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ABSTRACT

The first- and second-order transient, free-surface wave radiation problems are posed
as initial-boundary-value problems. They are then recast in the form of Fredhoim-
Volterra integral equations by the use of Green's second identity.

In the case of the first-order problem, the integral equation is solved in discrete form
by a panel method. Numerical solutions are presented for simple and complicated
(multiple large-volume elements) bodies. It is shown that these solutions exhibit
behavior which may be associated with the irregular frequency phenomenon of the
analogous frequency-domain solutions. A method is presented for the elimination
of this behavior through the use of the large-time asymptotic approximation for the
impulse response function. Its efficacy is demonstrated for simple bodies.

In the case of the second-order problem, a method is derived for determining the
unsteady force due to the second-order potential without solving for the second-order
potential itself. The calculation of this unsteady force, on a heaving, right-circular
cylinder, is used as a model problem for the investigation of numerical difficulties
in second-order transient problems, in general. The method retains much of the
numerical complexity of the equation to be solved for the second-order potential,
but reduces the computational effort. The primary numerical difficulty is that of
evaluating first-order quantities on the free surface in proximity to the body. The
limitations of the discretized Green-formulation for this task are demonstrated by
comparison of results with those of an alternate method which is ideally suited to
the body under study.



Science is a first-rate piece of furniture for a man's upper

chamber, if he has common sense on the ground floor.

OLIVER WENDEL HOLMES
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1. INTRODUCTION

Hydrodynamicists in the fields of Ocean Engineering and Naval Architecture have

a considerable interest in studying the fluid flow which results from the interaction

of free-surface waves and restrained or floating bodies. Assumptions leading to the

representation of the flow field by a scalar potential are usually made, and the prob-

lems may be posed as initial-boundary-value problems to be solved for this potential.

These problems are non-linear due to the free-surface, and in some cases the body,

boundary conditions and may be attacked directly, or through perturbation expan-

sion in some small parameter. Computational resources have limited the former

approach to a few special cases, and so the latter approach has received most of

the attention. In this method, a series of linear problems are generated, each at

an order of the small parameter. This allows Fourier decomposition of the original

transient or 'time-domain' problem, into a problem which is usually solved at dis-

crete frequencies as a time-harmonic problem in the 'frequency domain.' A further

decomposition, based on physical arguments and justified by John (1950), splits the

first-order problem into two problems which are coupled through the equations of

motion: the generation of waves due to the unsteady motion of the body, 'the ra-

diation problem;' and the scattering of ambient waves by the stationary body, 'the

diffraction problem.' A more elaborate procedure is required at higher orders. There

is a further complication if the body is undergoing steady translation as well, giv-

ing rise to 'the unsteady forward speed problem.' The frequency-domain analysis of

wave-body interactions has been extensive at first-order and has enjoyed some success

at second-order [for reviews see Ogilvie (1983) and Kim (1988)]. The perturbation

approach in the time domain has been formulated for some time, but only recently

have results been reported in the literature.
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Cummins (1962) and Ogilvie (1964) derive first-order, time-domain equations of mo-

tion for a ship, including forward speed effects in the latter reference. These equations

are used by Ogilvie as a framework in which to better understand the frequency do-

main formulation, and the relationships between time- and frequency-domain quan-

tities are discussed. For instance, that the added-mass and damping coefficients are

Fourier cosine and sine transforms of the impulse response function, leads directly

to the Kramers-Kronig relations. The equations of motion provide a context for the

time-domain radiation and diffraction problems.

Stoker (1957) and Wehausen (1971) discuss the mathematical aspects of the Fredholm-

Volterra integral equation which they derive via Green's second identity from the

initial-boundary-value problems for first-order radiation or diffraction. The former

provides a proof of uniqueness for the general, first-order, transient, wave-body prob-

lem in an unbounded domain, based on the work of Finkelstein (1953). The latter

relates the frequency- and time-domain problems, and provides an extensive bibli-

ography of the important early references for work in both domains. While Stoker

and Wehausen both provide mathematical discussion, they do not contain compu-

tational results. It is not until Yeung (1982), for two-dimensional flow, and New-

man (1985a), for axisymmetric flow, that transient results from the solution of the

Fredholm-Volterra integral equation are reported. Both of these references provide

time histories of forces on bodies which are freely floating and in forced motion.

Yeung provides the relation between the unit initial-displacement response and the

unit initial-velocity response. Newman matches the computed impulse response func-

tion to a two term, large-time, asymptotic approximation, and by Fourier transform

recovers the familiar frequency-domain hydrodynamic coefficients: added-mass and

damping.

Liapis (1986) employs the integral equation for body displacement which is Heavi-

side like. In this work, solutions of the radiation problem by the source distribution

method as well as the potential formulation are explored and compared. The objec-

tive of Liapis (1986) is the formulation and solution of the forward-speed radiation
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problem in the time-domain. This is accomplished, and through the use of the Fourier

transform, the frequency-domain, forward-speed, hydrodynamic coefficients are pre-

sented for a Series-60 ship in the heave and pitch modes. Continuing this effort, King

(1987) investigates the forward-speed diffraction problem. As in the above cited work

of Liapis, there are some important zero-speed results presented as well. Of primary

interest is the investigation of initiating transient problems with broad-band but non-

impulsive inputs. Through the use of the Fourier transform, King (1987) presents

frequency-domain, forward-speed, exciting force coefficients for the Wigley hull in the

heave and pitch modes. Both of these authors claim computational advantages over

the frequency-domain approach to the unsteady forward-speed problem, and point

out that oniy in the time-domain can the problem of unsteady motion of a ship in a

maneuver be considered.

Extension to second-order, of the transient problem without forward speed, is the

subject of the thesis of Wang (1987). Wang solves the second-order diffraction prob-

lem for a vertical right-circular cylinder of infinite depth, and derives the second-order

Green functions for radiation and diffraction. This latter achievement may make the

second-order problem more tractable, but considerable numerical analysis remains

before this result may be computationally applied.

The present work considers the transient radiation problem at both first and second

orders. At first order, the general, three-dimensional-body problem is formulated

and solved. At second order, an analogous problem is formulated. A formulation for

the calculation of the second-order unsteady force due to the second-order potential

is derived, and for an axisyinmetric case is used to investigate the properties of

panel methods in second-order transient problems. Interest in first-order transient

problems at zero speed is motivated by:

possible computational efficiencies in finding hydrodynamic quantities traditionally

computed in the frequency domain;

the need of the impulse response function in the calculation of arbitrary transient

responses at first order;
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the need to provide first-order outer solutions for matching to non-linear solutions

near a body;

the requirement for time-domain solutions in quasi-non-linear approaches where

the body-boundary condition is treated non-linearly for large excursions, while the

free-surface boundary condition is approximated at first-order.

Interest in second-order transient problems at zero speed is motivated by:

the possibility of using a second-order impulse response function to find sum and

difference frequency quantities in the frequency domain;

to provide second-order outer solutions for matching to non-linear solutions near

a body;

investigation of forced motion problems which may not require a fully non-linear

treatment.

The Thesis motivates the perturbation approach to the radiation problem, and then

investigates the first- and second-order problems. In Section 2, the exact initial-

boundary-value problem for the fluid velocity potential is posed and expanded in

powers of a small parameter. The emphasis here is on the justification for the proper

initial conditions. In the Appendix, the canonical initial-boundary-value problem,

which may be written at any order is recast as a Fredhoirn-Volterra integral equation

to be solved for the unknown potential on the surface of the body. This integral

equation is derived through the use of the first-order, transient, free-surface, Green

function but is applicable to any order. It is specialized to a particular order upon

substitution of the appropriate right-hand sides of the free-surface and body boundary

conditions. This equation contains an integral to be computed over the free surface

at second-order and above, and this aspect is responsible for the difficulty of these

higher-order problems.

In Section 3, the first-order transient radiation problem is discussed and its relation to

the more familiar frequency-domain formulation is detailed. The discrete form of the

integral equation is presented; and in Section 4, the numerical aspects of its solution
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are discussed. This introduces the subject of irregular-frequency effects which show

up at large time in the impulse response function. Irregular-frequency effects are well

documented in the frequency domain, and are shown to be present in the time domain

as well by Adachi and Ohmatsu (1979). Newman (1985a) uses a two-term, large-

time, asymptotic representation of the impulse response function to mitgate these

effects. This was derived from the low-frequency approximation of the exciting force

through the use of the Fourier transform. In Section 5, this idea is developed further

and connected to the low frequency asymptotic representations of the added-mass

or damping coefficients developed by Simon and Hulme (1985). Impulse response

functions for the hemisphere with asymptotic corrections are presented in Section 6.

There is also a numerical investigation of irregular-frequency effects. The impulse

response function for a Tension Leg Platform is shown and its Fourier transform is

compared to frequency-domain results. The benefit of parallel time- and frequency-

domain analysis for complicated structures becomes evident here.

The second-order transient problem is discussed in Section 7. The problem of de-

termining the second-order velocity potential is not solved. Rather, in Section 8, a

quadrature formulation for determining the second-order unsteady force on a har-

monically oscillated body which is started impulsively is derived. Computationally,

this exercise retains much of the numerical difficulty of determining the potentail

itself, and so it is a good model problem at second-order. The numerical difficulties

at second-order are substantial. Temporal and spatial derivatives of the first-order

potential must be found and integrated over the free-surface. The extent of the

free surface involved in the computation is small due to the rapid spatial decay of

the integrand, but close to the body, the evaluation of quantities by panel meth-

ods is difficult. In fact, very close to the body, panel methods (at least those with

constant-strength panels), are not useful for the computation of fluid velocities, a

fact also observed in the frequency domain [Kim (1988)1. Section 10, explores the

deficiency of the panel method by using a different method, particularly applicable

to the right-circular cylinder, to determine more accurately the first-order potential
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and its derivatives very close to the body. Section 11 contains a discussion of the

thesis topics, conclusions and recomendations.

There is no separate listing of nomenclature, because it is defined in context. In

Section 2., where the exact problem is posed, the equations are dimensional as that

helps to convey the physical aspects of the problem. The rest of the thesis is consis-

tently normalized by setting the acceleration due to gravity, the fluid density, and a

representative body dimension equal to one, with the exception of the hydrodynamic

coefficients for the hemisphere which are non-dimensionalized by the displaced fluid

mass. The following conventions apply throughout the thesis:

Vector quantities are indicated by an arrow, as in L.

Subscripts indicate partial differentiation with respect to the subscript variable.

Superscript numerals, when not in parentheses, are exponents.

Superscript numerals, when in parentheses, indicate the order in the small param-

eter to which the quantity or function belongs, as in a first-order potential.

Superscript letters indicate the type of problem to which a function belongs, as in

(')', the first-order impulsive potential.

The equations for the velocity potentials at first and second order and the unsteady

forces at second order are presented in their most general form, and hence apply

to a general three-dimensional body in arbitrary motion unless clearly indicated

otherwise. In the sections on numerical considerations, equations are specialized to

the particular problem under consideration.

Figures for each section are located after the last page of text of the particular section.
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2. PERTURBATION EXPANSION OF THE RADIATION PROBLEM

We consider the problem of determining the flow which results when a body is forced

to move in a semi-infinite fluid with a free surface. The problem is idealized by

the assumptions of an irrotational flow and an incompressible, inviscid fluid. These

assumptions allow us to describe the velocity field as the gradient of a scalar potential,

and conservation of mass requires that this potential satisfies the Laplace equation.

In addition we simplify the free-surface boundary condition by neglecting surface

tension. For generality we consider the case of a surface-piercing body. The inertial

coordinate system and the labeling of the fluid boundaries are shown in Figure 2-1.

For a semi-infinite fluid, with the pressure equal to zero on the free surface, we have

the following problem formulation (where arguments have been omitted if there is no

ambiguity): (i,t) must satisfy:

V2(±,t) = O in the fluid domain, (2.1)

ç5. ñ, t) = Ü(i, t) . on the exact body boundary, (2.2)

where Ü(E,t) is the body velocity and ri(i,t) is the inward directed, unit-vector,

normal to the body surface,

gç + + + + ) = O on the exact free surface, (2.3)

xçx + + t = & also on the exact free surface, (2.4)

and
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, 4, , are uniformly bounded as - 00 for finite time. (2.5)

In (2.3) and (2.4), ç(z, y, t) is the free-surface elevation. As in any transient problem,

we must specify initial conditions. That is, we must specify the position and velocity

of every fluid particle at t = 0. Since t) is a harmonic function, this reduces

to a specification of the boundary positions and the value of (i, t) or ,. (, t) on
those boundaries at t = 0+. In the radiation problem, the location of all surfaces

except the free surface is prescribed for all time, and the body boundary condition

(2.2) and the conditions far from the body (2.5) prescribe the potential or its normal

derivative for all time, so initial conditions on the free surface are all that remain to

be specified. From causality, for a body starting from rest at t = 0, all fluid particles

are at rest, and the free surface has zero elevation for times t < 0. In the present

treatment of the problem, the body velocity will be initiated in a Heaviside manner

in time. It is necessary in the ensuing derivation of initial conditions that we assume

this to be the most singular velocity anywhere in the fluid at time t = 0. As fluid

particle displacement is the integral in time of fluid particle velocity, the free surface

elevation must be bounded at t = 0. With these two points in mind, we formally

integrate the free-surface conditions (2.3) and (2.4) from t = O to t = r. Letting

r -* 0+, eliminates those terms with finite integrands, and the causality condition

eliminates contributions at the lower integration limit, leaving only:

ç(x,y,0) =0 (2.6)

from equation (2.4), and

(o) =0 on z = 0, the position of the quiescent free surface (2.7)

from equation (2.3).

We assume that for all time the elevation of the free surface has small sLope. This
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formally justifies the expansion of the potential and the free-surface elevation in terms

of a small parameter. Then, following Stoker (1957) we write:

(i) + 22) + 3(3) + (2.8)

and,

ç(x,y,t) = (o) + (l) + + ... (2.9)

It is further assumed that since the displacement of any of the boundaries is small,

quantities may be represented by Taylor expansions about the initial positions of

the body and free surfaces, SB and SF, respectively. In addition, the right-hand

side of the body boundary condition, which is known exactly, must be expanded as

well. This expansion arises from a decomposition of Û(,t) into contributions at each

order, as well as terms which relate the normal vector in the inertial frame to the

more convenient representation in a body-fixed frame. This expansion is provided in

its most general form in Ogilvie (1983), and so will not be presented until specific

instances of body motion are investigated.

To formulate problems at different orders, the technique is to insert the expansions

(2.8) and (2.9) into the field equation, the boundary conditions and the initial con-

ditions; and separate the resulting expressions in powers of E. The result is a series

of linear problems, one at each order. It is easy to show ç() vanishes for all time.

So we are interested in the first two non-trivial problems at O(e) and o(e2), which

are examined in detail in the remainder of the thesis, with each problem formulation

presented in Sections 3 and 7, respectively.
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Figure 2-1. The coordinate system for the transient radiation problem. Surface
identifications apply to the initial positions of the surfaces as understood in the first-
and second-order problems.
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3. THE FIRST-ORDER RADIATION PROBLEM

To generate the first-order radiation problem, the expansions for t) , ç(x, y, t),

and the right-hand side of the body boundary condition, equations (2.8), (2.9), and

(2.10) respectively, are inserted in the exact problem statement, equations (2.1)

through (2.7). Boundary conditions are now to be satisfied on the initial body po-

sition SB, and the quiescent free surface SF. The problem has been normalized by

setting the acceleration due to gravity, the fluid density, and a body dimension equal

to one. We will consider the radiation of surface waves by a body velocity which

is initiated in a Heaviside manner at t 0. The subsequent body velocity may in

principle be arbitrary, but we will be interested in two particular cases. One is im-

pulsive motion: the body velocity takes a small constant value at t = 0+. The other

is harmonic motion: the velocity begins a small-amplitude cosine variation in time

at t = 0, with frequency w. In both cases the motion is in a single mode. The

problem may also be formulated for a body with displacement, not velocity, which is

a Heaviside function (Beck and Liapis 1987).

