3	223	223
9	383	383	384	2,3	447	3149
10	767	13,59	768	2,3	895	5,179
11	1535	5,307	1536	2,3	1791	3,199
12	3071	3071	3072	2,3	3583	3583
13	6143	6143	6144	2,3	7167	3,2389
14	12287	11,1117	12288	2,3	14335	$5,47,61$
15	24575	5,983	24576	2,3	28671	$3,19,503$
16	49151	23,2137	49152	2,3	57343	$11,13,401$

4.2.1 Moduli $2^{n}-2^{n-2}$ and $2^{n}-\left(2^{n-2}+1\right)$

For modulus $2^{n}-2^{n-2}$, bit 1 is discovered at position $n-2$ while for modulus $2^{n}-\left(2^{n-2}+\right.$ 1), bit 1 is discovered at positions n-2 and 1. For both moduli, resource sharing will be obtained for signal computation from bit position $n-3$ down to 2 in the best case. Since the computation signal of modulus $2^{n}-\left(2^{n-2}+1\right)$ is a superset of modulus $2^{n}-2^{n-2}$, thus a complete signal generation is presented only for the modulus $2^{n}-\left(2^{n-2}+1\right)$.

Although SCSA is no longer used in this scheme, almost all signal equations remain intact when compared with ELMMA's equations. The absence of SCSA only affects the signal equation for position $n-2$ and greater. To clearly explain the developed signal modification, we utilized $n=16$. Fig. 4.2 delineates all signal generation for modulo 49151. As shown in the picture, bold-printed signals are associated with the computation of three operand addition, whereas the remaining signals used in the tree of three operand addition come from the signal network of two operand addition.

To retain the modulo addition produced correctly, new signal equation is introduced for propagate signal of bit 15 to 14 . One can observe that partial sum, propagate, and generate signal at bit position 14 and the block containing bit position 14 remain the same, thus it does not require any modification, since the mutual exclusive within bit position 13,0 never violate. The formulation of mutually exclusive relation of the p and g is expressed as follows:

$$
\begin{equation*}
p_{i}+g_{i}=p_{i} \oplus p_{i} \tag{4.1}
\end{equation*}
$$

where $0 \leq i \leq 13$. Equation (4.1) ensures that all generate signals can be transmitted properly to each bit position in the range of $\{14,0\}$ during the construction of carry network in ELM tree. Hence, new signal formulation will only take place to the case of updating the partial sum at bit position 15 and propagating the generate signal over block $\{15,14\}$. Specifically to the case of $n=2^{m}$, no additional equation is required to

Figure 4.2: Proposed Signal generation for modulo 49151
be derived, since the partial signal of bit position 15 always receives a correct generate signal coming out from bit position 14 at the Stage 1. For general case, partial sum of bit position 15 has to be updated first to guarantee that the accumulation of parallel prefix is performed correctly. Thus, the equation which has to applied in general case is expressed as:

$$
\begin{equation*}
p s_{n-1}=p_{n-1} \oplus g_{n-1} \tag{4.2}
\end{equation*}
$$

The modification of new propagate signal for block of bit 15 and 14 is denoted as:

$$
\begin{equation*}
{ }_{1} p_{1514}^{\prime}=\left({ }_{0} p_{15}^{\prime}+{ }_{0} g_{14}\right)_{0} p_{14}^{\prime} \tag{4.3}
\end{equation*}
$$

Equation (4.3) implies that propagate signal at bit position 15 does not solely depends on its own input, but it is also influenced by the coming carry-in generated at bit position 14 of two operand addition. The modification aims to allow bit position 14 propagates generate signal over bit 15 when it receives carry-in when it also enables to propagate carry-in and generates carry-out at the same time (${ }_{0} p_{14}^{\prime}={ }_{0} g_{14}^{\prime}=1$). Another signal which needs an attention is the partial sum at bit position 15 in stage $0\left({ }_{0} p s_{15}^{\prime}\right)$. In this stage, it is assumed that partial sum of bit 15 always receives carry-in produced by bit position 14. Then the correction is made when bit position 14 propagates carry-in. The latter condition holds true since bit position 15 (or each bit position, in general
case) receives carry-in with the value of 1 only once because of the mutual exclusive relation between propagate and generate signal (when a position generates carry-out, the propagate signal at the bit position or the block of propagate signal containing the bit position is always zero because of the mutual exclusive relation between propagate and generate signal in the case of the sum of two operand).

4.2.2 Modulus $2^{n}-\left(2^{n-3}+1\right)$

The proposed ELMMA for modulus $2^{n}-\left(2^{n-3}+1\right)$ is derived by applying local 3 -to- 2 operand reduction. Consequently, the delay of the proposed ELMMA increases. From Fig. 4.3, it can be observed that more intermediate signals must be computed at Stage 0 and Stage 1, resulting in higher area cost when compared with existing ELMMA at this point. The signal equations are derived by applying the following:

1. At Stage 0 , all propagate and generate signals are computed. No signal equation modification is found here.
2. At Stage 1, partial sum of position 14 is updated to let it store a correct value after it receives carry-in coming from previous block. The propagate signal is denoted as: ${ }_{1} p s_{14}^{\prime}={ }_{0} p_{14} \oplus{ }_{0} g_{13}^{\prime}$. A new signal definition, ${ }_{1} h_{1514}^{\prime}$, is introduced, aiming to hold generate signal affecting bit position 15 . The ${ }_{1} h_{1514}^{\prime}$ is denoted as the product of ${ }_{0} h_{14}$ and ${ }_{0} g_{13}^{\prime}$.
3. At Stage 2, partial sum at bit position 14 is updated when generate signal is produced from bit position 13 and $12\left({ }_{2} p s_{14}={ }_{1} p s_{14}^{\prime} \oplus{ }_{1} g_{1312}^{\prime}\right)$. Because a carry save addition is performed to bit position 14 and 15 at Stage 1, the calculation of propagate, generate, and partial sum signal which contains value of bit position 15 and 14 are defined as:

$$
\begin{aligned}
& { }_{2} p_{1412}^{\prime}={ }_{1} p s_{14}^{\prime} \oplus{ }_{1} p s_{14}^{\prime}{ }_{1} g_{1312}^{\prime} \oplus{ }_{1} h_{1514} \\
& { }_{2} g_{1512}={ }_{1} g_{1514}+{ }_{1} p s_{15}{ }_{1} h_{1514}^{\prime} \\
& { }_{2} h_{1514}^{\prime}={ }_{1} p s_{15}{ }_{1} p s_{14}^{\prime}{ }_{1} g_{1312}^{\prime} \\
& { }_{2} p_{1412}^{\prime}={ }_{1} p s_{14}^{\prime}{ }_{1} p_{1312}^{\prime}{ }_{1} g_{1312}^{\prime} \\
& { }_{2} p_{1512}^{\prime}={ }_{1} p s_{15}{ }_{1} p s_{14}{ }_{1} g_{1312}^{\prime}
\end{aligned}
$$

4. In Stage 3 and 4, all signals are computed with the same equations as we have in the existing ELMMA algorithm. The carry-out of proposed ELMMA is obtained as the OR result of ${ }_{2} h_{1514}^{\prime}$ and ${ }_{4} g_{150}^{\prime}$.

4.3 Experimental Results

Two sets of designs, state of the art and enhanced ELMMA, have been developed in VHDL for three cases: $2^{n}-\left(2^{n-2}+1\right), 2^{n}-2^{n-2}$, and $2^{n}-\left(2^{n-3}+1\right)$ with $\mathrm{n}=16$. After careful simulations and debug we synthesized all the designs, using the Cadence Encounter RTL Compiler for ASIC Designs at 90 nm CMOS technology. The performance of all designs measured in terms of area, delay and power has been estimated.

Figure 4.3: Signal Generation on the Scheme of Proposed Design for $\mathrm{m}=57343$

Table 4.3 summarizes the synthesis results for the moduli $2^{n}-\left(2^{n-2}+1\right), 2^{n}-2^{n-2}$, and $2^{n}-\left(2^{n-3}+1\right)$ for the case of $\mathrm{n}=16$, thus modulo 49151, 49152, and 57343 , respectively. Our results indicate that the SCSA removal applied in the proposed ELMMA improves the speed of computation while occupying smaller area and consuming less power. Based on the simple metrics with rescpect to Delay(D), Area(A), and Power(P), the enhanced ELMMA for modulo 49151 has relatively balance improvement in its three aspects, spanning between $13 \%-15 \%$ improvement. In the remaining moduli forms, the chart indicates the significant improvement in area saving, followed by the power efficiency. This holds true, since the target of improvement is to remove the utilization of SCSA, which significantly affect the total area required for the enhanced ELMMA. To further asses the implication of our proposal, we also compared the two type of designs in terms of compound metrics as Power x Delay (PD), Area x Delay (AD), Area x Power (AP), and Area x Delay 2 (DDA). The improvement in percentage of the enhanced ELMMA over the state of the art one is presented in Figure 4.5. The chart indicates that the savings of each metric is larger than 20%, with the average savings of $23 \%, 25 \%$, and 26% in DP, AP, and DDA, respectively. The detail synthesis result for all three cases is provided as appendix.

Table 4.3: Synthesis Result for $\mathrm{n}=16$

m	Delay (ps)		Area (Cell Area)		Power $(\mu \mathrm{W})$	
	Proposed	ELMMA	Proposed	ELMMA	Proposed	ELMMA
49151	1050	1227	857	986	50061	59170
49152	913	943	640	767	34239	42937
57343	1132	1256	895	1001	51485	59695

Figure 4.4: Enhanced vs Standard ELMMA Improvement in Terms of Simple Metrics.

4.4 Conclusion

Moduli restriction is applied on the state of the art modulo adder, ELMMA, resulting to the enhanced ELMMA design. The strategy of selecting the moduli is presented,

Figure 4.5: Enhanced vs Standard ELMMA Improvement in Terms of Compound Metrics.
coming up with the moduli selection in the form of $\left(2^{n}-\left(2^{n-2}+1\right)\right),\left(2^{n}-2^{n-2}\right)$, and $\left(2^{n}-\left(2^{n-3}+1\right)\right)$. The simplest modification is found in the case of $\left(2^{n}-\left(2^{n-2}+1\right)\right)$ and ($2^{n}-2^{n-2}$), where one modified equation is found at the bit position 15 . Modulus in the form of $2^{n}-\left(2^{n-3}+1\right)$ have more complicated signals due to the need to pass on the information of ambiguous carry ripple which could occur from position 2^{n-3}. For the case of modulus 49151, the proposed ELMMA requires 13% smaller area, 14% faster, and 15% more power efficient when compared with existing ELMMA design. In other modulus case, proposed ELMMA is more cost efficient especially in power and area, while the improvement of the speed is slightly better than existing one. From the compound metrics result, the enhanced ELMMA outperform the existing one with 23%, $25 \%, 25 \%$, and 26% of average of DP, AD, AP, and DDA saving.

Conclusions

5.1 Summary

Chapter 2 discussed fundamental information about the basic notions and several important properties of RNS which gives the base for the succeeding chapters. First, the definition of Weighted Number System (WNS) and general characteristic is presented. Then the explanation of WNS limitation is described, focusing to the speed limitation due carry propagation. Next, RNS is introduced as one of the answer to eliminate carry propagation and thus speed up the computation. A brief explanation of RNS advantages and disadvantages are presented, leading to the conclusion that the use of RNS in special purpose application and the need to make modular based operation more efficient when operating in large digit number. The chapter was closed with the introduction of parallel prefix addition as the underlying algorithm applied in state of the art modular adder, ELMMA.

Chapter 3 presented an overview of ELM, a parallel prefix which is claimed to have higher performance than other parallel prefix adder. Signal generation involved in the ELM computation is also provided, which requires one less stage to complete computation when compared with the Ladner Fischer adder. Subsequently, we presented the ELM Modular Adder (ELMMA), a state of the art modular addition scheme which builds upon ELM. ELMMA is a computation anticipation based approach which is result in a fast adder with less power utilization due to the fact that resource sharing is enabled for the adders computing the two concurrent additions required for the modular addition are performed.

A new enhanced ELM modular adder was presented in Chapter 4. The discussion opened with the idea behind the enhanced ELMMA, that is to eliminate the simplified carry save adder module. An improvement can be obtained when moduli restriction is applied to ELMMA, to minimize the generation of ambiguous carry ripple. Applying the strategy to select the moduli, the performance of enhanced ELMMA adder in the form of moduli $2^{n}-2^{n-2}, 2^{n}-\left(2^{n-2}+1\right)$, and $2^{n}-\left(2^{n-3}+1\right)$ are investigated. As indicated by the synthesis tool, the largest on average improvement of enhanced ELMMA can be seen on the area saving, followed by power consumption, and then delay. For the case of modulus 49151, the proposed ELMMA requires 13% smaller area, 14% faster, and 15% more power efficient when compared with existing ELMMA design. In other modulus case, proposed ELMMA is more cost efficient especially in power and area, while the improvement of the speed is slightly better than existing one. The comparison of compound metrics is also provided, to give an indication the superiority of the enhanced ELMMA over state of the art ELMMA in when comparison is performed to the combination of (delay, area), (delay, power), and (area, power). From the compound metrics result, the enhanced ELMMA outperform the existing one with $23 \%, 25 \%, 25 \%$, and 26% of average DP, AD,

AP, and DDA saving.

5.2 Major Contributions

In this thesis, we presented a number of novel modulo adders. Our overall achievements can be summarized by the following:

- We identify the moduli in the form of $\left(2^{n}-2^{n-2}\right),\left(2^{n}-\left(2^{n-2}+1\right)\right)$, and $\left(2^{n}-\right.$ $\left.\left(2^{n-3}+1\right)\right)$ as relevant candidates for the modulo adder implementations. The moduli selection is based on the scenario of minimizing ambiguous carry ripple and the the utilization of the moduli in practice.
- We estimate the performance of state of the art and the enhanced ELMMA. We simulated, debug, and synthesized the designs using Cadence Encounter RTL Compiler for ASIC Designs for 90 nm CMOS technology and the results indicate
- For the moduli $\left(2^{n}-\left(2^{n-2}+1\right)\right)$, our scheme is 14% faster, 13% lesser area cost, and consumes 15% lesser power when compared with the ELMMA algorithm. With respect to compound metrics, the enhanced ELMMA improves the DP, AP, AD, and DDA about $27 \%, 26 \%, 25 \%, 35 \%$, respectively, when compared to the existing ELMMA.
- For the moduli $\left(2^{n}-2^{n-2}\right)$, our scheme is 3% faster, 32% lesser area cost, and consumes 20% lesser power when compared with the ELMMA algorithm. With respect to compound metrics, the enhanced ELMMA improves the DP, AP, AD, and DDA about $22 \%, 33 \%, 19 \%, 24 \%$, respectively, when compared to the existing ELMMA.
- For the moduli $\left(2^{n}-\left(2^{n-3}+1\right)\right.$), our scheme is 9% faster, 28% lesser area cost, and consumes 13% lesser power when compared with the ELMMA algorithm. With respect to compound metrics, the enhanced ELMMA improves the DP, AP, AD, and DDA about $22 \%, 22 \%, 24 \%, 27 \%$, respectively, when compared to the existing ELMMA.

