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Abstract

The principle of competitive exclusion states that, in equilibrium, the amount of coexisting species is
limited by the amount of limiting resource types in an ecosystem. However, in phytoplankton commu-
nities the paradox of plankton appears, amounts of plankton species can coexist that far exceed this
upper limit.

A resource competition model is formulated and it is shown that the paradox arises for several sys-
tems, which indicates that the bloom in biodiversity is a result of the resource competition and not of
any external factors. A proof is given that the principle of competitive exclusion only holds in equi-
librium solutions. Therefore, as long as a system does not intersect with an equilibrium solution the
biodiversity is not restricted by the amount of limiting resource types. It is concluded that intersecting
with an equilibrium solution is avoided when there are only unstable equilibrium solutions present in the
system. When a plankton species allows an asymptotically stable equilibrium solution, with a region of
convergence equal to the domain of the system, to appear it will be called dominant. It is proven that
an asymptotically stable equilibrium solution always exists in a simplified system with less than three
limiting resource types. Furthermore, an algorithm is constructed that determines all the new equilib-
rium solutions, and their respective stabilities, when a new plankton species is introduced to a system.
By applying this algorithm it can be determined whether a species is suitable for an ecosystem, when
the goal is to maintain biodiversity.

The resource competition model is expanded to include light as an additional resource for all plank-
ton species. It is observed that the coexistence of the plankton species and the total biomass is limited
if there is too little light for the plankton species to consume, or if one plankton species becomes domi-
nant due to it being significantly better at consuming light than the other species.

Additionally, the physical context of a flowing river is introduced, with dispersive and advective mass
transfer and finite length. It is observed that while the spatial distribution of the plankton species along
the river is strongly influenced by the spatial parameters, the biodiversity of the ecosystem is still primar-
ily determined by the original parameters from the resource competition model, as long as the dispersive
mass transfer is the dominant type of mass transfer not too large in comparison to the length of the
river.
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Introduction

In all water bodies across the earth, plankton can be found. These are microscopic or small organisms
of which there are two main types. There are zooplankton, which are animals, and there are phyto-
plankton, which are plants (Brown, 2022). Nelson (2012) states that it is estimated that most of the
oxygen in the atmosphere, 70%, is produced by marine plants, and that a significant amount of this
oxygen supply is produced by phytoplankton, which sustain themselves through photosynthesis. Due
to climate change, it is predicted that thermal fluctuations will increase (Easterling, 2000). Furthermore,
a more biodiverse plankton community will function better under influence of these fluctuations (Bestion,
2021). Additionally, a plankton community’s diversity strengthens an ecosystem’s resilience and func-
tioning (Henson et al., 2021). Therefore in the interest of sustaining the earth’s oxygen supply, while
also handling the impact of climate change, one should look at factors that influence the biodiversity of
phytoplankton communities.

According to competition theory, the number of coexisting species, in equilibrium, cannot exceed the
amount of limiting factors (Huisman & Weissing, 1999). This is called the principle of competitive ex-
clusion. In a generic ecosystem these limiting factors are usually the individual resources that the
species can consume. This forms a significant upper bound on an ecosystem’s biodiversity. How-
ever, experiments have shown that phytoplankton communities often surpass this upper bound and
are more diverse than previously predicted (Hutchinson, 1961). This unexpected increase in biodiver-
sity for plankton communities, that defies the principle of competitive exclusion, is called the paradox
of plankton.

Past research has proposed several solutions to the paradox. Richerson et al. (1970) proposes that
when an environment has a slow mixing rate it allows several ecosystems to separately coexist. Another
approach hypothesizes that an ecosystem’s biodiversity is maximized when the ecosystem is externally
disturbed not too little nor too frequent (Reynolds, 1993). A shared assumption in these theories is that
existence of the paradox depends on external factors to the phytoplankton, such as temporal variability
caused by fluctuating weather conditions or spatial heterogeneity (Huisman & Weissing, 1999).

Huisman & Weissing (1999) introduce a resource competition model , in a controlled environment,
that emulates the behaviour of several plankton species competing over a limited amount of resource
types. With this model it is shown that the paradox of plankton can be reproduced without invoking any
external factors. Examples are given of nine phytoplankton species coexisting on three resource types.
This implies that the paradox of plankton is a result of the intrinsic competitive dynamics between phyto-
plankton. Furthermore, due to the proposed solution to the paradox not relying on any external factors
(Huisman & Weissing, 1999) it is hypothesized that this solution is broadly applicable to a vast array of
other ecosystems that share characteristics with a phytoplankton community. However, to the author’s
knowledge, no further research has been done to validate and further analyse this proposed solution.
This report serves as a mathematical complement to the model and solution to the paradox given by
Huisman & Weissing (1999) with the goal of better understanding its implications. Furthermore, it mo-
tivates if, in more realistic environments, the proposed solution to the paradox given by Huisman &
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Weissing (1999) is still valid.