Without restriction on the nature of the body velocity, provided that it is initiated

in a Heaviside manner, the 0(c) problem statement is that (1) (,t) must satisfy:

V2'(i,t) = O in fluid domain (3.1)

+ = O on the quiescent free surface, SF (3.2)

_') =0 on the quiescent free surface, 5F (3.3)



The two equations on the free surface may be combined to give a single free-surface

condition containing the second derivative of the potential with respect to time:

+ = O on the free surface, SF (3.4)

= B(1)(±*,t) t > O oir the body surface, S8 (3.5)

j), are uniform'y bounded on S, for t finite. (3.6)

The right-hand side of the body boundary condition, 3('), is defined for specific cases

in equations (3.10) and (3.11), below. The exact initial condition, equation (2.7) by

itself; and use of the 0(c) dynamic free-surface condition, equation (3.2), with the

exact initial condition, equation (2.6), gives the initial conditions for the first-order

problem:

'(x,y,0,0) = 0, (3.7)

and

(1)
P (x,y,O,0)=O.

Following Stoker (1957) or Wehausen (1971), we may recast this initial-boundary-

value problem as an integral equation to be solved for the value of the potential on the

body surface. For this, we require the transient free-surface Green function G(; (,t)

as derived by Wehausen and Laitone (1960), equation (A.7). We apply Green's second

identity to (, r) and G(i; e t - r), and with some manipulation, the surface

integrals on the free surface and at infinity vanish, leaving only an integral on the

body surface. After the usual treatment of the spatial singularity and integration of

the equation in time, we have a Fredhoim-Volterra equation for the unknown potential

on the body surface. The definition of the Green function, its decomposition into

18
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Rankine and wave parts, and the details of the derivation are found in the Appendix.

The result, which we find by specializing equation (A.16) for the 0(c) problem is:

2 1) (, t) + [f d1) (, t)G° (; ) + f drff d1) (, r) (; , t - r)
JJSB Jø+ S8

= [dril (x,tr)
Jo JJ58

+ ff dB' t)G°; ),
(3.9)

where the O integration limit acknowledges the Heaviside time dependence of 3(')(,t).

In the case of unit harmonic motion in a single non-rotative mode, with body-normal

component n, and at frequency w,

= n coswt t > 0. (3.10)

In the case of unit impulsive motion, again in a single, non-rotative mode with body-

normal component n,

= n t > 0, (3.11)

and equation (3.9) simplifies to:

27r' (,t) + ffd1)
( t)G° (; ) + f drff d1) (, r)G (; ,t - r)

=ffdn([G(0;) +G(;t)]
(3.12)

This impulsive problem formulation may be thought of as the Fourier transform of the

usual frequency-domain radiation problem formulation [given in Section 53 and has

small- and large-time limit solutions which are related to the low- and high-frequency

limits found in the frequency domain. A figure from Newman (1977) which explains
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the frequency-domain limits may be extended to include the time domain limits and

this idea is demonstrated in Figures 3-1 and 3-2.

As will be described in detail in Section 4, we solve discrete approximations to equa-

tions (3.9) and (3.12). This discretization is made in both space and time. The body

is approximated by N, plane, quadrilateral panels upon which ( 1) (i, t) is assumed

to be constant. The convolution integral is computed by the trapezoidal rule. The

discrete version of equation (3.9), which must be solved at each time-step, M, up to

the last time-step MT, is:

M-1 N
-.ff dG° (; ) - - 't Ji (z; tM -¿__i j,tn

S, rnO iS1

M N

Jism0 =1 J

N

+B)(tM)ff dG°(í;)
5=1 si

i=1,2...N M=O,1...MT,
(3.13)

where S5 is the surface of the je" panel and the prime on the summation in time

indicates a weight of one-half is applied when riz = O. There are two points which are

too important to be left until the section on numerics: one, the Fredhoim kernel is

independent of time, and two, G (; C, t) = O at t = O, so that the current value of

the unknown (')(,t) does not appear inside the discretized Volterra integral. The

discrete form of (3.12) is:

N M-1 N

27r'L + ff dG°(±;È) = - 'tV' Ji d, ijn(x,tMm)i 5,m

5=1 i m0 5=1

+nsffd[G(°)(ì;C +G(;t)]
i=1,2...N M=O,1...MT,

(3.14)

20
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The time-dependent potential resulting from the solution of (3.14) may be integrated

over the body to determine the transient added-mass

M(t) = ffd1,t)(±, (3.15)

which can be differentiated in time to provide the impulse response function

L(t) = ffd')(,t)1)(±. (3.16)

The impulse response function is related to the added mass and damping coefficients

of the linear, frequency-domain, radiation problem through the Fourier cosine and

sine transforms

a(w) = a(oo) + f dt L(t) coswt, (3.17)

and,

b()
= [dt L(t)sinwt.

w J0

21

(3.18)

In practice, we numerically transform a truncated, rather than infinite, impulse re-

sponse function, and this will lead to inaccuracies which are discussed in Section 6.

In an effort to provide an infinite record in the time domain, and to reduce these

inaccuracies in the frequency domain, we would like to provide an asymptotic con-

tinuation to the truncated time-domain record found from the solution of (3.14).

The derivation of the large-time asymptotic expansion for L(t), and its effects on the

Fourier transform, are discussed in Section 5.
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Figure 3-J.. Whent FO, C(i;,t) -+ In this 1imit,'(i,t) =Oonthefree
surface, as in the frequency-domain limit of w -k . The potential is anti-symmetric
with respect to the free surface. This limit defines the 'pressure-release' problem. For
heave, pitch, and roll this is also the infinite-fluid problem.

f -

Li L

j . . . (j)...Figure 3-2. When t -* , G(x;,t) -p + i--. In this limit, çt' (x,t) = O on the
free surface, as in the frequency-domain limit of w - O. The potential is symmetric
with respect to the free surface. This limit defines the 'rigid-lid' problem. For surge,
sway, and yaw this is also the infinite-fluid problem.
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4. NUMERICAL TECHNIQUES IN THE FIRST-ORDER PROBLEM

A FORTRAN computer code TÏMIT (TIme domain, Massachusetts Institute of

Technology) has been written which solves equation (3.13) by a panel method. The

name 'panel' refers to the fact that the body is described by a finite set of facets. The

panel-method approach to the solution of boundary integral equations is attributable

to Hess and Smith (1964), and was used in their solution of infinite-fluid aerodynamic

problems. Since that time, there has been wide use of this technique in the solution

of boundary-integral equation formulations of free-surface problems; primarily in the

solution of first-order, frequency-domain radiation and diffraction problems. Unlike

the time-domain formulation for wave-body interactions, the frequency-domain ap-

proach is often considered to be thoroughly investigated. However, Eatock Taylor

and Jefferys (1986) and Jefferys (1987) indicate that at least for complicated bod-

ies (that is multiple large volume elements which may be connected physically and

interact hydrodynamically) there can be large discrepancies between results from dif-

ferent panel codes. These references present various investigator's solutions for the

frequency-domain hydrodynamic coefficients for two different Tension Leg Platforms

(TLP). In the former reference, results are widely scattered, with 50 percent differ-

ences commonplace. In the latter reference, results differ by as much as 20 percent

over the frequency range of interest. Either these results are not convergent results

for each program or else complicated structures impose difficulties for panel-method

programs which are not revealed by the usual testing with simple bodies. In any

case these results are disquieting; and unfortunately, cast undeserved doubt on the

validity of panel methods in general.

Apparently, it is one thing to write a panel-method computer code which produces

acceptable results for simple bodies if sufficient computer resources are available; and
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quite another to write a computer code which produces efficient and accurate results

for simple bodies, and accurate results for complicated bodies as well. Provided that

there are no basic flaws in the aforementioned panel codes, then a likely source of the

discrepancies could be the care with which the Rankine and wave parts of the Green

function are calculated. During the last ten years of panel program development in

the hydrodynamics group of the Ocean Engineering Department at MIT, a major

effort has been directed towards this problem for both the frequency- and time-

domain, free-surface Green functions. The resulting subroutines for Green function

evaluation have been designed for efficient computation to an accuracy of six or seven

significant digits: RPAN, for the Rankine part; FINGREEN, for the wave part of the

frequency-domain Green function; and TGREEN, for the wave part of the transient

Green function [Newman (1986), Newman (1985b)1. TGREEN shares the accuracy

of its frequency-domain counterpart FINGREEN, but has not undergone extensive

optimization. The other tasks common to both time- and frequency-domain panel

codes are the description of the body geometry, and the solution of linear systems.

The former is performed by a subroutine GEOM, which was originally written for

frequency-domain work, and the latter by routines from the LINPAC library. This

history of panel-method research has made it possible to construct a time-domain

radiation code by employing these well-tested subroutines and thereby reducing the

uncertainty in the quality of the results.

The computer code which solves the discretized integral equation has been written

for a general 3-D body, with impulsive or harmonic motion in any mode. The body

is approximated by N, plane, quadrilateral panels. Each panel has four vertices

although two vertices may coalesce so that the quadrilateral becomes a triangle.

The program can take advantage of one or more planes of body symmetry. In the

following discussion we use N to refer to the number of unknowns, and this will

be a fraction of N if the body symmetry allows it. That is, if N panels are

required to accurately model the body, the number of unknowns in the problem will

be N = N if there is no symmetry, and N = N ¡(2 Ne), if there are N planes
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of symmetry. The potential is assumed to be constant over each panel, and the

convolution is approximated by the trapezoid rule, which has an error proportional

to O(zt2) (where zt is the time-step). The linear system implied by equation (3.13),

or the impulsive version (3.14), is established by collocation at the panel centroids.

The input consists of control parameters for the number of panels, the extent of

symmetry, the frequency and mode of motion, the number and size of the time-steps,

and a listing of the panel vertices.

Before time-stepping through MT increments of time can begin, there are several tasks

to be accomplished. The first of these is that the complete geometric description of

the body and the panels must be calculated. GEOM is called, and this routine finds

panel geometric properties such as centroid, area, moments of area, side lengths, and

direction cosines for its local coordinate system relative to the global system. Then

the t = O problem is set-up. This requires calls to RPAN to compute the Rank-

inc coefficients (±; ), which constitute the left-hand side matrix, and G° (; ),

which are part of the t = O right-hand side. This left-hand side is LU factored

once and for all subsequent time-steps by a LINPAC routine which performs Gauss

elimination with partial pivoting, and the factored matrix is stored in the memory lo-

cation previously occupied by the original matrix elements. Now the t = 0 problem

is solved by back substitution. As was mentioned in Section 3 this is the infinite fluid

problem for vertical modes and so for simple bodies its solution can provide a check

of the body discretization and geometry calculations before the computational effort

is invested in advancing the solution in time. This advancement requires evaluation

of the wave part of the time-domain Green function G(F) (i; ¿, t) as defined in (A.19),

and convolution with previous solutions to provide new right-hand sides. TGREEN

evaluates (; t) , and its spatial and temporal derivatives, for a particular time

and pair of panel centroids. The algorithms for these calculations are described in

detail in Newman (1985b), and consist of an ascending series representation when

t2/R' is small; and a five term asymptotic representation when t2/R' is large. A

plot of G(')(; t) is provided in Figure 4-1. At each time-step, the N values
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of G(; ,t) and G(i; t) calculated by TGREEN are stored in a scratch file
to avoid recomputation as they are required in all subsequent convolutions. Then
convolution of G(±; e t) with previous values of (')(,t) plus the convolution ofG(x t) with »t) provides the right-hand side. For most machines, ran-
dom access memory (RAM) will not be sufficiently large to store the 2 x MT x N2
coefficients, so these must be written to an auxiliary memory device. On the VAX
11/750, where the I/O is from and to a disk; and on the Cray X-MP/48, where the
I/O is from and to a solid-state device, this technique is an order of magnitude faster
than recomputation during convolution. Also, convolution requires that either the
coefficients or the solution vectors &' (, t) must be retrieved in the reverse order
from which they were calculated. Since i (i, t) requires far less storage than the
coefficients, only N X MT, it can be stored in RAM where it is just as convenient
and nearly as efficient to read 'backwards.'

The output from TÏMIT consists of ( (, t) at each panel centroid, M(t) and L(t)
(where L(t) is the impulse response function if the motion is impulsive), all as discrete
functions of time up to the maximum time of the calculation, MT x t. A post-
processor is used to Fourier transform the impulse response function, L(t), to obtain
the frequency-domain hydrodynamic coefficients, as in equations (3.17) and (3.18).
Filon quadrature (Abramowitz and Stegun (1964)) is used for this task because it
is more robust than the Fast Fourier Transform (FFT) although the latter may be
faster. Also, Filon quadrature allows the order of the polynomial approximating
the function to be adjusted as required, and has no requirement for 2' input points
as does the FFT. For slowly varying functions, such as the typical L(t), quadratic
approximation is sufficient.

The accuracy of the impulse response function is affected only by the discrete geo-
metric model of the body and the size of the time-step, up to the limit of about six or
seven significant digits, which is the precision of the computation of the Green func-
tion influence coefficients. The obvious inaccuracy in the computed impulse response
function is the spurious oscillation at large time, mentioned in Section 3. This is the
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effect of irregular frequencies manifested in the time domain. In addition, we find

differences over the entire time history as the temporal and spatial discretization is

refined. The functional form of the oscillatory behavior is discussed in Section 6, but

here we have an interest in quantifying the inaccuracy and relating it to the level of

discretization.

In Figure 4-2, it is clear that the time domain solution is like its frequency-domain

counterpart in that the effect of irregular frequencies may be mitigated by improving

the accuracy of the spatial discretization of the body. Empirical evidence suggests

that for hydrodynamic coefficients computed from the frequency-domain formulation

for the potential, the bandwidth of the inaccurate region centered on an irregular

frequency may be narrowed by a more accurate body model. In the time domain, the

amplitude of the oscillatory behavior may be reduced by a more accurate body model.

Extremely fine discretizations of the body may render the oscillations undetectable

over a time history like that shown in Figure 4-2, but they will show up eventually,

as seen in Figure 6-7 where there are results for a 4608-panel hemisphere.

The effect of reducing the time-step is less clear. In Figure 4-3, it is evident that

the effect of reducing the time-step from ¿t = 0.5 to ¿fit = 0.3, is a reduction in the

amplitude of the oscillations, and some change in the results in the earlier-time, non-

oscillatory portion of the record. However, the reduction to a time-step of t = 0.05

has increased the oscillatory amplitude and shifted the location of the maxima on

the time axis. As discussed below, however, the accuracy over the entire time-history

of the computation with Lt = 0.05, is superior to those with larger time-steps.

Quantification of the accuracy of solutions at various levels of discretization has been

done by comparison to a very finely discretized model: N = 4608, ¿t = 0.05.
In Figure 4-4, the mean-square error relative to this fine model, for a matrix of

different panelizations and time-steps, is presented. Although we cannot make a

general statement about the reduction in the amplitude of the oscillatory behavior

as the time-step is reduced, the mean-square error for any particular body model

decreases approximately as a function of (t)2, as may be expected for trapazoid
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rule convolution. Refering to Figure 4-2, the reduction in the mean-square error for

each body model, is largely a consequence of the reduction in the amplitude of the

irregular frequency effect.

