Herbestemming Konings Staal

De ontwikkeling van een multifunctioneel evenementencomplex te Roosendaal

R.J.A. Janssens
Januari 2005
Herbestemming Konings Staal

'De ontwikkeling van een multifunctioneel evenementencomplex te Roosendaal'

R.J.A. Janssens
E. du Perronlaan 62
2624 NA Delft
rjajanssens@hotmail.com

Afstudeercommissie:
- Prof. dipl.-ing J.N.J.A Vambersky
- Ir. F. van den Berg
- Ir. T.H.W. Horstmeier
- H.A.C.B Martens

Commissievoorzitter/ Constructie, TUDelft
Afbouw/ Ontwerp, TUDelft
Haalbaarheid/ Functioneel Ontwerp, TUDelft
Begeleider MaVer

Sectie Gebouwen en Bouwtechniek
Faculteit der Civiele Techniek & Geowetenschappen
Technische Universiteit Delft

In samenwerking met
MaVer te Roosendaal
BPF Bouwinvest te Amsterdam

TU Delft
Voorwoord

Dit rapport, getiteld 'Herbestemming Konings Staal', is geschreven in het kader van het afsluitende deel (afstudeerwerk) van de opleiding Civiele Techniek aan de TU Delft. Dit rapport behandelt het voorlopig ontwerp (VO) van een multifunctioneel evenementencomplex te Roosendaal op de Konings Staal locatie, daar waar herbestemming plaatsvindt.1

Het onderzoek is begeleid door de leden van mijn afstudeercommissie, die met hun adviezen geholpen aan de inhoud van dit rapport. Graag wil ik hen bedanken voor de prettige samenwerking. Vervolgens gaat dank uit naar het ingenieursbureau 'Evion Bouwconsult'; het bedrijf waarbij ik gedurende mijn afstudeerperiode heb mogen gebruik maken van de faciliteiten en aanwezige kennis en ervaring. Als laatste wil ik mijn ouders, vrienden en vriendin bedanken voor hun steun, die zij mij het laatste studiejaar hebben gegeven. Ik heb met veel enthousiasme aan dit afstudeeronderzoek gewerkt, waarbij vele raakvlakken van het bouwproject zijn behandeld, hetgeen voor een (toekomstig) civiel ingenieur een interessante uitdaging is.

Delft, januari 2005

Rob Janssens

1 Herbestemming: functiewijziging, al dan niet gecombineerd met modificatie, reorganisatie en uitbreiding.
Samenvatting

De evenementenorganisatie MaVer beoogt een multifunctioneel evenementencomplex op te zetten in Roosendaal. In overleg met de gemeente Roosendaal en op grond van artikel 17 van de Wet op Ruimtelijke Ordening heeft MaVer de mogelijkheid gedurende vijf jaar een evenementencomplex te exploiteren op de Konings Staal locatie. Na vijf jaar dient het evenementencomplex te verhuizen naar een definitieve locatie. Op de Konings Staal locatie bevindt zich het Konings Staal gebouw. Dit is een voormalig staalverwerkingsbedrijf, dat bestaat uit twee aaneengesloten hallen, drie aaneengesloten magazijnen, een winkel/magazijn ruimte en een kantoorgedeelte (zie figuur 1.1, rechts).

Door het beperkte aanbod van evenementenhallen en het ontbreken van een grote discotheek in West-Brabant, is een multifunctioneel evenementencomplex in Roosendaal geografisch haalbaar. Het complex zal als een toelevert een aanvullende functie hebben op de bestaande horeca in het stadscentrum van Roosendaal en zal jaarlijks ruim 1,0 miljoen bezoekers trekken.

![Figuur 1.1: Infrastructuur rond het Konings Staal gebouw (links) en foto's Konings Staal gebouw (rechts).](image)

Het Konings Staal gebouw wordt omgevormd tot een evenementencomplex, met als belangrijkste functies een evenementenhall en een discotheek. Daarnaast komen ook aanvullende leisure-functies, zoals een café, sushi-restaurant, lounge, VIP, congress ruimte, kinderentertainment, kinderdagverblijf en terras in het evenementencomplex. Tenslotte zullen er faciliteit diensten, zoals keuken(s), kantoren, backstageruimtes, berging en foyer worden gehuisvest.

Eerst is gekeken naar de mate van hergebruik van het Konings Staal gebouw. Drie ontwerpvarianten zijn beoordeeld op de criteria functionaliteit constructie, comfort en veiligheid, maar voornamelijk op de economische haalbaarheid. Indien gebruik wordt gemaakt van de bestaande hallen en magazijnen met basisfuncties, zal de investering risicomijdend zijn. Om meer winst te maken wordt aanbevolen gebruik te maken van de
bestaande hallen en magazijnen plus een tussenverdieping en nieuwbouw, waarin alle beoogde functies zijn gevestigd (zie figuur 1.2).

Het ontwerp (bestaande hallen & magazijnen plus tussenverdieping en nieuwbouw) wordt zowel constructief als bouwtechnisch beoordeeld op de technische en economische haalbaarheid. De bestaande spanen van de hallen en raamwerken van de magazijnen zijn gecontroleerd op de huidige belastingen volgens de hedendaagse normen. De aanwezige ondervloer is beoordeeld en heeft reserveschadevrijheid, die gebruikt wordt voor de kracht-afdracht van de verdiepingsconstructie. Deze constructie bestaat uit een vakwerkligging, die op de bestaande kolommen en op een nieuwe middenkolom opgelegd is. Ten slotte is de vloer, welke aan de entreezijde van het complex wordt aangebracht, uitgewerkt. De gevel bestaat uit panelen van verschillende materialen, die willekeurig gerangschikt zijn. 's Avonds worden deze panelen belicht, waardoor een opvallend effect richting de omgeving ontstaat.

Figuur 1.2: Definitief functioneel ontwerp evenementencomplex.

Met name de evenementenhal en de discotheek kunnen voor geluidsoverlast zorgen. Deze overlast wordt beperkt door het aanbrengen van een voorzetwand en een verlaagd plafond in de hallen. Aanbevolen wordt de discotheek als een doos-in-doos constructie te realiseren.

In het evenementencomplex, waar relatief veel personen op een klein oppervlak aanwezig zijn, dienen maatregelen te worden genomen om zodoende de brandveiligheid te kunnen waarborgen. Het complex is opgesplitst in twee brandcompartmenten, die onderverdeeld zijn in rookcompartmenten. Daarnaast zorgen een sprinklerinstallatie, brandslangen, installatietechnische voorzieningen, nooddeuren en drie 'hoofd' vluchtroutes voor een veilige ontvluchting.

Het complex bestaat uit grote ruimtes die verwarmd, gekoeld en geventileerd dienen te worden door relatief kostbare klimaatinstallaties. In de hallen zullen de functies evenementenhal, VIP en lounge ruimte geventileerd en gekoeld worden met luchtverdrijvingsinstallaties en verwarmd worden met stralingspanelen. De discotheek wordt door middel van luchtkanalen met roosters gekoeld, verwarmd en geventileerd. De overige functies worden verwarmd door radiatoren. Plafondroosters met mechanische luchtbehandeling zorgen voor koeling en verversing. De kombi-units, die gebruikt zullen worden voor het onderbrengen van de kantoren, backstageruimtes, kantoren en sanitair, hebben eigen klimaatinstallaties.

De initiële investeringskosten van de gekozen variant bedragen 22,4 miljard euro. De opbrengsten en exploitekosten gedurende de vijf exploitatiejaren zijn respectievelijk circa
76,5 miljoen euro's en 121,6 miljoen euro's. Aan het eind van deze exploitatieperiode heeft het evenementencomplex een kleine restwaarde (60.000 euro's). De kosten en baten zijn verwerkt en gevisualiseerd in figuur 1.3, waar de kasstroom van het project te zien zijn. De projectinvesteringsheeft een netto contante waarde van circa 22,8 miljoen euro en een rendement van 23,1%. Door middel van een gevoeligheidsanalyse zijn de risico's van deze investering onderzocht. Daaruit blijkt dat het minst rendabele scenario 'hoge kosten - lage opbrengsten' leidt tot een minimaal rendement (nagenoeg gelijk aan nul). Geconcludeerd wordt dat een evenementencomplex op de Konings Staal locatie haalbaar is.

Enkele bouwdelen, zoals de kombi-units, gevelpanelen, nooddeuren, stelconplaten en staalonderdelen, kunnen meegenomen worden naar de nieuwe locatie. De nieuwe locatie voor het evenementencomplex in de 2e fase heeft een groter oppervlak nodig dan het complex in de 1e fase, aangezien er meer functies, zoals een healthcenter, worden toegevoegd. In het SpoorHavegebied zijn geschikte locaties aanwezig voor deze definitieve locatie (zoals nieuwbouw naast RBC Roosendaal stadion).

Figuur 1.3: Kasstroom voorlopig ontwerp evenementencomplex.
Inhoudsopgave

Voorwoord .. v
Samenvatting .. vii
Inhoudsopgave ... xi

H1 Inleiding ... 1
1.1 Masterplan SpoorHaven – ontwikkeling evenementencomplex 1
1.2 Doel onderzoek ... 2
1.3 Leeswijzer ... 2

H2 Situatiebeschets Roosendaal ... 5
2.1 Roosendaal .. 5
2.1.1 Gemeente Roosendaal .. 5
2.1.2 Borchwerf ... 7
2.2 Masterplan SpoorHaven ... 10
2.3 Economische situatie Roosendaal .. 14
2.3.1 Economische situatie West-Brabant - Roosendaal 14
2.3.2 Leisurefuncties in Roosendaal ... 15
2.4 Aanbod evenementenhallen ... 17
2.4.1 Evenementenhallen in landelijke en provinciale invloedssfeer 17
2.4.2 Regionale evenementenhallen .. 18
2.5 Geografische haalbaarheid ... 19

H3 Definitie evenementencomplex .. 23
3.1 Probleemanalyse evenementencomplex ... 23
3.1.1 Problembeschrijving evenementencomplex 23
3.1.2 Probleemstelling ... 23
3.1.3 Doelstelling .. 24
3.2 Beperkingen evenementencomplex ... 24
3.2.1 Randvoorwaarden .. 24
3.2.2 Uitgangspunten ... 26
3.2.3 Aannames .. 26
3.3 Programma van Eisen .. 27
3.3.1 Gebruiksfases ... 27
3.3.2 Prestatie-eisen ... 28

H4 Analyse Konings Staal gebouw ... 33
4.1 Exterieur Konings Staal gebouw .. 33
4.2 Interieur Konings Staal gebouw .. 36
4.3 Bouwtechnische analyse Konings Staal gebouw 37
4.4 Bouwphysieke analyse Konings Staal gebouw 39

H5 Functioneel Ontwerp Evenementencomplex ... 41
5.1 Functionele Analyse ... 41
5.1.1 Processanalyse ... 41
5.1.2 Functionanalyse .. 42
5.1.3 Relatianalyse ... 45
5.2 Structuur ... 46
5.2.1 Structuranalyse Konings Staal gebouw .. 46
5.2.2 Invloed omgeving op Konings Staal gebouw 47
5.3 Varianten ruimtelijk ontwerp evenementencomplex 49
5.3.1 Variant 'Bestaand' ... 49
5.3.2 Variant 'Bestaand & tussenverdieping' ... 51
5.3.3 Variant 'Bestaand, nieuwbouw & tussenverdieping' 54
5.3.4 Keuze ruimtelijk ontwerpvariant .. 56
5.4 Functionele ontwerpalternatieven evenementencomplex 58
5.4.1 Aandachtspunten ontwerpalternatieven 59
5.4.2 Ontwerpalternatief 1 .. 61
5.4.2 Ontwerpalternatief 2 .. 62
5.4.3 Ontwerpalternatief 3 .. 64
5.4.5 Keuze ontwerpalternatief ... 65
5.5 Uitwerking functioneel ontwerp ... 65
<table>
<thead>
<tr>
<th>Cap.</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>H6</td>
<td>69</td>
</tr>
<tr>
<td>H6.1</td>
<td>69</td>
</tr>
<tr>
<td>H6.1.1</td>
<td>69</td>
</tr>
<tr>
<td>H6.1.2</td>
<td>72</td>
</tr>
<tr>
<td>H6.1.3</td>
<td>74</td>
</tr>
<tr>
<td>H6.1.4</td>
<td>74</td>
</tr>
<tr>
<td>H6.2</td>
<td>79</td>
</tr>
<tr>
<td>H6.2.1</td>
<td>79</td>
</tr>
<tr>
<td>H6.2.2</td>
<td>80</td>
</tr>
<tr>
<td>H6.3</td>
<td>82</td>
</tr>
<tr>
<td>H6.3.1</td>
<td>82</td>
</tr>
<tr>
<td>H6.3.2</td>
<td>83</td>
</tr>
<tr>
<td>H6.3.3</td>
<td>85</td>
</tr>
<tr>
<td>H6.3.4</td>
<td>89</td>
</tr>
<tr>
<td>H6.3.5</td>
<td>93</td>
</tr>
<tr>
<td>H6.4</td>
<td>94</td>
</tr>
<tr>
<td>H7</td>
<td>99</td>
</tr>
<tr>
<td>H7.1</td>
<td>99</td>
</tr>
<tr>
<td>H7.1.1</td>
<td>100</td>
</tr>
<tr>
<td>H7.1.2</td>
<td>101</td>
</tr>
<tr>
<td>H7.2</td>
<td>105</td>
</tr>
<tr>
<td>H7.2.1</td>
<td>107</td>
</tr>
<tr>
<td>H7.2.2</td>
<td>108</td>
</tr>
<tr>
<td>H7.2.3</td>
<td>108</td>
</tr>
<tr>
<td>H7.2.4</td>
<td>109</td>
</tr>
<tr>
<td>H7.3</td>
<td>114</td>
</tr>
<tr>
<td>H7.3.1</td>
<td>115</td>
</tr>
<tr>
<td>H7.3.2</td>
<td>117</td>
</tr>
<tr>
<td>H7.3.3</td>
<td>118</td>
</tr>
<tr>
<td>H7.3.4</td>
<td>119</td>
</tr>
<tr>
<td>H8</td>
<td>123</td>
</tr>
<tr>
<td>H8.1</td>
<td>123</td>
</tr>
<tr>
<td>H8.2</td>
<td>124</td>
</tr>
<tr>
<td>H8.3</td>
<td>125</td>
</tr>
<tr>
<td>H8.4</td>
<td>127</td>
</tr>
<tr>
<td>H8.5</td>
<td>127</td>
</tr>
<tr>
<td>H8.5.1</td>
<td>127</td>
</tr>
<tr>
<td>H8.5.2</td>
<td>133</td>
</tr>
<tr>
<td>H8.6</td>
<td>134</td>
</tr>
<tr>
<td>H8.6.1</td>
<td>134</td>
</tr>
<tr>
<td>H8.6.2</td>
<td>136</td>
</tr>
<tr>
<td>H9</td>
<td>139</td>
</tr>
<tr>
<td>H9.1</td>
<td>139</td>
</tr>
<tr>
<td>H9.1.1</td>
<td>139</td>
</tr>
<tr>
<td>H9.1.2</td>
<td>139</td>
</tr>
<tr>
<td>H9.1.3</td>
<td>140</td>
</tr>
<tr>
<td>H9.1.4</td>
<td>140</td>
</tr>
<tr>
<td>H9.1.5</td>
<td>140</td>
</tr>
<tr>
<td>H9.2</td>
<td>140</td>
</tr>
<tr>
<td>H9.2.1</td>
<td>140</td>
</tr>
<tr>
<td>H9.2.2</td>
<td>140</td>
</tr>
<tr>
<td>H9.2.3</td>
<td>141</td>
</tr>
<tr>
<td>H9.2.4</td>
<td>141</td>
</tr>
<tr>
<td>H9.2.5</td>
<td>141</td>
</tr>
<tr>
<td>Literatuurlijst</td>
<td>143</td>
</tr>
<tr>
<td>Bijlagen</td>
<td></td>
</tr>
</tbody>
</table>
H1 Inleiding

Het vervoer van gevaarlijke stoffen over het spoor en de situering van het spoorreplacment hebben ertoe geleid, dat de gemeente Roosendaal (zie figuur 1.1) vanaf 2001 een Masterplan heeft ontwikkeld voor het Spoorhavengebied. In dit gebied bevindt zich een verouderd industrieterrein, dat door herstructurering een nieuwe invulling zal krijgen.

1.1 Masterplan SpoorHaven – ontwikkeling evenementencomplex

Het betreffende SpoorHavengebied wordt globaal gevormd door het Kade Havengebied, het huidige spoorreplacment, aan de noordkant van het emplacement ten noorden van de Spoorstraat en ten westen van de Gastelseweg en aan de zuidkant de zogenaamde HGD-driehoek (zie paragraaf 2.2). De gemeente Roosendaal heeft de plannen rondom het SpoorHavengebied enigszins gewijzigd, nadat de subsidie voor het verplaatsen van het spoorreplacment was afgewezen door VROM. De gemeente is nu bezig met o.a. het ontwikkelen van alternatieven voor een voetgangersbrug vanuit het station over het spoor (emplacement) richting het SpoorHavengebied.

Figuur 1.1: Provincie Noord-Brabant met de gemeente Roosendaal.

Parallel aan de ontwikkeling van het Masterplan vindt de ontwikkeling van een multifunctioneel evenementencomplex plaats. Dit evenementencomplex zal door het bedrijf MaVer worden ontwikkeld. MaVer is een projectorganisatie, gevestigd in Roosendaal, die adviseert en participeert in andere evenementen en evenementenorganisaties. Met de exploitatie van dit multifunctioneel evenementencomplex richt MaVer zich op het verwerven van een landelijke toppositie in het aanbod van kwalitatief hoogwaardig entertainment in al zijn facetten. Daarnaast wil MaVer samen in samenwerking met de gemeente het cultureel profiel en imago van de stad versterken, waardoor de stad een cultureel middelpunt zal worden met een bovenregionale uitstraling (zie figuur 1.2). De gemeente Roosendaal heeft in december 2004 een intentieverklaring afgelegd voor de plannen van MaVer.
Figuur 1.2: Roosendaal als gemeente in Zuidwest Nederland (links) en in West-Brabant (rechts).

1.2 Doel onderzoek

Doel van het onderzoek is te kijken naar de haalbaarheid van het ontwikkelen van een multifunctioneel evenementencomplex in Roosendaal. Dit multifunctioneel evenementencomplex zal in eerste instantie in het Konings Staal gebouw gerealiseerd worden. Echter na de vijf exploitatiejaren\(^1\) dient MaVer deze locatie te verlaten en te verhuizen naar een definitieve locatie. Daarom dient tevens te gekleven te worden naar de flexibiliteit van het complex, in de hoedanigheid van het verplaatsen van nieuw te bouwen onderdelen op de Konings Staal locatie.

1.3 Leeswijzer

In het rapport worden de bevindingen van het onderzoek naar de haalbaarheid van de ontwikkeling van een multifunctioneel evenementencomplex te Roosendaal gepresenteerd. De opbouw van dit rapport is als volgt: aan de hand van een situatieschets wordt de gemeente Roosendaal en het Masterplan van het SpoorHavengebied besproken in hoofdstuk 2. Vervolgens wordt een marktanalyse van de gemeente Roosendaal (in relatie tot West-Brabant) en het aanbod van evenementenhallen gegeven, waardoor duidelijk wordt waarom een evenementencomplex in Roosendaal (geografisch gezien) haalbaar is. Met de probleemanalyse en het Programma van Eisen in hoofdstuk 3 wordt een voorbereiding gemaakt voor het (functioneel) ontwerp. Aangezien het complex op een bestaande locatie gevestigd zal worden en deels in bestaande hallen/magazijnen gerealiseerd zal worden, wordt eerst een analyse van het Konings Staal gebouw gegeven in hoofdstuk 4. Daarna wordt aan de hand van ruimtelijke varianten en functionele ontwerpalternatieven het voorlopig ontwerp van het evenementencomplex in het Konings Staal gebouw bepaald (hoofdstuk 5). In hoofdstuk 6 komen de belangrijkste constructieve aspecten van

\(^1\) Begint wanneer de gebruiksvergunning is verleend, waarschijnlijk in april 2006.

Figuur 1.4: Overzicht globaal onderzoek haalbaarheidstudie evenementencomplex.

Bron:
H2 Situatieschets Roosendaal

Dit hoofdstuk geeft een situatieschets van de gemeente Roosendaal. Allereerst wordt de gemeente Roosendaal kort besproken in paragraaf 2.1. Vervolgens is paragraaf 2.2 gewijd aan het Masterplan SpoorHaven te Roosendaal, waarin de locatie van het evenementencomplex gelegen is. Vervolgens wordt in paragraaf 2.3 de economische situatie in Roosendaal besproken. Hiermee wordt de vraag naar een multifunctioneel evenementencomplex onderzocht. In paragraaf 2.4 is het aanbod van evenementenhallen in landelijke, provinciale en regionale invloedssfeer beschreven. Tenslotte kan gekeken worden naar de toekomstige geografische haalbaarheid van het multifunctionele evenementencomplex in Roosendaal (paragraaf 2.5), waarbij het aantal potentiële bezoekers van het evenementencomplex bepaald is. Dit bepaalt de benodigde capaciteit van het evenementencomplex, wat in hoofdstuk 3 beschreven wordt.

2.1 Roosendaal

De gemeente Roosendaal is met bijna 78.000 inwoners de tweede stad van West-Brabant (na Breda). De stad is van oudsher bekend als het grensstation op de internationale treinverbinding tussen de Randstad en België.

2.1.1 Gemeente Roosendaal

In deze subparagraaf komt de ontstaansgeschiedenis van Roosendaal aan bod. Vervolgens worden de belangrijkste voorzieningen in Roosendaal beschreven worden. Als laatste komt de algemene bereikbaarheid van de stad Roosendaal aan bod.

Ontstaansgeschiedenis

In 1268 duikt de naam Rosendale (Dal vol Rozen) voor het eerst op in een akte. De ontwikkeling van Roosendaal vond voornamelijk plaats in de vorm van een lintstructuur, hetgeen tegenwoordig nog te zien is (zie figuur 2.1, links).

In de Middeleeuwen was door de opkomst van de turfstekerij sprake van een zekere bloei. De turf werd via de Roosendaalse haven uitgevoerd naar Holland, Zeeland, Vlaanderen en Antwerpen. De Vliet stond toen nog in open verbinding met de Noordzee.

Figuur 2.1: Structuurschets van Roosendaal (links) en luchtfoto Roosendaal (rechts).

Het dorp Roosendaal werd in 1809 tot stad verheven. In 1854 legde een Belgische maatschappij de spoorlijn naar Antwerpen aan en zorgde voor een enorme impuls voor Roosendaal. Aansluitingen met Rotterdam, Vlissingen en Breda maakten van het station Roosendaal een echt spoorknooppunt. Om de groei van Roosendaal op te vangen werd in 1907 een nieuw stationscomplex in gebruik genomen.

De introductie van stoommachines luidde het tijdperk in van de industrialisatie. Fabrieken namen het werk over van de kleine bedrijven. Nationaal en internationaal bekende logistieke bedrijven opeerden vanwege de gunstige infrastructurale ligging en het grote aanbod van bedrijventerreinen vanuit Roosendaal (zie figuur 2.1, rechts). Vanaf 1960 vestigden zich in Roosendaal bedrijven die technisch geschoold personeel aantrokken. Hierdoor is Roosendaal door doorgebroken als dienstencentrum en heeft daarmee het agrarische verleden achter zich gelaten (zie voor meer informatie bijlage 2).
Voorzieningen
Roosendaal heeft in de binnenstad een markt met daaromheen historische panden, zoals het raadhuis en St. Jan kerk (zie figuur 2.2). Daarnaast heeft Roosendaal naast enkele bezienswaardige historische gebouwen ook moderne gebouwen, zoals het centrum voor kunsten (zie figuur 2.3, links). Tevens beschikt Roosendaal over vele winkels (ruim 60.000 m² winkeloppervlakte) en heeft drie overdekte winkelcentra, de Roselaar, de Passage en de Biggelaar, welke op loopafstand van elkaar gelegen zijn.

Figuur 2.2: Markt (links) en naast het oude raadhuis de entree en toren van Roosendaals grootse oudste kerk, de St.Jan (midden) en Nieuwe raadhuis (rechts).

Roosendaal heeft enkele parken in de binnenstad zoals het Emile van Loonpark, Burgemeester Coenenpark en park Vrouwenhof aan de rand van de binnenstad. De groenstructuur is weergegeven in figuur 2.4. Daarbij dient opgemerkt te worden dat het spoorgedeelte, weergegeven als het donkere gedeelte, minimale groenvoorzieningen bevat.

Figuur 2.3: Centrum voor Kunsten (links) en groenstructuur Roosendaal, met de locatie van het Konings Staal gebouw (zwarte stip).

Bereikbaarheid
Roosendaal is goed bereikbaar via auto, trein en bus. Deze verkeersverbindingen worden hieronder toegelicht. Voor meer informatie wordt naar bijlage 3 verwezen.

Auto
Over de weg is Roosendaal bereikbaar via de rijksweg A17, (Rotterdam - Bergen op Zoom) en de rijksweg A58 (knooppunt de Stok - Breda). Deze snelwegen geven directe aansluiting op de industrieterreinen Borchwerf en Majoppeveld (zie figuur 2.4). Vervolgens ontsluiten twee nationale wegen, respectievelijk de N640 richting Oud-Gastel en de N262 richting Essen, de stad. Om het stadscentrum van Roosendaal loopt een ringweg.
Figuur 2.4: Plattegrond regio Roosendaal (links) met ontsluiting (rechts).

Trein
Roosendaal staat bekend als spoorstad. Er zijn treinverbindingen richting Lage Zwaluwe (Rotterdam), Breda, Essen en Vlissingen. Bovendien zijn bij het station diverse korte treinsporen naar bedrijven gelegen.

Bus
Er zijn diverse busverbindingen in en rondom Roosendaal aanwezig. De stadsdienst heeft vijf actieve lijnen naar de verschillende woonwijken (ook richting het bedrijventerrein Borchwerf), en verscheidene streekdiensten richting de omliggende gemeenten.

2.1.2 Borchwerf
Roosendaal heeft vijf bedrijventerreinen, waarvan Borchwerf er één van is (zie bijlage 4). Het bedrijventerrein Borchwerf is gelegen ten noorden van de woonbebouwing van Roosendaal, en wordt omsloten door de A17, de N268 en de spoorlijnen Rotterdam - Vlissingen/Antwerpen en Vlissingen - Breda (zie figuur 2.5). Het Konings Staal gebouw ligt in de wijk Borchwerf.

Borchwerf is een multimodale bedrijventerrein met een achtergrond die verbonden is met de spoorlijn Rotterdam - Antwerpen/Vlissingen en havenfaciliteiten aan de Roosendaalse Vliet. Het bedrijventerrein Borchwerf kan onderscheid worden ingehouden in het bestaande Borchwerf 1 en het nieuw te ontwikkelen Borchwerf 2.

