Kinetic Thin Glass Façade

A study on the feasibility of a water- and airtight kinetic façade with a bending-active thin glass element
Context

- Transparency in buildings is an increasing trend

Hiroshi Senju Museum, Karuizawa, Japan

Chanel Amsterdam, Amsterdam, Netherlands

Apple Fifth Avenue, New York City, USA
• Transparency in buildings is an increasing trend
• Rapid development of research and production techniques

"Initially, it was not the architects who took architecture into the modern age, but rather engineers and planners from so called non-artistic disciplines"

Mirko Baum
Transparency in buildings is an increasing trend

Rapid development of research and production techniques

→ alternative product: chemically strengthened (ultra) thin glass*

* Thin glass → t < 2 mm
Ultra thin glass → t < 0.1 mm
Possible design
bending-active, kinetic thin glass element
Possible design
bending-active, kinetic thin glass element
Possible design
bending-active, kinetic thin glass element
Possible design
bending-active, kinetic thin glass element
“How can a kinetic façade element featuring a bendable thin glass panel be designed to be water- and airtight in closed condition?”
Option 1: Magnetic Force
- thin glass laminate
- metal strip
- fixed magnetic gasket frame

Option 2: Tensile Force
- thin glass laminate pressed onto gasket through tension
- frame equipped with rubber gasket
- shafts pulled tightly to frame to create tension in glass

Option 3: Elastic Fabric
- thin glass laminate
- elastic fabric stretched between frame and glazing
- openings for ventilation between shaft and frame
Approach and Methodology

design proposals
Approach and Methodology

design proposals
- determination of glass laminate configuration via FE methods
- ranking of most suitable laminate configurations
- demands not satisfied: pick next preferred configuration from ranking
- stability (ULS, SLS) under wind load via FE methods
- demands satisfied
- test three options

elaboration of selected proposal
- technical detailing
- product choice
- mock-up design

- conceptual detail design and initial product research
- evaluation of each proposal via critical assessment of simplicity, functionality and material capacity
- 1:5 scale mock-up of most promising proposal
- demands satisfied
Structural Suitability

Glass Laminate Configuration
Structural Suitability

Glass Laminate Configuration

- Safety Regulations
- Adding stiffness etc.

![Glass Laminate Diagram](image)
Structural Suitability

Glass Laminate Configuration

- smallest radius that can be achieved by controlled bending (lowest stress)
- highest stability of the glass laminate against external loads (e.g. wind)
- minimum required force to achieve the radius

Variations E₁ to E₅

- $E = 74,000 \text{ MPa}$
- $v = 0.23$
- $E = 0 \ldots 2030 \text{ MPa}$
- $G = 0 \ldots 700 \text{ MPa}$
- 5 variations $E₁$ to $E₅$
- $E = 74,000 \text{ MPa}$
- $v = 0.23$

<table>
<thead>
<tr>
<th>$t₁$</th>
<th>$t₂$</th>
<th>$t₃$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55</td>
<td>0.38</td>
<td>0.85</td>
</tr>
<tr>
<td>0.85</td>
<td>0.76</td>
<td>1.1</td>
</tr>
<tr>
<td>1.1</td>
<td>1.52</td>
<td></td>
</tr>
</tbody>
</table>

$P₁ = E₁, E₂, E₃$
Glass Laminate Configuration

- **smallest radius** that can be achieved by controlled bending (lowest stress)
- highest **stability** of the glass laminate against external loads (e.g. wind)
- **minimum** required **force** to achieve the radius

90 possible configurations!

<table>
<thead>
<tr>
<th>reference config.</th>
<th>varying glass thickness</th>
<th>varying interlayer thickness</th>
<th>assymetric configuration</th>
<th>varying interlayer stiffness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- variable thickness
- fixed thickness

<table>
<thead>
<tr>
<th>E1 = 2030 MPa</th>
<th>E3 = 1450 MPa</th>
<th>E3 = 343 MPa (ref)</th>
<th>E4 = 435 MPa</th>
<th>E5 = 100 MPa</th>
</tr>
</thead>
</table>

04-07-2017 Özhans Topcu | Kinetic Thin Glass Facade 16
Evaluation of Results: Glass Thickness Effect

The thicker the glass, the higher the max. principal stresses.

