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Abstract

System identification is a mature field in physical sciences and an emerging field in social sci-
ences, with a vast range of applications. Nevertheless, it remains of great focus in academia.
The main challenge is the efficient use of data to generate good model fits. System identifica-
tion involves multi-disciplinary techniques from statistical, mathematical and computational
sciences. The typical approaches for dynamic system identification include fuzzy models, non-
linear auto regressive models, state-space models, subspace identification models and many
others. In this thesis, artificial neural networks are evaluated, among these, as black-box meth-
ods known to be capable of universal approximation. With no essential prior information,
the identification problem exhibits more difficult challenges. These include the complexity of
the resulting models, choice of regressors, and uncertainty quantification. Specifically in this
thesis, a Sparse Bayesian Learning approach is proposed, as a solution to these challenges. A
practical iterative Bayesian procedure is derived and set to identify six benchmark datasets of
three non-linear mechanical processes: Cascaded Tanks, Coupled Electric Drives, Bouc-Wen
hysteresis model as well as of three linear mechanical processes: Heat Exchanger, Glass Tube
Manufacturing and Hair Dryer.
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“We are like dwarfs sitting on the shoulders of giants. We see more, and things
that are more distant, than they did, not because our sight is superior or because
we are taller than they, but because they raise us up, and by their great stature
add to ours.”
— John of Salisbury





Chapter 1

Introduction

The identification of control processes is an important step into transferring essential knowl-
edge to intelligent automated systems. With the complexity of dynamic systems comes the
inefficiency in rule-based processes to deal with contingencies in terms of prediction or control.
To this end, many new methods have emerged combining linear and non-linear systems theory
and new data mining techniques. Neural networks are non-linear black box models with a
great potential for model fitting. The application of neural networks on system identification
was first suggested in 1990 [37]. Until the present day, multiple textbooks emerged treating
the subject for both control and system identification [23, 48, 72].
Using neural networks for system identification raises some challenges. Neural networks ex-
hibit a universal approximative capability under mild conditions [15], however they can render
over-parameterized models to the process it represents and thus degrade model generalization
properties. It is, then, important to realize that overfitting and complexity are issues that
needs to be addressed [61], specifically with noisy and short measurements. In addition to
that, the use of a Neural Network as the identification model abolishes the need to select a
basis function space especially with the identification of non-linear systems, but the structure
and regressors are hardly a given. Finally, neural networks have been long criticized for their
opacity and has often been mystified for its complex structure, but also because its parameters
do not represent any physical quantity.
These challenges are addressed, inspired by a Bayesian perspective on neural networks. By
modeling the neural network in a Bayesian approach, one can reduce model redundancies and
ease overfitting by using sparsity-inducing priors and pruning on model parameters [74]. One
can also quantify uncertainty in all inferences, which is primarily useful for decision making
in safety critical applications [17, 36].
There exist a large variety of Bayesian learning applications to system identification that
differ in the Bayesian treatment (Laplace approximation, Expectation Maximization, Monte
Carlo methods, ...), the model structure (neural networks, fuzzy models, ARX, ...) and the
applications. What this thesis intends to evaluate, is Sparse Bayesian Supervised Learning for
the identification of various mechanical processes, using two types of neural networks (MLP
and LSTM) as the model structure and the Laplace approximation as the Bayesian approach.
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4 Introduction

An algorithm is developed and tested for three benchmark datasets of non-linear systems
provided on the web page http:/www.nonlinearbenchmark.org/ and three linear systems
benchmark data found in Matlab system identification toolbox https://nl.mathworks.com/
help/ident/examples.html.

This thesis contributions can be summarized as follows:

• Derivation of a practical identification algorithm using Sparse Bayesian Learning theory
on Neural Networks.

• Introducing, using a Bayesian formulation of regularization, the concept of structured
sparsity that leads to sparse compact models.

• Demonstrate these derived properties (sparsity, uncertainty and competitive free run
simulation performance) by identifying mechanical systems using benchmark data with
a comparison with previous works.

The document is organized as follows. Chapter 2 helps placing this work in its literature
context. Chapter 3 is the manuscript that represents the body of the thesis. Chapter 4
concludes the work with a small discussion on limitations and opportunities.

Ibrahim Chahine Master of Science Thesis

http:/www.nonlinearbenchmark.org/
https://nl.mathworks.com/help/ident/examples.html
https://nl.mathworks.com/help/ident/examples.html


Chapter 2

Prior Context

This chapter aims to summarize challenges of the identification of linear/non-linear systems
and presents an overview of the opportunities and new paradigms treating Neural Networks
and Bayesian Learning.
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6 Prior Context

2-1 Dynamic System Identification: An overview

2-1-1 The Identification Setup

System identification is an iterative process that is often described as a loop [32]. It involves
mainly modeling and design choices [67] such as type of models, basis functions, parameter
update, choice of input-output pairs and finally a quality assessment method (validation).

Any system identification framework relies on measurement data and/or model prior infor-
mation. Briefly, an experiment is designed, to acquire crucial data for model fitting. This
mainly includes input signal frequency and amplitude content. For linear models, it is im-
portant that the signal used for estimation excites a large range of frequencies. However for
non-linear models, both signal frequency and amplitude content are relevant.
A model structure is chosen and the model is optimized to fit the data. The resulting model
is validated with the validation data according to a figure of merit. If the model is deemed
satisfactory, it is accepted, else design choices related to the data or model used are revisited.

Figure 2-1: Bayesian Learning in the System Identification Cycle.

With a Bayesian approach to system identification discussed in this thesis, the choice of priors
is crucial to the development of an optimization procedure and can be revisited similarly to
other design choices in the system identification cycle. The diagram in figure 2-1 shows the
system identification cycle and the introduced iterative Bayesian approach.
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2-1 Dynamic System Identification: An overview 7

In this thesis, the data used for system identification is taken from benchmarks of dynamic
systems in the case of non-linear system identification and Matlab examples in the case of
linear system identification. A more thorough description of these is provided in chapter 4-4.
Data is pre-processed if needed and fed into the Bayesian inference cycle.

2-1-2 Challenges of System Identification

Both linear and non-linear dynamic system identification challenges are well described in
literature. Multiple modeling approaches to these challenges are adopted. Challenges to
dynamic system identification include:

• Lack of Data and difficulties in data acquisition or measurement: The availability of
good data is crucial to good model estimation. Some issues related to data acquisition
include bad signal to noise ratio, inputs that cannot be maneuvered by nature, a slow
time scale to a process and unmeasurable disturbances [31].

• High dimensionality and the right choice of a low dimensional coordinate system that
allows an acceptable representation of the process. This remains a subject of study with
notable contributions such as Eigensystem Realization Algorithm and Dynamic Mode
Decomposition. Dimensionality is also related to the selection of model order which
determines the regressors chosen to fit the data.

• Success in system identification lies in insights and intuition into the problem. The
problem is application dependent and an attempt to generalize by automating the model
construction procedure can prove very difficult [31].

However it is widely common to see more challenges related to non-linear processes than to
linear ones. These challenges are best summarized below:

• Non-linear dynamic systems are often distinguished from linear ones by the use of the
superposition principle. It states that the resulting response of multiple inputs is
the sum of individual responses to each of these inputs. The following principle is not
satisfied by non-linear systems, resulting in difficulties in system identification. Linear
approximations often fail, and are reliable when control actions span smaller windows
around linearization [8]. Additionally, violation of the superposition principle implies a
need to evaluate the model for different input amplitudes, as the response to distinct
step inputs are not linearly deducible. This means non-linear systems need a much
higher amount of plant tests with varying amplitude and frequency signals [8].

• Given noisy time series observations, non-linear system identification aims to recover the
non-linear set of equations that can describe a given process. In some cases, the com-
plexity and coupling in states of these systems are too complex to model and sometimes
not measurable, such as hysteresis and backlash [42]. In other cases, mathematical
modeling fails to provide approximations adequate enough to represent the process.
With this, comes the challenge of specifying the model structure. Approaches
to identifications can be categorized by the following model classes: Volterra series
models, Fuzzy systems, Neural Networks, NARMAX models, block-structured models,
stochastic state-space representations and others. [47].
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8 Prior Context

In other words, for black-box or grey-box approaches, the non-linear basis function
candidates selection is a crucial design step for identification. This selection can be done
with prior knowledge of the dynamics or physical insight, but also can include a infinite
dictionary of functions in theory, for instance by the usage of universal approximators
like neural networks and fuzzy models [30].

• Identifiability is a very central property in system identification. It is the ability of
the chosen set of candidate functions to be uniquely determined from provided data.
Assuming the following simple identification problem:

ŵ = arg min ||y − Φw||22 (2-1)

Φ being the chosen candidate functions, y the output and w the weights associated
with the candidates. Global identifiability requires a global unique solution ŵ over
w in the space of models DM . Local identifiability, on the other hand, is achieved if
the optimal ŵ is constrained to a small neighborhood of w. With the choice of non-
linear candidate functions and the available data, identifiability is hardly provided in
non-linear systems [47]. With this comes the problem of uniqueness of the solution
obtained. Identifiability is thus hardly given, and dangerous to assume [47].

• The design of the model, whether it is non-linear basis function space, or neural networks
or fuzzy systems, along with the input space dimensionality could result in an increased
model complexity in system identification [42]. This complexity is reflected in the
model validation phases, where overfitting may be noticed. When X in equation 2-1
is coherently chosen, one can reach a unique solution by enforcing sparsity over W.
However such an assumption is hardly given. One way to enforce sparsity, is through
regularization. The ill-posed problem defined in the previous bullet point can be
recast into the following linear regression form [47]:

ŵ = arg min ||y − Φw||22 + λ||w||li (2-2)

It is important to note that λ is the regularization trade-off parameter and i in li defines
the i-norm. This can involve l0, l1 (lasso regression) and l2 (ridge regression) norms
and indicate different levels of sparsity in relation to the objective function in equation
2-2 [7]. The l0 norm is known to result in a computationally expensive, non-convex
optimization. It is also known to be NP-hard [49]. The l1 norm is often used as a
convex relaxation to the l0 norm. The main idea is that the l1 norm is the convex
envelope of the l0 norm [47, 49].

• Non-linear system identification often involves non-convex optimization problems
[47]. One of the methods used to solve such optimization problems is the Convex
Concave Procedure (CCCP) [47]. Given a non convex function f that can be recast to
the difference of convex functions u and v.

min
x∈C

f(x) = min
x∈C

u(x)− v(x) (2-3)

where C ⊆ Rp. This optimization can be formulated iteratively by the CCCP as a
minimization of f̄ , the majorisation function of f evaluated at x(k) [73].

x(k + 1) = arg min
x∈C

f̄(x, x(k)) (2-4)

f̄(x, x(k)) = u(x)− xT∇v(x(k)) (2-5)
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2-1 Dynamic System Identification: An overview 9

with v a differentiable function. The main idea is to linearize the concave function -v
around the solution found at iteration k, then minimize equation 2-4. The algorithm
can extend to handle constraints, and can converge to stationary points [27].

Other problems involve the absence of analytical solutions, NP hardness, where
one refers to approximations and convex relaxations to obtain a solution [42, 47].

2-1-3 Neural Networks: A Black-Box Approach

Artificial Neural Networks (ANN) belong to the family of black-box models that attempt to
imitate the human brain’s networks of neurons as processing elements. Organized in layers,
they interconnect forming a complex network. These processing units are called perceptrons.
In supervised learning, the network is trained to minimize the difference between the model
output and the desired output of the network, in other words, the prediction error. Several
architectures exist for ANN and the application to system identification has been studied
extensively. These include Multi-Layer Perceptron (MLP), Recurrent Neural Networks (RNN)
and Radial Basis Networks (RBN). In this thesis, the subject of study is the use of MLPs and
LSTMs within a Bayesian framework.

Approximative Ability: The approximation capabilities of feed-forward MLP has been
long investigated in literature. It is found that MLP are universal approximators in theory.
MLP networks are capable of representing a Borel-measurable continuous function in a given
interval with one layer and a finite number of nodes up to a precision, given that the activation
functions used are continuous and bounded [15, 29]. These are mild requirements and the
sigmoidal activation function is a simple example. However, the number of neurons needed
or the network structure is not a given [15]. A similar result was found in 1992 for RNNs in
a paper proving that it is capable of simulating all Turing machines [55]. In 2006, specific
to dynamic system identification, a paper by Schaffer et al. proved universal approximative
abilities of RNN in state space model form [60].

Identifiability: It is challenging to prove identifiability, especially that the obtained NN
model is rarely unique. However, one can propose that the sparest solution may be a unique
one [47]. Penalizing model parameters and imposing sparsity induces a drop out on weights
or neurons depending on the choice of the regularizer. This reduces model complexity and
size and is analogous to the sparse distributed functions of neurons in brain. At a given time,
only a small percentage of neuron pathways are activated when performing a function.

There are many different ways to regularize. In addition to the choice of regularization norm
function already mentioned in the section 2-1-2, there exists different approaches to sparsity
in NN. Considering perceptrons as processing units, one can enforce structural sparsity and
compactness of networks by using group regularization [47, 53].
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10 Prior Context
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Figure 2-2: Weight matrix between layer
l − 1 and l and between layer l and l + 1.
Courtesy of Dr. Wei Pan [47]

Layer l-1

Layer l+1

...

Figure 2-3: Layer l of a NN with regularized
groups in red. Courtesy of Dr. Wei Pan [47]

Dropping these perceptrons is guided by dropping the group of connections to a neuron Oli
from layer l − 1. This is called in-group regularization and is shown in the weight matrix on
top of figure 2-2. The same goes to the weight connections from neuron Oli to layer l + 1. It
is called out-group regularization and is shown in the bottom weight matrix of figure 2-2.

Model Estimation: Neural Networks are simple and easy to train, but most importantly
they do not exhibit problems with dimensionality of inputs. Increasing the number of inputs
only linearly increases the number of parameter with a fixed network architecture [41]. In
addition, an uneven data distribution is not an issue as, neural networks can find, using the
inner hidden transformations, the suitable coordinate system and directions of non-linearity
(if it applies) [41].

Training the network is done by the use of stochastic gradient descent and is called backward
propagation, where the output loss is used to adjust the hidden weights. Specific to system
identification, the inputs are generally chosen to be k lagging elements of inputs u and out-
put y, a measure of the prediction error ŷ(t + 1) − ytrue(t + 1) and the regularization term
constituting the loss is differentiated with respect to all hidden parameters. This gradient
is used to update the network’s parameters through stochastic gradient descent given in the
equation 2-6.

w(t+ 1) = w(t)− η∇wL) (2-6)

There exists many other variants and extensions of stochastic gradient descent for an adaptive
update of parameters. Among them RMSProp and ADAM are very commonly used algo-
rithms. RMSProp uses exponentially weighted averages of gradients with previous gradients
to compute the learning rate for weights update [51]. ADAM, on the other hand, uses an
exponentially weighted average of gradients and an exponentially weighted average second
moments of gradients at each iteration for updating both the learning rate and weights [51].
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2-1 Dynamic System Identification: An overview 11

There also exists second order methods for the parameters update. These capture better
information than first order methods and thus improves search directions. Second order
methods require a hessian matrix computation which is infeasible for Deep Neural Networks
in terms of explicit calculation and storage [5]. However some very efficient approximations
of the hessian in literature provide exciting prospects. Examples fall in the category of
Inexact-Newton methods, Quasi-Newton methods, Gauss-Newton methods and Trust-Region
methods [64].