5.3 Future Directions

In this section, we present some future directions that could further improve RNS arithmetic.

- Given that for the moduli $2^{n}-\left(2^{n-2}+1\right), 2^{n}-2^{n-2}$, and $2^{n}-\left(2^{n-3}+1\right)$, efficient modulo adders have been presented, it will be interesting to find out if efficient modulo multipliers can be designed using these moduli.
- Moduli $2^{n}-2^{n-2}$ and $2^{n}-\left(2^{n-2}-1\right)$ can be denoted as 3.2^{n} and $3.2^{n}+1$, respectively. The new moduli forms imply that the modulo addition of $2^{n}-\left(2^{n-2}-1\right)$ can be obtained from the modulo addition of $2^{n}-2^{n-2}$ by restricting zero to be the valid input for the addtion, in order to fully map all number representation of modulo $2^{n}-\left(2^{n-2}-1\right)$ to modulo $2^{n}-2^{n-2}$ [2]. Diminished one representation
can be used to support the restriction and new ELMMA design can be developed based on the representation of diminished one representation. The same approach can be applied to modulo $\left(2^{n}-\left(2^{n-3}+1\right)\right)$.

Bibliography

[1] R. P. Brent and H. T. Kung, A regular layout for parallel adders, IEEE Transactions on Computers (1982).
[2] Costas Efstathiou Haridimos T. Vergos and Dimitris Nikolos, Diminished-One Modulo $2^{n}+1$ Adder Design, Computer Arithmetic, 1999. Proceedings. 14th IEEE Symposium on (2002).
[3] S. Knowles, A family of adders, IEEE Transactions on Computers (2002).
[4] P. Kogge and H. Stone, A parallel algorithm for the efficient solution of a general class of recurrence equations, IEEE Transaction on Computers (1973).
[5] Israel Koren, Computer arithmetic algorithm, 2nd ed., A K Peters, Ltd., University of Massachussets, Amherst, 2002.
[6] R. E. Ladner and M. J. Fischer, Parallel prefix computation, Journal of the ACM (1980).
[7] Mi Lu, Arithmetic and logic in computer systems, vol. 1, John Wiley \& Sons, Inc., 2004.
[8] Amos Omondi and Benyamin Premkumar, Residue number systems, theory and implementation, Imperial College Press, Yonsei University, South Korea and Nanyang Technological University, Singapore, 2007.
[9] Behrooz Parhami, Computer arithmetic: Algorithms and hardware designs, Oxford University Press, Department of Electrical and Computer Engineering, 2002.
[10] M. Benaissa R. A. Patel and S. Boussakta, Fast Modulo $2^{n}-\left(2^{n-2}+1\right)$ Addition: A New Class of Adder for RNS, IEEE (2006).
[11] N. Powell R. A. Patel, M. Benaissa and S. Boussakta, ELMMA A New Low Power High-Speed Adder for RNS, IEEE (2004).
[12] N. S. Szabo and R. I. Tanaka, Residue arithmetic and its applications to computer technology, McGraw-Hill, New York, 1967.
[13] R. M. Owens T. P. Kelliher and T.-T. Hwang, ELM - A Fast Addition Algorithm Discovered by a Program, IEEE Transactions on Computers (1992).

Synthesis Result for Modulo 49151

Table A.1: Area of the existing ELMMA for modulo 49151

Instance	Cells	Cell Area
14ps15p	2	8
14 ps 15	2	8
14 ps 14 p	2	8
14ps14	2	8
14ps13p	2	8
14 ps 13	2	8
14 ps 12 p	2	8
14 ps 12	2	8
14 ps 11 p	2	8
14 ps 11	2	8
14 ps 10 p	2	8
14 ps 10	2	8
13ps8p	2	8
13ps8	2	8
13ps7p	2	8
13ps7	2	8
13ps6p	2	8
13ps6	2	8
13ps15p	2	8
13ps15	2	8
13ps14p	2	8
13ps14	2	8
12ps8	2	8
12ps4p	2	8
12ps4	2	8
12ps12	2	8
xs_yc_bit0_15_gen[9].xs_scsa	1	7
xs_yc_bit0_15_gen[8].xs_scsa	1	7
xs_yc_bit0_15_gen[7].xs_scsa	1	7
xs_yc_bit0_15_gen[6].xs_scsa	1	7
xs_yc_bit0_15_gen[5].xs_scsa	1	7
xs_yc_bit0_15_gen[4].xs_scsa	1	7
xs_yc_bit0_15_gen[3].xs_scsa	1	7
xs_yc_bit0_15_gen[2].xs_scsa	1	7
xs_yc_bit0_15_gen[1].xs_scsa	1	7
xs_yc_bit0_15_gen[15].xs_scsa	1	7
xs_yc_bit0_15_gen[14].xs_scsa	1	7
xs_yc_bit0_15_gen[13].xs_scsa	1	7
xs_yc_bit0_15_gen[12].xs_scsa	1	7
xs_yc_bit0_15_gen[11].xs_scsa	1	7
xs_yc_bit0_15_gen[10].xs_scsa	1	7
xs_yc_bit0_15_gen[0].xs_scsa	1	7
p_g_n0_to_n15_level0_gen[9].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[8].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[7].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[6].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[5].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[4].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[3].p_n1_to_n15_level0	,	7
p_g_n0_to_n15_level0_gen[2].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[1].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[15].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[14].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[13].p_n1_to_n15_level0		7
p_g_n0_to_n15_level0_gen [12].p_n1_to_n15_level0	,	7
p_g_n0_to_n15_level0_gen[11].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[10].p_n1_to_n15_level0	,	7
$14 \mathrm{ps} 9 \mathrm{p}$	1	7
14 ps 9	1	7
13ps5p	1	7
13ps5	1	7
13ps13	1	7
12ps7	1	7
12ps3p	1	7
12ps3	1	7
12ps15p	1	7
12ps15	1	7
12ps11	1	7
11 ps 8	1	7

Table A. 1 - Continued

Instance	Cells	Cell Area
11ps6	1	7
11 ps 4	1	7
11 ps 2 p	1	7
11 ps 2	1	7
11 ps 14 p	1	7
11 ps 14	1	7
11 ps 12	1	7
11 ps 10	1	7
10p1p	1	7
10p15p	1	7
10p14p	1	7
MUX_bit9	1	6
MUX_bit8	1	6
MUX_bit7	1	6
MUX_bit6	1	6
MUX_bit5	1	6
MUX_bit4	1	6
MUX_bit3	1	6
MUX_bit2	1	6
MUX_bit15	1	6
MUX_bit14	1	6
MUX_bit13	1	6
MUX_bit12	1	6
MUX_bit11	1	6
MUX_bit10	1	6
MUX_bit1	1	6
MUX_bit0	1	6
xsp_bit14	1	6
xsp_bit0	1	6
14g151p	1	5
13g81p	1	5
13 g 81	1	5
13g159p	1	5
12g85	1	5
12g41p	1	5
12 g 41	1	5
12g1513p	1	5
12g129	1	5
11g87	1	5
11g65	1	5
11 g 43	1	5
11g21p	1	5
11 g 21	1	5
11g1413p	1	5
11g1413	1	5
11 g 1211	1	5
11g109	1	5
ycp_bit15	1	4
ycp_bit1	1	4
xs_yc_bit0_15_gen[9].yc_scsa	1	4
xs_yc_bit0_15_gen[8].yc_scsa	1	4
xs_yc_bit0_15_gen [7].yc_scsa	1	4
xs_yc_bit0_15_gen[6].yc_scsa	1	4
xs_yc_bit0_15_gen[5].yc_scsa	1	4
xs_yc_bit0_15_gen[4].yc_scsa	1	4
xs_yc_bit0_15_gen[3].yc_scsa	1	4
xs_yc_bit0_15_gen [2].yc_scsa	1	4
xs_yc_bit0_15_gen[1].yc_scsa	1	4
xs_yc_bit0_15_gen[15].yc_scsa	1	4
xs_yc_bit0_15_gen[14].yc_scsa	1	4
xs_yc_bit0_15_gen[13].yc_scsa	1	4
xs_yc_bit0_15_gen[12].yc_scsa	1	4
xs_yc_bit0_15_gen[11].yc_scsa	1	4
xs_yc_bit0_15_gen [10].yc_scsa	1	4
xs_yc_bit0_15_gen[0].yc_scsa	1	4
p_g_n0_to_n15_level0_gen[9].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[8].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[7].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[6].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[5].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[4].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[3].g_n1_to_n15_level0	1	4
p-g_n0_to_n15_level0_gen[2].g_n1_to_n15_level0	1	4
p-g_n0_to_n15_level0_gen[1].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[14].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen [13].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[12].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[11].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[10].g_n1_to_n15_level0	1	4
13 p 159 p	1	4
13p149p	1	4
13p149	1	4
13p139	1	4
12 p 85	1	4

Continued on Next Page. .

Table A. 1 - Continued

Instance	Cells	Cell Area
l2p75	1	4
l2p1513p	1	4
l2p129	1	4
l2p119	1	4
l1p875	1	4
l1p43	1	4
l1p1413p	1	4
l1p1413	1	4
l1p1211	1	4
l1p109	1	4
l0g15p	1	4
log14p	1	4
cout_prime	1	4
Total	1	4

Table A.2: Area of the proposed ELMMA for modulo 49151

Instance	Cells	Cell Area
14ps9p	2	8
14 ps 9	2	8
14 ps 15 p	2	8
14 ps 15	2	8
14 ps 14 p	2	8
14 ps 14	2	8
14ps13p	2	8
14 ps 13	2	8
14 ps 12 p	2	8
14 ps 12	2	8
14 ps 11 p	2	8
14 ps 11	2	8
14 ps 10 p	2	8
14 ps 10	2	8
13ps7p	2	8
13ps7	2	8
13ps6p	2	8
13 ps 6	2	8
13 ps 5 p	2	8
13ps5	2	8
13ps15p	2	8
13 ps 15	2	8
13 ps 14 p	2	8
13 ps 14	2	8
13 ps 13	2	8
12ps7	2	8
12ps3p	2	8
12ps3	2	8
12ps15p	2	8
12ps15	2	8
12ps11	2	8
xs_yc_bit0_15_gen[9].xs_scsa	1	7
xs_yc_bit0_15_gen[8].xs_scsa	1	7
xs_yc_bit0_15_gen[7].xs_scsa	1	7
xs_yc_bit0_15_gen[6].xs_scsa	1	7
xs_yc_bit0_15_gen[5].xs_scsa	1	7
xs_yc_bit0_15_gen[4].xs_scsa	1	7
xs_yc_bit0_15_gen[3].xs_scsa	1	7
xs_yc_bit0_15_gen[2].xs_scsa	1	7
xs_yc_bit0_15_gen[1].xs_scsa	1	7
xs_yc_bit0_15_gen[15].xs_scsa	1	7
xs_yc_bit0_15_gen [14].xs_scsa	1	7
xs_yc_bit0_15_gen[13].xs_scsa	1	7
xs_yc_bit0_15_gen[12].xs_scsa	1	7
xs_yc_bit0_15_gen[11].xs_scsa	1	7
xs_yc_bit0_15_gen[10].xs_scsa	1	7
xs_yc_bit0_15_gen[0].xs_scsa	1	7
14 ps 8 p	1	7
14 ps 8	1	7
13ps4p	1	7
13 ps 4	1	7
13 ps 12	1	7
12ps6	1	7
12ps2p	1	7
12ps2	1	7
12ps14p	1	7
12ps14	1	7
12ps10	1	7
11 ps 9	1	7
11 ps 7	1	7
11 ps 5	1	7
Continued on Next Page. .		

Instance	Cells	Cell Area
11ps3	1	7
11ps1p	1	7
11 ps 15 p	1	7
11 ps 15	1	7
11 ps 13	1	7
11 ps 11	1	7
11 ps 1	1	7
MUX_bit9	1	6
MUX_bit8	1	6
MUX_bit7	1	6
MUX_bit6	1	6
MUX_bit5	1	6
MUX_bit4	1	6
MUX_bit3	1	6
MUX_bit2	1	6
MUX_bit15	1	6
MUX_bit14	1	6
MUX_bit13	1	6
MUX_bit12	1	6
MUX_bit11	1	6
MUX_bit10	1	6
MUX_bit1	1	6
MUX_bit0	1	6
xsp_bit14	1	6
xsp_bit0	1	6
14 g 151 p	1	5
13g70p	1	5
13 g 70	1	5
13g158p	1	5
12 g 74	1	5
12 g 30 p	1	5
12 g 30	1	5
12g1512p	1	5
12 g 118	1	5
11 p 1514 p	1	5
11g98	1	5
11 g 76	1	5
11g54	1	5
11 g 32	1	5
11 g 1514 p	1	5
11 g 1312	1	5
11 g 1110	1	5
11g10p	1	5
11 g 10	1	5
ycp_bit14	1	4
ycp_bit0	1	4
xs_yc_bit0_15_gen[9].yc_scsa	1	4
xs_yc_bit0_15_gen[8].yc_scsa	1	4
xs_yc_bit0_15_gen[7].yc_scsa	1	4
xs_yc_bit0_15_gen[6].yc_scsa	1	4
xs_yc_bit0_15_gen[5].yc_scsa	1	4
xs_yc_bit0_15_gen[4].yc_scsa	1	4
xs_yc_bit0_15_gen[3].yc_scsa	1	4
xs_yc_bit0_15_gen[2].yc_scsa	1	4
xs_yc_bit0_15_gen[1].yc_scsa	1	4
xs_yc_bit0_15_gen[15].yc_scsa	1	4
xs_yc_bit0_15_gen[14].yc_scsa	1	4
xs_yc_bit0_15_gen[13].yc_scsa	1	4
xs_yc_bit0_15_gen[12].yc_scsa	1	4
xs_yc_bit0_15_gen[11].yc_scsa	1	4
xs_yc_bit0_15_gen[10].yc_scsa	1	4
xs_yc_bit0_15_gen[0].yc_scsa	1	4
13 p 158 p	1	4
13p148p	1	4
13p148	1	4
13p138	1	4
13p128	1	4
12p74	1	4
12p64	1	4
12p1512p	1	4
12p1412p	1	4
12p1412	1	4
12p118	1	4
12p108	1	4
11 p 98	1	4
11 p 76	1	4
11p54	1	4
11p32	1	4
11p1312	1	4
11p1110	1	4
Total	172	857