Borchwerf 1 omvat het oudere deel Borchwerf-Zuid, dat direct tegen de woonbebouwing van de Westrand gelegen is, met kleinschalige kavels tot en met milieucategorie 3 / 4 ⁴. Oostelijk hiervan ligt de uitloper van de Roosendaalse Vliet die doorloopt tot nabij het centrum van Roosendaal, waar op de punt (Kade) diverse kantoorgebouwen gevestigd zijn. Ten oosten van het kleinere Borchwerf-Zuid ligt Borchwerf-Noord, dat in de periode 1980 – 2002 uitgegeven is in grotere kavels voor bedrijven tot en met milieucategorie 5. Het totale terrein is bruto circa 180 hectare groot. Borchwerf 2 wordt ten noorden en oosten van Borchwerf 1 reeds ontwikkeld en zal ruimte bieden aan (midden)grote bedrijven tot en met milieucategorie 5. Het bedrijventerrein Borchwerf kent een directe aansluiting op de A17; dit heeft er toe geleid dat vele logistieke dienstverleners Borchwerf gekozen hebben als uitvalsbasis voor hun activiteiten.

2 Per bedrijfsactiviteit is voor elke milieucategorie een afstand aangegeven, die vanwege die milieucategorie tot een milieugevoelig object in beginsel moet worden aangehouden. De grootste daarvan vormt de indicatie voor de aan te houden afstand van de bedrijfsactiviteit tot een milieugevoelig object. Voor milieucategorie 1 is de aan te houden afstand 0-10 m, categorie 2: 30 m, categorie 3: 50 - 100 m, categorie 4: 200 - 300 m en categorie 5: 500 - 1000 m.
Het huidige bedrijventerrein Borchwerf Zuid en Borchwerf Noord zullen de komende jaren gerevitaliseerd worden. Dit zal onder andere gebeuren aan de hand van herbestemming. Vele bedrijven zullen verplaatst worden naar het nieuwe Borchwerf 2, waardoor de huidige wijk plaats zal bieden aan nieuwe ontwikkelingen (zie Masterplan SpoorHavengebied).

De voorzieningen in de nabijheid van het Konings Staal gebouw zijn (zie tevens bijlage 5):
- Stadion voetbalclub RBC
- Afvalolie Wubben
- TPG post
- Euro Sport Service
- Kandijfabriek Van Gilse
- Verschillende woningen

In de directe omgeving van het Konings Staal gebouw staat zowel utiliteitsbouw als woningbouw. Het spooreemplacéent en de Roosendaalse Vliet bakenen de omgeving van het Konings Staal gebouw af (zie figuur 2.6).

Zoals beschreven heeft het bedrijventerrein Borchwerf een directe aansluiting op de A17. De ontsluiting van het Konings Staal gebouw in de wijk Borchwerf wordt beschreven in de volgende alinea. De toekomstige ontsluiting van het multifunctionele evenementencomplex vindt via de huidige infrastructuur plaats (zie figuur 2.7).
Het Konings Staal gebouw ligt aan de Oostelijke Havendijk 12a. De Oostelijke Havendijk (vroeger Oosthavendijk genoemd) loopt vanaf het Kadeplein tot na de kruising met de Borchwerf nabij de Suikerunie fabriek (zie figuur 2.8, rechts) en is voor beide richtingen bereikbaar. De oostzijde van het Konings Staal gebouw komt uit op de Industriestraat (vroeger Veemarktstraat genoemd), welke gelegen is tussen de Oostelijke Havendijk en de Borchwerf (zie figuur 2.8, links). Tijdens voetbalwedstrijden van RBC Roosendaal is deze weg gedeeltelijk bereikbaar voor autoverkeer.

Figuur 2.7: Ontsluiting Konings Staal gebouw.

Figuur 2.8: Industriestraat richting Kade (links) en Oostelijke Havendijk richting Suikerunie (rechts).

Zowel de Oostelijke Havendijk als de Industriestraat kruisen met de straat Borchwerf. Deze straat gaat vanaf de brug over in de Jan Vermeerlaan. De Jan Vermeerlaan (tweebaans weg) komt uit op de Burgemeester Freijterslaan. De straat Borchwerf gaat verder het bedrijventerrein Borchwerf in, waarna een directe aansluiting is met de A17. De Borchwerf is een tweebaans weg, welke een voormalige bedrijfsspoorlijn van de Suikerunie kruist.
2.2 Masterplan SpoorHaven

Het Masterplan SpoorHaven is opgezet door de gemeente Roosendaal (en BPF Bouwinvest1) met de intentie het gebied SpoorHaven opnieuw te ontwikkelen. Het multifunctionele evenementencomplex zal (in eerste instantie) in dit gebied gevestigd worden.

Projectgebied
Het gebied SpoorHaven ligt aan de rand van het stadscentrum en omvat een bedrijventerrein met spoorwegenemplacement. Het spoor en het emplacement vormen een grote barrière tussen SpoorHaven en de binnenstad. De enige manier om het gebied vanuit de binnenstad te bereiken is via 'De Schuven', de spoorwegovergang bij de Kade. Deze spoorweg is echter steeds frequenter gesloten door het intensievere spoorwegverkeer.

Het doel van het Masterplan is het wegnemen van de spoorbarrière en het zorgen voor een meer samenhangende verkeersstructuur tussen de gebieden aan beide zijden van het spoor. Deze maatregelen zullen ertoe leiden dat het SpoorHavengebied opnieuw ontwikkeld kan gaan worden. De gunstige ligging van SpoorHaven nabij de binnenstad biedt kansen voor vestiging van functies aanvullend op de functies van de binnenstad.

Figuur 2.9 geeft de begrenzingen van het plangebied weer. Het plangebied heeft een totaal oppervlak van ruim 100 hectare en bestaat uit 3 hoofdelen:
1. Kade Havengebied rondom de (Roosendaalse) Vliet, circa 35 ha.
2. Het huidige spoorwegenemplacement, circa 45 ha.
3. Het bedrijventerrein ten westen van de Gastelseweg, circa 20 ha.

![Diagram van SpoorHaven](image)

Figuur 2.9: Begrenzing van het plangebied SpoorHaven.

De ontwikkeling van het SpoorHavengebied staat in relatie tot de planontwikkelingen rondom het spoor. Er zijn verschillende ontwikkelingen gaande bij het spoor:
- VERA, verbinding Roosendaal - Antwerpen (zie bijlage 6)
- RoBel, goederenvervoer in de corridor Rotterdam-België (zie bijlage 6)
- Spoorvisie Roosendaal

1 BPF Bouwinvest is een ontwikkelende belegger en heeft eigen projectontwikkelaars in dienst. Het doel is te beleggen in dure woningen, d.w.z. boven de grens van de woningcorporaties en sociale woningen. BPF belegt eveneens in winkels en kantoren.
Realisatie van de spooroplossing bepaalt voor een groot deel het perspectief van stedelijke ontwikkeling in het SpoorHavenegebied. Het SpoorHavenegebied heeft enkele karakteristieke kenmerken:

- De kern rond de Kade en het Kadeplein, gelegen aan het historische lint van de Markt in de richting van Wouw.
- Een bedrijventerrein met verouderde industrie en verouderde panden.
- De Roosendaalse Vliet (ook wel Haven genoemd). Deze doorsnijdt het bedrijventerrein de Borcherf en heeft zijn functie als toever voor de binnenvaart grotendeels verloren. Alleen recreatieboten meren nu nog af aan de kade. De vroegere verbinding met het riviertje de Molenbeek is op de plaats van het Kadeplein niet meer zichtbaar.
- De as Kade - Markt. Deze verbindt het SpoorHavenegebied met de binnenstad. Het spoor is echter een barrière in deze verbinding.
- Het stadion van de Roosendaalse Voetbalclub RBC.

In de huidige situatie beperken geluid, geur, bodemverontreiniging, luchtkwaliteit en externe veiligheid de ontwikkelingsmogelijkheden in het SpoorHavenegebied. Deze overlast, die de leefbaarheid van dit gebied belemmert, wordt voornamelijk veroorzaakt door:

1. Het spoorwegemplacement.
2. De doorgaande spoorslijnen.
4. Bedrijven die aanwezig zijn op bedrijventerreinen buiten het plangebied.

ad 1.
Op het spoorwegemplacement vinden verschillende activiteiten met treinwagens, zoals rangeren, waarbij soms ook wagens met gevaarlijke stoffen op het terrein aanwezig zijn, plaats. Hierdoor is sprake van een externe veiligheidsrisico. Externe veiligheid betreft personen, die niet bij een activiteit betrokken zijn (zie bijlage 7). Daarnaast is een geluidscontour van 50 dB(A) aanwezig die tot ver in het plangebied reikt (zie figuur 2.10, links).

ad 2.
De doorgaande spoorslijn veroorzaakt geluidshinder en trillingshinder en bedreigt de externe veiligheid ten gevolge van het vervoer van gevaarlijke stoffen (waaronder LPG) (zie figuur 2.10, rechts).

ad 3.
Op dit moment is binnen het plangebied een groot aantal bedrijven aanwezig. Dit betreft spoorgerelateerde bedrijven, kleine en middelgrote bedrijven aan beide zijden van de Vliet. De meeste bedrijven kennen voor één of meerdere milieucriteria een milieucontour, die ontwikkelingsmogelijkheden in de directe omgeving beperken.

ad 4.
Ten noorden van het plangebied ligt het overige deel van het bedrijventerrein Borcherf. Hier zijn enkele bedrijven gevestigd welke tot de zwaardere milieuklassen behoren. Het voor het SpoorHavenegebied meest belemmerende bedrijf is de inulinfabriek van Sensus, welke direct grenst aan het plangebied. Zowel de geluidscontour als de geurcontour van dit bedrijf reiken tot ver in het plangebied en maken in de huidige situatie de realisatie van gevoelige functies als bijvoorbeeld woningbouw onmogelijk. Sensus heeft echter aangegeven dat terugdringing van de geurcontour met behulp van betere technieken mogelijk is (zie figuur 2.11, links).

Bodemverontreiniging speelt ook een belangrijke rol bij de ontwikkeling van nieuwe functies. Vrijwel het gehele plangebied bestaat uit 'oud' bedrijventerrein. Dit houdt in dat vrijwel overal in zekere mate sprake is van bodemverontreiniging. Dit heeft echter geen consequenties te hebben voor nieuwe functies: zo dient alleen bij nieuwe woningbouw de grond geheel gesaneerd te worden (zie figuur 2.11, rechts). Ter plaatse van de Konings Staal locatie bevinden zich waarschijnlijk alleen ijzerdeeltjes (voormalige staalverwerkingsbedrijf) in de bodem. Dit levert echter geen gevaar voor een nieuwe bestemming.
Programma Masterplan SpoorHaven

In juni 2001 is tussen de partijen Gemeente Roosendaal en BPF Bouwinvest⁴ een intentieovereenkomst afgesloten. Hierbij is een aparte projectorganisatie opgericht, waarin beide partijen vertegenwoordigd zijn. In mei 2003 is een ontwerp-Masterplan van het SpoorHavengebied openbaar gemaakt aan de inwoners van de gemeente Roosendaal. Na inspraak- en consultatieronde met de belanghebbenden is op 18 december 2003 door de gemeenteraad het definitieve Masterplan SpoorHaven vastgesteld.

De gemeente Roosendaal wil in het SpoorHavengebied een aantal belangrijke voorzieningen realiseren, zoals rondom de Kade een uitgaanscentrum, een nieuw stadscentrum en een jacht- en passantenhaven. De voorkeurslocatie voor een nieuw gebouw voor het Regionaal Opleidingscentrum (ROC) is bij het Kadeplein gesitueerd, waardoor de school beter bereikbaar is voor leerlingen die met het openbaar vervoer komen. Binnen het Masterplan is ook ruimte voor uitbreiding van het stadion van RBC Roosendaal (zie figuur 2.12, links) en een uitgaanscentrum.

Dichtbij het Kadeplein ligt het gebied Bastion, geschikt voor appartementen aan het water en eventueel onderwijsvoorzieningen. Ten westen van dit gebied liggen de Stadsveren, bestemd voor woningbouw en onderwijsvoorzieningen. Het gebied Stadsblokken, waarop het huidige Konings Staal gebouw gelegen is (zie figuur 2.12, rechts), grenst aan het centrum en zal een combinatie van woningen, kantoren en kleinschalige bedrijven huisvesten. Rond het stadion van voetbalclub RBC Roosendaal is grootschalige detailhandel voorzien.

⁴ BPF bouwinvest is de vastgoedonderneming van het Bedrijfspensioenfonds voor de Bouwnijverheid (BPF Bouw). BPF bouwinvest belegt de pensioenpremies in kantoren, bedrijfsgbouwen, woningen, winkelcentra en grond eigenzommen. Daarnaast behoort ook het ontwikkelen en beheren van voorgaande beleggingen tot hun activiteiten.
Figuur 2.12: Maquette Masterplan met de uitbreiding van het RBC-stadion (links) en het nieuwe gebied (de stadsblokken) ter plaatse van het Konings Staal gebouw (rechts).

Voor het beoogde uitgaanscentrum zijn verschillende leisure-concepten bedacht door zeven uiteenlopende initiatiefnemers uit de leisure-markt. Deze leisure-concepten bevatten onder andere (een combinatie van) een bioscoop, een amusementshal, een casino, een bowlingcentrum, een congreszaal, horecagelegenheden, een hotel, een evenementencomplex en een disco.

Het Masterplan biedt ook een oplossing voor het spoor(emplacement). De ligging van het emplacement, de spoorbarrière en het vervoer van gevaarlijke stoffen door de stad bedreigen immers de leefbaarheid en veiligheid van de omliggende wijken. Voor de spoorooplossing zijn twee alternatieven bekeken:

1. Een sporttunnel met een lengte van 900 m, waarbij de doorgaande sporen ter plaatse van de Kade uit het zicht zijn verdwenen en zodoende een visuele relatie met SpoorHaven en stadscentrum bereikt kan worden.
2. Halfverhoogd spoor met een lengte van 500 m, waarbij de sporen ter plaatse van de Kade op 4,0 m hoogte ligen, waardoor het mogelijk wordt onder de sporen naar SpoorHaven - stadscentrum te kijken.

Het Masterplan richt zich op een betere verbinding tussen het SpoorHavengebied en het stadscentrum. Door de verplaatsing van het spooremplacement, de verschuiving van de doorgaande sporen en een nieuw station ontstaat een buffergebied tussen het SpoorHavengebied en het stadscentrum, welke als bindingsmiddel kan dienen tussen deze twee gebieden. Twee nieuwe wegen, die het spoor om de 400 m kruisen, zullen worden aangelegd. De nieuwe verbindingen zullen ter hoogte van de Braak en direct ten zuiden van het RBC-stadion aangelegd worden. Om de barrièrewerking van de Roosendaalse Vliet te doorbreken en zodoende een betere samenhang tussen het westelijke en oostelijke deel van het SpoorHaven gebied te krijgen, wordt een brug aangelegd ter plaatse van de Wethouder Lanenstraat (zie figuur 2.13).

Figuur 2.13: Samenhang tussen SpoorHavengebied en stadscentrum wordt verbeterd door het Masterplan.

De ontwikkeling van het Masterplan treedt in een aantal fasen op: begonnen wordt met het gebied rond het Kadeplein, waar uitgaansgelegenheden en een nieuw stadsantoor gepland zijn. Vervolgens wordt ontwikkeld in de richting van Borcherwerf, waar aan de woningzijde wordt begonnen. De opbrengsten van deze projecten zullen worden aangewend om verdere infrastructuur te bekostigen.
Het Masterplan geeft op hoofdlijnen aan wat in het Spoorhavengebied mogelijk en wenselijk is. Het voorlopige plan heeft, omdat onmogelijk te voorzien is wat de behoefte over 15-20 jaar is, een 'dynamisch streefbeeld'.

Vanuit de 2e Nota Ruimtelijke Ordening met als een centraal uitgangspunt ruimtelijke kwaliteit, was een toekenning gekomen van 34 miljoen euro uit het 'Budget Investeringen Ruimtelijke Kwaliteit' (BIRK) voor uitplaatsing van het emplacement en daarmee gekoppeld de realisatie van ruimtelijke kwaliteit in het Spoorhavengebied. Deze subsidie is echter in september 2004 afgewezen. Daarom zijn de partijen BPF Bouwinvest en de gemeente Roosendaal het Masterplan enigszins aan het wijzigen. Dit stimuleert de kans van blijvend succes van een multifunctioneel evenementencomplex in het Spoorhavengebied. Het plan van MaVer wordt daarbij meegenomen en wordt eind januari aan de pers openbaar gemaakt. Tevens zijn gesprekken gevoerd tussen de gemeente Roosendaal, BPF Bouwinvest en MaVer over het verloop van het evenementencomplex van fase 1 naar fase 2.

2.3 Economische situatie Roosendaal

In deze paragraaf wordt de algemene economische situatie in West-Brabant met Roosendaal vergeleken in subparagraaf 2.3.1. Vervolgens wordt de marktruimte voor de economische functies van leisure, zoals het evenementencomplex, besproken in subparagraaf 2.3.2. Hieruit zal blijken dat een multifunctioneel evenementencomplex, dus met meerdere functies, zoals een evenementenhal en discotheek, gewenst is in Roosendaal.

2.3.1 Economische situatie West-Brabant - Roosendaal

De regio West-Brabant is gelegen tussen de wereldhavens Rotterdam en Antwerpen. In dit deel van Nederland liggen 18 gemeenten, wonen ruim 650.000 inwoners en zijn ca. 45.000 bedrijven gevestigd.

Om een beeld te kunnen geven van de economische situatie in Roosendaal, is de ontwikkeling van het aantal vestigingen per sector in Roosendaal vergeleken met West Brabant (zie tabel 3.1 en figuur 3.1). Hieruit blijkt dat ondanks de economisch minder goede tijden, het aantal vestigingen van bedrijven in West-Brabant en Roosendaal gegroeid is. Specifiek kijkend naar de sector horeca, waar het toekomstige evenementencomplex onderdeel van wordt, is te zien dat hoewel de groei in West-Brabant gelijkmatig is, geen groei waar te nemen is in Roosendaal.

Tabel 2.1: Ontwikkeling aantal vestigingen naar sectoren in West-Brabant en Roosendaal.

<table>
<thead>
<tr>
<th>Sector</th>
<th>1997</th>
<th>2001</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Roosendaal</td>
<td>West Brabant</td>
<td>Roosendaal</td>
</tr>
<tr>
<td>01 Landbouw en visserij</td>
<td>67</td>
<td>721</td>
<td>86</td>
</tr>
<tr>
<td>02 Industrie</td>
<td>253</td>
<td>2193</td>
<td>302</td>
</tr>
<tr>
<td>03 Bouw</td>
<td>268</td>
<td>2202</td>
<td>348</td>
</tr>
<tr>
<td>04 Groothandel</td>
<td>517</td>
<td>4085</td>
<td>596</td>
</tr>
<tr>
<td>05 Detailhandel</td>
<td>806</td>
<td>5441</td>
<td>795</td>
</tr>
<tr>
<td>06 Horeca</td>
<td>231</td>
<td>1647</td>
<td>240</td>
</tr>
<tr>
<td>07 Vervoer</td>
<td>172</td>
<td>1236</td>
<td>199</td>
</tr>
<tr>
<td>08 Financiën</td>
<td>104</td>
<td>763</td>
<td>163</td>
</tr>
<tr>
<td>09 Adviesdiensten</td>
<td>361</td>
<td>3217</td>
<td>538</td>
</tr>
<tr>
<td>10 Facilitaire diensten</td>
<td>227</td>
<td>2041</td>
<td>326</td>
</tr>
<tr>
<td>11 Persoonlijke diensten</td>
<td>370</td>
<td>2727</td>
<td>430</td>
</tr>
<tr>
<td>12 Algemene diensten</td>
<td>91</td>
<td>732</td>
<td>131</td>
</tr>
<tr>
<td>13 Zakelijk beheer</td>
<td>893</td>
<td>6477</td>
<td>1074</td>
</tr>
<tr>
<td>14 overig</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totaal</td>
<td>4360</td>
<td>33482</td>
<td>5236</td>
</tr>
</tbody>
</table>
Figuur 2.14: Groei aantal vestigingen in Roosendaal versus West-Brabant.

Daarnaast is ook gekeken naar het aantal arbeidsplaatsen naar sectoren in Roosendaal vergeleken met West-Brabant (zie tabel 3.2). Hier blijkt het aantal arbeidsplaatsen in de sector horeca zowél in West-Brabant als in Roosendaal absolut en te groeien, maar procentueel gelijkmatig te zijn.

Tabel 2.2: Ontwikkeling aantal arbeidsplaatsen naar sectoren in West-Brabant en Roosendaal.

<table>
<thead>
<tr>
<th>Sector</th>
<th>1997</th>
<th></th>
<th>2001</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>West -Brabant</td>
<td>%</td>
<td>Roosendaal</td>
<td>%</td>
</tr>
<tr>
<td>Landbouw</td>
<td>2145</td>
<td>2</td>
<td>211</td>
<td>1</td>
</tr>
<tr>
<td>Industrie</td>
<td>38361</td>
<td>29</td>
<td>5186</td>
<td>29</td>
</tr>
<tr>
<td>Bouwnijverheid</td>
<td>14298</td>
<td>11</td>
<td>2210</td>
<td>12</td>
</tr>
<tr>
<td>Groothandel</td>
<td>17104</td>
<td>13</td>
<td>1895</td>
<td>11</td>
</tr>
<tr>
<td>Detailhandel</td>
<td>18620</td>
<td>14</td>
<td>2907</td>
<td>16</td>
</tr>
<tr>
<td>Horeca</td>
<td>4638</td>
<td>4</td>
<td>614</td>
<td>3</td>
</tr>
<tr>
<td>Vervoer/ communicatie</td>
<td>11317</td>
<td>9</td>
<td>1751</td>
<td>10</td>
</tr>
<tr>
<td>Banken/ verzekeringen</td>
<td>4544</td>
<td>3</td>
<td>395</td>
<td>2</td>
</tr>
<tr>
<td>Zakelijke dienstverlening</td>
<td>13329</td>
<td>10</td>
<td>1722</td>
<td>10</td>
</tr>
<tr>
<td>Overheid/ onderwijs</td>
<td>532</td>
<td>0</td>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td>Persoonlijke dienstverlening</td>
<td>4639</td>
<td>4</td>
<td>610</td>
<td>3</td>
</tr>
<tr>
<td>Non-profit organisaties</td>
<td>1817</td>
<td>1</td>
<td>256</td>
<td>1</td>
</tr>
<tr>
<td>Totaal</td>
<td>131338</td>
<td>100</td>
<td>1781200</td>
<td>100</td>
</tr>
</tbody>
</table>

De volgende bevindingen kunnen worden afgeleid uit tabel 2.1 en 2.2:
- Kenmerkend voor de bedrijvigheid in West-Brabant en Roosendaal is het grote belang van de industrie. Bijna 1/3 van het aantal beschikbare arbeidsplaatsen bevindt zich in deze sector.
- De sectoren industrie, bouwnijverheid en groothandel zijn sterk vertegenwoordigd in West-Brabant en Roosendaal afgezet tegen landelijke cijfers. Dit geldt met name voor het aantal arbeidsplaatsen en niet zozeer het aantal vestigingen. Relatief matig vertegenwoordigd zijn de zakelijke dienstverlening en overige dienstverlening (overheid/ onderwijs, persoonlijke dienstverlening en non-profit organisaties).
- Op basis van de ontwikkeling van het aantal arbeidsplaatsen kan worden geconcludeerd dat met name de zakelijke dienstverlening en vervoer/ communicatie twee interessante groeisektoren zijn voor Roosendaal.
- Daarnaast liggen de regionale groeicijfers boven het landelijk gemiddelde, waardoor afgeleid kan worden dat deze regio een aantrekkelijk vestigingsklimaat vormt voor bedrijvigheid en voorzieningen.

2.3.2 Leisurefuncties in Roosendaal
Het multifunctionele evenementencomplex is een vorm van leisure. Daarom wordt in deze subparagraaf de ontwikkeling van leisure in Roosendaal besproken. Het horeca-aanbod in Roosendaal is een afgeleide vorm van leisure en wordt vervolgens besproken.

1 Bron: Centraal Bureau Statistiek- mei 2002.
In de tweede helft van de vorige eeuw heeft vrije tijd steeds meer betekenis gekregen. Door invoering van de vrije zaterdag (1962) en recht op betaalde vakantie (1966) is de toename van vrije tijd begonnen. Daarnaast verveelvoudigden de consumptieve bestedingen zich. Beide trends hebben geleid tot een toename van het aanbod van vrijetijdsvoorzieningen. Sinds eind jaren tachtig trad de ontwikkeling van leisure in. Leisure is een verzamelterm voor commerciële publieksverzorgende functies, die inspelen op een besteding van vrije tijd van de consumptie buitenhuis. Daarbij kan het gaan om zelfstandige economische bedrijvigheid zoals een kartbaan, bowlingbaan, casino en bioscoop) alsook om geïntegreerde vrijetijscomplexen. De belangrijkste huidige leisurevoorzieningen in Roosendaal zijn (voor meer informatie wordt verwezen naar bijlage 8):
- Evenementenhal Zuidwestall (voorheen Leysdream)
- Viswateren: o.a. de Roosendaalse Vliet
- Schouwburg De Kring
- Concertzaal In Den Wouffluit
- Bioscoop City 1-2-3
- Discotheek La Vie en Rose
- Klimcentrum Yellow Stone

Horeca
Roosendaal beschikt als stad over aanzienlijk horeca-aanbod. In tabel 2.3 is het absolute aantal horecagelegenheden gegeven en het aantal inwoners per horecabedrijf. Hieruit blijkt dat het aandeel drankverstrekkers in Roosendaal veel hoger is dan het landelijk gemiddelde; het aandeel maaltijdverstrekkers daarentegen ligt lager. Binnen de categorie drankverstrekkers is het aandeel cafés, coffeeshops en zalencentra hoger dan gemiddeld; het tegenovergestelde geldt voor het aandeel discotheeken en overige drankverstrekkers. Het horeca-aanbod is in West-Brabant (met uitzondering van Bergen op Zoom) sterk onderontwikkeld ten opzichte van Roosendaal. Hierdoor kent Roosendaal een bepaalde aantrekkingskracht vanuit de omliggende gemeenten.

