
 
 

Delft University of Technology

Quantifying restoration time of pipelines after earthquakes
Comparison of Bayesian belief networks and fuzzy models
De Iuliis, Melissa; Kammouh, Omar; Cimellaro, Gian Paolo; Tesfamariam, Solomon

DOI
10.1016/j.ijdrr.2021.102491
Publication date
2021
Document Version
Final published version
Published in
International Journal of Disaster Risk Reduction

Citation (APA)
De Iuliis, M., Kammouh, O., Cimellaro, G. P., & Tesfamariam, S. (2021). Quantifying restoration time of
pipelines after earthquakes: Comparison of Bayesian belief networks and fuzzy models. International
Journal of Disaster Risk Reduction, 64, Article 102491. https://doi.org/10.1016/j.ijdrr.2021.102491

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ijdrr.2021.102491
https://doi.org/10.1016/j.ijdrr.2021.102491


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



International Journal of Disaster Risk Reduction 64 (2021) 102491

Available online 27 July 2021
2212-4209/© 2021 Published by Elsevier Ltd.

Quantifying restoration time of pipelines after earthquakes: Comparison of 
Bayesian belief networks and fuzzy models 

Melissa De Iuliis a, Omar Kammouh b, Gian Paolo Cimellaro a,*, Solomon Tesfamariam c 

a Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Italy 
b Department of Materials, Mechanics, Management and Design, Delft University of Technology, the Netherlands 
c School of Engineering, The University of British Columbia, Kelowna, BC, Canada   

A R T I C L E  I N F O   

Keywords: 
Resilience 
Downtime 
Lifelines 
Infrastructure 
Fuzzy logic 
Bayesian network 
Restoration 

A B S T R A C T   

Critical infrastructures are an integral part of our society and economy. Services like gas supply or water net
works are expected to be available at all times since a service failure may incur catastrophic consequences to the 
public health, safety, and financial capacity of the society. Several resilience strategies have been examined to 
reduce disaster risk and evaluate the downtime of infrastructures following destructive events. This paper in
troduces an indicator-based downtime estimation model for buried infrastructures (i.e., water and gas networks). 
The model distinguishes the important aspects that contribute to determining the downtime of buried infra
structure following a hazardous event. The proposed downtime model relies on two inference methods for its 
computation, Fuzzy Logic (FL) and Bayesian Network (BN), which are adapted for the current application. 
Finally, through a case scenario, a comparison of the two inference methods, in terms of results and limitations, is 
presented. Results show that both methods incorporate intuitive knowledge and/or historical data for defining 
fuzzy rules (in FL) and estimating conditional probabilities (in BN). The difference stands in the interpretation of 
the outcome. The output of the FL is a membership that defines how well the downtime fits the fuzzy levels while 
the BN output is a probability distribution that represents how likely the downtime is in a certain state. 
Nevertheless, both approaches can be utilized by decision-makers to easily estimate the time to restore the 
functionality of buried infrastructures and plan preventive safety measures accordingly.   

1. Introduction 

Water and gas distribution pipes, coupled with other critical infra
structure systems, contribute to the economic development and quality 
of life of modern communities. During recent seismic events, such as the 
1995 Kobe and 2016 Kumamoto earthquakes, the water and gas distri
bution networks were severely damaged [1–4]. Failures of the water 
distribution network can have consequences on other existing nearby 
infrastructures, such as gas pipes (e.g., water is required in processing 
plants of natural gas), potable water, and wastewater conveyance sys
tems, leading to poor public health conditions [5,6]. Integrity of critical 
infrastructures, therefore, has aroused attention to the seismic safety of 
lifeline systems. 

Functionality of the infrastructure, under emergency conditions, can 
be evaluated by studying resilience of critical infrastructures that are 
prone to many disruptive events or inadequate maintenance [7–13]. In 

the seismic resilience estimation, one such matrix of interest to the 
decision-making is downtime. The downtime is defined as the time from 
the occurrence of the hazard event (to), where there is a loss of func
tionality of the system, to the time when the functionality is completely 
restored (t1) (Fig. 1) [14–16]. 

Although several studies have been carried out on downtime 
[17–19], downtime estimation is still challenging since the data and the 
input parameters that are required for the estimation are not completely 
available, highly uncertain, and rapidly evolving in time [20–23]. The 
“uncertain” parameters such as the finance and procurement process, 
economic and human resources are important factors in the definition and 
estimation of the downtime. Few downtime models include the contri
bution of uncertain factors as they differ depending on the condition of 
the affected area. Therefore, the main challenge in estimating the 
restoration time deals with randomness, vagueness, and ignorance-type 
uncertainties [8,24–26]. The typology and definition of uncertainty 
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within the engineering community is extensive and often discordant 
[27]. Klir and Yuan [25] have broadly categorized uncertainty into two 
basic types: vagueness and ambiguity (see Table 1 for an extensive list of 
the uncertainty types). Besides, the uncertainties and interdependencies 
that exist in the downtime estimation, render rule-based systems and 
graphical models a viable alternative [20–22]. Interdependency, in this 
context, refers to the statistical relationships between the input param
eters of the downtime estimation model. 

In recent years, several techniques have been proposed and investi
gated based on fuzzy theory or evidence theory [21,28–30] and 
Bayesian network (BN) [20,31–33] to represent uncertainty and 
vagueness. A summary of recent literature on Fuzzy logic and Bayesian 
network applications is presented in Table 2. Fuzzy systems have been 
proposed to deal with vagueness, which is caused by uncertainty in 
observation, and to represent ambiguous data when available informa
tion is limited [34–36]. Bayesian networks, on the other hand, have long 
been applied as a cause-effect analysis tool for simulating the behavior 
of a system in situations of high uncertainty and missing data in many 
fields of study, ranging from social science to economics [37]. For 
instance, BN is efficient for handling risk assessment and 
decision-making under uncertainty [38] and it is typically used in risk 
analysis applications [39], such as seismic risk analysis [20,40], earth
quake disaster risk index [41], reliability engineering [42,43], and 
safety management [44–46]. BNs have been implemented extensively to 
analyze and measure the resilience of critical infrastructures, such as 
waterspouts, supply chains, and manufacturing [47–52]. For example, 
Hosseini and Barker [53] proposed a methodology to quantify resilience 
as a function of absorptive, adaptive, and restorative capacities through 
Bayesian networks with the application on an inland waterway port. In 
recent years, BNs have been employed in different water related issues 
as management tools [54–57]. Roozbahani et al. [58] developed a 
framework based on prediction of groundwater level using Bayesian 
networks model. The model was evaluated for restoring the Birjand 
aquifer in Iran in different hydrological conditions. A Hybrid Bayesian 
Networks (HBNs) was employed to develop an intelligent model for 
hydraulic simulation and operational performance evaluation of the 
agricultural water distribution system [59]. However, to this date, no 
downtime estimation model for pipeline networks that uses FL or BN 
inference methods can be found in the literature. Although the com
parison among probabilistic and non-probabilistic frameworks has been 
addressed in several works [60–64], in most cases, the comparison is 
made at the theoretical level without a practical perspective [65]. 
Furthermore, a comparison between the two approaches focusing on the 
treatment and representation of the uncertainty in the recovery time 
estimation is still missing. 

The primary goal of this paper is to introduce a system-based 
downtime estimation model for pipeline systems following a hazard
ous event. This proposed system includes important aspects of downtime 

Fig. 1. Conceptual Downtime (DT) of a system.  

Table 1 
Definition of uncertainty types.  

Uncertainty Definition 

Imprecise Not clear, not accurate 
Vagueness Not clearly explained or expressed, and therefore understandable in 

different ways. Results in uncertain or ill-defined meaning 
Ambiguity Unclear or confusing as data can have different meanings 
Ignorance Lack of knowledge, lack of reliable information about the 

phenomenon of interest 
Inconsistent Unpredictable and behaves differently in a situation that warrants the 

same behavior. Data inconsistency occurs when data is stored in 
different formats in two databases or if data must be matched between 
database 

Random Data randomness occurs when data is defined without method or 
conscious choice  

Table 2 
Recent literature on Fuzzy Logic and Bayesian Network methodologies.  

