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Abstract
The principle of competitive exclusion states that, in equilibrium, the amount of coexisting species is
limited by the amount of limiting resource types in an ecosystem. However, in phytoplankton commu-
nities the paradox of plankton appears, amounts of plankton species can coexist that far exceed this
upper limit.

A resource competition model is formulated and it is shown that the paradox arises for several sys-
tems, which indicates that the bloom in biodiversity is a result of the resource competition and not of
any external factors. A proof is given that the principle of competitive exclusion only holds in equi-
librium solutions. Therefore, as long as a system does not intersect with an equilibrium solution the
biodiversity is not restricted by the amount of limiting resource types. It is concluded that intersecting
with an equilibrium solution is avoided when there are only unstable equilibrium solutions present in the
system. When a plankton species allows an asymptotically stable equilibrium solution, with a region of
convergence equal to the domain of the system, to appear it will be called dominant. It is proven that
an asymptotically stable equilibrium solution always exists in a simplified system with less than three
limiting resource types. Furthermore, an algorithm is constructed that determines all the new equilib-
rium solutions, and their respective stabilities, when a new plankton species is introduced to a system.
By applying this algorithm it can be determined whether a species is suitable for an ecosystem, when
the goal is to maintain biodiversity.

The resource competition model is expanded to include light as an additional resource for all plank-
ton species. It is observed that the coexistence of the plankton species and the total biomass is limited
if there is too little light for the plankton species to consume, or if one plankton species becomes domi-
nant due to it being significantly better at consuming light than the other species.

Additionally, the physical context of a flowing river is introduced, with dispersive and advective mass
transfer and finite length. It is observed that while the spatial distribution of the plankton species along
the river is strongly influenced by the spatial parameters, the biodiversity of the ecosystem is still primar-
ily determined by the original parameters from the resource competitionmodel, as long as the dispersive
mass transfer is the dominant type of mass transfer not too large in comparison to the length of the
river.
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1
Introduction

In all water bodies across the earth, plankton can be found. These are microscopic or small organisms
of which there are two main types. There are zooplankton, which are animals, and there are phyto-
plankton, which are plants (Brown, 2022). Nelson (2012) states that it is estimated that most of the
oxygen in the atmosphere, 70%, is produced by marine plants, and that a significant amount of this
oxygen supply is produced by phytoplankton, which sustain themselves through photosynthesis. Due
to climate change, it is predicted that thermal fluctuations will increase (Easterling, 2000). Furthermore,
a more biodiverse plankton community will function better under influence of these fluctuations (Bestion,
2021). Additionally, a plankton community’s diversity strengthens an ecosystem’s resilience and func-
tioning (Henson et al., 2021). Therefore in the interest of sustaining the earth’s oxygen supply, while
also handling the impact of climate change, one should look at factors that influence the biodiversity of
phytoplankton communities.

According to competition theory, the number of coexisting species, in equilibrium, cannot exceed the
amount of limiting factors (Huisman & Weissing, 1999). This is called the principle of competitive ex-
clusion. In a generic ecosystem these limiting factors are usually the individual resources that the
species can consume. This forms a significant upper bound on an ecosystem’s biodiversity. How-
ever, experiments have shown that phytoplankton communities often surpass this upper bound and
are more diverse than previously predicted (Hutchinson, 1961). This unexpected increase in biodiver-
sity for plankton communities, that defies the principle of competitive exclusion, is called the paradox
of plankton.

Past research has proposed several solutions to the paradox. Richerson et al. (1970) proposes that
when an environment has a slowmixing rate it allows several ecosystems to separately coexist. Another
approach hypothesizes that an ecosystem’s biodiversity is maximized when the ecosystem is externally
disturbed not too little nor too frequent (Reynolds, 1993). A shared assumption in these theories is that
existence of the paradox depends on external factors to the phytoplankton, such as temporal variability
caused by fluctuating weather conditions or spatial heterogeneity (Huisman & Weissing, 1999).

Huisman & Weissing (1999) introduce a resource competition model , in a controlled environment,
that emulates the behaviour of several plankton species competing over a limited amount of resource
types. With this model it is shown that the paradox of plankton can be reproduced without invoking any
external factors. Examples are given of nine phytoplankton species coexisting on three resource types.
This implies that the paradox of plankton is a result of the intrinsic competitive dynamics between phyto-
plankton. Furthermore, due to the proposed solution to the paradox not relying on any external factors
(Huisman & Weissing, 1999) it is hypothesized that this solution is broadly applicable to a vast array of
other ecosystems that share characteristics with a phytoplankton community. However, to the author’s
knowledge, no further research has been done to validate and further analyse this proposed solution.
This report serves as a mathematical complement to the model and solution to the paradox given by
Huisman & Weissing (1999) with the goal of better understanding its implications. Furthermore, it mo-
tivates if, in more realistic environments, the proposed solution to the paradox given by Huisman &
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Weissing (1999) is still valid.

To summarize, the goal of this paper is to answer the following research questions and sub-questions:

1. Under which conditions will the principle of competitive exclusion hold?
2. What is the combined influence of light intensity and advective and dispersive mass transfer on

the existence of the paradox of plankton?

(a) What is the influence of light intensity on the existence of the paradox of plankton?
(b) What is the influence of advective mass transfer on the existence of the paradox of plankton?
(c) What is the influence of dispersivemass transfer on the existence of the paradox of plankton?

Outline
In the first chapter of this report the aforementioned resource competition model is analyzed. Firstly,
an algorithm is constructed that gives all the equilibrium solutions of the model. Secondly, several ex-
amples will be given that show the paradox of plankton. Thirdly, a significant new simplification of the
model will be introduced and further mathematical analysis will be done to determine when the paradox
of plankton fails to appear. Finally, it will be shown that the paradox of plankton can not appear in a
simplified system with less than three resource types.

For this analysis the concept of a dominant species is important. When a dominant species is in-
troduced in a pre-existing ecosystem it destroys the delicate balance between the species that were
previously present. An example of a dominant species is the ring-necked parakeet, an invasive alien
species which lives in many Dutch cities and towns and competes with native bird species for food and
nesting space (Lawton, 2021).

In the second chapter the model will be expanded to incorporate more realistic elements. For every
expansion of the model several simulations will be done to observe the effects. Firstly, light intensity
will be added to the model due to all phytoplankton species using light as a shared resource. Further-
more, due to a higher density of plankton implying that every plankton absorbs less light this introduces
a new oscillatory dynamic. Secondly, the system will be placed in the physical context of a river with
dispersive and advective mass transfer and a constant supply of resources at the beginning of the river.
This context will be incorporated in the model and the influence of the advective and dispersive mass
transfer will be individually analyzed. Thirdly, light intensity and the physical context will be combined
and the effect of altering the depth and background turbidity of the river will be observed.

In the discussion and conclusion the answers to the research questions will be discussed and rec-
ommendations will be given for future research.



2
Analyzing the model

2.1. Resource competition model
This section will start with a chemostat resource competition model that has been tested and verified
extensively using competition experiments with phytoplankton species (Huisman & Weissing, 1999). A
general discussion of this type of model can be found in Grover (1997). The model considers n plank-
ton species and k resource types present in a bioreactor.

Chemostat is an abbreviation for a ‘chemical environment which is static‘, thus the assumption is made
that the system is homogeneous and well-mixed. Further, the system is contained in a bioreactor, a
vessel in which a reaction is carried out involving organisms. A schematic overview of a bioreactor is
shown in figure 2.1. The bioreactor is connected to two pumps. The first pump feeds fresh material
into the bioreactor, the second pump carries material out of the bioreactor.

Figure 2.1: A schematic overview of a bioreactor showing the inflow and outflow of material. [15]

The bioreactor contains plankton species and resource types. The fresh material being fed into the
bioreactor has a specific concentration of every resource type j, this is denoted with Sj [

kg
m3 ] where

j ∈ {1, 2, ..., k}.

The concentration of a specific plankton species i in the bioreactor is denoted with Ni [
kg
m3 ], and the

concentration of a specific resource type j is denoted with Rj [
kg
m3 ]. The goal of this section is to ob-

tain ordinary differential equations that describe the change of Rj and Ni over time. For any quantity

3



2.1. Resource competition model 4

describing mass Q in a bioreactor the change over time can be described as (Mudde, 1998):

dQ

dt
= in− out+ creation− destruction

In this equation, in and out signify the amount of mass in the bioreactor that, over an infinitesimal
amount of time, respectively enters through the inflow and leaves through the outflow. creation and
destruction signify the amount of mass that is respectively produced or destroyed in the bioreactor,
over an infinitesimal amount of time, through some other process not directly involving the inflow or
outflow of the quantity of interest Q.

For the destruction term, every plankton species Ni has a specific mortality rate mi [t
−1] and max-

imum specific growth rate ri [t−1], where i ∈ {1, 2, ..., n}. For the production term, every plankton
species Ni has a growth rate ri that depends on the amount of resources present in the bioreactor.
The value of ri used in the model is assumed to be for optimal circumstances when there are sufficient
resources present. Furthermore, the amount of resource j in species i is described by the variable
cji [kg].

To examine the actual specific growth rate of a plankton species i, under the influence of limited amounts
of resources, the Monod equation is used. This equation states that the actual growth rate µi(Rj) of a
plankton species i, when only a limited amount of resource type j is present with concentration Rj , is
equal to riRj

Kji+Rj
. Figure 2.2 shows a graphical representation of the Monod equation for several values

of Kji.

Figure 2.2: The Monod equation plotted as a function of Rj , ri here is chosen to be equal to 1.

It is important to note that the Monod equation is concave with respect to Rj , and that lim
Rj↓0

µi(Rj) = 0

and lim
Rj→∞

µi(Rj) = ri. The half-saturation constant Kji is the concentration of Rj where the actual

growth rate is equal to half the optimal growth rate: µi(Kji) =
ri
2 .

Further, to examine the actual specific growth rate of a plankton species i under the influence of multiple
limiting resources, it is beneficial to look at Liebig’s law of the minimum. Liebig’s law states: ”Growth
is not dictated by the total resources available, but by the scarcest resource.” (Von Liebig, 1840) In
layman’s terms it can be characterized by the saying: ”A chain is only as strong as its weakest link.”
Liebig’s law of the minimum is incorporated into the model in the following manner: the actual growth
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rate of a plankton species i when there are simultaneously k unique amounts of resources present is
equal to the minimum of all the actual growth rates for every specific resource j. Reformulating this in
mathematical terms gives the following expression for the actual growth rate for species i in a system
of k resources:

µi(R1, R2, ..., Rk) = min( µi(R1),µi(R2), ...,µi(Rk) ) = min(
riR1

K1i +R1
, ...,

riRk

Kki +Rk
) (2.1)

Now it is possible to construct an ordinary differential equation describing the change of Ni over time.
Take V · Ni, the total mass of a plankton species in the bioreactor, as the quantity to inspect. Where
V [m3] is the volume in the bioreactor. Firstly, because the pumping action of the bioreactor does not
affect the plankton: in = 0; out = 0. Secondly, using the previously found results and constructed
variables it is possible to state: creation = V · Ni · µi(R1, R2, ..., Rk); destruction = V · Ni · mi.
Combining these results gives the following ordinary differential equation describing the change of
species abundance Ni over time:

dNi

dt
= Ni(µi(R1, R2, ..., Rk)−mi) (2.2)

Using equation (2.2) allows one to find the ordinary differential equation describing the change of Rj

over time. First, take V · Rj , the total mass of a resource type in the bioreactor, as the quantity to
inspect. To account for the pumping speed of the inflow and outflow of the bioreactor, the turnover
rate D [t−1] is introduced. D describes the fraction of volume being replaced by this pumping process
over an arbitrary time frame. In this paper the arbitrary time frame will be chosen to be equal to one
day. For example, D = 0.5 indicates that half of the system’s volume is replaced every day. Start
with noticing that for a period of one day, and by using the assumption that the system is well-mixed,
it holds that: in = D · V · Sj ; out = D · V · Rj . Furthermore, notice that during this time period
some dead plankton get converted to some amount of V · Rj and that alive plankton take away an
amount of V · Rj , both amounts are proportional to cji. This insight allows one to state: creation =∑n

i=1 cjiV Nimi; destruction =
∑n

i=1 cjiV Niµi(R1, R2, ..., Rk). However, Huisman & Weissing (1999)
make the assumption that plankton species get converted to a new resource that is not suited for
consumption, which is motivated by Grover (1997). Consequently, creation = 0. These results give
rise to the following ordinary differential equation describing the change of resource concentration Rj

over time:
dRj

dt
= D(Sj −Rj)−

n∑
i=1

cjiNiµi(R1, R2, ..., Rk) (2.3)

These two coupled ordinary differential equations (2.2-2.3) form the entire model that will be analyzed
with this paper. While these equations may seem compact and unworkable, applying several analytic
techniques results in rich results which will be analyzed in the next section.

2.2. Equilibrium analysis
The first step in gaining more insight into the behaviour of the chemostat model is to analyze its equilib-
rium solutions. By first looking at equilibrium solutions of systems with few resource types and plankton
species it is possible to build up an understanding for obtaining the equilibrium solutions of a system
with an arbitrary amount of resource types and plankton species.

2.2.1. 1 resource type and 1 plankton species
The goal of this section is to find values for N1 and R1 that satisfy dN1

dt = 0 and dR1

dt = 0. The first of
these gives the following statement:

N1 = 0 ∨ r1R1

K11 +R1
= m1

Handling each of these 2 outcomes seperately gives:{
(N1, R1) = (

D(S1−m1K11
r1−m1

)

c11m1
, m1K11

r1−m1
)

(N1, R1) = (0, S1)
(2.4)
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The first equilibrium solution is not always valid because of the physical conditions that N1, R1 ≥ 0, this
leads to the following parameter conditions for this solution to exist in the system:{

r1 ≥ m1

m1

r1
≥ S1

K11+S1

(2.5)

This gives the first insight, for the plankton to be able to survive in the system it is required that the ratio
between the rate of plankton dying m1 and growing r1, under ideal circumstances, is bigger than the
fraction of the supply S1 over the sum of the half-saturation constant K11 and the supply S1. One can
generalize this by stating that increasing the supply of the resource R1 makes it more likely that the
plankton species N1 survives as time progresses.

2.2.2. 1 resource types and 2 plankton species
The goal of this example is to show an example of the principle of competitive exclusion. Recall that
this principle states that at most n ≤ k species can coexist on k limiting resources in equilibrium. The
system examined has one resource type, R1 and two plankton species N1, N2. The growth rate of
each respective plankton species is:

µ1(R1) =
r1R1

K11 +R1
∧ µ2(R1) =

r2R1

K12 +R1

The equilibrium conditions dN1

dt = 0, dN2

dt = 0 and dR1

dt = 0 give the following equilibrium solutions:
(N1, N2, R1) = (0, 0, S1)

(N1, N2, R1) = (
D(S1−m1K11

r1−m1
)

c11m1
, 0, m1K11

r1−m1
)

(N1, N2, R1) = (0,
D(S1−m2K12

r2−m2

c12m2
, m2K12

r2−m2
)

Applying the positivity conditions thatN1, N2, R1 ≥ 0 gives the same type of conditions as in the previous
example. For the equilibrium solution where Ni∗ = 0 , where i∗ ∈ {1, 2}, these are equal to:{

ri∗ > mi∗

mi∗
ri∗

≥ S1

K1i∗+S1

Furthermore, it is shown that it is not possible for an equilibrium solution with two plankton species to
exist because there is only one resource type in the system. As a consequence, either two or one
plankton species is extinct in equilibrium. This satisfies the ’principle of competitive exclusion’.

It is important to be aware that the principle is only satisfied if m1K11

r1−m1
̸= m2K12

r2−m2
. When this is not satisfied

then all combinations ofN1, N2, R1 of the following form, that also validate the positivity conditions, also
constitute a valid equilibrium solution:

R1 =
m1K11

r1 −m1

D(S1 −
m1K11

r1 −m1
) = c11m1N1 + c12m2N2

It can be noted that this allows for an infinite amount of equilibrium solutions, because any linear com-
bination of N1 and N2 that satisfied the second condition is another solution. However, this is not
considered to be a concrete counter-proof to the principle of competitive exclusion. In the systems that
are considered later on it is assumed that r1

m1
= r2

m2
The condition m1K11

r1−m1
= m2K12

r2−m2
then simplifies to the

condition that K11 = K12. This condition implies that the two plankton species have the same depen-
dency on the resource R1 and the same proportional mortality and growth rates. This indicates that the
only difference between the two species are the parameters c11 and c12, the amount of the resource
R1 that is present in N1 and N2. This indicates that the coexistence of these plankton species does
not impact the biodiversity of the system in a meaningful way due to it resulting in two plankton species
with equivalent behaviour. Because of this, with respect to biodiversity, the two plankton species can
be considered to be the same and the principle of competitive exclusion is still satisfied.
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2.2.3. 2 resource types and 1 plankton species
Finding the equilibrium solutions of a system with 2 resource types and 1 plankton species introduces
an important new ’minimum condition’ and requires more careful analysis of the growth rate of the
plankton species µ1(R1, R2). There are two possible values for this growth rate:

µ1(R1, R2) =
r1R1

K11 +R1
∨ µ1(R1, R2) =

r1R2

K21 +R2
(2.6)

By considering each option for µ1(R1, R2) separately and finding the values that satisfy dN1

dt = 0,
dR1

dt = 0 and dR2

dt = 0 the following three possible equilibrium solutions are found:
(N1, R1, R2) = (0, S1, S2)

(N1, R1, R2) = (
D(S1−m1K11

r1−m1
)

c11m1
, m1K11

r1−m1
, S2 − c21

c11
(S1 − m1K11

r1−m1
))

(N1, R1, R2) = (
D(S2−m1K21

r1−m1
)

c21m1
, S1 − c11

c21
(S2 − m1K21

r1−m1
), m1K21

r1−m1
)

The two equilibrium solutions, where N1 > 0, only exist under specific conditions. The first three are
the positivity conditions N1, R1, R2 ≥ 0. An important new condition is added which will be called the
minimum condition. For each respective equilibrium solution these can be formulated as:{

µ1(R1, R2) =
r1R1

K11+R1
⇒ r1R1

K11+R1
≤ r1R2

K21+R2

µ1(R1, R2) =
r1R2

K21+R2
⇒ r1R2

K21+R2
≤ r1R1

K11+R1

This minimum condition guarantees that the resource values R1, R2 found for a specific equilibrium
solution still satisfy equation (2.6). This is necessary due to the minimization function present in
µ1(R1, R2) = min( r1R1

K11+R1
, r1R2

K21+R2
). Inserting the found values for N1, R1, R2 into these conditions,

for every equilibrium solution whereN1 > 0, results in four inequalities which define the allowed param-
eters the system can have for these equilibrium solutions to be valid.