<table>
<thead>
<tr>
<th>Type</th>
<th>Roosendaal</th>
<th>Vergelijkbare gemeenten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>absolut</td>
<td>dichtheid</td>
</tr>
<tr>
<td>Drankverstrekkers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Café/ Bar / Nachtclub</td>
<td>112</td>
<td>1 op 682</td>
</tr>
<tr>
<td>Koffiehuis/ Coffeeshop</td>
<td>79</td>
<td>1 op 682</td>
</tr>
<tr>
<td>Zalen/ Partycentrum</td>
<td>15</td>
<td>1 op 1529</td>
</tr>
<tr>
<td>Discotheek</td>
<td>7</td>
<td>1 op 1529</td>
</tr>
<tr>
<td>Overige drankverstrekkers</td>
<td>1</td>
<td>1 op 1529</td>
</tr>
<tr>
<td>Spijsverstrekkers</td>
<td>68</td>
<td>1 op 1284</td>
</tr>
<tr>
<td>Maaltijdverstrekkers</td>
<td>174</td>
<td>1 op 2184</td>
</tr>
</tbody>
</table>

Uit onderzoek⁴ blijkt dat het huidige horeca-aanbod niet aan de wensen van de consument voldoet. Wegens het ontbreken van een discotheek in Roosendaal wordt momenteel noodgedwongen uitgeweken naar België (Antwerpen en Hoogstraten). De volgende uitgaansgelegenheid (in volgorde van belangbaarheid) in de omgeving van Roosendaal worden door de Roosendaalse jeugd regelmatig bezocht:
- Highstreet (België)
- Castell (België)
- Alcazar (Puttershoek)
- Zillion (België)
- Fortuin (België)
- Cartouché (België)
- Time out (Gemert)

Opvallend is dat slechts twee discotheeken uit Nederland door de Roosendaalse jeugd worden bezocht. Aangezien in West-Brabant nog geen megadiscotheek gevestigd is, zou deze in Roosendaal gevestigd kunnen worden. Een megadiscotheek in een gemengd stedelijk gebied is echter niet wenselijk; vanuit de gemeente bestaat de wens voor een discotheek met een aantal van 600-900 bezoekers en een oppervlakte van circa 2000 m². Dit is echter nog voldoende aantrekkelijk voor de jeugd, aangezien slechts 20 % van de discotheeken in Nederland groter is dan 500 m².

⁴ Van Sprongen en Partners Groep, conceptnota Integraal Horecabeleid Gemeente Roosendaal, 2001
De belangrijkste vestigingsplaatsseisen voor de beoogde economische functies, die MaVer wil realiseren (een beurs/ evenementenhal, een discotheek en een congresruimte) staan in tabel 2.4. Uit de tabel blijkt dat het SpoorHavengebied geschikt is voor een complex met deze functies.

Tabel 2.4: Vestigingsplaatsseisen economische functies SpoorHavengebied. Toelichting: ++ = zeer belangrijk/ noodzakelijk, + = belangrijk, 0 = neutraal, - = minder belangrijk.

<table>
<thead>
<tr>
<th>Vestigingsplaatsseis</th>
<th>Beurs/ evenementenhal</th>
<th>Discotheek</th>
<th>Congresruimte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bereikbaarheid OV</td>
<td>++</td>
<td>0</td>
<td>++</td>
</tr>
<tr>
<td>Bereikbaarheid auto</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hoogwaardige stedelijke omgeving</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Representatieve omgeving</td>
<td>0</td>
<td>0</td>
<td>++</td>
</tr>
<tr>
<td>Representatief pand</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Zichtbaarheid/ Zichtlocatie</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Relatie met de binnenstad</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

2.4 Aanbod evenementenhallen

Reeds bestaande evenementencomplexen komen aan bod, welke als referentie dienen voor het toekomstige evenementencomplex in Roosendaal. Bij de referenties van evenementencomplexen kan een onderscheid gemaakt worden naar evenementencomplexen welke in de invloedssfeer liggen en dus concurrenten zijn voor het toekomstige evenementencomplex te Roosendaal, en evenementencomplexen die niet in de invloedssfeer liggen van het toekomstige evenementencomplex, maar dezelfde functies en vloeroppervlakken hebben (zie bijlage 6). De concurrerende evenementencomplexen op landelijk en provinciaal niveau worden besproken in subparagraaf 2.4.1. De regionale ontwikkelingen van evenementenhallen komen aan bod in subparagraaf 2.4.2.

2.4.1 Evenementenhallen in landelijke en provinciale invloedssfeer

Aan de hand van een aanbodanalyse naar bestaande evenementenhallen vindt een marktverkenning plaats. Deze marktverkenning is van belang om twee redenen:

1. In deze marktverkenning wordt gekeken wat de mogelijke concurrenten voor het Roosendaalse evenementencomplex zijn. Dit kan onderzocht worden door een inventarisatie van de bestaande evenementenhallen, die in de Roosendaalse invloedssfeer liggen te geven. De invloed heeft een straal van circa 50-75 km² (de maximale afstand die bezoekers van evenementen vanuit hun woonplaats willen afleggen).

2. Deze marktverkenning verschafte inzicht in de functies en daarmee in de accommodaties die in de reeds bestaande evenementenhallen aanwezig zijn.

In Nederland zijn in totaal veertien regionale, provinciale en/ of nationale evenementenhallen actief, waarvan er vijf in de Roosendaalse invloedssfeer van 50-75 km liggen. In deze invloedssfeer ligt echter ook een drietal accommodaties in België (een tweetal in Antwerpen en één in Mechelen) (zie figuur 2.15). In tabel 2.5 zijn de evenementenhallen beschreven, inclusief de locatie en een indicatie van het netto vloeroppervlak van de hallen.

Tabel 2.5: Evenementenhallen binnen Roosendaalse invloedssfeer.

<table>
<thead>
<tr>
<th>Naam</th>
<th>Locatie</th>
<th>Vloeroppervlakte [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahoy</td>
<td>Rotterdam</td>
<td>30.000 m²</td>
</tr>
<tr>
<td>Jaarbeurshallen</td>
<td>Utrecht</td>
<td>80.000 m²</td>
</tr>
<tr>
<td>Brabanthallen</td>
<td>'s Hertogenbosch</td>
<td>35.000 m²</td>
</tr>
<tr>
<td>Beursgebouw</td>
<td>Eindhoven</td>
<td>7.200 m²</td>
</tr>
<tr>
<td>Zeelandhallen</td>
<td>Goes</td>
<td>10.000 m²</td>
</tr>
<tr>
<td>Sportpaleis</td>
<td>Antwerpen</td>
<td>12.000 m²</td>
</tr>
<tr>
<td>Antwerp Expo</td>
<td>Antwerpen</td>
<td>17.000 m²</td>
</tr>
<tr>
<td>Nekkerhallen</td>
<td>Mechelen</td>
<td>16.000 m²</td>
</tr>
</tbody>
</table>

Figuur 2.15: De bestaande evenementenhallen in de Roosendaalse invloedssfeer (50-75 km).

De volgende marktontwikkelingen/trends in de evenementenbranche treden op:
- In Nederland zijn de afgelopen 10 jaar nauwelijks hallenlocaties bijgekomen. Vernieuwing en uitbreiding heeft echter wel op de bestaande locaties plaatsgevonden.
- De bestaande binnenstedelijke evenementenhallen zijn volgens de huidige maatstaven niet ideaal gelegen, qua ontsluiting, parkeer- en geluidsproblematiek en de beperkte uitbreidingsmogelijkheden.
- Het aantal op consument gerichte publieksbeurzen neemt af, maar worden in omvang steeds groter.
- De markt voor grootschalige dance- en popconcerten is groot en sterk groeiend. Met name voor de jongere generaties (20 tot 35 jaar) vormt concertbezoek een vast onderdeel van het reguliere vrijetijdsbestedingspatroon.
- De markt voor (bedrijfs)feesten, partijen en bijeenkomsten is groot, maar staat als gevolg van de economisch mindere tijden momenteel onder druk.

2.4.2 Regionale evenementenhallen
Er zijn momenteel twee ontwikkelingen gaande in de omgeving van Roosendaal op het gebied van evenementenhallen: de ZuidWesthallen in Roosendaal en Bavelse Berg in Breda.

- ZuidWesthallen
Naast de grotere locaties zijn ook diverse kleinschalige (meer stedelijk georiënteerde) hallen operationeel, waaronder de ZuidWesthallen te Roosendaal. Op 5 augustus 2003 stortte het dak van evenementenhall, voorheen Leysdream geheten, in na een hevige regenbui (zie figuur 2.16). Leysdream, dat vanaf 1977 fungeerde als evenementenhall, kreeg vervolgens een faillissement. Op de huidige plaats, waar de daken niet ingestort zijn, is het gebouw gerenoveerd en bevat een bowlingbaan, fitnessruimte, squashbanen, een chinees restaurant (De Wok) en een kleine evenementenhall, waarin o.a. rommelmarkten worden gehouden. De gemeente wil met de ruimte van de ingestorte Leysdream-hallen Het Jan Tinbergen-college hervestigen. De gemeente heeft overleg gehad met de BVR-groep die eigenaar is van de nog bestaande hal en een voorlopig akkoord verkregen. Dit betekent dat de enige evenementenhall in Roosendaal zal verdwijnen.
2.5 Geografische haalbaarheid

De ontwikkeling van het SpoorHavengebied biedt een aantrekkelijk ontwikkelingsperspectief voor de horeca. Van groot belang is dat de nieuwe horecagelegenheden een aanwulling vormen op de horecaconcentraties in de binnenstad: bij invulling dient dan ook gekeken te worden naar nieuwe concepten van horeca en niet dezelfde soorten van horeca als in de binnenstad. De functies evenementenhal en discotheek sluiten op deze concepten aan. Bovendien vindt de ontwikkeling plaats dat de consument een totaalconcept van leisure verlangt.

9 Turfschip fungeerde vroeger als evenementenhal en had bovendien een grootschalig restaurant.
10 Interbrew Nederland, Ballast Nedam Bouw, Ahoy' Rotterdam en TCN Property projects.
Het aanbod van evenementenhallen blijkt in de invloedsfeer van Roosendaal niet overheersend te zijn. Als gevolg van het wegvallen van de ZuidWesthallen in de toekomst en de nog erg onzekere perspectief van een evenementencomplex op de Bavelse Berg in Breda, blijkt er geen directe concurrentie voor regionale activiteiten te zijn. Alleen voor provinciale en voor nationale activiteiten is enige concurrentie aanwezig. De frequentie van provinciale en regionale optredens is echter niet zodanig hoog (zie subparagraaf 3.3.2), dat deze elkaar overlappen. Zodoende kan geconcludeerd worden dat een multifunctioneel evenementenhal in het Konings Staal gebouw geografisch gezien haalbaar is.

Bezoekersaantallen evenementencomplex

Bij het ontwerpen van het multifunctioneel evenementencomplex dient gekeken te worden naar de capaciteit per functie en daarmee samenhangende aantal verwachte bezoekers. Daarom wordt eerst de bezoekersmarkt geanalyseerd. Om enige structuur te brengen in de te benaderen markt is deze opgedeeld in zes geografische gebieden (zie tabel 2.6). De populaatiet per regio is aangegeven in tabel 2.6. Met deze populaatiet per regio kan aan de hand van een percentage (bezoekersfrequentie), het aantal potentiële bezoekers per functie per jaar worden bepaald.

Tabel 2.6: Populatie per categorie (bron: bedrijfsschap Horeca en Catering, Horeca in cijfers).

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Gebieden/ Regio's</th>
<th>Bevolkingscategorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nederland+</td>
<td>Nederland</td>
<td>2.963.119</td>
</tr>
<tr>
<td></td>
<td>België</td>
<td>297.502</td>
</tr>
<tr>
<td></td>
<td>Totaal</td>
<td>3.260.621</td>
</tr>
<tr>
<td></td>
<td>Totaal - B</td>
<td>297.502</td>
</tr>
<tr>
<td>B</td>
<td>Nederland</td>
<td>2.963.119</td>
</tr>
<tr>
<td></td>
<td>Totaal - C</td>
<td>1.052.168</td>
</tr>
<tr>
<td>C</td>
<td>Zuid en Midden Nederland</td>
<td></td>
</tr>
<tr>
<td>Limburg</td>
<td>187.017</td>
<td>357.310</td>
</tr>
<tr>
<td>Noord-Brabant</td>
<td>428.641</td>
<td>754.397</td>
</tr>
<tr>
<td>Zeeland</td>
<td>62.054</td>
<td>110.226</td>
</tr>
<tr>
<td>Zuid-Holland</td>
<td>654.824</td>
<td>1.069.759</td>
</tr>
<tr>
<td>Utrecht</td>
<td>225.076</td>
<td>368.520</td>
</tr>
<tr>
<td>Gelderland</td>
<td>353.339</td>
<td>603.670</td>
</tr>
<tr>
<td>Totaal</td>
<td>1.910.951</td>
<td>3.263.882</td>
</tr>
<tr>
<td>Totaal - D</td>
<td>1.324.579</td>
<td>2.283.237</td>
</tr>
<tr>
<td>D</td>
<td>Zuidwest Nederland</td>
<td></td>
</tr>
<tr>
<td>West-Noord-Brabant</td>
<td>103.719</td>
<td>189.065</td>
</tr>
<tr>
<td>Midden-Noord-Brabant</td>
<td>86.224</td>
<td>138.220</td>
</tr>
<tr>
<td>Overig Zeeland</td>
<td>46.426</td>
<td>77.929</td>
</tr>
<tr>
<td>Zeeuwsc-Vlaanderen</td>
<td>15.628</td>
<td>32.297</td>
</tr>
<tr>
<td>Zuidoost-Zuid-Holland</td>
<td>72.780</td>
<td>120.283</td>
</tr>
<tr>
<td>Groot-Rijnmond</td>
<td>261.595</td>
<td>422.851</td>
</tr>
<tr>
<td>Totaal</td>
<td>586.372</td>
<td>980.645</td>
</tr>
<tr>
<td>Totaal - E</td>
<td>482.653</td>
<td>791.580</td>
</tr>
<tr>
<td>E</td>
<td>Zuidwest Noord-Brabant</td>
<td></td>
</tr>
<tr>
<td>West-Noord-Brabant</td>
<td>103.719</td>
<td>189.065</td>
</tr>
<tr>
<td>Totaal - F</td>
<td>90.120</td>
<td>164.769</td>
</tr>
<tr>
<td>F</td>
<td>Gemeente Roosendaal</td>
<td></td>
</tr>
<tr>
<td>Gemeente Roosendaal</td>
<td>13.599</td>
<td>24.296</td>
</tr>
</tbody>
</table>

De functies in het evenementencomplex hebben metgeven van en aard van de activiteiten verschillende categorieën en doelgroepen van de potentiële bezoekersmarkt (tabel 2.7). Het maximale aantal bezoekers wordt verkregen door te kijken naar de hoogste categorie van die functie. Bij de discothek is bijvoorbeeld, waar categorie D beteekend is, gekeken naar bijbehorende doelgroepen (15-29 en 30-49 jaar), het maximum aantal potentiële bezoekers voor de discothek respectievelijk 586.372 en 980.645 bezoekers. In totaal zijn in deze 'discothek'-markt 1.567.017 potentiële bezoekers. Deze bezoeken gemiddeld 17,8 keer een discothek per jaar, waardoor deze doelgroep in totaal 27.892.903 bezoeken aan een discothek brengen.
Tabel 2.7: Overzicht categorie en doelgroep per functie.

<table>
<thead>
<tr>
<th>Functie</th>
<th>Categorie</th>
<th>Doelgroep (leeftijd jaar)</th>
<th>Gemiddeld aantal bezoeken per jaar¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populaire evenement</td>
<td>A,B,C,D,E,F</td>
<td>15-29; 30-49</td>
<td>2,0</td>
</tr>
<tr>
<td>Zakelijke evenement</td>
<td>B,C,D,E,F</td>
<td>30-49; 50-64</td>
<td>4,0</td>
</tr>
<tr>
<td>Culturele evenement</td>
<td>D,E,F</td>
<td>15-29; 30-49; 50-64; 65+</td>
<td>3,0</td>
</tr>
<tr>
<td>Discotheek</td>
<td>D,E,F</td>
<td>15-29; 30-49</td>
<td>17,8</td>
</tr>
<tr>
<td>Loungerruimte</td>
<td>D,E,F</td>
<td>15-29; 30-49; 50-64; 65+</td>
<td>14,8</td>
</tr>
<tr>
<td>Congresruimte</td>
<td>D,E,F</td>
<td>30-49; 50-64</td>
<td>2,0</td>
</tr>
<tr>
<td>Kinderdagverblijf</td>
<td>F</td>
<td>Ouders met kinderen</td>
<td>n.v.t.</td>
</tr>
<tr>
<td>Internet/jongerencafé</td>
<td>F</td>
<td>15-29</td>
<td>14,8</td>
</tr>
<tr>
<td>Café/ Sushicocktailbar</td>
<td>F</td>
<td>15-29; 30-49; 50-64; 65+</td>
<td>29</td>
</tr>
<tr>
<td>(Grill)restaurant</td>
<td>E,F</td>
<td>30-49; 50-64; 65+</td>
<td>8,6</td>
</tr>
<tr>
<td>Snackcorner</td>
<td>F</td>
<td>15-29; 30-49</td>
<td>8,6</td>
</tr>
</tbody>
</table>

Het verwachte aantal activiteiten van een functie per categorie per jaar is weergegeven in tabel 2.8¹. Deze gegevens worden in het ontwerp gebruikt als richtwaarden. De discotheek is zodoende 156 keer per jaar open (hoofdzakelijk op vrijdag, zaterdag en zondagavond).

Tabel 2.8: Frequentie functie per regio per jaar. De bezettingsgraad is gedefinieerd als de maximale bezetting die MaVer in een jaar verwacht. Door doorloop van bezoekers gedurende de avond kan de bezettingsgraad hoger dan 100% zijn.

<table>
<thead>
<tr>
<th>Functie</th>
<th>Regio A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>Bezettingsgraad (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populaire evenement</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td>12</td>
<td>24</td>
<td>gem. 62,5</td>
</tr>
<tr>
<td>Zakelijke evenement</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>gem. 80</td>
</tr>
<tr>
<td>Culturele evenement</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>gem. 75</td>
</tr>
<tr>
<td>Discotheek</td>
<td></td>
<td></td>
<td></td>
<td>240</td>
<td></td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>Loungerruimte</td>
<td></td>
<td></td>
<td></td>
<td>156</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Congresruimte</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Kinderdagverblijf</td>
<td></td>
<td></td>
<td></td>
<td>240</td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Internet/jongerencafé</td>
<td></td>
<td></td>
<td></td>
<td>365</td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Café</td>
<td></td>
<td></td>
<td></td>
<td>365</td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>Restaurant</td>
<td></td>
<td></td>
<td></td>
<td>365</td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Niet alle potentiële bezoekers zullen echter komen, aangezien ook meer aanbod van die functie is in de regio. Daarom is de bezettingsgraad per functie gekozen aan de hand van referenties (zie tabel 2.8, rechterkolom). Aan de hand van de maximale capaciteit per functie wordt het aantal bezoekers per jaar per functie bepaald. Dit aantal kan vergeleken worden met het totaal aantal potentiële bezoekers van die markt. Hiermee kan het aandeel in de markt beschreven worden (zie tabel 2.9). Deze waarden zullen in het programma van Eisen, wat in het volgende hoofdstuk beschreven is, opgenomen worden. Het voorbeeld van de discotheek geeft, wanneer de capaciteit van de discotheek op 2.000 bezoekers is gesteld, een verwacht aantal bezoekers per jaar van 0,6 (=60%) *2000 *156 = 187.200 bezoekers. Het aandeel in de markt is dan: 187.200 /1.567.017*100 = 0,67 %.

Tabel 2.9: Overzicht aandeel markt per functie. Bij kinderdagverblijf is het aandeel in de markt niet te bepalen.

<table>
<thead>
<tr>
<th>Functie</th>
<th>Maximale capaciteit</th>
<th>Aantal bezoekers per jaar</th>
<th>Aandeel markt (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populaire evenement</td>
<td>5000</td>
<td>200.000</td>
<td>gem. 0,33</td>
</tr>
<tr>
<td>Zakelijke evenement</td>
<td>2500</td>
<td>45.000</td>
<td>gem. 0,31</td>
</tr>
<tr>
<td>Culturele evenement</td>
<td>2500</td>
<td>22.500</td>
<td>gem. 7,2</td>
</tr>
<tr>
<td>Discotheek</td>
<td>2000</td>
<td>187.200</td>
<td>0,67</td>
</tr>
<tr>
<td>Loungerruimte</td>
<td>650</td>
<td>50.000</td>
<td>0,22</td>
</tr>
<tr>
<td>Congresruimte</td>
<td>700</td>
<td>17.500</td>
<td>0,56</td>
</tr>
<tr>
<td>Kinderdagverblijf</td>
<td>44</td>
<td>66.528</td>
<td>-</td>
</tr>
<tr>
<td>Internet/jongerencafé</td>
<td>175</td>
<td>49.219</td>
<td>24,5</td>
</tr>
<tr>
<td>Café</td>
<td>125</td>
<td>34.219</td>
<td>1,85</td>
</tr>
<tr>
<td>Restaurant</td>
<td>120</td>
<td>37.230</td>
<td>1,42</td>
</tr>
<tr>
<td>Snackcorner</td>
<td>40</td>
<td>54.804</td>
<td>10</td>
</tr>
</tbody>
</table>

Bronnen:
H3 Definitie evenementencomplex

Na een verkenning van de situatie in hoofdstuk 1 en 2, waaruit blijkt dat een multifunctioneel evenementencomplex te Roosendaal geografisch gezien haalbaar is, wordt in dit hoofdstuk een definitie van het toekomstig evenementencomplex gegeven. Door middel van een probleemanalyse komt het doel van dit afstudeeronderzoek naar voren (paragraaf 3.1). Vervolgens kan aan de hand van de beperkingen, opgelegd door de overheid, opdrachtgever en ontwerper, welke beschreven zijn in paragraaf 3.2 een Programma van Eisen opgesteld worden (paragraaf 3.3), waarin het ontwerp van het evenementencomplex aan moet voldoen.

3.1 Probleemanalyse evenementencomplex

Aan de hand van de probleembeschrijving van het evenementencomplex (subparagraaf 3.1.1) wordt de probleemstelling gedefinieerd (paragraaf 3.1.2), waarna doelstellingen geformuleerd worden in paragraaf 3.1.3. De beperkingen voor het ontwerp van opdrachtgever en auteur komen aan bod in paragraaf 3.1.1 (randvoorwaarden), 3.2.2 (uitgangspunten) en 3.2.3 (aannames).

3.1.1 Probleembeschrijving evenementencomplex

De evenementenorganisatie MaVer wil zich vestigen in Roosendaal en in deze stad een multifunctioneel evenementencomplex opzetten. De locatie van dit evenementencomplex dient goed bereikbaar te zijn voor de consument/bezoeker. Daarnaast dient de locatie een oppervlakte van circa 10.000 m² te hebben om zodoende op de regionale, provinciale en landelijke markt te opereren. Aangezien ruimte te vinden is in Nederland en dus ook in Roosendaal steeds schaarser wordt, dient naast een locatie voor nieuwbouw ook gekeken te worden naar herbestemming van oude gebouwen. Daarom heeft MaVer in samenwerking met de gemeente Roosendaal gekeken naar verschillende bestaande gebouwen, die geschikt zijn voor hergebruik. Het Konings Staal gebouw bleek een geschikte locatie te zijn voor een multifunctioneel evenementencomplex, aangezien de hallen ruimte bieden voor onderdak van de beoogde functies met als hoofdzaak een evenementenhal en disco. De gemeente Roosendaal heeft echter in de toekomst (vanaf 2011) andere bestemmingen op die locatie, zoals beschreven in het Masterplan Spoorthaven. Aangezien de realisatie van het Masterplan in fasen verloopt, heeft de gemeente op basis van artikel 17 Wet Ruimtelijke Ordening (WRO)*, een tijdelijke vergunning verleend voor maximaal vijf jaar na start van de exploitatie. Na deze tijd dient het evenementencomplex verplaatst te worden naar een andere (definitieve) locatie. Het hergebruik van het Konings Staal gebouw is vijf jaar van toepassing. Het dient voor MaVer echter wel rendabel te zijn om het evenementencomplex te realiseren. De gemaakte kosten voor het verbouwen van het Konings Staal gebouw dienen gedurende vijf jaar afgeschreven te zijn.

*Bestemmingsplanvrijstelling artikel 17 WRO

Korte omschrijving

Voor een tijdelijk bouwwerk is - behalve een bouwvergunning - tevens een vrijstelling op grond van artikel 17 van de Wet op de Ruimtelijke Ordening vereist. De instandhoudingstermijn voor een tijdelijk bouwwerk bedraagt maximaal vijf jaren.

Uitleg

Op basis van dit artikel kan vrijstelling worden verleend voor het (ver)bouwen van bouwwerken (bouwvergunning), het uitvoeren van grondwerken (aanlegvergunning) of voor het gebruik van een bouwwerk of perceel in strijd met het bestemmingsplan, maar waartegen bij de gemeente geen bezwaren bestaan. Als een aanvraag in strijd is met het bestemmingsplan moet eigenlijk het geldende bestemmingsplan worden aangepast. Dit is een langdurig proces. Door het volgen van een artikel 17 vrijstellingsprocedure hoeft dit niet te worden gewacht met het verlenen van de vergunning, totdat het aangepaste bestemmingsplan van kracht is geworden.

3.1.2 Probleemstelling

In Roosendaal zal een multifunctioneel evenementencomplex gerealiseerd worden. Deze zal beginnen met zijn exploitatie rond april 2006. De locatie is in de eerste vijf jaar het 'Konings Staal' gebouw (fase 1), vervolgens zal het evenementencomplex naar een andere locatie moeten verhuizen (fase 2). Om de nieuwbouw te realiseren onderdelen, zoals de vleugel, volledig te kunnen afsluiten, dienen deze onderdelen meegenomen te worden naar het definitief te bouwen gebouw of binnen vijf jaar afgeschreven te zijn.

1 Vergelijk de oppervlakten van de evenementenhallen in de Roosendaalse invloedssfeer.
De probleemstelling luidt als volgt:

Er ontbreekt een haalbaarheidsstudie naar een multifunctioneel evenementencomplex, welke gedurende een periode van 5 jaar gevestigd zal worden in het Konings Staal gebouw.

3.1.3 Doelstelling

Na de beschrijving van de probleemstelling worden drie doelstellingen geformuleerd:

Doelstelling 1:

Om de economische, technische en bouwphysieke haalbaarheid van het evenementencomplex aan te tonen, dient onderzoek te worden in welke mate hergebruik in het Konings Staal gebouw plaats moet vinden.

Doelstelling 2:

Voorstellen dienen gedaan te worden aangaande constructie en materialen van het tijdelijke evenementencomplex op het Konings Staal terrein.

Doelstelling 3:

Onderzoek dient te worden of de nieuwe onderdelen van het Konings Staal gebouw hergebruikt kunnen worden in het definitieve gebouw.

3.2 Beperkingen evenementencomplex

Deze paragraaf behandelt de beperkingen voor het ontwerp, die van buitenaf worden opgelegd. Dit gebeurt enerzijds door de opdrachtgever MaVer, anderzijds door externe partijen, zoals de gemeente en riër.

3.2.1 Randvoorwaarden

De randvoorwaarden van de opdrachtgever worden besproken in deze subparagraaf, vervolgens komen de randvoorwaarden van de gemeente en anderen aan bod.

