
 
 

Delft University of Technology

Botsing, a Search-based Crash Reproduction Framework for Java

Derakhshanfar, Pouria; Devroey, Xavier; Panichella, Annibale; Zaidman, Andy; van Deursen, Arie

DOI
10.1145/3324884.3415299
Publication date
2020
Document Version
Final published version
Published in
Proceedings - 2020 35th IEEE/ACM International Conference on Automated Software Engineering, ASE
2020

Citation (APA)
Derakhshanfar, P., Devroey, X., Panichella, A., Zaidman, A., & van Deursen, A. (2020). Botsing, a Search-
based Crash Reproduction Framework for Java. In J. Grundy, D. Lo, & C. Le Goues (Eds.), Proceedings -
2020 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020:
Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering (pp.
1278-1282). Article 9286108 (Proceedings - 2020 35th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2020). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3324884.3415299
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3324884.3415299
https://doi.org/10.1145/3324884.3415299


Botsing, a Search-based Crash Reproduction Framework for
Java

Pouria Derakhshanfar
p.derakhshanfar@tudelft.nl

Delft University of Technology

Delft, The Netherlands

Xavier Devroey
x.d.m.devroey@tudelft.nl

Delft University of Technology

Delft, The Netherlands

Annibale Panichella
a.panichella@tudelft.nl

Delft University of Technology

Delft, The Netherlands

Andy Zaidman
a.e.zaidman@tudelft.nl

Delft University of Technology

Delft, The Netherlands

Arie van Deursen
arie.vandeursen@tudelft.nl

Delft University of Technology

Delft, The Netherlands

ABSTRACT

Approaches for automatic crash reproduction aim to generate test

cases that reproduce crashes starting from the crash stack traces.

These tests help developers during their debugging practices. One

of the most promising techniques in this research field leverages

search-based software testing techniques for generating crash re-

producing test cases. In this paper, we introduce Botsing, an open-

source search-based crash reproduction framework for Java. Bots-

ing implements state-of-the-art and novel approaches for crash

reproduction. The well-documented architecture of Botsing makes

it an easy-to-extend framework, and can hence be used for im-

plementing new approaches to improve crash reproduction. We

have applied Botsing to a wide range of crashes collected from

open source systems. Furthermore, we conducted a qualitative as-

sessment of the crash-reproducing test cases with our industrial

partners. In both cases, Botsing could reproduce a notable amount

of the given stack traces.

Demo. video: https://www.youtube.com/watch?v=k6XaQjHqe48

Botsing website: https://stamp-project.github.io/botsing/

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; Search-based software engineering.

KEYWORDS

Search-based software testing, crash reproduction, Botsing

ACM Reference Format:

Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy Zaid-

man, and Arie van Deursen. 2020. Botsing, a Search-based Crash Repro-

duction Framework for Java. In 35th IEEE/ACM International Conference on

Automated Software Engineering (ASE ’20), September 21–25, 2020, Virtual

Event, Australia. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/

3324884.3415299

ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6768-4/20/09.
https://doi.org/10.1145/3324884.3415299

1 INTRODUCTION

Crashes are usually reported to developers through an issue tracker.

For Java programs, most of the time, these reports contain a stack

trace, which provides information such as the type of the exception

causing the crash and the stack of method calls (the frames) through

which the exception has occurred. A developer relies on this stack

trace to understand the root cause of the crash, debug, and fix the

software. Zeller describes how writing a test able to reproduce a

reported crash is one of the helpful practices to ease debugging [19].

Similarly, Soltani et al. [16] indicate that crash reproducing tests

help developers to fix bugs faster. Eventually, such tests can be

adapted and added to the test suite to prevent future regressions.

However, reproducing a crash using its reported stack trace is

a laborious and time-intensive task [16]. Also, we observed that

manually reproducing a crash requires an experienced developer

who has the proper amount of knowledge about the software.

