Adapting Flexibility in Decision-Making in Building Design Management

Ilyas Nizami
25 June 2009

Master Thesis

TU Delft
The story begins...

research project

before
Design Projects

hypothesis
observation

do
findings

after
Recommendations

evaluation tool
Influence-Information ‘paradox’

- Information
 - Limited available information about problem, goals, consequences of alternatives and preferences.

- Influence of decisions
 - Program – building form -- structural design -- element choice – energy -- installation

Source: Wamelink et al. (2007)
Increasing level of information

1. Identification of Problem & Goal (ex post evaluation)
2. Identification of Requirements
3. Identification of solution space
4. Estimate performance of design (ex ante evaluation)

Source: Wamelink et al. (2007)
Problem identification; Post Occupancy Evaluation

1. POE, Strategic briefing

2. Briefing process, format and content

3. Space solver, ADR and UDR

4. Cost models, Checklists, BSM..
Identification of requirements; Participation of users

1. POE, Strategic briefing

2. Briefing process, format and content

3. Space solver, ADR and UDR

4. Cost models, Checklists, BSM..
Identifying solution space; Urban Decision Room

1. POE, Strategic briefing
2. Briefing process, format and content
3. Space solver, ADR and UDR
4. Cost models, Checklists, BSM..

Source: van Loon and Bronkhorst (2005)
Ex ante evaluation; SVINSK Cost Model

1. POE, Strategic briefing
2. Briefing process, format and content
3. Space solver, ADR and UDR
4. Cost models, Checklists, BSM..

Source: Jong (2005)
Adopting flexibility in decision-making

- Alternatives are developed, evaluated & selected;
 - Early commitment to a single alternative
 - Chosen alternative (or point) is reversed
 - Point-based design
 - Delay commitment to a single alternative
 - Set of alternatives are kept alive
 - Set-based design
Project 1; Designing a Museum

Three sketch-alternatives are made and one is chosen to be further developed
Project 1; Designing a Museum

Chosen sketch-design is further developed into preliminary design
Project 2; Designing a HighRise

Three sketch-alternatives are further developed into preliminary design, choice is made for vertical walk.
Project 2: Designing a High Rise

Final Design
Observed difference in process

A. Selecting an alternative
 - concept vs. real options

B. Design iteration
 - sequential vs. parallel

C. Involvement of other actors
 - development vs. analysis

D. Information-exchange
 - risk of rework vs. risk of starvation
Selecting an alternative

POINT-BASED

CONCEPT

- Decision 1 (concept)
- No information available about influence of decision 1 to following decisions (2, 3, 4)

SET-BASED

REAL OPTION

- Decision 1 (concept)
- Information is available about influence of decision 1 to following decisions (2, 3, 4)

Source modified: Malak et al. (2007)
Design iteration

POINT-BASED

- Selecting an alternative
- Design iteration
- Involvement of others
- Information exchange

SET-BASED

- Scheme design
- Concept design
- Detailed design

ALTERNATIVES ARE DEVELOPED AFTER ONE ANOTHER

ALTERNATIVES ARE DEVELOPED IN PARALLEL

Source modified: Hopfe et al. (2006)
Involvement of other actors

Source: Poppendieck (2006)
Information-exchange

Source: Terwiesch et al. (2002)
Hypothesis

• ‘Delaying commitment to a single alternative could be very beneficial for the end-result!’

• Let’s measure it...
Methodology

- Vertical axe; determinants
- Horizontal axe; project value dimensions

Evaluation Matrix
Case 1
Point-based

Case 1
Set-based

Case 2
Point-based

Case 2
Set-based

Case 3
Point-based

Case 4
Set-based

Cross case study
Case 1: Computer Building (Geneva, Switzerland)

Case 2: Hospital Building (California, U.S.A.)

Case 3: Community College (Amsterdam)

Case 4: Feasibility Study (Amsterdam)

Case studies
Case studies

Case 1:
Computer Building (Geneva, Switzerland)

Case 1; Explicit comparing made cost-reducing optimization possible

Case 2:
Hospital Building (California, U.S.A.)

Case 3:
Community College (Amsterdam)

Case 4; Transparent and clear arguments for choosing of architect

Case 4:
Feasibility Study (Amsterdam)
Case 2: Hospital Building (San Francisco, U.S.A)

- High seismic area
- Select Structural system
- Control inter-story drift

Design task:

Source: Parrish et al. (2008)
Selecting an alternative

- Predictable influence
 - Base-isolation is difficult to construct & Moment-frame clash with architectural features

- ‘Hidden’ influence
 - Due to hidden value, viscous damping wall appeared to be superior in the remainder of the process.

Case 2: Hospital Building
(San Francisco, U.S.A)
Case 2: Hospital Building (San Francisco, U.S.A)

Design iteration

- Point-based design
 - Irreversible decision, due to timely & costly rework

- Set-based design
 - Keeping alternatives alive lead to increasing development costs
Design task:

- Multifunctional program
 - Educational space
 - 14,000 m² GFA
 - Commercial space
 - 3,000 m² GFA
 - Parking space
 - 3,700 m² GFA

- Design to be constructed
 - < € 1,450 / m²

Point-based Case 3: Community College (Amsterdam, Netherlands)
Point-based Case 3: Community College
(Amsterdam, Netherlands)

Selecting an alternative

- Predictable construction costs during early stage of design;

Garage below groundwater level

Too many angles in facade
East-façade close to viaduct

Source: Hamfelt (2008)
Point-based Case 3: Community College
(Amsterdam, Netherlands)

Selecting an alternative

- 'Hidden' value
 - Decision made about orientation, however unknown value.

Source: Hamfelt (2008)
Involvement of others

Costly and timely iteration;

- Supervisor of urban development in A’dam North;
 - Denial of façade design, which was worked out into preliminary design.
- General contractor;
 - Expensive to construct building
- User parking space was involved later on
SWOT analysis: Point-based design

Strength

- constrain development costs through selection of most promising solution
- no complex analysis/critique activity

Weakness

- Most promising solution may prove unfeasible in the remainder of the process, leading to costly rework
- Latent value remains hidden

Opportunities

- Decisions can be improved due to increasing level of information during early stage of design.

Threats

- Timely and costly rework may lead to irreversible decision
- Negative attitude by other stakeholders may obstruct implementation of chosen design
SWOT analysis: Set-based design

Strength

- Integrated analysis leads to clear arguments about chosen alternative
- Optimization is possible, due to unveiling of hidden value

Weakness

- Increasing development costs, due to parallel development of alternatives
- Integrated analysis/critique is timely and costly

Opportunities

- Enhance collaborative design approach
- Explicit analysis can increase learning process

Threats

- Failing to make decision at last possible moment
- Unable to involve all stakeholders at the project outset
• Added value research;
 – operationalized difference between point-based & set-based design

• Further research;
 – Explorative research:
 • in finding additional differences in process
 – Testing research;
 • Hypothesis 1: Delay commitment to a single alternative helps clients better define in what they need!
 • Hypothesis 2: Delay commitment to a single alternative helps better control stakeholders influence in projects!

• Both explorative & testing research through real time case studies!
Thank you for your attention

Any questions
Adapting Flexibility in Decision-Making in Building Design Management