Table A.3: Timing of the existing ELMMA for modulo 49151

Pin	Fanout Load	$\begin{aligned} & \hline \text { Delay } \\ & \text { (ps) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Arrival } \\ & \text { (ps) } \\ & \hline \end{aligned}$
yin[3]	2	0	0
$\begin{aligned} & \text { xs_yc_bit0_15_gen[3].xs_scsa/G } \\ & \text { g10/A2 } \\ & \text { g10/Z } \\ & \text { xs_yc_bit0_15_gen[3].xs_scsa/Eout } \\ & \hline \end{aligned}$	2	$\begin{aligned} & 0 \\ & 121 \end{aligned}$	$\begin{aligned} & 0 \\ & 121 \end{aligned}$
$\begin{aligned} & \text { p_g_n0_to_n15_level0_gen[3].p_n1_to_n15_level0/ps } \\ & \text { g10/A2 } \\ & \text { g10/Z } \\ & \text { p_g_n0_to_n15_level0_gen[3].p_n1_to_n15_level0/Eout } \end{aligned}$	5	$\begin{aligned} & 0 \\ & 171 \end{aligned}$	$\begin{aligned} & 121 \\ & 292 \end{aligned}$
$\begin{gathered} 11 \mathrm{p} 43 / \mathrm{Q} \\ \mathrm{~g} 8 / \mathrm{A} 1 \\ \mathrm{~g} 8 / \mathrm{Z} \\ 11 \mathrm{p} 43 / \text { Pout } \\ \hline \end{gathered}$	2	$\begin{aligned} & 0 \\ & 81 \end{aligned}$	$\begin{aligned} & 292 \\ & 373 \end{aligned}$
$\begin{gathered} \hline 12 \mathrm{~g} 41 \mathrm{p} / \mathrm{P} \\ \mathrm{~g} 14 / \mathrm{A} 2 \\ \mathrm{~g} 14 / \mathrm{Z} \\ 12 \mathrm{~g} 41 \mathrm{p} / \mathrm{Gout} \end{gathered}$	5	$\begin{aligned} & 0 \\ & 98 \end{aligned}$	$\begin{aligned} & 373 \\ & 471 \end{aligned}$
$\begin{gathered} \hline 13 \mathrm{~g} 81 \mathrm{p} / \mathrm{H} \\ \mathrm{~g} 14 / \mathrm{A} 1 \\ \mathrm{~g} 14 / \mathrm{Z} \\ 13 \mathrm{~g} 81 \mathrm{p} / \mathrm{Gout} \\ \hline \end{gathered}$	8	$\begin{aligned} & 0 \\ & 134 \end{aligned}$	$\begin{aligned} & 471 \\ & 605 \end{aligned}$
$\begin{gathered} \hline 14 \mathrm{~g} 151 \mathrm{p} / \mathrm{H} \\ \mathrm{~g} 14 / \mathrm{A} 1 \\ \mathrm{~g} 14 / \mathrm{Z} \\ 14 \mathrm{~g} 151 \mathrm{p} / \mathrm{Gout} \\ \hline \end{gathered}$	1	$\begin{aligned} & 0 \\ & 76 \end{aligned}$	$\begin{aligned} & 605 \\ & 681 \end{aligned}$
```cout_prime/x g2/A1 g2/Z cout_prime/Oout```	16	$\begin{aligned} & 0 \\ & 390 \end{aligned}$	$\begin{aligned} & 681 \\ & 1071 \end{aligned}$
$\begin{gathered} \hline \text { MUX_bit0/sel } \\ \text { g23/S } \\ \text { g23/Z } \\ \text { MUX_bit0/pout } \\ \hline \end{gathered}$	1		$\begin{aligned} & 1071 \\ & 1227 \end{aligned}$
elmmaout[0]		0	1227

Table A.4: Timing of the proposed ELMMA for modulo 49151

Pin	Fanout Load	Delay (ps)	Arrival (ps)
yin[2]	2	0	0
$\begin{aligned} & \text { xs_yc_bit0_15_gen[2].xs_scsa/G } \\ & \text { g10/A2 } \\ & \text { g10/Z } \\ & \text { xs_yc_bit0_15_gen[2].xs_scsa/Eout } \end{aligned}$	5	$\begin{aligned} & 0 \\ & 158 \end{aligned}$	$\begin{aligned} & 0 \\ & 158 \end{aligned}$
$\begin{gathered} \hline 11 \mathrm{p} 32 / \mathrm{Q} \\ \text { g8/A1 } \\ \text { g8/Z } \\ 11 \mathrm{p} 32 / \text { Pout } \\ \hline \end{gathered}$	2	$\begin{aligned} & 0 \\ & 81 \end{aligned}$	$\begin{aligned} & 158 \\ & 239 \end{aligned}$
$\begin{gathered} \hline 12 \mathrm{~g} 30 \mathrm{p} / \mathrm{P} \\ \mathrm{~g} 14 / \mathrm{A} 2 \\ \mathrm{~g} 14 / \mathrm{Z} \\ 12 \mathrm{~g} 30 \mathrm{p} / \mathrm{Gout} \\ \hline \end{gathered}$	5	$\begin{aligned} & 0 \\ & 98 \end{aligned}$	$\begin{aligned} & 239 \\ & 337 \end{aligned}$
$\begin{gathered} \hline 13 \mathrm{~g} 70 \mathrm{p} / \mathrm{H} \\ \mathrm{~g} 14 / \mathrm{A} 1 \\ \mathrm{~g} 14 / \mathrm{Z} \\ 13 \mathrm{~g} 70 \mathrm{p} / \text { Gout } \\ \hline \end{gathered}$	9	$\begin{aligned} & 0 \\ & 142 \end{aligned}$	$\begin{aligned} & 337 \\ & 479 \end{aligned}$
$\begin{gathered} \hline 14 \mathrm{~g} 151 \mathrm{p} / \mathrm{H} \\ \mathrm{~g} 14 / \mathrm{A} 1 \\ \mathrm{~g} 14 / \mathrm{Z} \\ 14 \mathrm{~g} 151 \mathrm{p} / \mathrm{Gout} \\ \hline \end{gathered}$	16	$\begin{aligned} & 0 \\ & 415 \end{aligned}$	$\begin{aligned} & 479 \\ & 894 \end{aligned}$
$\begin{gathered} \hline \text { MUX_bit0/sel } \\ \text { g23/S } \\ \text { g23/Z } \\ \text { MUX_bit0/pout } \\ \hline \end{gathered}$	1	$\begin{aligned} & 0 \\ & 156 \end{aligned}$	$\begin{aligned} & 894 \\ & 1050 \end{aligned}$
elmmaout[0]		0	1050

Table A.5: Total power of the existing ELMMA for modulo 49151

| Instance | Cells | Leakage <br> $(\mathbf{n W})$ | Power | Dyanmic <br> $\mathbf{( n W )}$ |
| :--- | :---: | :--- | :--- | :--- | Power | Total Power (nW) |
| :--- |
| l0p15p |
| l0p1p |
| xs_yc_bit0..en[2].xs_scsa |
| xs_yc_bit0..en[6].xs_scsa |
| xs_yc_bit0..en[3].xs_scsa |

Table A. 5 - Continued

Instance	Cells	Leakage $(\mathrm{nW})$	Power	$\begin{aligned} & \text { Dyanmic } \\ & (\mathrm{nW}) \end{aligned}$	Power	Total Power ( nW )
xs_yc_bit0..en[4].xs_scsa	1	0.922		302.437		303.358
xs_yc_bit0..en[5].xs_scsa	1	0.922		302.437		303.358
xs_yc_bit0..n[11].xs_scsa	1	0.921		264.630		265.552
xs_yc_bit0..n[12].xs_scsa	1	0.921		302.435		303.356
xs_yc_bit0..n[14].xs_scsa	1	0.921		302.435		303.356
xs_yc_bit0..n[15].xs_scsa	1	0.921		351.249		352.171
xs_yc_bit0..en[1].xs_scsa	1	0.921		392.924		393.845
xs_yc_bit0..en[8].xs_scsa	1	0.921		302.435		303.356
xs_yc_bit0..en[9].xs_scsa	1	0.921		302.435		303.356
xs_yc_bit0..n[10].xs_scsa	1	0.921		302.432		303.354
xs_yc_bit0..en[0].xs_scsa	1	0.921		250.226		251.148
xs_yc_bit0..en[7].xs_scsa	1	0.921		302.414		303.335
xs_yc_bit0..n[13].xs_scsa	1	0.921		264.610		265.531
11 ps 2 p	1	0.921		509.040		509.961
p_g_n0_to_..to_n15_level0	1	0.920		319.973		320.892
p_g_n0_to_..to_n15_level0	1	0.919		636.713		637.632
p_g_n0_to_..to_n15_level0	1	0.919		494.619		495.537
p_g_n0_to_..to_n15_level0	1	0.918		416.148		417.066
p_g_n0_to_..to_n15_level0	1	0.918		581.401		582.319
P_g_n0_to_..to_n15_level0	1	0.917		564.845		565.762
p_g_n0_to_..to_n15_level0	1	0.917		454.774		455.691
p_g_n0_to_..to_n15_level0	1	0.916		532.371		533.286
$10 \mathrm{p} 14 \mathrm{p}$	1	0.916		536.635		537.551
p_g_n0_to_..to_n15_level0	1	0.915		630.972		631.887
p_g_n0_to_..to_n15_level0	1	0.915		448.413		449.328
p_g_n0_to_..to_n15_level0	1	0.915		799.270		800.185
p_g_n0_to_..to_n15_level0	1	0.915		689.099		690.014
p_g_n0_to_..to_n15_level0	1	0.914		570.969		571.884
11 ps 8	1	0.914		443.922		444.836
p_g_n0_to_..to_n15_level0	1	0.913		624.459		625.372
p_g_n0_to_..to_n15_level0	1	0.913		482.933		483.846
11 ps 12	1	0.913		485.558		486.471
11 ps 14 p	1	0.913		561.215		562.127
11 ps 14	1	0.913		560.930		561.843
11 ps 2	1	0.912		393.890		394.802
12ps3p	1	0.912		492.460		493.372
$11 \mathrm{ps6} 6$	1	0.912		602.245		603.157
11 ps 10	1	0.912		671.280		672.192
11 ps 4	1	0.912		573.796		574.708
13ps5p	1	0.911		420.452		421.364
13ps5	1	0.911		382.090		383.002
13 ps 13	1	0.908		767.154		768.063
12ps15	1	0.908		513.019		513.927
12ps3	1	0.908		474.239		475.147
12ps15p	1	0.907		543.010		543.917
14 ps 9	1	0.906		443.203		444.110
14ps9p	1	0.906		449.880		450.786
12ps11	,	0.904		608.946		609.851
12ps7	1	0.898		639.272		640.170
MUX_bit15	1	0.633		375.492		376.125
MUX_bit0	1	0.633		354.280		354.913
MUX_bit10	1	0.632		335.973		336.606
MUX_bit14	1	0.632		483.496		484.129
MUX_bit6	,	0.632		302.021		302.653
MUX_bit13	1	0.632		357.362		357.993
MUX_bit3	1	0.631		338.929		339.561
MUX_bit11	1	0.631		301.579		302.210
MUX_bit4	1	0.631		320.303		320.933
10g15p	1	0.625		215.172		215.797
MUX_bit12	1	0.625		338.482		339.107
MUX_bit2	1	0.623		319.853		320.475
10g1p	1	0.618		293.128		293.746
MUX_bit8	1	0.618		318.197		318.815
11p1211	1	0.617		388.063		388.680
11 p 87	1	0.615		387.956		388.572
MUX_bit9	1	0.614		317.111		317.725
MUX_bit1	1	0.612		262.208		262.820
MUX_bit5	1	0.610		297.901		298.511
MUX_bit7	1	0.609		315.639		316.248
11p109	1	0.599		418.861		419.460
11p65	1	0.598		459.550		460.148
xs_yc_bit0..en[3].yc_scsa	1	0.597		114.636		115.232
xs_yc_bit0..en[4].yc_scsa	1	0.597		229.271		229.868
xs_yc_bit0..en[5].yc_scsa	1	0.597		152.847		153.444
xs_yc_bit0..en[2].yc_scsa	1	0.597		114.629		115.225
xs_yc_bit0..en[6].yc_scsa	1	0.597		152.838		153.435
xs_yc_bit0..n[11].yc_scsa	1	0.597		114.633		115.230
xs_yc_bit0..n[12].yc_scsa	1	0.597		114.633		115.230
xs_yc_bit0..n[14].yc_scsa	1	0.597		97.057		97.654
xs_yc_bit0..n[15].yc_scsa	1	0.597		108.708		109.305
xs_yc_bit0..en[1].yc_scsa	1	0.597		114.633		115.230
xs_yc_bit0..en[8].yc_scsa	1	0.597		114.633		115.230
xs_yc_bit0..en[9].yc_scsa Continued on Next Page.	1	0.597		191.056		191.652

Table A. 5 - Continued

Instance	Cells	Leakage $(\mathrm{nW})$	Power	$\begin{aligned} & \text { Dyanmic } \\ & (\mathrm{nW}) \end{aligned}$	Power	Total Power ( nW )
xs_yc_bit0..n[10].yc_scsa	1	0.596		152.841		153.438
xs_yc_bit0..en[0].yc_scsa	1	0.596		152.847		153.444
xs_yc_bit0..en[7].yc_scsa	1	0.596		76.424		77.020
11p1413p	1	0.596		336.051		336.648
xs_yc_bit0..n[13].yc_scsa	1	0.596		214.989		215.586
11p1413	1	0.595		192.700		193.294
12p75	1	0.593		247.742		248.336
11p43	1	0.592		224.604		225.196
12p119	1	0.590		247.515		248.105
p_g_n0_to_..to_n15_level0	1	0.589		164.396		164.985
p_g_n0_to_..to_n15_level0	1	0.587		110.905		111.492
p_g_n0_to_..to_n15_level0	1	0.586		184.765		185.351
p_g_n0_to_..to_n15_level0	1	0.586		134.902		135.487
p_g_n0_to_..to_n15_level0	1	0.585		53.922		54.508
p_g_n0_to_..to_n15_level0	1	0.583		148.300		148.883
p_g_n0_to_..to_n15_level0	1	0.575		74.140		74.715
p_g_n0_to_..to_n15_level0	1	0.574		135.176		135.749
p_g_n0_to_..to_n15_level0	1	0.573		81.117		81.690
$\log 14 \mathrm{p}$	1	0.573		136.662		137.235
p_g_n0_to_..to_n15_level0	1	0.572		208.745		209.317
p-g_n0_to_..to_n15_level0	1	0.572		223.317		223.889
12p85	1	0.571		223.439		224.009
12p129	1	0.569		364.331		364.900
p_g_n0_to_..to_n15_level0	1	0.567		135.745		136.312
13p139	1	0.565		61.742		62.307
12p1513p	1	0.563		97.075		97.638
p-g_n0_to_..to_n15_level0	1	0.559		54.013		54.573
p_g_n0_to_..to_n15_level0	1	0.559		74.035		74.594
13p149p	1	0.535		0.000		0.535
13p149	1	0.531		51.982		52.513
13p159p	1	0.509		0.000		0.509
11 g 1211	1	0.503		159.007		159.509
11g21p	1	0.487		335.696		336.183
12 g 129	1	0.482		476.388		476.870
11g87	1	0.482		111.758		112.240
11g65	1	0.478		168.887		169.364
11g21	1	0.474		276.574		277.048
11g1413p	1	0.474		267.934		268.408
11 g 1413	1	0.469		188.933		189.403
11g109	1	0.464		209.159		209.623
12 g 85	1	0.463		231.785		232.248
11 g 43	1	0.448		178.102		178.550
12g41p	1	0.443		388.114		388.558
12 g 41	1	0.438		346.732		347.170
13g81p	1	0.434		455.881		456.315
13 g 81	1	0.434		409.964		410.397
12g1513p	1	0.379		188.993		189.372