To summarize, the goal of this paper is to answer the following research questions and sub-questions:

1. Under which conditions will the principle of competitive exclusion hold?

2. What is the combined influence of light intensity and advective and dispersive mass transfer on
the existence of the paradox of plankton?

(a) What is the influence of light intensity on the existence of the paradox of plankton?
(b) Whatis the influence of advective mass transfer on the existence of the paradox of plankton?
(c) Whatis the influence of dispersive mass transfer on the existence of the paradox of plankton?

Outline

In the first chapter of this report the aforementioned resource competition model is analyzed. Firstly,
an algorithm is constructed that gives all the equilibrium solutions of the model. Secondly, several ex-
amples will be given that show the paradox of plankton. Thirdly, a significant new simplification of the
model will be introduced and further mathematical analysis will be done to determine when the paradox
of plankton fails to appear. Finally, it will be shown that the paradox of plankton can not appear in a
simplified system with less than three resource types.

For this analysis the concept of a dominant species is important. When a dominant species is in-
troduced in a pre-existing ecosystem it destroys the delicate balance between the species that were
previously present. An example of a dominant species is the ring-necked parakeet, an invasive alien
species which lives in many Dutch cities and towns and competes with native bird species for food and
nesting space (Lawton, 2021).

In the second chapter the model will be expanded to incorporate more realistic elements. For every
expansion of the model several simulations will be done to observe the effects. Firstly, light intensity
will be added to the model due to all phytoplankton species using light as a shared resource. Further-
more, due to a higher density of plankton implying that every plankton absorbs less light this introduces
a new oscillatory dynamic. Secondly, the system will be placed in the physical context of a river with
dispersive and advective mass transfer and a constant supply of resources at the beginning of the river.
This context will be incorporated in the model and the influence of the advective and dispersive mass
transfer will be individually analyzed. Thirdly, light intensity and the physical context will be combined
and the effect of altering the depth and background turbidity of the river will be observed.

In the discussion and conclusion the answers to the research questions will be discussed and rec-
ommendations will be given for future research.



Analyzing the model

2.1. Resource competition model

This section will start with a chemostat resource competition model that has been tested and verified
extensively using competition experiments with phytoplankton species (Huisman & Weissing, 1999). A
general discussion of this type of model can be found in Grover (1997). The model considers n plank-
ton species and k resource types present in a bioreactor.

Chemostat is an abbreviation for a ‘chemical environment which is static’, thus the assumption is made
that the system is homogeneous and well-mixed. Further, the system is contained in a bioreactor, a
vessel in which a reaction is carried out involving organisms. A schematic overview of a bioreactor is
shown in figure 2.1. The bioreactor is connected to two pumps. The first pump feeds fresh material
into the bioreactor, the second pump carries material out of the bioreactor.

Inflow Outflow

Figure 2.1: A schematic overview of a bioreactor showing the inflow and outflow of material. [15]

The bioreactor contains plankton species and resource types. The fresh material being fed into the
bioreactor has a specific concentration of every resource type j, this is denoted with §; [%} where
je{1,2,...k}.

The concentration of a specific plankton species i in the bioreactor is denoted with N; [%], and the
concentration of a specific resource type j is denoted with R; [%]. The goal of this section is to ob-

tain ordinary differential equations that describe the change of R; and N; over time. For any quantity
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describing mass @ in a bioreactor the change over time can be described as (Mudde, 1998):

dq

q = in — out + creation — destruction

In this equation, in and out signify the amount of mass in the bioreactor that, over an infinitesimal
amount of time, respectively enters through the inflow and leaves through the outflow. creation and
destruction signify the amount of mass that is respectively produced or destroyed in the bioreactor,
over an infinitesimal amount of time, through some other process not directly involving the inflow or
outflow of the quantity of interest Q.

For the destruction term, every plankton species N; has a specific mortality rate m; [t~!] and max-
imum specific growth rate r; [t~1], where i € {1,2,...,n}. For the production term, every plankton
species N; has a growth rate r; that depends on the amount of resources present in the bioreactor.
The value of r; used in the model is assumed to be for optimal circumstances when there are sufficient
resources present. Furthermore, the amount of resource j in species i is described by the variable

Cji []fg]

To examine the actual specific growth rate of a plankton species 7, under the influence of limited amounts
of resources, the Monod equation is used. This equation states that the actual growth rate p;(R;) of a
plankton species i, when only a limited amount of resource type j is present with concentration R;, is
equal to K:fJRJ . Figure 2.2 shows a graphical representation of the Monod equation for several values
of Kﬂ

0.0 0.5 1.0 1.5 2.0 2.5 3.0
R;

Figure 2.2: The Monod equation plotted as a function of R;, r; here is chosen to be equal to 1.

It is important to note that the Monod equation is concave with respect to R;, and that zl%iTo wi(R;) =0
and Rlim pi(R;) = r;. The half-saturation constant K;; is the concentration of R; where the actual
j-}OO

growth rate is equal to half the optimal growth rate: p;(K;;) = 5.

