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a b s t r a c t 

The premise of ride-sharing is that service providers can offer a discount, so that travellers 

are compensated for prolonged travel times and induced discomfort, while still increasing 

their revenues. While recently proposed real-time solutions support online operations, al- 

gorithms to perform strategic system-wide evaluations are crucially needed. We propose 

an exact, replicable and demand-, rather than supply-driven algorithm for matching trips 

into shared rides. We leverage on delimiting our search for attractive shared rides only, 

which, coupled with a directed shareability multi-graph representation and efficient graph 

searches with predetermined node sequence, narrows the (otherwise exploding) search- 

space effectively enough to derive an exact solution. The proposed utility-based formula- 

tion paves the way for model integration in travel demand models, allowing for a cross- 

scenario sensitivity analysis, including pricing strategies and regulation policies. We apply 

the proposed algorithm in a series of experiments for the case of Amsterdam, where we 

perform a system-wide analysis of the ride-sharing performance in terms of both algo- 

rithm computations of shareability under alternative demand, network and service set- 

tings as well as behavioural parameters. In the case of Amsterdam, 30 0 0 travellers offered 

a 30% discount form 1900 rides achieving an average occupancy of 1.67 and yielding a 

30% vehicle-hours reduction at the cost of halving service provider revenues and a 17% 

increase in passenger-hours. Benchmarking against time-window constrained approaches 

reveals that our algorithm reduces the search-space more effectively, while yielding solu- 

tions that are substantially more attractive for travellers. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

1. Introduction 

Mobility platforms dynamically match supply and demand in a two-sided market, enabling the provision of flexible on-

demand transport services. Nowadays, thanks to the steadily growing market share of ride-hailing services and their instant

operations, shared rides are becoming increasingly available and attractive for both sides of this two-sided market ( Li et al.,

2019b ). The premise of ride-sharing is that travellers can travel for a reduced fee, while service providers can increase

their revenues ( Furuhata et al., 2013 ). Furthermore, shared rides are believed to align well with policy objectives, such as
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Fig. 1. Road network graph of Amsterdam used in experiments, with sample rides: a) non-shared, private ride marked blue in the North, b) ride shared by 

two travellers marked green at the South, and c) ride shared by three travellers marked brown in the Central Amsterdam. Stars denote origins, triangles 

destinations and grey bold lines travellers’ shortest paths repsectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

increasing accessibility and reducing congestion. Notwithstanding, the potential of ride-sharing is yet to be realised in large-

scale operations. 

Travellers, requesting rides from mobility platforms, are offered a shared ride, where a vehicle offers to pick them up at

their origin and drop them off at their destination at specific times. We illustrate this in Fig. 1 , where private and shared

rides in Amsterdam, the Netherlands, are marked. Both pick-up and travel times may deviate from the desired or minimal

ones, since the vehicle needs to meet the requirements of all pooled travel requests. Service provider needs to compensate

this inconvenience by means of offering a lower fare, compared to the private alternative. This can still be viable for the

service provider, if it can now better utilise its capacity and charge several users for a ride section, for which a single driver

commission has to be paid. 

While offering potential benefits, shared rides can also be challenging for both service provider and service users. The

mobility platform needs to bundle trips into attractive shared rides. Whilst the problem of identifying feasible shared rides

suffers from the curse of dimensionality and is hardly solvable for real-size demand levels. Here, we exploit the fundamen-

tal prerequisite for the provision of shared rides, namely identifying rides that can be shared, while offering all travellers a

service that is perceived as more attractive than the non-shared, private, alternative. The trade-off exercised between private

and shared rides involves (i) the discounted price, (ii) travel time delays and, (iii) on-board discomfort. Notably, we demon-

strate that in such context, the search-space is reduced effectively enough to propose exact method, since the problem, as

we formulate it, is not NP-hard anymore. 

While recently proposed real-time solutions ( Alonso-Mora et al., 2017; Simonetto et al., 2019 ) effectively support online

operations, algorithms to perform offline demand-driven comparative analyses are still missing. We propose an algorithm

for obtaining exact solutions to efficiently assess a large number of city-wide strategic scenarios. The method results in a

replicable solution, which allows performing a cross-scenario sensitivity analysis when a high quality solution is crucial for

assessing the impact of offering shared rides through two-sided mobility platforms. The proposed method offers a demand-,

rather than supply-driven analysis of the modal split, market competition and system-wide travellers welfare. Our solution

approach can thus be embedded in the analysis of pricing strategies, regulation policies or competition settings including

supply-demand feedback loops and emerging market equilibria. Furthermore, the proposed utility-based formulation paves 

the way for model integration in travel demand models, allowing for example to feed travel attributes back to the modal

choice level, utilising the latest findings from travel behaviour research (e.g. Alonso-Gonzlez et al. (2020b,c) ). Tools and

methods to properly forecast ride-sharing platform market shares under various circumstances are of interest to competi-
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tors (including public transport) and policy makers. Better understanding of system-wide properties is crucial to counteract

potentially negative impacts of emerging modes on equity and accessibility of public transport. 

1.1. Related work 

Wang and Yang (2019) provide a recent and exhaustive overview of research topics in the domain of ride-sourcing sys-

tems including shared rides, while Mourad et al. (2019) review previously proposed matching algorithms for shared rides.

The problem of matching trips into shared rides can be decomposed into the following sub-problems: 

• determining if two or more rides may be shared, 
• identifying all feasible shared rides for a set of trip requests, 
• assigning trips to shared rides, 
• realistic system representation (in terms of demand, fleet and platform operations), 
• quantifying and assessing results using a set of performance indicators. 

In the following, we discuss related work while considering how these aspects were addressed. 

The shared rides problem can be classified based on its formulation, depending on system settings, objectives and the

assumptions made. Trip requests may be treated as static, i.e. known in advance (oracle case of Santi et al. (2014) ), or

dynamic, i.e. announced as an incoming stream and not known before a given announcement time ( Agatz et al., 2011 ).

The travel request-vehicle assignment may be static, i.e. the full schedule is determined before the passenger enters the

vehicle ( Cordeau, 2006 ), or dynamic, i.e. new requests may be assigned en-route, not known to passenger before s/he enters

the vehicle ( Alonso-Mora et al., 2017 ). The fleet may be explicitly considered, i.e. any given ride is served by a certain

vehicle that arrives at a certain time ( Alonso-Mora et al., 2017; Simonetto et al., 2019 ), or assumed instantly available upon

request at the origin location ( Santi et al., 2014; Tachet et al., 2017 ). Vehicle capacity, the most important determinant of

computational complexity, can be limited to two ( Santi et al., 2014 ), four, eight or ten passengers ( Alonso-Mora et al., 2017 ).

Solution approaches may be designed for online application, hence focusing on fast and efficient solutions ( Simonetto et al.,

2019 ), or offline where focus is on network-wide impact on performance and mobility ( Tachet et al., 2017 ). The search space

may be thus either exhaustively explored (which was considered hitherto infeasible due to the curse of dimensionality apart

from small instances like in Cordeau (2006) ), decomposed into smaller spatially partitioned problems ( Pelzer et al., 2015 ),

temporally partitioned problems ( Simonetto et al., 2019 ), explored via heuristics ( Alonso-Mora et al., 2017 ), or narrowed due

to assumed capacity limitations ( Santi et al., 2014 ). Accordingly, solutions sought may be exact ( Cordeau, 2006 ) or heuristic-

based ( Simonetto et al., 2019 ). 

The objective of the trip-ride assignment has been formulated in terms of the cost for the: a) operator (vehicle-hours,

revenues, served trips) ( Hosni et al., 2014 ), b) traveller (generalised travel costs, travel times, delays, fares) ( Santi et al.,

2014 ), c) a mixture of both ( Cáp and Alonso Mora, 2018 ), or d) system performance ( Santos and Xavier, 2013 ). The con-

straints imposed on vehicles may include the maximal detour and the profitability of shared rides, whereas constraints im-

posed on travel requests may involve departure time window and maximal detour or maximal walking distance. Constraints

were assumed fixed in all past work, with the exception of ( de Ruijter et al., 2020 ) who expressed it using a compen-

satory function of trip attributes. The travel demand given as input, may be generated based on observed ride-hailing trips

( Tachet et al., 2017 ), observed ride-sharing trips ( Li et al., 2019b ) or sampled from synthetic travel demand data ( Hosni et al.,

2014 ). Demand in most of studies is considered as exogenous, i.e. trip requests are fixed and not sensitive to sharing incen-

tives and performance. Endogenous demand, where modal competition is reproduced to some extent, both between private

(non-shared) and shared ride, as well as in relation to other modes (public transport and private car) is scarce. Demand

is typically microscopically represented, with exception of matching algorithm by Friedrich et al. (2018) , which can be in-

tegrated in existing macroscopic travel demand models. Finally, the most important network property, travel time, may be

fixed and static, fixed and dynamic ( Alonso-Mora et al., 2017 ) or flow-dependent (i.e. sensitive to flow changes induced by

ride-sharing) ( Narayan et al., 2019 ). 

Most of the analytical experiments and simulation studies concluded that ride-sharing can yield remarkable efficiency

gains. Findings suggested a fleet size reduction of 85% ( Alonso-Mora et al., 2017 ), 47% or 35% mileage reductions ( Qian et al.,

2017 ) and ( Friedrich et al., 2018 ), 42% reduction in the number of rides ( Pelzer et al., 2015 ) or 19% cost reductions

( Santos and Xavier, 2013 ). 

The approach taken in all of the aforementioned research was to identify a set of shared rides, that satisfy pre-specified

constraints related to the compatibility of trip combinations. The latter includes imposing thresholds, related to maximum

waiting time or maximum detour that were set as fixed constraints for each passenger trip. The share of travel requests

that could not be served given these constraints was used as one of the performance indicators. Travellers were consid-

ered captive users of the ride-sharing service and insensitive to the level of service offered. This resulted in generating

unattractive shared rides, while significantly increasing the search space of shared rides. The search space of practical-size

problems was never explored exhaustively, due to the deployment of over-optimistic assumptions on feasibility, leading to

a combinatorically exploding search space. Furthermore, such assumptions may result with passenger-vehicle assignments

that yield travel delays that may not be acceptable in reality (e.g. 7 minutes detour and 7 minutes extra waiting time in

New York City reported by Simonetto et al. (2019) ). While empirical studies on the performance of ride-sharing services

are still scarce, there is evidence to suggest that the vast majority of passengers opt for the private ride alternative (e.g.

75% in New York City, ( LLC, 2019 ); 93% in Chengdu, ( Li et al., 2019b )) and even those that do choose for the shared option
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only seldom end up actually sharing (part of) their ride with at least one other traveller (e.g. 18% of those requested in

Toronto ( Big Data Innovation Team, 2019 )). There is, therefore, a need to better understand the viability of the ride-sharing

alternative by analysing the relation between the discount offered for shared rides, the share of passengers that choose for

a shared ride, the level of service delivered and service profitability. 

The combinatorial problem of identifying shared trips becomes quickly difficult with an increasing number of travel re-

quests and sharing degree (i.e. maximal number of passengers sharing a ride). Santi et al. (2014) argue that the combinatorial

explosion of the matching problem will limit the potential of ride-sharing in practice. As argued by Mourad et al. (2019) ,

exact solutions have been so far available only for oversimplified instances and there is a need for improved heuristics, in

terms of quality, as well as computation times. Previous attempts to address this problem have considerably simplified the

problem to reduce its complexity by: considering a small number of travel requests ( Hosni et al., 2014 ), strongly restricting

the number of trips that can be matched ( Santi et al., 2014 ), or proposing heuristics ( Simonetto et al., 2019; Alonso-Mora

et al., 2017 ). Alternatively, the potential for trip sharing was explored using generic and aggregate spatial and temporal trip

similarity characteristics to obtain rough approximations ( Bicocchi and Mamei, 2014 ). 