2.2.4. The trivial equilibrium solution
It is noticeable how the equilibrium solution where Ni = 0, for all i ∈ 1, 2, ..., n, and Rj = Sj , for
all j ∈ 1, 2, 3, ..., k, has been present in the examples so far. This solution will be called the ‘trivial
equilibrium solution‘. It can be proven that it always exists, for any arbitrary amount of plankton species
and resource types, by seeing that:

∀i ∈ {1, 2, ..., n}; ∀j ∈ {1, 2, ..., k}; Ni = 0 ∧Rj = Sj ⇒
dNi

dt
= 0 ∧ dRj

dt
= 0 (2.7)

2.2.5. Arbitrary amounts of plankton species and resource types
Using the conditions and techniques that have been used so far, one can construct an algorithm that
retrieves all the possible equilibrium solutions for an arbitrary system with n plankton species and k re-
source types. Firstly, notice that equilibrium solutions are uniquely determined by the plankton species
that are present in the equilibrium and which resource type each species most depend on.

To fully encapsulate that behaviour in the equilibrium it is necessary to introduce new variables. Firstly,
assume that there are m ≤ n plankton species which exist in the equilibrium. This leads naturally to
the introduction of the variable sl ∈ {1, 2, ...n}, where l ∈ {1, 2, ...,m}, which gives an index for all the
species which exist in the equilibrium: Nsl > 0. For all i for which there does not exist a l ∈ {1, 2, ...,m}
that satisfied sl = i it holds that Ni = 0. In total there will be n−m plankton species that will be extinct
in the equilibrium solution.

Secondly, for every sl introduce a variable qsl ∈ {1, 2, ..., k}, which indicates the resource type Rqsl
that every non-extinct plankton species Nsl growth rate most relies on:

µsl(R1, R2, ..., Rk) =
rslRqsl

Kqslsl
+Rqsl

(2.8)
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This follows from the insight in the previous section where it was observed that the growth rate of
each plankton species depends on a single resource type in equilibrium. Using the newly introduced
variables it is possible to find that for ∀l ∈ {1, 2, ...,m} the equilibrium condition dNsl

dt = 0 yields:

Rqsl
=
mslKqslsl

rsl −msl

Inserting this result into the condition
dRqsl

dt = 0 gives:

Sqsl
− 1

D

m∑
l∗=1

cqslsl∗Nsl∗msl∗ −
mslKqslsl

rsl −msl

= 0 (2.9)

To simplify the notation, introduce the variables:

Bl = Sqsl
−
mslKqslsl

rsl −msl

(2.10)

Cll∗ =
1

D
cqslsl∗msl∗ (2.11)

Because of those definitions it is possible to rewrite equation (2.9) as:
m∑

l∗=1

Cll∗Nsl∗ = Bl (2.12)

An essential insight here is to see that this is a linear equation. Because equation (2.12) holds for
∀l ∈ {1, 2, ...,m} it is possible to rewrite this set of m linear equations as a single equation:

C11 C12 ... C1m

C21 C22 ... C2m

... ... ... ...
Cm1 Cm2 ... Cmm

 ·


Ns1

Ns2

...
Nsm

 =


B1

B2

...
Bm


When the left matrix is left-invertible it is possible to solve for all Nsl , where l ∈ {1, 2, ...,m}, by calcu-
lating the following vector: 

Ns1

Ns2

...
Nsm

 =


C11 C12 ... C1m

C21 C22 ... C2m

... ... ... ...
Cm1 Cm2 ... Cmm


−1

·


B1

B2

...
Bm

 (2.13)

If the left matrix is not left-invertible it implies that there does not exist a solution where Nsl > 0 for
∀l ∈ {1, 2, ...,m}. After having found this vector (2.13), one can calculate all Rj for which there does
not exist an l ∈ {1, 2, ...,m} that satisfies qsl = j, by reusing equation (2.9) in the following manner:

Rj = Sj −
1

D

m∑
l∗=1

cjsl∗Nsl∗msl∗ (2.14)

Now all the values for Nsl > 0, where l ∈ {1, 2, ...,m}, and Rj , where j ∈ {1, 2, ..., k} can be com-
puted by applying equations (2.13) and (2.14) and validated by checking if the positivity and minimum
conditions are satisfied:

∀i ∈ {1, 2, ..., n}; Ni ≤ 0

∀j ∈ {1, 2, ..., k}; Rj ≤ 0

∀l ∈ {1, 2, ...,m}; µsl(R1, R2, ..., Rk) =
rslRqsl

Kqslsl
+Rqsl

If all these conditions are satisfied a valid equilibrium solution was found for the system.
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To find all the equilibrium solutions for a system with n plankton species and k resource types con-
sider each element θ ∈ P({1, 2, ..., n}), where P(S) denotes the powerset of the set S and a set is
denoted with {...}. Furthermore, consider each element ϕ ∈ P({1, 2, ..., k}) where |ϕ| = |θ| and each
associated δ ∈ Per(ϕ), where Per(S) denotes all the permutations of a set S. Repeat the steps de-
scribed in this section for each δ, wherem = |θ| and sl is the l-th element of θ and qsl is the l-th element
of δ, where l ∈ {1, 2, 3,m}, and all the possible equilibrium solutions are obtained.

For example, imagine a system with 2 plankton species and 3 resource types. Then all the possible
combinations of δ and θ, for which the equilibrium solution finding algorithm is repeated, are:

m δ θ

0 ∅ ∅
1 {1} {1}, {2}, {3}
1 {2} {1}, {2}, {3}
2 {1, 2} {1, 2}, {2, 1}, {1, 3}, {3, 1}, {2, 3}, {3, 2}

2.2.6. Proof of principle of competitive exclusion in equilibrium
Using the definitions it is possible to give a proof of the principle of competitive exclusion. To recap, the
principle states that at most n ≤ k species can coexist on k resources in equilibrium.
Start with a system with n plankton species and k resource types, where n > k. Firstly, assume that
for any arbitrary j ∈ {1, 2, ...k} there do not exist two distinct i, i∗ ∈ {1, 2, ...n} for which the following is
true:

miKji

ri −mi
=

mi∗Kji∗

ri∗ −mi∗
(2.15)

(Otherwise there are two plankton species with equivalent behaviour which should be counted as one
plankton species, with respect to biodiversity, as motivated in section (2.2.2).)

Secondly, assume that there are k < m ≤ n plankton species present in equilibrium. Following the
same steps from the previous section, the variables sl ∈ {1, 2, ..., n}, where l ∈ {1, 2, ...,m}, can be
found for which Nsl > 0 holds. Once again, for every sl the variable qsl ∈ {1, 2, ..., k} is introduced that
satisfies equation (2.8).

An important insight is that due to k < m there must be at least two plankton species which depend the
most on the same resource type. This implies that there must be two distinct indices ω, σ ∈ {1, 2, ...,m}
for which the following holds:

qsω = qsσ (2.16)
Using this result in equations (2.10-2.12) gives the implication:

qsω = qsσ ⇒ Cωl∗ = Cσl∗ ⇒ Bω −Bσ = 0

However, the first assumption (2.15) and equation (2.16) imply that Bω − Bσ ̸= 0. A contradiction has
been found. Due to the motivation given in section (2.2.2) the first assumption (2.15) must hold. This
implies that the second assumption must be false. To conclude, there cannot be an equilibrium solution
where there are k < m ≤ n plankton species present in the system, thus the principle of competitive
exclusion is proven.

2.3. Stability of equilibrium solutions
The second step in gaining more insight into the behaviour of the chemostat model is to analyze the
stability of its equilibrium solutions. The stability of an equilibrium solution has several characteristics.
This section will specifically focus on whether an equilibrium point is asymptotically stable or unstable.

A asymptotically stable equilibrium acts as an attractor. It implies that once the values deviate slightly
from the equilibrium, the model will bring the values back to the equilibrium. An unstable equilibrium
acts as a repellor. It implies that once the values deviate slightly from the equilibrium, the values will
move away further from the equilibrium.
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2.3.1. Linear stability analysis
The method used to determine the stability is Jacobian stability analysis. A condition for Jacobian
stability analysis is continuous derivatives. For the chemostat model that is not satisfied due to the
minimum used in the definition of µi(R1, R2, ..., Rk) in equation (2.1). However, it is assumed that for
a small region around the equilibrium solution that the derivatives are continuous. This assumption
is reasonable because one can imagine that there always exist a value M such that for any ϵj < M ,
where j ∈ {1, 2, ..., k} and i ∈ {1, 2, ..., n}, the following holds:

µi(R1, R2, ..., Rj , ..., Rk) =
riRj

Kji +Rj
(2.17)

⇓

µi(R1 ± ϵ1, R2 ± ϵ2, ..., Rj ± ϵ3, ..., Rk ± ϵk) =
ri(Rj ± ϵj)

Kji + (Rj ± ϵj)

Thus it is implied that an equilibrium solution does not lie on a coordinate whereµi(R1, R2, ..., Rj , ..., Rk) =
riRj

Kji+Rj
=

riRj∗

Kj∗i+Rj∗
, where j ̸= j∗ ∈ {1, 2, ..., k}. Due to this assumption, Jacobian stability analysis is

still a well-suited method to analyse the stability of the equilbrium solutions of the chemostat model.

Imagine a system with n plankton species and k resource types and an equilibrium solution with the
values (N1, N2, ..., Nn;R1, R2, ..., Rk). The stability of this solution can be determined by calculating
the eigenvalues of the Jacobian matrix, with the inserted values of the equilibrium solution:

J =



∂
∂N1

(dN1

dt ) ∂
∂N2

(dN1

dt ) ... ∂
∂Nn

(dN1

dt ) ∂
∂R1

(dN1

dt ) ∂
∂R2

(dN1

dt ) ... ∂
∂Rk

(dN1

dt )
∂

∂N1
(dN2

dt ) ∂
∂N2

(dN2

dt ) ... ∂
∂Nn

(dN2

dt ) ∂
∂R1

(dN2

dt ) ∂
∂R2

(dN2

dt ) ... ∂
∂Rk

(dN2

dt )

... ... ... ... ... ... ... ...
∂

∂N1
(dNn

dt ) ∂
∂N2

(dNn

dt ) ... ∂
∂Nn

(dNn

dt ) ∂
∂R1

(dNn

dt ) ∂
∂R2

(dNn

dt ) ... ∂
∂Rk

(dNn

dt )
∂

∂N1
(dR1

dt ) ∂
∂N2

(dR1

dt ) ... ∂
∂Nn

(dR1

dt ) ∂
∂R1

(dR1

dt ) ∂
∂R2

(dR1

dt ) ... ∂
∂Rk

(dR1

dt )
∂

∂N1
(dR2

dt ) ∂
∂N2

(dR2

dt ) ... ∂
∂Nn

(dR2

dt ) ∂
∂R1

(dR2

dt ) ∂
∂R2

(dR2

dt ) ... ∂
∂Rk

(dR2

dt )

... ... ... ... ... ... ... ...
∂

∂N1
(dRk

dt ) ∂
∂N2

(dRk

dt ) ... ∂
∂Nn

(dRk

dt ) ∂
∂R1

(dRk

dt ) ∂
∂R2

(dRk

dt ) ... ∂
∂Rk

(dRk

dt )


(2.18)

Note that the Jacobian is an n + k by n + k matrix and will have λ1, λ2, ..., λn+k−1, λn+k eigenvalues.
Let Re(λ) denote the real part of an eigenvalue and let Im(λ) denote the imaginary part.

2.3.2. Unstable and asymptotically stable equilibrium solutions
Being able to determine the stability of an equilibrium solution is important for later analysis. If for all
i ∈ {1, 2, ..., n + k − 1, n + k} it holds that Re(λi) < 0, then the equilibrium solution is asymptotically
stable (Rauch, 2014). However, if there exists any j ∈ {1, 2, ..., n+ k − 1, n+ k} for which Re(λj) > 0,
then the equilibrium solution is unstable. Within unstable solutions there exists a difference between
saddle points and purely unstable points, however that distinction will be disregarded in the follow-
ing sections. Furthermore, if there exists an eigenvalue λ for which Im(λ) ̸= 0 the system variables
N1, N2, ..., Nn, R1, R2, ..., Rk have oscillatory behaviour in a small neighbourhood around the equilib-
rium solution, on top of the behaviour predicted by the stability of the equilibrium.

Additionally, imagine that there is an equilibrium solution E = (N1, N2, ..., Nn;R1, R2, ...Rk) that is
asymptotically stable. Then there exists a region ROC ∈ Rn+k that contains this equilibrium solu-
tion E ∈ ROC. Furthermore, for any other P = (N∗

1 ,N
∗
2 , ...,N

∗
n;R

∗
1,R

∗
2, ...R

∗
k) ∈ ROC it holds that

P → E as t → ∞. Thus, any point initially contained in this region of convergence will eventually
converge to the asymptotically stable equilibrium solution.
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2.4. Behaviour predicted by the model
Now that all the techniques have been established to analyse the chemostat model, several systems
can be simulated and analysed. The parameters for the systems with more than two resource types
were taken from (Huisman & Weissing, 1999).

2.4.1. 2 resource types and 2 plankton species
The first example describes a system with two plankton species and two resource types. The parame-
ters describing this system are:

D 0.25
S1 10
S2 10
m1 0.25
m2 0.25
r1 1.00
r2 1.00

K =

[
0.90 0.55
0.75 0.80

]

c =

[
0.10 0.25
0.05 0.10

]
Rinit =

[
R1 R2

]
=

[
10 10

]
Ninit =

[
N1 N2

]
=

[
0.11 0.12

]
The parameters Kji are the values in the K matrix on the j-th row and i-th column. Similarly, the
parameters cji are the values in the c matrix on the j-th row and i-th column. The initial values for the
plankton species and resource types are described in the row vectors Rinit and Ninit, the initial value
of N1 being equal to 0.11 for example. By calculating all the equilibrium solutions with the algorithm
described in (2.2.5) and applying the linear stability analysis from the previous section it is found that
this system allows for only one asymptotically stable equilibrium solution to exist:[

N1 N2

]
=

[
0.000 39.266

]
[
R1 R2

]
=

[
0.183 6.073

]
Simulating the system according to equation (2.2) and (2.3) shows the convergence to this asymptoti-
cally stable equilibrium solution, see figure 2.3.

Figure 2.3: The values describing the species abundance and the resource availability over time.

Both plankton species grow simultaneously until they reach a certain size, at this point one of the two
plankton species overtakes the other species and grows further, while the weaker species starts dying
of at a rapid pace until it goes extinct. Thus, the convergence to a stable equilibrium is observed where
one of the two plankton species goes extinct.

Furthermore, it is found that the point (N1, N2;R1, R2) = (100, 0.12; 10, 10) also lies in the region of
convergence of this equilibrium solution. Therefore if the initial value of N1 is changed to 100, a signif-
icant advantage over plankton species N2, the system will still converge to a solution where plankton
species N1 goes extinct. This behaviour can be seen in figure 2.4.
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Figure 2.4: The values describing the species abundance and the resource availability over time. Note how the first plankton
species N1 starts of strong but still goes extinct as time progresses.

One plankton species starts of with a significantly bigger population size than the other plankton species.
However, due to the other plankton species, with a smaller initial population size, being more dominant
it eventually does overtake the other plankton species and makes it go extinct.

Now the system is altered by setting c12 = 0.08, this allows for a new set of equilibrium solutions,
where the only asymptotically stable equilibrium solution is:[

N1 N2

]
=

[
31.889 81.389

]
[
R1 R2

]
=

[
0.300 0.267

]
All the other equilibrium solutions allowed by the altered system are unstable. (In a later section (2.6.3)
it will be shown that the stability of the equilibrium solutions is greatly influenced by the cji parameters.)
Simulating the new system shows that the plankton species converge to this asymptotically stable
equilibrium solution, see figure 2.5.

Figure 2.5: The values describing the species abundance and the resource availability over time. Note how the system
approaches the previously calculated stable equilibrium solution.

Observe that more biodiversity has been added to the system by changing the c12 parameter. The
system, with two plankton species and two resource types, converges to an equilibrium solution where
both species coexist.

It is concluded that by calculating which asymptotically stable equilibrium solutions appear it is pos-
sible to predict which species can hypothetically coexist in a system. However, what happens when
only unstable equilibrium solutions exist in an arbitrary system? There will be no obvious equilibrium
solution the system will converge to. This question will be further investigated in the following sections.
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2.4.2. 3 resource types and 3 plankton species
The second example describes a system with three plankton species and three resource types. The
parameters describing this system are:

D 0.25
S1 10
S2 10
S3 10
m1 0.25
m2 0.25
m3 0.25
r1 1.00
r2 1.00
r3 1.00

K =

1.00 0.75 0.25
0.25 1.00 0.75
0.75 0.25 1.00



c =

0.10 0.20 0.15
0.15 0.10 0.20
0.20 0.15 0.10


Rinit =

[
R1 R2 R3

]
=

[
10 10 10

]
Ninit =

[
N1 N2 N3

]
=

[
0.11 0.12 0.13

]
This system has, unlike the previous system, the property that all the equilibrium solutions found are
unstable. Therefore it is not expected for the variables to converge to an equilibrium solution. In figure
2.6 it can be seen how the species have oscillatory behaviour instead.