Reference Goal Methodology Results 

Muller [66] Assess the resilience 
of critical 
infrastructures 

Fuzzy approach The approach helps 
identifying important 
criteria to evaluate the 
resilience of 
infrastructures 

He and Cha 
[67] 

Modeling the 
recovery of critical 
infrastructures 

Graph theory Recovery time is 
sensitive to the relative 
importance between 
systems 

Hosseini 
and 
Barker 
[46] 

Evaluation of 
resilience-based 
supplier 

Bayesian 
Network 

Flexibility of variable 
types, inference 
analysis, accounting for 
uncertainty 

Ferdous 
et al. [28] 

Handling 
uncertainty in a 
Quantitative Risk 
Analysis (QRA) 

Fuzzy approach Fuzzy-based approaches 
properly address the 
uncertainties in expert 
knowledge 

Hosseini 
and 
Barker 
[53] 

Quantifying 
resilience of 
infrastructures 

Bayesian 
Network 

Bayesian Network can 
quantify resilience from 
qualitative variables. 
Backward analysis of 
BN provides insights to 
achieve a specific level 
of resilience for port 
decision-makers 

This paper Estimate recovery 
time of pipelines 

Fuzzy approach 
and Bayesian 
Network 

Downtime estimation 
model adaptable to any 
pipeline system  
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and the different uncertainty types. The contribution of this paper is 
summarized as follows: 

1) Developing a generic downtime estimation model for pipeline sys
tems considering all relevant aspects of downtime.  

2) Accounting for different types of input information and uncertainties 
by integrating FL and BN inference methods within the model.  

3) Presenting a case scenario to demonstrate the applicability of the 
introduced downtime estimation model using both inference 
methods and considering the water network as a pipeline system.  

4) Comparing the performance of both inference methods within the 
proposed downtime model 

The downtime estimation model presented in this paper is targeted 
as a support tool for decision-makers to learn the overall repair time of 
their systems and help them prioritize the financial resources during the 
planning and management of disasters accordingly. It also provides a 
more general downtime model that adds to the existing literature. The 
remainder of the paper is organized as follows: Section 2 is devoted to 
the development of the downtime estimation model and to the 
description of the key indicators that are identified from past studies. 
Section 3 presents the case scenario that will be used to demonstrate the 
proposed downtime estimation approach. Sections 4 and 5 are dedicated 
to reviewing the basic knowledge of the FL and BN, respectively, and 
their implementation within the downtime estimation model. Section 6 
compares the two approaches in terms of outputs and limitations. 
Finally, conclusions are drawn in Section 7 together with the proposed 
future work. 

2. Downtime model for water and gas lifelines 

2.1. Indicators selection and clustering 

Developing the downtime estimation model for water and gas in
frastructures starts by selecting the indicators that affect the downtime. 
All factors that contribute to the downtime estimation – geological, 
engineering, economic, social, and political factors – have been 
considered while selecting the indicators. The selection procedure starts 
from the target indicator, the downtime, which is decomposed into 
factors and sub-factors that together define it [68]. To reduce the 
subjectivity in selecting the downtime indicators, three criteria were 
considered: validity, measurability, and coherence [68,69]. A total of 31 
key indicators have been selected based on an extensive review of pre
vious publications and studies [41,68,70,71]. The indicators collected 
from the literature have been filtered to obtain mutually exclusive in
dicators. This has led to rejecting a number of indicators either because 
they are not relevant or because they overlapped with other indicators. 
The indicators can be classified under four main indices: (i) “Exposed 
infrastructure” (EI), (ii) “Earthquake intensity” (E), (iii) “Available 
human resources” (HR), and (iv) “Infrastructure type” (I) 
(Table 3-Table 6). Fig. 2 illustrates the downtime estimation model and 
the hierarchical relationships between the indices and the indicators. To 
construct the downtime model, casual and logical relationships among 
the downtime indicators are identified based on expert knowledge and 
published literature. The indicators are clustered as follows:  

• Group 1: indicators referring to economic and financial reserves that 
support the capacity of a community to effectively respond to and 
recover from a disaster.  

• Group 2: indicators referring to the exposure level of infrastructure. 
These indicators are composed of indicators related to the evaluation 
of the infrastructure’s post-disaster condition and indicators related 
to the characteristics of the analyzed infrastructure.  

• Group 3: Indicators related to the seismic event. These indicators 
represent the hazard demand a community will 2.2be subject to.  

• Group 4: indicators referring to the availability of humans, composed 
of policy and planning indicators as well as indicators related to the 
affected area. 

In the following, every index and its indicators are described in 
detail. 

2.1.1. Exposed Infrastructure (EI) 
Table 3 lists the EI indicators along with their state, the performance 

measure, and the sources used to obtain them (when available). The EI 
index, describing how effectively and efficiently a community can 
respond to recover from short-term and long-term impacts, is quantified 
through the Maintenance degree of the infrastructure, which represents 
the state of deterioration of the infrastructure. Infrastructures wear out 

Table 3 
Description of the “Exposed infrastructure” indicators.  

Indicator/Index State Performance measure/Reference 

Exposed Infrastructure Low Visual inspection/Expert opinion 
High 

Maintenance Degree Poor Visual inspection/Expert opinion 
Medium 
Good 

Served people Low ≤20 % Population 
Medium 20 %<Served People<50 % 

Population 
High >50 % Population [73] 

Anti-seismic 
Infrastructure 

Yes Earthquake resistant 
No Earthquake non-resistant 

Service Importance Low Visual inspection/Expert opinion 
Medium 
High 

Priority of intervention Low Visual inspection/Expert opinion 
Medium 
High 

Recovery Type Easy Visual inspection/Expert opinion 
Difficult 
Very Difficult [71] 

Financing Phase Short Visual inspection/Expert opinion 
Medium 
Long [71] 

Procurement Process Reactive Major hazards 
Emergency State of emergency taken off 
Accelerated Immediate needs [71,74] 

Building Phase Easy Visual inspection/Expert opinion 
Difficult 
Very Difficult [71] 

Engineer Evaluation Short Visual inspection/Expert opinion 
Medium 
Long [71] 

Structural Inspection Short Visual inspection/Expert opinion 
Medium 
Long [71] 

Damage Assessment Short Visual inspection/Expert opinion 
Medium 
Long [71] 

Event Repetition Once First shock 
Many Aftershocks [71] 

Seismic Event Dangerous 6 < M76 
Very Dangerous 7 < M ≤ 8 
Extremely 
Dangerous 

M > 8 

Financing Planning Short Visual inspection/Expert opinion 
Medium 
Long [71] 

Repair Effort Short Visual inspection/Expert opinion 
Medium 
Long [71] 

Verification phase Short Visual inspection/Expert opinion 
Medium 
Long [71] 

Engineering 
Consolidation 

Easy Visual inspection/Expert opinion 
Difficult 
Very Difficult  

M. De Iuliis et al.                                                                                                                                                                                                                               



International Journal of Disaster Risk Reduction 64 (2021) 102491

4

with time and use, so proper and timely maintenance must be periodi
cally conducted. Neglecting proper maintenance leads to a decline in the 
infrastructure’s condition. Therefore, in this work, it is assuming that a 
higher maintenance rate would lead to a lower likelihood of damage as 
well as a lower recovery time. The EI index also relies on the Priority of 
the infrastructure system, which is defined by the number of Served 
people and the Service importance of the infrastructure within the com
munity, the Anti-seismic technology of the structure and the Recovery type. 
The Recovery type includes indicators representing the Verification phase, 
which is the sum of the time and effort required for the Engineer evalu
ation, the Building phase, the Financing phase, indicators related to the 
Seismic event, and it is also affected by the analyzed “Infrastructure type” 
index. The Engineer evaluation indicator, which is the time teams of 
specialists (e.g., engineers) need to define and compare the assessments 

and give feedback on the potentially damaged infrastructure after the 
inspection, is based on the Structural inspection process and the quanti
fication of the damages represented by the Damage assessment indicator 
[72]. The Building phase, sub-classified into Repair effort and Engineering 
consolidation, provides all those processes of design and intervention 
which aim at restoring the structural characteristics of the structure. The 
Financing Phase is divided into the Financing planning indicator, which 
represents the time the expert needs to plan and distribute properly 
funds and resources in the right manner, and the Procurement process. 
The Procurement process indicator is the time required to make an offer 
by an individual or business for a product or service. In the aftermath of 
a disastrous event, it is very important to shorten the procurement 
process in such a way to speed up the recovery process [20]. Finally, the 
Seismic event indicator depends on the Event repetition indicator and on 
the “Earthquake intensity” index. 