One main criticism that Neural Networks have for dynamic system identification is that
these are opaque and do not provide any physical intuition for the system in hand. They
are constituted of hidden parameters, that do not represent any physical quantity. In the
case of feed-forward neural networks, they can be thus seen as a set of non-linear static
approximations to dynamic systems. These parameters are however accessible for the user.
While many of the systems we study today can be accurately modeled using physical laws,
many others are hardly/modestly modeled and some have highly coupled, hardly measurable
or highly adaptive parameters. System identification, using black-box models do not provide
complete physical intuition, but they demonstrate an excellent approximative ability of a
reasonable governing function in the system. This field has gained lots of recent interest
in the system identification community. Specific to the application of Neural Networks on
modeling and system identification , one can find multiple textbooks [48, 72, 23].
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12 Prior Context

2-2 Sparse Bayesian Learning

This chapter aims to provide an overview of Sparse Bayesian Learning. This section starts
with Occam’s razor and finishes with Bayesian Deep Learning. Incorporating system identi-
fication in a probabilistic framework has been an extensive subject of study for the last three
decades. With a Bayesian approach, one can reformulate the optimization to more efficient
expressions than standard regularization formulations such as Lasso-type algorithms [47].

2-2-1 Occam’s razor and the Marginal Likelihood

A Bayesian approach to a problem is distinguished by the use of probability distributions
over uncertain parameters. The resulting distributions over uncertain quantities represent a
degree of belief in various possibilities [38]. Model fitting involves the fitting of parameters
w/W to given model structure Mi or Mj such as the ones in equations 2-7 and 2-8.

y = Φ(u)w + Ξ (Mi) (2-7)
y = Net(u,W ) + Ξ (Mj) (2-8)

y =
...

In equation 2-7, y is the real system’s output, u the model input and Φ can be a set of basis
functions or kernels. More relevant to this thesis, in model Mj , Net is the neural network
function and W its connections’ weights.

In an article on Bayesian interpolation by D.J.C. MacKay in 1992, two levels of inferences
are presented [33]:

The first level of inference, a model M is chosen and represents a hypothesis H . At this
level, the model is fitted to the data. In other words, we infer the parameter W from data
D given the model structure Mi . Using Bayes’ rule, this implies computing the posterior
P (W |D,Mi) as in equation 2-9 [33].

Posterior︷ ︸︸ ︷
P (W |D,Mi) =

Likelihood︷ ︸︸ ︷
P (D|W,Mi)

Prior︷ ︸︸ ︷
P (W |Mi)

P(D|Mi)︸ ︷︷ ︸
Evidence

(2-9)

Note that the hypothesis does not only represent the model fitting choice but also can be the
inference assumptions taken such as likelihood and prior forms.

The second level of inference consists of model comparison. This means choosing the most
plausible model structure (hypothesis) chosen. Hence in Bayesian words, the posterior of the
model Mi among models given data is evaluated and indicates this plausibility. The posterior
of each model Mi in a space of models m is given using Bayes’ rule in equation 2-10 [33].

P (Mi |D) = P(D|Mi)P (Mi)
P (D) = P(D|Mi)P (Mi)∑

m P (D|Mk)P (Mk) (2-10)

The normalizing factor P (D) =
∑
m P (D|Mk)P (Mk) is usually not included since the model

space is typically not determined before hand. In addition, the prior to each model Mi is a
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2-2 Sparse Bayesian Learning 13

subjective prior and it is little common to assume unequal priors P (Mi) on different models.
Hence, using equation 2-10 it is easy to note that the posterior probability (the plausibility
of the model) highly depends on the evidence [33].

The evidence of the model is also often referred to as a marginal likelihood it is the
normalizing factor in equation 2-9 and can be expressed as:

P(D|Mi) =
∫
P (D|W,Mi)P (W |Mi)dW (2-11)

For the sake of the argument, instead of evaluating this integral, the posterior P (W |D,Mi) is
assumed to have a strong peak at WMP and width ∆W and the priors are assumed uniform
P (WMP |Mi) = 1

∆0W . This assumption is an adequate one, since given the data, the posterior
has been demonstrated to sharpen up with respect to the prior [45, 65]. Equation 2-11
becomes:

P(D|Mi)︸ ︷︷ ︸
Evidence

≈ P(D|WMP,Mi)︸ ︷︷ ︸
Best Fit Data Likelihood

Priors on Weights︷ ︸︸ ︷
P (WMP |Mi) ∆W︸ ︷︷ ︸

Occam’s Factor

= P(D|WMP,Mi)
∆W
∆0W︸ ︷︷ ︸

Occam’s Factor

(2-12)

Figure 2-4 fromMacKay article shows both the weights prior P (W |Mi) and posterior P (W |D,Mi)
in equation 2-12.

Figure 2-4: Approximations of the prior and posterior probability. Reprinted by permission from
Springer Nature: Springer, Maximum Entropy and Bayesian Methods, Chapter 3 [33] by MacKay,
David J. C. © 1992

Occam’s factor ∆W
∆0W is at the basis of the Occam’s razor: "Entities should not be multi-

plied without necessity" [56]. This razor essentially opposes the complexity associated with
explaining phenomena.

The Occam’s factor is less than one and hence penalizes the evidence. The more the number of
parameters in modelMi, the more the priors that span a large range of ∆0Wk (k indicating the
kth parameter) and the more penalized the marginal likelihood becomes [33]. In addition,
the Occam factor through the posterior width ∆W , makes the evidence favor coarser models.
In other words, the evidence penalizes parameters that need to be fine-tuned.

But what about the likelihood? The best fit likelihood is the one that fits the data the best,
no matter what prior information to the arrival of data is [47]. This means that having more
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parameters can be rewarded by the likelihood function. More complex models, such as a
parameter per data-point, may perform better in likelihood terms. In consequence, using it
as a measure of inference can result in very complex models and data overfitting. With the
marginal likelihood considered in the previous review of MacKay’s work, a built in penalty
for more complex models naturally exist with marginalization through the Occam’s factor
and balances out likelihood and complexity.
In other words, one can see the marginal likelihood increasing with the increase in model
complexity caused by a data likelihood overwhelming the priors. However, at a certain level
of complexity, the marginal likelihood (evidence of the model) starts decreasing because a
thinner prior will be spread out across more and more parameters and their ranges [47].

2-2-2 Inference and Prediction

Starting from the general regression problem in equation 2-13 with design matrix Φ (N×M),

y = ΦW + Ξ (2-13)

a full Bayesian treatment consists of estimating the predictive distribution ŷ given D, the data
(previous observations) used for the inference of W and other parameters. This predictive
distribution is computed in equation 2-14 [45] by marginalizing over the parameter W .

p(ŷ|D) =
∫
p(ŷ|W )p(W |D)dW (2-14)

p(ŷ|W ) in equation 2-14 is the likelihood function defined also for p(y|W ) when computing
the posterior P (W |y) shown in equation 2-15 in analogy to equation 2-9.

P (W |D) = P (D|W )P (W )
P(D) = P (D|W )P (W )∫

P (D|W )P (W )dW (2-15)

Equation 2-15 is analogous to equation 2-9 for the specific identification problem in equation
2-13. For the sake of simplicity in writing, the conditionality on the model choice is dropped
here.
The integral in equation 2-14 cannot be computed because, typically, the integral for the
marginal likelihood in the denominator of equation 2-15 is intractable [47, 65] and/or the
likelihood term is . There exists many approaches to compute or approximate the posterior
of W and the posterior predictive distribution. These can be variational approximation, the
choice of conjugate priors, Monte Carlo simulations and others [26, 66].

2-2-3 Likelihood and Sparsity Inducing Priors

To proceed with the inference procedure, one should choose the form of the likelihood function
and the priors in equation 2-15. With the canonical form of the identification problem in
equation 2-13 , arguably, the output noise Ξ can be assumed to be Gaussian N (0,Π). Hence,
the likelihood function is very commonly chosen to be a Gaussian function with a covariance
matrix Π [74, 47, 65, 71, 46].

p(y|W ) = N (y|ΦW,Π) = 1
(2π)M/2Π1/2 exp[−1

2(y − ΦW )TΠ−1(y − ΦW )] (2-16)
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2-2 Sparse Bayesian Learning 15

Note that the likelihood can be any function in the exponential family. Other likelihood func-
tions can be Gamma, Dirichlet, Bernoulli, Poisson, Chi-squared and others [47].

The choice of the likelihood is not enough to render the integral in equation 2-15 tractable.
The prior definition is crucial to the development of a Sparse Bayesian Learning algorithm.
Typically, the likelihood rewards complexity, that is why one opts to introduce sparsity induc-
ing priors. Prior forms that induce sparsity can be the Student’s t-distribution or the Laplace
distribution which places probability mass on the axial ridges of the parameter space. How-
ever these prior forms do not belong to exponential families and the posterior for these prior
form remain intractable.

Another approach is the use of a relaxed variational approximation of the true prior p(W ).
Non-stationary priors with a distinct variance ψn for each parameter Wn is used. This con-
sidered form of the prior yields a lower bound on the prior p(W ) under certain conditions
[47, 45] discussed later in this section.

p(W ) =
N∏
n=1

p(Wn) ≥
N∏
n=1

p(Wn, ψn) (2-17)

p(W ) = max
ψn>0

N∏
n=1
N (Wn|0, ψn)p(ψn) = max

ψ>0
N (W |0,Ψ)p(ψ) (2-18)

where ψ = [ψ1, ψ2, .., ψn] and Ψ = diag(ψ). p(ψ) is called the hyperprior probability and is
introduced because of the parameter ψ that needs to be inferred for a complete probabilistic
specification of the model.

In other words, a relaxed prior can be formulated as follows:

p(W,ψ) = N (W |0,Ψ)p(ψ) ≤ p(W ) (2-19)

Conditions for the Gaussian relaxation of the prior:
This variational Gaussian relaxation of the priors is in fact only possible if the expression
of the prior p(Wn) is such that log(P (

√
Wn)) is convex on (0,∞). This is in fact a

property of the super-Gaussian distribution. In this case the hyperprior p(ψn) takes a
specific form [47, 44]. The main reason for that condition is in the derivation of the dual
representation of the prior. If these conditions are met, the prior can be expressed as an
upper envelope over its dual form leading to the variational approximation considered in
equation 2-18. For more details over the proof, please refer to the article "Perspectives
on Sparse Bayesian Learning" [45].

The representation of the prior with W and ψ does not only allow an approximate inference
but is also known to induce sparsity. For a true prior in the form of a Student’s t-distribution,
the hyperprior is chosen to be the non-informative gamma distribution [74, 65, 4, 11].

p(ψn) = Gamma(ψn|a, b) = baψa−1
n

ebψnΓ(a) a, b ≈ 0 (2-20)

with Γ(·) the gamma function.
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This hierarchical nature of the prior "disguises its own character" [65]. To truly show the
sparsity inducing property, the prior is integrated with respect to the hyperparameters ψ
[65]:

p(Wn) =
∫
p(Wn|ψn)p(ψn)dψn (2-21)

=
baΓ(a+ 1

2)√
2πΓ(a)

(b+ W 2
n

2 )−(a+ 1
2 ) (2-22)

This is the expression of a Student-t distribution, which has a sharp peak at 0. For non
informative gamma prior (a, b ≈ 0), the prior obtained is p(Wn) ∝ 1

|Wn| , hence the sparsity
inducing property [65, 4].

2-2-4 Development of an Optimization Problem

For a fixed ψ, the conjugacy of the relaxed priors in equation 2-19 for the likelihood in equation
2-16 allows to obtain a relaxed posterior P (W |y, ψ) in closed form. The resulting posterior
mean and covariance are shown in equation 2-23 and 2-24 [47, 46]:

mW = ΨΦT (λI + ΦΨΦT )−1y (2-23)
ΣW = Ψ−ΨΦT (λI + ΦΨΦT )−1Φ (2-24)

The issue however that remains is that of the choice of ψ. This choice affects how good the
estimate of the relaxed posterior P (W |y, ψ) is to the true posterior p(W |y). With both W
and ψ to be inferred, the full posterior is given by [47]:

p(W,ψ|y) ∝ p(W |y, ψ)p(ψ|y) (2-25)
= N (mW ,ΣW )p(ψ|y)

= N (mW ,ΣW )p(y|ψ)p(ψ)
p(y) ∝ N (mW ,ΣW )p(y|ψ)p(ψ)

Note that p(y) is dropped in equation 2-25 because of the independence from ψ.

It is important here to conclude that p(y|ψ)p(ψ) refers to how good the inferred ψ explains
the data. This quantity is in fact the evidence or the marginal likelihood and is at the basis
of variational methods.

p(y|ψ)p(ψ) =
∫
p(y|W )p(W |ψ)p(ψ)dW =

∫
p(y|W )p(W,ψ)dW (2-26)

Hence a good way to estimate ψ is to choose the one that minimizes the misaligned probability
mass as follows:

ψ̂ = arg min
ψ≥0

∫
p(y|W )|p(W )− p(W,ψ)|dW (2-27)

= arg max
ψ≥0

∫
p(y|W )p(W,ψ)dW p(W,ψ) ≤ p(W )

= arg max
ψ≥0

∫
N (y|ΦW,Π)N (W |0,Ψ)p(ψ)dW
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Note that the noise covariance matrix Π is assumed to be known in these inference steps and
Φ is fixed.
Figure 2-5, from Wipf article [71] , is a visualization of the search in equation 2-27.

Figure 2-5: Comparison between full and approximate prior models equiprobability contours
with the likelihood. From Wipf article "Perspectives on Sparse Bayesian Learning" [71] in IEEE
Transactions on Signal Processing, vol. 52, no. 8, pp. 2160 © 2004 IEEE

Inspired by MacKay’s framework described in section 2-2-1, the choice of ψ represents a space
of hypothesis Ĥ that attempts to approximate the true prior hypothesis H. This space of
hypotheses is in essence the space of possible ψ. The original inference problem consists of
finding the aligning region of significant probability mass between the likelihood p(t|W ) and
the true prior p(W ;H) (evidence maximization). This is shown in black fill in the left of figure
2-5. However, with the approximation of the prior, the search becomes a maximization of
the evidence as in equation 2-27 among a space of hypotheses over the relaxed prior p(W;Ĥ).
In the right figure 2-5, the true prior hypothesis is plotted in dotted lines and is an upper
bound over all variational approximation hypotheses (2 of them plotted in solid lines). It
becomes easy to see that the hypothesis representing the narrow prior along the horizontal
spine of p(W;H) is the better hypothesis. In other words, the hypothesis corresponding to
the maximum evidence in 2-27 is Ĥa.
In conclusion inferring ψ with equation 2-27, given data observations, allows to get a closed
form on the relaxed posterior as in equations 2-23-2-24. The estimated parameterW can then
be assigned to the posterior mean mW . However, knowing the properties of the marginal like-
lihood discussed in section 2-2-1, another more general solution is to maximize the marginal
likelihood in equation 2-27 jointly on W and ψ.
This maximization can be recast into an iterative reweighted l1 or l2 algorithm. Multiple
treatments are very thoroughly described in Wei Pan’s PHD Thesis: "Bayesian Learning for
Nonlinear System Identification" [47]. These procedures inspire a big part of this thesis and
will be discussed in later sections.
Finally, Sparse Bayesian Learning demonstrated its ability to generate sparse models capable
of good generalization. Using a particular form of parameter prior, learning consists of the
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marginal likelihood maximization with respect to the parameters. This is well known to be a
type II maximum likelihood estimation and has been at the basis of relevance vector machines
and Sparse Bayesian Learning [47, 65, 71, 4, 11].

2-2-5 Bayesian Deep Learning

Neural networks have long been criticized for their opaque representation of a process. Pa-
rameters in NNs often do not have a physical meaning hence, in statistical terms, they are
non-parametric models [38]. These can also be over-parameterized, under-specified by the
training data and can yield multiple different and highly performing models [70]. These
disadvantages, however, seem to be well coupled with the advantages of Sparse Bayesian
Learning. Through marginalization, the space of possible models can be more efficiently
explored, sparsity can be enforced and uncertainties can be quantified.