Figure 2.6: The values describing the species abundance and the resource availability over time, the respective derivatives
are plotted below.

During the simulation it is observed that the plankton species, instead of converging to, oscillate around
an unstable equilibrium solution. However, this equilibrium solution is not exactly in the middle of
this cycle due to the non-linearity of the model. Specifically, it can be seen that the plankton species
approach a limit cycle. The equilibrium point that the limit cycle oscillates around is:[

N1 N2 N3

]
=

[
21.481 21.481 21.481

]
[
R1 R2 R3

]
=

[
0.333 0.333 0.333

]
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With phase diagrams it can be visualized how the limit cycles oscillate around this equilibrium point,
see figure 2.7.

Figure 2.7: Phase diagrams representing how the plankton species and resource types approach a limit cycle over time.
Observe how the equilibrium point is always contained in a orthogonal project of the limit cycles that the plankton or resources

approach.

The eigenvalues, calculated with the Jacobian, belonging to this equilibrium solution are:

λ1 0.90625 + 5.23224i
λ2 0.90625− 5.23224i
λ3 −0.25000
λ4 −0.25000
λ5 −0.25000
λ6 −5.43750

This implies that there are four eigenfunctions for λ3, λ4, λ5, λ6 which approach the equilibrium. How-
ever, there are also two unstable eigenfunctions for λ1, λ2 which oscillate around the equilibrium.

Further analyzing the behaviour of the limit cycle, the parameter K11 is systematically altered. This
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results in several bifurcation graphs, shown in figure 2.8, which shows the minimum and maximum
value of the limit cycle, given that it exists, and its associated equilibrium solution as the red dotted line.

Figure 2.8: Bifurcation graphs showing the dimensions of the limit cycles, if they exist, for each plankton species for several
values of K11. Notice how the limit cycle only exists for a specific range of values for K11.

It can be observed how the stability of the equilibrium solutions of the system changes when K11

decreases below 0.75. The reason for this is that this introduces a new asymptotically stable equilibrium
solution. For example, when K11 = 0.74 this solution is:[

N1 N2 N3

]
=

[
19.500 39.000 0.000

]
[
R1 R2 R3

]
=

[
0.250 3.175 0.250

]
Furthermore, different types of oscillations may appear (Huisman &Weissing, 2002b). RevertK11 back
to 1.00 and introduce the following parameter variations:

K =

1.00 α 0.25
0.25 1.00 α
α 0.25 1.00


When 0.25 < α < 1.00 the system still only has unstable equilibrium solutions. Outside of this range an
undesired asymptotically stable equilibrium solution is introduced, see figure 2.9.
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Figure 2.9: The values describing the species abundances over time. The upper left and right graph have α respectively equal
to 0.2 and 0.4. The lower left and right graph have α respectively set to 0.6 and 1.1.

It is apparent that the coexistence of the species is limited when α < 0.25 or α > 1.00. However, in
the range 0.25 < a < 1.00 either a limit cycle can emerge, which has a constant frequency, or a hetero-
clinic cycle can emerge, which has a gradually decreasing frequency over time (Palacios, 2007). This
implies that the period of a heteroclinic cycle gets infinitely long, but the cyclic behaviour never stops.
The graph belonging to α = 0.4 describes a heteroclinic cycle. Another property of heteroclinic cycles
is that they oscillate between equilibrium solutions. The system, where α = 0.4, has three unstable
equilibrium solutions where Ni =

148
3 , for a single i ∈ {1, 2, 3}, and the other two plankton species are

extinct. It can be seen that the system cycles through these unstable equilibrium solutions. In turn
the plankton species get close to one equilibrium solution, without intersecting it, and converging to
another equilibrium solution.

While a heteroclinic cycle is mathematically valid behaviour, it does not imply a physically realistic
system. Plankton species cannot get infinitesimally close to extinction without becoming extinct due
to the plankton population being discretized. However, the figures above do imply that when a hete-
roclinic cycle is found, it is possible to alter certain system parameters that changes the heteroclinic
cycle into a limit cycle, which are physically realistic due to no species present in a limit cycle growing
infinitesimally small.

2.4.3. 3 resource types and 4 plankton species
The third example describes a system with three resource types and four plankton species. The pa-
rameters describing this system are:
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D 0.25
S1 6
S2 10
S3 14
m1 0.25
m2 0.25
m3 0.25
m4 0.25
r1 1.00
r2 1.00
r3 1.00
r4 1.00

K =

1.00 0.90 0.30 1.04
0.30 1.00 0.90 0.71
0.90 0.30 1.00 0.46



c =

0.04 0.07 0.04 0.10
0.08 0.08 0.10 0.10
0.14 0.10 0.10 0.16


Rinit =

[
R1 R2 R3

]
=

[
6 10 14

]
Ninit =

[
N1 N2 N3 N4

]
=

[
0.11 0.12 0.13 0.10

]
Plankton species N1, N2, N3 are introduced to the system at t = 0, plankton species N4 is instantly
homogeneously introduced to the system at t = 1000. It is emphasized that introducing the new
species does not change the existence of any previously established equilibrium solutions where the
new species was extinct. This results in a simulation where the four plankton species eventually coexist
on three resource types, see figure 2.10.

Figure 2.10: The values describing the species abundance and the resource availability over time, the respective derivatives
are plotted below.

The equilibrium solution that the plankton species oscillate around, before the fourth plankton species
is introduced, is equal to:[

N1 N2 N3 N4

]
=

[
54.717, 35.849 24.214 0.000

]
[
R1 R2 R3

]
=

[
0.333 0.333 0.333

]
Plotting the phase diagrams, see figure 2.11, gives insight into the new limit cycles that appear when
the fourth plankton species is introduced.
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Figure 2.11: Phase diagrams representing how the plankton species and resource types approach a new limit cycle over time.

Observe how the new orthogonal projections of the limit cycles for the plankton species do not contain
the previous equilibrium solution. In contrast, the new orthogonal projections of the limit cycles for the
resource types do contain the previous equilibrium solution.

Most importantly, the paradox of plankton is present in this example. It is shown that four plankton
species are able to coexist on three resource types. Therefore it is possible to achieve more biodiver-
sity than previously expected based on the principle of competitive exclusion.

2.4.4. 3 resource types and 5 plankton species
In this example it is shown that five plankton species can coexist on three resource types. The same
system as in the previous example is used. However, at t = 2000 a new plankton species is added to
the model that can coexist with the previously present species, the values for which can be found in
the appendix. It is also shown that, for the coexistence of these five species, it is not required for the
pre-existing plankton species to closely follow the limit cycle created by N1, N2, N3 before introducing
the new plankton species N4 and N5. This is done by introducing all the species at t = 0. The results
of these simulations can be seen in figure 2.12.
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Figure 2.12: The values describing the species abundance over time. In the left graph the new species N4 and N5 are added
at respectively t = 1000 and t = 2000. In the right graph all the plankton species N1, N2, N3, N4, N5 are simultaneously

added at t = 0.

Furthermore, a slight variation in the parameters describing plankton species N5 is made, c35 = 0.20,
that allows for a single asymptotically stable equilibrium solution to exist:[

N1 N2 N3 N4 N5

]
=

[
0.000 65.764 0.000 0.000 36.552

]
[
R1 R2 R3

]
=

[
0.300 2.911 0.113

]
In figure 2.13, it is shown that introducing this altered plankton species N∗

5 makes the system converge
to this new equilibrium solution and erases the previously achieved biodiversity.

Figure 2.13: The values describing the species abundance over time. At t = 2000 plankton species N∗
5 is introduced, it can be

seen that the limit cycles disappear and plankton species N1, N2, N4 go extinct.

Furthermore, in section (2.2.6), it was shown that in an equilibrium solution there can never coexist
more plankton species than resource types. Therefore, by introducing this altered species N∗

5 it is
possible to predict, even before running the simulation, that at a minimum two plankton species will go
extinct.

2.4.5. 3 resource types and 9 plankton species
There exist examples where nine plankton species are coexisting on three resource types, see figure
2.14.
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Figure 2.14: The values describing the species abundance over time. The plankton species N1, N2, N3 are introduced with
the respective initial values 0.11, 0.12, 0.13. The plankton species N4, N5, ..., N9 are all introduced with an initial value of 0.10.

Interestingly, the introduction of the sixth plankton species N6 introduces an asymptotically stable equi-
librium solution to the system:[

N1 N2 N3 N4 N5 N6 N7 N8 N9

]
=

[
0.000 0.000 17.303 0.000 0.000 17.970 0.000 0.000 0.000

]
[
R1 R2 R3

]
=

[
0.217 0.250 4.676

]
Which usually erases the coexistence of the previously present species. However, it is observed that
the system manages to avoid intersecting with the region where the plankton species and resource
types converge to this asymptotically stable equilibrium.

This is an indicator of how the coexistence of these plankton species is more fragile. Where previ-
ously, for five plankton species, it was possible to introduce them all simultaneously to the system,
due to there being no need of avoiding a region of convergence. Now the system’s biodiversity is
significantly dependent on the initial conditions of the system. Changing the initial value of N6 from
0.100 to 0.025 allows the system to coincide with the region of convergence to the asymptotically stable
equilibrium solution, and erases the previously achieved biodiversity, as shown in figure 2.15.

Figure 2.15: The values describing the species abundance over time. The plankton species N1, N2, N3 are introduced with
the respective initial values 0.11, 0.12, 0.13. The plankton species N4, N5, N7, N8, N9 are all introduced with an initial value of

0.10. N6 is introduced with an initial value of 0.025.
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2.5. Coexistence of plankton species
In the previous sections several examples of the paradox of plankton were demonstrated. It was shown
that it is possible for plankton species to coexist in a system with k resource types and n > k plankton
species. However, this seems unintuitive due to the principle of competitive exclusion. Which states
that, in equilibrium, no more plankton species can coexist than the resource types available. The im-
portant insight is to realize that this principle is only true for equilibrium solutions. As long as plankton
species and resource types avoid converging to an equilibrium solution the coexistence of the plankton
species is not limited by the amount of resource types in the system. This provides an explanation to
the paradox of plankton. (A graphical intuition is given in figure (2.11).) However, this does imply that
the paradox only appears when certain conditions are met. In this section these specific conditions will
be analyzed.

Firstly, it was shown in the previous examples that a system with any asymptotically stable equilib-
rium solutions, that have a region of convergence equal to the domain of the system, will eventually
satisfy the principle of competitive exclusion. Therefore, it is required, for the paradox of plankton
to occur, that the plankton species and resource types avoids converging to any equilibrium solution.
Asymptotically stable equilibrium solutions act as attractors, unstable equilibrium solutions act as re-
pellors. Thus, it is concluded that a necessary, but not sufficient, condition to prevent converging to an
equilibrium solution is that all the equilibrium solutions of the system need to be unstable.

There exist exceptions to this rule, for example in the system with nine plankton species and three re-
source types it was shown that the convergence to a asymptotically stable equilibrium can be avoided
by not intersecting with its region of convergence. However, this makes the coexistence of multiple
plankton species more fragile, because additional precautions needs to be taken to avoid intersecting
with this region. Furthermore, in the following sections it will be assumed that any asymptotically stable
equilibrium solution will have a region of convergence equal to the domain of the system.

A plankton species will be regarded as dominant if it introduces an asymptotically stable equilibrium
solution to a system, with a region of convergence equal to the domain of the system. Therefore it is
possible to state that introducing a dominant plankton species to a system will remove any previously
achieved biodiversity where more plankton species are present than the amount of resource types.

Analyzing the stability of an equilibrium solution uses the eigenvalues of the Jacobian associated with
that solution as described in section (2.3.1). Finding explicit conditions for when an equilibrium solution
is asymptotically stable or unstable gets more challenging once more plankton species and resource
types are added to the system due to the size of the Jacobian increasing. In this section a simplified
system will be introduced which simplifies the linear stability analysis. Then using this simplification it
will be proven that an asymptotically stable equilibrium solution will always be present in a simplified
system with one plankton species and one resource type and in a simplified system with two plankton
species and two resource types.

By further analyzing this simplified system, it will be shown that the plankton species and resource
types are bounded above. This prevents any variable from going to infinity when there are only unsta-
ble equilibrium solutions present. Additionally, due to the physical constraints of the model it is clear
that all the plankton species and resource types are bounded below by zero. By stating that the system
is bounded it is possible to use an analog of the Poincare-Bendixson theorem to provide additional
parameter constraints for the coexistence of plankton species. In section (2.2.4) it also was shown that,
in a system with n plankton species, there always exists a trivial equilibrium solution where Ni = 0 for
all i ∈ {1, 2, ..., n}. Using the simplified model allows one to find conditions for which this trivial solution
is unstable.

2.5.1. Conservation of mass
An important principle to be able to analyze the model further is the conservation of mass. However,
due to the resources flowing out of the chemostat model while plankton stay inside the container the
mass of each respective resource is not always conserved in the model. Thankfully, a condition exists
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which guarantees that mass is conserved. To find this condition imagine a system with n plankton
species and k resource types. Note that the time derivative of plankton species (2.2) can be inserted
into the time derivative of resource types (2.3) to find for all j ∈ {1, 2, ..., k}:

dRj(t)

dt
= D(Sj −Rj(t))−

n∑
i=1

cji
dNi(t)

dt
−

n∑
i=1

cjimiNi(t)

Solving for Sj and using the linearity of the derivative gives:

Sj =
1

D

d

dt
(Rj(t) +

n∑
i=1

cjiNi(t)) +Rj(t) +
1

D

n∑
i=1

cjimiNi(t)

Now the assumption is made that all the plankton species have a mortality rate equal to the system’s
turnover rate: mi = D for all i ∈ {1, 2, ..., n}. By introducing the temporary function f(t) = Rj(t) +∑n

i=1 cjiNi(t) it can be seen that:

Sj =
1

D

df(t)

dt
+ f(t)

Solving this ordinary differential equation yields:

f(t) = Sj + C · e− t
D (2.19)

The presence of the negative exponential term is to account for the initial conditions of the model. The
finite constant C can be determined with these conditions: C = f(0)−Sj = Rj(0)+

∑n
i=1 cjiNi(0)−Sj .

Typically the initial conditions are chosen such that Rj(0) = Sj , which further negates the influence
of this term. Furthermore, as time increases the negative exponential factor will approach 0, due to
the turnover rate D being strictly positive. Combining these insights allows one to formally state that
if mi = D, for all i ∈ {1, 2, ..., n}, it holds true that, for all j ∈ {1, 2, ..., k}, mass is conserved by the
following equation:

Rj(t) +

n∑
i=1

cjiNi(t) = Sj

This equation allows one to significantly reduce the model by eliminating the Rj variables:

dNi

dt
= Ni(µi(S1 −

n∑
i=1

c1iNi, S2 −
n∑

i=1

c2iNi, ..., Sk −
n∑

i=1

ckiNi)−mi)

⇓
dNi

dt
= Ni(ri(1−max(

K1i

K1i + S1 −
∑n

i=1 c1iNi
,

K2i

K2i + S2 −
∑n

i=1 c2iNi
, ...,

Kki

Kki + Sk −
∑n

i=1 ckiNi
))−mi)

This simplified model does not exactly reproduce the behaviour of the previous model, which includes
resources, due to it not accounting for the initial conditions. However, all the previous examples can
be reproduced with this simplified model. Furthermore, because this simplified model becomes more
accurate as time progresses, it can be used to analyze the local behaviour of equilibrium solutions.

2.5.2. Resources and plankton species are bounded
Using the conservation of mass principle, it can be proven that resources and plankton species are
bounded at any time t. The system from the previous section is used. State that, for any t ∈ [0,∞),
Rj(t) ≥ 0 and Ni(t) ≥ 0 and examine equation (2.19) to find:

0 ≤ Rj(t) ≤ Sj + C · e− t
D

0 ≤
n∑

i=1

cjiNi(t) ≤ Sj + C · e− t
D

The initial conditions determine the value of C, which has to satisfy −Sj ≤ C for a bounded solution to
exist. Inserting the expression for C gives:

0 ≤ Rj(0) +

n∑
i=1

cjiNi(0)
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This condition is always satisfied due to 0 ≤ Rj(t) and 0 ≤ Ni(t) for any t ∈ [0,∞). Therefore, it follows
that Rj and Ni do not go to infinity as t → ∞. This concludes the proof that resources and plankton
species are bounded if D = mi for all i ∈ {1, 2, ..., n}.