cout_prime	1	0.368		1402.140		1402.508
13g159p	1	0.353		193.670		194.023
14g151p	1	0.349		189.031		189.380
ycp_bit1	1	0.317		126.004		126.322
ycp_bit15	1	0.317		157.512		157.829
13ps6p	2	0.033		393.704		393.736
13ps6	2	0.033		354.461		354.494
14 ps 10	2	0.032		438.901		438.933
14 ps 10 p	2	0.032		444.948		444.980
12ps8	2	0.032		603.842		603.874
12ps12	2	0.032		656.288		656.321
12ps4p	2	0.032		437.005		437.037
13ps14p	2	0.032		583.328		583.360
13 ps 14	2	0.032		576.186		576.218
12ps4	2	0.032		395.873		395.905
13ps7p	2	0.032		402.658		402.690
13ps7	2	0.032		396.793		396.824
13ps15p	2	0.031		561.787		561.818
13 ps 8 p	2	0.031		373.940		373.971
13 ps 8	2	0.031		368.305		368.336
14 ps 11	2	0.031		370.395		370.425
14 ps 11 p	2	0.031		375.767		375.798
13ps15	2	0.031		484.437		484.468
14 ps 12	2	0.031		401.777		401.807
14ps12p	2	0.031		407.737		407.767
14 ps 13	2	0.030		417.292		417.322
14 ps 13 p	2	0.030		423.858		423.888
14 ps 14 p	2	0.030		435.096		435.126
14ps14	2	0.030		425.986		426.016
14ps15	2	0.030		379.134		379.164
14 ps 15 p	2	0.030		423.208		423.238
xsp_bit14	1	0.023		205.231		205.254
xsp_bit0	1	0.023		157.523		157.546
Total	194	98.057		59072.305		59170.361

Table A.6: Total power of the proposed ELMMA for modulo 49151

Instance	Cells	$\begin{aligned} & \hline \begin{array}{l} \text { Leakage } \\ \text { (nW) } \end{array} \end{aligned}$	Power	$\begin{aligned} & \hline \text { Dyanmic } \\ & \text { (nW) } \end{aligned}$	Power	Total Power (nW)
11ps15p	1	0.937		478.994		479.932
11 ps 1 p	1	0.932		389.901		390.833
12ps2p	1	0.929		502.811		503.740
13ps4p	1	0.923		469.380		470.303
13ps4	1	0.922		462.832		463.754
xs_yc_bit0..en[2].xs_scsa	1	0.922		493.720		494.642
xs_yc_bit0..en[6].xs_scsa	1	0.922		367.267		368.188
xs_yc_bit0..en[3].xs_scsa	1	0.922		351.274		352.195
xs_yc_bit0..en[4].xs_scsa	1	0.922		493.702		494.623
xs_yc_bit0..en[5].xs_scsa	1	0.922		351.274		352.195
xs_yc_bit0..n[11].xs_scsa	1	0.921		307.363		308.284
xs_yc_bit0..n[12].xs_scsa	1	0.921		419.714		420.636
xs_yc_bit0..n[14].xs_scsa	1	0.921		378.040		378.961
xs_yc_bit0..n[15].xs_scsa	1	0.921		401.801		402.723
xs_yc_bit0..en[1].xs_scsa	1	0.921		401.801		402.723
xs_yc_bit0..en[8].xs_scsa	1	0.921		493.700		494.621
xs_yc_bit0..en[9].xs_scsa	1	0.921		351.272		352.193
xs_yc_bit0..n[10].xs_scsa	1	0.921		419.712		420.633
xs_yc_bit0..en[0].xs_scsa	1	0.921		250.226		251.148
xs_yc_bit0..en[7].xs_scsa	1	0.921		351.251		352.173
xs_yc_bit0..n[13].xs_scsa	1	0.921		307.343		308.264
13ps12	1	0.921		734.366		735.287
11 ps 1	1	0.920		319.987		320.906
11 ps 7	1	0.919		443.585		444.504
14 ps 8	1	0.919		462.083		463.001
14 ps 8 p	1	0.919		468.894		469.813
11 ps 15	1	0.918		412.072		412.990
11 ps 11	1	0.918		404.421		405.339
11 ps 13	1	0.915		370.769		371.685
11 ps 5	1	0.915		597.411		598.326
12ps14	1	0.915		531.030		531.945
12ps14p	1	0.915		553.406		554.321
11 ps 9	1	0.915		518.495		519.410
11 ps 3	1	0.913		469.443		470.357
12ps6	1	0.912		581.630		582.542
12ps2	1	0.911		353.057		353.968
12ps10	1	0.911		621.672		622.583
MUX_bit15	1	0.633		375.323		375.956
MUX_bit0	1	0.633		353.986		354.619
MUX_bit10	1	0.632		335.828		336.461
MUX_bit14	1	0.632		483.255		483.887
MUX_bit6	1	0.632		301.870		302.502
MUX_bit13	1	0.632		357.203		357.834
MUX_bit3	1	0.631		338.762		339.393
MUX_bit11	1	0.631		301.426		302.057
MUX_bit4	1	0.631		320.156		320.787
MUX_bit12	1	0.625		338.333		338.959
MUX_bit2	1	0.623		319.548		320.171
MUX_bit8	1	0.618		318.086		318.704
MUX_bit9	1	0.614		316.944		317.558
11p98	1	0.614		334.391		335.005
MUX_bit1	1	0.612		262.079		262.692
MUX_bit5	1	0.610		297.779		298.389
MUX_bit7	1	0.609		315.497		316.107
11p54	1	0.606		334.422		335.028
11 p 32	1	0.606		321.707		322.314
11p1110	1	0.603		193.704		194.307
11p1312	1	0.600		472.311		472.911
xs_yc_bit0..en[3].yc_scsa	1	0.597		82.728		83.324
xs_yc_bit0..en[4].yc_scsa	1	0.597		227.052		227.648
xs_yc_bit0..en[5].yc_scsa	1	0.597		110.304		110.900
xs_yc_bit0..en[2].yc_scsa	1	0.597		113.519		114.116
xs_yc_bit0..en[6].yc_scsa	1	0.597		151.359		151.955
xs_yc_bit0..n[11].yc_scsa	1	0.597		82.725		83.322
xs_yc_bit0..n[12].yc_scsa	1	0.597		113.524		114.120
xs_yc_bit0..n[14].yc_scsa	1	0.597		113.524		114.120
xs_yc_bit0..n[15].yc_scsa	1	0.597		110.301		110.897
xs_yc_bit0..en[1].yc_scsa	1	0.597		100.640		101.236
xs_yc_bit0..en[8].yc_scsa	1	0.597		113.524		114.120
xs_yc_bit0..en[9].yc_scsa	1	0.597		137.876		138.472
xs_yc_bit0..n[10].yc_scsa	1	0.596		151.362		151.958
xs_yc_bit0..en [0].yc_scsa	1	0.596		151.368		151.964
xs_yc_bit0..en [7].yc_scsa	1	0.596		55.152		55.748
xs_yc_bit0..n[13].yc_scsa	1	0.596		110.301		110.897
11 p 76	1	0.595		258.365		258.959
12p108	1	0.586		217.966		218.552
12p1412	1	0.579		222.119		222.698
12p1412p	1	0.577		160.926		161.504
12p118	1	0.575		286.562		287.137
13p128	1	0.573		123.605		124.178
12p64	1	0.571		217.917		218.488
12p1512p	1	0.562		96.771		97.333
Continued on Next Page.						

Table A. 6 - Continued

Instance	Cells	Leakage $(\mathrm{nW})$	Power	$\begin{aligned} & \hline \begin{array}{l} \text { Dyanmic } \\ (\mathrm{nW}) \end{array} \end{aligned}$	Power	Total Power (nW)
12p74	1	0.555		161.156		161.710
13p138	1	0.534		31.152		31.686
13p148	1	0.528		26.261		26.789
13p148p	1	0.509		0.000		0.509
13p158p	1	0.507		0.000		0.507
11 g 1514 p	1	0.493		195.210		195.703
11g10p	1	0.485		262.731		263.216
11 g 10	1	0.467		168.105		168.572
11 g 1110	1	0.465		135.720		136.185
11 g 76	1	0.464		110.549		111.013
11g98	1	0.459		207.391		207.850
11p1514p	1	0.452		264.185		264.637
11g54	1	0.450		204.833		205.283
11 g 1312	1	0.447		358.074		358.521
11g32	1	0.432		145.301		145.734
12 g 118	1	0.428		470.892		471.321
12g30p	1	0.425		342.814		343.239
12 g 30	1	0.416		346.290		346.706
12 g 74	1	0.414		233.348		233.761
13g70p	1	0.407		491.549		491.956
13 g 70	1	0.406		445.488		445.895
12g1512p	1	0.332		166.424		166.756
13 g 158 p	1	0.320		169.828		170.148
14g151p	1	0.318		1434.894		1435.212
ycp_bit0	1	0.317		124.499		124.817
ycp_bit14	1	0.317		155.630		155.947
12ps3p	2	0.034		462.598		462.632
14 ps 9	2	0.034		431.179		431.212
14ps9p	2	0.034		436.848		436.882
13ps5p	2	0.033		420.570		420.604
$13 \mathrm{ps5}$	2	0.033		381.634		381.667
13ps13	2	0.033		734.187		734.220
12ps3	2	0.033		440.870		440.903
13ps6p	2	0.033		394.448		394.480
13 ps 6	2	0.033		355.190		355.222
12ps15p	2	0.032		521.257		521.290
14 ps 10	2	0.032		439.376		439.409
14 ps 10 p	2	0.032		445.451		445.483
12ps15	2	0.032		479.853		479.885
12ps11	2	0.032		592.349		592.381
13 ps 7 p	2	0.032		399.255		399.287
12ps7	2	0.032		623.866		623.898
13ps14p	2	0.032		582.444		582.476
13 ps 7	2	0.032		393.605		393.637
13ps14	2	0.032		575.695		575.727
13ps15	2	0.032		472.227		472.259
14 ps 11	2	0.031		367.335		367.366
14 ps 11 p	2	0.031		372.562		372.593
14 ps 12	2	0.031		404.828		404.859
14 ps 12 p	2	0.031		410.999		411.030
14 ps 13	2	0.031		413.272		413.303
14ps13p	2	0.031		419.620		419.650
13ps15p	2	0.031		548.845		548.876
14 ps 14 p	2	0.031		435.052		435.083
14 ps 15 p	2	0.031		423.207		423.237
14 ps 14	2	0.031		425.937		425.967
14 ps 15	2	0.031		379.084		379.115
xsp_bit14	1	0.023		325.562		325.585
xsp_bit0	1	0.023		157.523		157.546
Total	172	73.621		49987.489		50061.11

## Synthesis Result for Modulo 49152

Table B.1: Area of the existing ELMMA for modulo 49152

Instance	Cells	Cell Area
14ps15p	2	8
14 ps 15	2	8
14 ps 14 p	2	8
14ps14	2	8
14 ps 13	2	8
14 ps 12	2	8
14 ps 11	2	8
14 ps 10	2	8
13 ps 8	2	8
13ps7	2	8
13ps6	2	8
13ps15p	2	8
13ps15	2	8
13ps14p	2	8
13ps14	2	8
12ps8	2	8
12ps4	2	8
12 ps 12	2	8
xs_yc_bit0_15_gen[9].xs_scsa	1	7
xs_yc_bit0_15_gen[8].xs_scsa	1	7
xs_yc_bit0_15_gen[7].xs_scsa	1	7
xs_yc_bit0_15_gen[6].xs_scsa	1	7
xs_yc_bit0_15_gen[5].xs_scsa	1	7
xs_yc_bit0_15_gen[4].xs_scsa	1	7
xs_yc_bit0_15_gen[3].xs_scsa	1	7
xs_yc_bit0_15_gen[2].xs_scsa	1	7
xs_yc_bit0_15_gen[1].xs_scsa	1	7
xs_yc_bit0_15_gen[15].xs_scsa	1	7
xs_yc_bit0_15_gen[14].xs_scsa	1	7
xs_yc_bit0_15_gen[13].xs_scsa	1	7
xs_yc_bit0_15_gen[12].xs_scsa	1	7
xs_yc_bit0_15_gen[11].xs_scsa	1	7
xs_yc_bit0_15_gen[10].xs_scsa	1	7
xs_yc_bit0_15_gen[0].xs_scsa	1	7
p_g_n0_to_n15_level0_gen[9].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[8].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[7].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[6].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[5].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[4].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[3].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[2].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[1].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[15].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[14].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[13].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[12].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[11].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[10].p_n1_to_n15_level0	1	7
14 ps 9	1	7
13 ps 5	1	7
13 ps 13	1	7
12ps7	1	7
12ps3	1	7
12ps15p	1	7
12ps15	1	7
12 ps 11	1	7
11ps8	1	7
11ps6	1	7
11 ps 4	1	7
11 ps 2	1	7
11 ps 14 p	1	7
11 ps 14	1	7
11 ps 12	1	7
11 ps 10	1	7
10p15p	1	
10p14p	1	7
MUX_bit15	1	6
MUX_bit14	1	6
xsp_bit14	1	6

Continued on Next Page. .

Instance	Cells	Cell Area
14g151p	1	5
13g81	1	5
13g159p	1	5
12g85	1	5
12 g 41	1	5
12g1513p	1	5
12 g 129	1	5
11 g 87	1	5
11g65	1	5
11 g 43	1	5
11g21	1	5
11g1413p	1	5
11 g 1413	1	5
11 g 1211	1	5
11g109	1	5
ycp_bit15	1	4
xs_yc_bit0_15_gen[9].yc_scsa	1	4
xs_yc_bit0_15_gen[8].yc_scsa	1	4
xs_yc_bit0_15_gen[7].yc_scsa	1	4
xs_yc_bit0_15_gen[6].yc_scsa	1	4
xs_yc_bit0_15_gen[5].yc_scsa	1	4
xs_yc_bit0_15_gen[4].yc_scsa	1	4
xs_yc_bit0_15_gen[3].yc_scsa	1	4
xs_yc_bit0_15_gen[2].yc_scsa	1	4
xs_yc_bit0_15_gen[1].yc_scsa	1	4
xs_yc_bit0_15_gen[15].yc_scsa	1	4
xs_yc_bit0_15_gen[14].yc_scsa	1	4
xs_yc_bit0_15_gen[13].yc_scsa	1	4
xs_yc_bit0_15_gen[12].yc_scsa	1	4
xs_yc_bit0_15_gen[11].yc_scsa	1	4
xs_yc_bit0_15_gen[10].yc_scsa	1	4
xs_yc_bit0_15_gen[0].yc_scsa	1	4
p_g_n0_to_n15_level0_gen[9].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[8].g_n1_to_n15_level0	1	4
P_g_n0_to_n15_level0_gen[7].g_n1_to_n15_level0	1	4
P_g_n0_to_n15_level0_gen[6].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[5].g_n1_to_n15_level0	1	4
P_g_n0_to_n15_level0_gen[4].g_n1_to_n15_level0	1	4