Bayesian deep learning is often referred to as an attempt to demystify deep learning. Figure
2-6 shows how a perceptron can be interpreted in a probabilistic Bayesian framework on the
right, as opposed to the conventional view on the left. With Bayesian deep learning, the
connection weights are seen as probability distribution with a formulation of uncertainty, as
opposed to the conventional view, where these consist of point estimates. This idea provides
an opportunity to perform pruning or a form of dropout in the network based on not only
magnitude, but also uncertainty [74, 47, 38].

Figure 2-6: Figure showing the conventional and Bayesian views of a perceptron.

Uncertainties can also be quantified in the predictions made by the model through the pos-
terior predictive distribution. In fact, Bayesian deep learning makes predictions in the form
of a predictive distribution instead of point estimate. Neural networks tend to be data hun-
gry systems and provide good approximations in training dataset regions, but can perform
poorly in other regions where data lacks [70]. This uncertainty can be useful for instance in
monitoring and decision making [17, 36].

Exact Bayesian inference is a computationally intractable problem, enforcing a trade-off in
approximate methods between accuracy and computational tractability [62]. Multiple devel-
opments evolved to solve the intractable inference problem for neural networks. Among them
are Laplace Approximation based inference [34], Hamiltonian Monte Carlo [38], Ensemble
Learning [2]. For larger applications, more efficient approximate inference recently revived
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this field, notably with Auto-Encoding Variational Bayes [25] and Dropout as a Bayesian
Approximation [13].

Deep ensembles is a method recently developed [12] that succeeded in better representing the
neural networks loss function landscape and the predictive uncertainties than some Bayesian
methods [43]. The idea is to train a model using the maximum a posteriori estimate multiple
times randomly initialized seeking different hypotheses corresponding to different local solu-
tions obtained. However, the problem with MAP estimation, is that the prior is commonly
chosen to be flat, rarely allowing any preferences in the parameter space and thus yielding
imperfect solutions.

In this thesis, the Laplace approximation is adopted to solve the Bayesian intractable problem.
This approach is known to be an efficient one, where the computational complexity slightly
higher than MAP estimation and much less than other sampling methods [33]. However,
this approximation is local and may not be sufficient to some applications [62]. That is why,
inspired by deep ensembles, repeating the inference multiple times with random initialization
would allow a better exploration of optimal models possible with a certain structure of the
network.

The Laplace approximation requires the computation of an inverse hessian, which is infeasible
for large networks. However, we stand motivated by the recent approximations provided by
popular open-source software and the relation to hessian based network compression [28].
This approach has been successfully adopted by Zhou et al. [74] recent paper introducing a
Bayesian approach to Neural Architecture Search. Inspired by the sparsity inducing priors
[65], the paper formulates the inference problem as a iterative reweighted Lasso algorithm.
Highly sparse Convolution Neural Network are generated with small search costs and com-
petitive performance with state of the art algorithms on MNIST and CIFAR-10 Datasets.

Following similar steps as in sections 2-2-3, the main problem can be formulated as an iter-
ative type II maximum likelihood procedure. This work intends to adopt and evaluate such
treatment in the context of system identification.
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Abstract

This paper proposes a complete Bayesian treatment of system identification using multi-layer perceptrons and Long Short Term
Memory networks. Particularly, a practical iterative reweighed algorithm is derived and used to identify linear and non-linear
processes. Artificial neural networks are powerful models known for excellent approximative ability and simple implementation,
however, specific to system identification, these exhibit several challenges. These mappings are complex models, that are
highly parameterized and that, reportedly, can overfit the data provided. Furthermore, inspired by the need to assist decision
making, it proves beneficial to quantify uncertainty in model parameters and predictions. The Bayesian treatment addresses
these challenges. It allows the quantification of uncertainties in estimated quantities and predictions, for which a practical
method is derived. It also allows enforcement of structured sparsity by using group sparsity-inducing priors. The effectiveness
of this treatment is successfully demonstrated on linear and non-linear real benchmark data of dynamic processes.

Key words: System Identification, Multi-Layer Perceptron, LSTM, Structured Sparsity, Bayesian Learning.

1 Introduction

System identification has long been an extensive subject
of research in natural and social sciences. It is a ma-
ture field for both linear and non-linear systems, static
and dynamic processes, with multiple approaches and
nomenclatures. Among these, artificial neural networks
(ANN) are prominent black-box models that are con-
siderably studied in literature. Specific to dynamic non-
linear system identification and control, a recent interest
in these models has risen and multiple books have been
published on the matter.

Such approach presents its advantages and disadvan-
tages. In 1989, a paper on feed-forward neural networks
mathematically proved the universal approximative ca-
pabilities of any measurable function, using one hidden
layer, on a compact set [1]. Following it, multiple works
found similar results for feed-forward neural networks
[2] and recurrent neural networks in the context of dy-
namical systems [3]. This property makes it possible to
approximate a process, without the need for basis func-
tion space selection. They are also simple and easy to
implement. However, the exact model structure is hardly
ever given. In fact, the choice of more than one layer for
feed-forward neural networks might exhibit better con-

vergence in some applications [4]. In addition to that, in-
evitable measurement noise and non-smooth character-
istics of some non-linear processes all affect the model fit
and its generalization property. Facing these challenges,
Bayesian learning offers a perspective that tackles these
issues, specifically the following: a) Over-fitting can be
alleviated and model redundancies can be eliminated [5]
by a choice of sparsity inducing prior distribution over
parameters [6,7]; b) Model and prediction uncertainties
can be quantified which is particularly useful in deci-
sion making and safety-critical applications such as au-
tonomous driving [8] and structural health monitoring
[9].

Diverse Bayesian system identification solutions have
been developed the last decades. These differ in models
considered (state-space, NARX, etc), the Bayesian treat-
ment (Laplace approximation, Monte-Carlo sampling,
etc) and applications. To name a few, Pan et al. (2016)
proposed a practical sparse Bayesian approach to state-
space identification of non-linear systems in the context
of biochemical networks [5]. Jacobs et al. (2018) pro-
posed a Bayesian identification of NARX models using
variational inference with a demonstration on electroac-
tive polymer [10]. Yuan et al. (2019) presented a frame-
work for the identification of governing interactions and
transition logics of subsystems in cyber-physical systems



by making use of Bayesian inference and pre-defined ba-
sis functions [11]. Chuiso et al. (2012) set out two ap-
proaches to system identification using Bayesian net-
works. The first combines kernel based stable splines and
group Least Angle Regression and the other combines
stable splines with the hyperprior definition in a fully
Bayesian model [12]. However, specific to the use of Neu-
ral Networks as a model form, little attention was given
to the identification of dynamic systems in a Bayesian
framework.

In this paper, Multi-Layer Perceptron (MLP) and Long
Short Term Memory networks (LSTM) are used as
model forms. To model the network in a Bayesian per-
spective, group priors are introduced over network pa-
rameters to induce structured sparsity and the Laplace
approximation is used to approximate the intractable
integral of the evidence. The main contributions of this
paper are:

• Derive of a practical iterative algorithm for system
identification using Bayesian deep learning that can
be used with both MLP and LSTM for linear and non-
linear processes.
• Incorporate structured sparsity in the Bayesian for-

mulation of the identification problem leading to com-
pact sparse models.
• Test the effectiveness of this procedure on six real

benchmarks datasets for linear/non-linear system
identification by demonstrating close to state of the
art simulation results, sparsity and uncertainty quan-
tification.

The article is organised as follows. Section 2 formulates
the identification problem using artificial neural net-
works and from a Bayesian perspective. All nomencla-
tures used can be found in this section. Section 3 de-
scribes the steps that leads to the proposed iterative pro-
cedure, defines structured sparsity and proposes a prac-
tical Monte-Carlo sampling method to estimate predic-
tive uncertainty. Section 4 report the identification re-
sults on benchmark data of linear and non-linear pro-
cesses. Finally, section 5 is a discussion of the results and
section 6 concludes the paper.

2 Preliminaries

This section defines nomenclatures used in this paper,
introduces the use of MLP, LSTM and the Bayesian ap-
proach to system identification. The chosen mathemati-
cal model structure is the map generated by training the
network by Net(W, z), where W represents an array of
all inferred connection weights in the network and z the
input regressors of size 1× (ly + lu + 1). These are best
defined by the prediction model in equation (1).

ŷ(t+ 1) = Net(W, z(t+ 1)) + ε ε ∼ N (0, σ2) (1)

The noise term ε is assumed normally distributed with
mean zero and variance σ2. The objective of this paper
is the identification of dynamic systems. Hence the re-
gressors used as inputs to these models will be defined
as a combination of lagged elements of the systems in-
puts u and outputs y. The input lag is denoted lu and
output lag ly, resulting in the expression z(t + 1) =
[u(t−lu), · · · , u(t), u(t+1), y(t−ly), · · · , y(t−1), y(t)]>.

The network is trained based on an one-step prediction
approach, using stochastic gradient descent methods on
a cost function to be derived later in section 3.

2.1 Multi-Layer Perceptron

A multi-layer perceptron (MLP) is a feed forward arti-
ficial neural network structure that usually consists of
three classes of layers: an input layer l = 1, an output
layer l = L and intermediate hidden ones. The number
of perceptrons in each layer is denoted as nl. With the
exception of the input and output nodes, every node is a
perceptron with an activation function (e.g. sigmoid(·),
relu(·), etc). These perceptrons are initially fully con-
nected to the adjacent layers with affine maps. The MLP
structure is visualized in Fig. 1. σ(·) refers to a user pre-

Fig. 1. Multi-Layer Perceptron with N layers

defined activation function. The W operator in equa-
tion (1), in the case of multi-layer perceptrons, is an
vectorized form of all the network’s connection weights
W , [W 1

11, · · · ,W 1
n11, · · · ,W 1

n1n2
, · · · ,WL

11, · · · ,
WL
nL−1nL ] of size 1× κ.

By effect of the non-linear activation functions, the
model is a non-linear map. For non-linear systems, relu
networks are trained. In the case of linear systems, a
linear activation function is chosen to generate a linear
map.

2.2 Long Short Term Memory Networks

Long Short Term Memory networks (LSTM) is a class
of recurrent neural networks. Unlike feed forward net-
works, this network includes feedback connections that
allows arbitrary information from older inputs to linger
longer. LSTM units have two memory states, the hidden

2



state and the cell state, representing respectively short-
term and long-term memory information. The model’s
structure consist of three gates: input gate, output gate
and forget gate. A sketch of a single layer LSTM net-
work is given in Fig. 2. σ the sigmoid activation function
and τ , the tanh activation function. The inputs to the
first LSTM layer are the regressors z, instead of hidden
states of the previous layer hl−1, i.e. h0 = z.

+

x

x

x

Fig. 2. Single layer Long Short Term Memory network.

In the case of LSTM network the W operator in
equation (1) is an array in vector form of all con-
nection weights in the network, including the affine
operators of the hidden state. In other words, W ,
[Wii,Wij ,Wio,Wif ,Whi,Whj ,Who,Whf ] of size 1× κ.

Benefiting from the advantages of processing sequence
of data and memorizing information, LSTM can also be
used to solve the problem of nonlinear system identifica-
tion [13]. Training LSTM networks is done using Back
Propagation Through Time (BPTT), in which the net-
work is unfolded in time and weights are updated based
on an accumulation of gradients across time steps (check
Appendix D).

2.3 Learning in a Bayesian Framework

Bayesian inference is statistical method that is essen-
tially an extension of Baye’s theorem. Specific to system
identification using neural networks, the objective is to
statistically infer the set of connection weights W.
The Bayesian posterior estimation is given by Bayes rule
in equation (2).

p(W|D,H) =
p(D|W,H)p(W,H)

p(D|H)
(2)

p(y|W,H) designates the likelihood function of the esti-
mation data D, p(W,H) the prior over the parameters
to be inferred and p(D|H) is refered to as the evidence
of the hypothesis H given D. The hypothesis generally
incorporates model and inference assumptions. For sim-
plicity of notations, the hypothesis term is dropped in
the rest of the paper.

The likelihood function is normal, centered around the
network prediction with variance σ2. The expression is

given by equation (3). This corresponds to the Gaussian
noise assumption taken on the variable y in equation (1).

p(D|W, σ2) =
T∏

t=1

N (y(t)|Net(W, z(t+ 1)), σ2)

= (2πσ2)−
T
2 exp

{
−E(W, σ2)

}
(3)

where E(W, σ2) designates an energy loss function of the
neural network in the form of a sum of squared errors
(see equation (4)).

E(W, σ2) =
1

2σ2

T∑

t=1

(y(t)−Net(W, z(t+ 1)))2 (4)

A Gaussian relaxed variational approximation to the
prior distribution is considered. The joint prior formula-
tion constitutes a variational lower bound over the true
prior p(W) and is shown in equations (5)-(7) [14].

p(W) ≥ p(W, ψ) (5)

=
L∏

l=1

nl−1∏

a=1

nl∏

b=1

N (W l
ab|0, ψlab) φ(ψlab) (6)

= N (W|0,Ψ) φ(ψ) (7)

ψ , [ψ1
11, · · · , ψ1

n11, · · · , ψ1
n1n2

, · · · , ψL11, · · · , ψLnL−1nL ]

and Ψ , diag(ψ)

Both W and ψ are parameters to be found. The infer-
ence can thus be seen on two levels. The prior distribu-
tion and the likelihood belong to exponential families,
thus the prior is conjugate to the posterior for the de-
fined likelihood. With this, the posterior overW can be
analytically obtained in closed form. For Ψ, one can use
the principle of minimizing the sum of misaligned prob-
ability mass [14] as follows:

ψ̂ = argmin
ψ≥0

∫
p(D|W, σ2)|p(W)− p(W, ψ)| dW (8)

= argmax
ψ≥0

∫
p(D|W, σ2)p(W, ψ) dW (9)

Equation (8) becomes (9) by using the inequality in
equation (5). The resulting problem is known as a type
II maximum likelihood [7]. The maximization, however
requires computing a well known intractable integral.
There exists multiple approaches to this problem based
on the Laplace approximation, expectation propagation
and variational inference techniques. Among these, the
Laplace approximation is adopted in this paper and the
maximization in equation (9) is reformulated as a lasso
iterative reweighted algorithm. Zhou et al. (2019) suc-
cessfully adopted this Bayesian treatment (Laplace ap-
proximation) for neural architecture search in the con-

3



text of convolution neural networks. The models gener-
ated exhibited close to state of the art image classifica-
tion performance with smaller search costs [15].

3 ALGORITHM DEVELOPMENT

3.1 Laplace Approximation

To compute the intractable integral in equation (9), the
Laplace approximation is taken on the likelihood func-
tion (equation (3)). The energy function in equation (4)
can be approximated by a second order Taylor series ex-
pansion around a set of connection weightsW∗ with op-
erator ∆W =W −W∗.

E ≈ E(W∗, σ2) +
1

2
∆WTH∆W + ∆WTg (10)

The resulting expression for the likelihood in a compact
form is given by equations (11).

p(D|W, σ2) = A
(
W∗, σ2

)
exp

{
− 1

2
WTHW −WT ĝ

}

(11)

ĝ
(
W∗, σ2

)
= g

(
W∗, σ2

)
−H

(
W∗, σ2

)
W∗

where H
(
W∗, σ2

)
and g

(
W∗, σ2

)
are respectively the

hessian and the gradient of the loss function E with re-
spect to W at W∗. Equation (11) is obtained by group-
ing elements independent of the target variable W in
A
(
W∗, σ2

)
. The approximated likelihood is an exponen-

tial of a quadratic function corresponding to the Taylor
series expansion of the energy loss. This form can be re-
cast into a Gaussian function. For a more detailed treat-
ment of the Laplace approximation check appendix A.

In effect of the conjugacy of the prior and posterior for
the likelihood, the posterior is Gaussian with mean and
variance given by equation (12).

µW = ΣW ĝ ΣW =
[
H + Ψ−1

]−1
(12)

3.2 Evidence Maximization

The evidence in equation (9) attempts to find the vol-
ume of the product p(D|W, σ2)p(W, ψ), which is Gaus-
sian and proportional to the posterior. Thus, one can ap-
proximate the evidence as the volume around the most
probable value (here the posterior µW).