2.5.3. Poincare-Bendixson theorem
Approaching the problem from a statistical view yields more insights. Firstly, introduce the expectation
operator:

E{f(t)} = lim
t∗→∞

1

t∗

∫ t∗

0

f(t)dt

This allows one to state the following analog of the Poincare-Bendixson theorem (Levins, 1979):
If f(t) is a bounded function in some domain, then:

E{df(t)
dt

} = 0

This can be shown by using the fundamental theorem of calculus and the fact that boundedness implies
a constant upper and lower bound:∫ t∗

0

df(t)

dt
dt = f(t∗)− f(0) ≤ max(f(t))−min(f(t))

⇓

E{df(t)
dt

} = lim
t∗→∞

max(f(t))−min(f(t))

t∗
= 0

This is equivalent with stating that if a function f(t) is bounded, then the area
∫∞
0

df(t)
dt dt = 0. Because

in the examples given in the previous section the plankton species and resources were bounded this
can be motivated graphically by inspecting the derivatives given in figures (2.6) and (2.10).
A consequence of this statement is that for the original ordinary differential equations (2.2) describing
the species abundance, where it is desired that in equilibriumNi > 0 for all i ∈ {1, 2, ..., n}, the following
has to be true:

0 = E{dNi

dt

1

Ni
} = E{µi(R1, R2, ..., Rk)−mi}

⇓
mi

ri
= E{min( R1

K1i +R1
,

R2

K2i +R2
, ...,

Rk

Kki +Rk
)} < min(

1
K1i

S1
+ 1

,
1

K2i

S2
+ 1

, ...,
1

Kki

Sk
+ 1

)

Here the conservation of mass principle is used to find that Rj < Sj for all j ∈ {1, 2, ..., k}. These
insights give a condition that determines if coexistence via sustained motion is not possible:

∃i ∈ {1, 2, ..., n} ; mi

ri
≥ min(

S1

K1i + S1
,

S2

K2i + S2
, ...,

Sk

Kki + Sk
) (2.20)

Intuitively this condition can be understood by realizing that coexistence of all the plankton species is
more unlikely if one of the species is insufficiently nourished by the resources available in the system.
One way in which a species can be malnourished is if it has a relatively large mortality rate mi in
comparison to its optimal growth rate ri, or if its half saturation constantsKji are too large in comparison
to the supply of resources in the system Sj . This condition can also be rewritten as:

∀i ∈ {1, 2, ..., n} ; max(K1i

S1
,
K2i

S2
, ...,

Kki

Sk
) <

ri −mi

mi

This can be seen as a consequence of Liebig’s law of the minimum, the health of a plankton species
is determined by the resource it is most poorly dependent on. In sections (2.4.2) and (2.4.3) it can be
seen how the system’s parameters satisfy this constraint.
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2.6. Conditions for unstable equilibrium solutions
In this section linear stability analysis will be used to determine whether it is possible to obtain systems
with only unstable equilibrium solutions. Firstly, it will be determined when the trivial equilibrium solution
is unstable. Secondly, a system with one plankton species and one resource type will be analyzed.
Thirdly, a system with two plankton species and two resource types will be analyzed. For this system,
a proof will be given that an asymptotically stable equilibrium solution always exist if the two plankton
species are allowed to coexist in equilibrium.

2.6.1. Stability of the trivial equilibrium solution
As proven in section (2.2.4) a system with k resource types and n plankton species always has a trivial
equilibrium solution where Ni = 0 and Rj = Sj for ∀i ∈ {1, 2, ..., n}; ∀j ∈ {1, 2, ..., k};. Analyzing the
stability of this equilibrium solution in the simplified model yields that for all i ∈ {1, 2, ..., n} there exists
a j ∈ {1, 2, ..., k} such that:

∂

∂Ni
(
dNi

dt
) = ri(1−

Kji

Sj +Kji
)−mi

∀i∗ ∈ {1, 2, ..., n} ̸= i ;
∂

∂Ni∗
(
dNi

dt
) = 0;

Due to these derivatives the Jacobian is a diagonal matrix, which implies that the eigenvalues are equal
to the diagonal elements of the Jacobian. Therefore, the trivial equilibrium solution is unstable if:

∃i ∈ {1, 2, ..., n}; ∂

∂Ni
(
dNi

dt
) > 0

This is equivalent with stating that:

∃i ∈ {1, 2, ..., n} ; min(K1i

S1
,
K2i

S2
, ...,

Kki

Sk
) <

ri −mi

mi

Notice the similarity with inequality (2.20). However, that inequality checks if the weakest plankton
species can exist in the system. This inequality instead checks if there is at least one plankton species
that is capable of sustaining itself with the best resources available for that species. In all the examples
shown so far this inequality has been satisfied.

2.6.2. 1 resource type and 1 plankton species
The simplified model for a system with one plankton species and one resource type where m1 = D is:

dN1

dt
= N1(r1(1−

K11

K11 + S1 − c11N1
)−m1)

Finding the equilibrium solution for N1 > 0 by setting dN1

dt = 0 yields:

N1 =
1

c11
(S1 −K11

m1

r1 −m1
)

The Jacobian is given by:

J =
[

∂
∂N1

(dN1

dt )
]
=

[
r1 · (1− K11

S1+K11−c11N1
− K11c11N1

(S1+K11−c11N1)2
)−m1

]
= λ

Inserting the found equilibrium value for N1, and using that m1 < r1 and 0 < N1, shows that the
eigenvalue λ is always negative:

λ = −r1
S1 −K11

m1

r1−m1

( r1
r1−m1

)2
< 0

As a consequence, the equilibrium solution is always asymptotically stable. This also shows that this
eigenvalue does not have any imaginary component. Therefore, no oscillatory behaviour is expected
for a system with one plankton species and one resource type.
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Furthermore, imagine a system with one resource type and two plankton species. There exist two
equilibrium solutions, in each of them one of the two plankton species is extinct. By definition, one
of the plankton species will be more efficient at consuming the resource than the other species. In
the long run this causes the other plankton species to go extinct and the system approaches a stable
monoculture equilibrium (Huisman Weissing, 1999).

2.6.3. 2 resource types and 2 plankton species
In this section a proof will be given that in a system with two resource types and two plankton species,
wherem1 = m2 = D, there always exists an asymptotically stable equilibrium solution, if the two plank-
ton species can coexist in equilibrium. In this system there are two main types of equilibrium solutions.
One where a single plankton species is extinct and one where no plankton species are extinct. Several
conditions will be analyzed which determines the existence and stability of these equilibrium solutions.

Start with ordinary differential equations describing the system’s plankton species N1, N2:

dN1

dt
= N1(r1(1−max(

K11

K11 + S1 − c11N1 − c12N2
,

K21

K21 + S2 − c21N1 − c22N2
))−m1) (2.21)

dN2

dt
= N2(r2(1−max(

K12

K12 + S1 − c11N1 − c12N2
,

K22

K22 + S2 − c21N1 − c22N2
))−m2) (2.22)

The assumption is made that, in the first equilibrium analyzed, the first species N1 relies on the K11-
factor, and the second species N2 relies on the K22-factor. The only other combination possible, as
motivated in section (2.2.5), is that N1 depends on the K21-factor and N2 depends on the K12-factor.
The assumption leads to an analog of the minimization condition that was seen before which will be
called the maximization conditions:

K11

K11 + S1 − c11N1 − c12N2
≥ K21

K21 + S2 − c21N1 − c22N2
(2.23)

K12

K12 + S1 − c11N1 − c12N2
≤ K22

K22 + S2 − c21N1 − c22N2
(2.24)

These assumptions allows one to eliminate the maximization function from the model:

dN1

dt
= N1(r1(1−

K11

K11 + S1 − c11N1 − c12N2
)−m1)

dN2

dt
= N2(r2(1−

K22

K22 + S2 − c21N1 − c22N2
)−m2)

The equilibrium solution can be found by setting dN1

dt = 0 and dN2

dt = 0 and by assuming that N1 > 0,
N2 > 0. These conditions give the equations:

S1 −
m1K11

r1 −m1
= c11N1 + c12N2 ≥ 0 (2.25)

S2 −
m2K22

r2 −m2
= c21N1 + c22N2 ≥ 0 (2.26)

Note that these are identical to equation (2.12) where q1 = 1 and q2 = 2. Thus the simplified model will
give the same equilibrium solutions as the original model. Solving for N1 and N2 gives:

N1 =
c22(S1 − m1K11

r1−m1
)− c12(S2 − m2K22

r2−m2
)

c11c22 − c12c21
(2.27)

N2 =
c11(S2 − m2K22

r2−m2
)− c21(S1 − m1K11

r1−m1
)

c11c22 − c12c21
(2.28)

Furthermore, by inserting equations (2.25-2.26) the inequalities (2.23-2.24) can be respectively rewrit-
ten as:

K21

r1 −m1
≤ K22

r2 −m2
(2.29)
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K12

r2 −m2
≤ K11

r1 −m1
(2.30)

For the other equilibrium solution, where N1 relies on the K21-factor and N2 relies on the K12 factor,
the maximization conditions are:

K11

K11 + S1 − c11N1 − c12N2
≤ K21

K21 + S2 − c21N1 − c22N2

K12

K12 + S1 − c11N1 − c12N2
≥ K22

K22 + S2 − c21N1 − c22N2

By following similar steps as before, it is found that these conditions can be rewritten as:

K12

r2 −m2
≥ K11

r1 −m1
(2.31)

K21

r1 −m1
≥ K22

r2 −m2
(2.32)

Note that inequality (2.29) and (2.32) cannot both be true at the same time. This implies that for a sys-
tem with two plankton species and two resource type there only exists one single equilibrium solution
where N1, N2 > 0.

Reconsidering the equilibrium solution given in equations (2.27-2.28). BecauseN1 andN2 are bounded,
as proven in section (2.5.2), this equilibrium solution only exists if c11c22 ̸= c12c21. These values for N1

and N2 will be inserted in the Jacobian for this system:

J =

[
∂

∂N1
(dN1

dt ) ∂
∂N2

(dN1

dt )
∂

∂N1
(dN2

dt ) ∂
∂N2

(dN2

dt )

]

Where the derivatives are equal to:

∂

∂N1
(
dN1

dt
) = r1 · (1−

K11

S1 +K11 − c11N1 − c12N2
− K11c11N1

(S1 +K11 − c11N1 − c12N2)2
)−m1

∂

∂N2
(
dN2

dt
) = r2 · (1−

K22

S2 +K22 − c21N1 − c22N2
− K22c22N2

(S2 +K22 − c21N1 − c22N2)2
)−m2

∂

∂N2
(
dN1

dt
) = −r1 ·

K11c12N1

(S1 +K11 − c11N1 − c12N2)2

∂

∂N1
(
dN2

dt
) = −r2 ·

K22c21N2

(S2 +K22 − c21N1 − c22N2)2

Reinserting equation (2.25) and (2.26) and using the assumption that all the variables used are strictly
positive and that m1 < r1, m2 < r2 gives:

∂

∂N1
(
dN1

dt
) = −r1(1−

m1

r1
)2
c11N1

K11
< 0

∂

∂N2
(
dN2

dt
) = −r2(1−

m2

r2
)2
c22N2

K22
< 0

∂

∂N2
(
dN1

dt
) = −r1 · (1−

m1

r1
)2
c12N1

K11
< 0

∂

∂N1
(
dN2

dt
) = −r2 · (1−

m2

r2
)2
c21N2

K22
< 0

The eigenvalues of the Jacobian can be expressed as: λ1,2 = 1
2 (tr(J) ±

√
tr(J)2 − 4 det(J)). For a

unstable equilibrium it is required that λ1 > 0 or λ2 > 0, which is equivalent with stating that tr(J) +√
tr(J)2 − 4 det(J) > 0. Because tr(J) < 0 it follows that if det(J) < 0 then there exists at least one

positive eigenvalue:
det(J) < 0 ⇔ c11c22 < c12c21 (2.33)
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This condition allows an unstable equilibrium solution to exist where both plankton species are non-
extinct. Furthermore, this condition can be inserted into the positivity conditions N1 > 0, N2 > 0
(2.27-2.28) to find:

c22(S1 −
m1K11

r1 −m1
) < c12(S2 −

m2K22

r2 −m2
) (2.34)

c11(S2 −
m2K22

r2 −m2
) < c21(S1 −

m1K11

r1 −m1
) (2.35)

However, this does not mean that all the equilibrium solution of this system are unstable as well. Con-
sider the other potential equilibrium solutions where one of the two plankton species is extinct. These
can be found by setting dNi

dt = 0 and Ni∗ = 0, where i ̸= i∗, and solving for Ni:

(N1, N2) =


( 1
c11

(S1 − m1K11

r1−m1
), 0)

( 1
c21

(S2 − m1K21

r1−m1
), 0)

(0, 1
c22

(S2 − m2K22

r2−m2
))

(0, 1
c12

(S1 − m2K12

r2−m2
))

(2.36)

Note that the positivity conditions N1 ≥ 0, N2 ≥ 0 are satisfied in every equilibrium solution by using
equations (2.25-2.26) and (2.29-2.30):

S2 −
m1K21

r1 −m1
≥ S2 −

m2K22

r2 −m2
> 0

S1 −
m2K12

r2 −m2
≥ S1 −

m1K11

r1 −m1
> 0

Furthermore, the first and second equilibrium solution each have one respective maximization condi-
tion:

K11

K11 + S1 − c11N1 − c12N2
≥ K21

K21 + S2 − c21N1 − c22N2
(2.37)

K11

K11 + S1 − c11N1 − c12N2
≤ K21

K21 + S2 − c21N1 − c22N2
(2.38)

Rewriting these conditions and inserting each respective equilibrium solution gives:

c11(S2 −
m1K21

r1 −m1
) ≥ c21(S1 −

m1K11

r1 −m1
) (2.39)

c11(S2 −
m1K21

r1 −m1
) ≤ c21(S1 −

m1K11

r1 −m1
) (2.40)

Note that only one of these two inequalities can be true, which shows that only the maximization con-
dition of the first or second equilibrium solution can be satisfied. Additionally, this implies that due to
symmetry only one maximization condition of either the third or fourth equilibrium solution can be sat-
isfied as well. This proves that if there exists an equilibrium solution where N1 > 0 and N2 > 0, then
there always exists an equilibrium solution where N1 > 0 and N2 = 0 and another equilibrium solution
where N1 = 0 and N2 > 0.

To analyze the stability of the equilibrium solutions (2.36), where N2 = 0, the Jacobian will be con-
structed. The derivatives used in the Jacobian, where j = 1 for the first equilibrium solution and j = 2
for the second equilibrium solution and j∗ ∈ {1, 2}, are:

∂

∂N1
(
dN1

dt
) = r1 · (1−

Kj1

Sj +Kj1 − cj1N1 − cj2N2
− Kj1cj1N1

(Sj +Kj1 − cj1N1 − cj2N2)2
)−m1 (2.41)

∂

∂N2
(
dN2

dt
) = r2 ·(1−

Kj∗2

Sj∗ +Kj∗2 − cj∗1N1 − cj∗2N2
− Kj∗2cj∗2N2

(Sj∗ +Kj∗2 − cj∗1N1 − cj∗2N2)2
)−m2 (2.42)
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∂

∂N2
(
dN1

dt
) = −r1 ·

Kj1cj2N1

(Sj +Kj1 − cj1N1 − cj2N2)2
(2.43)

∂

∂N1
(
dN2

dt
) = −r2 ·

Kj∗2cj∗1N2

(Sj∗ +Kj∗2 − cj∗1N1 − cj∗2N2)2
(2.44)

As an example, by setting j∗ = 1 it is implied that N2 will depend on the K12-factor of (2.22) when the
system deviates slightly from N2 = 0. However, the actual index j∗ is arbitrary because it is infeasible
to predict which specific resource the second plankton species N2 will most depend on. Inserting the
equilibrium solutions (N1, N2) = ( 1

cj1
(Sj − m1Kj1

r1−m1
), 0) and rewriting these derivatives gives:

∂

∂N1
(
dN1

dt
) = −r1 · (1−

m1

r1
)2
cj1N1

Kj1

∂

∂N2
(
dN2

dt
) = r2 · (1−

Kj∗2

Sj∗ +Kj∗2 − cj∗1N1
)−m2

∂

∂N2
(
dN1

dt
) = −r1 · (1−

m1

r1
)2
cj2N1

Kj1

∂

∂N1
(
dN2

dt
) = 0

Once again using the eigenvalue identity λ1,2 = 1
2 (tr(J)±

√
tr(J)2 − 4 det(J)) and the motivation given

previously, shows that if tr(J) +
√
tr(J)2 − 4 det(J) < 0 then the equilibrium solution is asymptotically

stable. Because ∂
∂N1

(dN1

dt ) < 0 and ∂
∂N1

(dN2

dt ) = 0, the condition can be simplified. This allows one to
state that an asymptotically stable equilibrium solution is present if:

∂

∂N2
(
dN2

dt
) < 0

Inserting the equilibrium solutions, where N2 = 0, and rewriting this condition gives:

cj1(Sj∗ − m2Kj∗2

r2 −m2
) < cj∗1(Sj −

m1Kj1

r1 −m1
) (2.45)

Each combination of indices j, j∗ ∈ {1, 2}will be considered separately. Firstly, the condition is satisfied
when j = j∗ = 2 due to inequality (2.29). Secondly, the condition is not satisfied when j = j∗ = 1 due
to inequality (2.30). Thirdly, the condition is satisfied when j = 1 and j∗ = 2 due to inequality (2.35).
Finally, the condition is not satisfied when j = 2 and j∗ = 1 due to it not satisfying the maximization
condition of N1 (2.40):

c21(S1 −
m1K11

r1 −m1
) < c21(S1 −

m2K12

r2 −m2
) < c11(S2 −

m1K21

r1 −m1
) (2.46)

However, the equilibrium solution is not valid when j = 2 and j∗ = 1 due to the maximization condition
of N2:

K12

K12 + S1 − c11N1 − c12N2
≥ K22

K22 + S2 − c21N1 − c22N2

It is allowed to simply use the equilibrium condition to analyze if this inequality is satisfied, when a small
deviation is made from the equilibrium solution, because it is assumed that the resource targeted by the
species does not change for a small deviation (2.17). Rewrite this condition and insert the equilibrium
solution to find:

S1 −
K12K21

K22

m1

r1 −m1
≤ c11
c21

(S2 −
m1K21

r1 −m1
)

Use inequality (2.29) to see that:
K21

K22

r2 −m2

r1 −m1
< 1

Then use inequality (2.30) to state:

S1 −
K12K21

K22

m1

r1 −m1
= S1 −

K21

K22

r2 −m2

r1 −m1

m2K12

r2 −m2
≥ S1 −

m2K12

r2 −m2
≥ S1 −

m1K11

r1 −m1
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This implies that to satisfy the maximization condition for N2 it is required that:

c21(S1 −
m1K11

r1 −m1
) ≤ c11(S2 −

m1K21

r1 −m1
)

However, this can never be satisfied due to the maximization condition for N1 when j = 2 (2.40). Thus
it is not possible to satisfy both maximization conditions for N2 and N1 when j = 2 and j∗ = 1.