The indicators that are related to the “Exposed infrastructure” index 
are described in Table 3. Information about the “Infrastructure type” 
index and “Earthquake intensity” index along with their indicators are 
described separately in Table 5 and Table 6. 

2.1.2. Availability of Human Resources (HR) 
Information on the “HR” index and its indicators is presented in 

Table 4. As shown in Fig. 2, the “HR” index is influenced by three in
dicators: the occurrence of Other emergencies at the same time, the 
availability of a structured and defined Planning indicator, and the 
characteristics of the Impacted area. The Planning indicator is used in the 
framework to represent the emergency response and recovery planning. 
It can be assessed by consulting a city’s local planning experts [20]. 

The Impacted area indicator can be divided into three sub-indicators: 
the Weather condition of the affected area, the easiness of Mobility and 
access into the area, and the characteristics of the urban area. The 
Mobility and access indicator is dependent on the conditions of the post- 
earthquake transportation system, the number of debris, and the 
“Earthquake intensity” index. The Weather condition indicator is 
expressed in terms of the temperature [68]. Four ranges have been 
selected to describe the Weather condition indicator, as listed in Table 4. 

Besides, the Urban area indicator is identified by Per Capita Gross 
Domestic Product (PCGDP), which is the indicator of a nation’s living 
standards, the Population density of the impacted area, and the Urbani
zation degree [76–78]. 

2.1.3. Infrastructure type (I) 
Outlined in Table 5 are the types of infrastructures that are consid

ered in the proposed downtime model: water and gas networks. The 
“Infrastructure type” is a key index in the downtime evaluation since it 
affects the Recovery type indicator and the downtime output [70]. 

2.1.4. Earthquake intensity (E) 
Table 6 below presents the “Earthquake Intensity” (E) index, which 

expresses the severity of the earthquake to which a city will be subject. 
The E index influences the Seismic event and the Mobility and access in
dicators and directly the downtime output node. It is defined by 
combining the Epicentral distance and the Earthquake magnitude in
dicators. Distance from the epicenter is related to the observed damage 
such that the farther a system is located from the epicenter, the less 
damage is observed in the system. The epicentral distance is defined as 
(close, far, and very far). Four groups of Richter magnitude scale are 
used to classify the Earthquake magnitude indicator, (Strong 6–7, Major 
7–8, Severe 8–9, Violent 9–10). The “Earthquake Intensity” index is 
classified into four groups of Mercalli intensity scale ranging from least 
perceptive to most severe: (Weak MMI-MMIII, Strong MMIV-MMVI, 
Severe MMVII-MMX, Violent MM > MMX). 

3. Demonstrative example 

In this section, the proposed downtime model is verified with the 

Table 4 
Description of “Availability HR” indicators.  

Indicator/Index State Performance measure Reference 

Availability HR Low Expert opinion [75] 
High 

Other 
Emergencies 

Yes Expert opinion  
No 

Planning 
Indicator 

Bad Inadequate and inactive [68] [41] 
Good Inadequate or inactive 
Excellent Adequate and active 

Impacted Area Small Visual inspection/Expert opinion [41] 
Medium 
Large 

Mobility and 
Access 

Easy [41] 
Medium Visual inspection/Expert opinion 
Hard  

Urban Area Small 50.000<Population<200.000 [71] 
Medium 200.000<Population<500.000 [73] 
Large Population ≥ 500.000 [41] 

Weather 
Condition 

Very bad T ≤ 32 ◦F or T ≥ 90 ◦F [68] [41] 
Bad 32 ◦F < T ≤ 55 ◦F and 75 ◦F ≤ T <

90 ◦F 
Good 55 ◦F < T < 75 ◦F 

PCGDP Low ≤5 [41] [76] 
Medium 5<PCGDP<40 
High >40 

Population Low <50.000 [73] [41] 
Medium 50.000<Population≤<00.000 
High Population ≥ 500.000 

Urbanization Low <0 [41] [77] 
Medium 0 < Urbanization rate <3 
High >3  

Table 5 
Description of “Infrastructure Type” indicators.  

Indicator/Index State Performance measure/Reference 

Infrastructure Type Water [8] 
Gas   

Table 6 
Description of “Earthquake intensity” indicators.  

Indicator/Index State Performance measure 

Epicentral distance Close Visual inspection/Expert opinion 
Far 
Very far 

Earthquake magnitude Strong M 6–6.9 
Major M 7–7.9 
Severe M 8–8.9 
Violent M 9–9.9 

Earthquake Intensity Weak MMI-MMIII 
Major MMIV-MMVI 
Severe MMVII-MMX 
Violent MM > MMX  
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water network of the city of Calascibetta in Sicily, Italy (see Fig. 3). 
Calascibetta water distribution network has been recently installed, 
replacing the previous one due to intensive water leakage. 

The earthquake considered in the analysis is the 7.4 magnitude 
earthquake, known as “Noto valley earthquake”, that hit almost the 
whole of eastern Sicily (Italy) on the January 11, 1693. The earthquake 
caused about 60.000 injuries and affected an area of 5.600 square ki
lometers. Although the exact position of the epicenter remains uncer
tain, it is believed that it was close to the coast. The earthquake was 
followed by tsunamis that devasted the coastal part of the Ionian Sea and 
in the Straits of Messina. Simulating an emergency scenario consists of 
assigning a performance measure to each downtime indicator (e.g., 
Procurement process, Service importance of the infrastructure, Impacted 
area, etc.) of the potentially damaged infrastructures. Downtime in
dicators should be given qualitative judgments by an expert in the 
related field. In this work, some of the states of the indicators have been 
assumed (e.g., Damage Assessment, Financing Planning, Repair Effort) 
while others have been determined through available data (e.g., 

Population, Per Capita GDP, Urbanization). The input indicators used to 
quantify the downtime are summarized in Table 7. The state of each 
basic input indicator in Table 7 has been selected from the state ranges 
in Tables 3-6. 

Five downtime intervals (e.g., states) are introduced to discretize the 
downtime output see Table 8). The five ranges for the downtime indi
cator have been determined after observing raw data and restoration 
curves from a previous study [8]. That is, it has been noticed that most 
infrastructures take time within these ranges to recover their function
ality; therefore, the different ranges for the states have been defined 
based on that. In the next section, the downtime of the water network of 
the city of Calascibetta, Sicily (Italy) is estimated using two inference 
methods, FL and BN. 

4. Downtime estimation using fuzzy logic 

This section illustrates an overview of the FL theory and the meth
odology adopted for estimating the downtime of buried pipelines after 

Fig. 2. Downtime assessment model for water and gas infrastructure.  

Fig. 3. Calascibetta water distribution network.  
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earthquakes for cases with high uncertainty. 

4.1. Fuzzy logic theory 

The concept of fuzzy set and the theory behind it was introduced by 
Ref. [79] to deal with the vagueness and subjectivity of human judgment 
in using linguistic terms in the decision-making process [80,81]. While 
in the classical binary logic a statement can be valued by an integer 
number, zero or one corresponding to true or false, in the fuzzy logic a 
variable x can be a member of several classes (fuzzy sets) with different 
membership grades (μ) ranging between 0 (x does not belong to the 
fuzzy set) and 1 (x completely belongs to the fuzzy set) [82]. Fuzzy logic 
became a key factor in several fields such as Machine Intelligence 
Quotient (MIQ) to mimic the ability of humans, industrial applications, 
and earthquake engineering. The fuzzy logic consists of three main 
steps: a) Fuzzification; b) Fuzzy inference system, and c) Defuzzification 
(see Fig. 4). 