Within the rapidly growing literature on shared rides we build in this study on the concept of shareability graphs intro-

duced by ( Santi et al., 2014 ), further extended for multiple rides and fleet considerations in ( Alonso-Mora et al., 2017 ) and

the inclusion of ride-sharing utility in ( de Ruijter et al., 2020 ). Santi et al. (2014) introduced the so-called shareability net-

work, where arcs connect pairwise shareable trips. Trips are shareable in Santi et al. (2014) if: (i) requested within the same

time-window and (ii) satisfy pre-set delay thresholds. Santi et al. (2014) cast the trip sharing problem as a maximal match-

ing on shareability graph, with exact solution for pairwise shareable trips (with the objective of either maximise the number

of shared trips or minimise their travel time in a weighted matching version). For rides consisting of three passengers they

cast shareability graph as a hypergraph and propose heuristics, while arguing that higher degrees are computationally in-

feasible. Alonso-Mora et al. (2017) extend the concept of shareability proposed by ( Santi et al., 2014 ) allowing for more than

two people to share a ride (up to 10 per vehicle) and explicitly considering fleet operations. They divide the time-window

of Santi et al. (2014) , into separate parameters for maximal waiting and travel delay, which may compensate for each other.

The shareability graph of Santi et al. (2014) is further exploited and rides of degree greater than two are searched as graph

cliques, which Alonso-Mora et al. (2017) formally introduce as ride candidates. Ride candidates are feasible only if there is

a vehicle that can serve it and if a sequence of pickup and drop-off points may be visited, while feasible for all travellers. 

Past research focused on real-time operations and the need to develop heuristics to ensure their applicability. In most

cases, real-time fleet operations of service provider are explicitly considered, while demand is represented as largely insen-

sitive to system performance and only conditional on fleet availability. Moreover, the profitability of shared rides for service

provider, expressed as a function of offered discount, was also not considered, presumably due to models’ insensitivity to

users’ choice between private and shared rides. Conversely, this work pertains to offline strategic applications. In order to

devise business strategies and policies, transport authorities and service providers need to assess a larger number of scenar-

ios at the city-wide level. Scenarios of interest pertain, for example, to pricing strategies, regulation policies ( Li et al., 2019a )

or competition settings ( Pandey et al., 2019; Kalczynski and Miklas-Kalczynska, 2019 ). This calls for the development of an

exact algorithm, that will enable offline city-wide evaluations, where the quality of the solution needs to support business

or policy decisions, and the planner is interested in exploiting a range of potential specifications of system parameters. The

algorithm needs hence to also be efficient, in particular given the number of requests that need to be handled and the

resulting solution space. 

1.2. Study objectives and approach 

The prime objective of this paper is to propose a scalable algorithm, capable of handling large-scale travel demand to

efficiently identify attractive shared rides of any degree within acceptable computation time for the purpose of assessing

strategic scenarios. To this end, we propose an offline, demand-oriented solution to solve the ride-sharing trip-vehicle as-

signment. The proposed method of Exact Matching of Attractive Shared rides (ExMAS) matches trips into rides, that are

attractive for all passengers’ involved and (optionally) profitable for the service provider. 

We argue that travel demand characteristics are such, that the number of attractive shared rides implodes, rather than

explodes, with their degree, permitting the development and deployment of an exhaustive algorithm to enumerate all fea-

sible and attractive shared rides. Without relying on heuristics, we represent the compatibility and sequencing of travel

requests using a multi-graph representation, allowing the identification of shared rides of higher degree by performing effi-

cient graph searches. We address the complexity of the trip-sharing problem by narrowing the searches to attractive rides

only and then leverage on a directed multi-graph, to incrementally search for rides of higher degrees. In our hierarchical

approach trips are gradually matched into rides of increasing degree. This is key to efficiently reduce the search space be-

fore the degree makes computations intractable. This is achieved by means of (i) hierarchically exploring the search space

ensuring that any explored ride of n degree is composed of feasible shareable n − 1 degree rides and (ii) maintaining the

order of visited origins and destinations, to predetermine the sequence and avoid combinatorial searches. This way, while

searching for a ride shared by four passengers, we do not process all four-element subsets of trips, iterating through all

feasible permutations of origins and destinations. Instead, we first identify triples, composed of trips which are all pairwise

shareable with a potential fourth trip and evaluate already predetermined sequence of origins and destinations, reducing

thus the number of computationally expensive calculations to a few precise and targeted ones. This approach makes an,

otherwise infeasible, problem solvable within acceptable computation time. 
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The approach proposed in this study allows us to analyse overall passenger welfare changes under alternative demand,

network and service settings as well as behavioural parameters. We perform a system-wide analysis of the ride-sharing

performance, in terms of shareability of real-size urban demand patterns as well as indicators to quantify its impact on

passengers, operator and the system as a whole. We complement system performance outputs with more detailed share-

ability indicators, computed for the total travel demand (and not limited to taxi demand only which arguably has specific

properties), sampled from the actual Amsterdam demand patterns. 

Trip utility formulas are incorporated in our approach, assuming that passengers consider a shared ride attractive if, and

only if, its utility is greater than the utility of travel alternatives. An alternative may be any other mode, but hereby we

consider that passengers are making a choice between private and shared on-demand services. In this study we assume

that, like in other travel choice situations, travellers trade-off different attributes and their choice can be represented as

a probabilistic outcome of a compensatory function composed of a set of travel attributes. We hereby adopt the approach

proposed in de Ruijter et al. (2020) . This implies that, instead of specifying time-windows constraints that must be satisfied

for a ride to be shared, we formulate the willingness to share as a compensatory cost function at the individual passenger

level considering trade-offs between delays caused by detours, travel discomfort related to sharing a vehicle and a fare dis-

count associated with a shared ride. Recent behavioural research indicates that travellers preferences in the context of ride-

sharing can indeed be well explained using compensatory discrete choice models ( Al-Ayyash et al., 2016; Alonso-Gonzlez

et al., 2020c; Frei et al., 2017 ). We, therefore, adopt the well-established utility maximisation modelling framework to allow

travellers to choose between individual and shared rides. In order to examine the full sharing potential, we assume that the

supply can scale accordingly and do not specify an a-priori limit on the fleet size and capacity. We propose an exact and

complete solution technique that is applicable to the large-scale problems. 

Benchmarking our results with the previously proposed non-compensatory time-windows approach reveals that: (i) on

one hand, fixed time windows do not allow identifying attractive rides which do not fit the strict non-compensatory win-

dows; and (ii) on the other hand, a significant share of the rides fitting within the windows are not perceived as attractive.

Consequently, in our experiments ExMAS outperforms previous time-windows approaches in terms of: (i) improved per-

formance for travellers (in terms of passenger hours reductions); and (ii) effectively reducing the search space to allow

for exact searches. Consequently, computation times remain feasible for offline, city-wide analyses. Moreover, further de-

composing the problem into smaller batches (as typically applied in online solutions) yields computation times which are

promising for real-time operations (below 10s for demand levels around 5 0 0 0 trips/hour). 

The remainder of the paper is organised as follows. In the next section, we introduce a method to determine attractive

shared rides, search for them and finally optimally assign passenger trips to shared rides. Section 3 details an extensive

set of experiments applied for the case of Amsterdam. We discuss the implications of our findings, study limitations and

directions for further research in Section 4 . 

2. Method - Exact matching of attractive shared rides (ExMAS) 

In the following, we first formulate the sharing utility in Section 2.1 , we then introduce the trip-ride assignment problem

in Section 2.2 . In Section 2.3 we detail algorithm to identify attractive shared rides of incrementally increasing degree. We

first propose pair-wise searches ( Section 2.3.1 ), on which we build a directed multi-graph in Section 2.3.2 , based on which

we finally introduce complete searches for shared rides of higher degree in Section 2.3.3 . Altogether this sequence of steps

constitutes the Exact Matching of Shared Rides (ExMAS) algorithm, formalised in Section 2.3.4 and available online ubder

public repository (github.com/rafalkucharskipk/ExMAS). 

2.1. Attractive shared rides 

We consider passenger trip requests Q = { Q 1 , Q 2 , . . . , Q n } , with single trip i defined as a combination of its origin o i ,

destination d i and desired pick-up time t 
p 
i 

: 

Q i = (o i , d i , t 
p 
i 
) (1)

Travel times, t i , are calculated on the road network graph G ( N, A ), where A is the set of route-able arcs, and N is the set

of nodes, pertaining to pick-up and drop-off locations o i , d i ∈ N . We use efficient look-up tables to query network travel

times t ( o, d, t o ) between origin node o , destination node d at departure time t o . Fare is calculated based on distance l i ( o i , d i )

with a given service fare λns ( € /km). Here we consider that travellers, currently using a non-shared on-demand service (i.e.

private ride), will opt for shared rides if they find them superior, i.e. more attractive. If passenger i decides to take a private

ride, he is picked-up from his origin o i at time t 
p 
i 

and reaches his destination d i at time t i paying a fee of λns l i . 

Travel time and fare, coupled with value-of-time β t and cost-sensitivity βc allow to express the (dis)utility of the non-

shared trip as: 

U 

ns 
i = βc λns l i + βt t i (2)

Let us now consider a passenger being offered a shared ride r , such that he is picked-up from origin at time ˆ t 
p 
i 

and arrives at

his destination at ˆ t . For a typical shared ride the travel time is longer ( ̂ t ≥ t ) than for non-shared private ride and pick-up
i i i 
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time may be different from requested ( ̂ t 
p 
i 

� = t 
p 
i 

). Which yields a different utility term, that we express as follows: 

U 

s 
i,r = βc λs l i + βt βs ( ̂ t i + βd ( ̂ t p 

i 
− t p 

i 
)) (3) 

The utility of a shared ride involves a (possibly different) value of time, further penalised with βs to account for the discom-

fort of a shared ride. The trip time has now two components: travel time ˆ t i (possibly longer than for non-shared ride) and a

delay ( ̂ t 
p 
i 

− t 
p 
i 

). Pick-up delay is weighted with an additional multiplier βd , which may be different for early and late depar-

tures depending on the trip purpose. Such longer and less comfortable trips may be attractive only if the service provider

offers a lower service fee rate λs , such that it compensates for the loss in utility caused by sharing. 

To identify when sharing is attractive, we express the sharing utility as the difference between the shared and non-shared

utility terms: 

U i,r = U 

s 
i,r − U 

ns 
i = βc λ l i + βt (t i − βs ( ̂ t i + βd ( ̂ t p 

i 
− t p 

i 
))) + ε (4)

where λ = λs − λns is the discount offered for sharing a ride, i.e. the discount in per-kilometre fare, compared to a non-

shared ride. This formulation allows to express the utility of sharing with: one service design parameter λ, set of behavioural

parameters (value-of-time β t , cost-sensitivity βc , delay sensitivity βd , sharing discomfort βs ), and three variables (travel

distance, travel time and pick-up delay). Mind, that both travel time and costs are perceived negatively (through negative

signs of both βc and β t ). The random term ε allows to consider both deterministic (if ε = 0 ) and probabilistic systems

(where ε represents some random distribution). In the following we adopt a deterministic binary choice model. 

We assert that a shared ride r is attractive for i if U i,r is positive, denoted in what follows with a dummy binary variable:

b i,r = 

{
1 if U i,r > 0 

0 otherwise 
(5) 

In the remainder, we consider a system where the discount parameter λ < 0 (i.e. λs < λns ) allows to (at least partially)

compensate for the downsides of a shared ride, namely: longer travel time, departure delay and the discomfort associated

with sharing a trip. Since we are interested in the relative utility of shared vs. private trips, we set the pickup-up delay to

null for private trips and for shared trips it represents the delay stemming from sharing. Other delay components (primarily

those related to the service operations) are assumed constant over alternatives and thus cancel out each other in the utility

formula ( Eq. 4 ). 