P_g_n0_to_n15_level0_gen[3].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[2].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[1].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[14].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[13].g_n1_to_n15_level0	1	4
P_g_n0_to_n15_level0_gen[12].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[11].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[10].g_n1_to_n15_level0	1	4
13p159p	1	4
13p149p	1	4
13p149	1	4
13p139	1	4
12p85	1	4
12p75	1	4
12p1513p	1	4
12p129	1	4
12p119	1	4
11 p 87	1	4
11 p 65	1	4
11 p 43	1	4
11p1413p	1	4
11p1413	1	4
11p1211	1	4
11p109	1	4
10 g 15 p	1	4
10g14p	1	4
cout_prime	1	4
Total	153	767

Table B.2: Area of the proposed ELMMA for modulo 49152

Instance	Cells	Cell Area
14ps9	2	8
14ps15p	2	8
14ps15	2	8
14ps14p	2	8
14ps14	2	8
14ps13	2	8
14ps12	2	8
14ps10	2	8
13ps7	2	8
13ps6	2	8
Continued on Next Page. .	2	8
		8

Table B. 2 - Continued

Instance	Cells	Cell Area
13ps5	2	8
13ps15p	2	8
13ps15	2	8
13ps14p	2	8
13ps14	2	8
13 ps 13	2	8
12ps7	2	8
12ps3	2	8
12ps15p	2	8
12ps15	2	8
12ps11	2	8
xs_yc_bit0_15_gen[9].xs_scsa	1	7
xs_yc_bit0_15_gen[8].xs_scsa	1	7
xs_yc_bit0_15_gen[7].xs_scsa	1	7
xs_yc_bit0_15_gen[6].xs_scsa	1	7
xs_yc_bit0_15_gen[5].xs_scsa	1	7
xs_yc_bit0_15_gen[4].xs_scsa	1	7
xs_yc_bit0_15_gen[3].xs_scsa	1	7
xs_yc_bit0_15_gen[2].xs_scsa	1	7
xs_yc_bit0_15_gen[1].xs_scsa	1	7
xs_yc_bit0_15_gen[15].xs_scsa	1	7
xs_yc_bit0_15_gen[14].xs_scsa	1	7
xs_yc_bit0_15_gen[13].xs_scsa	1	7
xs_yc_bit0_15_gen[12].xs_scsa	1	7
xs_yc_bit0_15_gen[11].xs_scsa	1	7
xs_yc_bit0_15_gen[10].xs_scsa	1	7
xs_yc_bit0_15_gen[0].xs_scsa	1	7
14 ps 8	1	7
13ps4	1	7
13 ps 12	1	7
12ps6	1	7
12ps2	1	7
12ps14p	1	7
12ps14	1	7
12 ps 10	1	7
11 ps 9	1	7
11 ps 7	1	7
11ps5	1	7
11 ps 3	1	7
11 ps 15 p	1	7
11 ps 15	1	7
11 ps 13	1	7
11 ps 11	1	7
11ps1	1	7
MUX_bit15	1	6
MUX_bit14	1	6
xsp_bit14	1	6
14g151p	1	5
13g70	1	5
13g158p	1	5
12 g 74	1	5
12g30	1	5
12g1512p	1	5
12 g 118	1	5
11 p 1514 p	1	5
11g98	1	5
11 g 76	1	5
11g54	1	5
11 g 32	1	5
11 g 1514 p	1	5
11 g 1312	1	5
11 g 1110	1	5
11 g 10	1	5
ycp_bit14	1	4
xs_yc_bit0_15_gen[9].yc_scsa	1	4
xs_yc_bit0_15_gen[8].yc_scsa	1	4
xs_yc_bit0_15_gen [7].yc_scsa	1	4
xs_yc_bit0_15_gen[6].yc_scsa	1	4
xs_yc_bit0_15_gen[5].yc_scsa	1	4
xs_yc_bit0_15_gen[4].yc_scsa	1	4
xs_yc_bit0_15_gen[3].yc_scsa	1	4
xs_yc_bit0_15_gen[2].yc_scsa	1	4
xs_yc_bit0_15_gen[1].yc_scsa	1	4
xs_yc_bit0_15_gen[15].yc_scsa	1	4
xs_yc_bit0_15_gen[14].yc_scsa	1	4
xs_yc_bit0_15_gen[13].yc_scsa	1	4
xs_yc_bit0_15_gen[12].yc_scsa	1	4
xs_yc_bit0_15_gen[11].yc_scsa	1	4
xs_yc_bit0_15_gen[10].yc_scsa	1	4
xs_yc_bit0_15_gen[0].yc_scsa	1	4
13p158p	1	4
13p148p	1	4
13p148	1	4
l3p138	1	4

Continued on Next Page...

Table B.2 - Continued		
Instance	Cells	Cell Area
13p128	1	4
12p74	1	4
12p64	1	4
12p1512p	1	4
12p1412p	1	4
12p1412	1	4
12p118	1	4
11p98	1	4
11p76	1	4
11p54	1	4
l1p32	1	4
l1p1312	1	4
11p110	1	4
Total	1	4

Table B.3: Timing of the existing ELMMA for modulo 49152
$\left.\begin{array}{l|l|l|l}\hline \hline \text { Pin } & \begin{array}{l}\text { Fanout } \\ \text { Load }\end{array} & \begin{array}{l}\text { Delay } \\ \text { (ps) }\end{array} & \begin{array}{l}\text { Arrival } \\ \text { (ps) }\end{array} \\ \hline \text { yin[10] } & 2 & 0 & 0 \\ \hline \text { xs_yc_bit0_15_gen[10].xs_scsa/G } \\ \text { g10/A2 } \\ \text { g10/Z } \\ \text { xs_yc_bit0_15_gen[10].xs_scsa/Eout }\end{array}\right)$

Table B.4: Timing of the proposed ELMMA for modulo 49152

Pin	Fanout   Load	Delay   (ps)	Arrival   (ps)
yin[14]	5	0	0
xsp_bit14/y		0	0
g12/B1			
g12/ZN	4	223	223
xsp_bit14/notEout			
l2ps15p/P		140	223
g31/A1	2	0	363
g31/ZN		165	363
g30/A2	2	0	528
g30/ZN		153	528
12ps15p/Sout		0	681
13ps15p/ps			
g30/A2		142	681
g30/ZN	2		823
13ps15p/Sout			
14ps15p/ps			
g30/A2			
g30/ZN	1		

Table B. 4 - Continued

Pin	Fanout   Load	Delay   $(\mathbf{p s})$	Arrival   $(\mathbf{p s})$
g23/I1   g23/Z   MUX_bit15/pout	1	0	823
elmmaout[15]		90	913

Table B.5: Total power of the existing ELMMA for modulo 49152


Table B. 5 - Continued

Instance	Cells	Leakage $(\mathrm{nW})$	Power	$\begin{aligned} & \text { Dyanmic } \\ & \text { (nW) } \end{aligned}$	Power	Total Power (nW)
xs_yc_bit0..n[13].yc_scsa	1	0.596		214.989		215.586
11p1413	1	0.595		192.700		193.294
12p75	1	0.593		208.097		208.691
11 p 43	1	0.592		191.962		192.554
12p119	1	0.590		207.832		208.422
p_g_n0_to_..to_n15_level0	,	0.589		135.566		136.155
p_g_n0_to_..to_n15_level0	1	0.587		110.905		111.492
p_g_n0_to_..to_n15_level0	1	0.586		184.765		185.351
p_g_n0_to_..to_n15_level0	1	0.586		134.902		135.487
p_g_n0_to_..to_n15_level0	1	0.585		53.922		54.508
p_g_n0_to_..to_n15_level0	1	0.583		148.300		148.883
p_g_n0_to_..to_n15_level0	1	0.575		74.140		74.715
p_g_n0_to_..to_n15_level0	1	0.574		135.176		135.749
p_g_n0_to_..to_n15_level0	1	0.573		81.117		81.690
10 g 14 p	1	0.573		136.662		137.235
p_g_n0_to_..to_n15_level0	1	0.572		208.745		209.317
p_g_n0_to_..to_n15_level0	1	0.572		223.317		223.889
12p85	1	0.571		185.628		186.199
12p129	1	0.569		330.813		331.383
p_g_n0_to_..to_n15_level0	1	0.567		135.745		136.312
13p139	1	0.565		61.740		62.305
12p1513p	1	0.563		97.075		97.638
p_g_n0_to_..to_n15_level0	1	0.559		54.013		54.573
p_g_n0_to_..to_n15_level0	1	0.559		74.035		74.594
13p149p	1	0.535		0.000		0.535
13p149	1	0.531		51.917		52.448
13p159p	1	0.509		0.000		0.509
11 g 1211	1	0.503		159.007		159.509
12 g 129	1	0.482		476.388		476.870
11 g 87	1	0.482		111.758		112.240
11g65	1	0.478		168.884		169.362
11 g 21	1	0.474		271.229		271.703
11g1413p	1	0.474		267.934		268.408
11 g 1413	1	0.469		188.933		189.403
11 g 109	1	0.464		209.157		209.621
12g85	1	0.463		185.179		185.642
11 g 43	1	0.448		142.838		143.286
12 g 41	1	0.437		347.879		348.316
13 g 81	1	0.434		526.287		526.720
12g1513p	1	0.379		188.993		189.372
cout_prime	1	0.368		269.360		269.728
13g159p	1	0.353		193.670		194.023
14g151p	1	0.349		189.031		189.380
ycp_bit15	1	0.317		157.512		157.829
13 ps 6	2	0.033		290.214		290.247
14 ps 10	2	0.032		359.397		359.430
12ps8	2	0.032		448.561		448.593
12 ps 12	2	0.032		502.774		502.807
13ps14p	2	0.032		583.328		583.360
13 ps 14	2	0.032		576.186		576.218
12ps4	2	0.032		321.680		321.712
13ps7	2	0.032		322.561		322.592
13ps15p	2	0.031		561.787		561.818
13 ps 8	2	0.031		284.447		284.478
14 ps 11	2	0.031		301.080		301.110
13ps15	2	0.031		484.437		484.468
14 ps 12	2	0.031		320.969		321.000
14 ps 13	2	0.030		333.608		333.638
14 ps 14 p	2	0.030		435.069		435.099
14 ps 14	2	0.030		425.949		425.979
14 ps 15	2	0.030		379.097		379.127
14ps15p	2	0.030		423.208		423.238
xsp_bit14	1	0.023		205.231		205.254
Total	153	82.169		42854.753		42936.922

Table B.6: Total power of the proposed ELMMA for modulo 49152

Instance	Cells	Leakage   $(\mathbf{n W})$	Power	Dyanmic   $(\mathbf{n W})$
l1ps15p	1	0.937	Power	Total Power (nW)
l3ps4	1	0.922	478.994	
xs_yc_bit0..en[2].xs_scsa	1	0.922	383.032	479.932
xs_yc_bit0..en[6].xs_scsa	1	0.922	378.058	383.954
xs_yc_bit0..en[3].xs_scsa	1	0.922	367.267	378.980
xs_yc_bit0..en[4].xs_scsa	1	0.922	351.177	368.188
xs_yc_bit0..en[5].xs_scsa	1	0.922	378.042	378.999
xs_yc_bit0..n[11].xs_scsa	1	0.921	351.177	352.099
xs_yc_bit0..n[12].xs_scsa	1	0.921	307.363	308.284
xs_yc_bit0..n[14].xs_scsa	1	0.921	419.714	420.636
xs_yc_bit0..n[15].xs_scsa	1	0.921	378.040	378.961
xs_yc_bit0..en[1].xs_scsa	1	0.921		401.801
Continued on Next Page...				

Table B. 6 - Continued

Instance	Cells	Leakage $(\mathrm{nW})$	Power	$\begin{aligned} & \text { Dyanmic } \\ & \text { (nW) } \\ & \hline \end{aligned}$	Power	Total Power (nW)
xs_yc_bit0..en[8].xs_scsa	1	0.921		378.040		378.961
xs_yc_bit0..en[9].xs_scsa	1	0.921		351.175		352.096
xs_yc_bit0..n[10].xs_scsa	1	0.921		419.712		420.633
xs_yc_bit0..en[0].xs_scsa	1	0.921		210.457		211.379
xs_yc_bit0..en[7].xs_scsa	1	0.921		351.251		352.173
xs_yc_bit0..n[13].xs_scsa	1	0.921		307.343		308.264
13 ps 12	1	0.921		576.760		577.681
11 ps 1	1	0.920		269.200		270.120
11 ps 7	1	0.919		443.585		444.504
14 ps 8	1	0.919		384.778		385.697
11 ps 15	1	0.918		412.072		412.990
11 ps 11	1	0.918		404.421		405.339
11 ps 13	1	0.915		370.769		371.685
11ps5	1	0.915		470.117		471.032
12ps14	1	0.915		531.030		531.945
12ps14p	1	0.915		553.406		554.321
11 ps 9	1	0.915		411.028		411.943
11 ps 3	1	0.913		371.799		372.712
12ps6	1	0.912		454.159		455.071
12ps2	1	0.911		288.088		288.998
12ps10	1	0.911		484.170		485.080
MUX_bit15	1	0.633		341.665		342.298
MUX_bit14	1	0.632		435.364		435.996
11p98	1	0.615		294.404		295.019
11 p 32	1	0.611		273.194		273.806
11p54	1	0.608		294.371		294.979
11p1110	1	0.603		193.704		194.307
11 p 1312	1	0.600		472.311		472.911
xs_yc_bit0..en[3].yc_scsa	1	0.597		82.728		83.324
xs_yc_bit0..en[4].yc_scsa	1	0.597		227.052		227.648
xs_yc_bit0..en[5].yc_scsa	1	0.597		110.304		110.900
xs_yc_bit0..en[2].yc_scsa	1	0.597		113.519		114.116
xs_yc_bit0..en[6].yc_scsa	1	0.597		151.359		151.955
xs_yc_bit0..n[11].yc_scsa	1	0.597		82.725		83.322
xs_yc_bit0..n[12].yc_scsa	1	0.597		113.524		114.120
xs_yc_bit0..n[14].yc_scsa	1	0.597		113.524		114.120
xs_yc_bit0..n[15].yc_scsa	1	0.597		110.301		110.897
xs_yc_bit0..en[1].yc_scsa	1	0.597		82.725		83.322
xs_yc_bit0..en[8].yc_scsa	1	0.597		113.524		114.120
xs_yc_bit0..en[9].yc_scsa	1	0.597		137.876		138.472
xs_yc_bit0..n[10].yc_scsa	1	0.596		151.362		151.958
xs_yc_bit0..en[0].yc_scsa	1	0.596		151.368		151.964
xs_yc_bit0..en[7].yc_scsa	1	0.596		55.152		55.748
xs_yc_bit0..n[13].yc_scsa	1	0.596		110.301		110.897
11 p 76	1	0.595		258.365		258.959
12p108	1	0.586		183.476		184.063
12p1412	1	0.579		222.119		222.698
12p1412p	1	0.577		160.926		161.504
12p118	1	0.575		262.882		263.457
13p128	1	0.573		103.925		104.499
12p64	1	0.571		183.420		183.991
12p1512p	1	0.562		96.771		97.333
12p74	1	0.555		134.129		134.683
13p138	1	0.534		31.147		31.682
13p148	1	0.528		26.236		26.764
13p148p	1	0.509		0.000		0.509
13p158p	1	0.507		0.000		0.507
11g1514p	1	0.493		195.210		195.703
11 g 10	1	0.467		164.535		165.002
11 g 1110	1	0.465		135.720		136.185
11 g 76	1	0.464		110.549		111.013
11g98	1	0.459		207.389		207.848
11p1514p	1	0.452		264.185		264.637
11 g 54	1	0.450		204.830		205.280
11 g 1312	1	0.447		358.074		358.521
11 g 32	1	0.432		115.892		116.324
12 g 118	1	0.428		470.892		471.321
12 g 30	1	0.417		345.575		345.993
12g74	1	0.414		186.669		187.082
13 g 70	,	0.406		561.898		562.304
12g1512p	1	0.332		166.424		166.756
13g158p	1	0.320		169.828		170.148
14 g 151 p	1	0.318		301.280		301.598
ycp_bit14	1	0.317		155.630		155.947