The plot of the Green function in Figure 4-1 indicates that we may expect panels

near the free surface to have a greater effect on the solution than panels at greater

depth, at least at large times. Consequently the idea of cosine spacing the vertical

distribution of panels as the free surface is approached may be justified. The mean-

square errors for several such body models are plotted in Figure 4-4, and indeed, for

exactly the same numerical effort as the regularly distributed panel models, the cosine

distribution of panels slightly improves the results. The impulse response function

for a cosine distributed body model is presented in Figure 6-8, and it may be seen

that this panel distribution has an effect on the oscillatory behavior when compared

to the regularly spaced results of Figure 4-2. In general, changing panel aspect

ratios, without changing the number of panels, affects results unless the discretization

is very fine. This fact makes it imperative that panel aspect ratios be preserved

when convergence studies are undertaken. In summary, F gure 4-4 suggests that the

maximum accuracy for any particular amount of computational effort may be had

by a cosine distribution of the least required number of panels. It is inefficient to

obtain this accuracy by a larger number of panels combined with larger time-steps

because the computational effort is quadratic in the number of unknowns and linear

in the number of time-steps.

Numerical stability has not been a concern in these computations. For temporal and

spatial discretizations which were expected to produce usefully accurate results for

simple bodies there has never been any evidence that the solution might break down;

Figures 6-1 and 6-2 should be ample evidence of this, as they represent 500 time-steps

for the swaying and heaving hemisphere respectively.

The computational effort in time-domain calculations can be formidable; but not for

the reason which seems to be the prevailing notion. It is not convolution, with all of

its fetches from RAM and files on the auxiliary memory device which consumes the
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central processing unit (CPU) time. It clearly is not the reduction of the N x N,

real, linear system, which must be done just once. It is the calculation of N x N x

2 x N5 x MT values of the wave part of the Green function and its derivatives which

requires all of the effort. By comparison, a frequency-domain radiation program

makes N x N x 2 X N5 x K (where K is the number of frequencies) equivalent

computations, and solves K, N x N, complex, linear systems. While TÏMIT has

been written with efficiency in mind; that is, short loops have been unrolled, indices

are ordered as well as possible, etc., it has not received any special optimization

efforts, and so timing information should be construed as a starting point which can

only improve. As written, on the VAX 11/750, TÏMIT spends approximately 90

percent of its running time in the subroutine TGREEN. The TGREEN ascending

series calculation in double precision is partly responsible for this; but not entirely,

because the VAX has hardware which performs a double precision flop (floating point

operation) in less than double the time required for a single precision flop. On the

Cray X-MP/48, the 90 percent is roughly preserved because the speed increase of the

now vectorized convolution, is offset by the fact that the double precision requirement

of the ascending series approximation is met by the standard, full precision of the

Cray. On the Cray X-MP/48, TÏMIT typically runs 60 times faster than on the

VAX 11/750, and approximate running times for the Cray may be calculated as

N X N X 2x N5 x MT x5x i0 CPU seconds.

The subject of timing for transient codes invites comparison to frequency-domain

codes. Comparitive times are available in Korsmeyer, Lee, Newman and Sclavounos

(1988). This reference indicates that the effort per time-step in the transient approach

is of the same order as that per frequency in the frequency-domain approach, if the

number of unknowns is comparable. This should not be surprising because iterative

methods of linear system solution for frequency domain codes, and fast (vectorized,

perhaps) I/O and convolution techniques for time-domain codes, have shifted most

of the effort to the calculation of the influence coefficients and there are the same

number of these evaluations at one frequency as there are at one time-step. So overall,
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the frequency domain approach appears to consume less effort if we are satisfied with

results at only 20 to 30 frequencies, because in the time domain 200 or more time-

steps may have to be evaluated before the response function has decayed sufficiently

to allow an accurate transform.

In the following section, a method is presented which may be used to reduce computa-

tional effort in time-domain calculations. In this section, the large-time, asymptotic

representation of L(t) is derived from the frequency-domain, convergent series repre-

sentations of the hydrodynamic coefficients. This asymptotic result may be used to

reduce computational effort for simple bodies because patching of a computed L(t)

to the asymptotic L(t) eliminates the oscillatory behavior. This allows both coarser

spatial discretization in the body model, and shorter time histories to be calculated.
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Figure 4-2. Heaving hemisphere; ¿t = 0.1; 64 panels - -, 144 panels - -, 256
panels

Figure 4-3. Heaving hemisphere; 144 panels; ¿t = 0.5 - - , = 0.3 - - -,
Lt = 0.05
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5. THE LARGE-TIME ASYMPTOTIC EXPANSION OF THE IMPULSE

RESPONSE FUNCTION

OVERVIEW

All of the authors cited in Section 1, who have contributed to the time-domain litera-

ture, point out that irregular frequency effects are encountered in the time domain as

well as in the frequency domain. These effects result from the fact that the boundary-

value problem is re-cast in Fredhoim integral equation form, and this technique is

common to both domains. Adachi and Ohmatsu (1979) state that in the time domain

the effect of irregular frequencies is manifested in an oscillation of the impulse re-

sponse function at large time. If the impulse response function is Fourier transformed

to obtain the added-mass and damping coefficient curves in the frequency domain,

these large-time oscillations transform to an irregular behaviour in the vicinity of the

irregular frequencies. In the frequency-domain potential formulation of the radia-

tion problem, accurate solutions may be computed by panel methods at frequencies

which are increasingly close to an irregular frequency by increasing the accuracy of

the body discretization. The analogous situation in the time domain, as discussed in

the previous section, is that the amplitude of the oscillatory behavior in the impulse

response function may be reduced by increasing the accuracy of the body discretiza-

tion. Newman (1985) suggests that impulse response results may be improved by

matching a suitably accurate numerical solution to a large-time asymptotic solution.

The large-time asymptotic representation of the impulse response function may be

obtained from the low-frequency, convergent series form of either the added-mass or

damping coefficient functions through the Fourier transform. One or two terms of

the low-frequency expansion for the damping coefficient function are readily available
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from the Haskind relations applied to well-known, one- or two-term approximations of

the exciting force. Simon and Hulme (1985) however, show that the velocity potential,

and therefore the hydrodynamic coefficients, may be expanded to any order in the

wavenumber through the direct expansion of the Green formulation of the radiation

problem in the frequency domain.

In this Section, the frequency-domain Green formulation for the velocity potential in

the radiation problem is expanded directly for low frequencies by using an ascending

series representation for the Green function. This provides a hierarchy of problems at

each order of the wavenumber for the coefficients of the velocity potential expansion.

The coefficients in the added-mass and damping expansions up to orders k log k and

k2 respectively, are analytically shown to agree with values derived independently by

using a low-frequency exciting force expansion in the Haskind relations. Computed

coefficients of the heave damping coefficient expansion for a hemisphere up to order

k5, are Fourier transformed and used in the time domain to remove the oscillatory

behavior in the impulse response function. On transformation back to the frequency

domain, we find that the effects of the irregular frequencies are removed. The tech-

nique presented is applicable to arbitrary three dimensional bodies in any mode of

motion.

THE RADIATION PROBLEM IN THE FREQUENCY DOMAIN

We consider the first order problem of Section 3, but now with harmonic body motion

which exists for all time . This is the familiar frequency-domain radiation problem

with implied time dependence of ('(±,t) = ço(±',k)e"t, with only the real part

understood to have physical significance. Recall that the problem is normalized by

setting the acceleration due to gravity, the fluid density, and a representative body

length equal to one. If the body velocity in a particular mode is e' and n is the

component of the body normal vector in this mode, then the problem formulation

for ,(x,k) in this case is:
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V2o(±,k) = 0 in the fluid domain (5.1)

_2+ =0 on SF (5.2)

= n on S (5.3)

i
= z2 + y2. (5.4)

In the usual manner, Green's second identity with k) and G(±; k) leads to

2ir, k) + ffd(ë k)G (; , k) = ff dn()G(x; k), (5.5)

where the Green function is defined by Wehausen and Laitone (1960) to be:

G(x;ë,k)_+--
i K k

1 1 +2k 1 1 Jo(KX)e_KYdK (5.6)

with R, R', X and Y defined as in the time-domain Green function, following equa-

tion (A.7), and k = w2. The contour over the real kaxis is indented above the pole

at K = k in order to enforce the radiation condition (5.4).

This Green function has been shown by Hulme (1982) to possess the convergent

ascending series expansion, which through 0(k2) is:

k) = + - 2k log k - 2 [{log(R' + Y) - log 2 + -y + in] k

+ 2Yk2 logk + 2[[log(R' + Y) - log2 + -']Y - R' + irYi]k2 + 0(k3 log k).
(5.7)

where 'y is Euler's constant. Insertion of this series in equation (5.5) suggests a

similar series expansion for k). In a method demonstrated by Simon and Hulme,



2irp00 + [I. d(po = [f d(n3goo
Jis5 JJSB

(5.10)

(1985) (a reference we were not aware of when we developed this approach) a series

representation for ço(i, k) is assumed and both sides of equation (5.5) are expanded,

to produce a hierarchy of problems for the unknown coefficients of the series for

k). This series, unlike that for G(±; , k), will contain powers of log k. Using the

convenient nomenclature, where for instance, G appears as

G(x; (,k) = g00 + g11klogk + gk + g21k2 logk + g20k2 + ..., (5.8)

ç,(±,k) has the expansion

00 M(n)

k
j

logtm k, (5.9)

where M(n) = (n + 1)/2, when n is odd, M(n) = n/2, when n is even, and M = O

when n = O. This pattern for the introduction of logarithmic terms in ço(, k) is a

result of the fact that the normal derivative of G(; k) has no term at O(k log k).

The resulting problems for the complex coefficients of the radiation potential are:



a
2irp21+f[ dp21(goo)= d(

jJ On ffs
( o a

On On )
n3g21 - p00(g21) - P11 (g10) (5.13)

2irp20+ [f dp20(g0o) = d n3g20 p00(g20) - Pio (g10) (5.14)
a -.( a a

JJSB On an On )

The infinite set of equations represented by (5.10) through (5.14) may be solved to

obtain the coefficients of the expansion for ço(, k) to any order. Note that the kernel

is the same at all orders, but the right-hand sides are increasingly more complicated

combinations of lower order solutions and coefficients from the expansion of G(±; k).

The coefficients of expansions for the added-mass and damping functions are found

by integration over the body surface of the potential coefficients. We can use the

hierarchy of integral equations to find, in closed form, the first few coefficients of the

expansions for the heave damping and added-mass a3 (w) and b3 (w); and in particular,

we can recover the first two terms of the heave damping expansion derived from the

low-frequency approximation for the heave exciting force

X3(w) - + iwb3 - w2(a3 (0) + V) (5.15)

where V is the body displacement and A,L, is the waterplane area. When this expres-

sion is inserted into the Haskind relations, the low-frequency expansion for the heave

damping function is found to be

b3(w) A2- --kA(a3(0)+V)k2. (5.16)
w 2
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The hierarchy of integral equations to order k2 recovers this result. For the added-

mass, we can find in closed form, terms at orders 1, k log k, and k2 log k. Consider

the following definitions

00 M(a)
b3(w)

k barn logtm k
n=0 rn=0

M(a)

a3 () k aa,,. logtm k.
n=0 rn0

Then,

3g

(5.17)

(5.18)

the equation for the rigid-lid potential, 4'RL [i.e. I'RL = O on S, see Figure 3-2J.

Therefore, a is the infinite-fluid, dilating-body added-mass, aR L

barn = _ffd(PnrnTi3, (5.19)

and,

=ffd(RPn3. (5.20)

Looking order by order at equations (5.10) through (5.14):

0(1)

This equation is real, so £poo = O and hence b00 = 0. The equation for Poo S

2irp00 + [[ d(g00)p00 = d n3g00.
a

"SD
(5.21)

This is

2irp00 + [1 d(p0
1 1

jj3 an + = ff dn3( + (5.22)



O(k log k)

This equation is also real, so = 0 and b11 = 0. The equation for Pii is

a
2irp11 + dp11(goo) = dn3g11.IL Bn IL

Since the right-hand side is a constant, we have a constant solution; and since

fISBôflh

+
= 2ir (5.24)

it follows that

Pii =
22r

(5.25)

and

a11 -
2ir

(5.26)

0(k)

This equation is complex. The real part has not yielded to analysis, hence the exact

coefficient for a3 (w) is not available at this order, although some coefficients at higher

orders may still be found in closed form. Taking the imaginary part of the equation

we obtain

2irp10 + [1 d---(go0)p10 = 1f dn3g0
Bn Jis8

= -2irA.

Since the right-hand side is a constant, we have a constant solution

Pio =
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(5.28)



thus,

O(k2 log k)

b10-.

This is another real equation, so b21 = 0. For P21 we have

a
2irp21+ fi dp21(g0o) = d [n32i poo--(g2i)pii--(gjo)] . (5.30)

JJSB JL

We have found that Poo = bRL, and Pii = ---- so we have
2i

2P21 + [i d(p2
a

= [f d [2n3(Y+RL) A 8- -- log(Y + R')].
JJsß

1(goo)
JJSB

(5.31)

Letting P21 = ß + , we separate the integral equation (5.31) into the following

components

2,r+ [f d(--(g00)
= ff d(2(ç+RL)n3 (5.32)

JJS ôn SB

(5.29)

and

2irß + [f dft-- (goo) = --- ffdE - Iog(Y + R') - 2A z. (5.33)

JJSD 8n Ir

where the definition Y = -(z+ç) has been used. The equation for has a right-hand

side which is a constant function over the body surface, equal to 2(a3 (0) ± V). Since

its kernel is non-singular, it must possess a unique solution. Here, we seek it to be a

constant function.
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It is easy to verify that

solves the integral equation (5.32), thus is its unique solution. To solve the equation

for ¡3, we first use the identity

- [f d-1og(Y±Rl)=ff j =
JJSß

where S is the body waterplane surface. Identity (5.35) follows by conserving the

mass flux across the closed surface S5 +SW due to the flow generated by the harmonic

function log(Y + R') which is singular at a point above the free surface. Applying

next Green's second identity with the potentials + , and P2 = ç in the

domain interior to the body surface, we obtain

d([(' 8 1 1ff= ff +y)n3

(5.35)

(5.36)

where the term irz on the right-hand side is the contribution from the hemispherical

indentation around the location of the Rankine source i/R on the body surface SB.

Utilizing (5.35) and (5.36) in the right-hand side of the integral equation (5.33) we

obtain

2ir73+ff dj5(g00) = - [f d
8 1 1 1

B 2ir JJSD L

+ )n3 - + ik;)] - Az.
(5.37)

The right-hand side of equation (5.37) consists of three terms. The first term is

proportional to the right-hand side of the rigid-lid integral equation. The corre-

sponding contribution to the velocity potential ¡3 is The last two terms can

be obtained if we substitute z-- for ¡3 on the left-hand side. Therefore, this is the

second component of the solution for the velocity potential ft. Thus, the solution of

the integral equation (5.37) is
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p= -(a3(0)+V) (5.34)



0(k2)

This equation is complex. The real part has not been solved in closed form. Taking

its imaginary part

(gio)I2irp20+ [f d(--(go0)p2o = [1 d [n32o poo(g2o) Pio

i

an JJSß n
j

(5.41)

We have found that Poo = and 'Pio = -t-, so we have

21rp2O + [f d(--(go0)p2o 1f d( [2irn(Y+t1bRL) _Aw1o(Y+R1)].
JJSß '9fl JJSB

(5.42)

However, the right-hand side of (5.41) is just that of (5.31) with the multiplicative

factor of ir. Therefore

P2o (5.43)

and so

p= -(t,b z).