4.2. Step a: Fuzzification – membership functions 

As mentioned before, the basic input indicators (i.e. those with oval 
shape in Fig. 2) could have different states (also called linguistic quan
tifiers in Fuzzy logic) (see Table 3, Table 4, and Table 5). The number of 
states for these indicators is not constant (i.e., some have only two, some 
have three, and the others have four states). However, to implement the 
fuzzy theory in the DT model easily, the number of states is set to three 
states for all indicators (e.g., low, medium, and high or small, medium, and 
large, etc.). Taking into account more than 3 states (e.g., five states) leads 
to a more complicated fuzzy process. The main difficulty in designing 
membership functions is caused by the necessity to establish fuzzy levels 
and intervals. This difficulty could be increased if more states are 
considered since more membership functions would then be necessary 
to apply the fuzzy logic. In terms of fuzzy rules, a high number of states 
corresponds to a high number of fuzzy rules to cover all the possible 

permutations of the states. Consequently, designing membership func
tions and determining fuzzy rules become complicated. Increased 
number of states can, of course, make the results more specific; however, 
this comes at the cost of input demand: the expert would then need to 
provide more detailed membership functions and more rules, which 
could be not practical. Choosing three states is thought to provide the 
best balance between input demand and output clarity. Thus, in this 
paper, only three states are considered for every indicator. Linguistic 
quantifiers (i.e., states) assigned to the basic indicators are transformed 
into equivalent numbers (fuzzy numbers) on a range [0 1]. In this work, 
transformed values close to 0 (e.g., 0.20, 0.30) correspond to low 
downtime (i.e., values are closer to the low membership function), while 
values close to 1 (e.g., 0.8, 0.9) correspond to high downtime. The basic 
indicators and the corresponding fuzzy values are listed in Table 9. 

The fuzzification step converts the input values into a homogeneous 
scale by assigning corresponding membership functions concerning 
their specified granularities [82]. The definition of membership func
tions is the main step on which all the other subsequent operations are 
based. Such functions, representing the fuzzy sets, can take different 
shapes (triangular, trapezoidal, and Gaussian, etc.) according to the 

Table 7 
Input data used to assess the downtime of water network.  

Basic input indicator State 

Damage assessment Long 
Structural inspection Medium 
Financing Planning Medium 
Procurement Process Emergency 
Repair Effort Long 
Engineering Consolidation Very Difficult 
Earthquake magnitude Major 
Epicentral distance Far 
Event Repetition Many 
Service Importance High 
Served People High 
Maintenance Degree Medium 
Anti-seismic Infrastructure No 
Infrastructure Type Water 
Per Capita GDP Medium 
Population Low 
Urbanization Medium 
Weather condition Good 
Other Emergencies Yes 
Planning Indicator Bad  

Table 8 
Description of the downtime indicator.  

Output State Performance measure 

Downtime Very Low 0–4 days 
Low 5–10 days 
Medium 11–24 days 
High 25–40 days 
Very High 41 days and more  

Fig. 4. Fuzzy inference system (FIS).  

Table 9 
Basic input indicator and transformation.  

Basic input indicator Field observation Transformation 

Damage assessment Long 0.80 
Structural inspection Short 0.20 
Financing Planning Medium 0.50 
Procurement Process Emergency 0.50 
Repair Effort Long 0.90 
Engineering Consolidation Very Difficult 0.90 
Earthquake magnitude Major 0.35 
Epicentral distance Far 0.50 
Event Repetition Many 0.80 
Service Importance High 0.80 
Served People High 0.80 
Maintenance Degree Medium 0..50 
Antiseismic Infrastructure No 0.90 
Infrastructure Type Water 0.35 
Per Capita GDP Medium 0.50 
Population Low 0.20 
Urbanization Medium 0.50 
Weather condition Good 0.20 
Other Emergencies Yes 0.90 
Planning Indicator Bad 0.80  
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situations, although regular shapes are commonly used [83]. There are 
many possible ways of selecting membership functions of fuzzy vari
ables. Selection of membership functions can be intuitive or based on 
logical operations (Ross 1995), For instance, triangular or trapezoidal 
fuzzy membership functions are usually used to represent linguistic 
variables since their simplicity to apply fuzzy operations [34]. 

The membership functions considered in the methodology are based 
on triangular fuzzy numbers (TFNs). The granulation assigned to each 
indicator is illustrated in Fig. 5. As indicated, while the membership 
function and the granulation of downtime indicators are represented 
using three-tuple membership values (μL, μM, μH), the downtime output 
is represented using five-tuple membership values (μVL

DT, μL
DT, μM

DT, 
μH

DT, μVH
DT) and each membership value is associated with five down

time intervals (e.g., states), very low (VL), low (L), medium (M), high (H), 
and very high (VH) to have more precise results. 

After selecting the transformation value for each downtime indica
tor, one can enter the corresponding membership graph (see Fig. 5) and 
obtain the membership degree. The results are listed in Table 10. 

4.3. Step b: Aggregation through fuzzy rules 

The relationships between inputs and outputs are defined through 
the fuzzy rule base (FRB) that is derived from heuristic knowledge of 
experts or historical data. The Mamdani Fuzzy Logic inference method, 
known as the Max-Min method, is implemented in this work, as it is the 
most suitable when the fuzzy system relies on expert knowledge and 
experience [84]. Mamdani systems are composed of IF-THEN rules of 
the form “IF x is A (antecedent) THEN y is B (consequent)”. Each rule 
delivers a partial conclusion, which is aggregated to the other rules to 
provide a conclusion (aggregation). The aggregation of the rules de
termines a rule base that is valid over the entire application domain. In 
general, there is no single best method to generate fuzzy rules; rather the 
choice is context-dependent. To determine fuzzy rules that govern the 
system when information is scarce or missing, expert-based knowledge 
(knowledge base) is used to combine all the different variables allowing 
the system to take care of all the different possibilities that could 
happen. The use of the fuzzy rule-based method allows decision-makers 
to express their preferences in a modular fashion and update the fuzzy 
inference system by using new information as it becomes available [85]. 
The fuzzy rules are defined using a weighting method that allows 
identifying the impact of the input towards the output [21,22]. The 
results of the rules are then combined to get a final output through the 
inference process. The process is performed by using fuzzy set opera
tions to describe the behavior of a complex system for all values of in
puts. Mamdani’s inference system consists of three connectives: the 

aggregation of the antecedents in each rule (AND connectives), impli
cation (IF-THEN connectives), and aggregation of the rules (ALSO con
nectives). As Fig. 2 shows, many indicators are considered in the 
downtime estimation model, and consequently, several fuzzy rules are 
required to combine them. In a fuzzy-based model, an increase in the 
number of input values results in an exponential increase in the number 
of rules [86]. Different strategies are presented to deal with the high 
number of rules: (i) identification of functional relationships, (ii) sensory 
fusion, (iii) rule hierarchy, and (iv) interpolation [87]. Magdalena [88] 
showed that a decomposition at the level of indicators is a proper so
lution. For instance, from Fig. 2, it can be shown that the “Exposed 
infrastructure” index has four inputs: Maintenance degree, Recovery type, 
Anti-seismic infrastructure, and Priority. Using a three-tuple fuzzy num
ber, which corresponds to three states (e.g., low, medium, and high), the 
number of rules required to combine the indicators is 34 = 81. According 
to the process described by Ref. [88], the hierarchical structure can be 
decomposed at the level of indicators by introducing intermediate 
connections among the indicators at different levels of the hierarchy and 
by defining intermediate rules. Fig. 6 illustrates the hierarchical fuzzy 
decomposition for the “Exposed infrastructure” index. As shown, pairs of 
indicators are aggregated through intermediate rules (temporary rules), 
which are TR1, TR2, TR3, and TR4. The output of the intermediate 
inference is then aggregated through fuzzy rule based R1, R2, and R3. 

Fig. 5. Membership function and granulation for the input indicators and the downtime indicator.  

Table 10 
Fuzzification process.  