In above setting we consider the competition between non-shared and shared ride-hailing, which, without loss of gen-

erality, may be reformulated into competition with private car (in which case travel costs are different yet in-vehicle times

remain roughly unchanged) or public transport (in which case λs would presumably be above λns ). Mind, that in the exper-

iments for readability we use the more intuitive relative discount, i.e. λ = −(λs − λns ) /λns . So that λ = 0 . 2 in experiments

implies that the shared ride fare is 20% lower than the private alternative. 

The formulation proposed above is generic and can be extended to accommodate various utility specifications. In the

following, we include in the utility function variables and parameters that are either known, or can be estimated. For exam-

ple, recent studies provide estimates for the value-of-time for urban pooled on-demand services based on stated preferences

data collected in choice experiments ( Alonso-Gonzlez et al., 2020a ). As new insights are gained from travel behaviour studies

concerning: the value-of-reliability ( Alonso-Gonzlez et al., 2020a ), taste variation among riders ( Lavieri and Bhat, 2019 ) and

attitudinal classes ( Alonso-Gonzlez et al., 2020b ), the utility formulation may be specified accordingly and further extended.

Furthermore, the increasing deployment of ride-pooling on-demand transport services will allow future research to estimate

users’ willingness-to-share (or in reversed terms, willingness-to-pay for a private ride) as well as the disutility induced by

delay from revealed preferences data. 

Importantly, our formulation does not require defining a (possibly arbitrary) time window for trip departure, since we

derive the delay directly from utilities. To this end, we introduce the so-called trip flexibility parameter δi , expressing the

maximal extent of trip travel time, for which sharing is still attractive (and beyond which it becomes unattractive). We read

it directly from the utility formula ( Eq. 4 ), assuming that the travel time t i is extended by δi such that utility is zero, which

yields: 

δi = 

(
1 

βs 
− 1 

)
t i + 

βc 

βt βs 
λl i (6) 

Solution of the above poses an upper limit on travel time extension, beyond which a shared trip becomes unattractive,

i.e. break-even point at the individual level. We find this formulation efficient to determine rides, for which 

ˆ t i ≤ t i + δi and

| ̂ t 
p 
i 

− t 
p 
i 
| ≤ δi /β

d holds true, as potentially attractive. Such a formulation allows to extend the static time window, used in

previous studies, and directly identify bounds for attractive shared ride. 

Let us define a ride r serving Q r ⊆ Q trips through: 

r = (Q r , O r , D r , t 
p 
r ) (7) 

where Q r is a sequence of served trips, O r and D r are ordered sequences of served trips’ origins and destinations, respec-

tively, and the t 
p 

denotes departure time from the first origin. We consider only rides for which origins always precede
r 
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destinations, i.e. no destination is served before the last origin. By generating sequences of origins and sequences of desti-

nations we get the schedule of a ride, N r = (o 1 , o 2 , . . . o n , d 1 , d 2 , . . . , d n ) . The number of trips served by a ride is called the

degree , or order of a shared ride and is denoted by m r = ‖ Q r ‖ . 
Ride r serves a sequence of nodes n in time instances ˆ t r,n , calculated recursively starting at time instant t 

p 
1 
, shifted with

δr , and moving forward for each served node with the travel time t between consecutive nodes, plus an additional service

time t s for each pick-up and drop-off: 

ˆ t r,n = 

{
t p n + δr if n = N r, 1 

ˆ t r,n −1 + t(N r,n −1 , N r,n , ̂  t r,n −1 ) + t s otherwise 
(8)

The total travel time of a ride is t r = ̂

 t r,N − ˆ t r, 1 . Travel time and departure delay for each served trip are respectively: 

ˆ t r,i = 

ˆ t r,d i − ˆ t r,o i (9)

ˆ t p 
r,i 

= 

ˆ t r,o i − t p 
i 
. (10)

From the above, we can calculate ride utility for each of the trips sharing it, U i,r . We are interested whether a longer travel

time ˆ t r,i and a pick-up delay ˆ t 
p 
r,i 

are compensated by the price discount λl i in Eq. 4 . We say that a ride is attractive only if

it is attractive (positive sharing utility) for all the trips sharing the respective ride, which leads to following ride utility U r

formulation: 

U r = 

∑ 

i ∈ Q r 
U i,r · b r = 

∑ 

i ∈ Q r 
U i,r ·

∏ 

i ∈ Q r 
b i,r , (11)

where b r is the ride feasibility, computed as the product of trip feasibility b i,r ( Eq. 5 ). The utility of a ride depends, apart

from consecutive travel times between served nodes, on the departure time from the first node, which may be shifted in

order to maximise the trip utility. To determine the optimal shift, yielding the maximal utility for sharing passengers, we

first update the trip flexibility with the actual travel time extension: 

δi,r = δi − ( ̂ t r,i − t i ) , (12)

which constitutes bounds for the acceptable departure time for each trip. Within the bounds, we identify the optimal de-

parture time t 
∗p 
r , for which U r is maximised. Ride utility, expressed as a function of departure time, is a piece-wise linear

function, where optimum can be found analytically. Here, we formulate an analytical solution only for trips of second de-

gree, where the search space is still sufficiently large to call for the formulation of an analytical approach. For trips of

higher degree, we find that δi,r narrows the search space effectively. So that, it can be exhaustively searched for minimum

and analytical solutions are obsolete: 

t p r = argmax 
t ∗p 

r 

U r (t ∗p 
r ) (13)

2.1.1. Scheduling horizon 

We explicitly account for scheduling constraints. Specifically, for a ride to be feasible it is not sufficient that it is attractive

for all the trips, but it must also be feasibly scheduled in time. We introduce a so-called scheduling horizon T , meaning that

trips are requested T seconds before the desired departure time t 
p 
i 

. This allows to introduce an additional criterion for

shareability: 

b r > 0 ⇐⇒ | t p 
i 

− t p 
j 
| < T ∀ i, j ∈ Q r (14)

We treat T as an exogenous parameter in our model. Large values of T , imply that the full shareability potential is re-

vealed, sometimes referred to as ’oracle’ settings ( Santi et al., 2014 ) since it assumes that everything is known well in

advance. In contrast, when T is small the setting is closer to real-time system operations where trips are typically requested

as late as possible, which significantly limits the shareability, as we demonstrate in our analysis. 

2.1.2. Profitable shared ride 

In the following, we focus on the profitability of the system under fixed demand for on-demand services. The key control

variable for service provider is the discount rate offered for shared rides. If the latter is too low it will not encourage trav-

ellers to share and impede the sharing potential. Conversely, if set too high, service provider may find it hard to compensate

for its lost revenues with detours, which, with high discount rate, are more acceptable for travellers. This stresses the need

to develop a model, that accounts for these complex inter-dependencies and feedback loops, to analyse service performance.

A shared ride generates revenues and costs. Without loss of generality, we may assume revenues to be the sum of fares

paid by travellers, while the costs, to be proportional to the ride length. The revenues generated by a shared ride are the

sum of trips lengths l i multiplied by the reduced trip fare λs while the costs are proportional to ride length l r . The profit is

the difference between the two. If, however, the trips are to be served by a non-shared private ride, revenues are the sum



292 R. Kucharski and O. Cats / Transportation Research Part B 139 (2020) 285–310 

Fig. 2. Visualisation of trip-ride incidence matrix I m,r for 50 trips and 320 rides. Rows denote trips and columns denote rides of increasing degree (number 

of trips per ride). Starting with a diagonal part of single rides, followed with FIFO pairwise shared rides, LIFO pairwise shared rides and finally triplets. 

Each trip may be assigned to only one ride, despite being shareable with multiple others trips via multiple rides. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of trip lengths multiplied by λns while costs are proportional to the sum of trip lengths l i . We are interested in determining

whether a shared ride yields a higher profit for service provider than serving it by offering private rides: ∑ 

i ∈ Q r 
λs l i − l r > 

∑ 

i ∈ Q r 
λns l i −

∑ 

i ∈ Q r 
l i (15) 

Which yields that the ride discount λr can be expressed as: 

λr = 1 − l r ∑ 

i ∈ Q r l i 
(16) 

This allows for a clear comparison with the discount λ offered to passenger, to determine whether the ride is profitable 

b r > 0 ⇐⇒ λr ≥ λ (17) 

Depending on the problem setting, one may wish to use the above condition directly, to determine if a shared ride is

attractive from the perspective of all involved passengers as well as profitable. Keeping in mind that profitable rides of high

degree may be composed of non-profitable rides of lower degree, the condition should be applied only after the search

space has been explored and not as part of the hierarchical exploration, as introduced in the following sections, otherwise

potentially feasible rides of higher degree will be left unidentified. 

Note, that the above condition implies that each of the shared rides directly yields a profit, rather than the whole service.

The proposed algorithm allows for specifying both myopic, as well as global profitability conditions, as illustrated in our

experiments. To assess service profitability we introduce a term for the total cost reduction �. Calculated using a formula

similar to ( Eq. 17 ), yet aggregated for all the rides: 

� = 1 −
∑ 

r∈ R l r ∑ 

r∈ R 
∑ 

i ∈ Q r l i 
= 1 − L r 

L q 
(18) 

where we compute the cost reduction through the ratio of total rides length ( L r ) to total trips length ( L q ). This formula may

be further used to determine service profitability at the aggregate level. In particular, if computed only for shared rides it

indicates shared rides profitability �r . 

2.2. Trip-ride assignment problem 

In the typical, urban demand pattern a single trip may be assigned to more than one ride, so that the number of feasible

rides is greater than the number of trips (as illustrated on Fig. 2 ). To address this, we formulate a so-called trip-ride problem,

formulated as an assignment problem, where each trip i is unilaterally assigned to an attractive ride r and the assignment

yields minimal costs. It is then formulated as a problem of identifying a binary vector x r of length equal to the number of

rides ‖ R ‖ , i.e. an assignment variable equal to one if a ride is selected and zero otherwise ( Eq. 19c ). The costs C R are then

expressed as the cost of each ride c r , multiplied by the assignment variable x r and aggregated for all rides ( Eq. 19a ). 

In particular, we consider two cost functions: service provider perspective (minimising the sum of ride time t r ) and

passenger perspective (maximise the sum of utilities U r,i ), which can be extended to any ride cost formula. 

The assignment shall meet the constraint of assigning each trip to exactly one ride, obtained through the row-wise sum

of assignment variable x r and trip-ride incident matrix I i,r . The latter is a binary matrix, which each entry is one if ride r

serves trip i and zero otherwise ( Eq. 19b ), as illustrated in Fig. 2 . Eventually, a solution to the problem ( Eq. 19a ) is the set

of rides R 

∗⊆R such that x r = 1 ∀ r ∈ R 

∗. We express the shareability problem as the following binary program: 

min C R (x r ) = 

∑ 

r∈ R 
c r x r (19a) 

subject to 

∑ 

i ∈ Q 
I i,r x r = 1 , (19b) 

x r ∈ { 0 , 1 } . (19c) 
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Other authors addressed this problem by solving the maximal matching problem on the shareability graph ( Santi et al.,

2014 ), which is suitable only for trips of a degree not greater than two, where trip-ride incidence matrix I i,r may be easily

converted into a graph. If we consider rides of three or more trips, such mapping is not obvious, and requires a hypergraph

representation ( Santi et al., 2014 ) for which most of classic graph algorithms do not apply. Therefore, in the above, we

adopt a linear problem formulation of ( Alonso-Mora et al., 2017 ), which is applicable for any sharing degree. Notably, since

rides identified with our algorithm are strictly attractive for travellers, we have now more flexibility in formulating objective

functions to optimise for system externalities or platform objectives, since we can guarantee that they will be composed of

attractive shared rides. 