Opdrachtgever

MaVer heeft aan de hand van beeldverwachtingen beperkingen en geformuleerde randvoorwaarden aan het ontwerp van het evenementencomplex opgelegd. Bij beeldverwachtingen geeft de opdrachtgever haar *subjectieve* verwachtingen betreffende vormgeving- en belevingsaspecten weer en worden hanteerbaar gemaakt. De vast gedrukte woorden geven de voorkeur van de opdrachtgever weer. Dit is zowel op het interieur als op het uiterieur van het gebouw toegepast:

Exterieur (gevels, dak)

- *Cultuurwaarden*
 - Traditioneel - Innovatief
 - Low tech - High tech
 - Ecologisch - Economisch
 - Permanent - Tijdelijk
 - Orgineel - Gewoon
 - Grootschalig - Kleinschalig

- *Representativiteit*
 - Openbaar - Privé
 - Extravert - Introvert
 - Herkenbaarheid - Anoniem
 - Zakelijk - Informeel
 - Luxe - Sober
 - Betrouwbaar - Uitdagend

- *Belevingswaarde*
 - Regelmatig - Afwisselend
 - Druk, complex - Rustig, eenvoudig
 - Zwaar - Licht
 - Open - Gesloten
 - Onvoorspelbaar - Overzichtelijk
 - Veel kleur - Weinig kleur
Interieur (vloer, wanden, plafond)
- Cultuurwaarden
 Traditioneel – Innovatief
 Tijdloos – Trendy
 Permanent – Tijdelijk
 Origineel – Gewoon
- Representativiteit
 Statisch – Dynamisch
 Herkenbaar – Anoniem
 Zakelijk – Formeel
 Luxe (materiaal) – Sober (materiaal)
 Ruim – Afgemeten
- Belevingswaarde
 Warm – Koud
 Hard – Zacht
 Licht – Donker
 Open – Gesloten
 Onvoorspelling – Overzichtelijk
 Kleurrijk – Weinig kleur
 Rustgevend – Opwindend

De volgende voorwaarden zijn geformuleerd door de opdrachtgever:
2. Het gebouw moet worden gemaakt binnen het beschikbare budget (circa 22,4 miljoen euro).
3. Er dient gezorgd te worden voor veiligheid. Dit dient mede gerealiseerd te worden door een streng deurbewaak, camera's en hekken.
4. Er dient een aparte ingang voor zowel de discotheek en jongerencafé als het kinderdagverblijf gerealiseerd te worden, om zodoende geen kruisingen tussen verschillende bezoekersgroepen te krijgen.
5. Het uiterlijk van het pand moet voldoen aan de hoogste kwaliteitsnormen.
7. Er dient een bushalte en taxisluis bij de locatie gerealiseerd te worden.

Gemeentelijke normen en overigen
De volgende randvoorwaarden worden van buitenaf aan een project gesteld. Aangezien het hier om een bestaande locatie gaat, dient rekening gehouden te worden met de omgeving. Deze krijgt namelijk ineens een andere bestemming in hun nabijheid.

In overeenstemming met de verdeling in het bouwbesluit worden de volgende gebouwfuncties, welke in het multifunctionele evenementencomplex komen, beschreven:
- Bijeenkomstgebouw (evenementenhal)
- Horecagegebouw (restaurant, disco)
- Kantoorgebouw (administratie)

\[\text{2}\text{ Dit ligt aan de functie welke in de ruimte komt. De evenementenhal dient open te zijn en de loungezaal gesloten.}\]
Tabel 3.1: Externe voorwaarden evenementencomplex.

<table>
<thead>
<tr>
<th>Bijeenkomstgebouw</th>
<th>Horecagebouw</th>
<th>Kantoorgebouw</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Wet Milieubeheer</td>
<td>- Wet Milieubeheer</td>
<td>- Wet Milieubeheer</td>
</tr>
<tr>
<td>- Woningwet</td>
<td>- Woningwet</td>
<td>- Woningwet</td>
</tr>
<tr>
<td>- Arboretum</td>
<td>- Arboretum</td>
<td>- Arboretum</td>
</tr>
<tr>
<td>- Brandweerwet</td>
<td>- Brandweerwet</td>
<td>- Brandweerwet</td>
</tr>
<tr>
<td>- Wet Geluidshinder</td>
<td>- Wet Geluidshinder</td>
<td>- Wet Geluidshinder</td>
</tr>
<tr>
<td>- Tabakswet</td>
<td>- Wet Milieugevaarlijke stoffen</td>
<td>- Wet Milieugevaarlijke stoffen</td>
</tr>
<tr>
<td></td>
<td>- Drank- en Horecawet</td>
<td></td>
</tr>
</tbody>
</table>

3.2.2 Uitgangspunten

In deze subparagraaf komen de beperkingen gesteld door de ontwerper aan de orde.

Bereikbaarheid

1. Een goede bereikbaarheid met personenauto's is essentieel. Er dient een snelle aansluiting met snelwegennet (minder dan 10 minuten rijden tot aan een snelweg) aanwezig te zijn. Dit zijn de rijksweg A17 en A58.
2. Een goede parkeergelegenheid op de locatie dient voldoende te zijn (zie bijlage 14).
3. Een goede bereikbaarheid van de locatie met vrachtwagens is essentieel voor aanvoer drank, spijz en materieel en moet in principe mogelijk zijn.

Voorzieningen

1. Een bestaand leidingennet van de nutsbedrijven is essentieel. Basisvoorzieningen (gas, water, licht, kabel) dient aanwezig te zijn.
2. Aanwezigheid van winkels in de buurt is niet essentieel. Deze zijn in de binnenstad gevestigd.
3. Een geldautomaat dient (in de omgeving) aanwezig te zijn in de nabijheid van het complex. Het is van belang dat de organisatie is gestuurd nabij gelijkgerichte bedrijven. Dit wekt alleen concurrentie op. Het gebouw dient niet uitgebreid te kunnen worden, aangezien het complex na 5 jaar verplaatst wordt.
4. De organisatie is enigszins afhankelijk van passantenstroom en daarom dient het gebouw door een zo groot mogelijke groep gehuurd worden.
5. Het is ook geen overwegend bezwaar als de grond niet in eigendom komt, aangezien het slechts een tijdelijke locatie is. BPF Bouwinvest is de eigenaar en verhuurt de locatie aan MaVer.
6. Gekeken dient te worden naar de bodemgesteldheid aangezien er nieuwe elementen gerealiseerd gaan worden. Dit dient te gebeuren aan de hand van zorgopdrachten (zie bijlage 17).
7. Er dienen voorzieningen te komen voor onderhoud en reiniging van het gebouw.

3.2.3 Aannames

Voor het afstudeeronderzoek zijn vanwege gebrek aan informatie verschillende aannamen gedaan. De belangrijkste zijn:

1. Het grondwater niveau ligt op -1,5 m maaiveld.
2. De grond op de Konings Staal locatie bestaat uit een zandlaag met daaronder een veen-zand laag.
3. Een schone grond verklaring dient door de gemeente afgegeven te worden waarin staat beschreven voor welke bestemming de grond schoon genoeg is, aangezien de grond vervuild is met ijzerdeeltjes (er was immers een staalverwerkingsbedrijf op de locatie gevestigd). Hierin staat beschreven dat een evenementencomplex op deze grond gerealiseerd mag worden.
4. Met betrekking tot de externe veiligheid dienen er maximaal 350 bezoekerspersen per hectare voor het evenementencomplex te zijn (zie bijlage 6).
5. Jaarlijks zullen circa 1,1 miljoen mensen het evenementencomplex bezoeken (zie bijlage 6).

³ "Gebouw of gedeelte van gebouw, welk gebouw of gedeelte blijkens zijn constructie zijn constructie en inrichting is bestemd voor doeleinden van mondelinge communicatie en cultuur" (definitie bouwbewijs)
4 "Gebouw of gedeelte van een gebouw, welk gebouw of gedeelte blijkens zijn constructie en inrichting is bestemd voor het bedrijfsmatig verstrekken van consumpties en het gebruik daarvan ter plaatse" (definitie bouwbewijs)
5 "Gebouw of gedeelte van een gebouw, welk gebouw of welk gedeelte blijkens zijn constructie en inrichting is bestemd voor doeleinden van administratie" (definitie bouwbewijs)
3.3 Programma van Eisen

In deze paragraaf wordt het Programma van Eisen (PvE) weergegeven. Doel van dit PvE is om de kwaliteitsseisen van het gebouw vast te leggen. Dat wil zeggen dat de behoeften vertaald worden in ontwerprichtlijnen. Allereerst worden in subparagraaf 3.3.1 de gebruikseisen weergegeven, waarna vervolgens in subparagraaf 3.3.2 het PvE in de vorm van prestatie-eisen wordt beschreven.

3.3.1 Gebruikseisen

Gebruik
Het kwaliteitsaspect 'gebruik' kan beschreven worden door de onderdelen relaties, bereikbaarheid, bruikbaarheid en veranderbaarheid.

Relaties
De logistiek van de bedrijfsprocessen vraagt aandacht voor de relatie tussen ruimten. Relaties kunnen zowel fysiek (loopafstand) als visueel zijn (uitzicht/toezicht). De clustering van activiteiten kan van belang zijn voor een doelmatige dienstverlening. Deze relaties zijn weergegeven in hoofdstuk 7.

Bereikbaarheid
Het gebouw en de ruimten waar de activiteiten plaatsvinden, moeten voor mensen en goederen bereikbaar zijn. Als ondergrens voor de bereikbaarheid van ruimten in het gebouw gelden de behoeften van de dagelijkse gebruikers en bezoekers van het gebouw. Er dient (ook) een toegang voor minder invaliden aanwezig te zijn. Voor het transport binnen het gebouw dienen (nood)trappen te komen.

Bruikbaarheid
De bruikbaarheid van een ruimte wordt in de eerste plaats bepaald door de beschikbare ruimte voor de activiteit(en) die er plaatsvindt. De benodigde ruimte hangt af van het aantal mensen dat (gelijktijdig) aan de activiteit deelneemt en het ruimtebeslag van de bij de activiteit benodigde inrichting, apparatuur en indelingsvarianten.

Het gebouw en terrein moet voldoende ruimte bieden aan de activiteiten en de inrichting onafhankelijk en gelijktijdig bruikbaar zijn voor alle gebouwgebruikers. Zodoende moet ruimte X geschikt zijn voor Y personen die gebruik moeten kunnen maken van inrichting Z (capaciteit per functie).

Veranderbaarheid
De bruikbaarheid van een gebouw vraagt ruimte en een geschilderde inrichting. Toekomstig gebruik kan inhouden dat het gebouw, de ruimten en inrichting moet kunnen worden veranderd, aangepast, uitgebreid of heringericht.

Omdat het hier gaat om een tijdelijke locatie dient niet zozeer hier mee rekening gehouden worden, maar wel aan de flexibiliteit algemeen.

Condities
Het kwaliteitsaspect 'condities' kan met de volgende onderdelen beschreven worden; thermohygrisch comfort, luchtkwaliteit, akoestisch comfort, trillingen, visueel comfort en hygiëne.

Thermohygrisch comfort
Thermohygrisch comfort heeft te maken met behaaglijkheid. Het is een samenspel tussen luchttemperatuur, luchtsnelheid en vochtigheid.

In het gebouw moet een voor de gebruikers; apparatuur en goederen adequaat klimaat heersen.

Luchtkwaliteit
Voor het welbevinden dient ook gedacht te worden aan luchtkwaliteit: de verspreiding van geur en stofdeeltjes en de luchtbeweging (tocht).

In het gebouw moet een voor de gebruikers, apparatuur en goederen goede luchtkwaliteit worden gewaarborgd.
Akoestisch comfort
Akoestisch comfort is van belang voor het goed functioneren van de dagelijkse gebruikers en bezoekers in het gebouw. Bovendien moet de omgeving geen hinder ondervinden van de eventueel geluidsproducerende activiteiten die in het gebouw plaatsvinden. Speciaal dient de akoestiek in de evenementenhall/pophal goed te zijn. Het akoestisch comfort in het gebouw moet zijn dat:
- De gebruikers geen hinder ondervinden van de omgeving,
- De omgeving geen hinder ondervindt van de activiteiten in het gebouw,
- De gebruikers van elkaar geen hinder ondervinden,
- De gebruikers over de nodige privacy beschikken,
- Een goede verstaanbaarheid is gegarandeerd.

Trillingen
Trillingen van constructieonderdelen of zelfs het gehele gebouw kunnen voelbaar en zichtbaar zijn en dienen voorkomen te worden. Daarbij dient gekeken te worden naar eventuele resonantie van de (vloer)elementen.

Visueel comfort
Het visueel comfort bepaalt voor een groot deel het welbevinden in het gebouw en is tevens van belang voor het functioneren van mensen. Visueel comfort wordt bepaald door de voor de activiteit benodigde hoeveel daglicht, kunstlicht en uitzicht. Daarnaast hebben ook de factoren zoals het beperken van hinder van te fel licht, de scherpe lichtverhoudingen en reflecties invloed op het visueel comfort.
Het visueel comfort in het gebouw moet zijn dat:
- Activiteiten van voldoende kunst en/of daglicht van zijn voorzien
- Er geen hinder van kunst en/of daglicht wordt ondervonden
- Voldoende uitzicht op buitenruimten mogelijk is
Daglicht is 'natuurlijk licht' dat in bepaalde ruimten relevant kan zijn. Bovendien geeft daglicht een indruk van weersgesteldheid en het uur van de dag wat psychologisch van belang is.

Hygiëne
Het gebouw moet zodanig kunnen worden schoongehouden worden dat de bedrijfsprocessen en de gezondheid van de gebouwgebruikers niet nadelig worden beïnvloed.

Veiligheid
Het kwaliteitsaspect 'veiligheid' kan beschreven worden aan de hand van gebruiksveiligheid, bedrijfsszekerheid, sociale veiligheid en calamiteiten.

Gebruiksveiligheid
De gebruiksveiligheid moet voldoen aan de eisen die de wet daaraan stelt. De kans op vallen, stoten of uitglijden bij het gebruik van ruimten, inrichting en installaties en het zich verplaatsen door het gebouw moet zich tot een minimum worden beperkt.
Bedrijfsszekerheid
Bedrijfsszekerheid heeft betrekking op de mate waarin voor de activiteit een continue prestatie moet worden geleverd. In het algemeen van toepassing op W&E-installaties: er dient bij stroomuitval een noodaggregaat aanwezig te zijn.

Sociale veiligheid
Het terrein, het gebouw en de ruimten in het gebouw moeten adequaat zijn beveiligd tegen vandalisme en anders vormen van (kleine) criminaliteit. De toegangen tot het gebouw moeten afdoende worden beveiligd tegen ongewenst bezoek en braak, d.m.v. hekken en camera's.

Calamiteiten
Conform de (lokale) wettelijke voorschriften moeten de gebouwgebruikers voldoende tijd en adequate vluchtmogelijkheden hebben om het gebouw te verlaten bij brand, rookontwikkeling, wateroverlast en andere calamiteiten. Schade aan het gebouw en de inboedel moet tot een minimum worden beperkt (brandblussers, sprinklers).

3.3.2 Prestatie-eisen
Prestatie-eisen zijn eisen waarin het gebouw aan moet voldoen om het beoogde gebruik mogelijk te maken. Deze eisen zijn ondervoordeeld in functionele, bouwfysische en veiligheidseisen (zie tabel 3.2).
Tabel 3.2: Onderverdeling prestatie-eisen

<table>
<thead>
<tr>
<th>Functionele eisen</th>
<th>Bouwfysische eisen</th>
<th>Veiligheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruimtebehoefte</td>
<td>Temperatuur</td>
<td>Sterkte</td>
</tr>
<tr>
<td>Bereikbaarheid/</td>
<td>Lucht</td>
<td>Stabiliteit</td>
</tr>
<tr>
<td>Toegankelijkheid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relaties/ Logistiek</td>
<td>Vocht</td>
<td>Brandveiligheid</td>
</tr>
<tr>
<td>Uitbreidbaarheid/</td>
<td>Licht en uitzicht</td>
<td>Gebruiksvielligheid</td>
</tr>
<tr>
<td>Flexibiliteit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voorzieningen</td>
<td>Geluid</td>
<td>Braakveiligheid</td>
</tr>
<tr>
<td>Duurzaamheid</td>
<td>Trillingen</td>
<td>Schadelijke invloeden</td>
</tr>
</tbody>
</table>

Functionele eisen

Ruimtebehoefte
Stichting Bedrijfspensioenfonds voor de bouwnijverheid (BPF) is sinds 2001 eigenaar van het Konings Staal gebouw geworden. BPF heeft nu voor antikraak Kentron⁶ en carnavalverenigingen in het Konings Staal gehuisvest. Echter als de conceptakte, waarin de huurovereenkomst is beschreven, met MaVer is goedgekeurd, dan zullen de huidige gebruikers verhuizen.

Figuur 3.1: Kadasterale kaart gemeente Roosendaal, perceel 3700 en 3527 is in bezit van BPF Bouwinvest.

Het totaal aanwezig bebouwd oppervlak op het Konings Staal terrein is 8.250 m² en het totale terrein 13.830 m² (zie figuur 3.1).
- Het evenementencomplex dient op deze oppervlakte gerealiseerd te worden.
- Parkeergelegenheid dient op zowel eigen als ander terrein verkregen te worden.

⁶ Kentron is een gespecialiseerde instelling voor verslavingszorg in West- en Midden-Brabant. De afdeling deeltijdbehandeling is geverifieerd in het voormalige 'Konings Staal' gebouw.
Het gehele buitenterrein, behalve de buitenspeelplaats van het kinderdagverblijf, dient (opnieuw) bestraat te worden. Daarnaast dient de buitenspeelplaats aangelegd worden (hekken, lantaarns, zandbak, rubber tegels etc.).

Toenmalige eis
- Bouwen 2,5 m van de rooilijn.

Huidige eis
- De voorgevel dient 10 m uit de as van de weg gelegen te zijn bij een wegbreedte minder dan 10 m bij een weg zijde waaraan nog niet gebouwd is.
- Bij een weg zijde met bebouwing dient de regelmatige ligging van de voorgevels van de bestaande bebouwing als richtlijn worden gehouden.

Bereikbaarheid/ Toegankelijkheid
- Het evenementencomplex dient zowel via de Oostelijke Havendijk als via de Industriestraat bereikbaar te zijn. Alleen tijdens speciale evenementen wordt de Industriestraat afgesloten voor gemotoriseerd verkeer.
- Aan de Industriestraat dient een laad-/ los ruimte van het evenementencomplex te komen.

Relaties/ Logistiek
- De evenementenhal dient een directe verbinding met de foyer te krijgen, zodanig dat de bezoekers na de ingang zonder belemmeringen richting de hal kunnen gaan.
- De discotheek en kinderdagverblijf dienen een aparte toegang te krijgen tot het complex.

Uitbreidbaarheid/ Flexibiliteit
- Het multifunctionele evenementencomplex in het Konings Staal gebouw dient niet uitbreidbaar te zijn, aangezien men na 5 jaar de locatie weer verlaten. Echter dient de evenementenhal zodanig flexibel te zijn, dat de ruimte in meerdere delen opgesplitst kan worden.

Voorzieningen
- De volgende voorzieningen dienen in de multifunctionele evenementenhal te komen:

<table>
<thead>
<tr>
<th>Functie</th>
<th>Bruto Oppervlakte [m²]</th>
<th>Capaciteit [personen]</th>
<th>Verhouding [m²/person]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evenementenhal</td>
<td>5.740</td>
<td>5.075</td>
<td>1,13</td>
</tr>
<tr>
<td>• Podium</td>
<td>440</td>
<td>20</td>
<td>22,00</td>
</tr>
<tr>
<td>• Berging</td>
<td>340</td>
<td>5</td>
<td>68,00</td>
</tr>
<tr>
<td>• Backstage ruimte</td>
<td>360</td>
<td>50</td>
<td>7,20</td>
</tr>
<tr>
<td>• VIP ruimte</td>
<td>1.200</td>
<td>500</td>
<td>2,00</td>
</tr>
<tr>
<td>• Zaal</td>
<td>3.600</td>
<td>4.500</td>
<td>0,80</td>
</tr>
<tr>
<td>Dans Palets</td>
<td>2.800</td>
<td>2.150</td>
<td>1,30</td>
</tr>
<tr>
<td>• Discotheek</td>
<td>1.800</td>
<td>1.500</td>
<td>1,20</td>
</tr>
<tr>
<td>• Lounge room</td>
<td>1.000</td>
<td>650</td>
<td>1,54</td>
</tr>
<tr>
<td>Zakelijke Diensten</td>
<td>1.560</td>
<td>740</td>
<td>2,11</td>
</tr>
<tr>
<td>• Congresruimte</td>
<td>760</td>
<td>700</td>
<td>1,09</td>
</tr>
<tr>
<td>• Kinderdagverblijf</td>
<td>300 + 500</td>
<td>40</td>
<td>7,50 & 12,50</td>
</tr>
<tr>
<td>Facilitaire Voorzieningen</td>
<td>1.770</td>
<td>571</td>
<td>3,00</td>
</tr>
<tr>
<td>• Foyer</td>
<td>650</td>
<td>400</td>
<td>1,63</td>
</tr>
<tr>
<td>• Centrale keuken</td>
<td>300</td>
<td>20</td>
<td>15,00</td>
</tr>
<tr>
<td>• Kleine keuken</td>
<td>60</td>
<td>6</td>
<td>10,00</td>
</tr>
<tr>
<td>• Kantoren</td>
<td>460</td>
<td>30</td>
<td>15,30</td>
</tr>
<tr>
<td>• Sanitaire voorzieningen</td>
<td>300</td>
<td>115</td>
<td>2,61</td>
</tr>
<tr>
<td>Jeugdcentrum</td>
<td>200</td>
<td>170</td>
<td>1,18</td>
</tr>
<tr>
<td>• Internetcafé</td>
<td>50</td>
<td>20</td>
<td>2,50</td>
</tr>
<tr>
<td>• Jongerencafé</td>
<td>150</td>
<td>150</td>
<td>1,00</td>
</tr>
<tr>
<td>Eet/ drankgelegenheden</td>
<td>2.710</td>
<td>1.425</td>
<td>1,90</td>
</tr>
<tr>
<td>• Café</td>
<td>160</td>
<td>125</td>
<td>1,28</td>
</tr>
<tr>
<td>• Sushi- cocktailbar</td>
<td>300</td>
<td>150</td>
<td>2,00</td>
</tr>
<tr>
<td>• Restaurant</td>
<td>240</td>
<td>120</td>
<td>2,00</td>
</tr>
<tr>
<td>• Grill restaurant</td>
<td>850</td>
<td>400</td>
<td>2,13</td>
</tr>
<tr>
<td>• Terras</td>
<td>1.040</td>
<td>600</td>
<td>1,73</td>
</tr>
<tr>
<td>• Snackcorner</td>
<td>120</td>
<td>30</td>
<td>4,00</td>
</tr>
<tr>
<td>Totaal</td>
<td>14.580</td>
<td>9.391</td>
<td>1,55</td>
</tr>
</tbody>
</table>

Daarnaast dienen de volgende functies ook te komen in het complex:
- Kluis: 5 m²
- EHBO-ruimte: 10 m²

7 De grens tussen de openbare weg en de aangrenzende eigendommen, hetzij privé of van de overheid, wordt aangeduid als de rooilijn.
8 Bron: Bouwverordening Roosendaal.
9 De oppervlakten zijn bepaald aan de hand van referenties van MaVer en uit literatuur 'Verbouwen in de Horeca' en 'Neufert'.
Magazijnen: 30 m²
Werkkasten: 15 m²
Garderobe voor zowel zaal als discotheek: respectievelijk 66 m² en 32 m²
Koel- en vriescel: respectievelijk 22 en 24 m²
Opslag goederen (drank en voedsel): 34 m²
Ruimte voor afvalcontainers

Deze oppervlakten van de functies leiden tot:
- Het totaal benodigd oppervlak is circa 11040 m², exclusief ontsluitingen etc.
- De hoogte van een horecafunctie dient minimaal 2,40 m te zijn. De zalen dienen ten minste 2,60 m te zijn.
- Een parkeerplaats heeft als afmeting ten minste 1,80 m bij 5,00 m en ten hoogste 3,25 m bij 6,00 m.

Duurzaamheid
- De nieuw te vervaardigde onderdelen van het complex dienen of na 5 jaar afgeschreven te zijn of demontabel te zijn en verplaatst te worden.

Bouwfysische eisen
In tabel 5.1 staan de bouwtechnische eisen per functie aangegeven, waaraan het ontwerp aan moet voldoen.

<table>
<thead>
<tr>
<th>Functie</th>
<th>Grootte [m²]</th>
<th>Capaciteit [Aantal bezoekers]</th>
<th>(Dynamische) belasting [kN/m²]</th>
<th>Geluid [dB(A)]</th>
<th>Ventilatievoud [h⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Podium</td>
<td>440</td>
<td>-</td>
<td>5,0</td>
<td>95 - 105</td>
<td>6</td>
</tr>
<tr>
<td>Berging</td>
<td>340</td>
<td>-</td>
<td>5,0</td>
<td>55 - 80</td>
<td>3</td>
</tr>
<tr>
<td>Backstage ruimte</td>
<td>360</td>
<td>-</td>
<td>5,0</td>
<td>55 - 80</td>
<td>3</td>
</tr>
<tr>
<td>VIP ruimte</td>
<td>1.000</td>
<td>1.000</td>
<td>5,0</td>
<td>75 - 100</td>
<td>3</td>
</tr>
<tr>
<td>Zaal</td>
<td>3.600</td>
<td>4.000</td>
<td>5,0</td>
<td>95 - 105</td>
<td>6</td>
</tr>
<tr>
<td>Discotheek</td>
<td>2.000</td>
<td>2.000</td>
<td>5,0</td>
<td>95 - 105</td>
<td>6</td>
</tr>
<tr>
<td>Lounge room</td>
<td>1.000</td>
<td>650</td>
<td>5,0</td>
<td>55 - 65</td>
<td>6</td>
</tr>
<tr>
<td>Congresruimte</td>
<td>760</td>
<td>700</td>
<td>5,0</td>
<td>55 - 65</td>
<td>5</td>
</tr>
<tr>
<td>Kinderdagverblijf</td>
<td>300</td>
<td>40</td>
<td>5,0</td>
<td>55 - 70</td>
<td>3</td>
</tr>
<tr>
<td>Foyer</td>
<td>650</td>
<td>-</td>
<td>5,0</td>
<td>55 - 65</td>
<td>20</td>
</tr>
<tr>
<td>Keuken</td>
<td>300</td>
<td>-</td>
<td>5,0</td>
<td>55 - 65</td>
<td>15</td>
</tr>
<tr>
<td>Kleine keuken</td>
<td>60</td>
<td>-</td>
<td>5,0</td>
<td>55 - 65</td>
<td>15</td>
</tr>
<tr>
<td>Kantoren</td>
<td>460</td>
<td>20</td>
<td>5,0</td>
<td>45 - 55</td>
<td>3</td>
</tr>
<tr>
<td>Sanitaire voorzieningen</td>
<td>300</td>
<td>100</td>
<td>5,0</td>
<td>55 - 60</td>
<td>4</td>
</tr>
<tr>
<td>Internet café</td>
<td>50</td>
<td>20</td>
<td>5,0</td>
<td>75 - 80</td>
<td>6</td>
</tr>
<tr>
<td>Jongerencafé</td>
<td>150</td>
<td>150</td>
<td>5,0</td>
<td>75 - 80</td>
<td>6</td>
</tr>
<tr>
<td>Café</td>
<td>160</td>
<td>125</td>
<td>5,0</td>
<td>80 - 95</td>
<td>7</td>
</tr>
<tr>
<td>Sushi-cocktailbar</td>
<td>300</td>
<td>250</td>
<td>5,0</td>
<td>75 - 80</td>
<td>7</td>
</tr>
<tr>
<td>Restaurant</td>
<td>240</td>
<td>120</td>
<td>5,0</td>
<td>55 - 75</td>
<td>7</td>
</tr>
<tr>
<td>Grill restaurant</td>
<td>850</td>
<td>400</td>
<td>5,0</td>
<td>55 - 75</td>
<td>7</td>
</tr>
<tr>
<td>Terras</td>
<td>1.200</td>
<td>900</td>
<td>2,5</td>
<td>55 - 75</td>
<td>-</td>
</tr>
<tr>
<td>Snack corner</td>
<td>120</td>
<td>40</td>
<td>5,0</td>
<td>55 - 65</td>
<td>9</td>
</tr>
<tr>
<td>Onsluitingswegen</td>
<td>-</td>
<td>-</td>
<td>5,0</td>
<td>55 - 65</td>
<td>2</td>
</tr>
</tbody>
</table>

Temperatuur
- De temperatuur in het evenementencomplex dient minimaal 18 °C en maximaal 28 °C te bedragen. Echter de comforteisen geven een ondergrens van 20 °C en een bovengrens van 25,5 °C.