Glass-Thickness-Dependent Maximum Principal Stress at Edge of Outer Surface as Function of Bending Radius

- **Glass Thickness 2x0.85mm [reference]**
- **Glass Thickness 2x0.55mm**
- **Glass Thickness 2x1.1mm**

- Mechanical strength after safety factor
- Radius range
Structural Suitability

Interlayer Thickness

Interlayer Stiffness

PVB-Thickness-Dependent Maximum Principal Stress at Edge of Outer Surface as Function of Bending Radius

PVB-Type-Dependent Maximum Principal Stress as Function of Bending Radius

E1 = 2030 MPa
E2 = 1450 MPa
E3 = 943 MPa (ref)
E4 = 435 MPa
E5 = 100 MPa

with $v = 0.45$
Evaluation of Results: Ranking

<table>
<thead>
<tr>
<th>Choice No.</th>
<th>1st glass thickness t_1 [mm]</th>
<th>PVB thickness t_2 [mm]</th>
<th>2nd glass thickness t_3 [mm]</th>
<th>PVB Type p_2</th>
<th>final value [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.55</td>
<td>0.38</td>
<td>0.55</td>
<td>E5</td>
<td>-43.8</td>
</tr>
<tr>
<td>2</td>
<td>0.55</td>
<td>0.38</td>
<td>0.55</td>
<td>E4</td>
<td>-40.6</td>
</tr>
<tr>
<td>3</td>
<td>0.55</td>
<td>0.38</td>
<td>0.55</td>
<td>E3</td>
<td>-40.4</td>
</tr>
<tr>
<td>4</td>
<td>0.55</td>
<td>0.38</td>
<td>0.55</td>
<td>E2</td>
<td>-40.35</td>
</tr>
<tr>
<td>5</td>
<td>0.55</td>
<td>0.38</td>
<td>0.55</td>
<td>E1</td>
<td>-40.33</td>
</tr>
<tr>
<td>6</td>
<td>0.85</td>
<td>0.38</td>
<td>0.55</td>
<td>E5</td>
<td>-37.4</td>
</tr>
<tr>
<td>7</td>
<td>0.85</td>
<td>0.38</td>
<td>0.55</td>
<td>E4</td>
<td>-34.2</td>
</tr>
<tr>
<td>8</td>
<td>0.85</td>
<td>0.38</td>
<td>0.55</td>
<td>E3</td>
<td>-34</td>
</tr>
<tr>
<td>9</td>
<td>0.85</td>
<td>0.38</td>
<td>0.55</td>
<td>E2</td>
<td>-33.95</td>
</tr>
<tr>
<td>10</td>
<td>0.85</td>
<td>0.38</td>
<td>0.55</td>
<td>E1</td>
<td>-33.93</td>
</tr>
<tr>
<td>11</td>
<td>1.1</td>
<td>0.38</td>
<td>0.55</td>
<td>E5</td>
<td>-30.9</td>
</tr>
<tr>
<td>12</td>
<td>1.1</td>
<td>0.38</td>
<td>0.55</td>
<td>E4</td>
<td>-27.7</td>
</tr>
<tr>
<td>13</td>
<td>0.55</td>
<td>0.76</td>
<td>0.55</td>
<td>E5</td>
<td>-27.6</td>
</tr>
<tr>
<td>14</td>
<td>1.1</td>
<td>0.38</td>
<td>0.55</td>
<td>E3</td>
<td>-27.5</td>
</tr>
<tr>
<td>15</td>
<td>1.1</td>
<td>0.38</td>
<td>0.55</td>
<td>E2</td>
<td>-27.45</td>
</tr>
<tr>
<td>16</td>
<td>1.1</td>
<td>0.38</td>
<td>0.55</td>
<td>E1</td>
<td>-27.43</td>
</tr>
<tr>
<td>17</td>
<td>0.55</td>
<td>0.76</td>
<td>0.55</td>
<td>E4</td>
<td>-24.4</td>
</tr>
<tr>
<td>18</td>
<td>0.55</td>
<td>0.76</td>
<td>0.55</td>
<td>E3</td>
<td>-24.2</td>
</tr>
<tr>
<td>19</td>
<td>0.55</td>
<td>0.76</td>
<td>0.55</td>
<td>E2</td>
<td>-24.15</td>
</tr>
<tr>
<td>20</td>
<td>0.55</td>
<td>0.76</td>
<td>0.55</td>
<td>E1</td>
<td>-24.13</td>
</tr>
</tbody>
</table>

Preferred choice: 1 (0.55 mm PVB, 0.38 mm 1st glass, 0.55 mm 2nd glass)

Softest interlayer: 0.55 mm PVB
3 Options under Wind Load

Option 1: Magnetic Force

Option 2: Tensile Force

Option 3: Elastic Fabric

Option 2 + 3: Tensile Force / Elastic Fabric

wind load

support reactions
Option 1: Magnetic Force
Method: Wind suction on glass surface supported by magnetic force
Decisive properties:
• Max. deformation under wind load

Flat glass

→ max. deformation = 19.5 mm
Option 1: Magnetic Force

Method: Wind suction on glass surface supported by magnetic force

Decisive properties:

- Max. deformation under wind load

Curved glass

→ max. deformation < 1 mm (!)
3 Options under Wind Load

Option 1: Magnetic Force

Option 2 + 3: Tensile Force / Elastic Fabric

wind load
support reactions
Option 2+3

Method: Wind suction on curved glass supported by two shafts

Decisive properties:

• Max. deformation under wind load

→ tensile force of 2550 N required to keep stable!
3 Options under Wind Load

Option 1: Magnetic Force

Option 2 + 3: Tensile Force / Elastic Fabric

wind load
support reactions
Approach and Methodology

- Conceptual detail design and initial product research
- Evaluation of each proposal via critical assessment of simplicity, functionality, and material capacity
- 1:5 scale mock-up of most promising proposal
- Elaboration of selected proposal:
 - Technical detailing
 - Product choice
 - Mock-up design

- Determine glass laminate configuration via FE methods
- Ranking of most suitable laminate configurations
- Stability (ULS, SLS) under wind load via FE methods
- Demands satisfied: pick next preferred configuration from ranking
- Test three options

DESIGN

Structural suitability

Practical feasibility

design proposals
Option 1: Magnet
Option 1: Magnet

Water-airtightness possibly achievable with elaboration of conceptual details
Option 2: Tension
Option 2: Tension

- gaps in corner joints
 → would require similar solution as magnet
Practical Feasibility

Option 2: Tension

- gaps in corner joints
 → would require similar solution as magnet
Option 2: Tension

- gaps in corner joints
 → would require similar solution as magnet
Option 2: Tension

- gaps in corner joints
 → would require similar solution as magnet
Option 2: Tension

- gaps in corner joints → would require similar solution as magnet

Further concerns:

- Large force required against wind load
- Pressure not likely to be equally distributed
Practical Feasibility

Option 3: Elastic Fabric
Option 3: Elastic Fabric

- Leakage at corner joint
Practical Feasibility

Option 3: Elastic Fabric

- Leakage at corner joint
Practical Feasibility

Option 3: Elastic Fabric

- Leakage at corner joint
- Ventilation gap limited
Option 3: Elastic Fabric

- Leakage at corner joint
- Ventilation gap limited

Further concerns:
- High elasticity required + unequal stretching
- Obstruction of view
<table>
<thead>
<tr>
<th>practical feasibility</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>o magnet can provide enough pulling force for water- airtightness</td>
<td>o additional horizontal frames required</td>
<td>o simple gasket detail possible</td>
<td>o bent edges permanently sealed</td>
</tr>
<tr>
<td>o magnet pulling force adjustable</td>
<td>o abrupt opening movement due to magnetic holding force (only if permanent magnet)</td>
<td>o unequally distributed pressure</td>
<td>o limited ventilation gap</td>
</tr>
<tr>
<td>structural suitability</td>
<td>o large force required to keep glazing shut</td>
<td>o applied force may result in bending of shafts</td>
<td>o large force required to keep glazing shut</td>
</tr>
<tr>
<td>o magnetic pulling force can also be used against wind suction</td>
<td>o applied force may result in bending of shafts</td>
<td>o fabric may pull back edges of glazing with tendency to return to original length</td>
<td>o possible abrasion of fabric due to over-stretching</td>
</tr>
</tbody>
</table>

04-07-2017
Özhan Topcu | Kinetic Thin Glass Facade 40
Design Choice

Option 1: Magnetic Force

Option 2: Tensile Force

Option 3: Elastic Fabric

Thin glass laminate pressed onto gasket through tension

Frame equipped with rubber gasket

Shafts pulled tightly to frame to create tension in glass

Thin glass laminate

Elastic fabric stretched between frame and glazing

Openings for ventilation between shaft and frame

04-07-2017

Özhan Topcu | Kinetic Thin Glass Facade
Expected Performance of the Proposed Design

<table>
<thead>
<tr>
<th>Requirements / Qualities</th>
</tr>
</thead>
<tbody>
<tr>
<td>watertightness</td>
</tr>
<tr>
<td>airtightness</td>
</tr>
<tr>
<td>thermal insulation</td>
</tr>
<tr>
<td>acoustic insulation</td>
</tr>
<tr>
<td>safety</td>
</tr>
<tr>
<td>stiffness under high wind load</td>
</tr>
<tr>
<td>natural ventilation</td>
</tr>
<tr>
<td>transparency / optical quality</td>
</tr>
<tr>
<td>cost-effectiveness</td>
</tr>
</tbody>
</table>
Possible Applications

Greenhouse/Botanical Garden

Possible Applications

- Single Skin Facade
- Double Skin Facade
- Interior Glazing

Requirements / Qualities

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>thermal insulation</td>
<td>X</td>
</tr>
<tr>
<td>(only if heated and unheated spaces are divided)</td>
<td></td>
</tr>
<tr>
<td>acoustic insulation</td>
<td>X</td>
</tr>
<tr>
<td>safety</td>
<td>✔</td>
</tr>
<tr>
<td>transparency / optical quality</td>
<td>✔</td>
</tr>
<tr>
<td>showcasing the innovation</td>
<td>X</td>
</tr>
</tbody>
</table>
AGC Technovation Center, Gosselies, Belgium