2.3. Algorithm to identify attractive rides 

Despite its clear form, the trip-ride assignment problem described above is hardly solvable in practice. The main difficulty

is to enumerate all the feasible attractive rides in which trips may be shared. This refers first to finding all the subsets

Q r ⊆ Q (there are 2 n − 1 subsets for n trips), secondly generating all the ordered permutations of origins and destinations of

each identified subset (2 · n ! for trip of n -degree), and finally evaluating the utility of each ride U r (which requires querying

travel time look-up table for each trip segment ( Eq. 8 )) and determining the optimal departure time to maximise ride utility

( Eq. 13 ). We address this complexity by developing an original ExMAS algorithm as detailed in the following sections. The

algorithm hierarchically searches within the space of feasible rides R and efficiently narrows it, before entering into costly

computations. We initialise a set R 1 of non-shared single rides (which are also single-element subsets of trip set Q ), with

a null utility and a cost that equals the direct travel time t i ). We then incrementally increase the degree of searched rides.

Starting with matching trip pairs into rides of second degree, from which we build a directed multi-graph, where we search

rides of higher degree. 

2.3.1. Attractive rides of second degree. 

We start with identifying trip pairs, which can be attractively shared by forming a ride of second degree. Two trips, i

and j , may be shared in six ways (as depicted in Fig. 3 ). Two of which are non-shared (a,b) on Fig. 3 ), for which the first

trip ends before the second one starts and are not considered further here. Two for which origin i is visited prior to origin

j (c,d). The former (c) is further called FIFO (since the first to be picked-up is also the first passenger to be dropped-off)

and the latter (d) called LIFO (since the last passenger picked-up is the first one dropped-off). In the proposed algorithm

the oriented trip pairs are explored, thus we first identify rides where origin i precedes origin j , while the opposite (e, f on

Fig. 3 ) are explored through inverse searches j, i . 

We identify two sets of pairwise shareable trips: 
Fig. 3. Six possible ways to combine two trips i and j : non-shared sequences (a,b), FIFO and LIFO sequences with origin i visited first (c,d), FIFO and LIFO 

sequences with origin j visited first (e,f). Ones identified within the algorithm are a FIFO sequence where i precedes j for origin and destination (c) and 

LIFO sequence (d). First two are out of scope, since they are not shared, while last two are explored through the inverse search. 

Fig. 4. Travel times in pairwise shared FIFO trip (left) and LIFO trip (right). 
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(a) R 2 pairwise FIFO trips (20) , for which i ≺j for both origins and destination (21) : 

R 2 = { r i j : Q r = (i, j) , O r = (o i , o j ) , D r = (d i , d j ) } (20)

o i ≺ o j ∧ d i ≺ d j ∀ r i, j ∈ R 2 (21) 

(b) R 2 ′ pairwise LIFO trips (22) , for which d j is visited prior to d i (23) 

R 2 ′ = { r i j ′ : Q r = (i, j) , O r = (o i , o j ) , D r = (d j , d i ) } (22)

o i ≺ o j ∧ d j ≺ d i ∀ r i, j ∈ R 2 ′ (23) 

For n trips we have n 2 trip pairs forming a potential shared rides to explore, which even for a medium trip set size

results in a very large search space. To estimate the sharing utility of second degree shared ride, one needs to determine

travel times for each trip segment t ( o i , o j ), t ( o j , d i ) and t ( d j , d i ) (as depicted in Fig. 4 ) and determine the optimal departure

time t 
p 
i 

. 

We propose the following, sequential reduction, aiming to efficiently reducing the dimensionality of the search space.

All filters below are derived from the trip utility formula ( Eq. 4 ) and ordered to effectively reduce the size of the solution

space under consideration, before executing costly travel time queries, needed for evaluating utilities. The resulting set of

attractive pairwise rides r and r ′ is obtained if all the above conditions are met: 

a) Scheduling horizon filter: 

b i,r = 1 ⇐⇒ | t p 
j 

− t p 
i 
| < T (24) 

First we check, whether two trips are requested within the same scheduling horizon ( Eq. 14 ). 

b) Departure compatibility filter: 

b i,r = 1 ⇐⇒ (t p 
j 

+ δ j ) ≥ (t p 
i 

− δi ) (25) 

b i,r = 1 ⇐⇒ (t p 
j 

− δ j ) ≤ (t p 
i 

+ t i + δi ) (26) 

Followed with filtering trips, for which origins cannot be reached, even if travel times are zero. We employ the trip

scheduling flexibility term ( δ of Eq. 6 ), rather than fixed time-windows. 

Conditions 24 –26 allow to reduce the sample size at least by an order of magnitude in realistic settings. Notably, they

can be evaluated using solely trip data t i and δi (of size n , rather than trip-pair data of size n 2 ). 

c) Origin compatibility filter: 

b i,r = 1 ⇐⇒ (t p 
i 

+ t(o i , o j ) + δi ) ≥ (t p 
j 

− δ j ) (27)

b i,r = 1 ⇐⇒ (t p 
i 

+ t(o i , o j ) − δi ) ≤ (t p 
j 

+ δ j ) (28)

We now include the travel time between o i and o j in Eqs. 25 and 26 , to guarantee that origin j is reachable from i within

departure flexibility windows of both trips. Mind, that travel times are first queried in ( Eq. 27 ), when the reduced search

space is already reduced significantly. 

d) Attractiveness for i : 

b i,r = 1 ⇐⇒ U i,r > 0 (29) 

After making sure trip origins are reachable, we can now determine the sharing utility for trip i directly from Eq. 4 . To

this end, we query for the travel time on the second segment of the trip: t ( o j , d i ). 

e) LIFO attractiveness for i : 

b i,r ′ = 1 ⇐⇒ U i,r > 0 ∧ U i,r ′ > 0 (30) 

At this stage we may exploit the utility dominance of FIFO over LIFO ( U i,r ≥ U i,r ′ ) and use the already decimated trip

candidates set to determine LIFO rides r ′ . We generate r ′ from r by switching the order of visited destination nodes and

updating travel times t i , t j , according to Fig. 4 . Travel time is now longer for i and shorter for j . Using Eq. 30 we check,

whether the utility for i , which was positive when 

ˆ t i was t o i ,o j + t o j ,d i , remains positive when 

ˆ t i is now t o i ,o j + t o j ,d j + t d i ,d j .

f) Attractiveness for j : 

b j,r = 1 ⇐⇒ U j,r > 0 (31) 

b j,r ′ = 1 ⇐⇒ U j,r ′ > 0 (32) 

The final condition for both FIFO and LIFO rides is that the utility ( Eq. 4 ) is positive also for the second trip j . Now, we
query for the last segment of the ride: t ( d i , d j ) for FIFO and t ( d j , d i ) for LIFO. 
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To determine the sharing utility with Eqs. 29 and 31 , the optimal departure time t 
p 
r needs to be determined. Mind that,

thanks to the filters Eqs. 25 and (26) , the search space is already reduced to reachable origins. If destination j is reachable

from o i and is time-wise acceptable for both i and j , then we can distribute the total departure delay (t 
p 
i 

+ t(o i , o j ) − t 
p 
j 
))

evenly between sharing passengers. Otherwise, one of the boundaries needs to be exploited, namely the smaller among δi

and δj . Which leads to the following analytical formulation: 

δr = min (0 . 5(t p 
i 

+ t(o i , o j ) − t p 
j 
)) , δi , δ j ) (33)

We summarise the above sequence with the following algorithm, to identify attractive shared rides of second degree

( Algorithm 1 ). The sequencing of ’if’ conditions aims at minimising the number of pairs in the trip set before querying the

Algorithm 1: Identify pairwise shareable FIFO and LIFO trips. 

PairwiseShareable ( R 1 , T ) 
inputs : 

R 1 * single trips 
T * network travel times 

output : 

R 2 * pairwise shareable trips 
foreach i ∈ Q do // iterate through all trip pairs 

foreach j ∈ Q do // and identify pairs with: 
if | t p 

j 
− t 

p 
i 
| < T then // Scheduling horizon filter (eq. 24) 

if (t 
p 
j 

+ δ j ) ≥ (t 
p 
i 

− δi ) then // Departure 
if (t 

p 
j 

− δ j ) ≤ (t 
p 
i 

+ t i + δi ) then // compatibility filter (eq. 25, 26) 
query t(o i , o j ) 

if (t 
p 
i 

+ t(o i , o j ) + δ j ) ≥ (t 
p 
i 

− δi ) then 

if (t 
p 
i 

+ t(o i , o j ) + δ j ) ≤ (t 
p 
i 

+ δi ) then // Origin comp. filters (eq. 27, 28) 
query t(o j , d i ) 

ˆ t 
p 
r = min (0 . 5(t 

p 
i 

+ t(o i , o j ) − t 
p 
j 
)) , δi , δ j ) * Optimal departure time (eq. 33) 

r = ((i, j) , (o i , o j ) , (d i , d j ) , ̂  t 
p 
r ) 

if U i,r > 0 then // positive U for i (eq. 29) 
query t(d i , d j ) 

if U j,r > 0 then // positive U for j (eq. 31) 
R 2 + = r * success for FIFO 

r ′ = ((i, j) , (o i , o j ) , (d j , d i ) , ̂  t 
p 
r ) * potential LIFO candidate 

query t(d j , d i ) 

if U j,r ′ > 0 then // positive U for j (eq. 30) 
if U i,r ′ > 0 then // positive U for i 

R 2 ′ + = r ′ * success for LIFO (eq. 32) 
Result : R 2 = R 2 ∪ R 

′ 
2 

travel times and determining optimal departure time (which is most computationally expensive). This procedure proves to

be highly useful: first, by cutting the computation times by an order of magnitude and second, by enabling the computation

of pair-wise shareability of large trip sets. The efficiency of this approach is illustrated for a set of 10 0 0 trips in Fig. 5 where

3 600 shareable trip pairs are identified from a search space of one million trip pairs. Importantly, the algorithm is not
Fig. 5. Pairwise trip shareability matrix, where search space for shareable pairs i, j (marked in black) is gradually reduced with consecutive filters. The 

initial set of 1 0 0 0 0 0 0 pairs is reduced to 135 0 0 0 with ( Eqs. 24, 25 and 26 ), then to 66 0 0 0 with ( Eqs. 27, 28 ). Next, only 14 0 0 0 pairs have a positive 

utility for i ( Eq. 29 ) and finally just 3 600 pairs happen to be attractively shareable also for j ( Eq. 31 ). Computation time for one million pairs is around 15s. 
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Fig. 6. Shareability graph with multiple directed edges per pair of trips (FIFO and LIFO). Dashed edges illustrate two possible extensions of a ride of third 

degree into fourth degree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

heuristic and provides the exact solution within a reasonable amount of time. It is implemented using efficient SQL table

joins and queries. 

2.3.2. Shareability graph 

Starting with the set of feasible rides of second degree R , we incrementally explore rides of higher orders. First, we create

a shareability graph S = G (Q , R ) where nodes are trips Q ∈ Q and arcs are pair-wise shareable rides r ∈ R 2 , as depicted in

Fig. 6 . Contrary to ( Santi et al., 2014 ), our graph is directed, since arcs denote pairwise shareability, where the order of

origins and destinations matters and is already determined. Moreover, multiple edges are allowed per node pair, one for

FIFO and another for LIFO pair-wise shareability. In particular, two nodes (trips) may be connected with four edges (FIFO

and LIFO rides per direction i, j and j, i ). 

Fig. 6 illustrates the proposed graph with eight trips, connected by twelve edges. Isolated node ( Q 1 ) cannot be shared

with any other trip. Trip Q 2 can be shared with Q 3 both in FIFO and LIFO sequence, yet only when Q 2 is picked-up first.

Q 4 can be shared with Q 5 in both orders and with Q 2 as a second trip only. Trips Q 5 , Q 6 and Q 7 form potentially shareable

triplet ( r 5,6,7 ), where the order of origins is predetermined by the edges creating the cycle: O 5 , 6 , 7 = (o 5 , o 6 , o 7 ) , D 5 , 6 , 7 =
(d 5 , d 6 , d 7 ) . 