Many automated approaches for crash reproduction have been

introduced in the literature to ease the debugging process [2, 11, 13,

15, 16, 18]. These approaches either use runtime data or the stack

trace to perform crash reproduction. For the former, the accuracy

depends on the amount of data considered. However, such data

are not always available due to the overhead induced by the data

collection, or privacy violation concerns. In contrast, the latter

approaches solely rely on stack traces, collected from issue reports

or execution logs.

Among the different stack-trace-based crash reproduction ap-

proaches, Rößler et al. [13] and Soltani et al. [16] rely on Search-

Based Software Testing (SBST) to automatically generate a crash

reproducing test. Soltani et al. [16] empirically showed that evolu-

tionary approaches based on guided operators outperform other

existing approaches and confirmed the usefulness of the generated

tests for debugging purposes.

In this paper, we present Botsing: an open-source, extendable

search-based crash reproduction framework. Botsing implements

search-based crash reproduction approaches introduced in previous

studies [13, 15, 16]. The tool takes as input a stack trace and soft-

ware under test. Then, it starts a single-objective or multi-objective

search process to generate a test reproducing the crash.

Botsing has been designed as an extendable framework for

implementing new features and search algorithms for crash repro-

duction. For example, in our recent study on the impact of various

seeding strategies on crash reproduction, we have implemented

1278

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/


Test Case Generation

Fitness Functions

Object Pool

Test Case 
Replicating 
the Crash

Test 
Concretisation

Models

Test Selection
Vibes

!

Stack Trace

JAR

Application

Existing Tests

Botsing

Evolutionary Search
Single Obj.

Multi-Obj.
Trace-based

Integration

Multi-obj.

Seeding 

Test Carver

Figure 1: Botsing architecture overview

multiple seeding strategies in Botsing [4]. These seeding strategies

leverage existing knowledge about the software under test to ease

the test generation process. To evaluate these strategies, we used

124 real-world crashes from JCrashPack [14], a benchmark for

Java crash reproduction tools. The results show that Botsing can

reproduce 66 (out of 124) crashes without seeding. This number is

improved to 70 by using model seeding.

From an industrial perspective, Botsing is used by our partners

in the STAMP project.1 They confirmed the relevance of Botsing

for debugging and fixing application crashes [1]. The feedback —as

well as the crash reproducing test cases— from our partners using

Botsing are openly available in the STAMP GitHub repository.2

2 USAGE

Botsing is available as an open-source tool at https://github.com/

STAMP-project/botsing. A user can download the jar file and run

the tool using the command line according to the existing documen-

tations [17]. For the example in Figure 2, we can call Botsing with

the following command: java -jar botsing-reproduction.jar
-project_cp <path> -crash_log LANG-9b.log -target_frame
5, where <path> is the directory with the jar files of Apache com-
mons lang. At the end of the search process, Botsing generates the

test case in Figure 3. In general, a developer needs to provide a log

file containing the stack trace and the classpath to the jar file and

all the dependencies of the software under test. To activate seeding

strategies, she also needs to provide the compiled version of test

cases (for test seeding) or the behavioral models generated by the

model inference module.

3 BOTSING

The goal of Botsing is finding a test case that reproduces a crash,

according to the corresponding stack trace. In this section, we

first present the general workflow, and, next, describe the seeding

strategies implemented in Botsing.

1Available at http://stamp-project.eu/
2Available at https://github.com/STAMP-project/botsing-usecases-output.

0 java.lang.ArrayIndexOutOfBoundsException: 4

1 at [...]. FastDateParser.toArray(FastDateParser.java :413)

2 at [...]. FastDateParser.getDisplayNames ([...]:381)

3 at [...]. FastDateParser$TextStrategy.addRegex ([...]:664)

4 at [...]. FastDateParser.init ([...]:138)

5 at [...]. FastDateParser.<init >([...]:108)

6 [...]