Combining (5.34) and (5.38) gives

(()v) A
P21

2ir 2ir

Integrating for the term a in the expansion for the added mass coefficient function,

we obtain
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(5.38)

(5.39)

a21 = (a3(0) +V). (5.40)
ir



recovering the second term in equation (5.16), which was derived from the low-

frequency expansion of the exciting force. Summarizing, in closed form we have

found the first two terms in the low-frequency expansion for the heave added-mass

coefficient function

and the first two terms in the low-frequency expansion for the heave damping coef-

ficient function

b3
= - A (a3 (0) + V)k2 + 0(k3 log k). (5.46)

2

THE FOURIER TRANSFORM

The impulse response function may be determined from the inverse forms of either

equation (3.17) or (3.18); or more generally, we may write:

1
L(t)

= -J e [W(w) - a(oo)]dw, (5.47)
o

where W(w) = a(w) - is the complex impedance function. Using low-frequency

expansions for a(w) and we consider two methods for the long-time asymptotic

evaluation of equation (5.47): in the complex w-plane by contour integration, and on

the positive real w-axis by Fourier theory involving generalized functions.

Contour integration

For contour integration of W(w) - a(oo) we require knowledge of that function in

the complex w-plane, and particularly on the imaginary w-axis. The ascending series

a3(w) = aRL - A2
--k1ogk + 0(k), (5.45)
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representation for G(; (,k) is exact and may be continued for complex k. When

this is done, the hierarchy of integral equations is continued into the complex k-plane

and hence so is the associated complex impedance function, W(w). Of course we no

longer expect that the real and imaginary parts of W(w) represent the added-mass

and damping functions of the original wave-body problem. When the expansion for

G(±; k) is moved into the complex k-plane to just above the cut on the negative

real k-axis, that is k = k + ic as c * O, the expansion may be rewritten with

coefficients mn related to the original g as follows:

ç n even= +(lgo + i2go)
' n odd

(5.48)
rn even

=
'.. n odd,

and at least through 0(k5) the new integral equations have simple relations to those

equations on the positive real k-axis. In fact to all orders, the kernel is not changed,

although the right-hand sides are. The W(w) corresponding to the solution of these

equations with this particular complex k will define the complex impedance func-

tion on the positive, imaginary w-axis, where w = 111 (f2 a positive real number).

This W(fl) may be written in terms of the coefficients of W(w), for real w; and the

imaginary part which we will need in the contour integration is:

W(f2) .-.' 2[b10122 b20f2 + 2b31f26 log 12 + b30126

- 2b41118 log 12 - b40128 +4b5212'° log2 12

+ 2b5112'° log 11 + (b50 - 7r2b52)1110]

45

(5.49)

Alternatively, substitution of w = ill into W(w) on the real w-axis results in W(f2):

- (b10 - iraii)122 - (b20 - ira21)124 + (2b31 - 4ira32)116 logIl

+ (b30 - ira31)116 - (2b41 - 4ira42)128 logfl - (b40 - ira41)128
(5.50)

+ (4b52 12ira53)121° log2 12 + (2b51 - 4ira52 )fz'° logfl

+ (b50 - ir2b52 + r3 a53 7ra51)fl'°.



If we equate (5.49) and (5.50), we recover the relations between the coefficients of the

expansions for a(w) and a concept suggested by the Kramers-Kronig relations,

and discussed by Greenhow (1986).

By contour integration in the first quadrant of the complex w-plane, we can set equa-

tion (5.47) equal to a Laplace integral plus some unknown set of residues from poles

which may exist in this quadrant. As t + oo their contribution decays exponentially

so that asymptotically L(t) may be determined from:

Olver (1974) presents an asymptotic analysis of this type of integral if the function

W(f2) can be represented by a power series which may include powers of logarithms.

Results required for the evaluation of terms through 0(k5) are:

function Laplace contribution

(5.52)

12's logfl -n![(n) - logt]t' (5.53)

12 log2 1 --n! [log2 t - 2(n) log t
+(tI,2(n) + I' -)]t("') (5.54)

where b(N) =

Fourier integration

For this analysis it is more convenient to work with the inverse form of either equa-

tion (3.13) or (3.14) than with the general form (5.47). We choose the inverse sine

transform of the damping function:

2 ' b(w)
L(t) = I sin wtdw.ir]0 w
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(5.55)

L(t) e°tW(11)dfl. (5.51)
ir



Evaluation of this transform is facilitated by the theory of generalized functions

detailed in Lighthill (1958). Table I of this reference can be used to obtain the

following results

function inverse sine transform

k" (5.56)

k" logk -(-1)"(2n)! [(2n) - logt}t_(2t1+1) (5.57)

The term of order k5 log2 k requires additional effort. Using the definition

log z lim(1 I z )/, (5.58)

we set

i
log2 z hm [ z j + z ' 2],o 2 (5.59)

where the transforms for the right-hand side of (5.59) are available in the above cited

Table 1. Since zmf(x) transforms to (-2iri)" g(y), it follows that

function inverse sine transform

k" log2 k (2n)! {log2 t - 2t(2n) logt

2
1 2- - - ]]t_(2n+1). (5.60)

i= I

THE IMPULSE RESPONSE FUNCTION

Simon and Hulme (1985) present the following expansion for the damping coefficient

function of a heaving hemisphere. This was derived from a subset of the hierarchy of
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integral equations, with the help of relations between the added-mass, damping and

exciting-force functions. Their expression includes all terms to order k5:

- ---{k 1.830951k2 + klogk+2.542917k 2.746427k41ogk
w 34 4

- 2.374082k4 + --k log2 k + 5.646816k5 log k - 0.442638k5 }.
16

Using either equation (5.49) and the Laplace integral results of equations (5.52)

through (5.54); or equation (5.19) with the Fourier integral results of equations (5.56),

(5.57) and (5.60) gives the same expression for the asymptotic form of the impulse

response function up to order t_11. Equations (5.54) and (5.60) appear to imply

that the Laplace and Fourier analysis methods produce different time-domain results

for terms at orders with squares of logarithms. However this apparent difference

in the time domain, here specifically at 0(t"), is offset by the difference in the

coefficients of the impedance functions at 0(k5) on the real waxis and at O(1l0)

on the imaginary w-axis. We find that:

21
L(t) --12!b10t3 4!b20t5 2(6!)b31t7logt

+ 6! (b30 + 2(6)b31)t7 + 2(8!)b41t9 logt

- 8!(b40 +2t,b(8)b41)t9 +4(10!)b52t log2 t

- 2(10!)(4t4'(10)b52 + b51)t1' logt
10

1 ii
+ 10! [4[((2fl))2 -

i= i

+2(10)b51 +bso]t11].

(5.61)

(5.62)

It is interesting to note that equations (5.49) and (5.50) suggest that the coefficients

a0 are superfluous to this analysis. This is supported by the Fourier integration as

well. If the inverse cosine transform of the added-mass expansion is used, the a0 's

contribute rItì order derivatives of 6(t) (where 5(t) is Dirac's delta function) which

only affect L(0).
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6. RESULTS FOR THE FIRST-ORDER PROBLEM

The time-domain radiation panel-code TÏMIT has been run for simple bodies such as

the hemisphere and the right-circular cylinder and one complicated body, a Tension

Leg Platform (TLP). During the verification phase of the work with TIMIT, it be-

came clear that the irregular frequency effects were one of the most intriguing aspects

of the problem. Consequently the relation between the time- and frequency-domain

radiation problems receives considerable attention, particularly the asymptotic ap-

proach to large-time evaluation of the impulse response function which allows very

accurate calculation of the frequency-domain hydrodynamic coefficients through the

Fourier transform.

IMPULSE RESPONSE FUNCTIONS AND IRREGULAR FREQUENCY

EFFECTS FOR SIMPLE BODIES

The emphasis in this work is not to present impulse response functions for various

simple bodies. Rather it is on the interpretation and application of these results.

There are impulse response functions presented in various sections of the Thesis in

the context of discussions concerning numerical errors, large-time behavior, and first-

order input to the second-order problem. The List of Figures may be consulted as

a guide to the location of all of the presented impulse response functions. For the

impulse response functions for a family of right-circular cylinders in heave, see New-

man (1985a); and for additional hemisphere results, see Beck and Liapis (1987). In

this sub-section we analyze the oscillatory behavior in the impulse response function

at large time.
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When the frequency-domain hydrodynamic coefficients are calculated from the im-

pulse response function, the inaccuracies which are present are due to conflicting

constraints. Although the Fourier cosine and sine transforms, equations (3.17) and

(3.18), which relate L(t) to a(w) and b(w) are exact for infinite time histories; in

practice, the calculated record is truncated at some large time, usually dictated by

computational resources. For simple bodies, the evidence suggests that the impulse

response function approaches zero monotonically after one or two oscillations, and it

is possible to carry out computations with sufficient panels and to sufficiently large

time that L(t) is less than, say, 5 x 10 The Fourier transforms of such records

may agree with analytical results, or carefully computed frequency-domain results,

within a similar tolerance. It is more likely, however, that computing resources will

dictate fewer panels and at large time there will be the typical oscillatory behav-

ior with an amplitude which affects the first or second decimal of L(t) and which

appears early in the monotonically decaying region. [ For instance, see Figure 6-3.]

In this case, the conflicting constraints are that if L(t) is truncated at too small a

time before transformation, the hydrodynamic coefficients will be inaccurate in the

low frequency range, but inclusion in the record of a long sample of the oscillatory

behavior will produce inaccuracy in the vicinity of the irregular frequencies.

We would like to know the functional form of the oscillatory behavior. Adachi and

Ohmatsu (1979) explore the irregular frequency problem in both the time and fre-

quency domains and address this question. In that work, considerably more is said

about the source-distribution form of the integral equation method, than the poten-

tial form. This is because of the incorrect conclusion that the Fredhoim alternative

indicates that there are no irregular frequency effects in the potential form. This is

not the case. There is a difference in the two approaches, but it is not that indicated

by Adachi and Ohmatsu.

As is shown by Adachi and Ohmatsu there is a set of frequencies at which the source

formulation has no solution. It is reasoned, then, that at these frequencies, the Fred-

holm determinant vanishes. Since source and potential integral formulations have
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transpose kernels they share the set of frequencies at which the Fredhoim determi-

nant vanishes. At these eigenfrequencies the Fredhoim alternative states that the

integral equation has either no solution or an infinity of solutions depending on the

orthogonality of the right-hand side to the eigensolutions. As is demonstrated by the

above cited reference, at these frequencies the potential formulation has a right-hand

side which is orthogonal to the eigensolutions, but the source formulation, in general,

does not. The correct conclusion is that the source form of the integral equation

has no solutions, and as will be discussed below, is singular at these frequencies, and

the potential form of the integral equation has non-unique solutions. In either case,

irregular frequency effects are present in the continuous form of the equation which

we discretize and attempt to solve numerically. Care must be exercised in extending

conclusions about the continuous formulation to the discrete formulation, but we

can expect numerical difficulties due to poor conditioning of the kernel matrix, in

the vicinity of the irregular frequencies, for both potential and source distribution

methods.

Adachi and Ohmatsu provide the important result that in the frequency-domain,

source-distribution method the singularity in the source strength is of Cauchy type

in wave number. That is, like 1/(w - w2) at the irregular frequency w. Liapis

(1986) reinforces this conclusion for the source formulation with numerical results

in the time domain. These results suggest that the sinusoidal oscillation, with fre-

quency w, seen in the time domain computations, does not decay at large time.

This would be expected for a Cauchy-type singularity because 1/(w - w2), in the

frequency domain, may be shown by residue calculus to lead to a non-decaying sinu-

soidal oscillation at frequency w in the time-domain as t -i oo. However, the time

histories presented in Liapis (1986) may not extend to sufficiently large time to war-

rant the conclusion that there is no decay. In the case of the potential formulation,

this conclusion is also stated by Liapis, but the oscillatory effects which are present

in the potential formulation calculations in the present work do decay at large time,

though the decay may be slow in some cases. This provides numerical evidence for
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a functional difference between irregular frequency effects in the discrete form of the
source-distribution method and irregular frequency effects in the discrete form of the
potential formulation. The frequency-domain aspects of this question are pursued
further by Lee (1988).

It is possible to get a qualitative impression of time-domain, irregular-frequency
effects from Figures 6-1 and 6-3. In these figures it may be seen that the first and
most prominent oscillation 'turns-on' at some time, and remains present with very
slow (Figure 6-i) or no (Figure 6-3) apparent decay. At a later time, a second
oscillation 'turns-on,' but its decay is faster than that of the first oscillation. Each
successively higher irregular frequency has an effect on L(T), but the effect is less
strong as the frequency increases as is shown by the frequency-domain results for
the swaying hemisphere in Figure 6-2. It is not clear how this oscillatory effect is
initiated, but its form after it is visible in the figures may be (disregarding phase):

EL(t) = A(N)e_c)t sinwt (6.1)

where EL is the oscillatory effect due to a single irregular frequency w superposed
on the exact L(t), A(N) is the primarily panelling-dependent amplitude, and a(w)
is the decay factor and may be very small. We are interested in knowing how the
effect in the frequency domain is dependent on the length of the sample of such an
oscillation contained in a time history. This may be examined if we perform the
Fourier sine (for example) transformation of the right-hand side of equation (6.1) for
a variable range of integration between t1 and t2. The result is:

7E A(N) -, f (w - w.)sin(w - w1)t2 - acos(w - w.)t2a L - 2
e

a2 + (w - w.)2
(w+w)sin(w+w)t2 acos(w---w)t2

a2 + (w + w.)2
A(N)

e_zt1 f ( - .) sin(w - w-)t1 - acos(w -
2 a2+(w_w.)2

(w + w.) sin(w + w)t1 - acos(w + w)t1
a2 + (w + w)2
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Equation (6.2) has been computed for varying values of t2 and for values of A(N) and

a(w) which fit equation (6.1) to the oscillatory behavior in figure 6-3. These functions

are plotted in Figure 6-4. For comparison, Figure 6-5 shows the numerical transform

of large-time sections of the impulse response function for the heaving hemisphere

shown in Figure 6-3. Equation (6.2) does capture the numerical effects of irregular

frequencies in Fourier sine transformed time-domain results, namely a characteristic

large oscillation surrounded by decaying small oscillations at the difference frequency

w - w. Both Figures 6-4 and 6-5 indicate that if the truncation point of the time

history of L(t) is increased, the effect on transformation to the frequency domain to

define the hydrodynamic coefficients is to: 1) increase the magnitude of the large

irregular behavior immediate to the irregular frequency while decreasing its band

width, and 2) decrease the magnitude of the small surrounding oscillation while

increasing its band width.

In Figure 6-6, the irregular frequency effects are shown in the context of the complete

frequency-domain results. The time history of Figure 6-3, from a 64-panel model,

has been Fourier transformed with two different truncation points, and the resulting

added-mass and damping coefficient curves are plotted along with more accurate

results from a model with 256 panels. Again, the form of the irregular behavior in the

frequency domain is as predicted by the analysis of the time-domain representation,

equation (6.1).