Lucht
- De luchtevordering van het evenementencomplex dient minimaal de capaciteit te hebben van 4,8 dm³/s per m².

Vocht
- Het complex dient zodanige uitwendige scheidingsconstructies te hebben, zodat het binnendeurs van vocht voldoende wordt beperkt.

Licht en uitzicht
- Voor een permanente werkplek (kantoren) dient voldoende daglicht aanwezig te zijn. De daglichtfactor dient zodoende tenminste 2,5 % te bedragen.
Geluid
- De nagalmtijd in het complex dient tussen de 0,9 en 1,3 s te zijn in een lege ruimte, behalve in het café, restaurant, jongereninternetcafé, grillrestaurant, sushi-cocktailbar, waar een nagalmtijd van 0,5 - 0,8 s voor geldt.
- De grenswaarde van het geluid dient vanaf de dichtstbijzijnde woning volgens de Wet op Geluidshinder niet meer te bedragen dan 50 dB(A) tussen 07.00 en 19.00 uur, 45 dB(A) tussen 19.00 en 23.00 uur en 40 dB(A) tussen 23.00 en 07.00 uur. Daarbij dient als men's avonds bij de dichtstbijzijnde woning muziek herkent de grenswaarde vermindert te worden met 5 dB(A) en 's nachts 10 dB(A). Dit houdt in dat een geluidsisolatie van bijvoorbeeld de discotheek in totaal 105 dB(A) - (40 dB(A) (norm) - 10 dB(A) (muziekstraft) = 75 dB(A) dient te zijn.

Trillingen
- Trillingen als gevolg van de installaties dienen beperkt te worden.
- Het optreden van coincidentie van onderdelen (vloer, gevelelementen) van het gebouw dient voorkomen te worden.

Veiligheidseisen
Aan de volgende veiligheidseisen dient het ontwerp van het multifunctionele evenementencomplex te voldoen.

Sterkte
- Een uiterste grenstoestand van de bouwconstructie dient niet overschreden te worden bij de fundamentele belastingcombinaties.

Stabiliteit
- De stabiliteit van de bouwconstructie dient niet overschreden te worden bij de fundamentele belastingcombinaties.

Brandveiligheid
- Het evenementencomplex dient zodanig te zijn dat een brandgevaarlijke situatie voldoende wordt beperkt en indien er brand aanwezig is deze zich niet snel kan ontwikkelen.
- De hoofdstraatconstructie dient een tijdsduur van 30 min brandwerendheid te hebben met betrekking tot bezwijken.
- Het complex dient voldoende vluchtroutes en nooduitgangen te hebben waarlangs bij brand een veilige plaats bereikt kan worden. De breedte van de gang hangt af van het aantal bezoekers.

Gebruiksvoorwaarden
- De vrije doorgang van de toegang en verdere route dient tenminste een breedte van 0,85 m en een hoogte van 2,1 m te hebben.
- In het café, restaurant, jongereninternetcafé, grillrestaurant, sushi-cocktailbar dienen een minimale hoogte van 2,6 m te hebben.
- De zaal dient een minimale hoogte van 4,10 m te hebben om zodoende voldoende vrije ruimte te hebben voor een vrachtwagen.
- De afmetingen van de overige ruimtes dienen tenminste een hoogte van 2,4 m te hebben en een breedte van 2,4 m.

Braakgevaarlijkheid
- Het te bouwen complex dient weerstand te bieden aan inbraak.

Schadebevordering
- Het complex dient voldoende beschermd te zijn tegen schadelijke invloeden van buitenaf. Daarvoor dient bij de constructie een secundaire krachtsafdracht mogelijk te zijn.

Bronnen:
H4 Analyse Konings Staal gebouw

In dit hoofdstuk wordt ingegaan op het Konings Staal gebouw zelf. Bij hergebruik van een gebouw dient immers eerst gekeken te worden naar het eerdere gebruik van het gebouw, voordat men deze kan herontwerpen. De analyse van het Konings Staal gebouw bestaat uit de historie van het gebouw (zie bijlage 10), de architect van het gebouw (zie bijlage 10), het exterieur en interieur van het gebouw (respectievelijk paragraaf 4.1 en 4.2) en een bouwtechnische en bouwfysische analyse (paragraaf 4.3 en 4.4).

4.1 Exterieur Konings Staal gebouw

Allereerst dient een opmerking gemaakt te worden voor aanduiding van de verschillende onderdelen van het Konings Staal gebouw. De twee grote en hoge loodsen krijgen in dit rapport de aanduiding hallen. De naastliggende drie lagere loodsen worden magazijnen genoemd. Beiden beschreven onderdelen zijn meervoudige langshallen; de lengte van de hal is groter dan de breedte en er is sprake van één hoofdrichting. Bovendien bestaan de loodsen uit meerdere aaneengesloten beuken. Het kantoor en aanliggende voormalige winkel/ magazijn gedeelde behouden dezelfde naam als aanduiding (zie figuur 4.1).

Figuur 4.1: Naamsaanduidingen onderdelen Konings Staal gebouw.

Het dak van de hallen is opgebouwd uit gedeeltelijk linex platen en eternietgolfplaten. Hierop zijn twee lagen mastiek geplakt. De daglichten zijn gevormd met behulp van plastic golfplaten met hulpstukken. De buitenwanden van de hallen zijn gedeeltelijk tot op een hoogte van 2,50/2,10 m boven maaiveld vervaardigd uit 15 cm dikke Duroxplaten met daarop stalen golfplaten. Daaronder zijn tralions toegepast. Dit zijn de onderste lagen van de gevel onder het maaiveld, opgetrokken uit beton om capillaar watertransport door het metselwerk vanuit de bodem zoveel mogelijk te voorkomen.

1 Linex platen zijn vlusscheepenplaten. Deze platen zijn van licht gewicht, zijn brandvertragend, hebben een hoge isolatie- en dB-waarden en een homogene kwaliteit.
2 Eterniet is een mengsel van asbest en cement.
3 Durox platen zijn vervaardigd uit gestolten welke uit lichte poreuze materialen die op basis van hydraulische bindmiddelen zijn gemaakt en waar bij de productie een gasontwikkelende stof gebruikt.
Verder tot aan de dakrand zijn in hal 1 de buitenwanden samengesteld uit een linexplaat, een spouw en een gegalvaniseerde ijzeren golfplaat (zie figuur 6.3). De spouw is geventileerd. De totale warmteweerstand van deze constructie bedraagt 0,722 m²K/W. Vergelijk een stenen spouwwand met 0,572 m²K/W. De gevels van hal 2 zijn opgebouwd uit stalen profielplaten. De wanden van de magazijnen zijn tot 1,80 m boven maaiveld gesloten vlakken van Duroxplaten met ongeïsoleerde stalen puien, welke gedeeltelijk antracietzwart/donkerblauw geverfd zijn (zie figuur 4.2). Daarboven zit een plastic golfplaat laag van 0,80 m, welke daglicht doordlaat, en vervolgens stalen golfplaatbekleding tot de dakrand (zie figuur 4.4, rechts, figuur 4.5 en figuur 4.6). De grote bedrijfsdeuren zijn gemaakt van verticaal beweegbare aluminium rolluiken, welke met elektrische bediening opgemaakt worden (zie figuur 6.4, rechts). Het kantoor- en winkel-/magazijndak zijn vervaardigd uit stalen kolommen en stalen gevelplaten (zie figuur 4.2 en 4.3, rechts). De ramen zijn voorzien van dubbelglas. Het kantoor is op de begane grond en eerste verdieping naast staal gemaakt van gasbetonblokken.

Figuur 4.2: Aanzicht exterieur kantoorgebouw.

Figuur 4.3: Aanzicht hal 2 (links) en exterieur voormalige winkelgebouw (rechts).
Figuur 4.4: Aanzicht exterieur zijkant hal 2 (links) en plein aan de Industriestraat (rechts).

Figuur 4.5: Aanzicht exterieur lage magazijnen vanaf Industriestraat (links) en nabij gelegen huis (rechts).

Figuur 4.6: Aanzicht exterieur kantoor en magazijnen (links) en (rechts).
4.2 Interieur Konings Staal gebouw

Omdat het Konings Staal B.V. een ijzerhandel was (en is), koos men uit oogpunt van representatie staal als constructiemateriaal. Daarnaast was het bedrijf niet brandgevaarlijk en kon men in dit opzicht staal verantwoord toepassen. De overige voordelen om staal te kiezen als constructiemateriaal waren:
- relatief geringe kostprijs van het materiaal en verwerkingskosten.
- licht van gewicht wat gunstig was voor de fundering.
- hoog bouwtemperatuur.

Als grootste nadeel van gebruik van staal was het gevaar voor corrosie en diende daarom hiertegen beschermd te worden. Aangezien de staalconstructie in het zicht bleef, werd deze gestaaldraad en gemenied en vervolgens gedeeltelijk antracietzwart, rood/ oranje en donkerblauw geverfd en de delen in de buitengevel verzinkt (zie figuur 4.7).

![Figuur 4.7: Interieur hal 2 (links) en 1 (rechts).](image1)

De binnenwanden tussen de magazijnen en hallen zijn tot een hoogte circa 2,20 m boven het vloerpijl opgebouwd uit Durox platen van 15 cm dik en daarboven tot aan het dak uit Durox platen van 7 cm dik (zie figuur 4.12, links). De warmteweerstand van de Durox wand van 7 cm bedraagt 0,37 m²K/W. Vergelijk met een steens muur 0,38 m²K/W. De overige wanden in de magazijnen zijn bekleed met spaanplaat en voor lichtdoorlatende plastic golflaat (zie figuur 4.8, rechts).

![Figuur 4.8: Aanzicht tussenwand magazijnen en hallen (links) en binnenwand magazijnen (rechts).](image2)

De vloeren in hallen en magazijnen zijn gemaakt uit glad afgewerkte licht gewapende betonnen vloervelden (15 cm dik met twee wapeningsnetten (diameter van 6 mm) van 150 x 150 mm) met dilataties (zie figuur 4.9, rechts). De vloeren in de winkel/ magazijnruimte is afgezien van en een Tosamina-lijnlaag (zie figuur 4.9, links).
Figuur 4.9: Vloer winkel/magazijnruimte is afgewerkt met een Tosamina-slijtlaag (links) en betonnen vloer in hal (rechts).

4.3 Bouwtechnische analyse Konings Staal gebouw

In deze paragraaf komt een bouwtechnische analyse van het Konings Staal gebouw aan bod. Hierbij worden de constructie, fundering en afbouw geanalyseerd. Bovendien wordt gekeken naar de huidige staat van deze onderdelen.

Constructie Konings Staal gebouw
De constructie van het huidige Konings Staal gebouw wordt besproken. Hierbij is onderscheid gemaakt tussen de constructies van de hallen en magazijnen en de constructies van het overige bouwdelen.

Hallen en magazijnen
Gekozen is voor portalen in de hallen met een vakwerkligger (zie figuur 6.10). De reden hiervoor was allereerst uit economisch oogpunt; door de grote overspanning (circa 20m en groter) bleek het voordeliger te zijn een vakwerkligger toe te passen (minder materiaal gebruik, ondanks dat het arbeidsintensiever was). Daarnaast werkten er vrij grote krachten door de kraanbanen op het spant, waardoor een stabiele vakwerkligger geschikter was. Deze kraanbanen zijn nu nog aanwezig, de kraanbalk en loopkat echter niet meer. De overspanning van de magazijnen (15 m) is gemaakt van volle wandliggers (IPE550-profiel), welke scharnierend verbonden zijn met HE260A-kolommen. In de magazijnen zijn tevens de voormalijke kraanbanen aanwezig.

De spanten in de hallen hebben een h.o.h. afstand van 5,0 m. Behalve de eerste spanten van de hallen (tussen stramien 2 en 3) hebben een h.o.h. afstand van 4,5 m. Per hal zijn 26 spanten in langsrichting. De spanten hebben bij hal 1 een overspanning van circa 20,0 m en bij hal 2 een overspanning van circa 24,0 m. De vrije hoogte in hal 1 bedraagt ongeveer 7,8 m en in hal 2 ongeveer 9,3 m. De stabilitéit loodrecht op de spanten is verkregen door kruisverbanden. Deze bevinden zich in de hallen tussen assen 3-4, 14-15 en 25-26 (zie bijlage 9). De stabilitéit in de richting van het spantvlak wordt verkregen het spant zelf (zie figuur 4.12).

De scharnierende raamwerken hebben een h.o.h. afstand van 5,5 m en hebben per magazijn 8 spanten in langsrichting. De spanten van de magazijnen hebben een overspanning van 15,0 (=3*5,0m) m en een vrije hoogte van 8 m. De magazijnen zijn volledig geschoorde constructies; de overdracht van horizontale krachten naar de fundering vindt plaats met verticale en horizontale verbanden.

Overige bouwdelen
In de winkel/magazijn is een volle wandligger toegepast. De spanten zijn h.o.h. 5.50 m en zijn onderling niet als doorgaande ligger verbonden, dit vanwege de mogelijke geringe zittingen. De spannen zijn door middel gordingen verbonden. Deze gordingen zijn vervaardigd uit staal IPE liggers h.o.h. 1,50 m. De stabiliteit in de richting loodrecht op het spanvlak is verkregen door een stabiliteitsverband tussen twee spannen. De stabiliteit in de richting van het spanvlak wordt verkregen door een stijve inkleuring van de kolommen in de spannen. Het kantoorgedeelte is opgebouwd uit een staalskelet met betonnen vloeren en gasbetonnen wanden.
Bij de stalen kolommen in de hallen is slechts op enkele plaatsen corrosie opgetreden. De gordingen tussen de spannen in de hallen zijn plaatselijk kromgetrokken. De rest van de constructie is nog in redelijke staat en zal na een verfbeeld de komende 5 jaar in de huidige configuratie zeker geen problemen geven.

Fundering Konings Staal gebouw
Voor de fundering van de hallen zijn verschillende funderingspalen toegepast:
- pulspalen: 7,00 m lang (diameter 40 cm)
- heipalen: 11,50 m lang (diameter 25, 28, 30 en 35 cm)
- heipalen: 12,30 m lang (diameter 35 cm)
- heipalen: 12,75 m lang (diameter 35 cm)

De spannen zijn gefundeerd op kespens en driehoekige poeren. Tussen de kespens/ poeren zijn funderingsbalken aangelegd van minimaal 600 mm hoog.

De vloeren in de hallen en magazijnen zijn vervaardigd in betonnen platen van 15 cm dik. Deze zijn op staal gefundeerd. Door gebruik van platen en daarmee dikte matten tussen de platen is de geringe wapening (boven en onder wapeningssetten van 6 mm diameter met mazen van 150 x 150 mm) van de betonnen vloerplaten voldoende. Te zien is dan ook dat de vloer gering gezakt is ten opzichte van de spannen en gevels, welke op palen gefundeerd zijn.

Afbouw Konings Staal gebouw
De gevels zijn zoals gezegd vervaardigd uit Durox platen, stalen golfplaten en lineplaten. Deze zijn enigszins aangetast door vuil en roest. Echter na vervanging van erg aangetaste platen en een nieuwe verfbeeld, zijn de gevels voldoende intact voor de komende jaren. Echter door slechte isolatie (zowel voor geluid als warmte) zijn de huidige gevels niet geschild voor het toekomstig hergebruik en zal aangepast moeten worden door middel van bijvoorbeeld het aanbrengen van isolatie en binnenkleding.

De daken van het oude gedeelte van hal 1 zijn in slechte staat en dienen gedeeltelijk vervangen te worden. De overige daken zijn op enkele plaatsen lek en dienen gerepareerd te worden. Bovendien dienen ten behoeve van de toevoerkant van de toekomstige mechanische luchtbehandelingkasten enkele dakplaten vervangen te worden.

4.4 Bouwfysische analyse Konings Staal gebouw

Aan de hand van verschillende aspecten, zoals warmte, ventilatie, vocht, geluid en lichttoetreding zal het Konings Staal gebouw bouwfysisch geanalyseerd worden.

Warmte
Doordat de hellende daken bij de hallen zogenaamde koude daken zijn en isolatie onder het dak ontbreekt, kan veel warmte verdwijnen.

Alleen de platte gedeelten van de hallen hebben isolatie en een zogenaamde warm dak; d.w.z. dat de isolatielaag aan de buitenkant zit. Echter hebben de platte daken een relatief gering oppervlak zodat de hal in zijn geheel matig geïsoleerd is. Het warmteverlies door het dak is op te vangen door het te isoleren. In de winter dient opgelet te worden bij de verwarming van de hallen. Gezien de hoogte van de hallen zal de warmte lucht opstijgen en zodoende niet voldoende de verblijfszone op de grond verwarmen. In de zomer zal de oplopende temperatuur makkelijk te controleren zijn. De rolluiken kunnen dan (gedeeltelijk) opengezet worden. De stalen kolommen zijn van maaiveld tot circa 2 m hoogte, in de magazijnen en winkel/ magazijnbedeel welke aan de gevelzijde zijn, in de gevel geplaatst. Hierdoor ontstaan daar koudebruggen. Echter aangezien door de slechte isolatie het buitenklimaat nagenoeg het binnenklimaat volgt, vormen de koudebruggen nu bijna geen probleem. Echter als de binnentemperatuur hoger wordt dan de buitenklimaat en het binnenklimaat vochtiger wordt (zoals bij een discotheek), zullen de stalen kolommen binnen een lagere oppervlaktetemperatuur hebben dan de omgevingslucht door warmteverlies via de koudebruggen. Hierdoor zal condensatie optreden op het binnen staalprofiel en op ten duur corrosie ontstaan. De vochtproducerende functie, zoals de discotheek zorgt ervoor dat dit proces eerder en vaker plaatsvindt. Daarnaast zal ook condensatie op de stalen gordingen en spannen optreden met als gevolg vallende druppels.

Ventilatie
Weinig voorzieningen in de gevel en dak van het gebouw zijn aanwezig voor het ventileren van het gebouw; enkele luchtbehandelinginstallaties ventileren gedeelten van het gebouw (zie figuur 4.13, rechts).
Vocht
In de hallen en magazijnen zal nu geen horizontaal vochttransport door de constructie plaatsvinden aangezien het binnenklimaat nagenoeg het buitenklimaat volgt. Hierdoor is er geen dampspanningsverschil over de constructie aanwezig. Echter als men het binnenklimaat in de toekomst verwarmt tot circa 20 °C en de relativier luchtvochtigheid (door toevoeging extra vocht) omhoog gaat, dan zal er wel een dampspanningsverschil ontstaan en zal er op de gevels oppervlaktecondensatie kunnen optreden.

Voor het merendeel zal geen vochtoorslag optreden aangezien bijna het gehele geveloppervlak bestaat uit staal. Een gedeelte van de gevel is vervaardigd uit Durox-platen (bij magazijnen van maativeld tot circa 2 m hoogte). Echter heeft deze gevel een spouw en zodoende zal het binnentredende vocht verticaal afgevoerd worden. Er zal geen bodemvocht optreden aangezien de hallen en magazijnen op trasmazen zijn geplaatst. Deze trasmazen houdt het optrekkende vocht tegen, wat uit de bodem komt. Om te zorgen dat de relativier luchtvochtigheid minder zal variëren dan nu, zullen luchtbehandelingkasten geplaatst moeten worden, welke ook voor de nodige ventilatie kunnen zorgen.

Geluid
De voornaamste externe geluidssbelasting komt nu van de nabij gelegen spoorlijnen. Doordat de geluidssbelasting (treinen) een relatief lage frequentie heeft en de massa van de scheidingswanden (gevels) relatief laag is (vergelijk met een stenen muur), is de geluidsisolatie klein.
Aangezien de hallen en magazijnen voornamelijk bestaan uit staal, is daarnaast ook de akoestiek slecht. De nagalmtijd is te hoog voor de toekomstige functies. Deze dient verlaagd te worden door bijvoorbeeld het aanbrengen van geluidsabsorbeerende materialen.

Lichttoetreding

Figuur 4.13: Lichtstroken in hal 1 (boven) en in hal 2 (onder), luchtbehandelinginstallatie in winkel/magazijnruimte (rechts).
H5 Functioneel Ontwerp Evenementencomplex

Dit hoofdstuk behandelt het functioneel ontwerp van het multifunctionele evenementencomplex. Het functioneel ontwerp geeft een ontwerp weer welke precies geschikt is voor het doel (= multifunctionele evenementencomplex), een ontwerp dat zich uit in functies. Het functioneel ontwerp visualiseert waar de verschillende functies het beste gesitueerd kunnen worden. Dit is de basis voor verdere uitwerking van het ontwerp. Figuur 5.1 geeft de structuur van dit hoofdstuk weer. In paragraaf 5.1 wordt een functionele analyse (stap 1) toegepast om zodoende een functionele indeling te kunnen genereren (stap 2). Omdat het hier gaat om hergebruik van een bestaand gebouw, dient echter ook rekening gehouden te worden met de bestaande structuur van het gebouw. Daarom wordt in paragraaf 5.2 gekeken naar de structuur van het Konings Staal gebouw. Belangrijk voor de haalbaarheid van het project is ook de mate van hergebruik. Daarom zijn drie ruimtelijk ontwerpvarianten met verschillende mate van hergebruik bedacht (stap 3). Van de gekozen ruimtelijke ontwerpvarianten worden in paragraaf 5.4 ontwerpalternatieven weergegeven, waarbij de functionele indeling centraal staat (stap 4). Tenslotte wordt het gekozen concept uitgewerkt in de laatste paragraaf (stap 5).

Figuur 5.1: Volgorde bepaling functioneel ontwerp evenementencomplex.

5.1 Functionele Analyse

Elk gebouw heeft 4 hoofdfuncties¹:
1. Ruimtelijke organisatie van activiteiten
2. Klimaatregeling
3. Symboolfunctie
4. Economische functie

In deze paragraaf wordt de eerste hoofdfunctie uitgewerkt; Het gebouw dient door middel van een adequate verdeling van de beschikbare ruimte, gewenste activiteiten optimaal te ondersteunen, bijvoorbeeld door samenhangende activiteiten bij elkaar te situeren en efficiënt te verbonden, en elkaar storende activiteiten te scheiden. De andere hoofdfuncties worden in latere hoofdstukken nader beschreven. Een functionele analyse resulteert in een ruimtelijke organisatie van activiteiten. Deze analyse wordt gemaakt aan de hand van een procesanalyse, een functieanalyse en een relatie analyse.

5.1.1 Procesanalyse

Om inzicht te krijgen in het toekomstig gebruik van het evenementencomplex wordt een procesanalyse gemaakt: Hierbij worden de processen beschreven welke in het evenementencomplex zullen komen. De volgende bedrijfsprocessen zullen voorkomen binnen de organisatie MaVer.

¹ Bron: Hillier en Leaman (1976)
Primair proces
Het primaire proces van MaVer is het exploiteren van een multifunctioneel evenementencomplex.

Secundaire processen
- Evenementen organiseren
- Discoteek exploiteren
- Lounge ruimte leiden
- Congres organiseren
- Kinderdagverblijf leiden
- Jongerencafé runnen
- Internetcafé runnen
- Café leiden
- Restaurant runnen
- Grillrestaurant runnen
- Sushi-cocktailbar leiden
- Terras runnen
- Snackcorner exploiteren

Tertiaire processen
- Personeelsbeheer
- Financiële administratie
- Receptie/secretariaat
- Technisch onderhoud

5.1.2 Functieanalyse
Voor het doen plaatsvinden van processen cq. activiteiten worden functies gedefinieerd. De benodigde functies worden bepaald met behulp van een functieanalyse. Het vastleggen van functies gebeurt in een boomstructuur waarbij op verschillende niveaus de functies worden gesplitst. In feite representeren de onderdelen van de functieanalyse fysieke ruimte of oppervlak.

- Evenementenhal (5.940 m²)
In de zaal (3.600 m²) zullen grootschalige evenementen plaatsvinden met een capaciteit van maximaal circa 4.500 bezoekers. Dit geeft een bezettingsgraad van 0,9 m²/persoon.
De hal zal multifunctioneel inzetbaar moeten zijn middels het opsplitsen van de ruimte in kleinere delen door middel van afscheidingen.
Daarnaast dienen er hoogteverschillen gerealiseerd kunnen worden door middel van podia (440 m²). Tevens dienen er back stage ruimten (360 m²) te zijn voor de artiesten e.d. en een bergingsruimte voor aan/afvoer van geluid/ licht (340 m²) etc. Een extra toevoeging is de VIP ruimte (1.200 m² met een capaciteit van 500 personen) welke speciaal bedoeld is voor bezoekers die wat extra luxe willen. De VIP-ruimte bevindt zich op een verdieping in de hal en zal vooral tijdens avond evenementen in gebruik genomen worden. De evenementen zullen te onderscheiden zijn in de volgende drie categorieën:
1. Populaire evenementen
 Deze categorie omvat populairere evenementen die een groot publiek aanspreken, waarbij de bezettingsgraad minimaal 80% bedraagt. Voorbeelden hiervan zijn zijn popconcerten van nationale en internationale acts en grootschalige danceparties.
2. Zakelijke evenementen
 Dit type evenementen heeft als doelgroep individuele bedrijven en brancheorganisaties. Voorbeelden zijn grootschalige bedrijfsfeesten, bijeenkomsten van verenigingen, seminars en congressen.
3. Culturele evenementen
 In deze categorie vallen de evenementen die door en voor lokale en regionale verenigingen en stichtingen worden georganiseerd. Ze hebben voornamelijk als doelgroep de bevolking van Roosendaal en omstreken. Voorbeelden zijn festivals van lokale en regionale popbands, uitvoeringen van harmonieën, culturele manifestaties, exposities van beeldend kunstenaars en overige bijeenkomsten van lokale verenigingen.