Further, to examine the actual specific growth rate of a plankton species i under the influence of multiple
limiting resources, it is beneficial to look at Liebig’s law of the minimum. Liebig’s law states: "Growth
is not dictated by the total resources available, but by the scarcest resource.” (Von Liebig, 1840) In
layman’s terms it can be characterized by the saying: "A chain is only as strong as its weakest link.”
Liebig’s law of the minimum is incorporated into the model in the following manner: the actual growth
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rate of a plankton species i when there are simultaneously &k unique amounts of resources present is
equal to the minimum of all the actual growth rates for every specific resource j. Reformulating this in
mathematical terms gives the following expression for the actual growth rate for species i in a system
of k resources:

ri r; Ry,

pi(Ry, R, ..., Ry) = min( p;(Ry), pi(Rz), ..., pi(Ry) ) = min( Kot R K LRy

) (2.1)

Now it is possible to construct an ordinary differential equation describing the change of N; over time.
Take V - N;, the total mass of a plankton species in the bioreactor, as the quantity to inspect. Where
V [m?] is the volume in the bioreactor. Firstly, because the pumping action of the bioreactor does not
affect the plankton: in = 0; out = 0. Secondly, using the previously found results and constructed
variables it is possible to state: creation = V - N; - pu;i(Ry, Ra, ..., Ry); destruction = V - N; - m,.
Combining these results gives the following ordinary differential equation describing the change of
species abundance N; over time:

dN;
T Ni(pi(Ra, Ra, ..., Ry) — my) (2.2)

Using equation (2.2) allows one to find the ordinary differential equation describing the change of R;
over time. First, take V - R;, the total mass of a resource type in the bioreactor, as the quantity to
inspect. To account for the pumping speed of the inflow and outflow of the bioreactor, the turnover
rate D [t~!] is introduced. D describes the fraction of volume being replaced by this pumping process
over an arbitrary time frame. In this paper the arbitrary time frame will be chosen to be equal to one
day. For example, D = 0.5 indicates that half of the system’s volume is replaced every day. Start
with noticing that for a period of one day, and by using the assumption that the system is well-mixed,
it holds that: in = D -V -S;; out = D -V - R;. Furthermore, notice that during this time period
some dead plankton get converted to some amount of V - R; and that alive plankton take away an
amount of V - R;, both amounts are proportional to c¢;;. This insight allows one to state: creation =
S ¢jiVNymy; destruction = Y1 ¢;iV N;p;(R1, Ro, ..., R;). However, Huisman & Weissing (1999)
make the assumption that plankton species get converted to a new resource that is not suited for
consumption, which is motivated by Grover (1997). Consequently, creation = 0. These results give
rise to the following ordinary differential equation describing the change of resource concentration R;
over time:

dR; ~
dT] =D(S; — R;j) — Y _ ¢jiNipi(Ry, Ra, .., Ry,) (2.3)
i=1
These two coupled ordinary differential equations (2.2-2.3) form the entire model that will be analyzed
with this paper. While these equations may seem compact and unworkable, applying several analytic
techniques results in rich results which will be analyzed in the next section.

2.2. Equilibrium analysis

The first step in gaining more insight into the behaviour of the chemostat model is to analyze its equilib-
rium solutions. By first looking at equilibrium solutions of systems with few resource types and plankton
species it is possible to build up an understanding for obtaining the equilibrium solutions of a system
with an arbitrary amount of resource types and plankton species.

2.2.1. 1 resource type and 1 plankton species

The goal of this section is to find values for N; and R; that satisfy 9> = 0 and %L = 0. The first of
these gives the following statement:

mRy m
1

N =0V ——— =
! K1+ Ry

Handling each of these 2 outcomes seperately gives:
D(S1_”';1K11 )

(N1, Ry) = (—p 2 mik (2.4)
(N1, R1) = (0,51)
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The first equilibrium solution is not always valid because of the physical conditions that Ny, Ry > 0, this
leads to the following parameter conditions for this solution to exist in the system:

1> my
{m oy @5)
r1 — Ki1+S51

This gives the first insight, for the plankton to be able to survive in the system it is required that the ratio
between the rate of plankton dying m; and growing r;, under ideal circumstances, is bigger than the
fraction of the supply S; over the sum of the half-saturation constant K;; and the supply S;. One can
generalize this by stating that increasing the supply of the resource R, makes it more likely that the
plankton species N, survives as time progresses.

2.2.2. 1 resource types and 2 plankton species

The goal of this example is to show an example of the principle of competitive exclusion. Recall that
this principle states that at most n < k species can coexist on & limiting resources in equilibrium. The
system examined has one resource type, R; and two plankton species N;, No. The growth rate of
each respective plankton species is:

Ry
K+ Ry

The equilibrium conditions 407 = 0, 402 = 0 and “ = 0 give the following equilibrium solutions:

(N1, N2, Ry) = (0,0, 57)
D(Sli"anll)

(Nl,NQ,Rl) = ( (11;21 - s Uy :Til_lfnli)
D(S TTL2_K12 o K
(vaNQaRl) = ( Ciama =, 7‘22—77;;)

Applying the positivity conditions that Ny, N5, R; > 0 gives the same type of conditions as in the previous
example. For the equilibrium solution where N;» = 0, where ¢* € {1, 2}, these are equal to:

Tix > Mg
Mg S
Ti* Z Ki;%+S1

Furthermore, it is shown that it is not possible for an equilibrium solution with two plankton species to
exist because there is only one resource type in the system. As a consequence, either two or one
plankton species is extinct in equilibrium. This satisfies the ’principle of competitive exclusion’.