If we examine equation (6.2) in the limit of t1 -* O and t2 -p oo, we obtain what we

expect from this numerical argument to be the functional form of irregular frequency

effects in the frequency domain. [Admittedly there is some uncertainty concerning

the validity of (6.1) as t1 -* 0.1 Since we used the Fourier sine transform, we expect

to recover the form of the effect in the damping coefficient function. Using these

limits, and letting w = w1 equation (6.2) becomes:

_A(N)f1 a
2 ta a2+4wf

53

(6.3)



54

This function is bounded, with the maximum dependent on the decay rate in the

time domain. Since we have seen that a(w) increases as w increases, we expect less

effect in the frequency domain from higher irregular frequencies, as seen in Figures 6-

2 and 6-6. So from this numerical argument we conclude that the source-distribution

and potential formulation methods both suffer from irregular frequency effects in

both the time and frequency domains. However, because (6.3) is bounded, and the

transform of the non-decaying behavior in the source formulation solution is a Cauchy

singularity, the effects are less severe in the case of the potential form of the integral

equation.

REMOVAL OF IRREGULAR FREQUENCY EFFECTS

In Section 5, a method is derived for the removal of irregular-frequency effects from

the impulse response function. When the coefficients from the low-frequency asymp-

totic expansion for the damping function of the heaving hemisphere, which were

computed by Simon and Hulme (1985) and are presented in equation (5.61), are

inserted in the expression derived in Section 5 for the large-time approximation to

the impulse response function, equation (5.62), the result is the specific asymptotic

expression for the impulse response function of the heaving hemisphere at large time.

This asymptotic result may be used to remove irregular frequency effects in the time

domain, and consequently in the Fourier transform results in the frequency domain.

Let have a definition like that of in equation (5.17), and consider the addi-

tional definitions

M'(n)

Ly(t) = t' 1ft logtm t, (6.4)

where M'(n) = (n - 1)/4 - 1/2 when (n - 1)/2 is odd, (n - 1)/4 - 1 when (n - 1)/2

is even, and M' = O when n = 3,5; and,

N

ELN(t) = (6.5)
n0



L(t) is the contribution to L(t) at Q(t-') including any logarithmic terms, and

ELN is the complete contribution to L(t) up to O(t_N). Figure 6-7, is a plot of

the ELN for N = 3,5,7,9,11, along with numerical results found by using 1024

panels with a time step of 0.075 and 4608 panels with a time step of 0.05. These

numerical results agree to at le&st four decimals indicating that they are practically

convergent. [Note that the oscillatory behavior which is present is hardly reduced in

spite of the increased effort in computation.] There are two important features of the

asymptotic results. The first is that EL11 appears to be inconsistent with the trend

in the asymptotic results up to EL9. This may be the first diverging partial sum in

the asymptotic series, but it would be necessary to compute at least EL13 to con-

firm this. It is more likely that in the time range before the asymptotic results have

sufficiently converged, this trend is misleading. A similar behavior is evident in the

frequency-domain damping function from which these results were transformed [Cf.

Figure 2, Simon and Hulme(1985)]. The second is that these results also share with

their frequency-domain counterparts a rather slow convergence; although the most

accurate numerical results and the EL9 asymptotic result differ in their prediction of

L(t) by only 0.002 beyond t = 8.0. For computations for any simple body, there will

be a time beyond which the asymptotic representation will be a better estimate of

the correct L(t) than the numerical result. The most efficient method for obtaining

an accurate impulse response function, then, is to perform the computation with suf-

ficiently fine spatial and temporal discretization to reduce the oscillatory behavior in

the time history until the time when the asymptotic representation may be adopted.

In Figure 6-8, this situation is demonstrated. Figure 4-4 was used as a guide in the

selection of a model which produces reasonable accuracy for moderate computational

effort. This model for the heaving hemisphere consists of 100 panels with a cosine

distribution as the free surface is approached, and a time-step of ¿t = 0.2. In

Figure 6-8, the numerical results for this model are shown with the asymptotic result

to 0(r9). In this case, it is apparent that the numerical effort could have been

terminated just beyond t = 8.



To obtain frequency-domain results for this model, the records were patched at t =

8.2 by simply discontinuing the numerical results and picking up the asymptotic

approximation. The combined record was then Fourier transformed with a truncation

point at t = 30.0, where the asymtotic result, EL9 < 3. X i0. The results of the
transform, added-mass and damping coefficient functions, are presented in Figure 6-9.

In this figure, they are plotted for comparison with the un-patched numerical results,

and spherical harmonics results of Hulme (1982). The frequency-domain results from

the patched impulse response function contain no visible irregular behavior, and the

overall accuracy of this representation of L(t) is sufficient to produce a maximum

error in the frequency domain of less than 1.5 percent at the peak of the damping

curve. In Figure 6-10, the frequency domain results from a less accurate model (64

regularly spaced panels and t 0.2) are presented. In this case the irregular

behavior is also removed, but the overall accuracy of the patched L(t) is less, leading

to less accuracy at the maxima of the hydrodynamic coefficient curves.

The choice of the heave mode for demonstration of this method was dictated by the

fact that the required coefficients were available. It is expected that generation of

coefficients by the solution of the hierarchy of integral equations will be more useful

in horizontal modes of motion. There are two reasons for this: one, there is only a

leading order term available analytically for the damping function in these modes;

and two, irregular frequency effects are more severe in horizontal modes. To find

the coefficients, the computer code necessary for the solution of the rigid-lid problem

with its right-hand-side forcing as shown in equations (5.10) through (5.14) can be

adapted from typical frequency-domain, panel-method codes.

THE IMPULSE RESPONSE FUNTION FOR A TLP

To demonstrate the use of TÏMIT for a complicated body, the impulse response

function was calculated for a TLP. This body was chosen because there are exten-

sive frequency-domain results available in Korsmeyer, Lee, Newman and Sclavounos
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(1988), and Jefferys (1987). The latter reference has caused some concern in the

offshore community about the accuracy of first-order hydrodynamic coefficient cal-

culations for complicated bodies [see also Section 4]. This is because the multitude of

results it reports, which were produced by panel-method approaches to the solution

of the boundary integral equation and also a finite-fluid-element method for solving

Laplace's equation directly, are in very poor agreement. Here we will show that this

time-domain solution from TÏMIT , and the frequency-domain program WAMIT

(Dept. of Ocean Eng. 1988) are in excellent agreement. The TLP consists of six

vertical columns arranged in a rectangle and connected at their bases by horizontal

pontoons. A quadrant of one of the models of the body is shown in Figure 6-11.

The impulse response function for the TLP is shown in Figure 6-12 for two models one

of 820 and one of 1652 panels. These results are experimental in that this was the first

complicated body analyzed by TÏMIT , so there was some doubt as to the number of

panels, the size of the time increment, and the total length of time history required.

However, experience with simple bodies was used as a guide with good results. The

body models were those used for the frequency-domain analysis by WAMIT, and

as such were not ideally suited to time-domain analysis. The difference being that

for time-domain analysis a cosine spacing (as the free surface is approached) of the

cylinder panel size would provide considerably better results for the same numerical

effort.

The TLP analysis has demonstrated a shortcoming in the application of large-time

asymptotics so useful for simple bodies. The problem is that at large time, the

impulse response function of the TLP is not montonically approaching zero, but is

oscillating with attenuating amplitude. Presumably some of this oscillation is the

effect of irregular frequencies, but it is also due to the complicated interactions of the

multiple large volume elements of this structure. Patching of the computed L(t) to

the monotonic asymptotic representation of L(t) will eliminate physically relevant in-

formation along with the irregular frequency effects. Consequently the only available

technique is to transform the record a computed to obtain the frequency-domain
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hydrodynamic coefficients. These are presented in Figure 6-13. Also plotted here are

the results from WAMIT for a 1696-panel model. The agreement is excellent over the

entire frequency range of interest, although some of the various peaks and troughs

differ slightly. It may be argued that this agreement is expected, because the two

programs share two important subroutines GEOM and RPAN, and common tech-

niques for exploitation of body symmetries. However both codes can demonstrate

excellent agreement to analytical results using only moderate numbers of panels, thus

independently validating these geometry and Green function evaluation techniques,

as well as their complimentary routines for the free-surface parts of the Green func-

tions. In light of this, the agreement of the time- and frequency-domain results for

this complicated body removes doubts that there are subtle errors in either code.

The benefit of the time-domain approach to frequency-domain hydrodynamic coeffi-

fients for this body is striking. Initially, the form of the coefficient functions in the

frequency domain is unknown, so that the distribution of frequencies at which calcu-

lations should be performed cannot be ascertained a priori . However, one transient

calculation with a coarsely discretized model of the body will efficiently reveal the

frequency ranges where high accuracy calculations should be made in the frequency

domain.

58



-J z D -1
Q

I- D u- U
i

C
'i

U
)

Q
z 

-
D û- U

)
u-

I W
 Q

(J
)Q

_J
 Q

D û- '-I
Q Q Q ('Jo 'n Q '0

.0
0

10
.0

0
L

I

20
.0

0
30

.0
0

I
I

40
.0

0
50

.0
0

T
IM

E
,

t

Fi
gu

re
 6

-1
. S

w
ay

in
g 

he
m

is
ph

er
e;

 6
4 

pa
ne

ls
,

0.
2

60
.0

0
70

.0
0

B
0.

00
90

.0
0

10
0.

00



r-n

D
LU
D
D

cD

Figure 6-2. Swaying hemisphere; 64 panels, = 0.2, truncated at t = 20.
64 panels, ¿t = 0.2, truncated at t = 50. - - -. Coefficients are non-dimensionalized
by the displaced fluid mass.
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Figure 6-4 Form of the irregular frequency effect in the damping coefficient for the
heaving hemisphere predicted by equation (6.2). In all cases, t1 = 30.
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Figure 6-5. Numerical transform of the oscillatory tail from Figure 6-3. In all cases,
t1 = 30.
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64 panels, ¿t = 0.2, truncated at t = 50..--; 256 panels, t = 0.1, truncated at
t = 20. - - . Coefficients are non-dimensionalized by the displaced fluid ma.ss.
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Figure 6-9. Heaving hemisphere. Transform of the patched functions of Figure 7
(numerical portion for 100 cosine distributed panels, ¿t = 0.2) truncated at
t = 30, ; the same model without patching trunctated at t = 30, - -. Results

from Hulme (1982) * . Coefficients are non-dimensionalized by the displaced fluid
mass.
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Figure 6-10. Heaving hemisphere. Transform of the patched functions: numerical
portion for 64 panels, t = 0.2 truncated at t 30, ; the same model without
patching truncated at t = 30, Results from Hulme (1982) x . Coefficients
are non-dimensionalized by the displaced fluid mass.



Figure 6-11. One quadrant of the Tension Leg Platform. The number of panels on
the entire body is 1652.
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Figure 6-13. The Tension Leg Platform in surge. The Fourier transform of impulse
response function of Figure 6-12. 820 panels, t = 0.1, truncated at t 35.
Frequency domain results from WAMIT, 1696 panels, ± . Coefficients are non-
dimensionalized by acceleration due to gravity, fluid density and body half-breadth set
equal to one.
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7. THE SECOND-ORDER RADIATION PROBLEM

In the higher-order radiation problems we expect both analytical and numerical prob-

lems which are not encountered in the first-order problem. The field equation is un-

changed to any order in e because it is linear. However, complications do arise from

the boundary conditions on the free surface and the body. Referring to equations

(2.2) through (2.4), these boundary conditions are non-linear, and are to be satisfied

on the exact positions of the surfaces. Consequently, their expansions contain terms

which are products of the various potential and free-surface elevation derivatives, and

terms from the Taylor expansions about the mean surface positions. In particular,

at second order, the free-surface condition is no longer homogeneous but contains

quadratic, 'forcing' terms from the 0(c) solution, as if there were an applied pressure

on the free-surface. Also, the body boundary condition now contains the product of

the O(e) correction to the body normal vector with the gradient of the O(e) solution.

In principle, the second-order problem may be recast as an integral equation to be

solved on the body surface through the use of a Green function and Green's second

identity. A second-order transient Green function has been derived by Wang (1987),

but its numerical implimentation has not yet been accomplished. As a result, Green's

second identity, when employed with the transient Green function for the first-order

problem, (A.7), leads to an integral equation to be solved on the body surface, but

with a right-hand side which contains an integral to be evaluated over the infinite

free surface. This situation is no different from the frequency domain where various

investigators have used the Green function for the first-order problem, and then

used a combination of analysis and numerical methods to evaluate the free-surface

integral. For an example of the method and survey of the progress in the frequency
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domain, see Kim (1988). In a method which has been formulated, but not yet applied,

Sciavounos (1987) has derived Green functions for second-order frequency-domain

problems (both radiation and diffraction). These functions remove the free-surface

integral, when used with Green's second identity, and have the desired property of

shifting the computational burden of the problem from one which is particular to the

body, to one which generally addresses all body geometries, if efficient subroutines

are written for the second-order frequency-domain and time-domain Green functions,

the second-order problem may be computationally more straightforward than it is

now. However, at present, we will have to be content with an integral equation for

the O(E2) potential which will contain an integral to be evaluated on the free surface.

As was done in Section 3 for the first-order problem, the expansions for (i, t) and

ç(x,y,t), equations (2.8) and (2.9), and the right-hand side of the body boundary

condition, are inserted in the exact problem statement, equations (2.1) through (2.7)

to allow the separation at Q(2) of the linear problem statement for the potential

t2(',t). The boundary conditions are to be satisfied on the initial body position,

SB and the quiescent free surface, SF. Recall that the problem is normalized by

setting the acceleration due to gravity, fluid density, and a body dimension equal to

one. As usuai, in the following equations we will omit functional arguments where

the context makes them unnecessary. We consider the same radiation problem as

discussed at first-order, that is, the body velocity may be arbitrary so long as it is

initiated in a Heaviside manner at t = o () (i, t) satisfies:

V22(i,t) = o in the fluid domain, (7.1)

1(2) + 2) [((1))2 + (1))2 + ((1))2] ç(l 'rtz
2

(2) (2) (l)(i) ç(l)(l)
çt - zz
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where the last two equations may be combined to give a single free-surface condition

containing the second derivative of the potential with respect to time:

+ on 5F, (7.4)

where the second-order, free-surface inhomogeneity E2 is defined as:

E2(x,y,O,t) [((1))2 + (1))2 + (1))2] + 1) + (1)) (7.5)

(2) t>O onS, (7.6)

where the second-order body boundary inhomogeneity 3(2) is defined by Ogilvie

(1983) for the general body undergoing general motion, and is defined in Section 9

for the specific case we examine.

are uniformly bounded on S,fort finite. (7.7)

Equation (2.7) leads directly to an initial condition on (2)(ff,t), and use of the O(E2)

dynamic free-surface condition (7.2), with the initial condition (2.6), gives the initial

condition for 2(,t) in terms of quantities known from the solution of the problem

at O(). We have, then, the two initial conditions:

2(x,y,O,O) = O,

and

(2)(xyoO+) ¡(2),

where the initial condition ¡(2) is defined as:

=
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We employ Green's second identity with the time derivative of the unknown potential

function 2) (i, r) and the Green function G(; , t - r) of the 0(c) problem defined

in equation (A.7). The reason for using the Green function which satisfies the 0(c)

free-surface condition is that while it does not eliminate all free-surface integrals,

it does eliminate those which contain the unknown 2) (i, t). If we use the same

manipulations in this problem as were used in the first-order problem, and are detailed

in the Appendix, the Fredhoim-Volterra integral equation to be solved at second order

contains a convolution on the free surface which involves the inhomogeniety of the

free-surface condition. Specializing equation (A.16) for the second-order problem

gives:

2ir2,t) +

+f drff d2)(r)G(î;t_r)

= f drffd 2)(,r)CF;t_ r)

+ [1 dB(2)(t)G(0)()
J is

+ /-t

prdril d(2)(,r), (x,tr)
Jo+ JJs,

- ffdG(t)(1)(x,y,O,O+))2.