ψ̂ = argmax
ψ≥0

∫
p(D|W, σ2)p(W|ψ)p(ψ)dW (13)

≈ argmax
ψ≥0

p(D|µW , σ2)︸ ︷︷ ︸
Best Fit Likelihood

p(µW |ψ)|ΣW |
1
2

︸ ︷︷ ︸
Occam Factor

(14)

In David Mackay’s words, the evidence is approximated
by the product of the data likelihood given the most
probable weights, and the Occam factor [6]. It can also
be interpreted as a Riemann approximation of the evi-
dence, where the best fit likelihood represents the peak
of the evidence and the Occam’s factor is the Gaussian
width/curvature around the peak [16].

The likelihood and the prior in equation (14) can take
their respective expressions in equations (11) and (7).
By realising that the posterior mean µW maximizes
p(D|W, σ2)p(W|ψ), equation (14) can be rewritten
into a joint maximization in W and ψ. By applying a
−2 log(·) operation, the final joint objective function is
formulated in Proposition 1.

Proposition 1: The evidence maximization in equation
(9) can be recast into a joint minimization of an objective
function L(W, ψ, σ2) given by:

L(W, ψ, σ2) =WTHW + 2WT ĝ +WTΨ−1W + log |Ψ|
+ log |H + Ψ−1| − T log(2πσ2) (15)

For a more thorough mathematical derivation that leads
to equation (15), please refer to appendix B.

3.3 Convex Concave Procedure

Proposition 2: The objective function in equation (15)
can be seen as a sum of a convex u and concave v func-
tions in ψ shown in equations (16)-(17).

u(W, ψ) =WTHW + 2WT ĝ +WTΨ−1W (16)

v(ψ) = log |Ψ|+ log |H + Ψ−1| (17)

This problem can be reformulated as a convex-concave
procedure (CCCP) [17]. ψ is obtained with the mini-
mization shown in equations (18)-(19).

W(k + 1) = argmin
W

u
(
W, ψ(k)

)
(18)

ψ(k + 1) = argmin
ψ≥0

u
(
W(k + 1), ψ

)
+∇ψv

(
ψ(k)

)T · ψ

(19)

Proposition 3 : The analytical solution to equation
(19) is given by the following iterative form:

ΣW(k) =
(
H(k) + Ψ(k)−1

)−1
(20)

αlab(k) = −
ΣW l

ab
(k)

ψlab(k)2
+

1

ψlab(k)
(21)

ψlab(k + 1) =
|W l

ab(k + 1)|
ωlab(k)

(22)

Note that ΣW l
ab

(k) is the connection weight posterior

variance, α the analytical expression for the gradient of
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v(ψ) in equation (19) and ωlab ,
√
αlab. For the second

part, finding W can be done by stochastic gradient de-
scent on equation (18), which can be reformulated as a
regularized neural network loss function.

W(k + 1) = argmin
W

WTHW + 2WT ĝ

+
L∑

l=1

nl−1∑

a=1

nl∑

b=1

||ωlab ·W l
ab||l1 (23)

≈ argmin
W

E(·) + λ
L∑

l=1

ρ(ωl,W l) (24)

E(·) designates the energy loss function defined in equa-
tion (4) and ρ(·) the regularization term. For more de-
tails over the convex analysis and Propositions 2 and 3
please refer to Appendix C.

3.4 Structured Sparsity and Regularization

The iterative procedure derived in section 3 includes an
assumption on the independence and stationarity of con-
nection weights (equation (6)) resulting in a shape-wise
regularization as shown in Fig. 3(a). This drives indi-
vidual connection weights to 0. In some applications,
one may want to enforce more structured sparsity, by
pre-defining groups and re-expressing the regularization
term as a function of these groups [18]. This paper uses
a structured regularization of rows and columns (Fig 3).
The benefits of such approach, specific to this paper, is
not only obtaining compact sparse models, but also, the
suppression of input nodes in z that are deemed less per-
tinent without loss of accuracy.

To extend this approach to the Bayesian framework, one
has to revisit the prior formulation. The prior of a weight
matrix is formulated based on the designated group of
weight matrices (row or column or both). These groups
are considered independent but the connection weights
of a specific group share the same prior Gaussian relax-
ation (see Fig. 3(b-d)). This results in a slightly different
iterative update rule for the identification algorithm.

Fig. 3. Priors for structured sparsity of weight matrices.

For each of the cases shown in Fig. 3, the update rules
for ψ, ω and the regularization function ρ are given in
Table. 1. For more details on how the adopted group

priors changes the regularization update rules to group
Lasso regularizers please refer to Appendix F.

3.5 Identification Algorithm

A pseudo-code for the iterative procedure is given by
Algorithm 1.

Algorithm 1 Sparse Bayesian Deep Learning Algo-
rithm.
Input: • Collect input-output data u(t) and y(t) for

t = 1, 2, · · · , T .
• Arrange input regressors according to chosen lags
lu, ly.

• Define network structure (number of layers L, neu-
rons per layer nl and activations if it applies).

• Set regularization parameter λ (empirically tuned)
and NN pruning thresholds κψ, κW (≈ 10−3).

• Set the number of repeated experiments M and
identification cycles Kmax.

• Initialize hyper-parameters Ψ(0) = I and ω(0) = 1.
Output: Return the set of connection weights W

for m = 1 to M do
for k = 1 to Kmax do

(1) Stochastic Gradient Descent with loss func-
tion (ρ is defined in Table. 1):

W(k + 1) = min
W

E(·) + λ
N∑

i=1

ρρρ(ωl,W l)

(2) Update α according to equations (20)-(21)
(3) Update ψ and ω according to Table. 1
(4) Dynamic pruning:
if ψlab(k) < κψ or |W l

ab(k)| < κW then
prune W l

ab(k)
end if

end for
Simulate on validation data and choose model with
smallest RMSE.

end for

Remark 1 In the first identification iteration, regular-
ization is conventional (ω(0) = 1). That is, the first
obtained model is a sparse model corresponding to con-
ventional group lasso regularization method and sparser
models result from next identification iterations.

Remark 2 The algorithm does not exhibit global conver-
gence properties. In fact, it shares the local convergence
properties (local minima, saddle point) of the adopted
stochastic gradient descent method. This is because the
Laplace approximation is a local approximation to the en-
ergy function E(·). In addition to that, pruning and the
regularization techniques introduced are heuristics that
help speed up the algorithm and improves convergence and
optimality. Nonetheless, the identification experiments
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Table 1
Hyper-parameters update rule based on regularization technique.

Category Prior Formulation ρ(ωl,W l) ωl ψl

(a) Shape-wise
nl−1∏
a=1

nl∏
b=1

p(W l
ab, ψ

l
ab)

nl−1∑
a=1

nl∑
b=1

‖ωlab(k) ·W l
ab(k)||l1 ωlab(k) =

√
αlab(k) ψlab(k) =

|W l
ab(k)|

ωl
ab

(k−1)

(b) Row-wise
nl−1∏
a=1

p(W l
a:, ψ

l
a:)

nl−1∑
a=1

||ωla:(k) ·W l
a:(k)||l2 ωla:(k) =

√
nl∑
b=1

αlab(k) ψla:(k) =
||W l

a:(k)||2
ωla:(k−1)

(c) Column-wise
ni∏
b=1

p(W l
:b, ψ

l
:b)

nl∑
b=1

||ωl:b(k) ·W l
:b(k)||l2 ωl:b(k) =

√
nl−1∑
a=1

αlab(k) ψl:b(k) =
||W l

:b(k)||2
ωl
:b
(k−1)

(b) Row-wise

+

(c) Column-wise

nl−1∏
a=1

p(W l
a:, ψ

l
a:)

×
nl∏
b=1

p(W l
:b, ψ

l
:b)

nl−1∑
a=1

‖ωla:(k) ·W l
a:(k)||l2

+
nl∑
b=1

‖ωl:b(k) ·W l
:b(k)||l2

ωla:(k) =

√
nl∑
b=1

αlab(k)

ωl:b(k) =

√
nl−1∑
a=1

αlab(k)

ψla:(k) =
||W l

a:(k)||2
ωla:(k−1)

ψl:b(k) =
||W l

:b(k)||2
ωl
b:
(k−1)

ψlab(k) = 1/( 1
ψla:(k)

+ 1

ψl
:b
(k)

)

are ran multiple times randomly initialized and the gen-
erated model with the best simulation validation perfor-
mance is chosen.

Remark 3 The Laplace approximation requires com-
puting the Hessian of the loss function with respect to the
networks parameters. This can be computationally heavy
and infeasible for large networks. For fully-connected
feed forward neural networks, an efficient Hessian com-
putation method is proposed in [15]. For recurrent neural
networks, an efficient Hessian computation method is
proposed in appendix D.

3.6 Making Predictions

In the Bayesian procedure, predictions are made using
the posterior predictive distribution. It is given by equa-
tion (25).

p(ŷ|z,D) =

∫
p(ŷ|W, z) p(W|D)dW (25)

The first term of the integral is the likelihood of the un-
observed value (prediction) conditional on the network
prediction. The second term is the inferred posterior dis-
tribution over the weights W given the training data
D. Since the posterior predictive distribution is a con-
volution of Gaussian distributions, it is Gaussian. An
unbiased estimate of the mean and variance can be ob-
tained using Monte-Carlo integration methods [19,?]. A
more thorough derivation using expected values is given
in Appendix E. The resulting expressions are shown in
equations (26)-(27).

µŷ ≈
1

M

M∑

m=1

Net(W(m), z) (26)

Σŷ ≈ σ2 +
1

M

M∑

m=1

Net(W(m), z)2 − µŷ
Tµŷ (27)

4 EXPERIMENTS

This section aims to summarize the identification exper-
iments of three linear processes and three non-linear pro-
cesses using the proposed algorithm. For linear systems,
the identification procedure is repeated M = 20 times
with Kmax = 6 identification cycles. For non-linear sys-
tems, the identification is also repeated M = 20 times
but with Kmax = 10 identification cycles each. In Ta-
ble 2, stands a summary of the model structure used for
identification as well as the mean, standard deviation
and minimum validation RMSE of the M best generated
models, the percentage of sparse parameters in the best
generated model and a reference to supplementary ma-
terial. In the supplementary section, the benchmarks are
described more thoroughly and the reader is supported
with sparsity plots, simulation plots and plots of poste-
rior predictive mean and uncertainty corresponding to
the best generated model.

Three linear processes are identified, the Hairdryer, cor-
responding to the PT326 process trainer [20], a Heat ex-
changer [21] and Glass Tube manufacturing process [22].
The datasets of these processes are provided by Mat-
lab in corresponding tutorials on linear system identifi-
cation. The chosen best validated models are compared
to methods used in the corresponding tutorials. Addi-
tional model structures used for the identification of the
Hairdryer are taken from chapter 17.3 of [23] and run in
Matlab. Check Table. 3 for the comparisons.

Three non-linear processes, the Cascaded Tanks [24],
Coupled Electric Drives [25] and the Bouc-Wen hys-
teresis model [26] are also identified. Information and
datasets of these benchmarks are compiled in the web
page of the Workshop on Nonlinear System Identifica-
tion Benchmarks.The models with the best validation
performance are compared to best models obtained us-
ing conventional neural network methods for multiple
experiments (M = 20) and previous works in literature
for every benchmark in Tables. 3-4.
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Table 2
Models trained to identify linear and non-linear processes with validation information

Process-Model Layers-Units Lags RMSEval (µ± σ) RMSEval (min) Sparsity Supporting Material

Hairdryer-MLP 1 - 50 5 0.074 ± 0.0005 0.073 88.1% Appendix G

Hairdryer-LSTM 1 - 10 5 0.093 ± 0.0166 0.081 93.5% Appendix G

Heat Exchanger-MLP 1 - 50 150 0.086 ± 0.0002 0.086 99.3% Appendix H

Heat Exchanger-LSTM 1 - 10 150 0.114 ± 0.0299 0.088 96.4% Appendix H

GT Manufacturing-MLP 1 - 50 5 0.660 ± 0.0013 0.657 97.8% Appendix I

GT Manufacturing-LSTM 1 - 10 5 0.671 ± 0.0019 0.669 99.0% Appendix I

Cascaded Tanks-MLP 3 - 10 20 0.428 ± 0.1032 0.257 84.5% Appendix J

Cascaded Tanks-LSTM 1 - 50 20 0.500 ± 0.1012 0.362 60.3% Appendix J

CED-MLP 2 - 50 10
0.187 ± 0.0285

0.134 ± 0.0192

0.149

0.120
78.4% Appendix K

CED-LSTM 1 - 10 10
0.155 ± 0.0257

0.126 ± 0.0201

0.121

0.097
72.8% Appendix K

Bouc-Wen-MLP 2 - 50 10
0.171 ± 0.0087

0.133 ± 0.0315

0.148

0.117
38.5% Appendix L

Bouc-Wen-LSTM 1 - 10 10
0.292 ± 0.0273

0.184 ± 0.0420

0.258

0.138
82.8% Appendix L

5 DISCUSSION

In this section, the results will be discussed and analyzed
in relation to the claims made on sparsity, uncertainty
quantification and simulation results.

Sparsity: The obtained networks in all experiments are
sparse models with, in most of the cases, a compact
structured sparsity. According to Table. 2, sparsity was
more prominent in the identified linear systems than
in non-linear systems. This demonstrates that the non-
linearity that the data exhibits, requires a higher com-
plexity than in the linear case.

Starting with the linear systems, one can note that struc-
tured sparsity induced, in the case of the Heat Exchanger
MLP and LSTM models, a recognised transport delay
that characterizes this system. Figure 4 is an example of
a sparsity plot of the Heat Exchanger identified LSTM
Model. Furthermore, the LSTM models for the linear
systems have complete operators pruned. This means
that the cell state can well be regulated with fewer pa-
rameters than imposed from the initialized model struc-
ture in the case of the Heat Exchanger. Similar behavior
is seen across linear benchmarks.

Structured sparsity was also observed in the generated
networks for non-linear systems at the exception of the
Bouc-Wen MLP identified model (Table. 2). One can
note the sparser representation of the RNN network for
the same benchmark. A possible reason for that is in the
fact that the RNN networks are capable of represent-
ing the non measurable dynamic highly non-linear state
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Fig. 4. Sparsity plot of the identified RNN for Heat Ex-
changer. (Blue represents non-pruned connection weights)

(hysteric force) with a sparser representation than the
MLP network because of their temporal dynamic behav-
ior. In addition to that, similarly to RNN models identi-
fied for linear systems, a lot of the parameters involving
the hidden states are pruned. A possible explanation for
this behaviour is in the fact that hidden states of LSTM
units attempt to retain short-term information from the
time-series that is also available as lagged elements in
the input regressors.

Predictive Distributions: The posterior predictive
distributions found for each of the models are a result
of the forward propagation of the parameters’ poste-
rior uncertainty which, in turn, is obtained with the
estimation data. Hence, if the validation data holds in-
formation that the model did not learn from estimation
data, the posterior predictive distribution could spread
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Table 3
Comparison of RMSE on identified linear systems with other
works

Hairdryer RMSE [V]

Transfer Function Estimation [20] 0.108

Subspace Identification [23] 0.105

ARMAX Model [23] 0.104

ARX Model [23] 0.103

LSTM without regularization 0.205

Bayesian LSTM 0.081

MLP without regularization 0.076

Bayesian MLP 0.073

Heat Exchanger RMSE [◦C]

Transfer Function Estimation [21] 0.140

Process and Disturbance Model [21] 0.089

Process Model [21] 0.088

LSTM without regularization 0.158

Bayesian LSTM 0.088

MLP without regularization 0.092

Bayesian MLP 0.086

Glass Tube Manufacturing RMSE [·]
Subspace Identification [22] 0.688

ARX Model [22] 0.676

LSTM without regularization 1.056

Bayesian LSTM 0.669

MLP without regularization 0.663

Bayesian MLP 0.657

a bigger range of predictions.