Now the only issue remaining is the case where j = j∗ = 1 because the equilibrium is also unstable
for those indices. This will be counteracted with an example for the first equilibrium solution of (2.36).
It will be shown that it is not possible to satisfy the maximization condition for N2 when j = j∗ = 1:

K12

K12 + S1 − c11N1 − c12N2
≥ K22

K22 + S2 − c21N1 − c22N2

The first step is to rewrite this condition and insert the equilibrium solution:

S2 −
K11K22

K12

m1

r1 −m1
≤ c21
c11

(S1 −
m1K11

r1 −m1
)

Then use the inequality (2.35) to find that:

(S2 −
m2K22

r2 −m2
) ≤ c21

c11
(S1 −

m1K11

r1 −m1
)

One then finds that:

S2 −
K11K22

K12

m1

r1 −m1
≥ (S2 −

m2K22

r2 −m2
) ⇔ K11

r1 −m1
≤ K12

r2 −m2
(2.47)

However, it follows that this inequality is never satisfied due to inequality (2.30). This implies that it is
not possible to satisfy the maximization condition of N2 when j = j∗ = 1.

To conclude, for any of the allowed combinations of j, j∗ where there exists a valid equilibrium so-
lution, here j = j∗ = 1 and j = 2, j∗ = 1 are not valid as shown previously, it holds that there is at
least one asymptotically stable equilibrium solution where N1 > 0 and N2 = 0.

Furthermore, if there exists an equilibrium solution where N1 > 0 and N2 > 0 and there is one unstable
equilibrium solutions where one of the two plankton species is extinct, then the equilibrium solution
where N1 > 0 and N2 > 0 must be asymptotically stable.

For there to be one unstable equilibrium solution with one extinct plankton species, it is required that
j = 1 and j∗ = 2. This implies that inequality (2.35) is not satisfied, which implies that the equilibrium
solution where no plankton species are extinct must be asymptotically stable. The other possible val-
ues combinations of j, j∗ ∈ {1, 2} are not possible because the existence and asymptotic stability of
those equilibrium solutions, where one of the two species is extinct, solely depends on the existence
of an equilibrium solution where N1 > 0 and N2 > 0, regardless of whether its asymptotically stable or
unstable.

Repeating all the steps (2.37-2.47) for the equilibrium solutions (2.36) whereN1 = 0 yields the same re-
sults due to the symmetry of the equilibrium solutions. Furthermore, repeating all the steps (2.23-2.47)
for the equilibrium solution where N1 depends on the K21-factor and N2 depends on the K12-factor
also gives the same results. This is due to the symmetry in the inequalities and equilibrium solutions
that were found, an example is (2.29-2.30) versus (2.31-2.32).

This finishes the proof which states that, in a system with two plankton species and two resource
types, if there is one equilibrium solution where N1 > 0 and N2 > 0 then there exists at least one
asymptotically stable equilibrium.
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Finally, if no equilibrium solution exists whereN1 > 0 andN2 > 0 then there always exists an asymptot-
ically stable equilibrium solution. If, in the equilibrium solution, the two plankton species are dependent
on the same resource, one of the two species will go extinct, as motivated in the previous section. If, in
the equilibrium solution, the species are dependent on separate resources, no coexistence is possible
between the two species due to no equilibrium solution withN1 > 0 andN2 > 0 being present, therefore
it is also expected that one of the two plankton species will eventually dominate over the other. Both
these situations causes an asymptotically stable monoculture equilibrium solution to appear, where the
weaker species has gone extinct.

Therefore, in a simplified system with two resource types and two plankton species an asymptotically
stable equilibrium solution is always present, which prevents the paradox of plankton from appearing.
It is concluded that a minimum of three resource types must be present in a simplified system to be
able to disobey the principle of competitive exclusion.



3
Expanding the model

The current model contains several interesting phenomena: limit cycles, asymptotically stable equilib-
rium solutions, and the paradox of plankton. In this chapter the model will be expanded to put it in a
more realistic context. Light intensity will be considered as an additional food resource for every plank-
ton species. Furthermore, the model will be put in the physical context of a river with dispersive and
advective mass transfer to analyze the behaviour of the model in a more realistic context than the bare
chemostat model. The goal is to gain more insight into what parameters and conditions causes the
paradox of plankton to appear for these more realistic models.

3.1. Disregarding Liebig’s law of the minimum
When deciding how to expand the existing model, it is beneficial to analyze the shortcomings of the
current model. Firstly, in biological systems it is observed that Liebig’s law of the minimum is not
always satisfied. For example, there are plankton species for which the growth rate depends on the
combination of iron and nitrogen, instead of the minimum of these two resources (Tilman, 1982). An
alternative to Liebig’s law is letting the actual growth rate of a plankton species i, when there are
simultaneously k unique amounts of resources present, be defined as:

µi(R1, R2, ..., Rk) =

k∏
j=1

µi(Rj) =

k∏
j=1

riRj

Kji +Rj
(3.1)

Using this new definition, combinations of plankton species and resource types can still be found that
generate limit cycles (Huisman & Weissing, 2002b). In figure 3.1, a limit cycle of three species coexist-
ing on three resource types can be observed.

31
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Figure 3.1: The values describing the species abundance and the resource availability over time, the respective derivatives
are plotted below. Note how these are continuously differentiable due to the absence of the minimization function in the model.

The specific values for this system are in the appendix.

Additionally, systems of species and resources can be found that disprove the principle of competitive
exclusion. For example, when a limit cycle is present with three oscillating plankton species, it is
possible for a fourth species to be introduced in the system and coexist with the already present plankton
species, as shown in figure 3.2.

Figure 3.2: Four different species coexisting on three resource types, while disregarding Liebig’s law of the minimum.



3.2. Introducing depth and light intensity 33

However, completely disregarding Liebig’s law of the minimum is biologically inaccurate. There are
plankton species where the growth rate depends on the presence of two other resource types, but not
where it depends on ten other resource types. The choice is made to partly disregard Liebig’s law up
to two resource types, instead of all the resource types present.

Combining what has been observed so far, imagine a system with three plankton species and three
resource types. The first and third species, N1 and N3, behave the same as in the original situation,
only depending on each individual resource type. However, for the second species N2 there are two
resource types, R1 andR3, such that the growth rate depends on the combination of the resource types
instead of the individual resource types. The following definitions for the growth rates of the plankton
species can then be constructed:

µ1(R1, R2, R3) = min(µ1(R1), µ1(R2), µ1(R3))

µ2(R1, R2, R3) = min(µ2(R1) · µ2(R3), µ2(R2))

µ3(R1, R2, R3) = min(µ3(R1), µ3(R2), µ3(R3))

(3.2)

3.2. Introducing depth and light intensity
A frequently analyzed problem is how plankton grow under different lighting conditions. Each plankton
species absorbs light in order to grow. However, when the concentration of plankton gets higher the
light intensity decreases due to there being more light-absorbing material. As a result the growth rate
of the plankton species decreases. When the concentration decreases the light intensity increases,
with an increase in the growth rate for the plankton species as a result (Huisman et al., 2002a). This
dynamic has the same behaviour as a limit cycle, therefore it is beneficial to observe the effect of light
intensity in the model to see how it potentially enables a more bio-diverse ecosystem.

To be able to incorporate the effect of light intensity fully into the model, depth z is added as a spa-
tial dimension. According to Lambert-Beer’s law, light absorption is proportional (i.e., the change of
light intensity with depth) is proportional to the concentrations of the light-absorbing substances and to
the local light intensity (Huisman et al., 2002a):

∂I

∂z
(z, t) = −(Hbg +

n∑
i=1

h
′

i

Ni(t)

V
)I(z, t) (3.3)

Here, a summation is done over all the light-absorbing plankton species concentrations, where V is the
volume of the chemostat system, h′

i is a proportionality constant equivalent with the specific light atten-
uation coefficient of plankton species i. A new proportionality constant hi = h

′

i
1
V is introduced so the

volume does not have to be directly accounted for.The background turbidityHbg is a constant indicating
the clarity of the fluid that is contained in the system when there are no plankton species present. A
higher background turbidity indicates a murkier fluid, completely clear fluid has no background turbidity.
For readability define the following time dependent function:

ω(t) = Hbg +

n∑
i=1

hiNi(t) > 0 (3.4)

Solving the ordinary differential equation yields an explicit expression for the light intensity at a specific
depth z and time t:

I(z, t) = Iin · e−ω(t)z (3.5)

The factor Iin describes the light intensity incident upon the surface of the volume in the chemostat
model. It can be seen that the light intensity decreases exponentially with depth. The specific growth
rate of a plankton species i as a function of light intensity at a specific time and depth can be modelled
by the Monod equation [10]:

ξi(z, t) =
riI(z, t)

Li + I(z, t)
(3.6)
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Here Li is the half-saturation constant and ri is the growth rate under ideal circumstances. Do note
that there are other relations possible besides the Monod equation. However, due to its earlier usage
in the chemostat model it will be used here. Assume that the system has a finite depth Z > 0. Because
it is assumed that the chemostat model is well mixed, the growth rate of a plankton species depends
on the average value of ξi(z, t) over the entire depth of the system. This can be expressed as:

ξi(t) =
1

Z

∫ Z

0

ξi(z, t)dz =
ri

Zω(t)
ln(

Li + Iin
Li + Iine−Zω(t)

) (3.7)

A graph of the growth parameter against the weighted sum of plankton species ω(t) is shown in figure
3.3.

Figure 3.3: The growth parameter ξi(t) plotted against the weighted sum of plankton species ω(t). The parameters are
Z = 10; Li = 0.07; Iin = 5; ri = 1. It is observed how the growth parameter changes rapidly in ω(t) ≤ 2.0. Furthermore,

note how in equation (3.7) the depth Z has the same influence as ω(t).

It can be argued that the growth rate of a plankton species always depends on the light intensity, in
addition to food resource with the minimal growth rate determined by equation (2.1). In the previous
section it was motivated how important behaviour, such as the existence of limit cycles and the paradox
of plankton, still occurs when more than one food resource, as the strict version of Liebig’s law dictates,
is considered to determine the actual growth rate.

Adding light intensity to the model should give more insight into the paradox of plankton. Due to the
light intensity having a negative exponential dependency on the total amount of plankton present in the
system (3.5), while the growth rate of individual plankton species depends positively on the light inten-
sity (3.6). One can hypothesize that this dynamic shares characteristics with an oscillating spring, due
to there always being a restoring force to some balance point. The expectation is therefore to observe
more oscillatory behaviour when adding light intensity to the model. Due to the paradox of plankton
depending on the existence of a limit cycle, it is expected to observe more biodiverse systems when
including light intensity in the model.

Having laid down the groundwork, it is possible to formulate this expansion of the model formally. The
definition of the model’s growth rate µi(R1, R2, ..., Rk) is changed to:

µi(R1, R2, ..., Rk, N1, N2, ..., Nn) = min(
riR1

K1i +R1
, ...,

riRk

Kki +Rk
) · ri
Zω(t)

ln(
Li + Iin

Li + Iine−Zω(t)
) (3.8)

Where the definition of ω(t) is given in equation (3.4).
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Simulating a systemwith four plankton species and three resource types, it is observed that the paradox
of plankton still holds true, even when light intensity is added to the model.. The system’s parameters
are the same parameters as in section (2.4.3) with the addition of:

Iin 2.5
Hbg 0.01

[
L1 L2 L3 L4

]
=

[
0.01 0.01 0.01 0.01

]
[
h1 h2 h3 h4

]
=

[
0.01 0.01 0.01 0.01

]
Furthermore, in figure 3.4, it is also observed that the stability of the coexistence of the four species
significantly depends on the depth of the system.

Figure 3.4: The top left graph uses a depth of 1m, the top right graph uses a depth of 7.5m, the bottom left graph uses a
depth of 10m and the bottom right graph uses a depth of 15m. It can be seen how the limit cycle has a higher frequency and
lower amplitude in more shallow environments. If the environment is too deep it can be seen that a coexistence of four species

can not be maintained and two species go extinct.

In other simulations, not shown, it was found that any change in parameters that significantly increases
the value of ξi(t), which in turn increases the frequency and decreases the amplitude of the limit cycle,
(3.7) allows for the coexistence of more plankton species. For example, if the system is a deep lake
with murky water more biodiversity can be achieved by introducing plankton species that have small hi
values, they absorb little light, and by increasing the light intensity Iin that is incident on the surface of
the lake.

Additionally, seasonality can be modelled by varying the light intensity over time. During the summer
period the sun will shine for more hours thus there will be more light intensity on average, the opposite
occurs during the winter period. This characteristic can be modelled by introducing:

Iin(t) = 0.81 + 0.4 · sin(t 2π
365

) (3.9)

The simulation of the model with this added seasonal characteristic is shown in figure 3.5.
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Figure 3.5: The species abundance of every plankton species over time. The depth Z is set to 7.5m. The light intensity shown
in this graph is a scaled up representation version of the actual light intensity (3.9). This is done to more easily compare the

fluctuations in the light intensity to other fluctuations in the simulation.

Firstly, it is observed that the period and amplitude of the cycle describing the plankton species in-
creases as the light intensity decreases, and vice versa. Secondly, a notable influence of this included
seasonality is that the total biomass of the system increases as the light intensity increases. In a system
with a constant light intensity the total biomass remains constant, but in this system the total biomass
grows and shrinks according to the light intensity. This increase in total biomass during the summer
period, and decrease during the winter period, is also observed in experiments tracking phytoplankton
biomass in the Southern Ocean (Arteaga et al., 2020).
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3.3. Introducing a spatial context with dispersion and advection
To further expand the model, the context of a river, over x, with finite length L [m] and a varying depth
Z(x) [m] will be added. Furthermore, it will be assumed that plankton move around in the river in a
dispersivemanner, locations with a high density of plankton will spread out to places with a lower density,
determined by the dispersion constant D [m2s−1]. Secondly, it is assumed that there is a laminar flow
present in the river, which creates advective mass transfer. Taking mass starting at x = 0 to x = L by
advection, the laminar flow is characterized by the flow speed v [m s−1]. The next step is to derive the
ordinary differential equation that describes the change of a substance in the river over time.

Figure 3.6: A schematic overview of the change of a concentration c(x) over some time interval ∆t, due to dispersive and
advective mass transfer, in a small fragment of length ∆x.

From this river analyze a small fragment ranging from x1 to x2, see figure 3.6. Imagine that the river
has a constant depth Dr and width Wr. Introduce the variable ∆x = x2 − x1. Furthermore, the river
has a concentration c(x) of a substance that varies over the length of the river. The change of this
concentration c(x) over a small time period ∆t is analyzed. Firstly account for the advective mass
transfer for this small fragment, at the left side of this fragment ∆tAv · c(x1) enters the fragment, at
the right side of this fragment ∆tAv · c(x2) leaves the system, where A = DrWr. Secondly account
for the dispersive mass transfer for this small fragment, to enable this introduce the dispersive flux
ϕ(x) [kg ·m−2] which is the amount of substance that flows through an unit area. It is assumed that a
positive mass flux goes from left to right. At the left side of the fragment ∆tA · ϕ(x1) of mass enters or
leaves the fragment, at the right side ∆tA · ϕ(x2) of mass leaves the fragment. Analyzing the change
of mass over time for this small volume V = ∆xDrWr:

V∆c = inadv − outadv + indis − outdis (3.10)

= ∆tAv · c(x1)−∆tAv · c(x2) + ∆tA · ϕ(x1)−∆tA · ϕ(x2)

Using Fick’s law ψ = −D dc
dx (Mudde, 1998), which relates the diffusive flux to the derivative of the

concentration of the substance , assuming D is constant, and letting ∆t → 0 ; ∆x → 0 allows one to
state that:

∆c

∆t
= −v (c(x2)− c(x1))

∆x
− ψ(x1)− ψ(x2)

∆x
⇒ ∂c

∂t
= −∂ψ

∂x
− v

∂c

∂x
= D

∂2c

∂x2
− v

∂c

∂x
(3.11)

Modelling this behaviour in the model does imply that the influence of the turnover variable D, in the
original model (2.2-2.3), is not accounted for, because its behaviour is replaced by the flow speed v.
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Furthermore, the depth of the river varies over the length of the river according to the equation Z(x).
However, this does influence the flow speed of the river v. Imagine a river with a constant widthW and
varying depth Z(x) and varying flow speed v(x) for 0 ≤ x ≤ L. The advective volumetric flux of the
river is assumed to be constant: d

dx (W · Z(x) · v(x)) = 0. This implies that:

v(x) =
Z(0)

Z(x)
· v(0) (3.12)

(In all sections except (3.4.5) it is assumed that the depth is constant Z(x) = Z, which implies that the
flow speed v(x) = v is constant as well.)