Figure 2: LANG-9b crash stack trace [10, 14]

@Test(timeout = 4000)

public void test0 () throws Throwable {

Locale locale0 = FastDateParser.JAPANESE_IMPERIAL;

TimeZone timeZone0 = TimeZone.getDefault ();

FastDateParser fastDateParser0 = null;

fastDateParser0 = new FastDateParser("GMTJST", timeZone0 ,

locale0);

}

Figure 3: LANG-9b crash reproducing test [14]

Figure 1 presents the general architecture of Botsing. The main

component is the Test Case Generationmodule, which takes as input

the binaries of the application and a Java stack trace. A stack trace

contains two parts: the first line, indicating the type of the exception,

followed by a list of frames. Each frame points to a specific line

of code in the software under test. For instance, the stack trace

of Figure 2, caused by a bug in the Apache commons-lang library

[10, 14], indicates that an ArrayIndexOutOfBoundsException is
thrown (at line 0) and propagated through different frames (from

line 1 to line 6), indexed from 1 (at line 1) to the total number of

frames in the stack trace.

To generate a unit test, Botsing requires to set the target frame

and its associated target class for which the unit test will be
generated. For instance, when setting the target frame to 5 for the

stack trace in Figure 2, Botsing generates a unit test for the target

class FastDateParser, presented in Figure 3. The last statement of
the test case (calling the target method FastDateParser.<init>)
triggers a crash, generating the same stack trace as in Figure 2.

Once the input is provided, Botsing starts an Evolutionary Search

to generate a test case that triggers the target crash. To guide the

search, at each iteration, the Fitness Functionmeasures the adequacy

level of the current set of generated tests w.r.t. their ability to re-

produce the crash. By default, the tests in this search process are

generated randomly to promote exploration of the search space.

Each generated test uses objects in a random manner through ran-

dom method sequences. However, there are no guarantees that

these random usages of the objects are correct w.r.t. the explicit or

implicit specification of the classes, which can lead to misguiding

the search process. To alleviate such a limitation, Botsing includes

a seeding mechanism that can be activated to generate objects and

method calls closer to real-world scenarios, based on the knowl-

edge of the software. The seeding process can rely on two types

of knowledge: (i) the existing manually-written tests, or (ii) the

models (i.e., transition systems) abstracting usages of each class.

In the remaining part of this section, we describe the test case

generation and the seeding mechanism, including the model gener-

ation process.

1279



3.1 Test Case Generation

In the first step of the search process, Botsing generates a random

initial population of test cases such that: (i) each individual in this

population is a test case containing a sequence of calls to methods

of the target class; and (ii) the last method called in the sequence is

the target method. After generating the random initial population,

Botsing starts an evolutionary search process to refine the test

cases until one can reproduce the stack trace. At each iteration,

Botsing will select the best individuals in the population to build

the next generation of test cases using crossover and mutation.

To select the best test case, Botsing relies on a fitness function to

compute a distance measuring how close the execution of a test case

is to reproducing the crash. Three fitness functions are available in

Botsing. The default fitness function is the single objective fitness

function [16]. This fitness function combines three conditions in

one single measure (i.e., one objective): (i) if the generated test

reaches the line of the target frame, (ii) if it throws the same type

of exception, and (iii) if the occurred stack trace in the generated

test is similar to the given one. As an alternative, Botsing can

use multi-objectivization approaches (to improve diversity), which

splits the single-objective fitness function in three independent

sub-objectives [15], or add two helper objectives (method-sequence

diversity and test length minimization) [6]. The last fitness function,

introduced by Rößler et al. [13], checks if the generated test covers

each frame one by one and, after covering all of the frames, checks

the type of the thrown exception.

After selecting the fittest test cases, Botsing uses the two stan-

dard evolutionary operations [9] to produce the next generation

of test cases: single-pointed crossover and mutation. After the appli-

cation of each operator, there is a risk that the test case no longer

contains the target method. To prevent such test cases from being

included in the next generation, we use an additional operator to

repair the evolved chromosomes (if needed) [16]. Botsing contin-

ues the search until it produces a test case able to reproduce the

given stack trace or until it exceeds its given time budget (timeout).