In addition, in some cases, the generated models show
an unevenly distributed predictive uncertainty related
to non-linearities or disturbances characteristic of the
process as well as regions where the model can be im-
proved. Fig. 5 shows the identified model for Cascaded
Tanks makes less robust predictions when overflow oc-
curs. The Heat Exchanger shows evenly distributed pre-
dictions with uncertainty possibly coming from the am-
bient temperature disturbance. Furthermore, the model
choice also affects the predictive distribution. Exam-
ples include the LSTM models identified for the Glass
Tube Manufacturing Process and Cascaded Tanks. In
these benchmarks, the identified MLP model provides
robuster predictions than the identified RNN model.

Free Run Simulation Performance: The free run
simulation is a good measure of the model’s ability to
represent a dynamic process by propagating a model’s
prediction error while forecasting. It is important to note
that, for the studied linear processes, a non-regularized

Table 4
Comparison of RMSE on identified non-linear systems with
other works

Cascaded Tanks RMSE [V]

LMNa with NFIR [27] 0.669

Flexible State Space Model [28] 0.450

Voltera Feedback Model [29] 0.397

OEMb with NOMAD [30] 0.376

Piecewise ARX Models [31] 0.350

NLSSc [32] 0.343

Tensor network B-splines [33] 0.302

LSTM without regularization 0.494

Bayesian LSTM 0.362

MLP without regularization 0.432

Bayesian MLP 0.257

Coupled Electric Drives RMSE [ticks/s]

Drive 1 Drive 2

Extended Fuzzy Logic [34] 0.150 0.092

Cascaded Splines [35] 0.216 0.110

TAG3Pd [36] - 0.128

RBFNN - FSDEe [37] 0.130 0.185

LSTM without regularization 0.149 0.131

Bayesian LSTM 0.121 0.097

MLP without regularization 0.206 0.111

Bayesian MLP 0.149 0.120

Bouc-Wen Hysteresis RMSE [mm] (·10−4)

Multisine Sinesweep

LMNa with NFIR/NARX [27] 1.638 1.380

OEM with Nelder-Meadb [30] 0.468 0.019

Polynomial NLSSc [38] 0.187 0.120

TAG3Pd [36] - 0.652

Volterra Feedback Model [29] 0.875 0.639

LSTM without regularization 0.294 0.230

Bayesian LSTM 0.258 0.138

MLP without regularization 0.249 0.218

Bayesian MLP 0.148 0.117
a Tree based Local Model Networks with external dynamics
represented by NARX or NFIR.
b Output Error parametric Model estimation based on
derivative free method.
c Non-Linear State Space model.
d Tree Adjoining Grammars
e Free Search Differential Evolution is used to determine the
regressors.
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Fig. 5. Posterior predictive µy ± 2 ∗ σy of the identified Cas-
caded Tanks MLP.

LSTM performs poorly when compared to other identi-
fication methods. This supports previous concerns made
on using LSTM for the identification of linear systems. In
most presented applications, the Bayesian MLP model
outperforms the Bayesian LSTM model with the excep-
tion of the Coupled Electric Drive.

Table. 2, shows the mean and the standard deviation of
the validation simulation errors as well as the minimum
corresponding to the best chosen model. The minimum
is seen to fall close to the range of one standard deviation
from the mean. In addition, the variance of validation
errors for linear systems is overall less than non-linear
systems and the variance of validation errors for MLP
models is also less than LSTM models. A possible expla-
nation is that the added complexity in the identification
of non-linear processes and/or the usage of more com-
plex non-linear structures (LSTM in this case), increases
the likelihood of a convergence towards saddle points.
This is mainly because the Laplace method adopted is
a local approximation of the evidence, which is a limi-
tation of the proposed method and justifies running the
identification experiment M times.

Nonetheless, in every case (check Table. 3-4), the
Bayesian approach to the identification of each of the
benchmarks constitutes an improvement over the con-
ventional MLP and LSTM methods in terms of sim-
ulation errors and pushes these methods to perform
competitively against others in literature.

6 CONCLUSION

A Bayesian perspective to system identification has been
discussed. An iterative procedure for dynamic system
identification using Bayesian Neural Networks has been
derived and evaluated with datasets of three linear and
three non-linear dynamic processes. The Bayesian ap-
proach in this paper made use of the Laplace approx-
imation to approximate the evidence, a formulation of
group sparsity inducing priors to enforce sparsity and
Monte-Carlo integration methods to estimate the pos-
terior predictive distribution. The generated models for

each of the dynamic processes are sparse models that
performed competitively with other used system iden-
tification methods in a free run simulation setting. In
addition to that, uncertainties in inferred predictions,
through the posterior predictive distribution, and in-
ferred connection weights, through their posterior dis-
tribution, were quantified. Future works include appli-
cations where these uncertainties can be used. In partic-
ular, these uncertainties can help redesign a data acqui-
sition experiment to improve the model fit with another
identification iteration. In addition, more prior knowl-
edge of the physical model will be included in the de-
sign of the network structure, which when coupled with
structured sparsity is expected to improve both sparsity
and interpretability of the resulting models.
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Jean-Philippe Noël, and Johan Schoukens. Polynomial state-
space model decoupling for the identification of hysteretic
systems. IFAC-PapersOnLine, 50(1):458 – 463, 2017. 20th
IFAC World Congress.

[39] Jorge Nocedal and Stephen J. Wright. Trust-Region Methods,
pages 66–100. Springer New York, New York, NY, 2006.

[40] Aleksandar Botev, Hippolyt Ritter, and David Barber.
Practical gauss-newton optimisation for deep learning. In
Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ICML’17, pages 557–565. JMLR.org,
2017.

[41] Radford M. Neal. Introduction, pages 1–28. Springer New
York, New York, NY, 1996.

[42] V. Wertz, G. Bastin, and M. Haest. Identification of a
glass tube drawing bench. IFAC Proceedings Volumes, 20(5,
Part 10):333 – 338, 1987. 10th Triennial IFAC Congress on
Automatic Control - 1987 Volume X, Munich, Germany, 27-
31 July.
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A The Laplace Approximation

In this section, a more detailed mathematical description of the Laplace approximation adopted is given.

The likelihood is defined by a Gaussian function in section 3.1. The formulation is rewritten in equation (A.1):

p(D|W, σ2) =
T∏

t=1

N (y(t)|Net(z(t),W), σ2) = (2πσ2)−
T
2 exp

{
−E(W, σ2)

}
(A.1)

E(W, σ2) is denoted as the energy function, or the loss of the network given the data D. It is given by:

E(W, σ2) =
1

2σ2

T∑

t=1

(y(t)−Net(z(t),W))2 (A.2)

The expression Net(·) in equation (A.2), is the resulting network non-linear map. To compute the intractable integral
for the evidence, the energy function can be expanded to a using a second order Taylor series expansion around W∗.

E(W, σ2) ≈ E(W∗, σ2) + (W −W∗)Tg(W∗, σ2) +
1

2
(W −W∗)TH(W∗, σ2)(W −W∗) (A.3)

where g = ∇E(W, σ2)|W∗ and H = ∇∇E(W, σ2)|W∗ . The quadratic expression is also adopted among Trust-Region
methods, where a region is defined around the current iterate connection weightsW and the the expansion in equation
(A.3) is considered a reasonable local representation of the loss function [39]. With this expansion, the likelihood
function becomes:

p(D|W, σ2) ≈ (2πσ2)−
T
2 exp

{
−
(1

2
(W −W∗)TH(W∗, σ2)(W −W∗) + (W −W∗)Tg(W∗, σ2) + E(W∗, σ2)

)}

(A.4)

= (2πσ2)−
T
2 exp

{
−
(1

2
WTH(W∗, σ2)W +WT

(
g(W∗, σ2)−H(W∗, σ2)W∗

))}

· exp
{
−
(1

2
W∗TH(W∗, σ2)W∗ −W∗Tg(W∗, σ2) + E(W∗, σ2)

)}
(A.5)

= A(W∗, σ2) · exp
{
−
(1

2
WTH(W∗, σ2)W +WT ĝ(W∗, σ2)

)}
(A.6)

with,

ĝ
(
W∗, σ2

)
= g

(
W∗, σ2

)
−H

(
W∗, σ2

)
W∗ (A.7)

A(W∗, σ2) = (2πσ2)−
T
2 · exp

{
−
(1

2
W∗TH(W∗, σ2)W∗ −W∗Tg(W∗, σ2) + E(W∗, σ2)

)}
(A.8)

A Gaussian form can be easily recuperated from equation (A.6) by completing the square in the exponent. Before
that, we define the following quantities:

B(W∗, σ2) = exp
{1

2
ĝ(W∗, σ2)TH(W∗, σ2)ĝ(W∗, σ2)

}
(A.9)

C(W∗, σ2) = (2π)
κ
2 |H(W∗, σ2)| 12 (A.10)
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p(D|W, σ2) ≈ A(W∗, σ2) · exp
{
−
(1

2
WTH(W∗, σ2)W +WT ĝ(W∗, σ2)

)}

· exp
{1

2
ĝ(W∗, σ2)TH(W∗, σ2)ĝ(W∗, σ2)− 1

2
ĝ(W∗, σ2)TH(W∗, σ2)ĝ(W∗, σ2)

}
(A.11)

= A(W∗, σ2) ·B(W∗, σ2) · exp
{
−
(1

2
WTH(W∗, σ2)W +WT ĝ(W∗, σ2)

+
1

2
ĝ(W∗, σ2)TH(W∗, σ2)ĝ(W∗, σ2)

)}
(A.12)

= A(W∗, σ2) ·B(W∗, σ2) ·C(W∗, σ2) · N (W|Ŵ,H−1(W∗, σ2)) (A.13)

where Ŵ = −H−1(W∗, σ2)ĝ(W∗, σ2).

Given a Gaussian likelihood and a Gaussian prior defined in section 2.3, by effect of the conjugacy rule, the posterior
is also Gaussian N (µW ,ΣW).

µW =
[
H(W∗, σ2) + Ψ−1

]−1
ĝ(W∗, σ2) ΣW =

[
H(W∗, σ2) + Ψ−1

]−1
(A.14)

B Evidence Maximization

This section provides a mathematical proof of derived objective function. Starting from the maximization in equation
(9), the likelihood and prior is replaced by their expressions in the preliminary section 2.3.

∫
p(D|W, σ2)p(W|ψ)p(ψ) dW (B.1)

=

∫
A · exp

{
−
(1

2
WTHW +WT ĝ

)}
· N (W|0,Ψ) · φ(ψ) dW (B.2)

=
A

(2π)K/2|Ψ| 12
·
∫

exp
{
−
(1

2
WTHW +WT ĝ

)}
· exp

{
−
(1

2
WTΨ−1W

)}
dW ·

L∏

l=1

nl−1∏

a=1

nl∏

b=1

φ(ψlab) (B.3)

=
A

(2π)K/2|Ψ| 12
·
∫

exp
{
− E(W, σ2)

}
dW ·

L∏

l=1

nl−1∏

a=1

nl∏

b=1

φ(ψlab) (B.4)

where,

E(W, σ2) =
1

2
WTH(W∗, σ2)W +WT ĝ(W∗, σ2) +

1

2
WTΨ−1W (B.5)

The integral in equation (B.1) is the integral of the product p(D|W, σ2)p(W|ψ), which is proportional to the posterior
p(W|D, ψ). In most applications, the posterior peaks with respect to the prior, and the evidence can be approximated
by the posterior volume. This approximation is analogous to the usage of the Laplace approximation of the posterior
in David MacKay’s Bayesian framework [6].

∫
p(D|W, σ2)p(W|ψ) dW ≈ p(D|µW , σ2)p(µW |ψ) · |ΣW |

1
2 · (2π)κ/2 (B.6)

⇐⇒
∫

exp
{
− E(W, σ2)

}
dW ≈ exp

{
− E(µW , σ

2)
}
· |ΣW |

1
2 · (2π)κ/2 (B.7)
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where,

E(µW , σ
2) =

1

2
µTWH(W∗, σ2)µW + µTW ĝ(W∗, σ2) +

1

2
µTWΨ−1µW (B.8)

= min
W

1

2
WTH(W∗, σ2)W +WT ĝ(W∗, σ2) +

1

2
WTΨ−1W (B.9)

Hence the maximization of the evidence becomes the maximization in equation (B.10) below.

ψ = argmax
ψ>0

A(W∗, σ2)

(2π)κ/2|Ψ| 12
· exp

{
− E(µW , σ

2)
}
· |ΣW |

1
2 ·

L∏

l=1

nl−1∏

a=1

nl∏

b=1

φ(ψlab) (B.10)

By applying a −2 log(·) operation and using equation (B.9), one obtains

ψ = argmin
ψ>0

−2 log

[
A(W∗, σ2)

(2π)κ/2|Ψ| 12
· exp

{
− E(µW , σ

2)
}
· |ΣW |

1
2 ·

L∏

l=1

nl−1∏

a=1

nl∏

b=1

φ(ψlab)

]
(B.11)

= argmin
ψ>0

−2 log(A(W∗, σ2)) + E(µW , σ
2) + log |Ψ| − log |ΣW | − 2

L∑

l=1

nl−1∑

a=1

nl∑

b=1

log(φ(ψlab)) (B.12)

W, ψ = argmin
W,ψ>0

1

2
WTH(W∗, σ2)W +WT ĝ(W∗, σ2) +

1

2
WTΨ−1W + log |Ψ|+ log |H(W∗, σ2) + Ψ−1| (B.13)

− 2 log(A(W∗, σ2))− 2

L∑

l=1

nl−1∑

a=1

nl∑

b=1

log(φ(ψlab))

Since the hyperprior φ(ψ) is a non-informative hyper-prior, the final objective function is given by:

L(W, ψ, σ2) =WTHW + 2WT ĝ +WTΨ−1W + log |Ψ|+ log |H + Ψ−1| − T log(2πσ2) (B.14)

C Convex Analysis and Iterative Solution

This section intends to proof propositions 2 and 3, that help reformulate the optimization in equation (15) into a
convex one. The objective function in equation (B.14) is a sum of two functions u and v, given by:

u(W, ψ) =WTH(W∗, σ2)W + 2WT ĝ(W∗, σ2) +WTΨ−1W (C.1)

v(ψ) = log |Ψ|+ log |H(W∗, σ2) + Ψ−1| (C.2)

WTΨ−1W is positive definite, since ψ > 0, thus u is convex in Ψ. v can be reformulated as a log-determinant of an
affine function of Ψ. By using the Schur complement determinant identities,

|Ψ||H(W∗, σ2) + Ψ−1| =
∣∣∣∣∣
H(W∗, σ2)

−Ψ

∣∣∣∣∣ = |H(W∗, σ2)||H−1(W∗, σ2) + Ψ| (C.3)

and taking the log of equation (C.3),

log |Ψ|+ log |H(W∗, σ2) + Ψ−1| = log |H(W∗, σ2)|+ log |H−1(W∗, σ2) + Ψ| (C.4)

one finds an equivalent expression of v that is concave in Ψ (equation (C.4)) leading to proposition 2.
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Given these properties of the objective function, the optimization can be re-expressed iteratively as a convex-concave
procedure (CCCP) [17] formulated in equations (18)-(19). These become:

W(k + 1) = argmin
W

WTH(W∗, σ2)W + 2WT ĝ(W∗, σ2) +WTΨ−1(k)W (C.5)

ψ(k + 1) = argmin
ψ≥0

WT (k + 1)Ψ−1W(k + 1) + α(k) · ψ (C.6)

where α(k) = ∇ψv
(
ψ(k)

)T
is the gradient of v evaluated at the current iterate ψ(k). Using the chain rule, its analytic

form is given by:

α(k) = ∇ψ
(

log |Ψ|+ log |H(W∗, σ2) + Ψ−1|
)∣∣∣
ψ=ψ(k)

(C.7)

= −diag
(

Ψ−1(k)
)
◦ diag

((
H(W∗, σ2) + Ψ−1(k)

)−1)
◦ diag

(
Ψ−1(k)

)
+ diag

(
Ψ−1(k)

)
(C.8)

=
[
α1
11, · · · , α1

n11, · · · , α1
n1n2

, · · · , αL11, · · · , αLnL−11, · · · , αLnL−1nL

]
(C.9)

◦ is the point-wise Hadamard product. Since Ψ is a diagonal matrix, equation (C.6) can be expressed per connection
independently. For that, first, the following expressions are given.