Basic input indicator Fuzzification 

Damage assessment (μS
AD, μM

AD, μL
AD) = (0, 0.38, 0.62) 

Structural inspection (μS
SI, μM

SI, μL
SI) = (0.55, 0.45, 0) 

Financing Planning (μS
FP, μM

FP, μL
FP) = (0, 1, 0) 

Procurement Process (μR
PP, μE

PP, μA
PP) = (0, 1, 0) 

Repair Effort (μS
RE, μM

RE, μL
RE) = (0, 0.15, 0.85) 

Engineering Consolidation (μE
EC, μD

EC, μVD
EC) = (0, 0.15, 0.85) 

Earthquake magnitude (μL
EM, μM

EM, μH
EM) = (0.35, 0.65, 0) 

Epicentral distance (μL
ED, μM

ED, μH
ED) = (0, 1, 0) 

Event Repetition (μL
ER, μM

ER, μH
ER) = (0, 0.38, 0.62) 

Service Importance (μL
SI, μM

SI, μH
SI) = (0, 0.38, 0.62) 

Served People (μL
SP, μM

SP, μH
SP) = (0, 0.38, 0.62) 

Maintenance Degree (μP
MD, μM

MD, μG
MD) = (0, 1, 0) 

Anti-seismic Infrastructure (μL
VI, μM

VI, μH
VI) = (0, 015, 0.85) 

Infrastructure Type (μL
IT, μM

IT, μH
IT) = (0.35,0.70,0) 

Per Capita GDP (μL
PCGDP, μM

PCGDP, μH
PCGDP) = (0, 1, 0) 

Population (μL
P, μM

P, μH
P) = (0.55, 0.45, 0) 

Urbanization rate (μL
UR, μM

UR, μH
UR) = (0, 1, 0) 

Weather condition (μVB
EW, μB

EW, μG
EW) = (0.55, 0.45, 0) 

Other Emergencies (μL
OE, μM

OE, μH
OE) = (0, 0.15, 0.85) 

Planning Indicator (μB
PI, μG

PI, μE
PI) = (0, 0.38, 0.62)  
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Thus, a new rule hierarchy is developed, and the number of rules is 
reduced to 7⋅3^2 = 63, where 7 are the rules, 3 are the fuzzy states for 
each indicator (e.g., low, medium, and high), and 2 is the number of in
dicators aggregated at each level of the hierarchy. 

For example, the Engineer evaluation and Financing phase are aggre
gated through TR1. The output of TR1 is then aggregated with the 
Building phase indicator through R1 to obtain the Verification Phase. The 
three-tuple fuzzy set output at each level of the hierarchical scheme is 
defuzzified to obtain a single crisp value. In turn, this value is fuzzified 
into the next level. An example of the fuzzy rule assigned for combining 
the Damage assessment and Structural inspection to obtain Engineer eval
uation (see Fig. 2) is given in Table 11. The indicators are combined 
taking into account their importance towards the output [21,22]. Thus, 
in the table, every indicator (i.e., DA and SI) is assigned a weighting 

factor that distinguishes its importance towards the output (i.e., EE). 
Using the fuzzy rule base (Table 11), the Engineer evaluation is 

computed as follows:   

4.4. Step c: Defuzzification to calculate corresponding crisp outputs 

The last step of the FL is the defuzzification process that represents the 
inverse of the fuzzification process. The purpose of the defuzzification 
step is to defuzzify the output fuzzy set resulting from the inference 
process and obtain a final crisp number. Different defuzzification 
methods can be found in the literature, such as the Center-of-Gravity 
(CoG) and Mean of Maximum (MoM) methods. At each level of the 

Fig. 6. Hierarchical fuzzy rule base decomposition for the “Exposed Infrastructure” index.  

μEE
S = max(min(0, 0.55),min(0, 0.45)) = 0

μEE
M = max(min(0, 0),min(0.38, 0.55),min(0.38, 0.45),min(0.38, 0),min(0.62, 0.55)) = 0.55

μEE
L = max(min(0.62, 0.45),min(0.62, 0)) = 0.45

(1)   
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hierarchical scheme, fuzzy outputs are defuzzified through the center of 
gravity (also known as the center of area) method. This defuzzification 
method calculates the area under the membership functions within the 
range of the output, then computes the geometric center of the area as 
follows: 

CoA=

∫ xmax
xmin

f (x)⋅xdx
∫ x max

xmin
f (x)dx

(2)  

where f(x) is the function that shapes the output fuzzy set after the 
inference process and x stands for the real values inside the fuzzy set 
support [0,1]. Using the center of gravity technique, the Engineer Eval
uation is defuzzify as 0.54. The defuzzification of the other indicators is 
done in the same fashion. 

The downtime of water lifeline is given through inferencing the 
“Availability of human resources”, the “Infrastructure type”, the 
“Earthquake intensity”, and the “Exposed infrastructure” indices as 
(μVL

DT, μL
DT, μM

DT, μH
DT, μVH

DT) = (0,0,1,0,0). According to the down
time membership functions, considering the highest membership value, 
the downtime of the water network may be classified as medium (11–24 
days). 

4.5. Sensitivity analysis of fuzzy membership functions 

A sensitivity study is conducted in this work to perform a series of 
different simulations per type of membership function to reduce the 
subjectivity in the choice of membership functions and to identify the 
best result in terms of downtime. Such a sensitivity analysis allows un
derstanding how the variation in the shape of the membership function 
affects the overall effectiveness of the system. It is performed by 
repeating the whole fuzzy inference procedure, modifying membership 
functions at a time (triangular, trapezoidal, and Gaussian membership 
function), keeping unvaried all the other features, thus performing 3 
different simulations. From each of the 3 simulations performed, 

information concerning the downtime indicators and the output (i.e., 
the. downtime) is obtained. 

By analyzing the results obtained (see Fig. 7), it is possible to 
conclude that the investigated membership functions provide similar 
results for the downtime output (around 0.6). This means that mem
bership functions do not have a high impact on the fuzzy inference 
procedure within the proposed downtime assessment model. 

5. Downtime estimation using Bayesian network 

This section describes the BN approach and the methodology per
formed for quantifying the recovery time of damaged water and gas 
lifelines following earthquakes. 

5.1. Bayesian network theory 

The Bayesian network (BN), also known as Bayesian Belief Network 
or Causal Probabilistic Network, belongs to the family of probabilistic 
graphical models (GMs). It is structured based on Bayes’ theorem that 
permits graphical probabilistic relationships among a set of variables 
[89]. Bayesian networks can update prior probabilities of some un
known variable when some evidence describing that variable exists. The 
uncertain variables in a BN model can be graphically represented 
through vertices (nodes) with an edge representing the casual rela
tionship between two vertices and the uncertainties can be expressed 
through subjective probabilities [43,89]. The ability of BN to represent 
graphically real-world applications where there are frequently many 
uncertain and unknown variables makes the approach suitable for ex
perts’ knowledge. 

Let V = (X1, X2, X3) be the set of variables in a BN whose structure 
specifies a conditional relationship. An outgoing edge from X1 to X3 
indicates that the value of variable X3 is dependent on the value of X1 
variable. Thus, X1 is the parent node of X3, and X3 is a child node of X1. 
An illustrative example of BN with three variables is illustrated in Fig. 8. 

In this work, the BN includes (see Fig. 9):  

a) Design of BN by adding nodes that represent considered indicators 
and the corresponding states (e.g., low, medium, and high) and defi
nition of parent-child relationships through causal arrows.  

b) Estimation of unconditional and conditional probabilities for parent 
and child nodes, respectively (parameterizing the network).  

c) Estimation of the downtime conditional probabilities.  
d) Inference system and output evaluation (i.e., the downtime). 

5.2. Step a: Graphical network and parent-child relationships 

The graphical Bayesian Network of the proposed DT assessment 
model (see Fig. 2) is built through Netica software [90]. A set of links are 
used to define parent-child relationships among the downtime in
dicators. Casual relationships among the downtime indicators are 
measured by conditional probability distributions. Conditional distri
butions are usually referred to as conditional probability tables (CPT). 

Fig. 7. Histograms representing the downtime results obtained through the 
analyzed membership functions. Fig. 8. An example of BN with three variables.  

Table 11 
Fuzzy rule for Engineer Evaluation.  

Rule DA W = 2 SI W = 1 EE 

1 S S S 
2 S M S 
3 S L M 
4 M S M 
5 M M M 
6 M L M 
7 L S M 
8 L M L 
9 L L L  

M. De Iuliis et al.                                                                                                                                                                                                                               



International Journal of Disaster Risk Reduction 64 (2021) 102491

10

The casual relationships between indicators and corresponding CPT are 
established based on expert knowledge and published literature. The BN 
model built using Netica software is depicted in Fig. 10. 