3.2 Seeding

One of the challenges in search-based crash reproduction is reach-

ing the state that throws the given exception [14]. In some cases,

it is hardly feasible using only random test generation. Seeding

addresses that problem by providing additional information to the

search process, based on the knowledge of the system. Botsing

implements two seeding strategies: (i) the Test Seeding strategy

introduced by Rojas et al. [12] and suitably adapted for crash repro-

duction, and (ii) a novel seeding strategy called Behavioral Model

Seeding, introduced in our previous study [4].

Test Seeding. Instead of random generation, test seeding uses

the existing test cases, manually-written by developers, and exe-

cutes them to observe the usages of the different objects created

during the execution. During this process, called carving, the objects

are added to an object pool, used later during the test generation.

We adapted EvoSuite’s implementation of test seeding to crash

reproduction: i.e., we implemented an additional step to check that

the carved objects of the target class indeed call the target method

(i.e., the methods in the crash stack frames).

size()

add(Object)iterator()

S0
get(int)

remove(int)

S1

S2S3

remove(int)

S4

S5

S6

size()

add(Object)

size()

add(Object)

Figure 4: Transition system with the usages of linkedLists

JAR

Application

Model Inference 

Botsing Model Generator

Static Analysis

Dynamic Analysis

Inference
YAMI

Models

Existing Tests

Figure 5: Model Inference architecture overview

3.2.1 Behavioral Model Seeding. The second seeding strategy im-

plemented in Botsing is Behavioral Model Seeding [4]. This seeding

strategy gets a set of transition systems, representing usages of a

set of classes, as input. These models are generated by the Model
Inference module, described hereafter. Each transition system

models the potential method call sequences for a class. For instance,

Figure 4 shows the transition system for Java LinkedLists. Each
transition is a method call, and each path is an abstract behavior

denoting a potential sequence of method calls. Botsing relies on

VIBeS [8], a model-based testing tool, to select the most dissimilar

paths (i.e., abstract behavior) in a model. Next, it concretizes the

abstract behavior to a concrete object with method sequence, and

adds it to the object pool. To mimic realistic usages of a class, the

objects in the pool are later used during the search process to craft

test cases.

Model Inference. Figure 5 shows the architecture of the Model

Inference module. This module observes how specific classes are

used in the source code and the manually-written test cases to

learn a behavioral model. For source code, the module applies static

analysis and collects all of the sequences of method calls for the

classes under analysis. For existing test cases, it performs dynamic

analysis and executes all the tests to collect sequences of methods

(effectively) called on the different objects during test execution.

After collecting the call sequences, Botsing abstracts them in tran-

sition systems (one transition system per class) using YAMI [7],

a 2-gram model inference tool. Practically, for one system, model

inference is a one-time process: i.e., the generated models can be

used for different executions of Botsing.

3.3 Implementation

Botsing relies on EvoSuite for code instrumentation, test case

manipulation and execution. Concretely, we use evosuite-client
as a dependency. During the implementation of Botsing, we ex-

tend the existing classes in EvoSuite to adapt them to the crash

1280



reproduction problem. For instance, Botsing needs to instrument

the classes appearing in the given stack trace. In contrast, EvoSuite

is a unit testing tool and it instruments only one class. Hence, for

implementing fitness functions for crash reproduction we need to

extend the instrumentation of EvoSuite. To make some classes

extendable in EvoSuite, we had to change the visibility of some

classes in EvoSuite. Hence, we change the access level of some

methods in some classes to make sure that we can extend those

classes. These changes on EvoSuite are available in our fork from

the main repository.3

Botsing’s architecture is designed to be extendable. For this

purpose, most of the classes related to different parts of the genetic

algorithm (e.g., fitness functions, genetic algorithm, etc.) are de-

signed as factory classes. We also reported the architecture and a

contribution guide in the documentation [17].