14 ps 9	2	0.034		356.103		356.136
13ps5	2	0.033		317.352		317.385
13 ps 13	2	0.033		558.785		558.818
12ps3	2	0.033		361.521		361.554
13ps6	2	0.033		290.953		290.986
12ps15p	2	0.032		521.257		521.290
14 ps 10	2	0.032		359.997		360.030
12ps15	2	0.032		479.853		479.885
12ps11	2	0.032		458.081		458.113

Table B. 6 - Continued

Instance	Cells	Leakage $(\mathrm{nW})$	Power	$\begin{aligned} & \text { Dyanmic } \\ & (\mathrm{nW}) \end{aligned}$	Power	Total Power (nW)
12ps7	2	0.032		468.700		468.732
13ps14p	2	0.032		569.002		569.034
13ps14	2	0.032		562.308		562.340
13ps7	2	0.032		313.929		313.961
13ps15	2	0.032		460.119		460.151
14ps11	2	0.031		296.615		296.647
14 ps 12	2	0.031		325.914		325.945
13ps15p	2	0.031		535.193		535.224
14 ps 13	2	0.031		317.726		317.756
14 ps 14 p	2	0.031		417.497		417.528
14 ps 15	2	0.030		364.222		364.252
14 ps 15 p	2	0.030		403.229		403.260
14ps14	2	0.030		408.821		408.851
xsp_bit14	1	0.023		325.562		325.585
Total	131	59.243		34179.260		34238.503

# Synthesis Result for Modulo 57343 

Table C.1: Area of the existing ELMMA for modulo 57343

Instance	Cells	Cell Area
14ps15p	2	8
14 ps 15	2	8
14 ps 14 p	2	8
14ps14	2	8
14 ps 13 p	2	8
14 ps 13	2	8
14 ps 12 p	2	8
14 ps 12	2	8
14 ps 11 p	2	8
14 ps 11	2	8
14 ps 10 p	2	8
14 ps 10	2	8
13ps8p	2	8
13 ps 8	2	8
13ps7p	2	8
13ps7	2	8
13ps6p	2	8
13ps6	2	8
13ps15p	2	8
13ps15	2	8
13ps14p	2	8
13ps14	2	8
12ps8	2	8
12 ps 4 p	2	8
12ps4	2	8
12 ps 12	2	8
xs_yc_bit0_15_gen[9].xs_scsa	1	7
xs_yc_bit0_15_gen[8].xs_scsa	1	7
xs_yc_bit0_15_gen[7].xs_scsa	1	7
xs_yc_bit0_15_gen[6].xs_scsa	1	7
xs_yc_bit0_15_gen[5].xs_scsa	1	7
xs_yc_bit0_15_gen[4].xs_scsa	1	7
xs_yc_bit0_15_gen[3].xs_scsa	1	7
xs_yc_bit0_15_gen[2].xs_scsa	1	7
xs_yc_bit0_15_gen[1].xs_scsa	1	7
xs_yc_bit0_15_gen[15].xs_scsa	1	7
xs_yc_bit0_15_gen[14].xs_scsa	1	7
xs_yc_bit0_15_gen[13].xs_scsa	1	7
xs_yc_bit0_15_gen[12].xs_scsa	1	7
xs_yc_bit0_15_gen[11].xs_scsa	1	7
xs_yc_bit0_15_gen[10].xs_scsa	1	7
xs_yc_bit0_15_gen[0].xs_scsa	1	7
p_g_n0_to_n15_level0_gen[9].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[8].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[7].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[6].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[5].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[4].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[3].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[2].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[1].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[15].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[14].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[13].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[12].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[11].p_n1_to_n15_level0	1	7
p_g_n0_to_n15_level0_gen[10].p_n1_to_n15_level0	1	7
14 ps 9 p	1	7
14 ps 9	1	7
13ps5p	1	7
13ps5	1	7
13ps13p	1	7
13 ps 13	1	7
12ps7	1	7
12ps3p	1	7
12ps3	1	7
12ps15p	1	7
12 ps 15	1	7
12ps11	1	7
11 ps 8	1	7

Continued on Next Page. .

Table C. 1 - Continued

Instance	Cells	Cell Area
11ps6	1	7
11 ps 4	1	7
11 ps 2 p	1	7
11 ps 2	1	7
11 ps 14 p	1	7
11 ps 14	1	7
11 ps 12	1	7
11 ps 10	1	7
10p1p	1	7
10p14p	1	7
10p13p	1	7
MUX_bit9	1	6
MUX_bit8	1	6
MUX_bit 7	1	6
MUX_bit6	1	6
MUX_bit5	1	6
MUX_bit4	1	6
MUX_bit3	1	6
MUX_bit2	1	6
MUX_bit15	1	6
MUX_bit14	1	6
MUX_bit13	1	6
MUX_bit12	1	6
MUX_bit11	1	6
MUX_bit10	1	6
MUX_bit1	1	6
MUX_bit0	1	6
xsp_bit13	1	6
xsp_bit0	1	6
14 g 151 p	1	5
13g81p	1	5
13 g 81	1	5
13g159p	1	5
12 g 85	1	5
12 g 41 p	1	5
12 g 41	1	5
12g1513p	1	5
12 g 129	1	5
11 g 87	1	5
11g65	1	5
11 g 43	1	5
11 g 21 p	1	5
11 g 21	1	5
11g1413p	1	5
11 g 1413	1	5
11 g 1211	1	5
11g109	1	5
ycp_bit14	1	4
ycp_bit1	1	4
xs_yc_bit0_15_gen[9].yc_scsa	1	4
xs_yc_bit0_15_gen[8].yc_scsa	1	4
xs_yc_bit0_15_gen [7].yc_scsa	1	4
xs_yc_bit0_15_gen[6].yc_scsa	1	4
xs_yc_bit0_15_gen [5].yc_scsa	,	4
xs_yc_bit0_15_gen[4].yc_scsa	1	4
xs_yc_bit0_15_gen[3].yc_scsa	1	4
xs_yc_bit0_15_gen[2].yc_scsa	1	4
xs_yc_bit0_15_gen[1].yc_scsa	1	4
xs_yc_bit0_15_gen[15].yc_scsa	1	4
xs_yc_bit0_15_gen [14].yc_scsa	1	4
xs_yc_bit0_15_gen[13].yc_scsa	1	4
xs_yc_bit0_15_gen[12].yc_scsa	1	4
xs_yc_bit0_15_gen[11].yc_scsa		4
xs_yc_bit0_15_gen[10].yc_scsa	1	4
xs_yc_bit0_15_gen [0].yc_scsa	1	4
p_g_n0_to_n15_level0_gen[9].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[8].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[7].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[6].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[5].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[4].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[3].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[2].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[1].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[15].g_n1_to_n15_level0		4
p_g_n0_to_n15_level0_gen[14].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[13].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[12].g_n1_to_n15_level0	1	4
p-g_n0_to_n15_level0_gen[11].g_n1_to_n15_level0	1	4
p_g_n0_to_n15_level0_gen[10].g_n1_to_n15_level0	1	4
13p159p	1	4
13p149p	1	4
13p149	1	4
13p139p Continued on Next Page.	1	4

Continued on Next Page. .

Table C. 1 - Continued

Instance	Cells	Cell Area
l3p139	1	4
l2p85	1	4
l2p75		
l2p1513p	1	4
l2p129	1	4
l2p119	1	4
l1p875	1	4
l1p43	1	4
l1p1413p	1	4
l1p1413	1	4
l1p1211	1	4
l0g109	1	4
l0g14p	1	4
log13p	1	4
cout_prime	1	4
Total	1	4

Table C.2: Area of the proposed ELMMA for modulo 57343

Instance	Cells	Cell Area
14ps9p	2	8
14 ps 9	2	8
14 ps 15 p	2	8
14 ps 15	2	8
14 ps 14 p	2	8
14 ps 14	2	8
14ps13p	2	8
14 ps 13	2	8
14 ps 12 p	2	8
14 ps 12	2	8
14 ps 11 p	2	8
14 ps 11	2	8
14 ps 10 p	2	8
14 ps 10	2	8
13ps7p	2	8
13 ps 7	2	8
13ps6p	2	8
13ps6	2	8
13ps5p	2	8
13ps5	2	8
13ps15p	2	8
13 ps 15	2	8
13ps14p	2	8
13ps14	2	8
13ps13p	2	8
13 ps 13	2	8
12ps7	2	8
12ps3p	2	8
12ps3	2	8
12ps15	2	8
12ps11	2	8
xs_yc_bit0_15_gen[9].xs_scsa	1	7
xs_yc_bit0_15_gen[8].xs_scsa	1	7
xs_yc_bit0_15_gen[7].xs_scsa	1	7
xs_yc_bit0_15_gen[6].xs_scsa	1	7
xs_yc_bit0_15_gen[5].xs_scsa	1	7
xs_yc_bit0_15_gen[4].xs_scsa	1	7
xs_yc_bit0_15_gen[3].xs_scsa	1	7
xs_yc_bit0_15_gen[2].xs_scsa	1	7
xs_yc_bit0_15_gen[1].xs_scsa	1	7
xs_yc_bit0_15_gen[15].xs_scsa	1	7
xs_yc_bit0_15_gen[14].xs_scsa	1	7
xs_yc_bit0_15_gen[13].xs_scsa	1	7
xs_yc_bit0_15_gen[12].xs_scsa	1	7
xs_yc_bit0_15_gen[11].xs_scsa	,	7
xs_yc_bit0_15_gen[10].xs_scsa	1	7
xs_yc_bit0_15_gen[0].xs_scsa	1	7
14 ps 8 p	1	7
14 ps 8	1	7
13ps4p	1	7
13 ps 4	1	7
13 ps 12	1	7
12ps6	1	7
12ps2p	1	7
12ps2	1	7
12ps14p	1	7
12ps14	1	7
12 ps 10	1	7
11 ps 9	1	7


Instance	Cells	Cell Area
11ps7	1	7
11 ps 5	1	7
11 ps 3	1	7
11 ps 1 p	1	7
11 ps 15	1	7
11 ps 14 p	1	7
11ps13p	1	7
11 ps 13	1	7
11 ps 11	1	7
11 ps 1	1	7
MUX_bit9	1	6
MUX_bit8	1	6
MUX_bit7	1	6
MUX_bit6	1	6
MUX_bit5	1	6
MUX_bit4	1	6
MUX_bit3	1	6
MUX_bit2	1	6
MUX_bit15	1	6
MUX_bit14	1	6
MUX_bit13	1	6
MUX_bit12	1	6
MUX_bit11	1	6
MUX_bit10	1	6
MUX_bit1	1	6
MUX_bit0	1	6
xsp_bit13	1	6
xsp_bit0	1	6
14 g 150 p	1	5
13 g 70 p	1	5
13 g 70	1	5
13g158p	1	5
12 g 74	1	5
12g30p	1	5
12 g 30	1	5
12g1512p	1	5
12 g 118	1	5
11g98	1	5
11 g 76	1	5
11 g 54	1	5
11 g 32	1	5
11g1514	1	5
11 g 1312	1	5
11 g 1110	1	5
11 g 10 p	1	5
11 g 10	1	5
ycp_bit13	1	4
ycp_bit0	1	4
xs_yc_bit0_15_gen[9].yc_scsa	1	4
xs_yc_bit0_15_gen[8].yc_scsa	1	4
xs_yc_bit0_15_gen[7].yc_scsa	1	4
xs_yc_bit0_15_gen[6].yc_scsa	1	4
xs_yc_bit0_15_gen[5].yc_scsa	1	4
xs_yc_bit0_15_gen[4].yc_scsa	1	4
xs_yc_bit0_15_gen[3].yc_scsa	1	4
xs_yc_bit0_15_gen[2].yc_scsa	1	4
xs_yc_bit0_15_gen[1].yc_scsa	1	4
xs_yc_bit0_15_gen[15].yc_scsa	1	4
xs_yc_bit0_15_gen[14].yc_scsa	1	4
xs_yc_bit0_15_gen[13].yc_scsa	1	4
xs_yc_bit0_15_gen[12].yc_scsa	1	4
xs_yc_bit0_15_gen[11].yc_scsa	1	4
xs_yc_bit0_15_gen[10].yc_scsa	1	4
xs_yc_bit0_15_gen[0].yc_scsa	1	4
13p158p	1	4
13p148p	1	4
13 p 148	1	4
13p138p	1	4
13 p 138	1	4
13p128	1	4
12p74	1	4
12p64	1	4
12p1412p	1	4
12p1412	1	4
12p118	1	4
12p108	1	4
11 p 98	1	4
11 p 76	1	4
11p54	1	4
11 p 32	1	4
11p1312p	1	4
11p1312	1	4
11 p 1110	1	4
l1h1514p Continued on Next Page. .	1	4


Table C.2 - Continued		
Instance	Cells	Cell Area
l1g1312p	1	4
cout	1	4
Total	$\mathbf{1 8 1}$	$\mathbf{8 9 5}$

Table C.3: Timing of the existing ELMMA for modulo 57343

Pin	Fanout Load	$\begin{aligned} & \text { Delay } \\ & \text { (ps) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Arrival } \\ & \text { (ps) } \\ & \hline \end{aligned}$
yin[3]	2	0	0
$\begin{aligned} & \text { xs_yc_bit0_15_gen[3].xs_scsa/G } \\ & \text { g10/A2 } \\ & \text { g10/Z } \\ & \text { xs_yc_bit0_15_gen[3].xs_scsa/Eou } \end{aligned}$	2	$\begin{aligned} & 0 \\ & 121 \end{aligned}$	$\begin{aligned} & 0 \\ & 121 \end{aligned}$
$\begin{aligned} & \text { p_g_n0_to_n15_level0_gen[3].p_n1_to_n15_level0/ps } \\ & \text { g10/A2 } \\ & \text { g10/Z } \\ & \text { p_g_n0_to_n15_level0_gen[3].p_n1_to_n15_level0/Eout } \end{aligned}$	5	$\begin{aligned} & 0 \\ & 171 \end{aligned}$	$\begin{aligned} & 121 \\ & 292 \end{aligned}$
$\begin{gathered} \hline 11 \mathrm{p} 43 / \mathrm{Q} \\ \text { g8/A1 } \\ \text { g8/Z } \\ 11 \mathrm{p} 43 / \text { Pout } \\ \hline \end{gathered}$	2	$\begin{aligned} & 0 \\ & 81 \end{aligned}$	$\begin{aligned} & 292 \\ & 373 \end{aligned}$
$\begin{gathered} \hline 12 \mathrm{~g} 41 / \mathrm{P} \\ \mathrm{~g} 14 / \mathrm{A} 2 \\ \mathrm{~g} 14 / \mathrm{Z} \\ 12 \mathrm{~g} 41 / \mathrm{Gout} \\ \hline \end{gathered}$	5	$\begin{aligned} & 0 \\ & 98 \end{aligned}$	$\begin{aligned} & 373 \\ & 471 \end{aligned}$
$\begin{gathered} \hline \text { 13g81/H } \\ \text { g14/A1 } \\ \text { g14/Z } \\ \text { 13g81/Gout } \\ \hline \end{gathered}$	11	$\begin{aligned} & 0 \\ & 158 \end{aligned}$	$\begin{aligned} & 471 \\ & 629 \end{aligned}$
$\begin{gathered} \hline 14 \mathrm{~g} 151 \mathrm{p} / \mathrm{H} \\ \mathrm{~g} 14 / \mathrm{A} 1 \\ \mathrm{~g} 14 / \mathrm{Z} \\ 14 \mathrm{~g} 151 \mathrm{p} / \mathrm{Gout} \\ \hline \end{gathered}$	1	$\begin{aligned} & 0 \\ & 81 \end{aligned}$	$\begin{aligned} & 629 \\ & 710 \end{aligned}$
```cout_prime/x g2/A1 g2/Z cout_prime/Oout```	16	$\begin{aligned} & 0 \\ & 390 \end{aligned}$	$\begin{aligned} & 710 \\ & 1100 \end{aligned}$
$\begin{gathered} \hline \text { MUX_bit0/sel } \\ \text { g23/S } \\ \text { g23/Z } \\ \text { MUX_bit0/pout } \\ \hline \end{gathered}$	1	$\begin{aligned} & 0 \\ & 156 \end{aligned}$	$\begin{aligned} & 1100 \\ & 1256 \end{aligned}$
elmmaout[0]		0	1256