2 Vergelijk waarden NEUFERT: Architects' Data, Auditorium; zitplaatsten > 0,5 m², staanplaatsen 0,5*0,45 = 0,225 m². Stadion; zitplaatsen 0,5*0,8 = 0,4 m², staanplaatsen; 0,5*0,4 = 0,2 m². Een mens die staat te dansen heeft gemiddeld een oppervlakte van 1,125*0,7 = 0,78 m² nodig.
Dans paleis (2.800 m²)
De functie dans paleis bestaat uit een discotheek en een lounge ruimte.

Discotheek (1.800 m²)
De discotheek heeft een capaciteit van rond de 2.000 bezoekers. De discotheek heeft als doelgroep de 20+ jongeren die op dit moment o.a. richting België trekken. De discotheek zal bestaan uit twee lagen; de begane grond heeft een vloeroppervlakte van 1.000 m² en de eerste verdieping van 800 m². Via een vide kunnen de bezoekers op de tussenverdieping kijken op de dansvloer op de begane grond (zie figuur 5.2).

Figuur 5.2: Discotheek met vide.

Loungeruimte (1.000 m²)
De loungeruimte is de ruimte welke gekoppeld kan worden aan de discotheek en een vervolg stap is vanuit de restaurants. De bezoekers kunnen hier relax praten en rusten op banken.

- Zakelijke diensten (1.500 m²)
Deze diensten houden zich bezig met de zakelijke markt en bestaat uit congresruimtes en een kinderdagverblijf.

Congresruimtes (700 m²)
De congresruimtes zullen net als de evenementenhal van grootte kunnen veranderen om zodoende op de wens van de klant in te kunnen spelen. Verder zullen deze ruimtes met laatste technologie worden uitgerust. Voorbeelden van evenementen zijn congressen/ seminars tot 350 personen, vergaderingen van verenigingen, presentaties van bedrijven, cursussen en trouwfeesten.

Kinderdagverblijf (800 m²)
Het kinderdagverblijf (300 m²) en buitenspeelplaats (500 m²) zal voornamelijk als toegevoegde waarde op het complex fungeren en niet alleen als een op zichzelfstaand element. Aangezien het complex in een industriegebied ligt, zal het kinderdagverblijf zich ook op de doelgroep werkend in dit gebied richten. Daarnaast zal het kinderdagverblijf gebruikt worden voor de bezoekers van het complex (bijvoorbeeld ouders die een beurs bezoeken en de kinderen bij het kinderdagverblijf brengen).

- Jeugdcentrum (200 m²)
Het jeugdcentrum speelt in op de situering van het Regionaal Opleidings Centrum in het SpoorHavengebied.

Jongerencafé (150 m²)
Het jongerencafé zal een ruimte worden waar de scholieren van Roosendaal e.o. kunnen relaxen, studeren en communiceren.

Internetcafé (50 m²)
Het internetcafé is in het verlengde van het jongerencafé. Hierbij wordt gelegenheid geboden aan de jongeren om in een informele ambiance schoolwerk te kunnen maken, waarbij de internetfaciliteiten als toegevoegde waarde dienen. Vooral de tussenuuren komen hiervoor in aanmerking maar ook buiten schooltijd.

- Eet/ drankgelegenheden (2.710 m²)
In het evenementencomplex komen verschillende eet- en/of drinkgelegenheden.
Café (160 m²)/ Sushi-cocktailbar (300 m²)
Doelgroepen zullen de bezoekers van de congresruimtes zijn maar ook zakenlui vanuit de Borchwerf, bezoekers die voor een totaal concept gaan (ententje, evenement en/of discotheekbezoek).

De sushi-cocktailbar is de plaats waar men vanuit de discotheek en terras/ loungeruimte sushi en cocktails kan consumeren. Deze vormt de overgang tussen de drukke sfeer van de discotheek en de relaxte sfeer op het terras en loungeruimte.

Restaurant (240 m²)/ Grillrestaurant (850 m²)
Het restaurant zal een verlenging zijn van de diverse overige functies, zoals zaal, congres en terras. Het grillrestaurant zal voor een breed publiek toegankelijk zijn en plaats bieden voor grillspecialiteiten. Gekookte rauwe vleesschalen kunnen op de grills op elke tafel door de bezoekers zelf klaargemaakt worden.

Terras (1.040 m²)
Het terras zal tweeledig moeten zijn. Als toevoeging op het bestaande en als iets op zichzelf staand d.m.v. bepaalde evenementen.

Snackcorner (120 m²)
De snackcorner bevindt zich op een strategisch gelegen locatie binnen het pand van waaruit zowel bezoekers van de evenementenhal, de discotheek evenals bezoekers van buitenaf terechtkunnen. De snackcorner zal twee functies krijgen:
1. Tijdens de uren van evenementen zal de snackcorner moeten fungeren als een snelle voedselverstrekker via een snackwand en een verkoopballe.
2. Tijdens de "normale" uren zal de snackcorner de functie uitoefenen van een luxe broodjeszaak.

Facilitaire Diensten (1.570 m²)
Voor de ondersteuning van de diverse functies dient er een foyer (650 m²) met garderobe te komen voor de entree van het multifunctionele evenementencomplex, een centrale (300 m²) en kleine keuken (60 m²) voor het bereiden van het eten. Daarnaast een kantoorgebouw (260 m²) waar de administratie en directie/ werkmaatschappij e.d. kan werken. Bovendien dienen er sanitaire voorzieningen (300 m²) aanwezig te zijn in het gehele complex.

De gewenste functies zijn samengevat en weergegeven in een functieanalyse figuur (zie figuur 5.3):

![Figuur 5.3: Functieanalyse multifunctioneel evenementencomplex.](image-url)
5.1.3 Relatieanalyse
Koppeling tussen de procesanalyse en fuctieanalyse brengt een relatieanalyse voort. Hierbij wordt een interactiematrix gemaakt waarin de onderlinge relaties tussen verschillende functies (van elk niveau) inzichtelijk worden. Om de mate van relatie tussen de functie aan te geven worden getallen toegekend. Een 2 voor een sterke relatie, een 1 voor een normale relatie en een 0 voor geen relatie. Tenslotte worden per functie een globale oppervlakte gegeven om zodoende een idee te geven van de fysieke afmetingen. Deze interactiematrix is gemaakt voor zowel het tweede als derde niveau. (zie figuur 5.4 en 5.5)

<table>
<thead>
<tr>
<th>Code</th>
<th>Functie</th>
<th>Opp [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evenementenhal</td>
<td>5940</td>
</tr>
<tr>
<td>B</td>
<td>Dans paleis</td>
<td>2800</td>
</tr>
<tr>
<td>C</td>
<td>Zakelijke diensten</td>
<td>1500</td>
</tr>
<tr>
<td>D</td>
<td>Facilitaire diensten</td>
<td>1570</td>
</tr>
<tr>
<td>E</td>
<td>Jeugdcentrum</td>
<td>200</td>
</tr>
<tr>
<td>F</td>
<td>Eet/ drankgelegenheden</td>
<td>2710</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.720 +</td>
</tr>
</tbody>
</table>

Figuur 5.4: Interactiematrix op tweede niveau.

<table>
<thead>
<tr>
<th>Code</th>
<th>Functie</th>
<th>Opp [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Podium</td>
<td>440</td>
</tr>
<tr>
<td>2</td>
<td>Berging</td>
<td>340</td>
</tr>
<tr>
<td>3</td>
<td>Backstage ruimte</td>
<td>360</td>
</tr>
<tr>
<td>4</td>
<td>VIP ruimte</td>
<td>1200</td>
</tr>
<tr>
<td>5</td>
<td>Zaal</td>
<td>3600</td>
</tr>
<tr>
<td>6</td>
<td>Discotheek</td>
<td>1800</td>
</tr>
<tr>
<td>7</td>
<td>Lounge ruimte</td>
<td>1000</td>
</tr>
<tr>
<td>8</td>
<td>Congresruimte</td>
<td>760</td>
</tr>
<tr>
<td>9</td>
<td>Kinderdagverblijf</td>
<td>500 + 300</td>
</tr>
<tr>
<td>10</td>
<td>Foyer</td>
<td>650</td>
</tr>
<tr>
<td>11</td>
<td>Keuken(s)</td>
<td>300 + 60</td>
</tr>
<tr>
<td>12</td>
<td>Kantoren</td>
<td>260</td>
</tr>
<tr>
<td>13</td>
<td>Sanitaire vz.</td>
<td>300</td>
</tr>
<tr>
<td>14</td>
<td>Jongercafé</td>
<td>150</td>
</tr>
<tr>
<td>15</td>
<td>Internetcafé</td>
<td>50</td>
</tr>
<tr>
<td>16</td>
<td>Café</td>
<td>160</td>
</tr>
<tr>
<td>17</td>
<td>Restaurant</td>
<td>240</td>
</tr>
<tr>
<td>18</td>
<td>Terras</td>
<td>1040</td>
</tr>
<tr>
<td>19</td>
<td>Snackcorner</td>
<td>120</td>
</tr>
<tr>
<td>20</td>
<td>Sushi-bar</td>
<td>300</td>
</tr>
<tr>
<td>21</td>
<td>Grill restaurant</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14720</td>
</tr>
</tbody>
</table>

Figuur 5.5: Interactiematrix op derde niveau.

Tijdens de analyse gaat het om het doorgronden van de ontwerpopgave. Hierbij worden de toetsingcriteria van het ontwerp ontwikkeld. Tijdens de synthese worden realiseerbare oplossingen bedacht. Dit gebeurt met behulp van de operationele in delingsmethode. Deze methode heeft als basis de interactiematrices, zodat de functies met de hoogste relaties ruimtelijk gezien dicht bij elkaar liggen. Het resultaat is een ruimtelijke indeling van het gebouw. Aan de hand van een aantal stappen beschreven in bijlage 11 wordt deze indeling verkregen.

Echter aangezien het ontwerp in een bestaand gebouw ingepast dient te worden, worden stramien over de bestaande plattegrond getekend, waarmee vervolgens in paragraaf 5.3 verschillende functionele ontwerpalternatieven worden ingepast.
5.2 Structuur

Om tot een functionele indeling te komen die aansluit bij de structuur van het Konings Staal gebouw is eerst de structuur van dit gebouw bepaald. Dit gebeurt aan de hand van een structuuranalyse van het gebouw (5.2.1) en te kijken naar de relaties met de omgeving (5.2.2). Vervolgens kan hiermee een conclusie gegeven worden betreffende de structuur met de invloed op het functioneel ontwerp.

5.2.1 Structuuranalyse Konings Staal gebouw

Een gebouw heeft de volgende structuurbepalende elementen:

- vorm
- materiaal
- maat
- schaal
- richting
- plaats

Deze onderdelen worden nu kort besproken met betrekking tot het Konings Staal gebouw.

- De vorm van het Konings Staal gebouw laat zich kenmerken als twee massa's welke loodrecht op elkaar staan. De ene massa is een lang rechthoekige blok (de hallen) en de andere massa is een kort rechthoekig blok (de magazijnen), welke beide opgebouwd zijn uit vlakken (zie figuur 5.6). Het kantoor en winkel/magazijn wijken daarvan af en zijn opgebouwd uit lijnen en vlakken.

- Het materiaal dat overwegend is toegepast is staal, waardoor een homogene geheel van het gebouw is ontstaan. Alleen het winkel/magazijn en kantoor zijn uit verschillende materialen opgebouwd.

- De maat van het gebouw is weergegeven in absolute maten. De spanten in de hallen en magazijnen liggen h.o.h. 5,00 m en de overspanning van de spanten in de hallen bedraagt respectievelijk 20 en 24 m. Bij de magazijnen is sprake van enigszins modulaire maten, aangezien de overspanning van één spant 3+5,00 m bedraagt. De maten in het kantoor en winkel/magazijn hebben geen regelmaat, alleen de vier spanten in het winkel/magazijn gedeeltelijk liggen h.o.h. 5,00 m.

- De schaal van het gebouw is een relatief begrip. Ten opzichte van de omgeving is de schaal enigszins grootschalig, aangezien de omgeving bestaat uit kleinschaligere elementen (huizen). Ook ten opzichte van het gebouw zelf is het gebouw grootschalig: grote vlakken zijn toegepast.

- De structuur van het gebouw is niet gericht en er is één orthogonaal assenstelsel gebruikt.

- De plaats van het gebouw is onderverdeeld op basis van maatmodul (5,00 m) en aangegeven door een hartlijnenraster. Echter is op sommige plaatsen van deze maatmodul afgeweken.

Figuur 5.6: Het Konings Staal gebouw bestaat uit twee massa's; de hallen en de magazijnen.

De textuur van het Konings Staal gebouw kan beschreven worden aan de volgende subjectieve termen:

3 Structuur van een gebouw kan worden gedefinieerd als 'het geheel van vorm, maat, schaal, functie, ruimte, en materialisering dat leidt tot een specifiek gebouw'.

4 De textuur is de structuur van het oppervlak.
Dit komt met name door het gebruik van gesloten vlakken en het grotendeels gebruik van het materiaal staal. Alleen de winkel/magazine en kantoor vormen hierop een uitzondering. Deze zijn door het gebruik van glas open en doorzichtig.

De structuur van het gebouw is te benaderen vanuit constructieve en historisch oogpunt. De spanten in de hallen en in de magazines bepalen, aangezien de constructie het gebouw is, grotendeels de structuur. Hiermee kan een stramien van 5,00 m verkregen worden, in de dwarsrichting. Op het kantoor en magazine is geen stramien te bepalen die logisch en eenduidig is. Met een historische blik kan gekeken worden naar de processen die toentertijd in het gebouw zich afspelen. Staalprofielen werden aangevoerd, verwerkt en opgeslagen. Tegenwoordig zijn de volgende elementen, welke deze processen kenmerken nog aanwezig: de betonnen balken, waarop de staalprofielen rustten en de kraanbanen, waarlangs de staalprofielen verplaatst werden. Hiermee kan een stramien in de lengterichting worden aangebracht (zie figuur 5.7).

![Diagram](image)

Figuur 5.7: Stramien bepaald aan de hand van constructieve en historische oogpunt.

5.2.2 Invloed omgeving op Konings Staal gebouw

Een gebouw kan niet worden gezien zonder zijn omgeving. Daarom worden de omgevingsbepalende factoren bepaald waar in de toekomst bij het functioneel ontwerp mee rekening dient worden te gehouden. Echter de omgeving zal tot 2011 enigszins veranderen. Verwacht wordt dat dan reeds begonnen is met het realiseren van Masterplan SpoorHaven. De kandijfabriek 'van Gilse' zou gesloopt kunnen zijn en op dat gehele terrein, welke grenst aan het
Konings Staal gebouw, kan dan al begonnen zijn met realisatie van de beoogde functies werk/woon elementen. Voor dit onderzoek is echter uitgegaan dat de nabije omgeving onveranderd is in de zin van omgevingsbepalende factoren. De uitbreiding van het RBC-stadion in de komende jaren zal hier geen grote invloed op hebben. De doorgaande sporen en spoorreplacment vormen, naast de gelegen rijtjeshuizen een belangrijke omgevingsfactor aan de oostkant. De Roosendaalse Vliet vormt ten westen een begrenzing van de omgeving. Het brak terrein aan de zuidkant en de verder gelegen suikerfabriek geeft daar een afbakening van de omgeving. Ten noorden speelt enigszins TPG post en Wubben een rol als omgevingsbepalende factor. Het RBC stadion vormt door zichtlijnen van de Industriestraat een lichte mate van invloed vanuit de omgeving op het Konings Staal gebouw (zie figuur 5.8).

Figuur 5.8: Omgevingsfactoren nabij het Konings Staal gebouw.

Kijkend naar de omgeving is te zien dat de westkant van het Konings Staal gebouw zich het beste leent voor het toekomstige entreegebied. De vanaf de Kade komende Roosendaalse Vliet en Oostelijke Havendijk zijn het verlengde van het stadscentrum. De doorgaande sporen, spoorreplacment en rijtjeshuizen aan de oostkant van het Konings Staal gebouw zorgen samen voor een gesloten entree voor het Konings Staal gebouw. Daarnaast zal op last van de gemeente de Industriestraat tijdens evenementen en voetbalwedstrijden van RBC afgelopen zijn voor verkeer, met uitzondering van bestemmingsverkeer, zoals artiesten. In het huidige ontwerp van het Konings Staal gebouw is dan ook de entree en parkeerplaatsen voor bezoekers van het Konings Staal gebouw aan de westkant gelegen.

Conclusie structuuronderzoek
Uit de analyse van de structuur van het Konings Staal gebouw blijkt dat:
- Het gebouw bestaat uit twee massa's. Deze twee rechthoekige gebouwdelen worden gevormd door de hallen gezamenlijk en de magazijnen gezamenlijk.
- De kraanbanen en betonnen balken geven de lengterichting van elk gebouwdeel weer en de constructieve elementen (spanten) geven de breedterichting van het gebouw weer. Hiermee kan een stramien worden aangebracht, welke bepalend is voor de structuur van het gebouw (zie bijlage 11). Het stramien afgeleid uit de betonnen balken is echter niet, vanwege zijn kleine h.o.h. afstand, geschikt voor een functionele indeling.
- Het kantoor en winkelmagazijn zijn aan de twee massa's toegevoegd, maar hebben geen echte structuurbepalende elementen, die behouden zouden moeten worden in het toekomstig ontwerp. Daarnaast hebben de elementen van het kantoor en winkel/ magazijn bijna allemaal verschillende afmetingen, waardoor herbestemming niet erg geschikt is. Dit geldt niet voor de spanten van het winkelmagazijndeelte.
- Doordat het gebouw door het gebruik van staal een homogene geheel is valt het gebouw niet op in de omgeving.
- De Roosendaalse Vliet en Oostelijke Havendijk geven de aanvoerroute vanuit de stad aan. Aan deze kant van het gebouw kan zodoende het entreegebied het beste gerealiseerd worden.
5.3 Varianten ruimtelijk ontwerp evenementencomplex

In deze paragraaf worden verschillende ruimtelijke ontwerpvarianten besproken welke betrekking hebben op het complex zelf. Het gaat hier met name om inzicht te krijgen in de haalbaarheid van de mate van hergebruik van het voormalige Konings Staal gebouw. Daarbij dient opgemerkt worden dat het bestaande kantoor en winkel/ magazijnsgedeelte in alle varianten gesloopt/hergebruikt worden, omdat zoals uit de vorige paragraaf is gebleken dat deze bouwdelen niet geschikt zijn voor totaal hergebruik. De stramienmaten van kantoor zijn verre van ideaal voor het inpassen van een functie. Daarnaast heeft het winkel/ magazijnsgedeelte een te lage hoogte om een tussenverdieping in toe te passen. Echter kunnen onderdelen (liggers en kolommen) van het winkel/ magazijnsgedeelte hergebruikt worden in het evenementencomplex.

Er zijn drie varianten bekeken die verschillend zijn in de mate van hergebruik. De eerste variant kijkt naar hergebruik van alleen de bestaande hallen en magazijnen zonder extra elementen. Bij de tweede variant komt daarnaast een verdiepingsvloer in de bestaande hallen en magazijnen. De laatste variant bestaat uit hergebruik van de bestaande hallen plus een tussenverdieping en een nieuwbouwgedeelte.

5.3.1 Variant 'Bestaand'

Voor de eerste variant geldt dat er alleen de aanwezige hallen en magazijnen gebruikt zullen worden voor het realiseren van een evenementencomplex (zie figuur 5.9). De buitenruimte wordt gebruikt voor parkeergelegenheid en terras. Hierbij zullen alleen de 'basis'-functies worden ondergebracht in het complex. Dit zijn de volgende functies met de daarbij behorende brutovervlakten (inclusief constructie, installatie en ontsluiting):

- Zaal met podium, 3.600 + 440 m²
- Berging en backstage ruimten, 340 + 360 m²
- Discotheek, 1.760 m²
- Restaurant, 240 m²
- Café, 160 m²
- Snackcorner, 120 m²
- Keuken, 300 m²
- Sanitaire voorzieningen, 150 m² +
- **Subtotaal** 7.318 m²
- Overige ruimte 182 m² +
- **Totaal bebouwde oppervlakte** 7.500 m²
- Parkeergelegenheid en terras, 6.570 + 600 m²

De totale binnenoppervlakte bedraagt zodoende 7.500 m² en buitenoppervlakte 7.170 m².

![Figuur 5.9: Maquette aanwezige hallen en magazijnen.](attachment:figuur5.9.png)

De functies zijn weergegeven in figuur 5.10 en 5.11, waarbij elke functie de brutovervlakte is beschreven. De zaal met podium ligt in het 'midden' van de hallen; De functies 'backstage ruimten en berging' en de functies 'restaurant, café, keuken en snackcorner' liggen als geluidsbuffer aan beide kanten van de zaal met podium. De magazijnen zullen omgebouwd worden als discotheek. De kant aan de Oostelijke Havendijk is het entreegebied vanuit de stad. Daarom worden hier het terras op het buitenterrein en restaurant, café en snackcorner in de hallen gerealiseerd.
Figuur 5.10: Lay-out variant 'Bestaand'.

Figuur 5.11: Doorsnede variant 'Bestaand'.

De opbrengsten en kosten van deze variant zijn weergegeven in tabel 5.1. Daarbij dient een kanttekening gemaakt te worden dat de opbrengsten per variant sterk zullen verschillen. Dit komt met name door de synergiefactor; Hoe meer toegevoegde functies in het complex aanwezig zullen zijn, hoe meer er relatief uitgegeven wordt en des te groter de opbrengsten zullen zijn. Daarnaast speelt ook de aanwezige oppervlakte een rol; hoe groter bijvoorbeeld de discotheek, hoe meer deze zich onderscheidt van de omliggende aanwezige discotheken en hoe meer bezoekers er in kunnen, wat leidt tot een relatief hogere opbrengst.

De opbrengsten zullen in de loop van de 5 jaren groeien met verschillende percentages. Door betere bedrijfsvoering en bekendheid zullen de opbrengsten in het tweede en derde jaar met 10% toenemen ten opzichte van het voorgaande jaar. Vervolgens zal vanaf het vierde jaar door optreden van verzadiging, de groei van de opbrengsten maar met 5% ten opzichte van het derde jaar toenemen en in het vijfde jaar nog maar met 7% ten opzichte van het vorige jaar. De exploitatiekosten zijn gebaseerd op gegevens van MaVer, evenals de opbrengsten en inrichtingskosten. De bouwkosten zijn gebaseerd op kantallen van bureau Evion Bouwconsult. De bouwkosten bevatten ook de sloopkosten en kosten voor het bouwrijp maken en bovendien ook de design & engineeringkosten (zoals honoraria). In de inrichtingskosten zijn ook de design & engineeringkosten verwerkt (zie ook bijlage 12). De bouwkosten en inrichtingskosten vormen samen de hoofdsom. Aangezien het gebouw en inrichting binnen 5 jaar (voor een groot deel) afgeschreven dienen te zijn, worden de bouw en inrichtingskosten afgeschreven per jaar als 20% van respectievelijk de totale bouwkosten en inrichtingskosten.
Daarnaast dient er ook een vergoeding voor de risicovolle investering en uitgestelde consumptie (van de investeerders) als kostenpost voor het gebouw en inrichting worden toegekend van een percentage van 5.5%. Na de 5 exploitatiejaren heeft het gebouw en inrichting ook een (geringe) restwaarde. De zaal (met podium) is samen met de discotheek de core-business van het complex. Van de totale exploitatie is het aandeel van de opbrengsten van de zaal circa 42% en de discotheek circa 29%. De overige 29% komt van de overige functies.

Tabel 5.1: Opbrengsten en kosten bij variant 1.

<table>
<thead>
<tr>
<th>Jaren</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoofdop</td>
<td>-10.624.000</td>
<td>-10.624.000</td>
<td>-10.624.000</td>
<td>-10.624.000</td>
<td>-10.624.000</td>
<td>-10.624.000</td>
</tr>
<tr>
<td>Opbrengsten bedrijfsvaardig</td>
<td>58.847.745</td>
<td>58.847.745</td>
<td>58.847.745</td>
<td>58.847.745</td>
<td>58.847.745</td>
<td>58.847.745</td>
</tr>
<tr>
<td>Restwaarde</td>
<td>20.000</td>
<td>20.000</td>
<td>20.000</td>
<td>20.000</td>
<td>20.000</td>
<td>20.000</td>
</tr>
<tr>
<td>Exploitatiekosten (incl. huur)</td>
<td>-41.518.390</td>
<td>-41.518.390</td>
<td>-41.518.390</td>
<td>-41.518.390</td>
<td>-41.518.390</td>
<td>-41.518.390</td>
</tr>
<tr>
<td>Totaal</td>
<td>0.625.350</td>
<td>0.625.350</td>
<td>0.625.350</td>
<td>0.625.350</td>
<td>0.625.350</td>
<td>0.625.350</td>
</tr>
<tr>
<td>IRR</td>
<td>24.44%</td>
<td>24.44%</td>
<td>24.44%</td>
<td>24.44%</td>
<td>24.44%</td>
<td>24.44%</td>
</tr>
<tr>
<td>Baten-kosten</td>
<td>1.13</td>
<td>1.13</td>
<td>1.13</td>
<td>1.13</td>
<td>1.13</td>
<td>1.13</td>
</tr>
</tbody>
</table>

Omdat een euro heeft over 5 jaar niet meer dezelfde waarde als nu, worden de jaaropbrengsten gedurende 5 jaar berekend met de formule:

\[
CW = \frac{EW}{(1 + r)^n}
\]

met CW is de contante waarde, EW is de eindwaarde (oftewel de jaarlijkse opbrengsten) en r is de nominale rente, welke op 5.5% is gesteld. De kasstroom zijn weergegeven in figuur 5.12. Boven de horizontale tijdslijn staan de baten weergegeven en onder de kosten. De optelling van de contante baten en kosten geeft de Netto Contante Waarde (NCW), welke een indicatie van de haalbaarheid van de variant weergeeft. Deze is voor variant 1 positief, wat betekent dat deze investering leidt tot winst van circa 6.825.400 euro. Daarnaast is ook in tabel 7.1 de Interne Rentetroet (IRR) en baten-kosten verhouding weergegeven. Deze hebben voor variant 1 respectievelijk de waarden 24.44% en 1.13. De IRR geeft de rentestandaard wanneer de NCW gelijk aan nul is. De baten-kosten verhouding dient hoger dan 1 te zijn, wil het rendabel zijn. Voor meer informatie zie subparagraaf 5.3.4.

Figuur 5.12: Kasstroom kosten en baten bij variant 1.