ΣW(k) =

(
H(W∗, σ2) + Ψ−1

)−1
(C.10)

αlab(k) = −
ΣWl

ab
(k)

ψlab(k)2
+

1

ψlab(k)
(C.11)

The optimization in equation (C.6) becomes

ψlab(k + 1) = argmin
ψ≥0

W l
ab(k + 1)2

ψ
+ αlab(k) · ψ (C.12)

ψlab(k + 1) = argmin
ψ≥0

W l
ab(k + 1)2

ψ
− 2
∣∣∣
√
αlab(k)·W l

ab(k + 1)
∣∣∣+ αlab(k) · ψ (C.13)

ψlab(k + 1) = argmin
ψ≥0

(
|W l

ab(k + 1)| −
√
αlab(k) · ψ

)2
(C.14)

and the analytical solution is thus ψlab(k + 1) =
|W l

ab(k+1)|
ωl
ab

(k)
where ωlab(k) =

√
αlab(k).

Finally, by plugging this solution into equation (C.5), the second part of the CCCP can be reformulated as an l1
regularized cost function of the network.

W(k + 1) = argmin
W

WTH(W∗, σ2)W + 2WT ĝ(W∗, σ2) +
L∑

l=1

nl−1∑

a=1

nl∑

b=1

||ωlab(k) ·W l
ab||l1 (C.15)

= argmin
W

E(W∗, σ2) + (W −W∗)Tg(W∗, σ2) +
1

2
(W −W∗)TH(W∗, σ2) (C.16)

+ 2
L∑

l=1

nl−1∑

a=1

nl∑

b=1

||ωlab(k) ·W l
ab||l1

≈ argmin
W

E(W, σ2) + λ
L∑

l=1

R(ωl,W l) (C.17)
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D Hessian Computation for a Recurrent Layer

In this work, as we adopt Laplace approximation method to calculate the posterior distribution, the Hessian of
weight matrices within the neural network should be obtained. Previous work [40] and [15] have proposed the efficient
recursive method to compute Hessian for a Fully-connected layer and convolutional layer, respectively. Inspired by
these two works, we propose a recursive and efficient method to compute the Hessian of a recurrent layer.

D.1 Backward propagation through time (BPTT) process

As we know, a LSTM cell is a special form of the recurrent neural network and is equivalent to a FC neural network by
unfolding itself over the time sequence. For convenience of explanation, we use a simplified RNN structure to illustrate
the Hessian calculation process. As shown in Figure D.1, we denote z(t), h(t) and y(t) as the input, hidden state and
output of the time step t, respectively. The behaviour of this RNN layer can be described by:

h(t) = σ(Wiz(t) +Whh(t− 1)) (D.1)

y(t) = Woh(t) (D.2)

where Wi, Wh and Wo represent the weight matrix of the input layer, hidden layer and output layer. σ is the activation
function.

Unfold

Fig. D.1. An unrolled RNN layer.

The hessian should be calculated through a backward propagation through time (BPTT) process. For the gradient
update, if we use W to represent any weight matrix within a RNN, then its gradient is:

∂L
∂W

=
T∑

t=1

∂L(t)

∂W
=

T∑

t=1

t∑

k=1

(
∂L(t)

∂h(t)

∂h(t)

∂h(k)

∂h(k)

∂W
) (D.3)

where L(t) is the loss at time t which is calculated as (24). To realize the backward propagation of gradient information
from time step t to time step k, we have

∂h(t)

∂h(k)
=

t∏

i=k+1

∂h(i)

∂h(i− 1)
(D.4)

D.2 Hessian update process

Refer to [40] and the BPTT process, the Hessian for Wo is:

Ho =
1

T

T∑

t=1

Ht
o (D.5)

where Hessian Ht
o = (h(t))2 ⊗Ht

o and Ht
o is the pre-activation Hessian of Wo.

Suppose τ is the backward propagation time horizon, the Hessian of Wh is computed as:

Hh =
1

T × τ
T∑

t=1

t∑

j=t−τ+1

Ht,j
h (D.6)
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Ht,j
h = (z(t− 1))2 ⊗Ht,j

h (D.7)

where Ht,j
h and Ht,j

h represent the Hessian and the pre-activation Hessian with Ht,j
x :

Ht,j
h = B2 ◦ (((Wh)>)2Ht,j+1

h ) +D (D.8)

where

B = σ′(h(t)), D = σ′′(h(t)) ◦ ∂L

∂h(t)
(D.9)

As the pre-activation Hessian Hh and Hessian Hh will be imparted along with the backward propagation process over
the time horizon τ , (D.6) can be rewrote as:

Hh =
1

T × τ
T∑

t=1

t∑

k=t−τ+1

Ht,k
h (D.10)

Similarly, the Hessian of the Wi could be computed as:

Hi =
1

T × τ
T∑

t=1

t∑

k=t−τ+1

Ht,k
i (D.11)

where Ht,k
i = (z(k − 1))2 ⊗Ht,k

i . Ht,k
i can be computed as:

Ht,k
i =

t∏

j=k+1

B2 ◦ (((Wi)
>)2Hj,j−1

i ) (D.12)

B = σ′(h(j)), D = σ′′(h(j)) ◦ ∂L

∂h(j)
(D.13)

E Posterior Predictive Mean and Variance

To find the expected value of the prediction, the expression of the posterior predictive distribution in equation (25)
is used, and given that the likelihood is defined as a normal distribution one obtains:

E
[
ŷ
]

=

∫
ŷ p(ŷ|z,D)dŷ (E.1)

=

∫ ( ∫
ŷ p(ŷ|W, z)dŷ

)
p(W|D)dW (E.2)

=

∫
Net(W, z) p(W|D)dW (E.3)

Using the inferred posterior distribution over the weights, one can approximate this integral by Monte-Carlo sampling
methods [19,41]. An unbiased estimate of the prediction is given by the average predictions using W sampled by the
posterior M times.

µŷ ≈
1

M

M∑

m=1

Net(W(m), z) (E.4)
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In an analogous way, to estimate the variance in the posterior predictive distribution, the expected value E
[
ŷT ŷ

]
is

analytically derived as follows in equations (E.5)-(E.7).

E
[
ŷT ŷ

]
=

∫
ŷT ŷ p(ŷ|z,D)dŷ (E.5)

=

∫ ( ∫
ŷT ŷ p(ŷ|W, z)dŷ

)
p(W|D)dW (E.6)

=

∫ (
σ2 + Net(W, z)2

)
p(W|D)dW (E.7)

An unbiased estimate of the variance is given by Monte-Carlo integration methods [19,41], with M samples from the
inferred posterior distribution of the network weights W .

Σŷ ≈ σ2 +
1

M

M∑

m=1

Net(W(m), z)2 − µŷ
Tµŷ (E.8)

F Regularization Update Rules

To enforce a group regularization on network parameters, the prior formulation is revisited. The main difference is
with the optimization step for ψ. Parameters in the same row share the prior uncertainty parameter ψla: and in the
same column the prior uncertainty ψlb:.

For instance, the optimization step in equation (C.12) for ψl:b, the prior width shared among the connection weights
in the same column, becomes

ψl:b(k + 1) = argmin
ψ≥0

nl∑

b=1

W l
:b(k + 1)TW l

:b(k + 1)

ψ
+ αl:b(k) · ψ (F.1)

where αl:b =
nl−1∑
a=1

αlab(k). By noting that

nl∑

b=1

W l
:b

T
W l

:b

ψ
+ αl:b · ψ ≥ 2

∣∣∣
∣∣∣
√
αl:b·W l

:b

∣∣∣
∣∣∣
l2

(F.2)

the analytical solution is given by ψl:b(k + 1) =
||W l

:b(k+1)||2
ωl

:b
(k)

where ωl:b(k) =
√
αl:b(k) =

√
nl−1∑
a=1

αlab(k).

The row-wise regularization can be analogously derived. Note that the update rules for αlab remains similar to equations
(20) and (21). However when using both row-wise and column-wise group regularization, the posterior is updated
according to a combined prior expressed with a prior width given by :

ψlab(k) =
1

( 1
ψla:(k)

+ 1
ψl

:b
(k)

)
(F.3)
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G Hairdryer

In common industrial settings with heating, temperature control is a highly desired objective given the high transport
lags and process delay. The ”hairdryer” is a small scale laboratory apparatus that designates the PT326 process trainer
[21]. A mass of air is heated with thermal resistors and flows in a tube. The temperature at the outlet is measured
by a thermocouple in volts. The objective is to identify the dynamic relationship between the input voltage to the
thermal resistors and the thermocouple voltage at the outlet. The dataset specific to this device is given by MATLAB
in a tutorial on linear system identification. The sampling time is 0.08 seconds and the dataset contains 1000 data
points. The dataset is detrended, bringing data to a zero mean. The first 300 data points are used for identification
and the remaining 700 are used for validation.

A fully connected MLP model with one hidden layer and 50 nodes is randomly initialized. The activation function is a
linear activation without the bias term. The input and output lags chosen for the regressors is 5. Models are inferred
through Kmax = 6 identification cycles. The best validated model was obtained in the 5th cycle of identification with a
sparsity of 88.1%. The model sparsity plot is shown in Fig. G.1. Furthermore, an RNN network is randomly initialized
with one layer and 10 hidden LSTM units and no bias term. lu and ly are set to 5. The 6th and final identification cycle
led to the sparsest and best validated model with a sparsity of 93.5 %. Fig. G.2 shows the final model sparsity plot.
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Fig. G.1. Model sparsity of the identified MLP on Hairdryer
dataset. Blue indicates non-pruned connections and white indi-
cate pruned ones. The same follows with other sparsity plots.
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Fig. G.2. Model sparsity of the identified LSTM on Hairdryer
dataset

Plots of the posterior predictive distribution’s mean predictions and standard deviations obtained by sampling 10000
times from the posterior distribution of the connections’ weights and by using equations (26) and (27) are shown in
Fig. G.3 and G.4. Plots of the identified models’ free run simulations can be found in Fig. M.1.
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Fig. G.3. Posterior mean predictions of the identified MLP on
Hairdryer dataset (±2σ)
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Fig. G.4. Posterior mean predictions of the identified LSTM on
Hairdryer dataset (±2σ)
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H Heat Exchanger

A heat exchanger is a thermodynamic device that ensures a transfer of heat in between two fluids seperated by a
wall. In this experiment, the dynamic relationship between the change in coolant temperature and the change in the
product temperature is identified [21]. The first 3000 data points are used for identification and the remaining 2000
for validation. This dataset is particularly unique among the others. The process exhibits a delay of around 1/4 of a
minute [21].

One hidden-layer MLP with 50 nodes is initialised with a linear activation function and no bias term. The lag chosen
is lu = ly = 150 samples corresponding to the delay of 0.25 seconds that can be observed in the first instances of the
given dataset. The experiment ran for 6 identification cycles, in which the 4th obtained model was selected as the
best validated model. The model is 99.3% sparse .

One layer RNN network with 10 LSTM units is trained with the same lag used previously (lu = ly = 150). The best
validated model was the second out of 6 identification cycles. The accepted model’s sparsity is 96.4 % for which the
sparsity plot is given in Fig. H.2.
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Fig. H.1. Model sparsity of the identified MLP on Heat Ex-
changer dataset.
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Fig. H.2. Model sparsity of the identified LSTM on Heat Ex-
changer dataset.

The predictive mean and standard deviation of the posterior predictive distribution are shown in Fig. H.3-H.4 against
the real validation signal. These were obtained using 10000 samples of the posterior distributions. Please refer to
Fig. M.2, for a plot of these free run simulations.
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Fig. H.3. Posterior mean predictions of the identified MLP on
Heat Exchanger dataset (±2σ)
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Fig. H.4. Posterior mean predictions of the identified LSTM on
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I Glass Tube Manufacturing Process

In the process of manufacturing glass tubes, melted glass shapes around a rotating cylinder, while homogenizing. It
is, then drawn on rollers to a certain length. The thickness of the obtained glass tube is measured by a laser beam
outside the chamber [42]. The objective is to identify the linear dynamic relationship between the input drawing speed
and the output thickness. The datasets are provided by the MATLAB example. These are detrended and decimated
by four, to get rid of high frequency components of the signal [22]. This results in a sampling time of 4 seconds. The
data used for identification consist of the first 500 datapoints and the remaining is used in validation.

An MLP is randomly initialized with one hidden layer and 50 neurons. The input regressors are chosen such as
lu = ly = 5. The activation function used is linear without a bias term. The final obtained model is 97.8 % sparse
with a sparsity plot shown in Fig. I.1. This model was the third generated model out of 6 identification cycles.

With the same choice of regressors, an RNN network was initialized with one layer of 10 LSTM units. The bias term
was not used in this case. In the 6 identification cycles, the 6th generated model was the sparsest and have the best
validation performance. The sparsity plot of this network is given by Fig. I.2. The model is 99% sparse, and the only
non-pruned parameters in the model correspond to the input to cell state operator Wij .
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Fig. I.1. Model sparsity of the identified MLP on Glass Tube
Manufacturing dataset.
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Fig. I.2. Model sparsity of the identified LSTM on Glass Tube
Manufacturing dataset.

The one-step ahead prediction estimates and uncertainties are obtained by Monte Carlo sampling 10000 times from
the posterior and are shown in Fig. I.3-I.4 as a representation of the posterior predictive distribution. The free run
simulations of the generated models in this paper are presented in Fig. M.3.
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Fig. I.3. Posterior mean predictions of the identified MLP on
Glass Tube Manufacturing dataset (±2σ)
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Fig. I.4. Posterior mean predictions of the identified LSTM on
Glass Tube Manufacturing dataset (±2σ)
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J Cascaded Tanks

A pump drives water up from a reservoir to the upper tank of two vertically cascaded tanks. The upper and lower
tanks are seperated by a small opening allowing water to fill the lower tank. The lower tank and the reservoir are also
seperated by a small opening, from which water goes back to the reservoir. In addition to that, water can overflow from
the upper tank to the lower tank and reservoir. Water can also overflow the second tank and drop into the reservoir.
The small openings and overflows are sources of non-linearity [24]. The objective of the benchmark is the identification
of the dynamic relationship between the input voltage to the pump and the output measured water level in the lower
tank by a capacitive sensor [24]. Two multisine input datasets and their corresponding outputs with a sampling rate
of 4 seconds are provided. The datasets contain each 1024 samples and are with different initial conditions. One of
the datasets is used for estimation and the other for validation. The signals provided exhibit a static bias that is dealt
with in the pre-processing stage of the identification procedure by detrending.

A 3 hidden layers deep MLP network with 10 neurons per layer is randomly initialized. The activation function used
is the relu activation. The input regressors are such as lu = ly = 20. The identification experiment is ran for 10 cycles.
The 9th generated model pig erforms the best in validation with a sparsity of 84.5%. The model’s sparsity plot is
shown in Fig. J.1.