Table C.4: Timing of the proposed ELMMA for modulo 57343

Pin	Fanout Load	Delay (ps)	$\begin{aligned} & \hline \text { Arrival } \\ & \text { (ps) } \\ & \hline \end{aligned}$
yin[2]	2	0	0
$\begin{aligned} & \text { xs_yc_bit0_15_gen[2].xs_scsa/G } \\ & \text { g10/A2 } \\ & \text { g10/Z } \\ & \text { xs_yc_bit0_15_gen[2].xs_scsa/Eout } \end{aligned}$	5	$\begin{aligned} & 0 \\ & 158 \end{aligned}$	$\begin{aligned} & 0 \\ & 158 \end{aligned}$
$\begin{gathered} \hline 11 \mathrm{p} 32 / \mathrm{Q} \\ \text { g8/A1 } \\ \text { g8/Z } \\ 11 \mathrm{p} 32 / \text { Pout } \\ \hline \end{gathered}$	2	$\begin{aligned} & 0 \\ & 81 \end{aligned}$	$\begin{aligned} & 158 \\ & 239 \end{aligned}$
$\begin{gathered} \hline 12 \mathrm{~g} 30 / \mathrm{P} \\ \mathrm{~g} 14 / \mathrm{A} 2 \\ \mathrm{~g} 14 / \mathrm{Z} \\ 12 \mathrm{~g} 30 / \mathrm{Gout} \end{gathered}$	5	$\begin{aligned} & 0 \\ & 98 \end{aligned}$	$\begin{aligned} & 239 \\ & 337 \end{aligned}$
$\begin{gathered} \hline 13 \mathrm{~g} 70 / \mathrm{H} \\ \mathrm{~g} 14 / \mathrm{A} 1 \\ \mathrm{~g} 14 / \mathrm{Z} \\ 13 \mathrm{~g} 70 / \mathrm{Gout} \\ \hline \end{gathered}$	12	$\begin{aligned} & 0 \\ & 166 \end{aligned}$	$\begin{aligned} & 337 \\ & 503 \end{aligned}$
$\begin{gathered} \hline 14 \mathrm{~g} 150 \mathrm{p} / \mathrm{H} \\ \mathrm{~g} 14 / \mathrm{A} 1 \\ \mathrm{~g} 14 / \mathrm{Z} \\ 14 \mathrm{~g} 150 \mathrm{p} / \mathrm{Gout} \\ \hline \end{gathered}$	1	$\begin{aligned} & 0 \\ & 83 \end{aligned}$	$\begin{aligned} & 503 \\ & 586 \end{aligned}$
$\begin{gathered} \text { cout/x } \\ \text { g2/A1 } \\ \mathrm{g} 2 / \mathrm{Z} \\ \text { cout/Oout } \\ \hline \end{gathered}$	16	$\begin{aligned} & 0 \\ & 390 \end{aligned}$	$\begin{aligned} & 586 \\ & 976 \end{aligned}$
$\begin{gathered} \hline \text { MUX_bit0/sel } \\ \text { g23/S } \\ \text { g23/Z } \\ \text { MUX_bit0/pout } \\ \hline \end{gathered}$	1	$\begin{aligned} & 0 \\ & 156 \end{aligned}$	$\begin{aligned} & 976 \\ & 1132 \end{aligned}$
elmmaout[0]		0	1132

Table C.5: Total power of the existing ELMMA for modulo 57343

Instance	Cells	Leakage (nW)	Power	$\begin{aligned} & \hline \text { Dyanmic } \\ & \text { (nW) } \end{aligned}$	Power	Total Power (nW)
10p1p	1	0.932		389.899		390.832
10 p 14 p	1	0.928		491.339		492.267
xs_yc_bit0..en[2].xs_scsa	1	0.922		302.453		303.374
xs_yc_bit0..en[6].xs_scsa	1	0.922		264.646		265.568
xs_yc_bit0..en[3].xs_scsa	1	0.922		302.437		303.358
xs_yc_bit0..en[4].xs_scsa	1	0.922		302.437		303.358
xs_yc_bit0..en[5].xs_scsa	1	0.922		302.437		303.358
xs_yc_bit0..n[11].xs_scsa	1	0.921		264.630		265.552
xs_yc_bit0..n[12].xs_scsa	1	0.921		302.435		303.356
xs_yc_bit0..n[14].xs_scsa	1	0.921		392.924		393.845
xs_yc_bit0..n[15].xs_scsa	1	0.921		302.435		303.356
xs_yc_bit0..en[1].xs_scsa	1	0.921		392.924		393.845
xs_yc_bit0..en[8].xs_scsa	1	0.921		302.435		303.356
xs_yc_bit0..en[9].xs_scsa	1	0.921		302.435		303.356
xs_yc_bit0..n[10].xs_scsa	1	0.921		302.432		303.354
xs_yc_bit0..en[0].xs_scsa	1	0.921		250.226		251.148
xs_yc_bit0..en[7].xs_scsa	1	0.921		302.414		303.335
xs_yc_bit0..n[13].xs_scsa	1	0.921		264.610		265.531
$11 \mathrm{ps} 2 \mathrm{p}$	1	0.921		509.040		509.961
p_g_n0_to_..to_n15_level0	1	0.920		319.973		320.892
P_g_n0_to_..to_n15_level0	1	0.919		636.713		637.632
P_g_n0_to_..to_n15_level0	1	0.919		494.619		495.537
p_g_n0_to_..to_n15_level0	1	0.918		645.873		646.791
p_g_n0_to_..to_n15_level0	1	0.918		581.401		582.319
p_g_n0_to_..to_n15_level0	1	0.917		564.845		565.762
p_g_n0_to_..to_n15_level0	1	0.917		454.774		455.691
12ps15p	1	0.917		456.404		457.321
p_g_n0_to_..to_n15_level0	1	0.916		533.024		533.940
p_g_n0_to_..to_n15_level0	1	0.915		535.125		536.041
p_g_n0_to_..to_n15_level0	1	0.915		448.413		449.328
10p13p	1	0.915		538.454		539.369
p_g_n0_to_..to_n15_level0	1	0.915		799.270		800.185
p_g_n0_to_..to_n15_level0	1	0.915		689.099		690.014
p_g_n0_to_..to_n15_level0	1	0.914		570.969		571.884
11 ps 8	1	0.914		443.922		444.836
p_g_n0_to_..to_n15_level0	1	0.913		624.459		625.372
p_g_n0_to_..to_n15_level0	1	0.913		482.933		483.846
11 ps 12	1	0.913		485.558		486.471
11 ps 14	1	0.913		561.006		561.918
11 ps 14 p	1	0.912		412.807		413.719
11 ps 2	1	0.912		393.890		394.802
12ps3p	1	0.912		492.460		493.372
11 ps 6	1	0.912		602.245		603.157
11 ps 10	1	0.912		671.280		672.192
11 ps 4	1	0.912		573.796		574.708
13ps5p	1	0.911		420.452		421.364
13ps5	1	0.911		382.090		383.002
13 ps 13	1	0.908		598.320		599.228
12ps15	1	0.908		516.406		517.314
13ps13p	1	0.908		598.452		599.360
12 ps 3	1	0.908		474.239		475.147
14 ps 9	1	0.906		445.897		446.803
14ps9p	1	0.906		448.100		449.006
12ps11	1	0.904		608.946		609.851
12ps7	1	0.898		639.272		640.170
MUX_bit0	1	0.631		386.105		386.736
MUX_bit14	1	0.631		364.030		364.660
MUX_bit10	1	0.631		341.314		341.945
MUX_bit6	1	0.630		307.478		308.108
MUX_bit3	1	0.630		344.588		345.217
MUX_bit15	1	0.629		320.229		320.859
MUX_bit11	1	0.629		306.905		307.534
MUX_bit4	1	0.629		325.775		326.405
MUX_bit13	1	0.628		513.086		513.713
MUX_bit12	1	0.623		344.047		344.671
MUX_bit2	1	0.621		347.395		348.016
10 g 14 p	1	0.620		214.866		215.486
10g1p	1	0.618		293.128		293.746
11 p 1211	1	0.617		388.063		388.680
MUX_bit8	,	0.616		323.490		324.107
11 p 87	1	0.615		387.956		388.572
MUX_bit9	1	0.612		322.281		322.893
MUX_bit1	1	0.610		289.579		290.189
MUX_bit5	1	0.608		303.058		303.666
MUX_bit7	1	0.608		320.706		321.313
11 p109	1	0.599		418.861		419.460
11p65	1	0.598		459.550		460.148
xs_yc_bit0..en[3].yc_scsa	1	0.597		114.636		115.232
xs_yc_bit0..en[4].yc_scsa	1	0.597		229.271		229.868
xs_yc_bit0..en[5].yc_scsa	1	0.597		152.847		153.444
xs_yc_bit0..en [2].yc_scsa	1	0.597		114.629		115.225
xs_yc_bit0..en[6].yc_scsa	,	0.597		152.838		153.435
Continued on Next Page.						