5.3.2 Variant 'Bestaand & tussenverdieping'
Deze variant heeft naast de aanwezige hallen en magazijnen ook (gedeeltelijk) een verdiepingsvloer (zie figuur 5.13). Zodoende kunnen meer functies in deze variant ondergebracht worden. Net als bij de vorige variant zal de buitenruimte gebruikt worden voor parkergelegenheid...
en terras. Echter zal een gedeelte gereserveerd worden als buitenspeelterrein voor het kinderdagverblijf. De aanwezige functies met de daarbij behorende bruto oppervlakten (inclusief constructie, installatie en ontsluiting) zullen zijn:

- Zaal met podium, 3.600 + 440 m²
- Berging en backstage ruimten, 340 + 360 m²
- Discotheek, 1.000 + 800 m²
- Kinderdagverblijf, 300 m²
- Restaurant, 240 m²
- Café, 160 m²
- Keuken, 300 m²
- Snackcorner, 400 m²
- Terras, 120 m²
- Lounge ruimte, 1.000 m²
- VIP ruimte, 1.200 m²
- Congres ruimten, 700 m²
- Kantoren, 260 m²
- Jeugdcentrum (jongerencafé en internetcafé), 150 + 50 m²
- Sanitaire voorzieningen, 300 m²

 Subtotaal

 11.720 m²
 +
 290 m²
 =
 Totaal bebouwde oppervlakte
 12.010 m²

- Parkeergelegenheid, terras en kinderspeelplaats
 3.980 + 600 + 500 m²

De totale binnenoppervlakte bedraagt zodoende 12.010 m² en buitenoppervlakte 5.080 m².

Figuur 5.13: Maquette aanwezige hallen en magazijnen plus tussenverdieping.

Deze functies zijn weergegeven in figuur 5.14 en 5.15, waar ook de bruto oppervlakte is weergegeven. Ook hier ligt de zaal met podium tussen de functies 'backstage ruimten en berging' en de functies 'restaurant, café, keuken en snackcorner' met oog op buffering van geluid. De discotheek, gelegen in de magazijnen, is nu verdeeld over twee lagen. In de magazijnen is nu ook het kinderdagverblijf gesitueerd. Het buitengedeelte van het kinderdagverblijf ligt op het buitenterrein aan de Industriestaat. Op de eerste verdieping van de magazijnen zijn naast de discotheek ook het jeugdcentrum, de kantoren en een deel sanitaire voorzieningen gelegen. In de hallen zijn congres ruimten gelokaliseerd boven de berging/ backstage ruimten. De VIP-ruimte is in het midden van de zaal op een verdieping aangebracht, zodat goed zicht op het podium verkregen wordt. De lounge ruimte en een deelterrass zijn aan de Oostelijke Havendijk-zijde op een verdieping gelegen.
Figuur 5.14: Lay-out variant 'Bestaand & tussenverdieping'.

Figuur 5.15: Doorsnede langs zijde hallen variant 'Bestaand & tussenverdieping'.

De opbrengsten en kosten van deze variant zijn beschreven in tabel 5.2 en bevatten dezelfde componenten als beschreven bij variant 1.

Tabel 5.2: Opbrengsten en kosten bij variant 2.

<table>
<thead>
<tr>
<th>JAAR</th>
<th>NCW</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoofdloos</td>
<td>€</td>
<td>-16.093.300</td>
<td>€</td>
<td>-18.093.300</td>
<td>€</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reclame</td>
<td>€</td>
<td>20.000</td>
<td>€</td>
<td>14.000</td>
<td>€</td>
<td>17.000</td>
<td>€</td>
</tr>
<tr>
<td>Energiekosten (excl. haal)</td>
<td>€</td>
<td>-5.400.200</td>
<td>€</td>
<td>-4.600.200</td>
<td>€</td>
<td>-3.800.200</td>
<td>€</td>
</tr>
</tbody>
</table>

De NCW bedraagt voor deze variant een positieve waarde van circa 9.012,240 euro. De IRR is 20,52% en de baten-kostenverhouding 1,12, wat dus een positieve invloed geeft op de haalbaarheid van deze variant. De kasstammen zijn weergegeven in figuur 5.16, waarbij de baten boven de horizontale tijdslijn staan en de kosten eronder.
5.3.3 Variant 'Bestaand, nieuwbouw & tussenverdieping'

In de laatste variant wordt naast de aanwezige hallen en magazijnen ook gebruik gemaakt van nieuwbouw (zie figuur 5.17). Hierbij wordt ook een verdiepingsvloer (gedeeltelijk) gerealiseerd. Het overige gebieden buitenterrein zal nu gebruikt worden voor buitenspeelterrein als verlengde van het kinderdagverblijf en parkeergelegenheid. De volgende functies met daarbijhorende brute oppervlakten (inclusief constructie, installatie en ontsluiting) worden in het complex ondergebracht:

- Zaal met podium, 3.600 + 440 m²
- Berging en backstage ruimten, 340 + 360 m²
- Discotheek, 1.000 + 800 m²
- Lounge ruimte, 1.000 m²
- VIP ruimte, 1.200 m²
- Kantoren, 260 m²
- Kinderdagverblijf, 300 m²
- Terras, 600 + 400 m²
- Congres ruimte, 700 m²
- Centrale keuken, 300 m²
- Kleine keuken, 60 m²
- Grill restaurant, 850 m²
- Sushi-cocktail bar, 300 m²
- Snackcorner, 120 m²
- Sanitaire voorzieningen, 300 m²
- Foyer, 650 m²
- Jeugdcentrum, 200 m²
- Café, 160 m²
- Restaurant, 240 m²
 Subtotaal 14.180 m²
- Overige ruimte 350 m²
 Totaal bebouwde oppervlakte 14.530 m²
- Kinderspeelplaats en parkeergelegenheid 500 + 2630 m²

De totale binnenoppervlakte bedraagt zodoende 14.530 m² en buitenoppervlakte 3.130 m².
Figuur 5.17: Maquette aanwezige hallen en magazijnen met tussenverdieping plus nieuwbouw.

In figuur 5.18 is de functionele lay-out van de beschreven functies weergegeven, waarbij elke functie de brutopoppervlakte zijn beschreven. Een doorsnee van de laagsgestructuur van de hallen is weergegeven in figuur 5.19. Bij deze variant liggen het grillrestaurant, de sushicoctailbar en een extra terras 5 op de eerste verdieping van de nieuwbouw. De congres ruimten, foyer en gedeeltelijk het jeugdcentrum zijn gelegen in de begane grond van het nieuwbouwgedeelte. De kantoren liggen hier op de tussenverdieping boven de berging en backstage ruimte. De overige functies zijn net zoals de vorige variant gelegen.

Figuur 5.18: Lay-out 'Bestaand, nieuwbouw & tussenverdieping'.

Figuur 5.19: Doorsnede variant 'Bestaand, nieuwbouw & tussenverdieping'.

De opbrengsten en kosten van deze variant zijn beschreven in tabel 5.3 en bevatten dezelfde componenten als beschreven bij variant 1 en 2. Daarbij is de NCW ongeveer 21.784.700 euro, de IRR 31,83% en de baten-kostenverhouding 1,22.

5 Het terras zal in de zomermaanden overdag elke dag geëxploiteerd worden en vervolgens ook 's avonds in het weekend.
Tabel 5.3: Opbrengsten en kosten bij variant 3.

<table>
<thead>
<tr>
<th>JAREN</th>
<th>NCW</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoofsdienst</td>
<td>-23.449.800</td>
<td>€</td>
<td>-23.449.800</td>
<td>€</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restwaarde</td>
<td>€ 60.000</td>
<td>€</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Baten-kosten | 1.22 |

De kasstroom van deze variant is weergegeven in figuur 5.20. Te zien is dat na circa 2.5 jaar het projectsaldo positief wordt.

Figuur 5.20: Kasstroom kosten en baten bij variant 3.

5.3.4 Keuze ruimtelijk ontwerpvariant

De drie beschreven varianten zullen aan de hand van een Multi-Criteria analyse met elkaar vergeleken worden.

Men kan onderscheid maken tussen kwalitatieve en kwantitatieve criteria. In de Multi-Criteria Analyse worden de kwalitatieve en kwantitatieve criteria buiten elkaar gehouden. De volgende criteria zijn geformuleerd:

1. Functionaaltelt
2. Veiligheid
3. Constructie
4. Comfort
5. Kosten

De eerste 4 criteria zijn van kwalitatieve aard. De laatste is een kwantitatieve criterium.

Functionaaltelt

Bij het criterium functionaaltelt zijn de ontwerpvarianten beoordeeld op de functionaliteit van het complex in zijn geheel. Zijn de functies met onderlinge relaties voldoende geclusterd? Zijn de (loop)routes geschikt?

Veiligheid

Het criterium veiligheid toetst de ontwerpvarianten op de veiligheid van de bezoekers in het complex. Zijn er voldoende (nood)uitgangen? Is het duidelijk voor de bezoekers waar zij zich bevinden en zodoende weten waar zij naar toe moeten in geval van nood?
Constructie

Het criterium constructie geeft waarden aan de ontwerpvarianten in welke mate deze extra constructieonderdelen vereisen. Hoe meer constructieonderdelen vereist zijn door de functionele en ruimtelijke indeling (door nieuwbouw), hoe meer extra fonderingen en/ of ander maatregelen zoals stabiliteitsvoorzieningen getroffen dienen te worden.

Comfort

Het criterium comfort geeft aan in hoeverre de functies comfortabel gelegen zijn. Liggen bij de drankgelegenheden op korte afstand sanitaire voorzieningen?

Kosten

Het criterium kosten is bij deze analyse vooral belangrijk aangezien het complex maar 5 jaar op deze locatie gevestigd is. Hoe hoger de kosten, hoe minder de haalbaarheid van het ontwerp alternatief. Daarbij dient wel onderscheid gemaakt te worden tussen de kosten die in het begin gemaakt worden, maar vervolgens door hergebruik meegenomen kunnen te worden naar fase 2 (definitieve bestemming) en de kosten die in 5 jaar afgeschreven zijn. Zoals gezegd wordt het criteria kosten niet meegenomen bij de (kwalitatieve) waardering. Echter zal deze apart meegenomen worden in de uiteindelijke afweging.

Bij de evaluatie worden de verschillende alternatieven met elkaar vergeleken op basis van verschillende criteria. Niet elk criterium weegt even zwaar en daarom zijn weegfactoren toegekend aan elk criterium, door deze onderling te vergelijken. (zie tabel 5.4). De methode die gebruikt wordt, is als volgt: wanneer het criterium in de eerste kolom belangrijker is dan het desbetreffende criterium in de eerste rij, dan wordt in de gezamenlijke hokje een 1 neergezet. Is het 'rijcriterium' belangrijker dan wordt in het gezamenlijke hokje een 0 geplaatst. Hieruit blijkt dat het criterium 'Functionalliteit' ten opzichte van de andere criteria zwaarder weegt. Vervolgens is aan elk criterium een waarderingsgewicht gegeven, waaruit de onderlinge verhoudingen van belangrijkheid uit voort komen.

Tabel 5.4: Weegfactoren criteria.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Functionalliteit</th>
<th>Veiligheid</th>
<th>Comfort</th>
<th>Constructie</th>
<th>Totaal</th>
<th>Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functionalliteit</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3/6</td>
</tr>
<tr>
<td>Veiligheid</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1/6</td>
</tr>
<tr>
<td>Comfort</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1/6</td>
</tr>
<tr>
<td>Constructie</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1/6</td>
</tr>
<tr>
<td>Totaal</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Bij elk criterium wordt vervolgens getoetst in hoeverre de varianten aan het bepaalde criterium voldoen. Door het toekennen van 'voldoeningcijfers', welke een bereik van 0 tot 10 heeft, waarbij '10' staat voor een perfecte voldoening en een '0' voor zeer ongewenst. Door vervolgens de gewichten (= gewicht) met de overeenkomstige voldoeningcijfers (= score) te vermenigvuldigen, wordt kolom 'subtotaal' verkregen. Opsomming van deze kolom per variant geeft de waardering van elke variant op de waarderingschaal weer.

Daarnaast zijn per variant de kosten en opbrengsten per functie met elkaar vergeleken. Zoals gezegd verschillen de opbrengsten per functie per variant. Daarom wordt naast de kwalitatief beschreven Multi-Criteria analyse een kwantitatieve vergelijking van de (bouw)kosten en opbrengsten gegeven.

Tabel 5.5: Multi-Criteria analyse varianten plus kosten en opbrengsten.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Gewicht</th>
<th>Variant 1 Score</th>
<th>Subtotaal (G+S)</th>
<th>Variant 2 Score</th>
<th>Subtotaal (G+S)</th>
<th>Variant 3 Score</th>
<th>Subtotaal (G+S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functionalliteit</td>
<td>1/2</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>4.5</td>
</tr>
<tr>
<td>Veiligheid</td>
<td>1/6</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>1.17</td>
<td>8</td>
<td>1.33</td>
</tr>
<tr>
<td>Constructie</td>
<td>1/6</td>
<td>9</td>
<td>1.5</td>
<td>7</td>
<td>1.17</td>
<td>6</td>
<td>1.33</td>
</tr>
<tr>
<td>Comfort</td>
<td>1/6</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>1.17</td>
<td>8</td>
<td>1.33</td>
</tr>
<tr>
<td>Totaal (€)</td>
<td>1</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>8.17</td>
<td>8.17</td>
</tr>
<tr>
<td>Kosten (€)</td>
<td></td>
<td>51.992,360</td>
<td>72.011,140</td>
<td>99.780,240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opbrengsten (€)</td>
<td></td>
<td>58.967,750</td>
<td>81.173,380</td>
<td>121.714,920</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCW (€)</td>
<td></td>
<td>6.825,400</td>
<td>9.162,240</td>
<td>21.934,680</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRR (%)</td>
<td></td>
<td>24.44%</td>
<td>20.52%</td>
<td>31.83%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosten-Baten</td>
<td></td>
<td>1,13</td>
<td>1,12</td>
<td>1,22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Te zien uit tabel 5.5 blijkt variant 3 uit oogpunt voor de 'spreker' het geschiktste ruimtelijk ontwerp. Uit oogpunt van absolute kosten blijkt variant 1 als beste uit de bus te komen. Daarnaast is per variant beschreven wat de Netto Contante Waarde is, de interne rentevoet en de batenkosten verhouding. Daarbij blijkt dat variant 3 bij elke methode als beste uit de bus komt 6. Variant 2 is in beide opzichten ongeschikt dan de andere twee varianten. Omdat de werkelijke kosten en baten anders kunnen zijn dan voorspeld is in tabel 5.6 een risicoprofiel van elke variant weergegeven. Per variant is een bepaalde toename/afname toegekend aan elke kosten/batenpost. Daarbij is uitgegaan van een hoger percentage naarmate het risico groter is. Vandaar dat variant 3 een grotere bandbreedte heeft dan variant 1.

Tabel 5.6: Risicoprofiel varianten (Scenario slecht = lage kosten - hoge opbrengsten, scenario goed = hoge kosten - lage opbrengsten.

Als de investeerder een grote risicoversie heeft zal hij meer geneigd zijn voor variant 1 te gaan, aangezien dit de kleinste risicobandbreedte heeft (zie figuur 5.21). Echter wanneer hij risico durft en kan lopen dan is variant 3 de geschikte optie. Variant 3 geeft uiteindelijk absoluut een veel groter positief resultaat dan variant 1.

Figuur 5.21: Risicoprofiel varianten. Bandbreedte is waarde scenario 'goed' minus 'slecht'.

Op basis van de beschreven conclusies en op advies van MaVer wordt het ruimtelijk ontwerp van variant 'Bestaand, nieuwbouw & tussenverdieping' gebruikt als basis voor uitwerking in de volgende paragraaf.

5.4 Functionele ontwerpalternatieve evenementencomplex

De ruimtelijke ontwerpvariant 'bestaand, nieuwbouw & tussenverdieping' wordt in deze paragraaf verder uitgewerkt. Hiertoe zijn drie verschillende functionele ontwerpen gemaakt. Allereerst komen echter aandachtspunten aan de orde, waarmee bij de functionele ontwerpalternatieven rekening dient te worden gehouden.

6 Een opmerking dient gemaakt te worden bij de IRR; hier is ook de vergoeding voor risico en uitgestelde consumptie bij inbegrepen.
5.4.1 Aandachtspunten ontwerp alternatieven
Met de functionele analyse, waaruit de verschillende relaties tussen de functies naar voren kwamen, kunnen ontwerp alternatieven gemaakt worden, rekening houdend met de bestaande structuur. Er zijn echter nog tal van mogelijkheden om de functies te rangschikken in een ontwerp. Daarom worden nu aandachtspunten beschreven, waarvan elk ontwerp alternatief aan moet voldoen, om zodoende realistische oplossingen te krijgen.

Openingstijden functies

Figuur 5.22: Scenario van openingstijden en maximaal aanwezige bezoekers tijdens een zaterdag.

Geluid
Aangezien zowel externe als interne geluidsbelasting zal gaan optreden in het multifunctionele evenementencomplex, dient op dit aspect gekeken te worden bij de functionele indeling. De externe geluidsbronnen die nu aanwezig zijn, zijn de doorgaande sporen plus spoorreiniging en het RBC stadion. De eerste geluidsbron is afkomstig van de treinen en zal vooral 's nachts en weekends (wanneer vooral goederentreinen rijden) voor geluidshinder zorgen. Daarnaast zal er tijdens voetbalwedstrijden van RBC (meestal in het weekends) geluidsoverlast plaatsvinden. Vandaar dat de oostkant van het Konings Staal terrein niet geschikt is voor geluidsgevoelige functies. De interne geluidsbelasting zal zowel voor de geluidsgevoelige functies in het complex als voor de nabije omgeving (woningen) hinder opleveren. Vandaar dat de oostkant van het terrein het minst geschikt is voor geluidsproducerende functies. Echter kan door middel van goede geluidsisolatie veel hinder van zowel buitenaf als van binnen voorkomen worden. Nettemin dient er wel rekening gehouden te worden bij de functionele indeling.

Daglicht
Tevens speelt ook daglicht een rol bij de toekomstige indeling van het evenementencomplex. Zo is de zuidkant van het terrein de meest geschikt voor functies welke overdag plaatsvinden, zoals het terras, kinderdagverblijf, foyer en restaurant. De oostkant is het geschiktst voor functies welke in de ochtend open zijn, zoals het kinderdagverblijf en foyer. In deze zomer zal 's middags en 's avonds de westkant van het terrein volop zon en daglicht hebben, waardoor de functies terras, restaurant en lounge ruimte aan deze zijde van het terrein het beste gelegen kunnen zijn. De noordkant is het geschiktst voor functies die niet noodzakelijk daglicht nodig hebben, zoals de functie podium, berging, backstage ruimte en discotheek.
Keuken
In het complex dienen verschillende functies ondersteund te worden door de keuken. Dit zijn de volgende functies:
- Café
- Restaurant
- Snackcorner
- Evenementenhal
- Congresruimten
- Jongerencafé
- Sushi-cocktailbar
- Grillrestaurant
- Terras

Functioneel gezien is het wenselijk dat deze functies nabij de keuken gelegen zijn. Echter aangezien bij de functies Sushi-cocktailbar en Grillrestaurant bijna alleen koude gerechten worden geserveerd kunnen deze functies ook door een kleine keuken worden bediend.

Zicht in het complex
Een probleem dat in het ruimtelijk concept naar voren komt is de middelste kolomrij in de hallen. Deze bestaat nu uit gedeeltelijk drie en twee kolommen per stramien. Hierdoor wordt het uitzicht van de ene naar de andere hal sterk beperkt. Een oplossing kan zijn de kolommen om de kolommen weg te halen tot een bepaalde hoogte, waardoor een beter doorkijk bestaat (zie figuur 5.23, figuur 5.24 en bijlage 13). Door middel van trekstaven worden de normaalkrachten op de kolom overgebracht naar de naastliggende kolommen. Zodoende kan de gehele hal gebruikt worden alsook voor onder andere popconcerten plaatsvinden. Echter dit visueel probleem zal alleen bij de nationale popconcerten plaatsvinden. Dit is een kostbare ingeving (6.250 euro's per nieuwe vakkijker, wat leidt tot een totaal van, wanneer 8*2 kolommen werden weggehaald, 8* 6.250 = 50.000 euro's) en wordt daarom niet in eerste instantie toegepast. Een andere (goedkopere) oplossing is dan een podium in de lengterichting van de hal te plaatsen.

In de volgende subparagrafen worden drie ontwerpalternatieven beschreven, waarbij zoveel mogelijk rekening is gehouden met de aangestipte aandachtspunten. Tevens zijn aan de hand van referenties van herbestemde hallen in leisurevoorzieningen de mogelijkheden tot een geschikte indeling van een evenementencomplex bekeken en toegepast in de volgende ontwerpalternatieven en uitwerking. Zie voor meer informatie van reeds herbestemde hallen bijlage 14. In subparagraaf 5.4.5 wordt op basis van kwalitatieve criteria één ontwerpalternatief gekozen en uitgewerkt in de volgende paragraaf.

![Diagram](attachment:diagram.png)

Figuur 5.23: Overzicht zichtlijnen hallen (plattegrond) met voorstel vergroten van de zichtlijnen in de langsdoorsnede.
5.4.2 Ontwerpalternatief 1
Het eerste ontwerp alternatief heeft de foyer over de gehele lengte van de nieuwbouw aan de Oostelijke Havendijk. Vanuit de foyer zijn de congresruimtes, de toiletten, het restaurant en de evenementenhal direct en gelijkvloers te bereiken. Via een aparte ingang is overdag het jeugdcentrum (jongerencafé en internetcafé) en 's avonds de discotheek te bereiken. Het kinderdagverblijf is aan de kant van de Industriestraat gelegen; een buitenspeelplaats ligt aan het voormalige magazijn. Het toilettenblok naast het kinderdagverblijf is geschikt voor zowel de discotheek ('s avonds), als de evenementenhal en kinderdagverblijf (overdag). Het restaurant en café zijn allebei gelegen in de bestaande hal 1 aan de Oostelijke Havendijk. Zodoende hebben deze functies zicht op de Roosendaalse Vliet. Naast deze functies ligt de keuken die deze twee functies bedient. Bovendien heeft de keuken een directe verbinding met de naastgelegen snackcorner. Deze snackcorner bedient zowel consumenten welke van de Oostelijke Havendijk komen als de bezoekers in de hal. In het midden van de hallen bevindt zich de evenementenhal. Deze is ontsluitbaar via de hoofdgang welke door heel het complex loopt, vanaf de foyer tot aan het toilettenblok nabij het kinderdagverblijf. De berging en backstageruimtes bevinden zich achter het podium. Via twee aparte uitgangen zijn deze functies bereikbaar voor (vracht)auto's. Zodoende kan geluidsapparatuur etc. geleverd/ afgevoerd worden en artiesten aankomen en weggaan. Op de eerste verdieping bevindt zich boven de foyer en in het platte gedeelte van de hallen een terras met uitzicht op de Roosendaalse Vliet. Dit terras is zowel een verlenging van de loungeroom als het grillrestaurant en de sushi-cocktailbar. Het grillrestaurant is via trappen en lift vanuit de foyer.

Figuur 5.25: Functioneel en ruimtelijk ontwerpalternatief 1.

Ruimtelijk gezien wordt alleen een verdieping aan de westelijke zijde van de hallen aangebracht (zie figuur 5.25). Tevens wordt een verdieping in de magazijnen gerealiseerd. De nieuwbouw vindt alleen plaats waar op dit moment het kantoor en winkel/magazijn gelegen zijn en bestaat uit twee bouwlagen.

5.4.2 Ontwerpalternatief 2
Bij het tweede alternatief is de foyer gelegen tussen de congresruimte en de bestaande hallen. Zodoende is de foyer een centrale ontvangstruimte waarin zowel de congresruimtes, het restaurant/café, de evenementenhal, de toiletten als het grillrestaurant, de sushi-cocktailbar, terras en lounge ruimte direct visueel contact is. Net als bij ontwerpalternatief 1 is het jeugdcentrum en discotheek via een aparte ingang bereikbaar. Naast de discotheek is het kinderdagverblijf gelegen en toilettenblok, welke allen via de hoofdgang toegankelijk zijn. Het
restaurant, café, keuken en snackcorner heeft net zoals alternatief 1 ligging aan de Oostelijke Havendijk/ Roosendaalse Vliet. De ligging van het podium is in dit alternatief aan de noordzijde van de hallen. Zodoende wordt een beter visuele doorkijk tussen de hallen onderling verkregen en kunnen meer bezoekers direct de artiesten zien. De berging en backstageruimtes zijn net als bij alternatief 1 aan de noordzijde van de hallen gelegen. Op de eerste verdieping van de nieuwbouw is met direct uitzicht op de Roosendaalse Vliet een terras gelegen met daarbij het grillrestaurant en de sushi-cocktailbar. In het gedeelte van de hallen met plat dak (as 2-4) is als verlengde van de loungeroom een tweede terras aanwezig. De discotheek heeft ook weer een vide en op deze verdieping kan men naar de sushi-cocktailbar, terras en loungeroom. De VIP ruimte is nu aan de oostelijke zijde van de hallen op de eerste verdieping aangebracht. Zodoende hebben de VIP-klanten een goed uitzicht op het podium. Naast de VIP ruimte zijn kantoren gelegen. Deze twee functies zijn via een trappenhuis toegankelijk.

Figuur 5.26: Functioneel en ruimtelijk ontwerp alternatief 2.

Aan de ruimtelijke schets (zie figuur 5.26) is te zien dat zowel op de nieuwbouw, als in de magazijnen als op twee plaatsen in de hallen een verdieping wordt gerealiseerd.
5.4.3 Ontwerpalternatief 3
Het laatste en derde alternatief heeft net zoals alternatief 2 de foyer tussen de congresruimtes en het restaurant in. De discotheek en jeugdcentrum is ook hier via een aparte toegang bereikbaar. Aan de oostzijde van de discotheek is het kinderdagverblijf en toilettenblok aanwezig. Het restaurant, café, keuken en snackcorner zijn allen in de hallen aan de westelijke zijde gelegen. De keuken heeft in dit alternatief een direct verbinding met de noordelijke zijde van de hallen voor toever van producten. Het podium is gelokaliseerd aan de oostzijde van de hallen, waaraan de berging en backstageruimtes zitten (zoals bij alternatief 1). Op de eerste verdieping is het eerste terras op de congresruimtes gelegen. Op de foyer is geen functie gelegen zodat deze tot 2 lagen hoog opgetrokken kan worden. Hierdoor wordt een meer ruimtelijke gevoel in de foyer gecreëerd. Het tweede terras is in het platte gedeelte van de hallen gerealiseerd. Deze is weer een verlenging van de loungeraumte. Het grillrestaurant en sushi-cocktailbar zijn gedeeltelijk in de magazijnen op een verdieping geplaatst. Daarnaast zijn de vides van de discotheek gelegen. Via de hoofdgang op de eerste verdieping is in het midden van de hallen de VIP ruimte te bereiken. Deze L-vormige VIP ruimte is dichtbij het podium gelegen. Op de locatie van de berging en backstageruimtes zijn op een verdieping kantoren aanwezig.

Figuur 5.27: Functioneel en ruimtelijk ontwerpalternatief 3.