Expanding the model, with n plankton species and k resource types, to incorporate these dispersive
and advective mass transfer phenomena gives:

∂Ni

∂t
= Ni(µi(R1, R2, ..., Rk)−mi) +D∂

2Ni

∂x2
− v(x)

∂Ni

∂x
(3.13)

∂Rj

∂t
= −

n∑
i=1

cjiNiµi(R1, R2, ..., Rk) +D∂
2Rj

∂x2
− v(x)

∂Rj

∂x
(3.14)

The boundary conditions are chosen such that the modified model still shares characteristics with the
original chemostat model. One of these is that the resources flow into the system at a steady rate with
a given concentration Sj . This can be included in the model by virtue of the boundary conditions:

Ni(t, 0) = 0 (3.15)

Ni(t,L) = 0 (3.16)

Rj(t, 0) = Sj (3.17)

Rj(t,L) = 0 (3.18)

And initial conditions:
Ni(0, x) = fi(x) (3.19)

Rj(0, x) = gj(x) (3.20)

To be able to numerically simulate these partial differential equations, the finite-difference method will
be used for the spatial and temporal dimension (Vuik, 2015). Split the spatial dimension into N + 1
equal segments, such that for any i ∈ {0, 1, 2, ...,N}:

x = i
L
N

= i∆x (3.21)

The values of Ni(t, x), Rj(t, x), where i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., k} will only be defined on these
discrete x values defined in equation (3.21). Furthermore, introduce the shorthand notation N (m)

i =

Ni(t,m∆x) and R(m)
j = Rj(t,m∆x). Inserting these discrete x values into equation (3.13) and (3.14)

and using the central difference approximation, for all 0 ̸= x ̸= L, yields that for any m ∈ {1, 2, ...,N −
2,N − 1}:

∂N
(m)
i

∂t
= N

(m)
i (µi(R

(m)
1 , R

(m)
2 , ..., R

(m)
k )−mi)+DN

(m+1)
i − 2N

(m)
i +N

(m−1)
i

∆x2
−v(m∆x)

N
(m+1)
i −N

(m−1)
i

2∆x
(3.22)

∂R
(m)
j

∂t
= −

n∑
i=1

cjiN
(m)
i µi(R

(m)
1 , R

(m)
2 , ..., R

(m)
k )+D

R
(m+1)
j − 2R

(m)
j +R

(m−1)
j

∆x2
−v(m∆x)

R
(m+1)
j −R

(m−1)
j

2∆x

(3.23)
Due to the boundary conditions, N (0)

i = N
(N )
i = R

(N )
j = 0 and R(0)

j = Sj for any t > 0.



3.3. Introducing a spatial context with dispersion and advection 39

Furthermore, the temporal dimension will also be discretized in segments of∆t. Introduce the additional
shorthand notation N (l),(m)

i = Ni(l∆t,m∆x) and R(l),(m)
j = Rj(l∆t,m∆x), where m ∈ {0, 1, ...,N}

and l ∈ N. Then define the following column vectors, describing all the spatial values of the plank-
ton species and resource types at time l∆t: N

(l)
i = [N

(l),(0)
i , N

(l),(1)
i , ..., N

(l),(N−1)
i , N

(l),(N )
i ]T and

R
(l)
j = [R

(l),(0)
j , R

(l),(1)
j , ..., R

(l),(N−1)
j , R

(l),(N )
j ]T . Now it is possible to define the following explicit time

integration schemes, using the forward Euler method:

N
(l+1)
i −N

(l)
i

∆t
= Â(l) ·N (l)

i + B̂ ·N (l)
i − Ĉ ·N (l)

i (3.24)

R
(l+1)
j −R

(l)
j

∆t
= −D̂(l) + B̂ ·R(l)

j − Ĉ ·R(l)
j (3.25)

Where Â(l), B̂, Ĉ are N +1 by N +1 matrices and D̂(l) is a column vector with size N +1 defined as:

Â(l) =



0 0 0 ... 0 0

0 µi(R
(l),(1)
1 , ..., R

(l),(1)
k )−mi 0 ... 0 0

0 0 µi(R
(l),(2)
1 , ..., R

(l),(2)
k )−mi ... 0 0

... ... ... ... ... ...

0 0 0 ... µi(R
(l),(N−1)
1 , ..., R

(l),(N−1)
k )−mi 0

0 0 0 ... 0 0


(3.26)

B̂ =
D

∆x2



0 0 0 0 ... 0 0 0
1 −2 1 0 ... 0 0 0
0 1 −2 1 ... 0 0 0
0 0 1 −2 ... 0 0 0
... ... ... ... ... ... ... ...
0 0 0 0 ... −2 1 0
0 0 0 0 ... 1 −2 1
0 0 0 0 ... 0 0 0


; (3.27)

Ĉ =
Z(0) · v(0)

2∆x



0 0 0 ... 0 0 0
−Z(∆x)−1 0 Z(∆x)−1 ... 0 0 0

0 −Z(2∆x)−1 0 ... 0 0 0
0 0 −Z(3∆x)−1 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... 0 Z((N − 2)∆x)−1 0
0 0 0 ... −Z((N − 1)∆x)−1 0 Z((N − 1)∆x)−1

0 0 0 ... 0 0 0


(3.28)

D̂(l) =



0∑n
i=1 cjiN

(1),(l)
i µi(R

(l),(1)
1 , R

(l),(1)
2 , ..., R

(l),(1)
k )∑n

i=1 cjiN
(2),(l)
i µi(R

(l),(2)
1 , R

(l),(2)
2 , ..., R

(l),(2)
k )

...∑n
i=1 cjiN

(l),(N−1)
i µi(R

(l),(N−1)
1 , R

(l),(N−1)
2 , ..., R

(l),(N−1)
k )

0


(3.29)

However, it is important to notice that the stability of these schemes are not guaranteed. A specific
condition of the form K∆t ≤ ∆x2, where K is a real constant, needs to be met. To counteract this,
a combination of the implicit backwards Euler scheme and the explicit forward Euler scheme will be
considered instead:

N
(l+1)
i −N

(l)
i

∆t
= Â(l) ·N (l)

i + B̂ ·N (l+1)
i − Ĉ ·N (l+1)

i (3.30)

R
(l+1)
j −R

(l)
j

∆t
= −D̂(l) + B̂ ·R(l+1)

j − Ĉ ·R(l+1)
j (3.31)
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Solving for the (l+1) terms yields the time integration scheme used in the simulations, where In denotes
an identity matrix with size n:

N
(l+1)
i = (IN −∆t(B̂ − Ĉ))−1 · (IN +∆tÂ(l)) ·N (l)

i (3.32)

R
(l+1)
j = (IN −∆t(B̂ − Ĉ))−1 · (R(l)

j −∆tD̂(l)) (3.33)
This time integration scheme has the advantage of incorporating an implicit time integration scheme,
which has the property of not enforcing a condition on the size of ∆t and ∆x to achieve stability. How-
ever, an explicit time integration scheme is also incorporated, which means that there still exist a con-
dition for stability in terms of ∆t and ∆x, but that condition is less strict than the condition if only the
forward Euler method (3.24-3.25) was used.

Furthermore to be able to examine the influence of purely advective mass transfer, when no disper-
sive mass transfer is present, a minor adjustment needs to be made to the model. When no dispersive
mass transfer is present, the central difference approximation for the first derivative skips over every
node x = i∗∆x where i∗ is an odd number. This results in the undesirable effect that N (l),(i∗)

i → 0,
which is not an accurate depiction of the behaviour of an ecosystem with only advective mass trans-
fer. To counteract this effect an alternative finite difference approximation is used for the first spatial
derivative, for m = 1, 2, ...,N − 1:

dN
(m)
i

dx
=
N

(m−1)
i −N

(m)
i

∆x
(3.34)

dR
(m)
j

dx
=
R

(m−1)
j −R

(m)
j

∆x
(3.35)

Which results in a different expression for the matrix Ĉ:

Ĉ′ =
Z(0) · v(0)

∆x



0 0 0 0 ... 0 0 0
−Z(∆x)−1 Z(∆x)−1 0 0 ... 0 0 0

0 −Z(2∆x)−1 Z(2∆x)−1 0 ... 0 0 0
0 0 −Z(3∆x)−1 Z(3∆x)−1 ... 0 0 0
... ... ... ... ... ... ... ...
0 0 0 0 ... Z((N − 2)∆x)−1 0 0
0 0 0 0 ... −Z((N − 1)∆x)−1 Z((N − 1)∆x)−1 0
0 0 0 0 ... 0 0 0


(3.36)

It should be noted that, even if D = 0, this finite difference approximation introduces a small amount
of dispersion to the system. This alternative definition for the matrix Ĉ = Ĉ

′ is only used in section
(3.4.1), in sections (3.4.2-3.4.5) equation (3.28) is used to define the matrix Ĉ instead.

Finally, in sections (3.4.4-3.4.5) all the model expansions, that have been covered so far, are com-
bined. In these sections, light intensity is incorporated in the spatial context by changing the definition
of µi(R

(m),(l)
1 , R

(m),(l)
2 , ..., R

(m),(l)
k ) in the matrices Â(l), D̂(l) to the one given in equation (3.8):
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n ) (3.37)

= min(
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, ...,
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Kki +R
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)· ri
Z(m∆x) · ω(m, l)

ln(
Li + Iin

Li + Iine−Z(m∆x)·ω(m,l)
)

Where ω(m, l) is defined as:

ω(m, l) = Hbg +

n∑
i=1

hiN
(m),(l)
i

3.3.1. The dimensionless Péclet number
The added spatial context allows for the introduction of a dimensionless number called the Péclet
number. It illustrates a relationship between dispersive and advective mass transfer in a dispersion-
advection system. The number can be calculated using the characteristic length L [m] of the system,
the dispersion constant D [m2s−1] and the flow speed v [ms−1]:

Pe =
vL
D

=
[m · s−1] · [m]

[m2 · s−1]
(3.38)
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This definition implies that a low Péclet number indicates that the system’s mass transfer is dominated
by dispersive mass transfer, and a high Péclet number indicates that the system’s mass transfer is
dominated by advective mass transfer.

3.4. Behaviour predicted by the model with the spatial context
Now that the spatial context has been properly introduced and added to the model several relevant
questions emerge. Firstly, what is the influence of advective and dispersive mass transfer, with and
without light intensity, on the spatial and temporal distribution of the species abundances? Secondly,
does behaviour predicted by the original model (2.2-2.3), the paradox of plankton and the emergence of
limit cycles, reoccur in the model constructed in the previous section (3.3) and under which conditions?

To gain insight into these questions several systems will be simulated. Firstly, a system with one re-
source type and one plankton species is observed where only advective transfer is present. Secondly,
a system with three resource types and three plankton species is observed where both dispersive and
advective mass transfer is present and limit cycles occur, which is behaviour that is predicted by the
original model (2.2-2.3). Thirdly, a system with three resource types and four plankton species is ob-
served where the paradox of plankton appears. For this system the influence of changing the supply
concentrations Sj , and the effect of having either dispersive mass transfer or advective mass transfer,
or both, is observed. Additionally, several simulations are done for this system, while maintaining the
same ratios between the mortality mi and growth ri rates, to show that the paradox of plankton may
appear while a wide range of limit cycles with different frequencies are present. Fourthly, a system with
three resource types and three plankton species, where both the spatial context and light intensity are
incorporated, is simulated with a region with increased background turbidity to show its influence on the
spatial distribution of the species abundances of the plankton species, and the potential emergence of
a dominant plankton species if one species is better at consuming light intensity than the other plankton
species. Finally, for this system, a region is added that is significantly more shallow than the average
depth of the river to show how the plankton species drift faster in that region.

3.4.1. 1 resource type and 1 plankton species
The first system examined has one resource type and one plankton species and only advective mass
transfer. This simulation is done to observe the effect of advective mass transfer on the spatial distri-
bution of the species abundance N1. The parameters of the system are:

L 6
Z 1.00
D 0
S1 1.00
m1 0.25
r1 1.00

K =
[
1.00

]
c =

[
0.10

]
[
R1(0, x)

]
=

[
1.00

][
N1(0, x)

]
=

[
0.11

]
The boundary conditions defined in equations (3.15-3.18) are used. Additionally, the flow speed of the
river v will be systematically varied to observe the influence of only advective mass transfer, which is
shown in figure 3.7.
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Figure 3.7: The spatial distribution of the species abundance of N1, recorded at t = 3950. The top left and right graph have
flow speeds v respectively set to 0.02 and 0.03. The bottom left and right graphs have flow speeds v respectively equal to 0.04

and 0.05.

A peak moving to the right appears in every system. The speed at which this peak travels depends
on the flow speed v. The width of this peak is also influenced by the flow speed, becoming wider for
a larger flow speed v. Furthermore, the amplitude of every peak is not influenced by the flow speed
and does not decrease over time. This implies that regardless of the length of the river L, the peak
will travel over the entire length of the river. The peak disappears once it reaches the right end of the
river due to the boundary condition N1(t,L) = 0. Initially, the plankton further down the river are able
to survive for a short amount of time due to the initial resources present there, but they quickly go
extinct when they have consumed all the resources available. Only the plankton around the beginning
of the river are able to survive long enough to be able to consume the newly supplied resources at
x = 0. To summarize, the peak appears due to the initial amount of plankton present at t = 0 close
to the beginning of the river. (A consequence of this is that no new peak will appear once the peak
has disappeared at the right side of the river.) This behaviour can be observed in figure 3.8, which are
visualizations of the species abundance N1 over time and position.
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Figure 3.8: The spatial distribution of the species abundance N1 against time t and position x. The left and right graph have
flow speeds v respectively set to 0.02 and 0.03.

If the boundary condition at the left side of the river is changed to N1(t, 0) = β > 0 such that there is a
small supply of new plankton into the system, a new peak appears with a higher amplitude. However,
this peak’s position and amplitude is invariant with respect to time, as shown in figure 3.9.

Figure 3.9: The spatial distribution of the abundance of the plankton species for a system with a constant supply of plankton
into the system. For the top graphs β = 0.01 and for the bottom graphs β = 0.21. The left, middle, and right graphs have flow

speeds v respectively equal to 0.02, 0.1 and 0.2. The initial distribution of plankton N1(x, 0) = 0.11 converges to these
asymmetrical peaks over time.

It can be seen how the width and the x location of the peaks increases as the flow speed v increases.
Furthermore, the x location of the peak also depends on the constant supply at the left side of the river
β. A smaller supply causes the peak to appear further along the river, and vice versa. This implies that
it is possible to control the location of the center of the peak by varying this supply β. Furthermore, by
observing the species abundance of N1 against time and position, see figure 3.10, it is found any new
plankton supplied at x = 0 follows an identical curve against time, regardless of the time at which this
plankton was introduced to the system. This is due there only being advective mass transfer present
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in this system, which implies that a plankton further down the river is not influenced by new plankton
that are introduced at the beginning of the river. This explains the appearance of an asymmetrical peak
that is invariant with respect to time.

Figure 3.10: The spatial distribution of the species abundance N1 against time t and position x. The left and right graph have
flow speeds v respectively set to 0.02 and 0.2. For both graphs a constant amount of plankton is supplied at the beginning of

the river β = 0.21.

3.4.2. 3 resource types and 3 plankton species
The second system examined has three resource types and three plankton species. This system is
chosen because it is known to be the simplest system, without the spatial context, where only unstable
equilibrium solutions are present. This section aims to show that behaviour predicted by the original
chemostat model (2.2-2.3), the appearance of limit cycles, reoccurs in the model constructed in section
(3.3). Furthermore, it aims to show the effect of advectivemass transfer versus dispersivemass transfer
on the spatial distribution of the species abundances Ni. For this system, the same parameters as in
section (2.4) are used. The initial values are defined as N1(0, x) = 0.11, N2(0, x) = 0.12, N3 = 0.13,
R1(0, x) = S1, R2(0, x) = S2 and R3(0, x) = S3. The segment of the river considered has a length of
L = 40 and constant depth Z = 1.00. The dispersion constant is defined as D = 2.5 and the flow speed
is defined as v = 1.25. This results in a Péclet number of Pe = 20. The simulation yields a limit cycle
where all the three species coexist, see figure 3.11.
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Figure 3.11: The graph visualizes the species abundance at x = 5.0 for every respective plankton species. Note that the
simulation stabilizes to a limit cycle after t = 400.

This indicates that introducing the spatial context still allows for limit cycles to appear. However, it must
be noted that the cycle has the same characteristics as a heteroclinic cycle. Plankton species repeat-
edly approach near zero values, close to 0.01, before reemerging and growing to a value close to 25.0.

Graphing the species abundance for plankton species N1 along the spatial axis shows how the spatial
distribution shares characteristics with an asymmetrical peak, as shown in figure 3.12. Similar distribu-
tions, with the same characteristics, are found for the species abundance of plankton species N1 and
N2.

Figure 3.12: The spatial distribution of the species abundance of plankton species N1, recorded at several timestamps. Along
the spatial axis it can be seen how the distribution of the species abundance shares characteristics with an asymmetrical peak.
The spatial distribution of species abundance stays relatively constant over time. However, the amplitude of the distribution

does vary over time. Specifically for this system with a limit cycle, over time the amplitude of the distribution oscillates between
a near-zero value and 25.00.



3.4. Behaviour predicted by the model with the spatial context 46

Increasing the flow speed v, while keeping the dispersion constant D and L fixed at the same values,
increases the x position of the center of the peak, see figure 3.13.

Figure 3.13: The spatial distribution of the species abundance N1, recorded at several timestamps. The left, middle and right
graph have a flow speed v respectively set to 1.75, 2.35 and 2.50.

Further varying the flow speed v, gives insight into conditions for which cycles and stable equilibrium
solutions appear, see figure 3.14.

Figure 3.14: The graph visualizes the species abundance at x = 20.0 for every respective plankton species. Several values
for flow speed v are used, while keeping the dispersion constant D = 2.5 and the length of the river L = 40 fixed. The left,

middle and right graphs have Péclet numbers respectively equal to 20, 32 and 40. Note how the cyclic behaviour is not present
in the right graph.

In figure 3.14 it is observed how the amplitude and period of the cycle increases as the Péclet number
increases. The limit cycle at x = 20 shares characteristics with a heteroclinic cycle, where a majority
of the time one of the three plankton species is extinct. (However, as mentioned in section (2.4.2) it is
expected that these heteroclinic cycles can be converted to limit cycles by varying specific parameters
in the system.)

Increasing the Péclet number further to 40.0 results in the disappearance of the cyclic behaviour. The
system will then approach a stable equilibrium where one of the three plankton species is extinct.

3.4.3. 3 resource types and 4 plankton species
The third system examined has three resource types and four plankton species. This system is cho-
sen because it is the simplest system in the original chemostat model (2.2-2.3) where the paradox of
plankton is present. However, in the more realistic model constructed in section (3.3), with dispersive
and advective mass transfer, it is unknown if the paradox of plankton still appears.