5.3. Step b: Assigning unconditional and conditional probabilities 

The main concept of BN results from the Bayes’ theorem in which the 
relation between two nodes, hypothesis A (parent) and evidence E 

Fig. 9. Steps for a Bayesian Network (BN) development.  

Fig. 10. The Bayesian Network of the Downtime indicators using Netica software.  
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(child), is represented as: 

p(A|B)=
p(B|A)x p(A)

p(B)
(3)  

where p(A|B) is one’s belief for hypothesis An upon observing evidence 
B, p(B|A) is the likelihood that B is observed if A is true, p(A) is the 
probability that the hypothesis holds, and p(B) is the probability that the 
evidence takes place. Furthermore, p(A|B) is known as posterior proba
bility and p(A) is defined as a prior probability. 

Once the downtime indicators have been connected by a set of links 
defining parent-child relationships among them, a set of Conditional 
Probabilities Tables (CPTs), where the likelihood of the child node to 
assume a certain state under a given state of its parent, is assigned. The 
specification of the parameters of the probabilistic dependence model (i. 
e., the cause-effect relation) represented via a Conditional Probability 
Table (CPT) is one of the pillars of BN. Depending on the available data 
(prior knowledge, expert-based information, observations, etc.), CPT 
can be populated in several manners [91–93]. That is, different as
sumptions can be made, and different methods are available, which 
might lead to uncertainties in the BN results [94]. In the situation where 
data are scarce, estimating CPTs may become challenging. A possible 
solution is relying on expert knowledge elicitation, which means experts 
are asked to give qualitative statements or relative measures. In the BN, 
the probabilities can be subjectively defined. The BN enable converting 
empirical distribution and subjective probabilities in the analysis. The 

approach used to estimate conditional probabilities for all nodes of the 
downtime network is further described in Ref. [20]. 

In the case of independent indicators with no parents, the CPT is 
reduced to an unconditional probability Table (UPT). To establish un
conditional probabilities (UPs) of parent nodes, the basic inputs are 
assigned equal weights 1/n following the principle of insufficient 
reasoning, where n is the number of states. 

However, for the downtime output itself, another procedure is 
adopted to come up with the conditional probabilities. The approach 
uses past data on infrastructure restoration in the form of restoration 
fragility curves [8]. 

5.4. Step c: Estimation of downtime conditional probabilities 

The complete database used for estimating the conditional proba
bilities of the downtime node is listed in Table 12. This database is 
transformed into cumulative probability restoration curves of the 
analyzed lifelines. 

The database was collected from published literature for earthquakes 
that have occurred after the ‘60s because there was little or no reliable 
information about the damage caused by earlier earthquakes. Data used 
to design the restoration curves of the water and gas systems have been 
divided into 4 sets based on the earthquake intensity: Strong 6–7; Major 
7–8; Severe 8–9; and Violent 9–10). For each lifeline, a group of resto
ration curves considering the four magnitude ranges have been devel
oped. Table 13 shows the data sets considered in realizing the 
restoration curves, extracted from Table 12. 

Three statistical distributions are used to fit data collected in the 
form of restoration curves: gamma, exponential, and lognormal cumu
lative distributions as these are the common distributions to model the 
downtime. The cumulative step function of the water and gas distribu
tion infrastructures is shown in Fig. 11. Gamma, exponential, and 
lognormal cumulative distributions are plotted against the stepwise 
function to visualize the distribution fit. 

Fig. 12 shows the frequency histogram of the downtime data and the 
probability density function (PDF) of the gamma, exponential, and 
lognormal distributions related to (a) the water network infrastructure 
and (b) the gas network for earthquake magnitude range EM 6–7. 

Since the plotted PDFs present a similar trend, it is not simple to 
choose the distribution with the best fit relying only on visual inter
pretation. Therefore, the goodness-of-fit tests (GOF) are used to identify 
the appropriate distribution for the empirical data [20]. Goodness-of-fit 
of a statistical model is a method that determines how well a model fits a 
set of observations. Two tests for Goodness-of-fit are used in this work 
the identify the distribution with the best fit: the Kolmogorov-Smirnov 
(K–S) and Chi-Square tests. The gamma distribution is selected to fit 
the downtime data of both infrastructure systems. The parameters of the 
chosen distribution have been determined using the Least Squares 
Parameter Estimation method. The restoration curves for water and gas 
infrastructures are plotted using two factors: (i) the number of days 
needed to restore full service (horizontal axis); (ii) the probability of a 
complete restoration (vertical axis). The restoration curves are classified 
under four groups of Richter magnitude scale: 6–7 Strong, 7–8 Major, 8–9 
Severe, and 9–10 Violent, as shown in Fig. 13. 

Once the restoration curves are developed, the estimation of prob
abilities for the downtime output is carried out. The downtime condi
tional probabilities obtained for every couple of “downtime state- 
earthquake magnitude” for the water and gas networks are listed in 
Table 14. The results obtained from the restoration curves are assumed 
to correspond to high infrastructure exposure and low available human 
resources, and they are considered the baselines for estimating the 
probabilities for other combinations in the CPT of downtime. Fragility 
restoration curves, designed using real data of past earthquakes, are 
used to calibrate the model through an iterative calibration procedure. 
That is, knowing the intensity of the studied earthquake, it is possible to 
obtain real downtime of the analyzed infrastructure system. The 

Table 12 
Number of affected infrastructures and the corresponding total recovery time.   

Water Gas  

No. DT (days) No. DT (days) 

Loma Prieta 10 (14), (4), (3), (1.5), (2), 
(1), (3), (3), (7), (4) 

5 (30), (16), (11), 
(10), (10) 

Northridge 6 (7), (2), (58), (12), (67), 
(46) 

4 (7), (30), (5), (4) 

Kobe 3 (0.5), (8), (73) 3 (84), (11), (25) 
Niigata 3 (14), (28), (35) 3 (28), (35), (40) 
Maule 4 (42), (4), (16), (6) 2 (10), (90) 
Darfield 2 (7), (1) 1 (1) 
Christchurch 1 (3) 2 (14), (9) 
Napa 6 (20), (0.9), (0.75), (2.5), 

(12), (11) 
1 (1) 

Michoacán 4 (30), (14), (40), (45) – – 
Off-Miyagi 1 (12) 3 (27), (3), (18) 
San Fernando – – 2 (10), (9) 
The Oregon Resil. 

Plan 
1 (14) 1 (30) 

LA Shakeout 
Scenario 

1 (13) 1 (60) 

Tohoku Japan 8 (4.7), (47), (1), (26), (7), 
(1), (47), (47) 

6 (54), (2), (30), 
(3.5), (13), (18) 

Niigata 3 (15), (4), (10) 2 (180), (2) 
Illapel 1 (3) – – 
Nisqually – – – – 
Kushiro-oki 3 (6), (3), (5) 2 (22), (3) 
Hokkaido Toho- 

oki 
3 (9), (3), (5) – – 

Sanriku 3 (14), (12), (5) – – 
Alaska 5 (14), (5), (1), (7), (14) 3 (1), (5), (2), (14) 
Luzon 3 (14), (14), (10) – – 
El Asnam 1 (14) – – 
Tokachi-oki – – 2 (30), (20) 
Kanto 1 (42) 2 (180), (60) 
Valdivia 1 (50) – – 
Nihonkai-chubu 1 (30) 1 (30) 
Bam 3 (14), (10) – – 
Samara 1 (2) – – 
Arequipa 3 (32), (34) – – 
Izmit 2 (50), (29) 1 (1) 
Chi-Chi 1 (9) 1 (14) 
Alaska 2002 10 (14), (4), (3), (1.5), (2), 

(1), (3), (3), (7), (4) 
1 (3)  
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calibration is done by modifying the model parameters so that the 
downtime outcome of the model matches the real downtime from the 
real data. Table 15 presents a portion of the conditional probability table 
of the downtime indicators. In the table, the baselines resulted from the 
restoration curves are highlighted in bold and they are the starting point 
for estimating the probabilities of other combinations. The conditional 
probabilities of other combinations are estimated respecting that the 
horizontal sum must be equal to one (second probability axiom). 