Directed multi-graph is found highly efficient in searching for higher order rides. We introduce the following theorems

for extending a generic ride r with a trip q , which we utilise in identifying rides of higher order: 

Theorem 1. Attractive shared ride r of an order greater than one, can be extended into an attractive ride of a higher degree r ′ by

adding trip q if and only if all trips i ∈ Q r are directly connected with node q through a direct edge r i,q in graph S . Set of edges,

such that each trip in r is connected with q with exactly one edge, is called an extension of r into q, denoted E ( r, q ) (also known

as a star in graph theory): 

b r ′ = 1 ⇐⇒ b r ·
∏ 

r i,q ∈ E(r,q ) b i,q = 1 

Theorem 1 can be derived directly from the fact that the utility of each trip in the extended ride U r ′ (Eq. 4) is lower or equal

to the utility of this trip in the non-extended ride U r , since both travel time and waiting time need to be either greater or equal

for the extended ride. If so, r ′ is feasible only if all r ∈ E ( r, q ) are feasible, i.e. they have been identified as rides of second degree

and are therefore edges in S . 

Theorem 2. For each extension E ( r, q ) of ride r to ride r ′ with trip q, there exists at most one feasible order of origins and

destinations for ride r ′ , that is unambiguously read from types of edges E ( r, q ), connecting trips of ride r with trip q. 

Theorem 2 is derived as follows: 1) Thanks to the directed nature of the graph S , the order in which origins are visited in the

currently explored extension E ( r, q ) is predetermined. By definition o i ≺o j ∀ r i,j ∈ R for both FIFO and LIFO edges (Eqs. 21 , 23) . In

particular, o i ≺o q ∀ r i,q ∈ E ( r, q ), thus origin d q can be visited only after all origins are visited and before the first destination is

visited. 2) Analogically, the order of destinations is also predetermined, albeit the destination may be placed at any position. To

determine it, let us divide E ( r, q ) into FIFO edges E + = E(r, q ) : r ∈ R 2 and LIFO edges E − = E(r, q ) : r ∈ R 2 ′ . From Eq. 21 we have

lower bounds d r ≺ d q ∀ r ∈ E + , and from Eq. 23 we can establish upper bounds d q ≺ d r ∀ r ∈ E −. The combination of which

yields two bounds between which destination d q may be inserted: max (d E + ) ≺ d q ≺ min (d E − ) . Being either infeasible (when

lower bound max (d E + ) is greater than upper bound min (d E − ) ) or pointing exactly to one feasible position (since in that case

max (d E + ) always directly succeeds min (d E − ) ). 

We illustrate this with the example shown in Fig. 6 . Feasible ride r, serving trips Q 5 , Q 6 and Q 7 , may be potentially extended

to ride r ′ serving also ride Q 8 , since there is a star-graph (dashed edges) connecting all the trips from r with Q 8 , allowing for a

so called extension E ( r, q ) of ride r with trip q (see Theorem 1 ). In fact, there are two such star graphs, since trips Q 7 and Q 8

are connected by two edges. Only one of them, however, yields a feasible ride (see Theorem 2 ). For both candidate rides of fourth

degree origin o 8 will be visited fourth within ride r ′ . If we consider an extension composed of LIFO edges only, then we identify

a feasible sequence of destinations, where d 8 is the first visited destination, since all the edges of extension E ( r, q ) are LIFO type,

i.e. d 8 ≺d i ∀ r i,q ∈ E ( q, r ) . If we, however, consider a second extension where Q 7 and Q 8 are connected with FIFO edge, we end up
with an infeasible destination sequence: d 8 ≺d 5 ≺d 7 ≺d 8 , i.e. max (d E + ) > min (d E − ) in Theorem 2 . 
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Fig. 7. Ride utility U r , as a function of departure time t p r for candidate rides of fourth degree. Bold lines denote feasible rides (i.e. utility is positive for 

all trips at some departure time), and light lines denote infeasible trips. A period of indifference can be observed for all rides. We select the earliest time 

instant of that period allowing for the longest acceptable delays in the actual real-time operations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.3. Matching trips into higher order rides 

We utilise the above theorems to propose a method to identify all feasible and attractive extensions of ride r . We first

identify nodes (trips) S r pair-wise shareable with all trips of ride r . They are found through the intersection of trips S +
i 

shareable with each trip ride: 

S r = 

∏ 

i ∈ Q r S 
+ 
i 

(34)

Then, for each candidate trip r ∈ S r , we enumerate star graphs (extensions) E ( q, r ) connecting trips of ride r with trip q .

Since graph S is a multi-graph with two possible arcs connecting an ordered pair of nodes, for trip of degree n there are

2 n possible extensions E ( q, r ) if the graph is complete. However, the graph is likely to be sparse (as we show below) and

sparsity increases for higher degrees. Moreover, for a generic ride of degree n not more than n + 1 destination insertion

points are possible. For each extension E ( q, r ) we determine an insertion point for the destination and its feasibility (using

Theorem 2 ): 

max (d E + ) ≺ d q ≺ min (d E − ) (35)

When we identify feasible ride r ′ , we need to determine its optimal departure time t 
p 
r with Eq. 13 . We leverage here on the

previously defined trip flexibility δi as the maximal departure delay for all trips of share rides. Thanks to this, and the fact

that the shareability graph is sparse, so that the number of feasible rides strongly decreases with the degree, we can narrow

the search space efficiently to allow performing an exhaustive search (with Eq. 13 ). Fig. 7 depicts the utility as a function of

departure time, for a sample of rides of fourth degree. In case, when a departure time that yields a positive utility can not

be found within the boundaries, we can already conclude that the ride is infeasible and terminate. Otherwise, we evaluate

the utility of each trip within the new ride r ′ (and terminate as soon as a non-positive utility is found). 

We summarise the above in Algorithm 2 , which, for any generic ride r of degree n , finds all feasible rides of degree n + 1

extending it. Note that the already ordered sequence of trips in ride r is extended so that the new origin is always inserted

at the last position, other sequences (if feasible) are explored as extensions of different rides. The proposed graph methods

can be seen as an extension of ones proposed by ( Alonso-Mora et al., 2017 ), yet suited for a directed graph and hierarchical

searches, with the optimal departure time and predetermined sequence allowing to avoid heuristics of travelling salesman

problem for rides of degree greater than three. Importantly, Algorithm 2 does not require querying travel times, since all

travel times of ride r ′ are already stored in graph S . 

2.3.4. Implementation 

Below we introduce the complete ExMAS algorithm ( Algorithm 3 ), to match trips into attractive rides. The proposed

algorithm first identifies attractive rides of second degree R 2 (with Algorithm 1 ), based on which a directed multi-graph

S is built. Then it iterates with incrementally increasing degree of searched rides until all feasible rides are explored. For

each degree n , we loop over all identified rides of degree n − 1 and extend them to feasible rides (with Algorithm 2). When

extensions of degree n − 1 rides are all identified, the algorithm proceeds to loop over rides of degree n and extends them

to rides of degree n + 1 . This continues until no more extensions are found. 

Once all feasible rides are identified, we solve the trip-ride assignment problem, defining the ride cost c r to find the opti-

mal solution (with Eq. 19a ). Optionally, before solving, we may apply a filter to maintain only profitable rides (by employing

Eq. 17 ). Finally, we obtain R 

∗, the set of rides serving all the trips with minimal cost c r . 
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Algorithm 2: Extend ride r . 

ExtendRide (r, S ) 
inputs : 

r // extended ride 
S // shareability graph 

output : 

R // set of feasible rides obtained as an extension of r 

S r = 

∏ 

i ∈ Q r S 
+ 
i 

// find trips shareable with all trips of ride r 

foreach q ∈ S r do // trip candidates 
foreach E(q, r) ∈ E (q, r) do // extensions of r with q 

E = E + ∪ E − // divide into FIFO and LIFO edges 
if max (d E + ) < min (d E − ) then // if there is feasible order of destinations (eq. 35) 

r ′ = r ∪ q // extend ride r 

O r ′ ← O r ∪ (o q ) // insert origin at the last position 
D r ′ ← insert d q to D r at position min (E −) − (max (E + )) / 2 // insert destination 
t 

p 
r = argmax 

t 
∗p 
r 

U r (t 
∗p 
r ) // determine optimal departure time 

foreach i ∈ Q 

′ 
r do // trips of a new ride r ′ 

if U i,r ≤ 0 then // check if sharing utility is positive 
break // early exit 

R + = r ′ // success 
Result : R 

Table 1 

Search space and its reduction for a sample of 30 0 0 trips in Amsterdam. Out of 4.65 × 10 20 theoretically feasible trips shared by five 

passengers only 123 have to be actually examined and 76 of which are identified as attractive and 44 of those are assigned as part of 

the optimal solution. Out of 6.47 × 10 11 trips of third degree only 1807 need to be explored, 243 of which are found feasible and up to 

160 are selected within the trip-ride assignment. For pair-wise computations, set of efficient filters ( Algorithm 1 ) managed to gradually 

narrow to 5270 attractive pairwise shareable rides, forming arcs in our shareability graph. 

degree: 1 2 3 4 5 6 7 

search theoretical 3.00 × 10 3 3.60 × 10 7 6.47 × 10 11 1.55 × 10 16 4.65 × 10 20 1.67 × 10 25 7.01 × 10 29 

space: explored 3000 8,997,000 1807 226 123 24 0 

attractive 3000 5270 243 130 76 8 0 

assigned 1422 435 160 44 8 2 0 

 

 

 

 

 

 

 

 

A key feature of the algorithm is that the search space, which theoretically explodes combinatorially, becomes smaller

with each additional degree thanks to an efficient reduction. This can be seen in Table 1 where 30 0 0 trips are matched into

rides in realistic setting and parameterization (the specification thereof is detailed in the next section). Out of 4.65 × 10 20 

theoretically feasible trips shared by five passengers, only 123 needed to be explored, 76 were identified as attractive and 8

were assigned in the optimal solution. Out of 6.47 × 10 11 trips of third degree, only 1807 needed to be explored, 243 were

found feasible and finally 160 were selected within the trip-ride assignment. 

The algorithm is implemented in Python 3.7 using pandas library for data management and SQL-like queries and

networkx for graph operations. Computation times are reported in Section 3.2.9 . The code is open-source and available

on a public repository. 

2.4. Shareability indicators 

We analyse ride-sharing with the following set of system-wide indicators, computed for the set of rides R 

∗ resulting from

algorithm 3 : 

T q total passenger-hours travelled, T q = 

∑ 

i ∈ Q t i,r , 
T r total vehicle-hours travelled, T r = 

∑ 

i ∈ R ∗t r , 

L r total vehicle-kilometres travelled, L r = 

∑ 

i ∈ R ∗ l r , 

U r total passenger utility, U = 

∑ 

i ∈ Q U i,r , 

R number of rides, R = ‖ R 

∗ ‖ , 
I total revenue, I = 

∑ 

i ∈ Q λi · l i , 

O average occupancy, O = T q /T r . 

We compare the values obtained for shared rides to the ones without sharing and report the relative difference that

stems from sharing, e.g. �T q = (T s q − T ns 
q ) /T ns 

q . 
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Algorithm 3: ExMAS Ex actly identify and M atch A ttractive S hared-rides for tripset Q on graph G . 