The first aim of this section is to show that the paradox of plankton can still appear, by letting four
plankton species coexist on three resource types, while only dispersive mass transfer is present. The
second aim of this section is to show the dependency of the coexistence, of the four plankton species
while no advective mass transfer is present, on the concentration of every resource type supplied at
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the beginning of the river Sj . The third aim of this section is to show the influence of dispersive mass
transfer, without any advective mass transfer, on the spatial distribution of the species abundances Ni.
The fourth aim of this section is to show that the paradox of plankton can occur when both dispersive
and advective mass transfer is present, and that the resulting coexistence depends on the dispersive
mass transfer being more dominant than the advective mass transfer. The fifth aim of this section is
to show that the limit cycles that occur, when four plankton species coexist on three resource types,
can have several frequencies as long as the ratios between the mortality mi and growth rates ri are
conserved.

The system’s parameters that help achieve the first aim are:

L 40
Z 1.00
D 0.25
v 0
S1 10− α
S2 10
S3 10 + α
m1 0.25
m2 0.25
m3 0.25
m4 0.25
r1 1.00
r2 1.00
r3 1.00
r4 1.00

K =

1.00 0.90 0.30 1.04
0.30 1.00 0.90 0.71
0.83 0.30 1.00 0.46



c =

0.04 0.07 0.04 0.10
0.08 0.08 0.10 0.10
0.14 0.10 0.10 0.16


[
R1(0, x) R2(0, x) R3(0, x)

]
=

[
10− α 10 10 + α

][
N1(0, x) N2(0, x) N3(0, x) N4(0, x)

]
=

[
0.11 0.12 0.13 0.10

]

The first example shows that, by setting α = 2.5, it is still possible for four plankton species to coexist
on three resources while only dispersive mass transfer is present, see figure 3.15.

Figure 3.15: The graph visualizes the species abundance at x = 5.0 for every respective plankton species. Note that the
simulation stabilizes to a limit cycle after t = 2000.

This shows that the paradox of plankton can still appear even when introducing the spatial context of
a flowing river and only dispersive mass transfer is present.

Furthermore, to achieve the second aim, it is shown that the coexistence of the plankton species signifi-
cantly depends on the concentration of the supplied resources S1, S2 and S3 at x = 0. By systematically
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decreasing the value of α the cyclic behaviour disappears and a stable equilibrium solution appears.
This can be observed in figure 3.16.

Figure 3.16: The graph visualizes the species abundance at x = 5.0 for every respective plankton species. For the left, middle
and right graph α is respectively set to 1.975, 1.8895 and 1.875. The coexistence of the four plankton species disappears as

the limit cycle vanishes. Eventually, two plankton species go extinct as the system approaches a stable equilibrium.

Furthermore, in figure 3.17, it is shown how a different stable equilibrium, emerges if α is systematically
increased instead. The oscillatory behaviour, when the four plankton species coexist, eventually dis-
appears as time progresses and the plankton species converge to an asymptotically stable equilibrium
solution where plankton species N1 has gone extinct.

Figure 3.17: The graph visualizes the species abundance at x = 5.0 for every respective plankton species. For the left and
right graph α is respectively set to 2.6 and 2.65. Once again the coexistence of the four plankton species disappears as the
limit cycle vanishes. Eventually, one plankton species goes extinct as the system approaches a stable equilibrium. Note that

this is a different equilibrium solution than shown in figure (3.16).

This implies that the paradox of plankton only emerges for a specific range of S1, S2, S3. For this ex-
ample, given that S2 = 10, that range is 7.4 ≤ S1 ≤ 8.0 and 12.0 ≤ S3 ≤ 12.6. If these variables are
outside of this range, the model converges to a stable equilibrium solution where one or more plankton
species are extinct.

To achieve the third aim, the influence of pure dispersive mass transfer is observed in figure 3.18.
The flow speed v is kept at 0 and α = 2.15. The dispersion constant D will be systematically varied to
observe how an asymmetric peak appears with an oscillating amplitude.
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Figure 3.18: The spatial distribution of the species abundance N4, recorded at several timestamps. The left, middle and right
graph have a dispersion constant D respectively set to 0.5, 5.0 and 20.0.

Furthermore, the width of the peak increases as the dispersion constant D increases. This can be
validated intuitively by realizing that a higher dispersion constant D implies that the resources entering
the river spread out further before the plankton species can consume them. This in turn implies that
plankton species even further down the river can still grow to significant sizes due to resources being
present there.

Along the temporal axis, similar behaviour as in figure 3.15 is observed for all values of D ≤ 20.0.
The only difference is that the amplitudes of these limit cycles, at the same x = 5.0 coordinate, vary for
different values of D due to the center of the asymmetrical peak shifting to a new location.

This cyclic behaviour disappears when the dispersive constant D becomes significantly larger with
respect to the length of the river. Then a stable equilibrium solution is introduced and one of the four
plankton species goes extinct, as shown in figure 3.19. Furthermore, due to no cyclic behaviour being
present it is observed how the amplitude of the asymmetrical peak does not vary over time anymore.

Figure 3.19: The left graph visualizes the spatial distribution of the species abundance N4, recorded at several timestamps.
The right graph visualizes the species abundance at x = 5.0 for respective plankton species

Note how the amplitude of the asymmetrical peak, describing the spatial distribution of N4, stays invari-
ant with respect to time. Additionally, the spatial distributions of the species abundances N2 and N3,
not shown, also approach an asymmetrical peak that does not change over time.

Now, to achieve the fourth aim, the influence of advective mass transfer is analyzed. By setting α = 2.5
the system is reverted to a state where it is known that the coexistence of four plankton species is pos-
sible. Motivated by the simulations shown in figure 3.14, it is presumed that the paradox of plankton
occurs when dispersive mass transfer is more dominant than advective mass transfer. Therefore, in
figure 3.20, it can be seen that by keeping the dispersion constant D = 2.5 and the length of the river
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L = 40 fixed and systematically altering the flow speed v it is found that the coexistence of four plankton
species is possible when the Péclet number is lower than 4.0. For example, when the Péclet number
is equal to 0.4 a simulation occurs similar to figure 3.15. It shows that it is likely, for this system, that
this system converges to a stable equilibrium solution, where the biodiversity is limited by the different
types of resources supplied to the system, when the Péclet number is larger than 4.0.

Figure 3.20: The graphs visualizes the species abundance at x = 5.0 for every respective plankton species. The left, middle
and right graph have Péclet numbers respectively equal to 4.0, 5.6 and 12.0.

To achieve the fifth aim, it is observed that the system has the property that ri = r = 1.00 [t−1] and
mi = m = 0.25 [t−1] for all ∀i ∈ {1, 2, 3, 4}. If simulations are done for modified systems where both
these growth and mortality rates are multiplied by the same constant γ ∈ R: r = 1.00 ·γ andm = 0.25 ·γ,
a dimensionless number can be constructed that remains constant regardless of the value of γ:

r

m
=

1.00 · γ
0.25 · γ

=
[t−1]

[t−1]
(3.39)

The species abundance for every plankton species at several timestamps, when doing simulations for
several values of γ, where D = 2.5; v = 0.3; α = 2.0, is shown in figure 3.21.

Figure 3.21: The graphs visualizes the species abundance at x = 7.5 for every respective plankton species. The left, middle
and right graph have γ respectively set to 0.10, 0.25 and 0.75.

Observe how (the ratios of) the cycle’s amplitudes are not significantly altered. Furthermore, the limit
cycle’s period increases as γ becomes smaller. However, there are limits to this relation. When γ = 0.05
the coexistence of the four plankton species disappears as an asymptotically stable equilibrium solution
is introduced. When γ = 1.5 limit cycles still appear, however plankton species N1 goes extinct, as
shown in figure 3.22.
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Figure 3.22: The graphs visualizes the species abundance at x = 7.5 for every respective plankton species. The left and right
graph have γ respectively set to 0.05 and 1.5.

It is concluded that if the paradox of plankton appears for a system, where all the plankton species have
identical growth and mortality rates, it is possible to maintain the paradox even if these rates change.
The requirement is that the ratio between the growth and mortality rate r

m remains constant and that
the absolute differenceM1 < r −m < M2 for certain valuesM1,M2 ∈ R.

3.4.4. Effect of background turbidity and light consumption
This section will observe the effect of adding a region in the river with an increased amount of back-
ground turbidity. This is done by incorporating both the spatial context and light intensity as described
in equation (3.37). The first aim of this section is to show the effect of adding an area with increased
background turbidity to the spatial distribution of the species abundances of the plankton species. The
second aim of this section is to show how a plankton species can become dominant if it is better at
consuming light intensity than the other plankton species in the system. The system examined has
three resource types and three plankton species. The same parameters are used as in section (2.4.2)
with the addition of:

L 25
Z 1.00
D 2.5
v 0.25
Iin 2.5

Hbg(x) =

{
θ ; 8 < x < 12

0.01 ; else

[
L1 L2 L3

]
=

[
2.00 2.00 2.00

]
[
h1 h2 h3

]
=

[
0.01 0.01 0.01

]
[
R1(0, x) R2(0, x) R3(0, x)

]
=

[
10 10 10

][
N1(0, x) N2(0, x) N3(0, x)

]
=

[
0.11 0.12 0.13

]

Notice how in the region 8 < x < 12 the background turbidity will be altered by the constant θ ∈ R, this
implies that in this river the water is less clear. Outside of this region the river will be assumed to have
clearer water, which implies a lower background turbidity. This is done to help achieve the first aim of
this section. Furthermore, the system has a constant depth of Z = 1.00. The spatial distributions for
the species abundances of the plankton species for this system are shown in figure 3.23.
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Figure 3.23: The spatial distribution of the species abundance N1. The left, middle and right graph have θ values respectively
set to 3.00, 15.0 and 30.0. Note how there is a sudden decrease in the peak’s amplitude in the region 8 < x < 12. The other

species abundances N2, N3 have similar spatial distributions that also contain this sudden decrease in amplitude for
8 < x < 12.

It is observed howwith little background turbidity an asymmetrical peak forms, and when a large amount
of background turbidity is added to the system in the region 8 < x < 12, the peak’s amplitude will de-
crease in this region.

Additionally, for the second aim of this section, the effect of altering the half-saturation constant for
light Li is observed. In general, for a plankton species Ni, if Li becomes lower then the species be-
comes more dominant. This is shown in figure 3.24.

Figure 3.24: The graphs visualize the species abundance at x = 3.125 for every respective plankton species over time. The
left, middle and right graph have L2 values respectively set to 1.90, 1.60 and 1.40. For all the graphs θ = 3 and

L1 = L3 = 2.00.

Note how in the left graph the plankton speciesN2 grows slightly better under the influence of light than
the other plankton species N1 and N3 due to L2 < L1 and L2 < L3. However, this advantage does not
introduce any stable equilibrium solutions. However, when L2 = 1.60, species N2 becomes dominant,
a stable equilibrium solution is introduced where N2 > 0, N3 > 0 and N2 = 0. This removes the cyclic
behaviour of the three plankton species. When L2 is reduced even further to L2 = 1.40 the plankton
species N2 becomes so dominant that the only stable equilibrium solution of this system is one where
N2 > 0 and N1 = N3 = 0.

3.4.5. Effect of varying depth
This section aims to show the effect of adding a region in the river that is significantly more shallow
than the average depth of the river on the spatial distribution of the species abundances of the plank-
ton species. Due to the condition that the volumetric flux is constant, it is expected that the river flows
significantly faster in this specific region in the river.

The same parameters as in the previous section (3.4.4) are used, with θ = 0.01, however the river’s
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depth is now defined as:

Z(x) =

{
ϕ ; 8 < x < 12

10 ; else
(3.40)

The constant ϕ ∈ R defines how shallow the river is in the region 8 < x < 12. When choosing values for
ϕ, one needs to realize that, due to the model expansions, the system has grown in size substantially.
Not accounting for initial conditions, the current system with three plankton species and three resource
types is described by 35 unique variables. As a consequence, it gets more challenging to determine
the influence of any individual variable. To still obtain insight into the influence of adding a shallower
region, a non-realistic extreme value of ϕ = 0.01 will first be simulated. The spatial distributions of the
species abundances of all the plankton species are shown in figure 3.25.

Figure 3.25: The spatial distribution of the species abundances N1, N2 and N3 for ϕ = 0.01. Note how every spatial
distribution becomes almost horizontal in the region 8 < x < 12.

Intuitively, figure 3.25 can be understood by imagining that the river flows incredibly fast in the region
8 < x < 12. In this region, the plankton are quickly transported from x = 8 to x = 12 with little time to
consume any resources. This is the reason why an almost flat line appears in the region 8 < x < 12.
To observe a more realistic situation, the simulation is repeated with a value ϕ = 0.75, see figure 3.26.

Figure 3.26: The spatial distribution of the species abundances N1, N2 and N3 for ϕ = 0.75. Note how every spatial
distribution increases linearly over time in the region 8 < x < 12.

Now it can be observed in figure 3.26 that the plankton has more time to consume resources in the
region 8 < x < 12. This is the reason why, when ϕ = 0.75, the plankton species slowly increase in
the region 8 < x < 12 instead of remaining almost constant, which was the case with ϕ = 0.01. If ϕ is
increased even more the spatial distribution will start to approach the shape of a smooth asymmetrical
peak.



4
Conclusion and discussion

The goal of this report was to determine when the principle of competitive exclusion holds and to see
whether and when the paradox of plankton exist if more realistic elements, light intensity and dispersive
and advective mass transfer, are incorporated in the original model (2.1). New insight was obtained
regarding this goal. When an ecosystem exists where there are more plankton species present than
the principle of competitive exclusion allows, introducing a dominant plankton species removes the
previously achieved biodiversity. A dominant plankton species is defined as a species that allows an
asymptotically stable equilibrium solution, with a region of convergence equal to the domain of the
system, to exist in the ecosystem. The presence of a dominant plankton species guarantees that the
principle of competitive exclusion holds, the number of different types of resources acting as an upper
bound on the amount of species that can coexist in the system.

It was found that a necessary condition for the paradox of plankton is that all the equilibrium solu-
tions in the system are unstable, if it is assumed that any asymptotically stable equilibrium solution has
a region of convergence equal to the domain of the system. If this condition is not met the principle of
competitive exclusion will be satisfied.

Additionally, this report provides a systematic approach to determine whether a plankton species can be
introduced to a pre-existing system without removing previously achieved biodiversity that disregarded
the principle of competitive exclusion. This is done by first calculating all the possible equilibrium solu-
tions, where the new plankton species is present in the system, with the algorithm described in section
(2.2.5), and then using the linear stability analysis described in section (2.3.1) to check whether any
stable equilibrium solutions are introduced when adding the new plankton species. Example code that
uses this approach is provided in the appendix.

Furthermore, it was proven that in a simplified system, where all the plankton species have a mor-
tality rate equal to the turnover rate of the chemostat model (2.2-2.3), a minimum of three resource
types need to be present to allow only unstable equilibrium solutions to exist, which was hypothesized
by Huisman & Weissing (1999). Furthermore, it was found that the stability of the equilibrium solutions
strongly depends on the amount of every resource present in the plankton species: cji.

It was motivated that these insights also hold in a more realistic context under certain conditions. When
the spatial context of a flowing river, with dispersive and advective mass transfer, is added to the origi-
nal model it was still possible for the paradox of plankton to appear. When the original model predicted
that the paradox of plankton appeared for a system with three resource types and four plankton species
(2.4.3), it was observed that recreating that system in the more realistic model (3.4.3), by reusing all pa-
rameters from the original model except for the supply concentrations of the resources Sj , also caused
the paradox of plankton to appear under certain conditions, see figure 3.17. The first condition is that
the diffusive mass transfer needs to be dominant over the advective mass transfer in the river, see
figure 3.20. The second condition is that the diffusive mass transfer cannot be too large with respect
to the length of the river, see figure 3.19. Thus it was observed for this system that, when these condi-
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tions were met, the appearance of the paradox of plankton, and the temporal distribution of the species
abundances of the plankton species, was primarily determined by the original model. As a result, the
paradox of plankton could be maintained for broad ranges of dispersive and advective mass transfer
rates. In contrast, it was observed that the spatial distributions of the plankton species was significantly
dependent on the amounts of dispersive and advective mass transfer. The spatial distribution in gen-
eral followed the shape of an asymmetrical peak with an oscillating amplitude if limit cycles are present.
If the original model predicted the convergence to a stable equilibrium solution the amplitude remained
constant, see figure 3.19. The location of the peak of the asymmetrical peak moves down the river
when the flow speed v of the river is increased, see figure 3.13. The width of the asymmetrical peak
increases when there is more dispersive or advective mass transfer present, see figures 3.7 and 3.18.

To summarize, for the systems (3.4.1-3.4.3) considered with the spatial context of a flowing river, with
dispersive and advective mass transfer, it was found that the biodiversity was still primarily dependent
on the parameters present in the original model, if the conditions, mentioned in the previous paragraph,
are met. This implies that a coexistence between certain species found in the original model is an
indicator if that coexistence is also possible in the context of a flowing river under certain conditions
regarding dispersive and advective mass transfer.

Furthermore, it was found that the paradox of plankton also appears when light intensity is added
to the chemostat model (2.2-2.3). From the simulations, it was found that the total biomass and biodi-
versity increases as the light intensity increases. When the plankton species have insufficient amounts
of light intensity the paradox of plankton disappears, either due to an increasing depth of the system
or plankton species having to consume more light intensity. It was also observed, see figure 3.24, that
a dominant species can be introduced if it is more efficient at consuming light intensity than the other
plankton species in a system.