- Outer skin of open double-skin façade
- No thermal and acoustic insulation
- Functions solely as sun-protective layer and for power generation
- “Show room” for company’s innovative product range

→ Alternative design: closed cavity façade
Approach and Methodology

Design Proposals
- Determination of glass laminate configuration via FE methods
- Ranking of most suitable laminate configurations
- Stability (ULS, SLS) under wind load via FE methods
- Test three options

Design Suitability
- Demands not satisfied: pick next preferred configuration from ranking

Practical Feasibility
- Conceptual detail design and initial product research
- Evaluation of each proposal via critical assessment of simplicity, functionality and material capacity
- 1:5 scale mock-up of most promising proposal
- Demands satisfied

Elaboration of Selected Proposal
- Technical detailing
- Product choice
- Mock-up design
Elaboration of Selected Design

Focuses:

• Magnet-gasket design
• Mode of operation (kinetics)
• Facade profile design
• Manufacturing, assembly
Gasket with Embedded Switchable Magnet

- Electro-permanent magnet placed inside gasket
- Dampening chamber and dart unaffected by wires
- Wires leading from coils to aluminium profile through locally cut slit into EPDM gasket
Mode of Operation

- Linear movement
- Rotational movement
- Rail incl. steel plate facilitating linear movement
- Steel bearing facilitating rotational movement
- Shaft supporting laminated thin glass
Elaboration of Selected Design

Façade Profile Design

- Unitised system

Schüco USC 65 unitised system
Elaboration of Selected Design

Façade Profile Design

- Unitised system
- Adjustments made to fit design

Schüco USC 65 unitised system

- Profile widened (to house rail, magnetic gasket etc.)
- Outer gasket eliminated (now single sided)
- Insulating layer eliminated (double-skin facade)
Façade Profile Design

- main structural frame
- additional aluminium profile
- curved aluminium extrusion

Curved aluminium profile with transom helps to fixed aluminium folded aluminium plate with curved edges bolted onto main structural frame in the factory

(source: www.nonferrous.com)

(source: www.aluminiumdesign.net)
Façade Profile Design

- Gap between main frame and additional transom
Elaboration of Selected Design

Façade Profile Design

- Gap between main frame and additional transom

→ covered with aluminium plate, edges made airtight with silicone
Final Design
Final Design
Final Design

Horizontal Detail Centre 1:20

- Unibond system
- Main structural frame
- Folded aluminium profile bolted onto structural frame
- EPDM gasket with inserted electroperament magnet
- Curved extruded profile with rainscreen welded to folded profile
- Thin glass laminated with acoustic interlayer 0.55-0.38-0.55 mm

Horizontal Detail Bottom 1:20

- Aluminium clip-on rainscreen cap
- Stainless steel rail screwed on structural frame
- Bearing facilitating rotation of shaft
- Stainless steel cylindrical shaft placed into bearing, supporting glazing

- Extruded aluminium
- Structural frame
- Folded aluminium profile
- Thin glass laminate
- EPDM gasket with embedded electroperament magnet
- Curved extrusion
- Aluminium profile
Final Design
Conclusion

Answer to Main Research Question:

“How can a kinetic façade element featuring a bendable thin glass panel be designed to be water- and airtight in closed condition? ”

Design involves:

• Glazing consisting of two thin glass elements (0.55 mm) laminated with acoustic interlayer (0.38 mm) with metallic strip attached

• Switchable electro-permanent magnets placed inside the gasket

• Principle of active bending (1D-linear movement to 2D-deformation)

• Bespoke facade profiles designed to accommodate requirements
Discussion

• Research does not present optimal or only possibility to achieve the goal

• Meant to offer new insights into the field and form a basis for further research

• Many choices made during the process are subjective, although supported by numerical data and arguments from previous literature

→ main objectives fulfilled within theoretical framework:

1) Addition of a second layer of glazing to comply with safety regulations

2) Investigation of possibilities to combine the bending of thin glass with water- and airtightness properties
Possibilities & Limitations

- **Sustainability** (reduced use of raw materials, lightweight loadbearing structures)
 → increased use of aluminium for stiffness

- **Cost reduction** (reduced use of raw materials, lightweight loadbearing structures)
 → chemical strengthening process, necessity of bespoke elements

- **New architectural impressions**
 → large variety of new possibilities, new architectural era?

Recommendations for further research

- Investigation of **other possible uses** for thin glass in architecture
 → for bending: sun shading, solar power generation, structural (load reduction)
 → building parts/types: glass roof, greenhouse, interior glazing, single skin

- Possibility to make **insulating glass unit** (double glazing)
Thank you for your attention!