Table C. 5 - Continued

Instance	Cells	Leakage (nW)	Power	$\begin{aligned} & \text { Dyanmic } \\ & \text { (nW) } \\ & \hline \end{aligned}$	Power	Total Power (nW)
xs_yc_bit0..n[11].yc_scsa	1	0.597		114.633		115.230
xs_yc_bit0..n[12].yc_scsa	1	0.597		161.242		161.839
xs_yc_bit0..n[14].yc_scsa	1	0.597		114.633		115.230
xs_yc_bit0..n[15].yc_scsa	1	0.597		108.708		109.305
xs_yc_bit0..en[1].yc_scsa	1	0.597		114.633		115.230
xs_yc_bit0..en[8].yc_scsa	1	0.597		114.633		115.230
xs_yc_bit0..en[9].yc_scsa	1	0.597		191.056		191.652
xs_yc_bit0..n[10].yc_scsa	1	0.596		152.841		153.438
xs_yc_bit0..en[0].yc_scsa	1	0.596		152.847		153.444
xs_yc_bit0..en[7].yc_scsa	,	0.596		76.424		77.020
xs_yc_bit0..n[13].yc_scsa	1	0.596		152.844		153.441
11p1413	1	0.595		191.390		191.985
12p75	1	0.593		247.742		248.336
11 p 43	1	0.592		224.604		225.196
12p119	1	0.590		247.515		248.105
p_g_n0_to_..to_n15_level0	1	0.589		164.396		164.985
11p1413p	1	0.588		370.686		371.274
p_g_n0_to_..to_n15_level0	1	0.587		110.905		111.492
p_g_n0_to_..to_n15_level0	1	0.586		184.765		185.351
p_g_n0_to_..to_n15_level0	1	0.586		134.902		135.487
p_g_n0_to_..to_n15_level0	1	0.585		53.922		54.508
p_g_n0_to_..to_n15_level0	1	0.585		54.049		54.634
p_g_n0_to_..to_n15_level0	1	0.583		148.300		148.883
p_g_n0_to_..to_n15_level0	1	0.575		74.140		74.715
p_g_n0_to_..to_n15_level0	1	0.574		135.665		136.238
p_g_n0_to_..to_n15_level0	1	0.573		81.117		81.690
p_g_n0_to_..to_n15_level0	1	0.572		147.473		148.044
p_g_n0_to_..to_n15_level0	1	0.572223 .317		223.889		
10 g 13 p	1	0.571111 .212		111.783		
12p85	1	0.571223 .439		224.009		
12p129	1	0.569400 .214		400.784		
13p139p	1	0.569129 .822		130.391		
p_g_n0_to_..to_n15_level0	1	0.567135 .745		136.312		
13p139	1	0.56551 .946		52.512		
12p1513p	1	0.563193 .385		193.948		
p_g_n0_to_..to_n15_level0	1	0.55954 .013		54.573		
p_g_n0_to_..to_n15_level0	1	0.55974 .035		74.594		
13p149	1	0.53152 .059		52.590		
13p149p	1	0.52952 .293		52.823		
13p159p	1	0.5080 .000		0.508		
11 g 1211	1	0.503159 .007		159.509		
11 g 21 p	1	0.487335 .696		336.183		
12 g 129	1	0.482535 .091		535.573		
11 g 87	1	0.482111 .758		112.240		
11 g 65	1	0.478168 .887		169.364		
11 g 21	1	0.474276 .574		277.048		
11g1413	1	0.469189 .163		189.632		
11g109	1	0.464209 .159		209.623		
12 g 85	1	0.463231 .785		232.248		
12g1513p	1	0.456175 .551		176.006		
11 g 43	1	0.448178 .102		178.550		
12g41p	1	0.443388 .114		388.558		
12 g 41	1	0.438346 .732		347.170		
13g81p	1	0.43301 .92		302.35		
13 g 81	1	0.43559 .97		560.41		
11g1413p	1	0.39245 .37		245.75		
cout_prime	1	0.37602 .61		602.98		
13g159p	1	0.37192 .71		193.08		
14g151p	1	0.36189 .01		189.37		
ycp_bit14	1	0.32126 .01		126.33		
ycp_bit1	1	0.32126		126.32		
13ps6p	2	0.03393 .7		393.74		
13ps6	2	0.03354 .46		354.49		
14 ps 10	2	0.03438 .21		438.24		
14ps10p	2	0.03445 .25		445.28		
12ps8	2	0.03603 .84		603.87		
12 ps 12	2	0.03656 .29		656.32		
12ps4p	2	0.03437 .01		437.04		
13ps14p	2	0.03495 .19		495.22		
13 ps 14	2	0.03576 .08		576.11		
12ps4	2	0.03395 .87		395.91		
13ps7p	2	0.03402 .66		402.69		
13 ps 7	2	0.03396 .79		396.82		
13ps8p	2	0.03373 .94		373.97		
13 ps 8	2	0.03368 .31		368.34		
14 ps 11	2	0.03370 .13		370.16		
14ps11p	2	0.03375 .89		375.92		
13ps15	2	0.03484 .33		484.36		
14 ps 12	2	0.03401 .57		401.6		
14ps12p	2	0.03407 .83		407.86		
13ps15p	2	0.03466 .66		466.69		
14ps13p	2	0.03427 .29		427.32		
14 ps 13 Continued on Next Page	2	0.03419 .79		419.82		

Table C.5-Continued						
Instance Power	Dyanmic Power $(\mathbf{n W})$	Total Power (nW)				
14ps14p	Cells	Leakage $(\mathbf{n W})$	363.31			
l4ps15p	2	0.03363 .28	362.85			
l4ps14	2	0.03362 .82	425.97			
14ps15	2	0.03425 .94	379.11			
xsp_bit0	2	0.03379 .08	157.55			
xsp_bit13	1	0.02157 .52	$\mathbf{5 9 5 9 3 . 3 6 8}$			
Total	1	0.02179 .46	$\mathbf{5 9 6 9 3 . 4 4 6}$			

Table C.6: Total power of the proposed ELMMA for modulo 57343

Instance	Cells	Leakage (nW)	Power	$\begin{aligned} & \hline \begin{array}{l} \text { Dyanmic } \\ (\mathrm{nW}) \end{array} \\ & \hline \end{aligned}$	Power	Total Power (nW)
11ps1p	1	0.932		389.901		390.833
12ps2p	1	0.929		502.811		503.740
11 ps 14 p	1	0.928		533.543		534.471
13ps4p	1	0.923		469.380		470.303
13ps4	1	0.922		462.832		463.754
xs_yc_bit0..en[2].xs_scsa	1	0.922		493.720		494.642
xs_yc_bit0..en[6].xs_scsa	1	0.922		367.267		368.188
xs_yc_bit0..en[3].xs_scsa	1	0.922		351.274		352.195
xs_yc_bit0..en[4].xs_scsa	1	0.922		493.702		494.623
xs_yc_bit0..en[5].xs_scsa	1	0.922		351.274		352.195
xs_yc_bit0..n[11].xs_scsa	1	0.921		307.363		308.284
xs_yc_bit0..n[12].xs_scsa	1	0.921		502.444		503.366
xs_yc_bit0..n[14].xs_scsa	1	0.921		467.342		468.263
xs_yc_bit0..n[15].xs_scsa	1	0.921		308.404		309.326
xs_yc_bit0..en[1].xs_scsa	1	0.921		401.801		402.723
xs_yc_bit0..en[8].xs_scsa	1	0.921		493.700		494.621
xs_yc_bit0..en[9].xs_scsa	1	0.921		351.272		352.193
xs_yc_bit0..n[10].xs_scsa	1	0.921		419.712		420.633
xs_yc_bit0..en[0].xs_scsa	1	0.921		250.226		251.148
xs_yc_bit0..en[7].xs_scsa	1	0.921		351.251		352.173
xs_yc_bit0..n[13].xs_scsa	1	0.921		307.343		308.264
13ps12	1	0.921		737.968		738.889
11 ps 1	1	0.920		319.987		320.906
11 ps 7	1	0.919		443.585		444.504
14 ps 8	1	0.919		465.529		466.448
14 ps 8 p	1	0.919		466.211		467.129
11 ps 15	1	0.918		722.181		723.099
11 ps 11	1	0.918		404.421		405.339
11 ps 13	1	0.915		370.705		371.621
11 ps 13 p	1	0.915		376.862		377.778
11 ps 5	1	0.915		597.411		598.326
12ps14	1	0.915		532.878		533.792
11ps9	1	0.915		518.495		519.410
11 ps 3	1	0.913		469.443		470.357
12ps14p	1	0.912		408.739		409.652
12ps6	1	0.912		581.630		582.542
12ps2	1	0.911		353.057		353.968
12 ps 10	1	0.911		621.672		622.583
MUX_bit0	1	0.631		386.114		386.745
MUX_bit14	1	0.631		364.034		364.665
MUX_bit10	1	0.631		341.318		341.949
MUX_bit6	1	0.630		307.482		308.113
MUX_bit3	1	0.630		344.529		345.159
MUX_bit15	1	0.629		320.234		320.863
MUX_bit11	1	0.629		306.906		307.535
MUX_bit4	1	0.629		325.839		326.468
MUX_bit13	1	0.628		513.092		513.720
MUX_bit12	1	0.623		344.055		344.679
MUX_bit2	1	0.621		347.241		347.862
11h1514p	1	0.620		290.314		290.933
MUX_bit8	1	0.616		323.475		324.092
11p98	1	0.614		334.391		335.005
MUX_bit9	1	0.612		322.286		322.898
MUX_bit1	1	0.610		289.583		290.194
MUX_bit5	1	0.608		303.031		303.639
MUX_bit7	1	0.608		320.706		321.314
11p54	1	0.606		334.422		335.028
11p32	1	0.606		321.707		322.314
11p1110	1	0.603		193.704		194.307
11p1312p	1	0.600		261.544		262.144
11p1312	1	0.600		335.653		336.252
xs_yc_bit0..en[3].yc_scsa	1	0.597		82.728		83.324
xs_yc_bit0..en[4].yc_scsa	1	0.597		227.052		227.648
xs_yc_bit0..en[5].yc_scsa	1	0.597		110.304		110.900
xs_yc_bit0..en[2].yc_scsa	1	0.597		113.519		114.116
xs_yc_bit0..en[6].yc_scsa	1	0.597		151.359		151.955
xs_yc_bit0..n[11].yc_scsa	1	0.597		82.725		83.322
xs_yc_bit0..n[12].yc_scsa	1	0.597		160.132		160.729
xs_yc_bit0..n[14].yc_scsa	1	0.597		113.524		114.120

Table C. 6 - Continued

Instance	Cells	Leakage (nW)	Power	$\begin{aligned} & \text { Dyanmic } \\ & \text { (nW) } \end{aligned}$	Power	Total Power (nW)
xs_yc_bit0..n[15].yc_scsa	1	0.597		110.301		110.897
xs_yc_bit0..en[1].yc_scsa	1	0.597		100.640		101.236
xs_yc_bit0..en[8].yc_scsa	1	0.597		113.524		114.120
xs_yc_bit0..en[9].yc_scsa	1	0.597		137.876		138.472
xs_yc_bit0..n[10].yc_scsa	1	0.596		151.362		151.958
xs_yc_bit0..en[0].yc_scsa	1	0.596		151.368		151.964
xs_yc_bit0..en[7].yc_scsa	1	0.596		55.152		55.748
xs_yc_bit0..n[13].yc_scsa	1	0.596		110.301		110.897
11p76	1	0.595		258.365		258.959
12p108	1	0.586		217.966		218.552
12p1412	1	0.579		222.301		222.880
12p118	1	0.575		315.802		316.376
13p128	1	0.573		123.749		124.322
11 g 1312 p	1	0.571		110.723		111.294
12p64	1	0.571		217.917		218.488
12p1412p	1	0.566		155.783		156.349
12p74	1	0.555		161.156		161.710
13p138p	1	0.542		78.306		78.848
13 p 138	,	0.534		26.258		26.792
13p148	1	0.528		26.285		26.813
13p148p	1	0.522		52.827		53.349
13p158p	1	0.508		0.000		0.508
11 g 10 p	1	0.485		262.731		263.216
11 g 1514	1	0.470		114.367		114.837
11 g 10	1	0.467		168.105		168.572
11 g 1110	1	0.465		135.720		136.185
11 g 76	1	0.464		110.549		111.013
11 g 98	1	0.459		207.391		207.850
11g54	1	0.450		204.833		205.283
11 g 1312	1	0.447		225.943		226.390
11 g 32	,	0.432		145.301		145.734
12 g 118	1	0.428		506.695		507.124
12 g 30 p	1	0.425		342.814		343.239
12 g 30	1	0.416		346.290		346.706
12 g 74	1	0.414		233.348		233.761
$13 \mathrm{g70p}$	1	0.407		338.910		339.318
13 g 70	1	0.406		595.465		595.871
12g1512p	1	0.406		204.220		204.626
cout	1	0.384		599.153		599.536
13g158p	1	0.340		193.810		194.149
14g150p	1	0.325189 .021		189.346		
ycp_bit13	1	0.318126 .009		126.327		
ycp_bit0	1	0.317124 .499		124.817		
12ps3p	2	0.034462 .598		462.632		
14 ps 9	2	0.034430 .329		430.363		
14ps9p	2	0.034437 .273		437.306		
13ps5p	2	0.033420 .570		420.604		
13ps5	2	0.033381 .634		381.667		
13ps13p	2	0.033573 .689		573.723		
13 ps 13	2	0.033571 .178		571.211		
12ps3	2	0.033440 .870		440.903		
13ps6p	2	0.033394 .448		394.480		
13ps6	2	0.033355 .190		355.222		
14 ps 10	2	0.032438 .785		438.818		
14 ps 10 p	2	0.032445 .761		445.794		
12ps15	2	0.032488 .053		488.085		
12ps11	2	0.032592 .349		592.381		
13ps7p	2	0.032399 .255		399.287		
12ps7	2	0.032623 .866		623.898		
13 ps 7	2	0.032393 .605		393.637		
13ps14p	2	0.032491 .450		491.482		
13 ps 14	2	0.032576 .359		576.391		
13 ps 15	2	0.032480 .047		480.078		
13ps15p	2	0.031447 .442		447.474		
14 ps 11	2	0.031367 .134		367.165		
14 ps 11 p	2	0.031372 .669		372.700		
14 ps 12	2	0.03404 .54		404.57		
14 ps 12 p	2	0.03410 .96		410.99		
14ps13p	2	0.03422 .66		422.69		
14 ps 13	2	0.03415 .07		415.11		
14 ps 14 p	2	0.03363 .27		363.3		
14 ps 14	2	0.03425 .92		425.95		
14 ps 15	2	0.03379 .06		379.09		
14ps15p	2	0.03348 .75		348.78		
xsp_bit0	1	0.02157 .52		157.55		
xsp_bit13	1	0.02215 .92		215.94		
Total	181	$\mathbf{7 7 . 5 6 5}$		51407.319		51484.884