As in the first-order problem, the Fredholm kernel is independent of time, and when

the equation is discretized, the unknown potential does not appear inside the Volterra

integral.

It is convenient to decompose the second-order potential into linearly superposable

parts: one satisfiying the inhomgeneous free-surface condition (7.4) with a homge-

neous body boundary condition, designated 2)F'; and one satisfying the inhomo-

geneous body boundary condition (7.6) with a homogeneous free-surface condition,

designated (2B That is
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(2) (i,t) /,(2)B (±,t) + (2)F (±,t). (7.12)

Refering to equation (7.11) it is easy to see that the equation to be solved for

(2)B (,t) is the same as the equation for ')(,t), but with a more complicated

right-hand side. We may expect some numerical difficulties in evaluating the gra-

dients of (1)(i,t), which are present in ß(2), on the body surface, particularly in

the case of a general 3-D body. However the solution of the 2)5 (±, t) problem will

still be easier than the solution of the problem for (2' (i, t), because in the lat-

ter we have the additional computational burden of quadrature on the free surface.

This complication motivates the method discussed in the next section, in which it is

shown that some of the difficulties associated with the (2)F' (1,t) problem may be

mitigated by finding the unsteady second-order force directly. However, gradients of

(1) (,t), which are present in 1(2), must still be computed, and free surface quadra-

ture must still be performed. The numerical techniques used to solve these problems

are discussed in Section 9.



8. THE SECOND-ORDER FORCE

The second-order force on a harmonically oscillated body has both steady and un-

steady parts. The steady part, usually referred to as the drift force, is due entirely

to quadratic contributions from first-order quantities. The unsteady part is due to

both quadratic contributions of first-order quantities and the second-order potential

as well. This latter part is the integration of the linear term in Bernoulli's equation

over the initial position of the body.

In the frequency domain, there has not yet been a presentation of the complete

second-order, three-dimensional, wave-body interaction problem, but in principal

the radiation/diffraction decomposition at first order has a second-order analogue

and second-order body motions as a result of second-order input may be computed.

The state of art, at second order, in the offshore industry has been to use an ap-

proximation to the second-order potential which ignores, at least, the contribution

from the free-surface integral, or to find the double-frequency exciting force without

knowledge of the second-order potential. As explained by Ogilvie (1983), a body

held fixed in a hi-chromatic wave field (w' , w2) experiences both sum- and difference-

frequency, unsteady forces and these forces are dependent on both of the frequencies,

not just their sum or difference. This implies that a complete solution of the diffrac-

tion problem covers all of the w1 ,w2-plane. Since this amount of computation has

been considered prohibitive for general, three-dimensional bodies, the approxima-

tion of Newman (1974) utilizing the steady, time-average force in regular waves,

to approximate the slowly-varying second-order force, has been embraced by most

frequency-domain investigators.

Similarly in the time domain, we can calculate a second-order impulse response func-

tion, which requires two impulsive motions of the body and depends on the time
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interval between them. However at present, we wish to investigate the numerical

difficulties in the second-order problem in a less ambitious undertaking. We are in-

terested in the portion of the unsteady, second-order force due to the second-order

potential, on a body oscillated harmonically with frequency w. As t - oc the ampli-

tude of this force should agree with the 2w impedence force found in the frequency

domain. All of the other parts of the second-force in the radiation problem are calcu-

lated from the first-order potential. Recall that the second-order potential has been

decomposed into two linearly superposable parts, one forced by the inhomogeneity in

the free-surface boundary condition 2)F (,t) and one forced by the inhomogeneity

in the body boundary condition ,(2)B (i,t). The unsteady second-order force F2)(t),

due to the second-order potential, has the decomposition then:

F12 (t) = F(2)B (t) + F(2)F' (t), (8.1)

We can calculate (t) without knowledge of the second-order potential (2) (, t).
This has been demonstrated in the frequency domain by Faltinsen and Løken(1978),

Lighthill (1979) and Mohn (1979). Claims that the numerical effort is considerably

less in these formulations are arguable. The fact is, that in either the second-order

force computation or the solution of the second-order potential problem, there re-

mains the task of integrating over the free surface, and both methods require the

same number of evaluations of the Green function and its derivatives for field points

on the free surface in the integrand. There are distinctions: for instance the second-

order potential solution does require the solution of a linear system, but the overall

numerical effort in both methods are of the same order. if the force calculation is not

markedly more straightforward, why be concerned with this method when the second-

order potential is a more useful quantity? { For instance, the second order potential

allows the calculation of local pressure and wave run-up. The answer is simply that

the second-order force alone is useful, and the numerical procedure required for the

determination of the second-order potential is an extension of that required for the

calculation of the second-order force. In the time domain, both approaches share the
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(i)'
tt +'' =0

78

on SF (8.4)

numerical difficulty of the evaluation of temporal and spatial derivatives of ( 1) (±, t)

on the free surface near the body.

The derivation of the formula for the transient second-order force, F2 (t) parallels

the analogous derivation in the frequency domain, in that we also use the artifice of

an assisting potential. This is a potential which is not related to the physical flow

for the body motion under study, but has a body boundary condition which allows

the recovery of the definition of the hydrodynamic force from a term resulting from

the application of Green's second identity.

The assisting potential is the first-order impulsive motion potential; we restate its

definition for completeness:

= o in V (8.2)

3(1) t>0 OflSB (8.3)

where () is defined by (3.11) for a non-rotative mode, for example, and is not

time dependent.

?(')', (i)I
,

(1)I are uniformly bounded on , for t finite (8.5)

= 0 (8.6)

(1)I (x,y,O,0)=O. (8.7)

The two second-order potentials, associated with the decomposition of the second-

order force in (8.1) may be determined by the solution of the following two problems.



The second-order potential which satisfies the complete second-order free surface

condition, but a homogeneous body boundary condition is the solution to:

(x,y,0,0) = 1)(z,y,0,0+))2 on (8.13)
2

Z

where ç5( ' (±, t) is the first-order solution which corresponds to the second-order

solution (2)(±,t) and should not be confused with (')'(,t).

The second-order potential which satisfies the complete second-order body boundary

condition, but a homogeneous free-surface condition is the solution to:

V2(2)B(i,t) =0 mV (8.14)

ß(2) t>0 OflSB (8.15)

(2)B 2)B =0'ptt +
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(8.8)

(8.9)

(8.10)

(8.11)

(8.12)

on SF (8.16)

(2)B are uniformly bounded on S , for t finite (8.17)

V2(2)F'(î,t) =0 mV

= O t>0 onSB

'Pt + (2)F on SF

are uniformly bounded on S, for t finite

(2)F(x,yO,O+) = O
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(2)B(xyoo+) ..O (8.18)

= 0. (8.19)

We first derive the expression for F2 (t) by application of Green's second identity

to 2)F' (, r) and çt't1' (, t - r). The volume integral vanishes because of equations

(8.2) and (8.8); the surface intgral at S vanishes because of equations (8.5) and

(8.11); and one term of the surface integral on SB vanishes because of equation (8.9).

In the remaining term of the integral on SB, we may exploit the body boundary

condition (8.3), and so we may write (with spatial arguments omitted for clarity):

[f d }F(r)B(1) = [[ d([2(r)1(t_r)_(2 (r)')'(t_r)]. (8.20)

JJSB Jis,

From the free-surface condition, equation (8.4) we replace ''(t) with _1)1 (t) and

integrate both sides in time from r = 0+ to r = t. Because of the Heaviside manner

in which both potentials are initiated, the integration limits must be approached in

a limiting sense from inside the range of integration. After integration by parts on

the right-hand side we have:

[dr [f d2(r)n = - [dril d1(t - r)[)F(r) +2)F(r)]
JO+ JJs Jo+ Jis,

- IfJs,
(8.21)

where we have used the initial conditions on (''(i,t), (8.6) and (8.7) to eliminate

terms. Since we have the left-hand side of the free-surface condition (8.10) in brackets

inside the convolution, we may replace these terms which require knowlege of the

second-order potential with the right-hand side of this condition which does not.



Then taking the partial derivative of equation (8.21) with respect to time t, we can

recover the definition of the hydrodynamic force on the left-hand side:

(1)IF(2)F (t) dr [1 (t - r)í(2) (r)
Jo+ Jis,

r ,(2)F
+ 1f d (o)'(t) +2)F(o+)(t)I.

Jis'

(8.22)

We can show that one of the terms in the second integral makes no contribution. By

use of Green's second identity we may equate

[1 d 2)F(0+)l)I(t) = 1f d(2)F(0+)I(t)
fJs, ifs,

+ 1f d [(2)F (o )I (t) (2)F
(0

)(1)I
(t)I,

J Js

(8.23)

but the right-hand side of this expression vanishes because (2)F (0k) = O on SF by
(1)1 . (2)F +

equation (8.12), (t) = 0 on SB by equation (8.3) and (0 ) = o on S by

equation (8.9). In the other term in the second integral, 2' (0k) is specified by

equation (8.13). So we have finally:

(1)1F2(t) = - (dr 1f (tr)(r)
Jo+ Jis,

1
d ''- e (t)

()H
(o+

))2
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(8.24)

We can follow a similar procedure to obtain an expression for the force on the body

due to the second-order potential (2)B (,t). Again we apply Green's second identity,
(2)B -. (1)1 -. .this time to (z,r) and 4 (x,t - r) . In this case, both contributions in the

body surface integral remain, but because (2)B (i, t) satisfies the homgeneous free-

surface condition, the convolution on the free surface vanishes after the integration

by parts [refer to equation (8.21) J. Using similar manipulations as in the derivation

of F(2)F (t), we can recover the definition of F(2)B (t) from the integral on the body



And finally, the frequency domain expression for the double-frequency hydrodynamic

force on a radiating body excited at frequency w0 is:

1(2w0) = 2iw0 ffd(h(2wo) (8.38)

or for the force as a function of time:

F(t) = R{f(2wo)e(2iw0t) }. (8.39)

So we have recovered the expected frequency-domain expression for the double-

frequency force in terms of an assisiting potential, (2wo), and the unsteady portion

of the inhomogeneity of the frequency-domain free-surface boundary condition, h.
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i

2w0

c (2w0) - 4wg 4 (2w0) = O on SF, (8.36)

and an appropriate radiation condition. Since we usually write the frequency-domain

body boundary condition (2wo) = n, this more familiar frequency domain potential

is related to (2w0) by:

(2w0) = -

83

2w0

(8.35)

(8.37)

h(w) =2irh6(w+2w0), (8.30)

where 6 signifies the Dirac function. We take the transform of formally, so that

(8.27) may be written:

F(t) {ffd hfdw ö(w + 2wO)w(w)et}. (8.31)

The frequency integral is easily solved:

F(t) = 4w {ff dehçY (2w0)e2iwot }.
(8.32)

where (2w0) is the solution to the Fourier transformed boundary value problem for

(')'(t). For the real frequency-domain potential (2wo), (2wo) is defined by:

(2wo) = (8.33)

and (2wo) satisfies:

V2q5* = O in the fluid domain, (8.34)



surface SB and eliminate integrals on SF. The final expression for the force due to
(2)B is:

(1)IF2 (t) = 1 dr 1f d(çb (t - r)B (r)
Jo+ usa

+ 1/ d [(1)I (0 )3(2)
(t) ')' (o )3(2) (t)].

J J SD

We expect that for a harmonically excited body, equations (8.24) and (8.25) will

recover the equivalent frequency domain formulations as t + oo We will demonstrate
this for the expression for F2' (t), the method for the expression for F28 (t) is

similar. Consider a body excited in a single mode of motion with frequency w. In
this case,

(2) l?{he2"°t} + H t * 00, (8.26)

where H and h are not functions of time. As t * oc, we drop the transient terms,
exchange the time and retarded time arguments, and extend the time intgration to
oc, which we may do as (1)"(t) = O,t <O. Now we can write the force in Fourier
convolution form:

F(t)

=
1f d( I dr (r)he20T)

}.
(8.27).JiS, J-

The Fourier convolution theorem states:

fc0dT
f(t r)g(r) = t: ef* (w)g* (w). (8.28)

So we require the solution to:

h(w) = hf dr e2iQ0te1wt, (8.29)

which is,
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9. NUMERICAL ASPECTS OF THE SECOND-ORDER PROBLEM

OVERVIEW

To investigate the numerical complexity of the second-order transient problem we

would like to compute the second-order unsteady force on a right-circular cylinder

heaving at frequency w. Strictly speaking, the quadratures in the second-order force

computations are not panel methods, while the solution of the second-order problem

itself is. In the second-order force computation, the panel method effects are entirely

contained in the precision of the known, first-order solution, and the quadratures are

undertaken in any fashion which is compatible with a specification of this potential at

discrete points on the body and free surface. In the second-order potential problem,

the panel approximation of the body is present, as at first order, on the left-hand

side, in addition to fact that the right-hand side contains the same first-order panel

method effects as are present in the force computations. While this is an important

distinction, the model problem of computing the second-order force on a heaving

axisymmetric cylinder does contain the computation and quadrature of first-order

quantities on the free surface, and we anticipate that this is the primary difficulty in

either the second-order potential or force problems.

The initial task in solving this axisymrnetric problem is the solution of the first-order

problem with sufficient accuracy. We expect that the level of accuracy required for

first-order solutions, when they are used to determine integrated quantities such as

hydrodynamic coefficients, will no longer be sufficient when these solutions are to be

used to construct the right-hand sides of either the second-order potential or force

problems. This means a possible increase in computational effort at first order if

second-order computation is anticipated. Since this model problem is axisymmetric,

85



the ability of TIMIT to exploit multiple planes of symmetry is used to reduce the
computational burden. A wedge of the axisymmetric body is discretized by a strip
of panels which is one panel wide, then the influence coefficients are calculated by
sufficient reflections of the source or field points to characterize the entire body. This
technique tends to retain the general body effect on the accuracy of computations
because panels are of finite dimension in two directions.

The codes which evaluate F2 (t) and F(2)F (t) use the the first-order potential on
the wedge of the body as input. In the case of F22 (t), the potential on the body
alone is sufficient to evaluate the force, but for F(2)'(t), Green's second identity
must be used with the potential on the body to find the potential at field points on
the free surface. The first-order potential on the body will be assumed to be piece-
wise constant over panels and time-steps, which means that the quadrature follows
a mid-point rule in space and the trapazoid rule in time.

Computations are performed in a circular cylindrical coordinate system defined rel-
ative to the Cartesian system shown in figure 2-1: the z-axis is coincident with the
z-axis of the Cartesian system, r is parallel to the x-y-plane, and angle O is measured
from the positive z portion of the x-z-plane. We examine the numerical details of
the computation of F25 (t) and F(2)F' (t) in the remainder of this section.