Moreover, a one layer RNN with 10 LSTM units is also used as a model structure for the identification experiment.
The 4th identified model with 60.3 % sparsity was the best validated model out of 10 identification cycles. The sparsity
plot of the corresponding model is shown in Fig. J.2.
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Fig. J.1. Cascaded Tanks MLP Model sparsity plot
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Fig. J.2. Cascaded Tanks RNN Model sparsity plot

In addition, the posterior predictive mean and standard deviation are given in Fig. J.3 and J.4. These were obtained
by the averaging equations 26 and 27 and sampling 50000 times from the inferred posterior distribution of the weights.
A plot of the models’ free run simulations is by Fig. M.4.
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Fig. J.3. Cascaded Tanks MLP models’ output posterior mean
predictions (±2σ)
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Fig. J.4. Cascaded Tanks LSTM models’ output posterior mean
predictions (±2σ)

21



K Coupled Electric Drives

The coupled electric drives consists of 2 electric motors and a pulley, connected by a flexible belt forming a triangle.
The pulley is attached by a spring to a fixed frame. This results in belt tension, slippage and pulley speed, that is
harder to model. In addition to that, the output pulley rotational speed is measured in ticks per seconds, insensitive to
rotational directions. The dynamic relationship to be identified is between the input motors voltage and the measured
rotational speed of the pulley. For this identification task, 2 uniformly distributed signals of 500 samples is provided
spanning 10 seconds. With each of these datasets, the first 300 samples are used for estimation and the remaining for
validation.

Two hidden layers MLP with 50 neurons each and relu activation functions is randomly initialized and trained with
the estimation data for 10 identification cycles. The model’s regressors are chosen such that lu = ly = 10. The model
obtained in the 6th identification iteration is the chosen best model. This model is 78.4% sparse for which the sparsity
plot is shown in Fig. K.1.

The same regressors are used for the identification using RNN model structure. An RNN with one layer and 10 LSTM
units is trained for 10 identification cycles. The 8th identification yields the best simulation validation results. The
resulting model is 72.8% sparse with the sparsity plot in Fig. K.2.
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Fig. K.1. Coupled Electric Drives MLP Model sparsity plot
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Fig. K.2. Coupled Electric Drives RNN Model sparsity plot

By using equations 26 and 27, the mean and standard deviation of the posterior predictive distributions is plotted
in Fig. K.3, K.5, K.4 and K.6 for both validation datasets. These are obtained with equations (26)-(27) and 50000
samples of the posterior distribution. Figures showing the resulting free run simulations are Fig. M.5-M.6.
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Fig. K.3. Coupled Electric Drives MLP models’ output posterior
mean predictions (±2σ) of first validation dataset
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Fig. K.5. Coupled Electric Drives MLP models’ output posterior
mean predictions (±2σ) of second validation dataset
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Fig. K.6. Coupled Electric Drives RNN models’ output posterior
mean predictions (±2σ) of second validation dataset

L Bouc-Wen Hysteresis Model

Hysteresis is a complex non-linear dynamic phenomenon observed in vibration science, materials, magnetism and
many other applications in both physical and social sciences. It is characterized by a dynamic system’s dependency
for previous states and is challenging to model mathematically. The Bouc-Wen model for hysteresis is one of the most
versatile parametric models used in a wide range of hysteric applications [43]. The model relates the hysteric restoring
force (in N) to displacement (in mm). A Matlab simulink code is provided alongside two validation signals: a random
multisine and a sinesweep [44]. The signal used for estimation is five realizations of 8192 multisine samples with a
sampling frequency of 750 Hz and an additive band limited Gaussian noise in 0-375 Hz. Both inputs and outputs have
very different decimal means and scales, hence, the datasets are normalized before estimation.

A first identification experiment is done with an MLP network of 2 hidden layers, 50 neurons per layer and relu
activation functions. The identification procedure includes 10 iterations, in which the best model generated was the
9th. This model is 38.5% sparse. A visual representation of this sparse model is Fig. L.1.

The second identification experiment is done with an RNN composed of a layer of 10 LSTM units. The final accepted
identified model is the 9th model with a sparsity of 82.8 %. Due to the limitation of resources, only the first 10% of
the estimation data is used for identification using LSTM units. Fig. L.2 is a visual representation of the obtained
model sparsity.
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Fig. L.1. Bouc-Wen MLP Model sparsity plot
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Fig. L.2. Bouc-Wen RNN Model sparsity plot

Similarly to other identified processes, the mean and uncertainty estimates in model’s prediction is shown for both
validation datasets on a small window of a 1000 samples. For the first validation data, the window spans samples 1000
to 2000 and the plot is shown in Fig. L.3 and L.4. For the second validation dataset, the chosen window spans from
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sample 4000 and 5000, plotted in Fig. L.5 and L.6. To obtain these, the posterior was sampled for 50000 times. Plots
of the free run simulations are given by Fig. M.7-M.8.
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Fig. L.3. Bouc-Wen MLP models’ output posterior mean pre-
dictions (±2σ) of first validation dataset
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Fig. L.4. Bouc-Wen RNN models’ output posterior mean pre-
dictions (±2σ) of first validation dataset
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Fig. L.5. Bouc-Wen MLP models’ output posterior mean pre-
dictions (±2σ) of second validation dataset
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Fig. L.6. Bouc-Wen RNN models’ output posterior mean pre-
dictions (±2σ) of second validation dataset

M Free Run Simulation Plots

This section of the appendix supports the reader with plots of the simulated experiments using the models identified.
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Fig. M.1. Hairdryer Free Run Simulation comparison
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Fig. M.5. Coupled Electric Drives Free Run Simulation com-
parison for the first validation dataset
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parison for the second validation dataset
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Chapter 4

Conclusion

4-1 Summary

Bayesian Neural Networks are a good choice of methods to identify dynamic systems. In this
work, linear and non-linear processes were identified using Multi-Layer Perceptrons and Long
Short Term Memory in a Bayesian Approach. Sparsity inducing group priors are introduced
and the Laplace approximation is used to approximate the evidence. The type II maximum
likelihood problem (evidence maximization) is recast into an iterative l1 procedure using the
Concave-Convex-Procedure. In addition, with the inferred posterior distribution of the con-
nection weights, the predictions made by the network can be obtained in a distribution form
rather than only point estimates by using Monte Carlo Integration methods. Six processes
were identified to demonstrates sparsity, predictive uncertainty quantification and compet-
itive simulation validation results with previous works found in literature. The work done
for this dissertation was compiled in a journal paper that also constitutes the body of this
document.

4-2 Limitations

The presented Bayesian Deep Learning model and algorithm exhibit current limitations.
These include:

• The Laplace approximation adopted requires computing the Hessian of the log likeli-
hood with respect to the connection weights as well as an expression of its inverse for the
posterior. This may be infeasible in the case of large networks and incurs a high compu-
tational cost. In addition, the convergence properties remain local even when these are
improved with the heuristics introduced such as pruning and adaptive regularization.
Nonetheless, the method’s computational costs, tuning costs and convergence proper-
ties can well improve with advancement in training neural networks and Hessian matrix
approximation methods.
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48 Conclusion

• The uncertainty in model parameters and predictions are uncertainties related to a
fit on estimation data. The Bayesian approach attempts to balance a model fit and
complexity based on the estimation data and hence improves generalization property.
However, similar to many identification methods, the quality of estimation data remains
very influential to the model fit and hence to the quantified uncertainties in predictions.
In the next subsection, we shall see how this limitation can also be an opportunity.

• The Bayesian approach is often seen as an attempt to demystify deep learning. That was
also seen in this thesis. The Bayesian method combined with the fitting capabilities of
artificial neural networks provided insights such as quantified uncertainties and, in some
cases, an automatic selection of regressors. However, models remain opaque (especially
for non-linear model estimation) and parameters inferred do not represent any physical
quantity. Furthermore, the prior form is subjective, and does not include any prior
knowledge of modeling and dynamic system analysis.

4-3 Opportunities

Some research directions to explore in the future include:

• Extension to MIMO systems: The Bayesian method used can be extended to
multiple-input multiple-output processes by simply extending the network inputs and
outputs with the system’s inputs and measurements. It might also be interesting to start
with a small model (one intermediate layer), where direct relationships and coupling
between inputs and outputs can be better inferred by effect of the structural sparsity
imposed.

• Uncertainty and data acquisition: The posterior predictive uncertainty is a reflec-
tion of how inferred model parameters reflect in uncertainty to predictions. In other
words, if in the validation phases an input in a certain window of time generated a
high uncertainty in the posterior predictive distribution, this input is highly informa-
tive. According to these validation results, users can redesign input properties related
to frequency, amplitude or type of signal and re-acquire estimation data for another
iteration of system identification. An analogous view can be found in reinforcement
learning, where uncertainty can help agents with the balance between exploration and
exploitation.

• More prior information: Given the physics of a problem, the network structure can
be designed to include more prior information. This can be done by designing a prior net-
work that would be integrated with a fully connected network. For instance, in robotics,
forward kinematics often involve trigonometric functions to map rotational actuation
to end effector position/speed. In this case, prior network would attempt to recover
this trigonometric relationship and the fully connected network would compensate for
imperfections and interference. An example of such units would be linear/non-linear
combinations of trigonometric functions found in the forward model. It is envisioned
that the Bayesian approach would render a highly sparse fully connected network and
help quantify uncertainty in the inferred parameters of the prior and fully connected
units.
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Appendix

This chapter aims to provide an overview of the identified models in literature for three linear
systems as well as three non-linear systems benchmarks. This section is part of the literature
compiled for this work, but to avoid repetitions in the flow of the report, these are appended
here if authors are interested in gaining more insight.

Each of these benchmarks is described starting with the mathematical model showing some
physical intuition into the system and the provided input signals for estimation and valida-
tion. These would allow to deduce some challenges one may be faced with the identification
experiment. Finally, previous literature works on these benchmarks are outlined in tables.
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4-4 Appendix A: Benchmarks Description

Note that the terms one-step ahead prediction and free run simulation will be frequently men-
tioned in this thesis. A one-step prediction is an experiment where the model inputs can
depend on the previous real outputs, while model input of a simulation cannot. Simulation
inputs can, however, utilize previously estimated outputs by the same model.

4-4-1 Heat Exchanger

The heat exchanger is a family of systems found in some electronic devices, industrial engines
or even households. These allow the heat transfer between at least two fluids physically
separated by a barrier to avoid mixing. The dataset is a MATLAB dataset used as a demo
in the system identification toolbox with the command load iddemo_heatexchanger_data
[21].

Modeling and Physical Insight

The tutorial on the identification aims to identify the relationship between the change in
coolant temperature and the change in product temperature in a heat exchanger around
nominal values. Heat transfer exhibits a transient behavior when thermal properties are
changed. In other words, a step change in coolant temperature does not trigger a constant
flow of energy in the system and the outlet product temperature changes with respect to
time until steady state. In an attempt to give more insight into a heat exchanger’s dynamics,
a model can be obtained by using the energy balance equation. Assuming constant fluid
properties, the rate of thermal energy accumulation in the product fluid is given by:

Ėacc = Ėin − Ėout − Ėloss (4-1)

mpcp
d(δTp)
dt

= ṁpcp δTp + ṁccc δTc − Ėloss(Ta) (4-2)

With δT = Tin − Tout, T being the temperature of the coolant (subscript is c), the prod-
uct (subscript is p) or the ambient (subscript is a). cc, cp represent the heat capacities of
respectively the coolant and the product fluid. m is the fluid mass and ṁ the mass flow rate.

Given equation 4-2, the relationship between product and coolant temperature in a heat
exchanger can be seen as a first order dynamic model with a disturbance term from ambi-
ent temperature. This was also mentioned in the tutorial for the identification of the heat
exchanger dataset [19].

Benchmark Data Description

One set of inputs-outputs is used in the tutorial. In this set, the input signal consists of a pulse
wave of different widths. It is important to note that an input-output delay of 0.25 seconds
can be seen in the provided dataset. The signals contains 5000 samples and a sampling time
of 0.0017 seconds. The first 3000 samples are used for estimation and the remaining 2000 for
validation. The inputs are given by figures 4-1 and 4-2.
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Figure 4-1: Heat Exchanger estimation in-
put data.
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Figure 4-2: Heat Exchanger validation in-
put data.

Identification Challenges

The main challenge in the identification of the heat exchanger model is the detected long
delay (around 147 samples) and the disturbance of the ambient temperature for which no
data is provided.

Previous Identification Works

Table 4-1: Comparison of other models from literature on Heat Exchanger Dataset

Previous Work Method Tests RMSE [◦ C]
[19] The
Mathworks
Incorporation

Initialized Transfer
Function Estimation
tfest(data, sysInit)

One-Step Ahead
Prediction 0.140Free Run Simula-
tion

[19] The Math-
works Incorpora-
tion

Process Model Estimation
procest(data, ”P1D”)

Free Run Simula-
tion 0.88

[19] The Math-
works Incorpora-
tion

Process Model Esti-
mation with ARMA
Disturbance Model
procest(data, sysInit, opt)

Free Run Simula-
tion 0.89

4-4-2 Glass Tube Manufacturing

Manufacturing glass tubes includes three main processes, homogenization, forming and cool-
ing. Melted glass is fed around a rotating cylinder to shape and homogenize glass in a
cylindrical shape. A channel in through the center of the cylinder allows air to be blown
into the forming zone of the process, where the glass takes a bulb shape. The end of the
bulb is finally drawn given an input drawing speed and cooled into a final tube [68]. The
summarized process is shown in figure 4-3. In this thesis, the goal is to identify the dynamic
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model relating the drawing speed and tube thickness. The data used in the identification is
provided in Matlab using the command load thispe25.mat [20].

Figure 4-3: Glass Tube Manufacturing Process [68]. This article was published in the 10th
Triennial IFAC Congress on Automatic Control, Volume 20, V. Wertz and G. Bastin and M.
Haest, Identification of a glass tube drawing bench, Page 334, © Elsevier (1987).

Modeling and Physical Insight

The two main controlled inputs to the process are the drawing speed and the blowing pressure.
The outputs are the diameter and thickness of the manufactured glass tube. In this work,
the objective is to identify the process between the drawing speed and measured thickness.
Modeling this relationship can be a challenging task. The paper presenting the process
concluded little effect of pressure on the thickness of the final glass tube by using correlation
analysis. In addition, the model used to identify this dynamic relationship is linear model
with 4 samples of delay [68].

Benchmark Data Description

The output contains high frequency components that proved difficult to deal with in the
tutorial [20]. The datasets are hence decimated by 4. The signals are also detrended to
bring means to zero and get rid of the static term. The final pre-processed signals used for
system identification are shown in figures 4-4 and 4-5. The latter contains 625 samples with a
sampling time of 4 seconds. The first 500 constitute the estimation signal and the remaining
125 samples the validation signal.
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Figure 4-4: Glass Tube Manufacturing es-
timation input data.
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Figure 4-5: Glass Tube Manufacturing val-
idation input data.

Identification Challenges

The temperature in the bowl before the feeder and the perturbation in the cylinder rotations
are both reported to be sources of disturbances to the process under study [68]. Furthermore,
a delay of four samples (for the pre-processed data) exist. This is caused by a more distant
placement of the sensor from the chamber’s output.

Previous Identification Works

Table 4-2: Comparison of other models from literature on Glass Tube Manufacturing Dataset

Previous Work Method Tests RMSE
[20] The
Mathworks
Incorporation

ARX Model Estimation
arx(data, [1, 1, 3])

One-Step Ahead
Prediction

0.649

Free Run Simula-
tion

0.688

[20] The
Mathworks
Incorporation

Subspace Identification
n4sid(data)

One-Step Ahead
Prediction

0.784

Free Run Simula-
tion

0.676
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4-4-3 Hair Dryer

The laboratory hair dryer is a system that
refers to the PT 326 Process Trainer. A
schematic of the system is shown in figure 4-
6. In this process, air is blown from the sur-
rounding into a tube with a centrifugal fan and
heated using a grid of resistors wires. The out-
let air temperature is measured by a bead ther-
mistor. Both the air flow and the voltage pro-
vided on the resistor wires are inputs to the
Hair Dryer. The data can be loaded on Mat-
lab using the command load dryer2 [18].