SharedRides (T , Q , N) 
inputs : 

Q * trip requests 
T * network travel times 
N * maximal ride degree 

output : 

R 

∗ * shared rides set 
R 1 ← Q * Initialise with single rides 
R 2 ← PairwiseShareable( R 1 , T ) * compute pairwise shareability with Algorithm 1 
S ← G ( Q , R 2 ) * create directed shareability graph 
n ← 2 

while R n � = ∅ or n ≤ N do // until set of extensible rides is empty 
foreach r ∈ R n do // for each extensible ride 

R n + 1 ← ExtendRide( r, S , T ) * identify extensions of ride r with Algorithm 2 
n ← n + 1 

R 

∗ ← (r : r ∈ R , λr > λ) * limit rides to profitable only 
c r = C(r : r ∈ R ) * determine ride costs 
R 

∗ ← argmin C R (x r ) * solve the shareability assignment problem with eq. 19a 
Result : R 

∗

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We hypothesise that ride-sharing will, compared to private rides, results in a decrease in-vehicle-hours T r and an in-

crease in passenger utility U r albeit with an increase in passenger hours T q . The first two relations are positive and are

the primary benefits of sharing, while the latter is an inevitable cost compromised by passengers, in case the discount for

sharing surpasses the loss in travel time. Results in the next section are discussed mainly with respect to these three key

indicators. Note that the details of service operations are neglected in this study. Hence, only revenue-hours (with passenger

on-board) are used when computing vehicle hours and kilometres. However, to obtain an indication for the potential fleet

size savings, we use the number of rides per time unit for both non-shared and shared scenarios. We use the maximal

number of simultaneous rides as a proxy for the fleet size, and the relative difference as a proxy for potential fleet savings

(see work of Vazifeh et al. (2018) for exact fleet size calculations in a similar setting). 

3. Application 

We apply our algorithm to understand the benefits and costs, magnitudes, sensitivity and consequences of ride-sharing

in a realistic urban context. We use the actual travel demand pattern in Amsterdam, the Netherlands, with realistic model

parameter settings, to simulate ride-sharing in various system settings, behavioural parameters and demand levels. 

Specifically, we aim to identify shared rides that are attractive, rather than those merely satisfying time windows, by

properly setting the utility of non-shared and shared ride respectively. Not all of the behavioural parameters included in

the utility formula ( Eq. 4 ) are well established, yet most of them can be specified using reasonable assumptions, as already

discussed in the Introduction. While the value-of-time, β t , is known for the Dutch context ( Kouwenhoven et al., 2014 ),

willingness-to-share, βs , remains hitherto largely unknown. Based on a recent stated preference choice experiments studies

( Alonso-Gonzlez et al., 2020c; 2020a ) we can obtain initial estimates, yet the actual values and shape of βs remains un-

known. Similarly, while the relative discomfort of waiting time (related to travel time) in the context of ride-hailing services

is unknown and presumably depends on the context (trip purpose, time of day), we argue that well established findings

from public transport generalised travel costs may be transferred and used in this context. 

System settings are both observable and controllable, so we either use actual values or explore their impact by specifying

them within reasonable ranges. The price of ride-hailing λns as well as the sharing discount λ are known up-front when

using a ride-hailing app. We keep the former fixed and set the discount as an exogenous variable subject to investigation in

our experiments. Similarly, we examine the impact of the scheduling horizon T in our scenarios, as it is directly controlled by

the operator and latent for passengers. Mind, that here we decided to use a more intuitive, relative, notion of discount, with

λ = 0 . 2 meaning per-kilometre shared ride fare 20% cheaper than the corresponding private ride. Formulas remain consistent

with the method introduced in the previous section, though for sake of readability we use now λ = −(λs − λns ) /λns . 

Travel demand is also typically known, either from observations or from calibrated models, usually allowing to under-

stand demand with information on origin, destination and departure time, which is sufficient to quantify potential demand

for shared rides Q . 
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Table 2 

Matching 30 0 0 trips into 1888 rides in Amsterdam. Passengers are offered a shared discount λ of 0.3, matching objective 

function is minimising vehicle-hours T r . Values obtained for non-shared and shared scenario and relative differences. 

Vehicle hours Passenger hours Utility Number of rides Fleet size Revenues Occupancy 

T r T q U R F I O 

non-shared 1,280,334 1,280,334 -19860 3000 474 1,920,501 1 

shared 896,224 1,499,395 -18644 1888 336 1,575,386 1.673 

rel. diff (%) -30.0 17.1 6.1 -37.1 -29.1 -18.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Experimental set-up 

We run experiments on an a travel dataset available for Amsterdam from a nation-wide activity-based model

( Arentze and Timmermans, 2004 ). The dataset contains the origin, destination and departure time for 241 thousand trips

conducted within the boundaries of Amsterdam during a representative working day. We sample from this complete, multi-

modal dataset, rather than from taxi demand only. Tripset size ranged from low demand levels to identify critical mass,

to levels exceeding the current demand level for ride-hailing, taxis and shared-taxis typically observed in the urban con-

text (average of 0,5% reported for US cities in Conway et al. (2018) ), to identify the potential of those services and test the

scalability of the proposed model. 

We employ a detailed road network graph of Amsterdam available from OSM ( Fig. 1 ), with over 26 thousand edges and

11 thousand nodes to estimate travel times (we assume a constant speed of 29km/h, inline with empirical observations). 

In the following, we first discuss how sharing impacts central KPIs, followed with a discussion on how they change

with the system settings, demand levels and travellers’ behaviour. Then, we compare system optimal, versus user optimal

matching. We discuss how vehicle capacity allows to improve occupancy, further enriched with discussion on profitability,

analysed both at the system and individual levels. We then discuss how benefits of sharing are distributed across trips of

various length and degree. Concluded with benchmarking ExMAS against previous, time-window based solutions and testing

its’ scalability, both for off-line and online applications. 

Throughout the experiments we assume and kept constant the following parameters: value of time βt = −12 . 6 € /h, cost-

sensitivity βc = −1 (with negative signs to reproduce disutility of cost and time components), delay penalty βd = 1 . 5 , non-

shared ride fare λns = 1 . 5 € /km, service time (extra time for each pick-up and drop-off) t s = 30 . Unless explicitly stated

otherwise, we assume a network-wide speed of 29km/h and a willingness-to-share of βs = 1 . 3 . We solve the trip-ride as-

signment problem with the objective either to minimise vehicle-hours, or maximise travellers’ utility. By default, we allow

also for unprofitable rides in the solution. In all of the experiments conducted overall demand for on-demand services is

exogenous and constant. The only passenger behaviour that we consider is their decision to opt for a shared ride (expressed

as a binary choice using the deterministic sharing utility of Eq. 4 ). Other effects on mode choice, trip generation and other

choice dimensions are not considered. 

3.2. Results 

First, we detail the results of matching 30 0 0 trips in Table 2 with three main indicators computed for non-shared rides,

shared rides and their relative difference. Travellers are offered a shared discount λ of 0.3 per-kilometre fare for shared ride

30% lower than for private ride), the planning horizon T is infinite, the matching objective function in trip-ride assignment

is vehicle hours T r . Thanks to sharing, the number of vehicle rides can be reduced by 37%, resulting in a reduction of

approximately 30% in vehicle hours by attaining an occupancy of 1.67 instead of 1 for the non-shared scenario. On the other

hand, since trips in shared rides are longer, passenger-hours T q rise by 17.1%. Notwithstanding, thanks to the reduced price,

total passenger utility is 6,1% higher. 

3.2.1. Ride-sharing in various system settings 

To assess, how stable these results are, we experiment with a range of system settings, varying one at a time, while

keeping the others fixed to the base level. We are particularly interested in how the three key indicators (relative increase

in total passenger utility �U r , decrease in vehicle-hours �T r and increase in passenger-hours �T q ) change under various

conditions. We plot these key indicators as a function of: 

(a) demand level (number of trips) Q ∈ (10 0 , 20 0 , . . . , 50 0 0) , with λ = 0 . 25 and infinite planning horizon on Fig. 8 , 

(b) shared ride discount λ ∈ (0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4) with demand Q = 30 0 0 and infinite planning horizon

on Fig. 9 , 

(c) scheduling horizon T ∈ (5, 10, 30, 60, 120, 300, 600, 1200, ∞ ) with demand Q = 3000 and λ = 0 . 25 on Fig. 10 

We can see that all of the above strongly impact the obtained indicators. The benefits, associated with sharing, increase

with demand level Q ( Fig. 8 ), sharing discount λ ( Fig. 9 ) and scheduling horizon T . 

Vehicle-hours are reduced by approx. 11% if 10 0 0 trips are matched and drop by 22% when trip set size is 50 0 0 ( Fig. 8 ).

Passengers also benefit more with higher demand levels, albeit exhibiting a weaker trend. Results stabilise for demand levels
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Fig. 8. Gains from trip sharing expressed in terms of total utility improvement �U r and vehicle hours reduction �T r , with sharing costs reflected in 

increased passenger travel times �T q . Passengers are offered a 25% discount and demand increases to 50 0 0 trips per hour. Passengers’ extra travel time in- 

creases with demand growth, yet stabilises around 10%. Similarly, passenger utility reaches a limit of 5%. Service cost reduction, however, steadily decreases, 

stabilising at around 20% reductions when the number of travellers reaches 30 0 0. 

Fig. 9. Gains from trip sharing expressed in terms of total utility improvement �U r and vehicle hours reduction �T r , with sharing costs reflected in 

increased passenger travel times �T q . 30 0 0 passengers are offered various sharing discounts λ. Low discounts hinder the potential of trip sharing, while 

high discounts unlock economies-of-scale. Turning point in vehicle-hours for higher discounts can be explained with profitability analyses of subsequent 

sections. 

 

 

 

 

 

 

 

 

 

 

exceeding 30 0 0 trips. This is a profound finding, strongly suggesting that the benefits of sharing may be obtained only after

a certain critical mass of passengers is reached, above which results stabilise again. 

Unsurprisingly, low sharing discounts constrain the benefits that can be generated by sharing ( Fig. 9 ), with a threshold of

around 10%, below which sharing is hardly attractive for travellers. Above 10%, however, both passenger utility and vehicle-

hours improve with increasing discount rates. Hence, a certain discount rate is needed to unlock the efficiency gains made

possible by sharing. Notably, at the same time passenger-hours increase, since travellers compromise their travel time to

receive fare discounts. A turning-point is visible when increasing the discount from 35% to 40%. This is caused by exceeding

the profitability level, as discussed in further sections. 

We observe that the scheduling window T has a substantial impact on the obtained results ( Fig. 10 ). While a scheduling

horizon of more than 12 minutes already allows to fully exploit the trip-sharing potential, shorter horizons hinder it. Notably,

while benefits for the service provider stabilise after 12 minutes, already 5 minutes seem to be enough for passengers to

optimally share their trips, beyond which only limited gains can be made. Horizons shorter than 5 minutes, which seem to

be the actual horizons used in practice, yield significantly lower benefits. 
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Fig. 10. Gains from trip sharing expressed in terms of total utility improvement �U r and vehicle hours reduction �T r , with sharing costs reflected in 

increased passenger travel times �T q . 30 0 0 passengers matched with varying scheduling horizon T (x-axis, in minutes). Short horizons do not allow 

reaching high benefits of sharing, specifically when horizons are shorter than 5 minutes benefits are low. 

Fig. 11. Three indicators of trip sharing: a) vehicle hours reduction �T r , b) passenger utility improvement �U r and c) increased passenger travel times 

�T q analysed against sensitivity to the willingness-to-share and the value-of-time. 20 0 0 trips are matched into rides where a discount of 25% is offered, 

with a willingness-to-share varying from -1.05 to -1.5 and value-of-time ranging between -9 and -18 € /hour. Shareability benefits are highly sensitive to 

settings, the highest benefits are obtained for a low willingness-to-share (sharing penalty β s ) and a low value-of-time β t . Otherwise, when the penalty is 

high and the value-of-time is high, sharing benefits diminish. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2. Ride-sharing with varying travellers’ behaviour 

To better understand the impact of traveller behaviour on trip shareability, we experiment with a range of value-of-time

β t and willingness-to-share βs values. Unsurprisingly, their impact on the results is substantial. Essentially, the extent to

which trips are shared and the associated benefits increase for lower values-of-time (since passengers are then ready to

trade more time for the lower price of shared ride) and higher willingness-to-share. In Fig. 11 we alter the travel time

multiplier β t from -1.05 to -1.5 and double the value-of-time from -9 to -18 € /h, which results in dramatic changes in the

KPIs, revealing strong diagonal patterns. For instance, vehicle-hours can be either barely altered (when value-of-time and

travel time multiplier are high) or decrease by 25% (otherwise). 