Itis important to be aware that the principle is only satisfied if "“K“ #+ 7’;21‘12 When this is not satisfied
then all combinations of Ny, Ny, R; of the following form, that also validate the positivity conditions, also

constitute a valid equilibrium solution:

K
Ry = mingy

r —ma

m1 Ky

D(S, - ) = ciimi N1 + c12maNo

T ="

It can be noted that this allows for an infinite amount of equilibrium solutions, because any linear com-
bination of N; and N, that satisfied the second condition is another solution. However, this is not
considered to be a concrete counter-proof to the principle of competitive exclusion. In the systems that
are considered later on it is assumed that .- = gf The condition ml}frﬁ = ’”QK” then simplifies to the
condition that K, = K1,. This condition |mpl|es that the two plankton spemes have the same depen-
dency on the resource R; and the same proportional mortality and growth rates. This indicates that the
only difference between the two species are the parameters ¢;; and c¢;5, the amount of the resource
R, that is present in N; and N,. This indicates that the coexistence of these plankton species does
not impact the biodiversity of the system in a meaningful way due to it resulting in two plankton species
with equivalent behaviour. Because of this, with respect to biodiversity, the two plankton species can
be considered to be the same and the principle of competitive exclusion is still satisfied.
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2.2.3. 2 resource types and 1 plankton species

Finding the equilibrium solutions of a system with 2 resource types and 1 plankton species introduces
an important new 'minimum condition’ and requires more careful analysis of the growth rate of the
plankton species 1 (R1, R2). There are two possible values for this growth rate:

ri1Ry
K+ Ry

r1 Ry

Ml(Rl’Rz) = m

V p1 (R, Rs) = (2.6)

By considering each option for u;(R1, R:) separately and finding the values that satisfy <¥» = 0,

dt
4 — 0 and 42 =  the following three possible equilibrium solutions are found:

(N1, Rq, R2) = (0,51, 52)
D(Slileu) m1K11 C21 lell
(N17R17R2) ( c11ma ) 7'1—m1752 o E(S o m))

T—my
(N17R1’R2) _ (D(Sz—ﬁil_};?i),sl _ (’A(S _ legl) lezl)

c21mMy c21 ri—mi/? ri—my

The two equilibrium solutions, where N; > 0, only exist under specific conditions. The first three are
the positivity conditions Ny, R;, Ro > 0. An important new condition is added which will be called the
minimum condition. For each respective equilibrium solution these can be formulated as:

_ _miR r1 R r1 R
{“l(Rl’RQ) T Ki1+Ry = Ki1+Ra = Ko1+Ro

_ _riRy r1 Ro T Ry
Nl(Rl’Rg) T Kai1+R» = K21+R2 S Ki1+R,

This minimum condition guarantees that the resource values R;, R, found for a specific equilibrium
solution still satisfy equation (2.6). This is necessary due to the minimization function present in
pa(Ry, Ry) = min( b, 2l ) - Inserting the found values for Ny, Ry, R; into these conditions,
for every equilibrium solution where N; > 0, results in four inequalities which define the allowed param-

eters the system can have for these equilibrium solutions to be valid.

2.2.4. The trivial equilibrium solution

It is noticeable how the equilibrium solution where N; = 0, foralli € 1,2,...,n, and R; = 5;, for
all j € 1,2,3, ..., k, has been present in the examples so far. This solution will be called the ‘trivial
equilibrium solution®. It can be proven that it always exists, for any arbitrary amount of plankton species
and resource types, by seeing that:

dN; dR;

0N = 2.7)

Vi € {1,2, ...,n};Vj S {172,...,k‘}; N;=0AR; = Sj = ar 7t

2.2.5. Arbitrary amounts of plankton species and resource types

Using the conditions and techniques that have been used so far, one can construct an algorithm that
retrieves all the possible equilibrium solutions for an arbitrary system with n plankton species and & re-
source types. Firstly, notice that equilibrium solutions are uniquely determined by the plankton species
that are present in the equilibrium and which resource type each species most depend on.

To fully encapsulate that behaviour in the equilibrium it is necessary to introduce new variables. Firstly,
assume that there are m < n plankton species which exist in the equilibrium. This leads naturally to
the introduction of the variable s; € {1,2,...n}, where [ € {1,2,...,m}, which gives an index for all the
species which exist in the equilibrium: N, > 0. For all ¢ for which there does notexista ! € {1,2,...,m}
that satisfied s; = 7 it holds that NV; = 0. In total there will be n — m plankton species that will be extinct
in the equilibrium solution.