5.5. Step d: inference and downtime estimation 

BN’s structure learning and inference for the downtime are per
formed using the commercial software Netica [95]. Construction of the 
BNs requires a list of the uncertain variables, the possible states of the 
discrete variables and possible ranges of the continuous variables, the 
relationship among the variables, and the conditional probabilities for 
the inference. Once the indicators and the corresponding states/ranges 
(see Table 7) and probabilities have been assigned, the BN is compiled. 
The probabilities solve the network by finding the marginal posterior 
probabilities that some indicators will be in a particular state given the 
input indicators and the conditional probabilities [96]. The DT results 
for the water network are shown in Fig. 14. From the analysis, the 
downtime output shows a chance of 30.9 to be in the state medium. 

5.6. Sensitivity analysis 

Sensitivity analysis is implemented to identify and rank critical input 
indicators that contribute significantly to the output result (i.e., the 
downtime). Sensitivity analysis allows identifying the variation in the 
system’s reliability given a variation in the input values assuming that 
the inputs are uncertain [97]. In this work, two different sensitivity 
methods have been implemented. The first sensitivity analysis, known as 
Sensitivity to findings has been applied on the Bayesian network and it is 
based on the variance reduction and entropy reduction since the input 
indicators considered in the downtime model have discrete and 
continuous values [90,98,99]. The variance reduction method calculates 
the variance reduction of the expected real value of a query node Q (i.e., 
the downtime) due to a finding in a varying variable node I (e.g., Re
covery type, Earthquake intensity). The variance of the real value Q given 
the evidence I, V(q|i) is computed using the following equation: 

(q|i)=
∑

q
p(q|i)

[
Xq − E(Q|i)

]2 (4)  

where q = state of the query node Q, i = state of varying variable node I, 
p(q|i) = conditional probability of q given i, Xq = value corresponding to 
state q, and E(Q|i) = expected real value of Q after the new finding i for 
node I. 

Entropy reduction calculates the expected reduction in mutual in
formation of Q from a finding for variable I. The formula is provided 
below: 

QR=H(Q) − H(Q|I)=
∑

q

∑

i
P(q, i)

log2[P(q, i)]
P(q)P(i)

(5)  

where H(Q) and H(Q|I) are the entropy before the new findings and after 
the new findings. By selecting the query node and choosing Sensitivity to 
findings in Netica, a report will be displayed indicating how much the 
query node would be influenced by a single finding at each of the other 
nodes (varying nodes) through different sensitivity measures (i.e., 
variance reduction and entropy reduction). 

The results of the sensitivity analysis for the DT due to a finding at 
another node are provided in Fig. 15. Only indicators (parent and child 
nodes) showing a significant contribution towards the DT output have 
been indicated (i.e., epicentral distance, earthquake magnitude and in
tensity, recovery type, mobility and access, and infrastructure type). 

For query node Downtime, Earthquake Intensity has the highest Ta
bl
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Fig. 11. Cumulative frequencies with three theoretical CDF distributions for (a) water distribution infrastructure, and (b) gas distribution infrastructure for the data 
corresponding to EM 6–7. 

Fig. 12. Histograms and PDF fitting distributions for (a) the water distribution, and (b) the gas network infrastructure for the data corresponding to EM 6-7.  

Fig. 13. Restoration curves of the Water and Gas lifelines based on the earthquake magnitude.  
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contribution (0.58 % variance reduction and 0.93 % entropy reduction) 
followed by Infrastructure Type (0.44 % variance reduction and 0.78 % 
entropy reduction), Mobility and Access (0.06 % variance reduction and 
0.07 % entropy reduction), and Recovery Type (0.02 % variance reduc
tion and 0.08 % entropy reduction). Earthquake Magnitude, Epicentral 
Distance, and Exposed infrastructure have very low contributions. That is, 
the variance reduction and entropy reduction for the three indicators are 
below 0.05 %. The result of sensitivity analysis allows the decision- 
makers to identify the input parameters that affect the output most 
and prioritize them in the decision-making. 

The second sensitivity analysis is the Sobol sensitivity method. It has 
been carried out by considering the basic input indicators in Fuzzy 
Logic. Sobol sensitivity analysis determines the contribution of each 
basic input indicator and their interactions to the overall model output 
variance. That is, it is based on variance decomposition techniques to 
provide a quantitative measure of the contributions of the input to the 
output variance. A pre-Sobol sensitivity analysis is necessary to perform 
the Sobol sensitivity analysis and it consists of deciding the parameters 
in the model to be varied and defining the parameter range, including 
the lower and upper bounds. After performing the pre-Sobol sensitivity 
analysis, the parameter sets can be generated through the Sobol 
sequence, and the running model output can be simulated. The outputs 
will be used to calculate the total and first-order sensitivity analysis. The 
Sobol sensitivity indices presented different features: (i) are positive 
values, (ii) parameters with sensitivity indices greater than 0.05 are 
considered significant, and (iii) the total-order sensitivity indices are 
greater than the first-order sensitivity indices. To implement the Sobol 
sensitivity method, 20 basic input indicators are investigated to identify 
the indicators that have a significant contribution towards the DT 
output. In this work, 10,000 samples per input are used for Monte Carlo- 
based Sobol indices. Fig. 16 shows the sensitivity analysis results of the 

most influencing basic input indicators in the downtime estimation. The 
results indicate that the Epicentral distance indicator is the most impor
tant indicator contributing to ~90 % of the model output variability, 
followed by the important indicators Infrastructure type and Service 
importance. 

5.7. Backward propagation analysis 

The backward analysis (diagnostic reasoning) is a useful feature of 
BN that allows decision-makers to improve the performance of a system 
by setting a desirable state of the DT and getting the parameters that 
assure the predefined DT state. In backward analysis, observation is 
made for a specific indicator, usually a target indicator (e.g., the 
downtime node in this work), and then the BN calculates the marginal 
probabilities of unobserved indicators by propagating the impact of the 
observed indicator through the network in a backward fashion. For 
instance, if the downtime state is set to very low (i.e., 100 % of chance to 
be in the state very low), the “Exposed infrastructure” index is 58.9 % 
high, the “Availability of Human Resources” index is 54.2 % high, and the 
“Earthquake intensity” index is 45 % weak. The marginal probabilities of 
the other unobserved indicators are shown in Fig. 17. 

6. Results and comparison 

FL and BN inference methods have been applied to estimate the 
downtime of the water infrastructure of the city of Calascibetta in Sicily, 
Italy. The application of both approaches allows performing a compar
ison of the modeling and quantification of the downtime. Both inference 
methods incorporate intuitive knowledge or historical data for defining 
fuzzy rules (in FL) and estimating conditional probabilities (in BN). 
Involving the use of experts in the generation of fuzzy rules (in FL) and 
probabilities (in BN) for different systems for which data are not avail
able is a critical aspect of the downtime estimation model. In BN 

Table 14 
Downtime probabilities of the water and gas systems given four seismic 
intensities.  

Lifeline Time span Strong Major Severe Violent 

Water system 0–4 29 % 17 % 19 % 20 % 
5–10 23 % 18 % 23 % 22 % 
11–24 27 % 28 % 31 % 30 % 
25–40 12 % 17 % 16 % 16 % 
40+ 6 % 11 % 7 % 8 % 

Gas system 0–4 10 % 18 % 2 % 20 % 
5–10 23 % 21 % 18 % 24 % 
11–24 39 % 30 % 53 % 33 % 
25–40 19 % 17 % 22 % 15 % 
40+ 7 % 9 % 4 % 6 %  

Table 15 
Conditional probability table (CPT) for the downtime output of the water and gas infrastructure.  