THE COMPUTATION OF F28 (t)

The difficulties associated with the calculation of F25 (t) are not well modeled
by computations on a right-circular cylinder. We expect that the computation of
gradients of the potential may be numerically difficult on a body surface, but for
this body in heave, most of the terms in B() (t) vanish, apparently simplifying the
computation. However, the submerged corner of this body causes a non-integral
singularity in 3(2) (t), so the discussion of numerical aspects of the computation of
F211 (t) will be limited.
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The computation of F25 (t) is made by equation (8.25) in which 32)(t) may be
specialized for a heaving body to:

B2t) = E3t) (,t), (9.1)

where (t) is the magnitude of the heave velocity. In the case of the right-circular

cylinder, with unit heave at frequency w started impulsively:

B2(t) coswt (i)H t >0zz

where (')' ( t) is the solution to the first-order problem of impulsively-started

oscillation at frequency w, and SBOT is the initial position of the bottom surface of

the cylinder. The discrete form of equation (8.25) is:

M Nor
r, (1)1F(2)B = - 't i: ).M

m=0

N BOT

± i: SSr('4(2))S,M
L. ,o

j=1

M=0,1...MT,

where S5 is the area of the jt body-panel, NB0T is the number of panels on the

bottom of the cylinder, and the prime indicates that weights of one-half apply when

rn = O or rn = M. So equation (9.3) is merely a convolution and quadrature over the

bottom of the cylinder of a second derivative of a first-order quantity. In the case

of a body with a corner, such as the right-circular cylinder we are studying, or the

TLP discussed in Section 6 (Figure 6-11 ), has a non-integrable singularity at

the intersection of the bottom and side. This may be appreciated by examination of

the analytic solution for two-dimensional flow around a corner with included angle

of 3ir/2 (see equation (10.11) et seq ). For bodies without such a discontinuity of

slope, we do not expect difficulties in evaluating B (t). In Figure 9-1, the value of
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the potential accros the bottom of the cylinder is presented for a few representative

times. The assisting and harmonic potentials are shown, and in both cases, the results

for several discretizations are indistinguishable indicating that convergence for the

potential does not require excessive numerical effort on deeply submerged portions

of the body. These functions are well behaved, monotonic in fact, and amenable to

finite difference. As will be shown in the next sub-section, difficulties arise in the

evaluation of first-order quantities for field points close to the edge of a panel or

close to the free-surface-body intersection. In the computation of F(2)B (t), though,

the quadrature is on the body only, and all calculations may be performed at the

panel centroids. In addition, for wall-sided bodies in modes of motion for which

B2 (t) vanishes on panels near the free surface, the free-surface difficulties will not

be important either.

THE COMPUTATION OF F(2)'(t)

In the computation of F2' (t), first-order quantities are required at field points which

are not at the panel centroids. In this case, there are computational difficulties in

the evaluation of first-order quantities on the free surface close to and at the free-

surface-body intersection. The discrete form of equation (8.24) is:

M-1 N,
(1)1F(2)F =- i 'tS1(, )i,M

m0 j=1
N,

I ((1)H))m

M=O,1...MT,

where S is the area of the j" body-panel, NF is the number of quadrature points on

the free surface, and the prime indicates that weights of one-half apply when rn = O

or m = M. For an axisymmetric problem, 1(2) (t) may be written:

1/(2)
- m

(9.4)
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a 3 (1)11(2) (t) = [(,(1)H )2 + (1)H )2] + + 1)H
) (9.5)at

The temporal and spatial derivatives of ')' (tt) which constitute 1(2)(t) are com-

puted either by Green's second identity or by finite difference. The potential 1)H (t)

(1)H (1)1 . (I)H (1)1and the derivatives of the potentials: & and 4 (which are and , re-

spectively, on the free surface) are computed by extensions of the Green formulations

(3.9) and (3.12). When these expressions are used with the field point not on the

body, the factor 2ir is changed to 4ir, as is well understood in potential theory, and

the integral equation becomes a method for the computation of the potential at any

point in the fluid by quadrature of the known solution and the Green function (and

its derivatives) over the body surface. If a temporal or spatial derivative of a first-

order potential is required at a field point, then the partial derivative of the integral

formulation is taken and this derivative may be calculated directly with knowledge

of the potential itself on the body. For instance, in the general body case of finding
1) (i,t) on the free surface, equation (3.9) becomes:

4'(i,t) + [f d't)G(i; + [dr [f - r)
.1 S Jçj+ JJS

dB'= (;tr)1+ ff
+ ff d3(1)(t)G0)(2; ).

(9.6)

Ideally, the computations for the z-derivatives by this method should be as accu-

rate as computations for the potentials themselves. However, in the extension to

TGREEN, added to calculate second spatial derivatives, machine precision could not

be maintained within the structure of an ascending series matched to an asymptotic

approximation. The precision of can be as poor as four significant digits near

the matching point.
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The remaining terms in N21 (t) are found by finite difference. In the particular case

of this is found from the finite difference results and through

Laplace's equation. The other terms are straightforward.

The extent of the free surface over which the quadrature in (9.4) must be performed

is surprisingly limited. The relevant physical parameter for the transient disturbance

is t2 /r, as in the Cauchy-Poisson problem. Therefore analysis of the wave-front at

large r for any finite t is equivalent to analysis at finiter as t -f O. At t = O, the flow

in the heave mode is like a vertical dipole, hence '' '- 1/r3 in the plane z = O.

When we convolve the functions '' and kt2, the integrand is characterized by

the product of this small-time behavior of '' and the steady-state limit of E(2.

This latter function is quadratic in the potential and so has its radial dependence

dictated by conservation of energy to be 1/r. Therefore the integrand in the free-

surface quadrature decays in space like 1/r4, ensuring that the effort required for this

computation will be quite reasonable.

The Green's second identity approach to free-surface quantities contains some nu-

merical limitations which require discussion in detail. These difficulties limit the

computation of an accurate solution more so than any complications due to the fi-

nite difference approach. In effect, if the quantities (1)H and '' on the

free surface could be found to arbitrary accuracy simply by refinement of the body

model and improvement in the precision of the computation of G(F), then the finite

difference results could be found to the requisite accuracy through numerical effort.

However, we find that very close to the body there are computational errors which

may not be surmountable by numerical effort alone. In the remainder of the section

we examine the behavior of the quantities 4(1), (i)H and '' in the region close

to the free-surface-body intersection.

At the free-surface-body intersection we calculate 4(1)I, (i)H and 1)1 by extrap-

olating a finite difference calculation up the side of the cylinder. We present these

results in Figure 9-2. The evidence indicates that the convergence is slow for these

quantities and is more dependent on azimuthal panel dimension than on vertical
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panel dimension. This is important because a 'ring' Green function method would
not reveal effects due to the type of panelling which is required for general bodies.

(i)'The last part of Figure 9-2 shows tending to a non-zero constant at large time
even for the finest azimuthal discretization. This is indicative of the slow conver-
gence, for this potential must tend to zero on the free surface at large time, because
the Green function tends to the rigid-lid Green function as t -f oc. Figure 9-3 shows
the values of these functions close to the body as calculated by the Green formula-
tion. As there is no singularity at the intersection point the behavior shown is not
expected. Further, the trend of the functions is more sensitive to panel aspect ratio
than it is to the fineness of the discretization, leading to the conclusion that this
is numerical error. The probable cause is that the field points are too close to the
edge of a panel upon which the potential is assumed to be constant. This problem
may be surmountable in the present panel method, if it can be shown that we may
interpolate through this region using reliable free-surface quantities further from the
body and quantities at the free-surface-body intersection found by extrapolation of
quantities at the panel centroids.

Because the problems which we solve for (')' and 1)H are initiated impulsively,
all wavelengths are present on the free surface for all time. This is reflected by
the fact that G' contains increasingly short waves as t/(R')1/2 - oc. This is
apparent in Figure 4-1, where the frequency at which R' G(F) is oscillating is a
constant when plotted on a t2/R' axis. Since the limit t/(R')"2 - oc means either
very large time or very small distance, we can expect increasingly short waves close
to the free-surface-body intersection as t - oc. This is irrespective of any singularity
which may or may not be present at this point due to a confluence of disparate
boundary and initial conditions in the first-order problem. Note that in the case of the
heaving cylinder, the body boundary condition at the free-surface-body intersection,

= O, is compatible with the initial condition, = O, on the free surface. This
compatibility is not present in the sway mode.

Outside of this region we find the expected short waves radiating from the body.
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These are indicated by the plot ofj1' at successive time steps in Figure 9-4. These
waves may be resolved at shorter and shorter wavelengths by a greater density of field
points on the free-surface. In Figure 9-5 we see these short waves in the context of
the entire free-surface disturbance. The presence of these short waves with significant
amplitude is suspect. Because of exponential decay of wave effects, we expect that
panels near the free surface are important in the accurate computation of the short

(1)1wave components of the free-surface disturbance. But the plot of , found by
finite differencing at the panel centroids, shown in Figure 9-2 suggests that the
value of the potential at the centroid of the panel closest to the free surface is not
accurately computed. Its effect on an integrated quantity, such as the hydrodynamic
coefficients may be negligible, but in providing the forcing for the short wave lengths
it is critical. has been used as the function to present these various phenomena
because it is indicative of problems with any of the derivatives of ('", and it
explicitly appears in the integrand of equation (9.4) (as ç5').

Due to the difficulties in computations close to the body and the lack of a closed
form solution to this problem for comparison, we cannot be confident of the accu-
racy of first-order quantities on the free surface. Before equation (9.4) can be used
to compute the unsteady second-order force F2 (t), we need to justify interpo-
lation through the region where the method breaks down, and we need to assess
the importance of resolving short waves. In pursuit of these goals we take a new
approach to free-surface quantities, applicable to the right-circular cylinder, which
allows evaluation of free-surface quantities arbitrarily close to the body.
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Figure 9-1. The heaving cylinder. (F,t) for w = 1.2533 and (''(F,t) on the
cylinder bottom. All results are for t = 0.1. Panelling: 24x36 24x72 - -
and 36x54 - .- ; (bottom & side x azimuthal).
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(1)H -. (i)H -Figure 9-2. The heaving cylinder. (r,t) and (r,t) at the body and
free-surface intersection, for w = 1.2533. All results are for z.t = 0.1. Panelling:
24x36 ; 24x72 - - 24x144 - - - - and 36x54 - - - ; (bottom & side x
azimuthal). Continued on next page.
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Figure 9-2 cont. The heaving cylinder. 1'(ft) at the body and free-surface
intersection. All results are for t = 0.1. Panelling: 24x36 ; 24x72 - -
24x144 - - -, and 36x54 - - ; (bottom & side x azimuthal).
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Figure 9-3. The heaving cylinder. ''(r,t) on the free surface close to the body
( r=1.O ). All results are for t = 0.1. Panelling: 16x16 - - ; 16x24 - -
24x24 - - - ; 24x36 ; and 36x36 - - - -; (bottom & side x azimuthal).
Continued on next page.
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Figure 9-3 cont. The heaving cylinder. 1)hi (f, t) and '' ( t) on the free surface
close to the body ( r=1.0 ). All results are for ¿t = 0.1. Panelling: 16x16 -
16x24--- ; 24x24 - -; 24x36 ;

and 36x36 ----; (bottom & side x
azimuthal).
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(i)!Figure 9-4. The heaving cylinder. & (r, t) on the free surface in the region of short
waves. = 0.1 panelling: 24x36. The region close to the body (Figure 9-3) has been
interpolated through.
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10. A SECOND APPROACH TO FREE-SURFACE QUANTITIES

OVERVIEW

Section 9 has raised doubts about the ability of the discretized Green formulation

to evaluate the potential and its spatial and temporal derivatives on the free surface

in proximity to the body. We would like to evaluate these same quantities by a

method in which we can have greater confidence. Usually a closed-form solution is

sought for this purpose, but in the case of the transient radiation problem there is

none available. However we can make beneficial use of a formulation which is often

employed for matching non-linear inner solutions to first-order outer solutions as in

Lin, Newman, and Yue (1984). This matching takes place on a vertical, right-circular

cylinder which encloses the non-linear portion of the solution and is of semi-infinite

vertical extent. Exterior to the cylinder is a first-order potential which may be

expressed in terms of the radial fluid velocity through the cylinder, and a Green

function. For the present application, the interior potential is the first-order solution

from (3.12).

In this section, we continue the analysis of the model problem of the heaving, right-

circular cylinder. As is shown in Figure 10-1, the matching surface over which the

radial fluid velocity must be evaluated is an infinitely deep continuation of the body

itself. We can express the first-order, axisymmetric potential exterior to the infinite

cylinder (of radius equal to 1) by:

'(r,z,t) f dz''(1,z',t)D°(r,z;1,z')

+[ drf dz'(1,z',t)D(r,z;1,z',tr),
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where the Green function, D = D° + D(F), is an axisymmetric function which

satisfies the problem statement:

The derivation of D(r,z,t;r',z',r) is straightforward and proceeds by separation of

variables and Fourier integration as is familiar from the derivations of potentials for

point singularities in Wehausen and Laitone (1960) Section 13. The results are that

the Rankine portion of D is defined:

1roo
D° = - I dk r(k, r) {e-kIz_z'l - J,irJ0 k

and the free-surface portion of D is defined:

2P
- / dk --sin(V'(t -
1rj0

in which £(k, r) is a rational function of ordinary Bessel functions:

J0 (kr)Yi (k) - J1 (k)Yo (kr)
£(k,r) J(k)+Y12(k)
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(10.7)

(10.8)

(10.9)

V2D(r,z,t;r',z',r) = O (r,z,t) (r',z',r), and r> 1, z <0, (10.2)

Dr = ö(z - z')ö(t - r) r = 1, z,z' <0,

where ô signifies the Dirac function,

+ D = O on z = 0,

(10.3)

(10.4)

D, D, D are uniformly bounded as /r2 + z2 -p oc, for t finite,

and,

D(r,z,t;r',z',r) = O t < r.

(10.5)

(10.6)



Formulation (10.1) obviates the free-surface--body intersection problem discussed in

Section 9 for a body which is wall sided at, and some distance below, the free surface.

In the computation of ''(i, z,t), the panel method is used to find the first-order

potential on the body as has been described in previous sections, then Green's second

identity, is used to find (1, z, t) on the infinite cylinder. In the latter computation
(1)I.there are no field points close to the free surface because . is prescribed on the part

of the infinite cylinder which is actually the body. Subsequently, in the application

of (10.1), although there may be field points on the free surface arbitrarily close to

the body, for the heave mode

'(1,z,t) = O on the vertical portion of SB, (10.10)

so that the quadrature does not include the body surface. As long as the interest is

in free-surface quantities, z ± z' does not approach zero, being never smaller than

the extent of the wall-sidedness.

A further benefit of this formulation is that the behavior of the first-order potential

and its derivatives is more apparent than it is in (9.6). In (10.1) we may observe two

characteristics: (1) the non-zero limit of z + z' ensures that very short waves are

indeed damped exponentially with wave number, so that at large time, very close

to the body, we can expect no large-amplitude, rapid oscillation of the free surface;

and (2), the z-derivative of the first-order potential will have the amplitude of each

wave-component increased by a factor of its wave number, but will still be similarly

damped -

NUMERICAL IMPLEMENTATION

The implementation of (10.1) involves the first-order panel methods which have been

discussed in various aspects over the previous sections. The first-order potential on

the body, solved for by TIMIT , is used to compute '(1,z,t) on a portion of the

infinite cylinder by a formulation similar to (9.6). '(1,z,t) is required from the
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corner of the body, to a truncation point at sufficient depth to allow accurate eval-

uation of free-surface quantities. Computational effort may be reduced by matching

the computed velocity to that due to a dipole located at the origin. While not a

numerically or computationally difficult task, the results will confirm that this has

not proved to be necessary in this study. Accurate evaluation of ( ' (r, z, t) close to

the submerged body corner cannot be expected in light of the results presented in

Section 9 for the free-surface-body intersection. However, empirical evidence suggests

that depth improves the situation, and more importantly depth allows an infinite-

fluid analytical approximation to the locally two-dimensional, corner flow. Unlike the

potential at the free-surface-body intersection, the flow at the submerged corner is

singular. The strength of the singularity is a function of the included angle. That is,

for included angle ¡3 = -, the two-dimensional potential may be written in complex

form as (Newman, 1977):

F(Z) = Zn, (10.11)

with the result that close to the corner of this body (for which n = 2/3):
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(10.12)

where Z is the draft of the body (in this case z0 = 0.5). This representation of the

radial velocity may be matched to the computed radial velocity at some distance

below the corner, and its contribution in (10.1) may be evaluated analytically or

numerically. The location of the matching point is determined by obtaining the

correct value of the flux through the infinite cylinder below the body at each time step

within a specified tolerance. '(1,z,t) is assumed constant over vertical segments

of the infinite cylinder, and so is evaluated at a finite set of field points between the

corner and the truncation point. These field points are the mid-points of equal length

segments in a mapped space. The space s is related to the vertical axis z by:
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Z=Zo-32/3 (zo_zr)3/2<s<0, (10.13)

where ZT is the truncation point. This mapping for cube-root singularities is the
analogue of cosine spacing for square-root singularities.