Secondly, for every s; introduce a variable ¢,, € {1,2,...,k}, which indicates the resource type Ry,
that every non-extinct plankton species N;, growth rate most relies on:

Tsy Rqsl

Hs; (R17 Ry, ..., Rk) = ﬁ
qs; 51 qs;

(2.8)
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This follows from the insight in the previous section where it was observed that the growth rate of

each plankton species depends on a single resource type in equilibrium. Using the newly introduced

variables it is possible to find that for VI € {1, 2, ..., m} the equilibrium condition dgft‘” = 0 yields:

R _ mSZK(IslSL
et Tsp — Mg
: . : . dRg, .
Inserting this result into the condition —=- = 0 gives:
1 & ms, Kq, s
S, hZﬂ Cqaspe Nope Mispn — m =0 (2.9)
To simplify the notation, introduce the variables:
ms, Kq, s,
By =58, ——— (2.10)
l Ts, — Mg,
1
Cll"‘ = chslsl* Mg, (211)
Because of those definitions it is possible to rewrite equation (2.9) as:
Z Cu»Nsp. = By (2.12)

1*=1

An essential insight here is to see that this is a linear equation. Because equation (2.12) holds for
Vi e {1,2,...,m} it is possible to rewrite this set of m linear equations as a single equation:

Cll 012 Clm N51 Bl
021 022 CQ'rn . NSQ — B2
le C’m,2 Cmm Nsm Bm

When the left matrix is left-invertible it is possible to solve for all N,,, where | € {1,2,...,m}, by calcu-
lating the following vector:

—1

N81 Cll 012 Clm Bl
No| _|Cu Coo oo Com| | B (2.13)
Ne m le Om2 ... Cmm B m

If the left matrix is not left-invertible it implies that there does not exist a solution where N, > 0 for
vl € {1,2,...,m}. After having found this vector (2.13), one can calculate all R; for which there does
not existan ! € {1, 2,...,m} that satisfies ¢,, = j, by reusing equation (2.9) in the following manner:

m

1
R;=8;~ — > Cjae Nope g, (2.14)

*=1

Now all the values for Ny, > 0, where | € {1,2,...,m}, and R;, where j € {1,2,...,k} can be com-
puted by applying equations (2.13) and (2.14) and validated by checking if the positivity and minimum
conditions are satisfied:

Vie {1,2,..,n}; N; <0

Vie{l,2,...,k}; R; <0
TSZR(ISZ

Vi e{1,2,...m}; ps,(R1, Ray..., Ri) = ST
qs; 51 qs;

If all these conditions are satisfied a valid equilibrium solution was found for the system.
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To find all the equilibrium solutions for a system with n plankton species and & resource types con-
sider each element ¢ € P({1,2,...,n}), where P(S) denotes the powerset of the set S and a set is
denoted with {...}. Furthermore, consider each element ¢ € P({1,2,...,k}) where |¢| = |0| and each
associated § € Per(¢), where Per(S) denotes all the permutations of a set S. Repeat the steps de-
scribed in this section for each ¢, where m = |0| and s, is the I-th element of § and ¢, is the I-th element
of 4, where | € {1, 2,3, m}, and all the possible equilibrium solutions are obtained.

For example, imagine a system with 2 plankton species and 3 resource types. Then all the possible
combinations of ¢ and 6, for which the equilibrium solution finding algorithm is repeated, are:

1 0

0o 0 0
1 {1} {1}, {2}, {3}
2

{2} {1}, {2}, {3}
{12} {1,2}, {2,1}, {1,3}, {3, 1}, {2,3}, {3,2}

2.2.6. Proof of principle of competitive exclusion in equilibrium

Using the definitions it is possible to give a proof of the principle of competitive exclusion. To recap, the
principle states that at most n < k species can coexist on k resources in equilibrium.

Start with a system with n plankton species and k resource types, where n > k. Firstly, assume that
for any arbitrary j € {1, 2, ...k} there do not exist two distinct ¢, 2* € {1,2,...n} for which the following is

true:
leJ - mi*Kjis«

(2.15)

Ty — MMy Tix — M=
(Otherwise there are two plankton species with equivalent behaviour which should be counted as one
plankton species, with respect to biodiversity, as motivated in section (2.2.2).)

Secondly, assume that there are k < m < n plankton species present in equilibrium. Following the
same steps from the previous section, the variables s; € {1,2,...,n}, where [ € {1,2,...,m}, can be
found for which Ny, > 0 holds. Once again, for every s, the variable ¢, € {1,2, ..., k} is introduced that
satisfies equation (2.8).