Figure 4-6: PT 326 Process Trainer Sketch

Modeling and Physical Insight

A attempt to model the process to be identified, the balance of energy equation is used
in a similar fashion to the previous derivation for the heat exchanger. Assuming the flow
incompressible and the effect of ambient temperature is negligible, the accumulated heat in
the hair dryer is given by:

Ėacc = Ėin − Ėout (4-3)

mc
d(∆T )
dt

= ṁc ∆T + ĖΩ (4-4)

With ∆T = Tin − Tout. c represent the air heat capacity of respectively the coolant and the
product fluid. m is the fluid mass and ṁ the mass flow rate. The heat flux from the resistor
mesh is assumed proportional to the input voltage ĖΩ = KVi. This results in a linear model
relating the change in temperature and the input voltage.

Benchmark Data Description

The tutorial "Estimating Simple Models from Real Laboratory Process Data" uses a binary
random input voltage of a 1000 datapoints. The signals’ sampling time is 0.08 seconds [18].
The first 300 samples are used for estimation and 700 samples for validation. Plots of the
used inputs are given in figures 4-7 and 4-8.
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Figure 4-7: Hair Dryer estimation input
data.
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Figure 4-8: Hair Dryer validation input
data.

Identification Challenges

The system has little disturbances coming from the ambient temperature and the signals
exhibit a good signal to noise ratio [31]. Only a delay of 3 samples is reported in the tutorial
[18].

Previous Identification Works

In the Matlab tutorial the first 300 datapoints are used for estimation and a 100 of the
remaining samples for validation [18]. However, in Lennart Ljung’s Book the dataset was
divided in half [31]. In this work, both works will be mentioned as previous works. The
model structures and procedures will be kept as the authors determined it but the estimation
and validation data will correspond to those used for the estimation of this work’s model. In
other words, the Matlab and book methods used to identify this same process are rerun to
obtain a compatible validation comparison using Matlab.
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Table 4-3: Comparison of other models from literature on Hair Dryer Dataset

Previous Work Method Tests RMSE [V ]
[18] The
Mathworks
Incorporation

Transfer Function
Estimation
tfest(data, 2, 1)

One-Step Ahead
Prediction

0.085

Free Run Simula-
tion

0.108

[18] The Mathworks
Incorporation / Ljung’s
Book Chapter 17.3 [31]

Subspace Identification
n4sid(data, 3)

One-Step Ahead
Prediction

0.037

Free Run Simula-
tion

0.106

[31] Ljung’s Book
Chapter 17.3

Subspace Identification
n4sid(data, 6)

One-Step Ahead
Prediction

0.036

Free Run Simula-
tion

0.161

[18] The Mathworks
Incorporation / Ljung’s
Book Chapter 17.3 [31]

ARX Model Estimation
arx(data, [2, 2, 3])

One-Step Ahead
Prediction

0.039

Free Run Simula-
tion

0.106

[31] Ljung’s Book
Chapter 17.3

ARX Model Estimation
arx(data, [6, 9, 2])

One-Step Ahead
Prediction

0.036

Free Run Simula-
tion

0.103

[31] Ljung’s Book
Chapter 17.3

ARMAX Model
Estimation
armax(data, [3, 3, 2, 2])

One-Step Ahead
Prediction

0.036

Free Run Simula-
tion

0.104

4-4-4 Cascaded Tanks

The cascaded tanks are 2 water tanks placed on top of each others over a reservoir. Water in
these can flow in the direction of gravity except for the bottom reservoir. A pump is used to
pump water into the top tank. What is particular about this setup is the fact that overflow
is possible from the tanks to the reservoir. That saturation behavior is an often encountered
non-linearity in non-linear systems. The input of the process to be identified is the pump
voltage and the output is the water level of the second tank measured using a capacitive level
sensor.

Modeling and Physical Insight

A sketch of the system in study is given in figure 4-9. x1 is the height of fluid in the upper tank
and x2 the height in the bottom tank. The area of the orifice at the bottom of the upper tank
is given by a1 and the one at the bottom of the lower tank is a2. A1 is the cross-sectional area
of the upper tank and A2 the cross sectional area of the bottom tank. The pump constant is
denoted as Kp and the pump flow rate is assumed linear with the input voltage u, ṁp = Kpu.
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Finally the mass flow rate out of the upper tank is designated by ṁout
1 and out of the lower

tank is ṁout
2 . By effect of mass conservation in the control volume of each of the tanks,

A1
d(x1)
dt

= ṁp − ṁ1
out (4-5)

A2
d(x2)
dt

= ṁ1
out − ṁ2

out (4-6)

Using Bernoulli’s law considering static pressure atmo-
spheric and flow incompressible, the output mass flow
rates from each tank are given by

ṁ1
out = a1v

out
1 = a1

√
2gx1 (4-7)

ṁ2
out = a2v

out
2 = a2

√
2gx2 (4-8)

where g is the gravity constant.
Figure 4-9: Sketch of the Cas-
caded Tanks system

Using these expressions in equations 4-5 and 4-6, one obtains the differential equations de-
scribing the process

d(x1)
dt

= Kp

A1
u− a1

√
2g

A1

√
x1 + ω1 (4-9)

d(x2)
dt

= a1
√

2g
A2

√
x1 −

a2
√

2g
A2

√
x2 + ω2 (4-10)

y = x2 + ε (4-11)

with ω1 and ω2 the process noise and ε the measurement noise.

Benchmark Data Description

Two multisine input benchmark signals (0-0.0144 Hz) are provided for the identification of the
Cascaded Tanks system. These contain each 1024 samples with a sampling time of 4 seconds.
The system state have a similar unknown initial value for both estimation and validation data
[57]. To bring the static bias term to zero the datasets are detrended before model estimation.
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Figure 4-10: Cascaded Tanks estimation
input data.
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Figure 4-11: Cascaded Tanks validation in-
put data.
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Identification Challenges

In addition to the non-linear nature of the Cascaded Tanks system, saturation introduces
input-dependent process noise because of overflow from first to second tank [57].

Previous Identification Works

Table 4-4: Comparison of other models from literature for Cascaded Tanks Benchmark

Paper Method Test Used Measure RMSE [V]
[3] Belz et al.
(2017)

Local model Networks
with NFIR for external
dynamics

One-Step Ahead
Prediction

RMSE 0.0573

Free Run Simulation RMSE 0.669
[24] Karagoz et
al. (2020)

Regularized tensor
network B-splines

One-Step Ahead
Prediction

RMSE 0.0461

Free Run Simulation RMSE 0.3018
[59] Schoukens et
al. (2016)

Best Linear
Approximation

One-Step Ahead
Prediction

RMSE 0.0556

Free Run Simulation RMSE 0.5878
[59] Schoukens et
al. (2016)

Polynomial Feedback
Model

One-Step Ahead
Prediction

RMSE 0.0555

Free Run Simulation RMSE 0.4877
[59] Schoukens et
al. (2016)

Volterra Feedback
Model

One-Step Ahead
Prediction

RMSE 0.0494

Free Run Simulation RMSE 0.3972
[16] Hostettler et
al. (2018)

GP Drift Model One-Step Ahead
Prediction

RMSE 0.0576

[59] Schoukens et
al. (2016)

Polynomial Hammer-
stein Model

Free Run Simulation RMSE 0.5651

[59] Schoukens et
al. (2016)

Polynomial Wiener
Model

Free Run Simulation RMSE 0.5086

[50] Relan et al.
(2017)

Non-Linear State Space
Model

Free Run Simulation RMSE 0.3433

[50] Relan et al.
(2017)

Polynomial Non-Linear
State Space Model

Free Run Simulation RMSE 0.44984

[63] Svensson et
al. (2017)

Flexible State Space
Model

Free Run Simulation RMSE 0.45

[35] Mattsson et
al. (2018)

Piecewise ARX Models Free Run Simulation RMSE 0.350

[6] Brunot et al.
(2017)

OEM with Nelder Mead
Solver

Free Run Simulation RMSE 0.379

[6] Brunot et al.
(2017)

OEM with NOMAD
Solver

Free Run Simulation RMSE 0.376
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4-4-5 Coupled Electric Drives

Coupled Electric Drives is mechanical system that consists of an elastic belt connecting two
motors and a pulley. The pulley is attached to a suspended spring. Motors can be used to
allow a control of both the tension and the speed of the belt. The provided data is measured
speed by a pulse counter on the pulley, making it insensitive to the sign of velocity.

Modeling and Physical Insight

The system’s dynamics can be hard to derive using phys-
ical laws and may need multiple assumptions over the
forces and coupling caused by the flexible belt. For a de-
tailed modeling of this system please refer to the deriva-
tion by Petr et al. [9]. Nonetheless, five main modes are
perceived in CED: the two electric drives time constant,
the spring and the analogue low-pass filter [69] and the
pulley inertial forces. Other energy storage can include
the flexible band elastic forces. In the technical note pro-
vided along the dataset, a Wiener/Wiener-Hammerstein
model is assumed and its parameters are identified [69].
Furthermore the sensor output is y(t) = |z(t)| + e(t). e
represents the output disturbance and |z(t)| is the abso-
lute value of the dynamic model output given the nature
of the sensor measurement. Figure 4-12: Coupled Electric

Drive Sketch

Benchmark Data Description

Two sets of uniform pulses with various random amplitudes inputs are provided and are used
for training and validation. They are divided into 300 samples for estimation and 200 for
validation each. These are shown in figures 4-13 4-14 below.
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Figure 4-13: First CED provided input
data.
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Figure 4-14: Second CED provided input
data.
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Identification Challenges

The CED exhibits a strong non-linearity given the absolute value in the measurement of the
velocity. Adding to that, estimation datasets are short [69] and physical modeling can prove
to be a tedious task because any assumption on the coupling caused by the elastic belt can
cause an under specification of the true mechanism.

Previous Identification Works

Table 4-5: Comparison of other models from literature for CED Benchmark

Paper Method Test Used Measure RMSE [ticks/s]
UNIF 1 UNIF 2

[1] Ayala et
al.

Cascaded Evolutionary
Algorithm using RBF
Neural Networks and
Lipschitz Regressors
[14]

One-Step
Ahead Pre-
diction

MSE 0.0592 0.0678

Free Run
Simulation

MSE 0.435 0.833

[1] Ayala et
al.

Cascaded Evolutionary
Algorithm using RBF
Neural Networks with
Free Search Differential
Evolution regressors

One-Step
Ahead Pre-
diction

MSE 0.0412 0.04

Free Run
Simulation

MSE 0.130 0.185

[39] Nechita
et al.

Tree Adjoining
Grammars

One-Step
Ahead Pre-
diction

RMSE - 0.032

Free Run
Simulation

RMSE - 0.128

[40] Nejib et
al.

Support-Vector Regres-
sion with RBF Kernel.

One-Step
Ahead Pre-
diction

MNSE 0.0305 -

[52] Sabahi
et al.

Fuzzy System Identifi-
cation.

Free Run
Simulation

RMSE 0.5607 0.3228

[52] Sabahi
et al.

Extended Fuzzy Logic
(FLe) System for Sys-
tem Identification.

Free Run
Simulation

RMSE 0.15044 0.09209

[54]
Scarpin-
titi et al.

Cascaded Spline Adap-
tive NonLinear Identifi-
cation.

Free Run
Simulation

MSEdB 0.2165 0.110
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4-4-6 Bouc-Wen Hysteresis Model

Hysteresis is a lagging phenomenon caused by a dependency on precedent states and in-
puts. Hysteric effects exist in both social and physical sciences. Some examples include
unemployment in economics, amplifier circuits in electrical systems, and random vibrations
or magnetization in mechanical systems. Modeling such systems using physical laws is an
arduous task [22]. The Bouc-Wen model is a semi-physical model, combining both physical
understanding and black box modeling. It is a dynamic non-linear, single degree of freedom
system relating displacement and hysteric restoring force [22].

Modeling and Physical Insight

In the last decade, a lot of attention has been given to the Bouc-Wen model, and tuning its
parameters for hysteresis applications [22]. With a single mass mL, governed by Newton’s
law, the differential equation describing the system is written as [58]:

mLÿ(t) + r(y, ẏ) + z(y, ẏ) = u(t) (4-12)

where , y is the output displacement and u the external force. r(y, ẏ) is the static restor-
ing force, and z(y, ẏ) the hysteric force. Both these components obey the following set of
equations:

r(y, ẏ) = kLy + cLẏ (4-13)
ż(y, ẏ) = αẏ − β(γ|ẏ||z|ν−1z + δẏ|z|ν) (4-14)

kL and cL being respectively the linear stiffness and viscous damping factors. α, β, γ, δ, and
ν are parameters tuned to shape specific hysteric application loops.

Benchmark Data Description

The benchmark data provides fixed datasets for validation, one is a random multisine and
the other a sinesweep signal. For estimation, a Matlab Simulink package provides a simula-
tion of the system, through Newmark integration of the dynamics [58]. In this thesis, and
referring to previous works on this benchmark and recommendations of the package owners,
a random multisine is used with 5-150 Hz excited frequencies and a RMS amplitude of 50 N
for estimation. Finally, the sampling frequency is set to 750 Hz. The data inputs used for
system identification and validation are shown in figures 4-15, 4-16 and 4-17 below:
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Figure 4-15: Bouc-Wen estimation input data.
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Figure 4-16: Multisine Validation Input for
BW Benchmark.
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Figure 4-17: Sinesweep Validation Input
for BW Benchmark.

A band limited Gaussian noise (0-375 Hz) is added to the output with RMS of 0.008 mm for
the estimation data only. The estimation and validation data have different scales, the output
RMS is around 6.65 · 10−4. Thus, the estimation and validation datasets are normalized.

Identification Challenges

The main identification challenge of this benchmark is the dynamic non-linearity shown in
equation 4-14. This non-linearity is governed by the non-measurable internal state z.
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Previous Identification Works

Table 4-6: Comparison of other models from literature for Bouc-Wen Benchmark

Paper Method Test Used Measure RMSE [mm] (·10−4)
Multisine Sinesweep

[3] Belz et al.
(2017)

Automatic Model
Generation with Local
model Networks
(NARX/NFIR)

One-Step
Ahead Pre-
diction

RMSE 0.0986 0.0687

Free Run
Simulation

RMSE 1.6356 1.380

[39] Nechita
et al. Tree Adjoining Grammars One-Step

Ahead Pre-
diction

RMSE - 0.0737

Free Run
Simulation

RMSE - 0.652

[59] Schoukens
et al. (2016)

Best Linear
Approximation

One-Step
Ahead Pre-
diction

RMSE 0.1126 0.0698

Free Run
Simulation

RMSE 1.5105 1.6619

[59] Schoukens
et al. (2016)

Polynomial Feedback
Model

One-Step
Ahead Pre-
diction

RMSE 0.0195 0.0451

Free Run
Simulation

RMSE 1.2091 1.5004

[59] Schoukens
et al. (2016) Volterra Feedback Model One-Step

Ahead Pre-
diction

RMSE 0.0895 0.0347

Free Run
Simulation

RMSE 0.8755 0.6392

[16] Hostettler
et al. (2018)

GP Drift Model One-Step
Ahead Pre-
diction

RMSE 0.0580 0.0096

[59] Schoukens
et al. (2016)

Polynomial Hammerstein
Model

Free Run
Simulation

RMSE 1.4967 1.8691

[59] Schoukens
et al. (2016)

Polynomial Wiener Model Free Run
Simulation

RMSE 1.4877 1.6235

[6] Brunot et
al. (2017)

OEM parametric estima-
tion based on Nelder Mead
Solver

Free Run
Simulation

RMSE 0.468 0.0186

[6] Brunot et
al. (2017)

OEM parametric estima-
tion based on NOMAD
Solver

Free Run
Simulation

RMSE 0.468 0.0190

[10]
Fakhrizadeh et
al. (2017)

Polynomial State-Space
Model

Free Run
Simulation

RMSE 0.1870 0.1202
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