4 EVALUATION

We use JCrashPack [3, 14], a crash benchmark for evaluating crash

reproduction approaches, to assess Botsing. This benchmark con-

tains real-world crashes collected from seven well-known projects,

namely Closure compiler, Apache commons-lang, Apache commons-

math, Mockito, Joda-Time, XWiki, and ElasticSearch. Moreover, to

ease benchmarking using JCrashPack, we developed a bash-based

execution runner, openly available on GitHub.4 This experiment

runner runs different instances of a crash reproduction tool (here,

Botsing) in parallel processes and collects relevant information

about the execution in a CSV file.

In our evaluation of the impact of test and model seeding for

search-based crash reproduction [4], we ran Botsing without seed-

ing and with each implemented seeding strategy on JCrashPack.

Due to the involved randomness in the search process, we repeat

each execution 30 times. We observe that Botsing can reproduce

66 (out of 124) crashes without any seeding strategy in a majority of

the executions. The implemented seeding strategies help the crash

reproduction process to reproduce four additional crashes in the

majority of executions.

In total, we run 186,560 independent Botsing runs, distributed

among two clusters with 20 CPU-cores, 384 GB memory, and 482

GB hard drive. The results and replication package of this study are

openly available on Zenodo [5]. The relevance of Botsing for crash

reproduction has been confirmed by our industrial partners [1].

Botsing reproduced 25%, 20%, and 30% of crashes in TellU, XWiki,

and OW2 projects, respectively. Compared to the complexity of

the used projects (for instance, XWiki has an average of 177K non-

commenting statements), the reproduction ratios are noteworthy.

5 CONCLUSION

In this paper, we introduced Botsing, an open-source search-based

crash reproduction framework, which contains the implementation

of the best-performing approaches. It also contains the adapted

version of the Test Seeding strategy, whichwas originally introduced

for search-based software testing, but whichwe adapted to the crash

replication context. Additionally, Botsing provides a novel seeding

strategy, called Behavioral Model Seeding.

3https://github.com/STAMP-project/evosuite-ramp
4https://github.com/STAMP-project/ExRunner-bash

The Botsing framework is developed with extensibility in mind.

So, it can be used for implementing new features and genetic al-

gorithms for the crash reproduction problem. We also provide an

open-source evaluation infrastructure to ease the assessment pro-

cess of the new approaches.

In our evaluation, Botsing can reproduce 66 crashes out of 124

hard-to-reproduce crashes, partially or entirely, in the majority of

executions. This number increases to 70 crashes when using Behav-

ioral Model Seeding. Also, Botsing has been used by our industrial

partners. They managed to reproduce some of their crashes using

Botsing and argued that Botsing is helpful for their debugging

practices.

ACKNOWLEDGMENTS

This research was partially funded by the EU Project STAMP ICT-

16-10 No.731529.

REFERENCES
[1] Mael Audren, Mohamed Boussaa, Lars Thomas Boye, Pierre-Yves Gibello, Jesús

Gorroñogoitia, Vincent Massol, Fernando Mendez, Assad Montasser, and Pe-
dro Velho. 2019. STAMP WP5 - D5.7 - Use Cases Validation Report V3.
https://www.stamp-project.eu/view/main/deliverables.

[2] Ning Chen and Sunghun Kim. 2015. STAR: Stack trace based automatic crash
reproduction via symbolic execution. IEEE Trans. on Software Engineering 41, 2
(2015), 198–220. https://doi.org/10.1109/TSE.2014.2363469

[3] Pouria Derakhshanfar and Xavier Devroey. 2020. JCrashPack: A Java Crash
Reproduction Benchmark. Zenodo. https://doi.org/10.5281/zenodo.3766689

[4] Pouria Derakhshanfar, Xavier Devroey, Gilles Perrouin, Andy Zaidman, and
Arie Deursen. 2020. Search-based crash reproduction using behavioural model
seeding. STVR 30, 3 (may 2020), e1733. https://doi.org/10.1002/stvr.1733

[5] Pouria Derakhshanfar, Xavier Devroey, Gilles Perrouin, Andy Zaidman, and Arie
van Deursen. 2019. Replication package of "Search-based Crash Reproduction using
Behavioral Model Seeding". https://doi.org/10.5281/zenodo.3673916