An important insight is that due to £ < m there must be at least two plankton species which depend the
most on the same resource type. This implies that there must be two distinct indices w, o € {1,2,...,m}
for which the following holds:

qs, = 4s, (216)

Using this result in equations (2.10-2.12) gives the implication:
qsw = QSU = Cwl* - Co’l* = BUJ — BO’ = O

However, the first assumption (2.15) and equation (2.16) imply that B,, — B, # 0. A contradiction has
been found. Due to the motivation given in section (2.2.2) the first assumption (2.15) must hold. This
implies that the second assumption must be false. To conclude, there cannot be an equilibrium solution
where there are £ < m < n plankton species present in the system, thus the principle of competitive
exclusion is proven.

2.3. Stability of equilibrium solutions

The second step in gaining more insight into the behaviour of the chemostat model is to analyze the
stability of its equilibrium solutions. The stability of an equilibrium solution has several characteristics.
This section will specifically focus on whether an equilibrium point is asymptotically stable or unstable.

A asymptotically stable equilibrium acts as an attractor. It implies that once the values deviate slightly
from the equilibrium, the model will bring the values back to the equilibrium. An unstable equilibrium
acts as a repellor. It implies that once the values deviate slightly from the equilibrium, the values will
move away further from the equilibrium.
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2.3.1. Linear stability analysis

The method used to determine the stability is Jacobian stability analysis. A condition for Jacobian
stability analysis is continuous derivatives. For the chemostat model that is not satisfied due to the
minimum used in the definition of u;(R1, Rs, ..., Rx) in equation (2.1). However, it is assumed that for
a small region around the equilibrium solution that the derivatives are continuous. This assumption
is reasonable because one can imagine that there always exist a value A such that for any ¢; < M,
where j € {1,2,...,k} and i € {1, 2, ...,n}, the following holds:

TZ‘RJ‘

iR7R7-..,R'7...7R - —_—
Hi(Ra, Ro J k) K+ R,

(2.17)

\

ri(R; L €;)
i(Rite,Rotes,....;Rites, ... Rptep)=—"d "I _
H( 1T €1, g = €2 j T €3 k Ek) Kji"‘(Rj:I:ﬁj)

Thus itis implied that an equilibrium solution does notlie on a coordinate where ;(R1, Rs, ..., R, ..., Ry) =
K:f}'{j = Kjffj_’;j* , Where j # j* € {1,2,...,k}. Due to this assumption, Jacobian stability analysis is

still a well-suited method to analyse the stability of the equilbrium solutions of the chemostat model.

Imagine a system with n plankton species and & resource types and an equilibrium solution with the
values (N1, N, ..., N,; R1, Ro, ..., Ri). The stability of this solution can be determined by calculating
the eigenvalues of the Jacobian matrix, with the inserted values of the equilibrium solution:

r o (dhN; 9 (dNy 9 (dN; 9 (dN; O (dN; 9 (dN1\T
ON1 ( dt ) ON> ( dt ) ON,, ( dt ) ORy ( dt ) ORs> dt ) o OR ( dt )
o] (ng) o) (ng) 9 (ng) o) (ng) o] (ng) o) (dN2>
ON, dt ON> dt ON, dt ORy dt ORs dt ORy dt
) . 'Z.an 5 ”;11\/”, e 5 ...dNn 5 ..C.an ) . 'ZJNH ... 5 . .(.iNn
J= ON, ( dt ) ON, ( dt ) t ON, ( dt ) OR, ( dt ) OR2 \ dt ) t ORy ( dt ) (2 18)
- 9 (de 9 (de) 9 1) 9 (de) 9 de) o (de .
ONy \ dt ONa \ dt ON, \ dt OR1 \ dt OR2 \ dt ORy \ dt
9 dRo 9 dRo o) dRo 9 (dRs a9 dRo> 0 dR>
(’)N1( dt ) 8N2( dt ) aNn( dt ) aRl( dt ) 8R2( dt ) BRk( dt )
dR 9 dR o) .dR 9 dR 9 dR o dR
LON, ( dtk) ONo ( dtk ) ON,, ( dtk ) OR, ( dtk) ORs ( dtk ) IRy ( dtk )_

Note that the Jacobian is an n + k by n + k£ matrix and will have Ay, A\a, ..., k-1, Antk €igenvalues.
Let Re(\) denote the real part of an eigenvalue and let I'm(\) denote the imaginary part.

2.3.2. Unstable and asymptotically stable equilibrium solutions

Being able to determine the stability of an equilibrium solution is important for later analysis. If for all
i €{l,2,...,n+k—1,n+ k} it holds that Re(\;) < 0, then the equilibrium solution is asymptotically
stable (Rauch, 2014). However, if there exists any j € {1,2,...,n + k — 1,n + k} for which Re();) > 0,
then the equilibrium solution is unstable. Within unstable solutions there exists a difference between
saddle points and purely unstable points, however that distinction will be disregarded in the follow-
ing sections. Furthermore, if there exists an eigenvalue A for which Im(\) # 0 the system variables
N1, Ns,...,Ny,, Ry, Ro, ..., R, have oscillatory behaviour in a small neighbourhood around the equilib-
rium solution, on top of the behaviour predicted by the stability of the equilibrium.