When the physical context and light intensity were both incorporated into the original model, it was
found that in a section of the river with less clear water the spatial distribution will have a decreased
amplitude in that region, but it does not significantly affect the coexistence of the plankton species in
that region as long as no plankton species is better at consuming light intensity than the other. Further-
more, when a shallower region is present in the river, the plankton species were found to spent less
time there due to the increased flow speed, and not experiencing a significant change in population
size due to spending less time in the shallow region.

Recommendations for future research
There are several worthwhile things that future research can focus on.

First, one of the main drawback of the chemostat model is that it is challenging to verify whether the
observed oscillations in figures as (3.15) are also found in real-world data. This is due to experimen-
tal data including noise from external factors, such as seasonal temperature differences and day and
night cycles, which makes the low-amplitude oscillations in certain systems go unnoticed, see figure
2.10 (Huisman & Weissing, 1999). Therefore, in experimental data, there are oscillations present with
bigger amplitudes, similar to the results seen in figure (3.5), that are not caused by the competition
between plankton species. Future research could attempt to obtain more data from an experimental
setup recreating the original chemostat model (2.1). However, it is noted that recent experimental data
has been found for a system, with two resource types and two plankton species, that characteristically
agrees with the simulations shown in figures 2.3, 2.4 and 2.5 (Felpeto et al., 2017). Additionally, the
limit cycles that appear when the paradox of plankton exists can have a wide range of frequencies, as
shown in figure 3.21.

Second, in the simulations several undesired heteroclinic cycles were found. These cycle are phys-
ically inaccurate and do not describe a realistic coexistence due to the population size of the plankton
species growing infinitesimally small. This implies that the original model (2.2-2.3) lacks the inclusion
of a process that prevents these heteroclinic cycles from appearing. Furthermore, it was found that
certain parameter variations (2.1) could transform these heteroclinic cycles into limit cycles, which do
allow for more realistic coexistence. Future research could look into the specific conditions for which
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heteroclinic cycles and limit cycles appear and attempt to incorporate a physical process in the original
model that prevents these heteroclinic cycles from appearing. These could then be further used to
inform which species can coexist in a system.

Third, in the original chemostat model it is assumed that the system is well-mixed. This has a con-
sequence that when a new plankton species is added to the model it is assumed to be instantly homo-
geneously added to the system, which is unrealistic. In more realistic systems a new species is added
by a local turbulence which gradually spreads into the system. Future research can try to include this
behaviour by using the model described in section (3.3) and introducing a new plankton species along
a specific location in the river.

Fourth, future research can attempt to change the original chemostat model to recreate the behaviour of
ecosystems different than the phytoplankton community considered in this paper. The most significant
assumption of the chemostat model is that the development of plankton species over time is spatially
invariant, due to the population size of a plankton community the specific location of a plankton in the
bioreactor has no influence, and that dying plankton get converted to resources that other plankton can
not consume. Furthermore, the current model only considers resource competition, however, in other
ecosystems, there is also prey-predator competition that can be incorporated.

Fifth, it was shown in section (2.4.5) how an asymptotically stable equilibrium solution may exist that
has a region of convergence not equal to the domain of the system. In all other parts in this report it
is assumed that an asymptotically stable equilibrium solution has a region of convergence equal to the
domain of the system. However, the issue remains that the principle of competitive exclusion can some-
times be disregarded due to the simulation variables managing to avoid intersecting with the region of
convergence, this is an indicator for the fragility of the ecosystem as shown in section (2.4.5). Future
research can attempt to analyze which factors affect size and shape of the region of convergence and
how, by carefully selecting initial values, intersecting with a region of convergence can be avoided.

Sixth, in the expansion of the original model where light intensity was incorporated, see equation (3.7),
it was assumed that the plankton species were homogeneously distributed over the depth of the system.
However, in reality there is a higher density of plankton at the surface of the system (Nelson, 2012).
Future research can attempt to incorporate a heterogeneous distribution of plankton species over the
depth of the system.

Finally, this report has given a condition for which the upper limit on biodiversity, due to the princi-
ple of competitive exclusion, can be disregarded. However, no condition is known that guarantees the
existence of the paradox of plankton. There exists other dynamics in the chemostat model that can
make certain species go extinct, regardless of the principle of competitive exclusion. Future research
could attempt to find conditions that guarantee the existence of the paradox of plankton.
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Model parameters
These are the model parameters for the examples given in section (2.4.4) and section (2.4.5). For the
matrixK and c, the valuesKji and cji are the values in the j-th row and i-th column of each respective
matrix. The vectorNinit andRinit describe the initial values of the plankton species and resource types.
The vector Nintroduced indicates at which time every plankton species is introduced to the system. The
model parameters for the system with three resource types and five plankton species shown in section
(2.4.4) are (Huisman & Weissing, 1999):

D 0.25
S1 6
S2 10
S3 14
m1 0.25
m2 0.25
m3 0.25
m4 0.25
m5 0.25
r1 1.00
r2 1.00
r3 1.00
r4 1.00
r5 1.00

K =

1.00 0.90 0.30 1.04 0.34
0.30 1.00 0.90 0.71 1.02
0.90 0.25 1.00 0.46 0.34



c =

0.04 0.07 0.04 0.10 0.03
0.08 0.08 0.10 0.10 0.05
0.14 0.10 0.10 0.16 0.06


Rinit =

[
R1 R2 R3

]
=

[
6 10 14

]
Ninit =

[
N1 N2 N3 N4 N5

]
=

[
0.01 0.02 0.03 0.01 0.01

]
Nintroduced =

[
N1 N2 N3 N4 N5

]
=

[
0 0 0 1000 2000

]

The model parameters for the system with three resource types and nine plankton species shown in
section (2.4.5) are (Huisman & Weissing, 1999):

D 0.25
S1 10
S2 10
S3 10
m1 0.25
m2 0.25
m3 0.25
m4 0.25
m5 0.25
m6 0.25
m7 0.25
m8 0.25
m9 0.25
r1 1.00
r2 1.00
r3 1.00
r4 1.00
r5 1.00
r6 1.00
r7 1.00
r8 1.00
r9 1.00

K =

1.00 0.75 0.25 0.70 0.20 0.65 0.68 0.38 0.46
0.25 1.00 0.75 0.20 1.01 0.55 0.83 1.10 0.85
0.75 0.25 1.00 1.10 0.70 0.95 0.60 0.50 0.77



c =

0.10 0.20 0.15 0.05 0.01 0.40 0.30 0.20 0.25
0.15 0.10 0.20 0.15 0.30 0.35 0.25 0.02 0.35
0.20 0.15 0.10 0.25 0.05 0.20 0.40 0.15 0.10


Rinit =

[
R1 R2 R3

]
=

[
10 10 10

]
Ninit =

[
N1 N2 N3 N4 N5 N6 N7 N8 N9

]
=

[
0.11 0.12 0.13 0.10 0.10 0.10 0.10 0.10 0.10

]
Nintroduced =

[
N1 N2 N3 N4 N5 N6 N7 N8 N9

]
=

[
0 0 0 250 500 750 1000 1250 1500

]
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Appendix B

Equilibrium solution finding algorithm

1 ” ” ”
2 Algor i thm to f i n d a l l equ i l i b r i um so l u t i ons o f the chemostat model :
3 Spec i fy the model ’ s parameters below . The parameters f o r the system wi th
4 nine plankton species and three resource types (Huisman & Weissing , 1999)
5 have al ready been f i l l e d i n .
6 The a lgo r i t hm w i l l f i n d a l l equ i l i b r i um so l u t i ons and t h e i r assoc iated s t a b i l i t y .
7 ” ” ”
8 from i t e r t o o l s impor t chain , combinat ions , permutat ions
9 impor t numpy as np
10
11 k = 3 # Amount o f resource types
12 n = 9 # Amount o f p lankton species
13 # Hal f − sa t u r a t i on constants
14 K = [ [ 1 . 0 0 , 0.75 , 0.25 , 0.70 , 0.20 , 0.65 , 0.68 , 0.38 , 0 .46 ] ,
15 [0 .25 , 1.00 , 0.75 , 0.20 , 1.01 , 0.55 , 0.83 , 1.10 , 0 .85 ] ,
16 [0 .75 , 0.25 , 1.00 , 1.10 , 0.70 , 0.95 , 0.60 , 0.50 , 0 . 7 7 ] ]
17 # The amount o f every resource conta ined i n every p lankton species
18 C = [ [ 0 . 1 0 , 0.20 , 0.15 , 0.05 , 0.01 , 0.40 , 0.30 , 0.20 , 0 .25 ] ,
19 [0 .15 , 0.10 , 0.20 , 0.15 , 0.30 , 0.35 , 0.25 , 0.02 , 0 .35 ] ,
20 [0 .20 , 0.15 , 0.10 , 0.25 , 0.05 , 0.20 , 0.40 , 0.15 , 0 . 1 0 ] ]
21 r = [1 .00 , 1.00 , 1.00 , 1.00 , 1.00 , 1.00 , 1.00 , 1.00 , 1 .00 ] # Growth ra tes
22 m = [0 .25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0.25 , 0 .25 ] # Mo r t a l i t y ra tes
23 D = 0.25 # Turnover ra te
24 S = [10 , 10 , 10] # Supply o f every resource
25
26 so l u t i ons = [ ]
27
28 def mu( ind , resources ) :
29 mu_ l i s t = [ ]
30 f o r i i n range (0 , len ( resources ) ) :
31 mu_ l i s t . append ( ( r [ ind ] * resources [ i ] ) / ( K [ i ] [ ind ] + resources [ i ] ) )
32 re t u rn min ( mu_ l i s t )
33
34 def mu_index ( ind , resources ) :
35 index = 0
36 value = ( r [ ind ] * resources [ index ] ) / ( K [ index ] [ ind ] + resources [ index ] )
37 f o r i i n range (1 , len ( resources ) ) :
38 temp_value = ( r [ ind ] * resources [ i ] ) / ( K [ i ] [ ind ] + resources [ i ] )
39 i f temp_value < value :
40 value = temp_value
41 index = i
42 re t u rn index
43
44 def c a l c u l a t e _ a l l _ d e r i v a t i v e s ( resources , popu la t ions ) :
45 popu la t i ons_de r i va t i ves = [ ]
46 resources_der i va t i ves = [ ]
47 f o r i i n range (0 , len ( popu la t ions ) ) :
48 popu la t i ons_de r i va t i ves . append ( popu la t ions [ i ] * ( mu( i , resources ) − m[ i ] ) )
49
50 f o r j i n range (0 , len ( resources ) ) :
51 t o t a l = 0
52 f o r i i n range (0 , len ( popu la t ions ) ) :
53 t o t a l = t o t a l + C[ j ] [ i ] * mu( i , resources ) * popu la t ions [ i ]
54
55 resources_der i va t i ves . append ( D * ( S [ j ] − resources [ j ] ) − t o t a l )
56
57 p r i n t ( ” Popula t ions de r i v a t i v e s : ” )
58 p r i n t ( popu la t i ons_de r i va t i ves )

58
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59 p r i n t ( ” Resources de r i v a t i v e s : ” )
60 p r i n t ( resou rces_der i va t i ves )
61
62 eps i l on = 1e−10
63 i f a l l ( abs ( i ) <= eps i l on f o r i i n popu la t i ons_de r i va t i ves ) and a l l ( abs ( i ) <= eps i l on f o r

i i n resou rces_der i va t i ves ) :
64 p r i n t ( ” Va l i d equ i l i b r i um po in t ! ” )
65
66 def ca l cu l a te_a l l _e i genva lues ( resources , popu la t ions ) :
67 J = [ ]
68
69 mu_indices = [ ]
70 f o r i i n range (0 , n ) :
71 mu_indices . append ( mu_index ( i , resources ) )
72
73 f o r i i n range (0 , n ) :
74 J_row = [ 0 ] * n
75 J_row [ i ] = mu( i , resources ) − m[ i ]
76
77 f o r j i n range (0 , k ) :
78 i f mu_indices [ i ] == j :
79 J_row . append ( popu la t ions [ i ] * r [ i ] * K[ j ] [ i ] / ( ( K [ j ] [ i ] + resources [ j ] )

**2 ) )
80 else :
81 J_row . append (0 )
82
83 J . append ( J_row )
84
85 f o r j i n range (0 , k ) :
86 J_row = [ ]
87 f o r i i n range (0 , n ) :
88 J_row . append(−C[ j ] [ i ] * mu( i , resources ) )
89
90 f o r res_ j i n range (0 , k ) :
91 der_va l = 0
92
93 f o r i i n range (0 , n ) :
94 i f mu_indices [ i ] == res_ j :
95 der_va l = der_va l − C[ j ] [ i ] * popu la t ions [ i ] * r [ i ] * K[ res_ j ] [ i ] / ( ( K

[ r es_ j ] [ i ] + resources [ r es_ j ] ) **2 )
96
97 i f r es_ j == j :
98 der_va l = der_va l − D
99
100 J_row . append ( der_va l )
101
102
103 J . append ( J_row )
104
105 J = np . ar ray ( J )
106 eigs = np . l i n a l g . e i gva l s ( J )
107 p r i n t ( ” Eigenvalues : ” )
108 f o r e ig i n e igs :
109 p r i n t ( e ig )
110 eps i l on = 1e−10
111 i f a l l ( i < eps i l on f o r i i n e igs ) :
112 p r i n t ( ” Stable equ i l i b r i um po in t ! ” )
113
114 i f a l l ( i > eps i l on f o r i i n e igs ) :
115 p r i n t ( ” Unstable equ i l i b r i um po in t ! ” )
116
117 i f any ( i > eps i l on f o r i i n e igs ) and any ( i < eps i l on f o r i i n e igs ) :
118 p r i n t ( ” Unstable saddle equ i l i b r i um po in t ! ” )
119
120 i f a l l ( abs ( i ) < eps i l on f o r i i n e igs ) :
121 p r i n t ( ” Stable neu t r a l equ i l i b r i um po in t ! ” )
122
123 i f any ( abs ( i . imag ) >= eps i l on f o r i i n e igs ) :
124 p r i n t ( ” Also has o s c i l l a t i o n s ! ” )
125
126
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127 def powerset ( i t e r a b l e ) :
128 ” powerset ( [ 1 , 2 , 3 ] ) −−> [ ( ) ( 1 , ) ( 2 , ) ( 3 , ) (1 ,2 ) (1 ,3 ) (2 ,3 ) (1 ,2 ,3 ) ] ”
129 s = l i s t ( i t e r a b l e )
130 l = [ ]
131 f o r e l i n l i s t ( chain . f r om_ i t e rab l e ( combinat ions ( s , r ) f o r r i n range ( len ( s ) +1) ) ) :
132 l . append ( l i s t ( e l ) )
133
134 re tu rn l
135
136 powset = powerset ( range (0 , n ) )
137
138 # F i r s t ca l cu l a t e the t r i v i a l equ i l i b r i um so l u t i o n
139 pops = [ 0 ] * n
140 resources = S
141 so l u t i ons . append ( { ’N ’ : pops , ’R ’ : resources } )
142 p r i n t ( ” Resources : ” )
143 p r i n t ( resources )
144 p r i n t ( ” Popula t ions : ” )
145 p r i n t ( pops )
146 ca l c u l a t e _ a l l _ d e r i v a t i v e s ( resources , pops )
147 ca l cu l a t e_a l l _e i genva lues ( resources , pops )
148 p r i n t ( ” −−− ” )
149
150 # In t h i s loop f i n d a l l o ther p o t e n t i a l equ i l i b r i um so l u t i ons
151 f o r e l i n powset :
152 w = len ( e l )
153 i f w == 0:
154 cont inue
155
156 f o r p i n permutat ions ( range (0 , k ) , w) :
157 q = l i s t ( p )
158 B_ = [ 0 ] * w
159 C_ = [ ]
160
161 f o r j i n range (0 , w) :
162 C_ . append ( [ 0 ] * w)
163
164 f o r i i n range (0 , w) :
165 ind = e l [ i ]
166 q_ind = q [ i ]
167
168 B_ [ i ] = S [ q_ind ] − ( m[ ind ] * K[ q_ind ] [ ind ] ) / ( r [ ind ] − m[ ind ] )
169 f o r j i n range (0 , w) :
170 ind_ = e l [ j ]
171 C_ [ i ] [ j ] = C[ q_ind ] [ ind_ ] * m[ ind_ ] / D
172
173 B_ = np . ar ray (B_)
174 C_ = np . ar ray (C_)
175
176 t r y :
177 N_ = np . dot ( np . l i n a l g . i nv (C_) , B_ )
178 except :
179 cont inue
180
181 pops = [ 0 ] * n
182 f o r i i n range (0 , len (N_) ) :
183 ind = e l [ i ]
184 pops [ ind ] = N_ [ i ]
185
186 # P o s i t i v i t y cond i t i on
187 i f a l l ( i >= 0 f o r i i n pops ) :
188
189 resources = [ 0 ] * k
190
191 f o r j i n range (0 , k ) :
192 t o t a l = 0
193 f o r i i n range (0 , n ) :
194 t o t a l = t o t a l + ( 1 /D) *C[ j ] [ i ]*m[ i ]* pops [ i ]
195 resources [ j ] = S [ j ] − t o t a l
196
197 # P o s i t i v i t y cond i t i on
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198 i f a l l ( i >= 0 f o r i i n resources ) :
199 check = True
200 f o r i i n range (0 , w) :
201
202 # Min im iza t ion cond i t i on
203 i f mu_index ( e l [ i ] , resources ) != q [ i ] :
204 check = False
205 break
206
207 i f check :
208 so l u t i ons . append ( { ’N ’ : pops , ’R ’ : resources } )
209 p r i n t ( ” Resources : ” )
210 p r i n t ( resources )
211 p r i n t ( ” Popula t ions : ” )
212 p r i n t ( pops )
213 ca l c u l a t e _ a l l _ d e r i v a t i v e s ( resources , pops )
214 ca l cu l a te_a l l _e i genva lues ( resources , pops )
215 p r i n t ( ” −−− ” )
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