3.2.3. Trip-ride assignment optimal for traveller and system operator. 

We compare two approaches in the trip-ride assignment: service provider perspective (minimising vehicle-hours T r ) and

passenger perspective (maximise utility U r ), each of which yielding significantly different results. Table 3 reports the benefits

of sharing 30 0 0 trips with a discount of 25%, obtained under different cost formulations for the trip-ride matching ( Eq. 19a ).

While costs in terms of additional travel time are similar when maximising utility and minimising ride travel time (around

10%), the benefits obtained are different. Maximising passenger utility yields a 7% improvement for passengers and 10%

reduction in vehicle-hours, while minimising service time reduces it by 20% and yields a 4.4% improvement in utility terms.

These, somehow orthogonal, results are both plausible, for different parties, and a practical solution may be attained by a

combination of the two criteria in the objective function term with pre-defined weights. 

Apart from the aggregate performance results, cost function impacts also the composition of ride degrees. When we

match 30 0 0 trips, the number of rides decreases as the discount offered goes up, with a diminishing share of single trips
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Table 3 

Benefits of sharing 30 0 0 trips with 30% discount, 

obtained with objective to maximise passenger util- 

ity U r or minimise vehicle hours T r .x . 

c r �T r �T q �U r 

U r -0.115 0.104 0.070 

T r -0.201 0.117 0.044 

Fig. 12. Composition of rides degree (number of passengers per ride) for 30 0 0 trips with varying discount for the objective of either maximising passenger 

utility U r (left), or minimising vehicle hours T r (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

included in the solution ( Fig. 12 left). Shared trips, however, consist mostly of second degree rides. Nevertheless, if we

minimise vehicle-hours instead of maximising passenger utility, the number of single rides remains high, and so does the

number of rides (20 0 0 rides instead of 1800 for 0.4 discount). In this case ( Fig. 12 right), however, for discounts greater

than 25% attractive rides of higher degrees are found in the solution. Surprisingly, at the same time the share of single rides

remains high. In conclusion, the compositions obtained for the two different objectives are substantially different, in terms

of the number of rides as well as the presence of rides of higher degree rides and the share of single rides. 

3.2.4. Occupation rate and vehicle capacity 

As indicated above, various compositions of rides may be obtained for various settings. We further investigate the impact

of capacity on the solution. We match 30 0 0 trips with a discount of 30% and gradually increase the vehicle capacity (as an

input for Algorithm 3). In particular we are interested in finding, whether extending capacity beyond a standard private car

(three travellers plus driver) may be justified. In Table 4 , we report the results of assigning 30 0 0 trips into rides of various

degrees with varying maximal capacity for two different objectives in the trip-ride assignment. When trips are matched

to rides with the objective of maximising passenger utility, shared rides never reach a degree of four. Even when they are

found, they are dominated in the solution by lower degree trips. Yet, trips exceeding a degree of four are found in the

solution when we minimise vehicle hours, yet the number of these rides remains low, and their impact on the efficiency is

minor. When we limit the capacity to three, vehicle hours are reduced by 24,3% with an occupancy of 1.55, which drops only

to 26.3% and an occupancy of 1.57 for higher degrees, albeit at the cost of lesser traveller utility improvements ( Table 4 ). 

3.2.5. Ride-sharing profitability 

We now turn to the service provider perspective, to analyse their benefits from offering shared rides. Since in our ap-

proach vehicle fleet is not explicitly considered, we use aggregate measures to assess supply-side profitability. Nonetheless,

we are able to derive meaningful insights, first by tracing how the discount offered is compensated by vehicle kilometres

reductions ( Fig. 13 ), followed by revenue and fleet size reductions to better assess potential business models ( Fig. 14 ). To

conclude, we assess the case where profitability is considered at the individual (driver) level rather than centrally ( Table 5 ).
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Table 4 

Trip composition for different maximum vehicle capacities. Results of assigning 30 0 0 trips to rides optimal for travellers and vehicles with key indicators. 

In the top rows we show how the search space size increases with ride degree: we report the number of rides theoretically possible, actually explored and 

attractive for all passengers. Underneath it we report rides actually found in the optimal solution along with resulting KPIs. First for the solution optimal 

for travellers with a capacity rising from two to four, and then for the solution optimal for service provider, with a capacity reaching 9 and rides degree 

reaching 6. 

degree: 1 2 3 4 5 6 7 

search theoretical 3.00 × 10 3 3.60 × 10 7 6.47 × 10 11 1.55 × 10 16 4.65 × 10 20 1.67 × 10 25 7.01 × 10 29 

space: explored 3000 8,997,000 1807 226 123 24 0 

attractive 3000 5270 243 130 76 8 0 

objective capacity 1 2 3 4 5 6 7 O �T _ r �T q �U r 

U r 2 726 1137 0 0 0 0 0 1.161 -0.051 0.101 0.125 

travellers 3 752 1118 4 0 0 0 0 1.164 -0.056 0.099 0.127 

4 699 1134 11 0 0 0 0 1.172 -0.061 0.100 0.127 

T r 2 1320 840 0 0 0 0 0 1.381 -0.209 0.091 0.073 

vehicles 3 1317 495 231 0 0 0 0 1.505 -0.243 0.139 0.064 

4 1306 485 160 61 0 0 0 1.550 -0.251 0.160 0.060 

5 1330 459 159 55 11 0 0 1.567 -0.252 0.156 0.058 

6 1308 456 166 58 10 0 0 1.565 -0.257 0.163 0.060 

7 1326 468 162 49 10 1 0 1.575 -0.263 0.160 0.059 

8 1338 423 194 47 8 1 0 1.571 -0.264 0.157 0.061 

9 1422 435 160 44 8 2 0 1.542 -0.264 0.153 0.058 

Fig. 13. Shared trips vehicle-hours reduction �r as a function of discounts λ obtained for various demand Q . 

Table 5 

Sharing 30 0 0 trips with a discount of 25% while allowing 

only profitable rides or allowing all rides. 

�I �L r �F O 

greedy, local -0.202 -0.178 -0.202 1.307 

system, global -0.428 -0.264 -0.244 1.533 

 

 

 

 

 

 

 

We analyse vehicle kilometres reductions for shared rides as expressed with �r ( Eq. 18 ), as a function of demand levels

and discount offered at Fig. 13 . The diagonal dashed line indicates a naive pricing level, i.e. when the service provider

offers a discount equal to his costs reduction. For all the demand levels we see that the cost reductions are above the

discount offered for some range of discounts. As discussed above, discounts below 5% bring no sharing benefits, thus it is

not profitable to offer them. Discounts of 0.1-0.25 are firmly above the diagonal for all demand levels. As expected, higher

demand levels bring a higher profitability. Nevertheless, regardless of the demand level, the system becomes unprofitable

again for higher discounts offered. This suggests that the potential of trip-sharing is captured with discount levels of 10 to

30% and offering higher discounts cannot be compensated at such demand levels. 
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Fig. 14. Service operator benefits (reduced fleet size �F and vehicle-hours �T r ) along with revenues reductions �I (due to the discount offered for shared 

rides). 

Fig. 15. Trip length distribution for various degrees of shared rides. We can observe that shared rides are typically longer, or in other words, short trips 

are unlikely to be shared. Rides shared by three travellers or more are typically long, since only a high discount can compensate for a longer travel and 

waiting time of a ride shared by many travellers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For richer insights on the impact of shared rides on profitability, we further analyse this by, apart from previously anal-

ysed reduction in vehicle-hours, also investigating the fleet-size reduction (albeit a very rough approximation in this study)

and total revenues (sum of fares paid with discount for shared rides and without for non-shared rides) for various demand

levels with a 0.3 discount ( Fig. 14 ). We see gradually decreasing revenues �I of up to 40% lower for 30 0 0 trips, which may

be compensated by up to 25% lower fleet size and 20% lower vehicle-hours, depending on the business model. 

To understand whether shared rides profitability shall be considered based on local greedy considerations or global sys-

tem considerations, we examine how the above results change, if we allow only for individually profitable rides in the

assignment, i.e. all rides for which the yielded vehicle-hours reduction does not compensate for the respective discount are

rejected ( Eq. 17 ). The revenues are harmed by making such local greedy decisions (42% instead of 20%). Moreover, the ob-

tained distance savings ( �L r ) are also lower (18% instead of 26%). The fact that benefits for the service provider in terms

of vehicle-hours are greater if profitability is not guaranteed at the ride-level, seems to advocate that the service provider

shall evaluate sharing from the system perspective to maximise his benefits and occasionally accept trips which, if assessed

in isolation, may seem unprofitable. 

3.2.6. Distribution of sharing benefits among travellers 

In addition to evaluating system-wide results, our model also enables the investigation of the distributional effects of

service provision. We plot ( Fig. 15 ) the trip length distribution for various degrees of shared rides, to explore whether the

extent to which trips are shared is related to trip length. There is clearly a strong relation and average trip length increases

with its degree. This is expected, since for short (and hence cheap) trips the discount hardly can compensate for the detours.

Consequently, most of the short trips are not shared. For a similar reason most of the long trips are shared, since it is more

likely to be possible to compensate for a detour with a higher fare reduction. This relation is also manifested by higher

order trips: trips shared by four travellers are longer than trips shared by three passengers, since it is both easier to find

four matching trips when they are long and they are also more likely to be attractive if they are long. This finding may shed
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Fig. 16. The distribution of relative benefits of sharing among passengers of different degrees for shared rides. 

Fig. 17. The distribution of relative benefits of two passengers sharing a FIFO (upper part) or a LIFO (lower part) ride depending on the order in which 

they are picked up. An unequal distribution is clearly visible for LIFO rides. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

light on the future perspectives of using shared rides for first-last mile services, where trips are typically short (albeit often

sharing the same origin and/or destination). 

We also analyse the distribution of benefits stemming from sharing a trip among travellers. To this end, we plot the

distribution of relative benefits of sharing among passengers of different kinds and degrees for shared rides. Fig. 16 reveals

high variability (and thus inequality in the distribution) of benefits, with many trips of little relative improvement in their

utility. Notwithstanding, the distributions is not characterised by long tails, hence sharing is not driven by few individuals,

which are much better off, but rather by most individuals, being slightly better off through sharing their trip (with many by

no more than 3%). 

Unsurprisingly, the average utility when three travellers share a ride is higher than for four travellers. Though, pair-wise

shared trips reveal two peaks in the distribution, which we further investigate using Fig. 17 . When two trips are shared in

a FIFO ride, the benefits are roughly equal among travellers; whereas when they share in a LIFO order, clearly the second

traveller benefits more than the first one. 

3.2.7. Ride-sharing with varying road congestion 

We comment on the strong impact of travel times on the shareability results. Namely, the 14% vehicle-hour reduction for

the current average speed in Amsterdam (29km/h) increases to 16.5%, if the speed reaches 36 km/h. Conversely, it decreases

to 12.5%, if the speed drops to 23km/h. This suggests that, in less congested road networks, with a better performance

as measured in terms of average speed, shared rides may bring higher benefits. If we also consider that increasing the

number of shared trips may lead to a reduction in traffic flows on road networks (yielding lower travel times), this poses

an interesting fixed-point problem (albeit of a limited effect as long as the modal share of shared rides remains low). 