Additionally, imagine that there is an equilibrium solution £ = (N, Na,..., Ny,; R1, Ro,...R) that is
asymptotically stable. Then there exists a region ROC < R"** that contains this equilibrium solu-
tion £ € ROC. Furthermore, for any other P = (N{,N3,...,N; R}, R}...R;) € ROC it holds that
P — £ ast — oo. Thus, any point initially contained in this region of convergence will eventually
converge to the asymptotically stable equilibrium solution.
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2.4. Behaviour predicted by the model

Now that all the techniques have been established to analyse the chemostat model, several systems
can be simulated and analysed. The parameters for the systems with more than two resource types
were taken from (Huisman & Weissing, 1999).

2.4.1. 2 resource types and 2 plankton species

The first example describes a system with two plankton species and two resource types. The parame-
ters describing this system are:

D 1025 o [0.90 0.55}
S | 10 0.75 0.80
Sy | 10

my | 0.25 . [0.10 0.25}
mo | 0.25 0.05 0.10

Ninit = [N1 N3] =[0.11 0.12]

The parameters K;; are the values in the K matrix on the j-th row and i-th column. Similarly, the
parameters c;; are the values in the ¢ matrix on the j-th row and i-th column. The initial values for the
plankton species and resource types are described in the row vectors R;,;; and N, the initial value
of N; being equal to 0.11 for example. By calculating all the equilibrium solutions with the algorithm
described in (2.2.5) and applying the linear stability analysis from the previous section it is found that
this system allows for only one asymptotically stable equilibrium solution to exist:

[Ny Na] = [0.000 39.266]

[Ri  Ro] = [0.183 6.073]

Simulating the system according to equation (2.2) and (2.3) shows the convergence to this asymptoti-
cally stable equilibrium solution, see figure 2.3.
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Figure 2.3: The values describing the species abundance and the resource availability over time.

Both plankton species grow simultaneously until they reach a certain size, at this point one of the two
plankton species overtakes the other species and grows further, while the weaker species starts dying
of at a rapid pace until it goes extinct. Thus, the convergence to a stable equilibrium is observed where
one of the two plankton species goes extinct.

Furthermore, it is found that the point (Ny, No; Ri, R2) = (100,0.12;10,10) also lies in the region of
convergence of this equilibrium solution. Therefore if the initial value of V7 is changed to 100, a signif-
icant advantage over plankton species N,, the system will still converge to a solution where plankton
species N; goes extinct. This behaviour can be seen in figure 2.4.
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Figure 2.4: The values describing the species abundance and the resource availability over time. Note how the first plankton
species N starts of strong but still goes extinct as time progresses.

One plankton species starts of with a significantly bigger population size than the other plankton species.
However, due to the other plankton species, with a smaller initial population size, being more dominant
it eventually does overtake the other plankton species and makes it go extinct.

Now the system is altered by setting c¢;2 = 0.08, this allows for a new set of equilibrium solutions,
where the only asymptotically stable equilibrium solution is:

[Ny No] =[31.889 81.389]

[Ri  Rs) = [0.300 0.267]

All the other equilibrium solutions allowed by the altered system are unstable. (In a later section (2.6.3)
it will be shown that the stability of the equilibrium solutions is greatly influenced by the c;; parameters.)

Simulating the new system shows that the plankton species converge to this asymptotically stable
equilibrium solution, see figure 2.5.
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Figure 2.5: The values describing the species abundance and the resource availability over time. Note how the system
approaches the previously calculated stable equilibrium solution.

Observe that more biodiversity has been added to the system by changing the ¢, parameter. The
system, with two plankton species and two resource types, converges to an equilibrium solution where
both species coexist.

It is concluded that by calculating which asymptotically stable equilibrium solutions appear it is pos-
sible to predict which species can hypothetically coexist in a system. However, what happens when
only unstable equilibrium solutions exist in an arbitrary system? There will be no obvious equilibrium
solution the system will converge to. This question will be further investigated in the following sections.
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2.4.2. 3 resource types and 3 plankton species
The second example describes a system with three plankton species and three resource types. The
parameters describing this system are:

D 0.25
Sp | 10
Sy | 10
Ss | 10
mq 0.25
mg | 0.25
1| 1.00
T2 1.00
73 | 1.00

1.00 0.75 0.25
K= 025 1.00 0.75
0.75 0.25 1.00

0.10 0.20 0.15
c= [0.15 0.10 0.20
0.20 0.15 0.10

Rinit = [R1 Ry R3] =[10 10 10]

Nipit = [Ni No N3] =[0.11 0.12 0.13]

This system has, unlike the previous system, the property that all the equilibrium solutions found are
unstable. Therefore it is not expected for the variables to converge to an equilibrium solution. In figure
2.6 it can be seen how the species have oscillatory behaviour instead.
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Figure 2.6: The values describing the species abundance and the resource availability over time, the respective derivatives
are plotted below.