[6] Pouria Derakhshanfar, Xavier Devroey, Andy Zaidman, Arie van Deursen, and
Annibale Panichella. 2020. Crash Reproduction Using Helper Objectives. In
Genetic and Evolutionary Computation Conference Companion (GECCO ’20 Com-
panion). ACM, Cancún, Mexico. https://doi.org/10.1145/3377929.3390077

[7] Xavier Devroey, Gilles Perrouin, Maxime Cordy, Hamza Samih, Axel Legay,
Pierre-Yves Schobbens, and Patrick Heymans. 2017. Statistical prioritization for
software product line testing: an experience report. Software & Systems Modeling
16, 1 (feb 2017), 153–171. https://doi.org/10.1007/s10270-015-0479-8

[8] Xavier Devroey, Gilles Perrouin, Axel Legay, Pierre-Yves Schobbens, and Patrick
Heymans. 2016. Search-based Similarity-driven Behavioural SPL Testing. In
Proceedings of the Tenth International Workshop on Variability Modelling of
Software-intensive Systems - VaMoS ’16. ACM Press, Salvador, Brazil, 89–96.
https://doi.org/10.1145/2866614.2866627

[9] Gordon Fraser and Andrea Arcuri. 2011. Evolutionary Generation of Whole Test
Suites. In Proc. Int’l Conf. on Quality Software (QSIC). IEEE, 31–40.

[10] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis - ISSTA 2014.
ACM Press, San Jose, CA, USA, 437–440. https://doi.org/10.1145/2610384.2628055

[11] Mathieu Nayrolles, Abdelwahab Hamou-Lhadj, Sofiene Tahar, and Alf Larsson.
2015. JCHARMING: A bug reproduction approach using crash traces and directed
model checking. In 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). IEEE, 101–110. https://doi.org/10.1109/
SANER.2015.7081820

[12] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. 2016. Seeding strategies in
search-based unit test generation. Softw. Test. Verif. Reliab. 26, 5 (2016), 366–401.
https://doi.org/10.1002/stvr.1601

[13] Jeremias Rößler, Andreas Zeller, Gordon Fraser, Cristian Zamfir, and George
Candea. 2013. Reconstructing core dumps. In Proc. International Conference
on Software Testing, Verification and Validation (ICST). IEEE, 114–123. https:
//doi.org/10.1109/ICST.2013.18

[14] Mozhan Soltani, Pouria Derakhshanfar, Xavier Devroey, and Arie van Deursen.
2020. A benchmark-based evaluation of search-based crash reproduction. Empiri-
cal Software Engineering 25, 1 (jan 2020), 96–138. https://doi.org/10.1007/s10664-
019-09762-1

[15] Mozhan Soltani, Pouria Derakhshanfar, Annibale Panichella, Xavier Devroey,
Andy Zaidman, and Arie van Deursen. 2018. Single-objective Versus Multi-
objectivized Optimization for Evolutionary Crash Reproduction. In Symposium

1281



on Search-Based Software Engineering. SSBSE 2018. (LNCS), Thelma Elita Colanzi
and Phil McMinn (Eds.), Vol. 11036. Springer, Montpellier, France, 325–340. https:
//doi.org/10.1007/978-3-319-99241-9_18

[16] Mozhan Soltani, Annibale Panichella, and Arie Van Deursen. 2018. Search-Based
Crash Reproduction and Its Impact on Debugging. IEEE Transactions on Software
Engineering (2018). https://doi.org/10.1109/TSE.2018.2877664

[17] STAMP. 2019. Botsing documentation. https://stamp-project.github.io/botsing/

[18] Jifeng Xuan, Xiaoyuan Xie, and Martin Monperrus. 2015. Crash reproduction via
test case mutation: Let existing test cases help. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2015. ACM Press,
New York, New York, USA, 910–913. https://doi.org/10.1145/2786805.2803206

[19] Andreas Zeller. 2009. Why Programs Fail, Second Edition: A Guide to Systematic
Debugging (2nd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

1282