3.2.8. Benchmarking with time-window constrained approach 

We benchmark our algorithm against previous approaches, where shared rides were assumed feasible if delay (extra

waiting time at pick-up) and detour (extra travel time) were under a certain value �. They were explored for 2, 5 and 7

minutes in ( Alonso-Mora et al., 2017 ) and up to 5 minutes in ( Santi et al., 2014 ). To allow for model comparison, we adjust

our algorithm so that a shared ride is assumed to be feasible as long as it fits within a predefined time window. We compare

the results for 20 0 0 trips in Amsterdam. We find that the 85th percentile of delay and detour for the results obtained with

our algorithm are 300 and 212 seconds, respectively. We use those in the following comparative analysis. 
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Table 6 

Differences in the results of the proposed algorithm and pre- 

vious time-window based approaches. 20 0 0 passengers are of- 

fered a shared discount λ of 0.3, matching objective function is 

minimising total ride distance L r . 

Vehicle hours Passenger hours Utility 

T r T q U 

windows 868,559 828,102 -16874 

utilities 972,569 643,277 -12348 

rel. diff (%) 10.7 -28.7 -36.7 

Fig. 18. Distributions of attractiveness of shared rides identified with the proposed algorithm compared to those identified by the time-window based 

approach. 

Fig. 19. Computation times in seconds and the number of feasible rides identified in the search space (thousands in brackets) for varying demand level 

(row) and a shared ride discount (column). 

 

 

 

 

 

 

 

 

 

 

 

 

Evidently, the two algorithms yield substantially different outcomes ( Table 6 ). In particular, the fixed time-windows ap-

proach induces higher travel impedance for passengers when compared with the utility-based algorithm proposed in this

study. Consequently, the latter leads to higher service occupancy and requires a smaller fleet size. Notwithstanding, the

time-window approach leads to fewer vehicle hours. 

The approaches also differ in the number of shared rides that are identified. While the utility-based approach identified

19 0 0 0 rides of second degree, only 10 0 0 0 are identified when applying the time-windows approach. Conversely, while our

algorithm identified only 1 0 0 0 shared rides of fourth degree, filtering only based on time-window constraints yielded 170

0 0 0 such rides. This suggests that the narrowing of an otherwise exploding search-space is obtained only when shared rides

are attractive. In total, our algorithm identified 27 0 0 0 attractive shared rides, compared to 231 0 0 0 which are found fitting

by the time-windows approach. 

A significant share of the rides of higher degree generated by the time-windows approach are less attractive to travellers.

In our algorithm, the utility of shared rides in general decreases with its degree (compare with Fig. 16 ) yet remains strictly

positive, whereas in the window-based approach high degree rides, despite fitting in the windows, become highly unattrac-

tive to travellers (see Fig. 18 ). As long as the objective in the matching ( Eq. 19a ) is to minimise passenger hours, the results
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Table 7 

Computation time to match trips pooled into five minute batches for various demand 

levels (for a single batch of requests, rather than a full trips reported in Fig. 19 . 

demand Q [trips/h] 600 1200 2400 4800 7200 9600 12,0 0 0 

time [s] 0.4 0.8 2.3 7.3 19.5 38.64 55.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

remain comparable, yet if we minimise for vehicle hours, the results of window-based approach may become unbearable

for travellers. 

In conclusion, the two different approaches led to the following twofold differences: (i) on one hand, fixed time windows

do not allow identifying attractive trips, which do not fit the strict non-compensatory windows, and; (ii) on the other hand,

a significant share of the trips fitting within the windows are not attractive. 

3.2.9. Scalability 

Finally, in this section we report the computation times of the proposed algorithm and the corresponding number of

identified feasible rides. For all experiments we used a 2.3 GHz, 8GB RAM MacBook Pro. The implementation is single

threaded, however graph searches of sect. 2.3.2 can be easily distributed over multiple cores for efficiency. Fig. 19 displays

the algorithm computation times and the number of identified shared rides (thousands, in brackets) for different combina-

tions of demand levels and discount rate for shared rides. Computation times remain feasible for high demand levels and

high discount rates. In particular, the case of 7 0 0 0 trips per hour and a discount rate of 35% still yields a significant search-

space reduction (compare with theoretical sizes reported in Table 1 ) and can be computed in time reasonable for off-line

analyses. 

To demonstrate the applicability of our approach in real-time settings we mimic the batch approach and in Table 7 , we

report time to match trips requested within a five minute interval as a function of the hourly demand. Computation time is

less than 10 seconds on a standard laptop (even when the code is single-threaded) for number of travel requests around 5

0 0 0 trips per hour and approaches one minute for very high demand levels (above 10 0 0 0 trips per hour). 

4. Discussion and conclusion 

Mobility on demand can, potentially, contribute to reducing congestion only if rides are shared. The approach taken in

this study is to identify a combination of trips, which are not only mutually compatible (i.e. feasible matches), but also

where each individual trip remains attractive, in comparison to the private ride alternative. We propose a generic utility

formulation to explicitly consider trade-offs between fares, delays and on-board discomfort by incorporating value-of-time

and willingness-to-share parameters. Consequently, the solution space is substantially reduced allowing for the reformula-

tion of the ride-sharing problem, so that an exact analytical method becomes feasible also for high-degree shared rides. For

instance, the theoretical number of rides of fourth degree within the travel demand dataset of 30 0 0 trips considered in our

application is enormous, 1.55 × 10 16 , whereas the number of searches needed with our method is 226 which is 10 14 smaller.

Consequently, our method allows analysing system-wide performance in terms of, among others, the share of on-demand

trips that opt for sharing, overall passenger utility, vehicle hours and service occupancy. 

We conducted an extensive set of experiments using travel demand data from Amsterdam and the results thereof reveal

complex patterns and relations in the ride-sharing system. As expected, with sharing, vehicle-hours are reduced, at the

cost of an increase in passenger hours. Notwithstanding, overall passenger utility increases due to the discounts offered,

compensating for the longer travel times and lesser comfort. Consequently, service provider’s revenues decrease, although

these may be compensated by the reduced operational costs. Ultimately, whether this is profitable will depend on the

underlying business model and the ability to attract demand beyond the current market share of on-demand services. The

relative reduction in vehicle-kilometres strongly increases for higher demand levels, from 5% to 20% when demand grows

from 500 to 30 0 0 vehicles per hour in Amsterdam, suggesting that ride-sharing service properties are characterised by

economies-of-scale. Service providers may adopt a myopic or a global but more risky strategy with regard to which rides

may be shared. Our findings indicate that if the service provider requires that profitability is guaranteed at the individual

ride level, the share of ride-sharing is significantly diminished, leading to the risk of impeding the attainment of economies-

of-scale. 

The results of assignment are substantially different depending on whether we design the trip-vehicle assignment for

travellers versus if we optimise for service provider. Differences are in terms of the number of shared rides, their compo-

sition and the benefits for the respective parties. In particular, when designing the service to maximise users’ utility, the

matching yields 7% improvement in their utility and an 11.5% improvement for service provider. When matching is designed

from service provider’s perspective, the results yield a 20% improvement for service provider and an improvement of only

4.4% for travellers. Hence, both service users and service providers can simultaneously benefit from various settings of the

ride-sharing, although the magnitude of which depends on the matching objective formulation and exhibits a trade-off be-

tween their interests. Future research may investigate the impact of different business models and regulatory conditions

on a multi-criteria matching formulation. Furthermore, while our approach allows quantifying a series of key performance

indicators relevant for service provider, coupling the method proposed in this work, with a microscopic representation of
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fleet operations, including fleet rebalancing will allow to more precisely assess the fleet-related savings stemming from

ride-sharing operations. 

Our model also allows testing the impacts of two service design parameters: planning horizon and fee discounts. Intro-

ducing long planning horizons allows to exploit the full potential of sharing, albeit at the cost of making the system less

user-friendly due to reduced spontaneity. Our results show, that the ride-sharing service is profitable within a certain range

of discounts. Yet it becomes ineffective and unsustainable when the discount is outside of this range: if it is too low then

travellers will not find it attractive to share a ride, if it is too high then cost savings cannot meet the reduced revenues. In-

terestingly, our results indicate that the upper limit for fee discounts increases with increasing demand. This stems from the

underlying positive feedback loop, when high demand unleashes the sharing potential and allows offering higher discounts

(35% instead of 25% when demand increases to 30 0 0 from 1500 trips per hour). This relation shall be further exploited,

calling for the formulation of an equilibrium state discount. 

The compensatory utility term for assessing shared ride attractiveness allows testing how system performance depends

on travellers’ value-of-time and willingness-to-share. The share of ride-sharing is highest when travellers have a low value-

of-time and a high willingness-to-share (i.e. low βs multiplier). Future research on the behavioural determinants of trav-

ellers’ choices, in the context of mobility on demand, will enable the empirical underpinning of the utility formulation

adopted in this study. In particular, it can be expanded to a probabilistic choice model, including heterogeneity with respect

to the value-of-time and willingness-to-share. 

The prospects of ride-sharing also depend on network congestion, with two potentially counteracting effects. On one

hand, if the network is congested the attractiveness of shared rides is hampered, due to the accumulation of delays along

detours and thus reduce the share of ride-sharing. On the other hand, if the magnitude of sharing is sufficiently high, then it

may contribute to relieving network congestion, thereby creating a positive feedback loop. Future research may investigate

the conditions under which such a, potentially virtuous, cycle is created by considering modal shifts beyond on-demand

services, as well as service reliability aspects of ride-sharing services. 

When analysing the performance of ride-sharing systems it is important to consider the distributional aspects, since

sharing and its benefits are not uniformly distributed across the trips and travellers. Short trips are less likely to be shared

and shared trips are likely to be long. Notably, trips of a degree greater than two are feasible only if they are long enough,

so that the fee discount in absolute terms becomes sufficiently large to compensate for the detours induced. Benefits are

not uniquely distributed among sharing passengers, especially for LIFO trips, since the second passenger benefits at the cost

of the first passenger. This calls for the future development of discriminatory pricing mechanisms, where the discounts are

not uniform but rather dependent on the number of co-riders. Including customised approaches, which compensate for the

general loss in riders’ utility, based on the detours inflicted, the individual value-of-time and willingness-to-share values, as

part of a yield management strategy. 

The scalability and transferability of the proposed method facilitates variety of its future applications and extensions. It

allows performing a cross-scenario sensitivity analysis of two-sided mobility platforms, with modal split, market competi-

tion and system-wide travellers welfare analysed from the demand perspective. It is designed to be seamlessly embedded in

the analysis of pricing strategies, regulation policies or competition settings, including supply-demand feedback loops and

emerging market equilibria. Thanks to utility-based formulation of sharing, the latest findings from travel behaviour research

can be utilised and introduced into the models. In particular, proposed deterministic formulation can be extended to cover

travellers heterogeneity and non-deterministic behaviour accordingly. Travel demand in ExMAS can become an endogenous

variable. Thus enabling the analysis of the impacts of public transport service characteristics on the performance of ride-

sharing and the potential positioning of the latter, between individual ride-hailing and public transport, in terms of both

price and level-of-service. This will allow studying to what extent and under what circumstances, the ride-sharing service

competes or complements public transport. ExMAS offers a comparative analysis tool for a wide range of cities, to establish

how the shareability potential varies as a function of network and demand properties and their temporal and spatial dis-

tributions. Furthermore, the method can be used to analyse the feedback between service performance and service equity

and coverage, assessing market entry strategies and on-demand platform competition. Proposed approach may be of par-

ticular interest to policy makers, who can now better understand system-wide implications of sharing rides and counteract

to, potentially negative, impacts of emerging modes on equity and accessibility. While the method proposed in this study

was primarily developed for offline matching applications, ExMAS also paves the way for improving online operations by

means of (i) leveraging on utility-based filtering for attractive rides (instead of oversimplified non-compensatory thresholds)

and (ii) improved graph searches. Finally, the method is available under public repository 2 and may be utilised in future

research. 
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