The Green function evaluation is done by Romberg quadrature in the wavenumber k,
while the Bessel functions in £ (k, r) are computed from ascending series and asymp-
totic representations (Abramowitz and Stegun, 1964). To compute 1'(r,0,t),
which is the quantity presented in the results for this method, the partial deriva-
tive with respect to z of equation (10.1) must be taken. On the right-hand side of
this formulation, only D° and are functions of z. The z-derivatives of D10
and D1 are evaluated in the same fashion as D° and D(F) themselves, as the
convergence of these quadratures is still exponential in k.

The integration in z is performed analytically on each segment once is assumed
to be peicewise constant. The discrete form of (10.1) to be solved for the potential
on the free surface is:

M Nc2 i'(r,O,t) = - t>5'} I dk [ekz2i - sin('FktM_m)i(k,r)rJ,m J?flO 1=1

M=0,1...MT,
(10.14)

where the prime indicates that weights of one-half apply when m = O or m M, N
is the total number of segments on the truncated semi-infinite cylinder, and z and
z1j are the end points of the J°' segment. Note that when z = O the Rankine portion
of the Green function D° vanishes. After the partial derivative with respect to z
is taken, the formulation for the z-derivative of the first-order impulsive potential
which we will use to compare with results in Section 9 is:



2= f dk [e2' -rj,vn
J=1

+
2 st(1)I f dk [C2i e'u] 1- Sfl(\/tMm )(k, r)r,m

m0 5=1

M=0,l...MT.
(10.15)

RESULTS

Expression (10.15) has been evaluated using /(1)' (1, z, t) at 48 field points mapped

as in (10.13) with z1. 6.0. In establishing the matching point for the application

of (10.12), a tolerance on the comparison of the flux through the infinite cylinder

to that through the body was set at one-percent. This is an order of magnitude

larger than the error which is introduced by ignoring the flux through the cylinder

for z7. > z> -oc.

Figure 10-2 confirms our conclusion that the behavior of '' at the free-surface-

body intersection is an artifact of the panel method and the constant strength rep-

resentation of the solution. The values at the free-surface-body intersection confirm

that the large-time limit is indeed zero. Of greater significance is the fact that the

large-amplitude short waves seen in (9.4) are also due to the discrete form of the

Green formulation. As discussed above, (10.1) does not predict this large-amplitude

behavior. Rather, we see that the initial impulsive disturbance of the free surface,

which contains all wave lengths, disperses with increasing time, and wave amplitude

is attenuated exponentially with wave number. Away from the free-surface-body

intersection the results agree well with those in Figure 9-4.

Figure 10-3 presents '' over a greater extent of the free-surface. The agreement

with Figure 9-5 confirms that the quadrature of Green's second identity used in

Section 9 produces accurate results on the free surface in the region which is not
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local to the body. In the local region, that method is not reliable, but here, Figure

10-3 indicates that > is approaching zero after the initial disturbance bigins to

disperse. Since '' appears explicitly in the integrand of the unsteady second-order

force formulation for F(F (t), (8.24), any poor behavior close to the body in other

derivatives of the potential which constitute (t), will not be important. This

provides some optimism that accurate evaluation of the second-order unsteady force

due to the inhomogeneity of the second-order free-surface condition is possible using

the formulation in Section 8 with some refinement of the computational method.
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11. CONCLUSIONS AND RECOMMENDATIONS

The first-order, three-dimensional, general-body, transient, radiation problem has

been solved. Impulse response functions and the complimentary frequency-domain

results (obtained by Fourier transform) have been presented for simple and complex

bodies. In the sections of the Thesis which present these integrated results, the em-

phasis has been on analyzing and improving the accuracy and utility of the solution.

The large-time asymptotic approximation to the impulse response function has been

derived to arbitrary order and has been demonstrated to be important in the com-

putation of accurate frequency-domain hydrodynamic coefficients for simple bodies,

by implementation at O(t9).

In the process of deriving the asymptotic expansion for large time, the underlying

analysis which takes place in the frequency domain has provided closed-form expres-

sions for the first several terms of the added-mass and damping coefficients. Further

analysis may provide more such expressions. Conversely, the method suggests that

the high-frequency asymptotic representation of the frequency-domain hydrodynamic

coefficients, may be derived by Fourier transformation of a small-time expansion of

the impulse response function.

For complicated bodies, such as the TLP, the asymptotic representation is apparently

not useful, as it is difficult to distinguish between the irregular-frequency effects and

the physical resonances. However for these bodies, irregular-frequency effects are not

pronounced. In addition to the fact that the impulse response function is required

for simulations, there is a another substantial benefit to transient analysis of bodies

with strong hydrodynamic resonances. The resonances cause the frequency-domain

coefficient functions to be quite oscillatory and repeated frequency-domain analysis
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to reveal these extrema can be computationally inefficient. However, a preliminary,

low-accuracy, transient analysis and Fourier transform can reveal the nature of these

functions and allow a more effective analysis in the frequency domain.

At second-order, the equation to be solved for the potential in the the general-body,

three-dimensional, transient, radiation problem has been presented. In addition,

compact expressions for the second-order, unsteady force due to this potential have

been derived. Both of these problems require the quadrature of quadratic products of

temporal and spatial derivatives of the first-order solution on the free surface. If this

difficulty can be overcome in the force formulations, then the solution of the integral

equation for the second-order potential can be solved with additional computational

effort. It should be recognized that a similar derivation, with an assisting potential,

leads to analogous force expressions for the second-order diffraction problem.

Computation of second-order quantities for the general body is, as yet, impeded by

the inaccuracy of the first-order quantities on the free surface in proximity to the

body. The evidence indicates that accurate field-point results are not possible from

Green's second identity when the field point is close to the edge of a constant strength

panel. Also, the potential solution-vector for points at the panel centroids may con-

tain sufficient error close to the free surface to inaccurately specify the amplitude

of short waves. The point made in Section 9, that field-point calculations are not a

part of the panel method, is important because in the quadratures which constitute

the right-hand sides of the second-order potential problem, the second-order force

computation, and the Green formulation for the first-order potential or its deriva-

tives at field points, there is no requirement that the representation of the potential

on the body be only the piece-wise constant panel-method solution. It is possible to

augment the panel method result with analytical information, such as spatial deriva-

tive specification at the waterline, or by curve fitting the results over the entire body.

These techniques may be the source of the improvement necessary in the quadratures

involved in the second-order problems.

In the penultimate section of the Thesis, the computation of accurate free-surface
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quantities is demonstrated for the right-circular cylinder. These results are presented

for comparison to the results of Section 9 and they may be used as the benchmark for

any general-body method which attempts to improve on the method presented here.

Benchmark second-order forces may be computed from these results as well. The

orientation of the Thesis has been toward the solution of the general body problem,

hence the emphasis has been placed on investigating the discrete solution rather

than on the generation of second-order force results for a particular body such as the

right-circular cylinder.

Further work on the perturbation approach to the transient problem must improve

the local accuracy of the first-order solution. It must be stressed that the intersection

problem contains difficult physics as well as numerics. In this Thesis, the case of a

heaving, wall-sided body has been discussed in detail, because the potential flow is not

singular at the free-surface-body intersection. For other modes or other bodies, the

flow is weakly singular at precisely this location of greatest numerical difficulty. The

free-surface-body intersection problem is important not only in second-order analysis,

butin the nonlinear problem as well. In a general body nonlinear problem, a useful

method for closing the nonlinear domain is to match to a first-order outer solution.

The intersection of the matching boundary and the free surface is no different from

the free-surface-body intersection.

A careful analysis of the perturbation approach to the transient radiation problem has

been undertaken. There have been successes in the accurate characterization of the

integrated first-order quantities by both computational and analytical means. For the

point-wise solution in the fluid field, required for accurate second-order computations,

difficulties have been documented at the free-surface-body intersection. We leave to

future investigations the numerical approaches which will allow the computation of

accurate and efficient second-order and nonlinear solutions.
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APPENDIX

The transient radiation problem which is defined in Section 2 may be expanded in

powers of a small parameter to produce a series of linear problems at each order. The

problems at first- and second-order are defined in Sections 3 and 7 respectively. We

wish to derive an integral equation to replace the initial-boundary value problem at

any order. This is done via Green's second identity making use of a Green function.

In principle the problem can be reduced to an integral equation to be solved with

contributions on the body surface alone, at any order. However in practice, this

is feasible only at first order. So in the following, we use the first-order transient

Green function to derive the Fredhoim-Volterra integral equation which applies to

the problem at every order. Use of this Green function has the benefit of removing

terms involving the unknown potential from the free surface, although there is still

an integral involving known quantities to be calculated on the free surface.

Let ('t) be the potential at O(c) which solves:

V2'(i,t) = O in the fluid domain

(n) + on SF
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where ') vanishes at O(), but at higher orders involves products of spatial and

temporal derivatives of solutions at lower orders.

ß(n) oflSB, t>O (A.3)



where ,i is not a function of time, as it is defined as the unit-normal vector on the

body in the initial position; and where B' involves contributions from lower-order

solutions, from the expansion of the body velocity, and from corrections to the normal

due to the body motion around its initial position.

on S for t finite (A.4)

a discussion of this boundary condition is available in Stoker (1957). The free-surface

boundary condition is second-order in time, so we expect that we must specify both

(') (i,t) and (i,t) as initial conditions:

(x,y,O,O) = O, (A.$)

and

(n)
4 (x,y,O,O) j(n) (A.6)

where condition (A.5) results from (2.7), and the right-hand side of (A.6), J( (Ok),

involves lower-order solutions and may be derived at any particular order from (2.6)

and (2.3).

We make use of the Green Function derived by Wehausen and Laitone (1960), which

may be written:

1
2 Idk [i - cos(kt)Je' J0(kX), (A.7)G(t)=-+

where

R'Ì
RJ

= [(x-)2 +(yti)2 +(z±)2I1,

Y = (z+ç),
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and

X2 =(x-)2+(y-ij)2.

Stoker (1957) discusses this Green function in detail; here we note the spatial and

temporal properties which figure in the ensuing derivation:

G(; , t) satisfies the Laplace equation, the first-order, homogeneous free-

surface boundary condition and its gradient vanishes at S,

G(; t) is symmetric in both space and time; the specific temporal properties

required in the derivation are:

G(;tO )=O OflSF

Gt(;O )=O OflSF

In the following derivation we will omit spatial arguments for clarity. We use the

functions (i, r) and G(±; ¿; t - r) in Green's second identity to write:

ffd( [ (r)G (t - r) (r)G(t - r)]

+ ffd( [ (r)G (t - r) - (r)G(t - r)]

+ 2ir (r) = O,
(A.io)

where the last term has arisen from the treatment of the spatial singularity as is well

known in potential theory, and the volume integral and the surface integral on Sc,,

have vanished because both ('(î,t) and G(i; t) satisfy the Laplace equation and

conditions at spatial infinity as in (A.4). We integrate (A.1O) in time, r, from r =

to r = t, where the O acknowledges the Heaviside property of the body boundary
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condition which forces the fluid motion. After integration by parts of the term to be

evaluated on S8, we have:

-'t11 d([(r)Gjt - r)(r)G(t - rI
J_1 0J Js

- f drff d
{

(r)Gntr (t - r) (r)G (t - r)]

+ f drff d
[

(r)G (t - r) - (r)G(t - r)]

+ 2fdr (r) = O.

We can use the free-surface boundary condition to make the free-surface time-integral

exact, that is:

'-t - I'

/ dr ¡j d( [ (r)G (t - (r)G(t - r)]i TE'
Jo+ J s,

= - f dr [f d( [(n)
(T)Gry
(t - r)

(n)
(r)G(t - r)]

J0+ JJ5,
-t a- -

- I dril d')4'(r)G(tr).
Jo+ Jis,

The first integral on the right-hand side is now exact, so we have:

f dr [f d( [ (r)G (t - r) (r)G(t - r)]nEt
Jo JJs,

= ff d( [) (0 )G7 (t) + (0 )G(t)J

- f drffd() (r)G(t - r) - ff
(n) (o )G(t),

where we have used the properties of G(x; CO), (A.8) and (A.9) to eliminate terms,

and the free surface condition (A.2) to re-introduce (Ok) in the first right-hand
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side integral. This latter step allows the elimination of terms to be evaluated at

t = on S8 in (A.11) as follows.

By Green's second identity we may write:

ffd [ (o )G (t) (O )G(t)]

+ (0+ )G(t) - 2ir (0k) (A.14)

= ff, (0 )G (t),

and the right-hand side of this expression vanishes due to (A.5). All of the left-

hand side terms of (A.14) are present in (A.11), once we have used the result on the

right-hand side of (A.13), so they may be eliminated. This reduces (A.11) to:

JJSB

[(n) (t)G (o) (t)G(o)]

- f drff d([(r)Gner(t r) »(r)Gr(tr)]

+ ff d( [(n) (0+ )Gr (t) - (o )G(t)]

- f drffd4(r)c(t - r)

+ 2ir' (t) = 0.
(A.15)

From a numerical point of view, it is convenient to perform another integration by

parts to remove the partial derivative with respect to time, r, from E,Y1)(r) as this

function already contains gradients and temporal derivatives of lower order solutions

which are difficult to evaluate. Finally, we may write:
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ft j-..

2ir(,t) + if d (x,t)G,°(i;È) + / dril dE (e,r)(;t r)
JJSB J0+ JiS3

-
= [dril dB(,r) (x;,tr)+ 1f

J0+ JJS JiS3

- -
+ [dr 1f (í;t_r)+ff dI(0) (x;t),

Jo+ Jis, s,
(A.16)

where we have used the convenient decompostion of G(±; t) into its time inde-

pendent Rankine part, designated (°), and its time dependent wave part, designed

G(F), that is:

G(;t) (A.17)

with

= -

G(F) (; t) = 2f dk [i - cos(kt)Je' J0 (kX).

This completes the derivation of the Fredholm-Volterra formulation for the radiation

problem at any order. The specialization of (A.16) to a particular order is made by

substitution of the proper right-hand sides from the boundary and initial conditions

for B("'(,t), )I('(i,t), and I('(o).
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ERRATA

Page 29, last line of paragraph 1:
It is more general to represent the running time by

Running Time (CPU sec) N x N x MT X 1O

This is without exploitation of the spatial reciprocity of the Green function.

Page 37:
Substitute '=' for '-.' in equation (5.9).

Page 39:
Substitute '=' for '.-" in equations (5.17) and (5.18).

s Page 42, several equations:
d must be added to the spatial integrations where it obviously has been omitted.

Page 42, last line of last paragraph:
Substitute '(5.33)' for '(5.37)'.

Page 43, line after equation (5.42):
Substitute '(5.42)' for '(5.41)'.

Page 113, the sixth reference down:
Substitute 'The large-time...' for 'The long-time...'.