Infrastructure type Earthquake intensity Exposed infrastructure Av. HR Very low Low Medium High Very high 

Water Strong High High 0,2946 0,2275 0,2737 0,1355 0,0687 
Water Strong High Low 0,2947 0,2289 0,2740 0,1360 0,0687 
Water Strong Low High 0,2948 0,2291 0,2742 0,1360 0,0689 
Water Strong Low Low 0,2950 0,2292 0,2743 0,1369 0,0690 
Water Major High High 0,1826 0,2087 0,2889 0,1868 0,1330 
Water Major High Low 0,1826 0,2089 0,2889 0,1869 0,1332 
Water Major Low High 0,1826 0,2092 0,2890 0,1870 0,1340 
Water Major Low Low 0,1826 0,2092 0,2891 0,1870 0,1340 
… … … … … … … … … 
Gas Strong High High 0,1035 0,2255 0,3885 0,2098 0,0726 
Gas Strong High Low 0,1035 0,2255 0,3885 0,2099 0,0726 
Gas Strong Low High 0,1036 0,2256 0,3885 0,2100 0,0727 
Gas Strong Low Low 0,1036 0,2326 0,3389 0,2200 0,1050 
Gas Major High High 0,1762 0,2171 0,3125 0,1735 0,1206 
Gas Major High Low 0,1762 0,2172 0,3125 0,1735 0,1206 
Gas Major Low High 0,1763 0,2172 0,3125 0,1736 0,1206 
Gas Major Low Low 0,1763 0,2173 0,3126 0,1736 0,1210 
… … … … … … … … …  

Fig. 14. Downtime evaluation for water network.  
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inference method, we can see uncertainty in the results in the form of 
probability dispersion (or variance) due to the basic inputs that are 
uncertain in the first place. That is, the principle of insufficient reasoning 
is applied to the basic inputs, i.e., the states of the inputs have an equal 
probability of occurrence. FL and BN inference methods can be imple
mented without being familiar with the mathematical details and 
probabilistic analysis. This is an important feature as complex mathe
matical formulations to provide direct inputs in the proper form of FL 
and BN are not required. Furthermore, in the definition of the input 
values, BN is less sensitive to less precise information than FL. That is, 
when the uncertainty of the inputs is significant, FL provides results less 
certain than BN. Both methodologies show similar results, and the re
covery time output follows the same trend. FL and BN inference methods 

differ in their interpretation of the output. The output of the FL is a 
membership that defines how well the downtime fits the fuzzy levels, e. 
g., the downtime output for the water utility belongs to level Very Low 
with a membership degree of 0, to Low with a degree of membership of 
0.19, to Medium with a degree of membership of 0.81, to High with a 
membership degree of 0, and to Very High with a degree of membership 
of 0. The BN output is a probability distribution that represents how 
likely the downtime is in a certain state, e.g., in the case of water lifeline 
shown in Fig. 14, the downtime output has a 21.4 chance of being in 
state Very Low, 22.7 of being in state Low, 30.9 of being in state Medium, 
16.1 of being in state High, and 8.93 of being in state Very High. 
Consequently, the BN output probability distribution tends to be easier 
to interpret as well as more intuitive than FL output, which is in the form 

Fig. 15. Sensitivity analysis of downtime node.  

Fig. 16. Total-order sensitivity analysis.  
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of a fuzzy set. 
One of the advantages of the proposed downtime estimation model 

based on BN inference method is the capability to easily update the 
downtime model when new data and information is available. The 
powerful feature of BN for generating different what-if scenarios allows 
running several scenarios and determining the efficient means of 
reducing the downtime. Another advantage of applying BN inference 
method to the downtime model is the diagnostic reasoning. The back
ward analysis of BN enables setting a desirable state of the downtime 
and getting the indicators that provide the predefined downtime state. 
By doing that, decision-makers can improve the performance of their 
systems. Moreover, it is possible to estimate the probability of another 
node if the evidence for the given nodes is known. This would provide 
flexibility in BN approach. Updating the downtime model based on FL 
requires more time since it can be done manually by adjusting fuzzy 
rules and changing the shape of the membership functions. Moreover, in 
the case of new information, fuzzy rules need to be changed. This re
quires a good knowledge of the system to effectively apply FL. In terms 
of easiness of implementing the two approaches to the downtime esti
mation model, both BN and FL frameworks are easy to build but esti
mating conditional probabilities in BN for each child node of complex 
systems can be challenging. To sum up, the two proposed inference 
systems can be implemented to cover two possible conditions: (i) data is 
(partially) available but uncertain, and (ii) data is not available or 
limited. That is, Bayesian Network is proper when statistics are avail
able, while the Fuzzy Logic approach is a suitable solution to deal with 
less or unavailable data. Therefore, each approach is applicable for 
different cases. 

The results obtained from BN and FL approaches can be used to help 
and support decision-makers (e.g., engineers and managers) prioritize 
financial resources in the planning and management of post-disaster 
strategies. By analyzing the downtime results, decision-makers can 
optimize their action by prioritizing activities and choosing proper re
covery measures to assure the functionality of the infrastructures and to 
assign appropriate resources. Risk planners, previously concerned with 
protection and prevention, are now more interested in the ability of such 
infrastructures to withstand and recover from disruptions in the form of 
resilience-building strategies. Moreover, the sensitivity analysis results 

can be used to pinpoint which indicators are effective to reduce risk, use 
it for decision-maker to assign appropriate resource, and determine the 
most efficient and effective means of reducing risk and improving 
resilience. For instance, the estimated downtime values (i.e., medium 
downtime) of the water infrastructure of the city of Calascibetta in Sicily 
may be reduced by improving some sensitive and influential indicators 
that require special attention, such as the Mobility and Access and the 
Recovery Type indicators, and the “Availability of Human Resources” 
index. The utility managers must take appropriate preventive action (e. 
g., maintenance or replacement of the analyzed pipe after inspection) to 
avoid its failure and improve the resilience against future hazard events. 

7. Conclusion 

There is a growing interest in the infrastructure resilience concept. 
Ensuring appropriate performance levels of civil infrastructure systems 
is one of the aspects to be considered when it comes to community 
resilience. The key contributions of this paper are summarized as fol
lows. First, this paper proposes an indicator-based downtime model to 
estimate the downtime of lifeline infrastructure, namely water and gas 
networks. The proposed model can be easily adapted to any pipeline 
system by changing the input indicators. The downtime estimation 
model benefits from two inference methods for its computation: 
Bayesian Network (BN) and Fuzzy Logic (FL). The model can accom
modate different types of input as well as input uncertainties. The 
inference methods are considered as two alternatives that can be used in 
slightly different circumstances to deal with the uncertainties that affect 
the recovery estimation of damaged infrastructures. The downtime 
estimation model is applied to the city of Calascibetta in Sicily, Italy, by 
considering the “Noto valley earthquake” that hit Calascibetta on the 
January 11, 1693 with a magnitude M 7.4 on the Richter scale. Such an 
illustration could help users choose the best among the two inference 
methods given the case they have. 

The downtime estimation model presented in this paper is targeted 
as a support tool for decision-makers to evaluate the overall repair time 
and quantify the priorities of the repair activities. Results from the case 
scenario, in terms of probability of being in a given state (BN) and the 
degree of membership (FL), can be used to pursue the best strategies 

Fig. 17. Backward analysis scenario when the expected downtime is set to very low.  
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during the planning and management post-disaster processes, manage 
and minimize the impacts of seismic events, and promptly recover 
damaged infrastructures. 

The main limitation of the proposed model is that some of the fuzzy 
rules in FL and conditional probabilities in BN are knowledge-based. 
Thus, the model development and analysis are subjective to the qual
ity of the expert knowledge. This is unavoidable since the main feature 
of BN and FL is to rely on expert judgment in cases where data are sparse 
or not available. This can be partially addressed by asking multiple ex
perts. Moreover, developing expert-driven Bayesian networks and Fuzzy 
logic systems require significant development due to the large number of 
variables. Although both inference systems are conceptually easy, they 
are not very simple to build. 

Future work of this study will be oriented towards the following 
directions.  

1. The proposed downtime estimation model can be further enhanced 
by merging both FL and BN in a single model. This is possible 
through the use of linguistic quantifiers and fuzzy number-based 
probabilities to assess unconditional and conditional probabilities. 
The BN inference is then performed to estimate the downtime of the 
analyzed infrastructures.  

2. The downtime assessment model can be extended to include the 
interdependency of infrastructure networks since infrastructure 
systems are not isolated from each other but rely on one another to 
be functional.  

3. A procedure to evaluate the interdependency among the downtime 
indicators, as well as their weighting factors, will be further 
addressed. 
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