During the simulation it is observed that the plankton species, instead of converging to, oscillate around
an unstable equilibrium solution. However, this equilibrium solution is not exactly in the middle of
this cycle due to the non-linearity of the model. Specifically, it can be seen that the plankton species
approach a limit cycle. The equilibrium point that the limit cycle oscillates around is:

[Ny Ny N3] =

[21.481 21.481 21.481]

[Ri Ro Rs]=[0.333 0.333 0.333]
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With phase diagrams it can be visualized how the limit cycles oscillate around this equilibrium point,
see figure 2.7.
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Figure 2.7: Phase diagrams representing how the plankton species and resource types approach a limit cycle over time.
Observe how the equilibrium point is always contained in a orthogonal project of the limit cycles that the plankton or resources
approach.

The eigenvalues, calculated with the Jacobian, belonging to this equilibrium solution are:

A1 | 0.90625 + 5.23224¢
Az | 0.90625 — 5.23224¢
Az | —0.25000
A4 | —0.25000
As | —0.25000
Aeé | —5.43750

This implies that there are four eigenfunctions for A3, A4, A5, Ag which approach the equilibrium. How-
ever, there are also two unstable eigenfunctions for A\, A» which oscillate around the equilibrium.

Further analyzing the behaviour of the limit cycle, the parameter K, is systematically altered. This
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results in several bifurcation graphs, shown in figure 2.8, which shows the minimum and maximum
value of the limit cycle, given that it exists, and its associated equilibrium solution as the red dotted line.
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Figure 2.8: Bifurcation graphs showing the dimensions of the limit cycles, if they exist, for each plankton species for several
values of K7;. Notice how the limit cycle only exists for a specific range of values for K.

It can be observed how the stability of the equilibrium solutions of the system changes when K1
decreases below 0.75. The reason for this is that this introduces a new asymptotically stable equilibrium
solution. For example, when K, = 0.74 this solution is:

[Ny N N3] =[19.500 39.000 0.000]

[Ri Ro R3] =1[0.250 3.175 0.250]

Furthermore, different types of oscillations may appear (Huisman & Weissing, 2002b). Revert K, back
to 1.00 and introduce the following parameter variations:

1.00 o 0.25
K=102 100 «
a 025 1.00

When 0.25 < « < 1.00 the system still only has unstable equilibrium solutions. Outside of this range an
undesired asymptotically stable equilibrium solution is introduced, see figure 2.9.
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Figure 2.9: The values describing the species abundances over time. The upper left and right graph have « respectively equal
to 0.2 and 0.4. The lower left and right graph have « respectively set to 0.6 and 1.1.

It is apparent that the coexistence of the species is limited when o < 0.25 or o > 1.00. However, in
the range 0.25 < a < 1.00 either a limit cycle can emerge, which has a constant frequency, or a hetero-
clinic cycle can emerge, which has a gradually decreasing frequency over time (Palacios, 2007). This
implies that the period of a heteroclinic cycle gets infinitely long, but the cyclic behaviour never stops.
The graph belonging to o« = 0.4 describes a heteroclinic cycle. Another property of heteroclinic cycles
is that they oscillate between equilibrium solutions. The system, where o = 0.4, has three unstable
equilibrium solutions where N; = %, for a single i € {1, 2,3}, and the other two plankton species are
extinct. It can be seen that the system cycles through these unstable equilibrium solutions. In turn
the plankton species get close to one equilibrium solution, without intersecting it, and converging to
another equilibrium solution.

While a heteroclinic cycle is mathematically valid behaviour, it does not imply a physically realistic
system. Plankton species cannot get infinitesimally close to extinction without becoming extinct due
to the plankton population being discretized. However, the figures above do imply that when a hete-
roclinic cycle is found, it is possible to alter certain system parameters that changes the heteroclinic
cycle into a limit cycle, which are physically realistic due to no species present in a limit cycle growing
infinitesimally small.

2.4.3. 3 resource types and 4 plankton species
The third example describes a system with three resource types and four plankton species. The pa-
rameters describing this system are:
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D 025

TG

51 0 1.00 0.90 0.30 1.04
52 o K= 1030 1.00 0.90 0.71

3

e 0.90 0.30 1.00 0.46
ma | 0.25 0.04 0.07 0.04 0.10
ms | 0.25 c=10.08 0.08 0.10 0.10
my | 0.25 0.14 0.10 0.10 0.16

T1 ].OO

vy | 1.00 Rinie = [R1 Rp Rs|=1[6 10 14]
rs | 1.00 Ninit = [Ni Na Ny Ny =[011 012 0.13 0.10]
2| 1.00

Plankton species N1, Ny, N3 are introduced to the system at ¢ = 0, plankton species N, is instantly
homogeneously introduced to the system at ¢t = 1000. It is emphasized that introducing the new
species does not change the existence of any previously established equilibrium solutions where the
new species was extinct. This results in a simulation where the four plankton species eventually coexist
on three resource types, see figure 2.10.
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Figure 2.10: The values describing the species abundance and the resource availability over time, the respective derivatives
are plotted below.
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