Te zien valt op het ruimtelijk ontwerp van figuur 5.27 dat op drie plaatsen in de hallen een verdieping wordt aangebracht. In het nieuwbouwgedeelte wordt gedeeltelijk een verdieping aangebracht. In de magazijnen is een vide op de verdieping in de discotheek aangebracht.
5.4.5 Keuze ontwerpalternatief

In deze subparagraaf worden de alternatieven getoetst aan verschillende criteria waardoor het geschiktste functioneel ontwerpalternatief naar voren komt. De criteria zijn hetzelfde als bij de keuze voor de ontwerpvariant in paragraaf 5.3, maar hebben een specifieker omschrijving.

Bij de evaluatie worden de verschillende ontwerpalternatieven met elkaar vergeleken op basis van verschillende criteria. Niet elk criterium weegt even zwaar en daarom zijn weegfactoren toegekend aan elk criterium, zoals beschreven bij de varianten (zie tabel 7.4). Hieruit blijkt dat het criterium Functionaliteit ten opzichte van de andere criteria zwaarder wegen. De ontwerpalternatieven zullen per criterium kwalitatief met elkaar vergeleken worden.

Functionaliteit

Alternatief 1 scoort op criterium functionaliteit zwak. De redenen hiervoor zijn de niet-centrale ligging van de foyers, de relatieve grote afstand van VIP ruimte tot het podium en geen duidelijke looproutes. Alternatief 3 scoort op dit criterium beter dan alternatief 1 en 2. De centrale foyer met een hoogte van twee lagen en de aparte ligging van de kantoren zorgt ervoor dat alternatief 3 het meest functioneel is ingedeeld.

Veiligheid

Alternatief 1 heeft geen doorlopende 'hoofdgang' en zodoende geen duidelijk ontsluitingsroute. Alternatief 2 en alternatief 3 hebben beide een doorlopende 'hoofdgang'. Echter heeft alternatief 3 in de foyers overzicht over meer functies dan bij alternatief 2 en scoort daarom op aspect beter. De bezoekers weten zodoende precies waar men zich bevindt in het gebouw en in geval van nood de juiste weg kiezen.

Comfort

Alternatief 1 scoort beter voor het criterium comfort, aangezien de functies op de eerste verdieping dichter op elkaar liggen en dus makkelijker onderling bereikbaar zijn. Echter is de ligging van de kantoren naast de discotheek niet echt comfortabel. Alternatief 2 heeft de VIP ruimte direct naast het podium, wat voor de VIP's comfortabeler is dan in alternatief 1. De kantoren liggen in dit alternatief naast de VIP ruimte, waardoor in de avonduren deze kantoren niet erg geschikt zijn. Alternatief 3 heeft een aparte ligging van de kantoren, daarnaast hebben de VIP's een centrale plaats in de hal.

Constructie

Alle drie de alternatieven hebben dezelfde oppervlakte van een verdieping. Echter de ligging van de verdiepingsonderdelen verschilt in elk alternatief. Hoe meer apart verdiepingsonderdelen hoe meer voor elk deel aparte voorzieningen moet worden getroffen voor de stabiliteit, afwerking etc. Alternatief 1 scoort op dit onderdeel relatief het gunstigst en alternatief 3 het slechtst.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Ontwerpalternatief</th>
<th>Alternatief 1</th>
<th>Alternatief 2</th>
<th>Alternatief 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functionaliteit</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Veiligheid</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Comfort</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Constructie</td>
<td>+</td>
<td>-</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

De beoordeling van de ontwerpalternatieven is samengevat in tabel 5.6. Op basis van het criterium functionaliteit blijkt alternatief 3 het geschiktste ontwerp te zijn. Ook bij criterium veiligheid scoort alternatief 3 het beste. Dit geldt ook voor het criterium comfort. Bij het criterium constructie komt alternatief 1 het beste naar voren. Rekening houdend met de weegfactoren kan men concluderen dat alternatief 3 het geschiktst is en zal daarom uitgewerkt worden.

5.5 Uitwerking functioneel ontwerp

In deze paragraaf wordt het gekozen functioneel ontwerp uitgewerkt. Daarbij worden de looproutes verder bekeken en het aantal toiletten en garderobebuizen bepaald. Vervolgens is gekeken naar de parkeergelegenheid rondom het evenementencomplex.
Looproutes
Een belangrijk aspect van het voorlopig ontwerp zijn de looproutes in het complex. De bezoeker dient bij entree gelijk te zien waar alle functies zijn gelegen. Dit kan door direct visueel contact met de functies of door duidelijke verwijzing naar deze functies (borden). Dit eerste kan bereikt worden door een centrale foyer te ontwerpen vanwaar zoveel mogelijk functies visueel te zien zijn. (zie figuur 5.28). Daarnaast dienen de looproutes zelf logisch te zijn. Door middel van een hoofdgang en secundaire gangen wordt dit verkregen (zie figuur 5.29).

![Diagram van looproutes](image)

Figuur 5.28: De centraal gelegen foyer geeft duidelijkheid waar alle functies zich bevinden.

![Diagram van evenementencomplex](image)

Figuur 5.29: Looplijnen evenementencomplex begane grond (links) en 1ste verdieping (rechts).
Toiletten
Het aantal toiletten (groepen) hangt af van het aantal bezoekers. Stel dat 1.000 bezoekers gemiddeld 2,5 keer naar het toilet gaan gedurende een concert / discotheek bezoek van 4 uur. Dan zullen er 1000 * 2,5 / 4 = 625 toilletbezoeken per uur plaatsvinden. Per toilet zullen maximaal 40 - 45 bezoekers per uur hebben. Dan geldt dat er 625 / 40 = 16 of 625 / 45 = 14 toiletten nodig zijn. Hiervoor geldt dus dat per 60 - 70 bezoekers één toilet aanwezig dient te zijn. Vergelijk dit aantal met andere herbestemde evenementencomplexen (zie tabel 5.7). Aangenomen wordt dat er op een drie keer avond (concert + discotheek) maximaal 7.000 (6750 + marge) bezoekers aanwezig zijn. Dan dienen er (7000/70=) 100 toiletten voor de bezoekers gelegen zijn. Er dienen meer dames toiletten aanwezig te zijn, aangezien vrouwen gemiddeld langer naar het toilet gaan. De verhouding op 100 toiletten kan gesteld worden op 55 dames en 45 heren toiletten. De heren toiletten kunnen weer onderverdeeld worden naar toiletten en urinoirs. Er zullen meer urinoirs nodig zijn dan toiletten voor de heren. De verhouding ligt 1 toilet op 1,5 urinoir. Dit leidt er naartoe dat er, als er drie toilletengroepen komen (twee op de begane grond en 1 op de 1ste verdieping), per toiletgroep 18 dames toiletten dienen te komen, 6 heren toileten en 9 urinoirs. Bovendien dienen er circa per 30 toiletten 1 MIVA (minderervalide) toilet gerealiseerd te worden. Dit houdt in dat per toiletgroep 1 MIVA toilet erbij dient te komen. Dit unieks toilet dient bij voorkeur nabij de dames toilleten gelegen te zijn, zodat tevens de dames voor normaal gebruik van dit toilet gebruik kunnen maken.

Bij de Backstageruimtes en kantoren dienen er ook naast toileten en wasbakken, douches aanwezig te zijn. Aangenomen wordt dat er in het totaal 2 dames, 2 heren, 2 urinoirs en 4 douches dienen te komen.

De bezoekers van de congresruimte(n) dienen ook een eigen toiletgroep te hebben. Deze bezoekers willen kwaliteit, anders gaan deze een andere congresruimte in de omgeving huren. Daarom worden 4 dames, 2 heren en 3 urinoirs met wastafels en handdrogers nabij de congresruimte ontworpen. Ook het kinderdagverblijf dient een aantal speciale kinder toileten te bevatten. In deze toiletgroep komen naast 3 wc's een wastafel en commode. Tijdens speciale evenementen kunnen eventueel mobiele toiletwagens geplaatst worden op het parkeerterrein aan de Industriestraat.

Tabel 5.7: Grote verschillen aantal toiletten bij herbestemde evenementencomplex.

<table>
<thead>
<tr>
<th>Evenementencomplex</th>
<th>Capaciteit</th>
<th>Totaal aanwezig</th>
<th>Omrekening</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Lichtfabriek</td>
<td>1200 bezoekers</td>
<td>7 dames, 4 heren, 3 urinoirs en 1 MIVA</td>
<td>85 bezoekers per toilet</td>
</tr>
<tr>
<td>The Factory</td>
<td>5000 bezoekers</td>
<td>18 dames, 11 heren, 14 urinoirs en 1 MIVA</td>
<td>116 bezoekers per toilet</td>
</tr>
<tr>
<td>Der Tonnalle</td>
<td>2400 bezoekers</td>
<td>19 dames, 16 heren, 17 urinoirs en 1 MIVA</td>
<td>46 bezoekers per toilet</td>
</tr>
<tr>
<td>Konings Staal</td>
<td>7000 bezoekers</td>
<td>58 dames, 20 heren, 30 urinoirs en 3 MIVA's</td>
<td>65 bezoekers per toilet</td>
</tr>
</tbody>
</table>

Parkeren
Bij grootschalige evenementen en uitgaansavonden, waarbij een piekbelasting optreedt, dient er voldoende parkeerplaatsen in de nabijheid van het complex aanwezig te zijn. Dit probleem is op te lossen door het aanleggen van parkeerpalen en gebruik te maken van huidige parkeerterreinen. Deze laatste mogelijkheid kan door middel van een samenwerkingsverband met derden plaatsvinden. Op het eigen terrein worden parkeerplaatsen gerealiseerd voor de werknemers en voor dagelijks gebruik van bezoekers. Op dagen van evenementen zullen pendeldiensten georganiseerd worden met stœwards op de parkeerplaatsen. De eigen parkeerplaatsen zullen dan alleen voor de VIP's zijn. (Voor meer informatie zie bijlage 15).

Garderobe
Voor dagelijks gebruik van het complex en tijdens evenementen dient er in de foyer een garderobe te komen. Deze dient tenminste een capaciteit van 5000 jassen te hebben. Dit is te verwezenlijken door per rek twee lagen jassen te herbergen met boven op een hoeden/ rugzakken plank. In de discotheek heeft de garderobe een capaciteit van 1500 jassen (zie tekening bijlage 28).

In het voorloopp ontwerp is alternatief 3 aangepast. De looproutes zijn duidelijk in het ontwerp verwerkt. Ook zijn de vormen van de functies aangepast (zie figuur 5.30). De viden in de discotheek geven de bezoekers de gelegenheid neer te kijken op de dansvloer op de begane grond. Via het dak terras op de nieuwbouwlocatie kan men naar het ander terras, het grillrestaurant en de boven 'hoofdgang'. Tevens zijn de toiletgroepen weergegeven.
Figuur 5.28: Definitief functioneel ontwerp evenementencomplex.

Bronnen:
H6 Constructieve aspecten

6.1 Controle spanten

In deze paragraaf worden de huidige spanten en portalen gecontroleerd op sterke, stijfheid en stabiliteit. Daartoe worden allereerst in 6.1.1 de belastingen bepaald. Vervolgens worden de spanten geschematiseerd in 6.1.2. en vervolgens wordt de krachtenverdeling van de spanten ten gevolge van diverse belastingcombinaties weergegeven in 6.1.3. In subparagraaf 6.1.4 worden dan de maatgevende elementen getoetst op de criteria sterke, stijfheid en stabiliteit.

6.1.1 Belasting spanten/ raamwerken

In deze subparagraaf komen de huidige en toekomstige belasting op de spanten in de hallen en geschoorde raamwerken in de magazijnen aan bod. Met deze belastingen kan bepaald worden wat de belasting op de fundering is en wat voor krachten de spanten moeten afdragen. Door de verandering en ontwikkeling van de bouwnormen hebben bestaande gebouwen, die volgens de oude bouwschriften zijn gebouwd reserve-draagvermogen. Deze reserve kan aangetoond worden wanneer het gebouw volgens de huidige normen wordt herberekend. De nieuwe onderdelen, zoals een extra verdieping dient te voldoen aan Technische Grondslagen voor de berekening van Bouwconstructies (TGB) 1990, terwijl de bestaande constructieonderdelen moesten voldoen aan TGB 1972, aangezien deze voor de invoering van TGB 1990 (in 1992) gerealiseerd zijn. Het verschil in de voorschriften, wat hoofdzakelijk te verdelen is in 'verandering van de veiligheidsfactor', 'verandering van de representatieve waarde voor de sterkte en de belastingen' en 'verandering van rekenmethoden'; zorgt ervoor dat volgens de nieuwe voorschriften extra draagvermogen ontstaat. Eerst worden de verschillende maatgevende belastingen beschreven, waarna vervolgens de maatgevende spanten wordt geschematiseerd en getoetst op deze belastingen.

Permanent belasting (BG1)

De permanente belasting op de fundering is te verdelen in het eigen gewicht van het dakgedeelte, spanten en gevelbekleding.

Het platte gedeelte van de hallen heeft als eigen gewicht:
- Staalplaat + isolatie + bedekking = 0,25 kN/m²
- Gorden = 0,10 kN/m²
- Spanten = 0,15 kN/m²
- Gevelbekleding = 1,96 kN/m

Het schuine gedeelte van de hallen heeft als eigen gewicht:
- Staalplaat + gorden = 0,14 kN/m²
- Spanten = 0,15 kN/m²
- Gevelbekleding = 1,96 kN/m

De magazijnen hebben als eigen gewicht:
- Dakbedekking (linex, dakleer) = 0,30 kN/m²
- Gorden = 0,12 kN/m
- Spanten = 0,12 kN/m²
- Gevelbekleding = 1,96 kN/m

Daarnaast waren er vroeger bovenloopkranen in de hallen en magazijnen aanwezig. Deze kranen zijn nu niet meer aanwezig, echter de kraanbanen nog wel. De belasting welke door de kraanbalk+ loopkat + maximale last op de fundering kwam bedroeg in de hallen 88,3 kN. Het eigengewicht van de kraanbaan bedraagt (16,7 kN/ 5,00 m) 3,33 kN/m.

Veranderlijke belasting

De veranderlijke belasting op de daken bedraagt volgens NEN6702 1,0 kN/m², welke over maximaal 10 m² met een maximum lengte van 5,0 meter verdeeld is. Echter zal de sneeuwbelasting maatgevend zijn en zal verder bij berekeningen gebruikt worden als veranderlijke belasting op de spanten en raamwerken.
De veranderlijke belasting (respecitveelwijk verdeelde belasting, geconcentreerde puntlast en momentaan factor) van de teekomstige functies in de bestaande hallen zijn als volgt:

Bijeenkomstfuncties: $P_{rep} = 5,0 \text{ kN/m}^2$; $F_N = 7 \text{ kN}$; $\psi_{nom} = 0,25$

Balkons/ terrassen: $P_{rep} = 2,5 \text{ kN/m}^2$; $F_N = 3 \text{ kN}$; $\psi_{nom} = 0,50$

Onsleuwingewegen: $P_{rep} = 5,0 \text{ kN/m}^2$; $F_N = 7 \text{ kN}$; $\psi_{nom} = 1,00$

Voor de evenementenhall (bijv. bij de bar) zijn dit normale veranderlijke belastingen; tijdens een concert kunnen er 6 mensen à 80 kg op een m2 staan. Dit resulteert in een belasting van $6 \times 80 \text{ kg} \times 9,81 \text{ kg/s}^2 = 4,7 \text{ kN/m}^2$. Echter zorgen de dynamische belastingen als het gevolg van dansende bezoekers voor een veranderlijke belasting van minimaal 7 kN/m2. Daarom zal deze veranderlijke belasting voor het ontwerp van de verdiepingsvloer gebruikt worden.

Sneeuw (BG2)

De sneeuwbelasting grijpt aan op het gehele dak (zie figuren 6.1).

![Figuur 6.1: Sneeuw-belastinggeval 2: over de gehele lengte.](image)

De sneeuwbelasting kan worden bepaald met de formule (NEN6702):

$P_{rep} = C_s \cdot P_{snejp}$ [kN/m2] met $P_{rep} = 0,7 \text{ kN/m}^2$.

Aangezien de dakvlakken een kleiner hoek hebben dan 30°, mag voor de dakvormfactor C_s de waarde 0,8 aangenomen worden. De sneeuwbelasting op de hallen en magazijnen is $0,8 \times 0,7 = 0,56 \text{ kN/m}^2$. Echter tussen de twee schuine daken van spanten kan ophoping van sneeuw optreden, vandaar dat de dakvormfactor waarde ter plaatse van de grootte tussen de twee spanten oploopt tot:

$C_s = 0,8 \cdot \frac{30 + \alpha}{30}$ met hoek van het dak $\alpha = 15,5^\circ$ volgt $C_s = 1,21$.

De sneeuwbelasting loopt dus op tot $1,21 \times 0,7 = 0,85 \text{ kN/m}^2$.

De waarde is echter bepaald op basis van meteorologische gegevens van de noordelijke en oostelijke provincies. Roosendaal ligt echter zuidwestelijk en zodoende kan de sneeuwlast verlaagd worden met de plaatselijk geldende sneeuwlasten indien blijkt dat de waarde van respectieel $0,56 - 0,85 \text{ kN/m}^2$ voor een te hoge belasting van het spant zorgt.

Windbelasting (BG3, 4 en 5)

De windbelasting op de bestaande hallen en magazijnen kan bepaald worden volgens NEN 6702 met de formule:

$P_{rep} = C_{dim} \cdot C_{index} \cdot p_w$ [kN/m2]

De factor C_{dim} houdt rekening met de invloed van de afmetingen van het bouwwerk. Er zijn hier twee gevallen te onderscheiden. Wind op de kopgevel en wind op de zijgevel.

1. wind op kopgevel;
 - hal 1: $h = 12,7 \text{ m}$, $b = 24 \text{ m}$ $C_{dim} = 0,92$
 - hal 2: $h = 12,1 \text{ m}$, $b = 20 \text{ m}$ $C_{dim} = 0,93$
 - magazijnen: $h = 9,46 \text{ m}$, $b = 39,4 \text{ m}$ $C_{dim} = 0,91$

2. wind op zijgevel;
 - hal 2: $h = 12,1 \text{ m}$, $b = 124,5 \text{ m}$ $C_{dim} = 0,84$
 - hal 1: $h = 12,7 \text{ m}$, $b = 124,5 \text{ m}$ $C_{dim} = 0,84$
 - magazijnen: $h = 9,46 \text{ m}$, $b = 45 \text{ m}$ $C_{dim} = 0,90$

De windvormfactor (C_{index}) bestaat uit een factor C_{pi} (interne onder- of overdruk) en C_{pe} (externe druk of zuiging). De factor C_{pi} is $= 0,3$ voor onder- of overdruk en dient bij de waarden van C_{pe} opgeteld te worden. De windvormfactoren C_{pe} zijn bepaald aan de hand van NEN6702.

1 De factoren C_{eq} en p_1 in de oorspronkelijk formule volgens NEN 6702 hebben voor de hallen en magazijnen de waarde 1 en kunnen zodoende weggelaten worden.
De stuwdruk (p_w) is afhankelijk van de gebouwhoogte en gebied in Nederland. Roosendaal ligt in gebied III, de omgeving is bebouwd en het betreft een gesloten gebouw. De stuwdrukken zijn zoedoende:

- Hallen, h circa 12,7 m; $p_w = 0,60 \text{ kN/m}^2$
- Magazijnen, $h = 9,46$ m; $p_w = 0,48 \text{ kN/m}^2$

De volgende drie belastinggevallen zijn maatgevend:

- [BG3] Wind op de kopgevel met overdruk (zie figuur 6.2)
- [BG4] Wind op de zijgevel met onderdruk (zie figuur 6.3)
- [BG4] Wind op de zijgevel met overdruk (zie figuur 6.4)

De windbelasting dient loodrecht op de constructie aangebracht te worden voor toetsing, dit in tegenstelling tot sneeuwbelasting welke door de zwaartekracht loodrecht ten opzichte van het maaiveld op de constructie aangebracht moet worden.

\[p_{\text{rep}} = C_{\text{dim}} \cdot C_{\text{index}} \cdot p_w = 0,93 \cdot C_{\text{index}} \cdot 0,60 \cdot 5,00 = 2,79 \cdot C_{\text{index}} \text{ kN/m} \]

\[p_{\text{rep}} = C_{\text{dim}} \cdot C_{\text{index}} \cdot p_w = 0,84 \cdot C_{\text{index}} \cdot 0,60 \cdot 5,00 = 2,52 \cdot C_{\text{index}} \text{ kN/m} \]

Belastingcombinaties

Van de beschreven belastingen zijn fundamentele belastingcombinaties (FC) bepaald. In tabel 6.1 zijn per fundamentele belastingcombinatie de toegepaste belastingfactoren weergegeven. Deze belastingfactoren zijn van de uiterste grenstoestand in veiligheidsklasse 3, waarin het evenementencomplex in zit.
Omdat bij FC 3, 4 en 5 het eigengewicht gunstig werkt tegen opwaailing, geldt hiervoor een factor 0,9.

<table>
<thead>
<tr>
<th>Belastinggeval</th>
<th>Omschrijving</th>
<th>FC1</th>
<th>FC2</th>
<th>FC3</th>
<th>FC4</th>
<th>FC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG1</td>
<td>Eigen gewicht</td>
<td>1,35</td>
<td>1,35</td>
<td>0,9</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>BG2</td>
<td>Sneeuvolbelasting</td>
<td></td>
<td></td>
<td></td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>BG3</td>
<td>Wind op voorliggend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG4</td>
<td>Wind op zijliggend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG5</td>
<td>Wind op zijliggend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,5</td>
</tr>
</tbody>
</table>

Zodoende wordt de belasting in FC2:

\[F_{d,u} = G_{d,u} + Q_{d,u} \rightarrow y_g \cdot G_{d,rep} + y_q \cdot Q_{d,rep} = 1,2 \cdot G_{d,rep} + 1,5 \cdot Q_{d,rep} \]

6.1.2 Schematisering spant/ raamwerken

Om de krachten in de spanten van de hallen en raamwerken van de magazijnen als gevolg van de belastingscombinaties te kunnen berekenen is het programma 'Matrixframe' gebruikt. Hierbij wordt het spant en raamwerk geschematiseerd; een snelle manier om een vakwerk in de spanten door te rekenen is door deze in zijn geheel te schematiseren tot een lijn, die ligt in de hartlijn van de werkelijke constructie. Echter zal de verkregen waarden van de krachtsverdeling op deze manier ver van de werkelijkheid afliggen. Daarom wordt elke staf geschematiseerd tot één lijn en zodoende een vakwerk geschematiseerd. Zodoende ontstaat een beter inzicht in de werkelijke krachtsverloop. Per staf zijn grootheden, zoals doorsnedeoppervlakte en buigstijfheids toegeweven, van welke profielen in werkelijkheid zijn toegepast (zie figuur 6.6). De staven van een vakwerk zijn onderling scharnierend verbonden. De spanten van hal 1 zijn scharnierend opgelegd, aangezien de botten binnen het H-profiel zitten (zie figuur 6.5, rechts). Dit geldt ook voor de linkerkolom van hal 2. De rechter kolom wordt echter geschematiseerd als ingeklemd kolom, aangezien de samengestelde kolom door middel van krachten in koppels, momenten kan opnemen (zie figuur 6.7, rechts). De vakwerkligger van hal 1 is verbonden met de kolom als een ingeklemd verbinding, aangezien het randprofiel van het vakwerk op meerdere plaatsen verbonden is met de kolom en zodoende als een ingeklemd opgelegd functioneert (zie figuur 6.7); bij hal twee is daartegen de vakwerkligger scharnierend opgelegd zijn, ondanks de aanwezige lasoekverbindingen. De spanten in de hallen zijn onderling niet constructief verbonden. Dat wil zeggen dat de spanten als gevolg van een verticale of horizontale belasting zelf deze belasting dragen en niet dragen, bij het aanbrengen van belastingen dient echter wel rekening te worden houden met de onderlinge samenhang. Dit geldt voornamelijk voor windbelasting, waarbij sommige gedeelten van de constructie minder of geen windbelasting dragen, als het gevolg van naastliggende constructie. De spanten van de hallen en magazijnen kunnen zodoende geschematiseerd worden als weergegeven in figuur 6.8.
Figuur 6.5: Constructieve plattegrond Konings Staal gebouw (links). Kolom-fundering aansluiting; op te vatten als een schaarnierende oplegging (rechts).

Figuur 6.6: Afmetingen en benamingen constructie halen (boven) en magazijnen (onder).
Figuur 6.7: Aansluiting vakwerklijger - kolom: deze is te schematiseren als een ingeklemd verbinding (links), doorsnede hal 2, stijve verbinding kolom - fundering en scharnierende verbinding kolom - vakwerklijger (rechts).

Figuur 6.8: Schematisering hallen en magazijnen.

6.1.3 Resultaten staafberekeningen spanten/ raamwerken
In deze subparagraaf worden de resultaten van de staafberekeningen door het computerprogramma 'Matrixframe' besproken worden. In bijlage 16 staan de omhullende momenten, dwarskrachten en normaalkrachtlijnen weergegeven bij de maatgevende belasting op respectievelijk hal 1, hal 2 en de magazijnen.

6.1.4 Toetsing sterkte, stabiliteit en vervorming spanten en raamwerken
De staven in de vakwerkspanten van de hallen en de geschoorde raamwerken in de magazijnen dienen getoetst worden op sterkte, stabiliteit en stijfheid.

Sterkte
De staven in de spanten worden belast op hoofdzakelijk druk- en trekkrachten, zodat de maatgevende doorsnede getoetst moet worden volgens de unity check. De uiterste kracht van de diagonale is te bepalen met $N_{t_{ij}} = A f_{y;i}$. De eis is dat de rekenwaarde van de kracht kleiner is dan de uiterste capaciteit.

$$\frac{N_{t_{ij}}}{N_{t_{ij}}^{u}} \leq 1$$

In tabel 6.2 staan de resultaten van de unity-check op sterkte weergegeven. Daaruit blijkt dat alle profielen voldoen.
Tabel 6.2: Sterkte unity check hal 1 links en hal 2 rechts, onder magazijnen.

<table>
<thead>
<tr>
<th>Profiel</th>
<th>A mm²</th>
<th>Nud kn</th>
<th>Ntsd kn</th>
<th>Ncsd kn</th>
<th>UC <1,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovenrand HE160A 2124</td>
<td>499,1</td>
<td>60,2</td>
<td>75,8</td>
<td>0,15</td>
<td></td>
</tr>
<tr>
<td>Onderrand HE120A 2524</td>
<td>590,5</td>
<td>60,9</td>
<td>30,0</td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>Diagonaal 76-6 1147</td>
<td>265,0</td>
<td>13,4</td>
<td>31,5</td>
<td>0,12</td>
<td></td>
</tr>
<tr>
<td>Diagonaal 76-4 1012</td>
<td>237,8</td>
<td>51,0</td>
<td>71,8</td>
<td>0,30</td>
<td></td>
</tr>
<tr>
<td>Bovenrand HE160A 2124</td>
<td>499,1</td>
<td>327,9</td>
<td>327,9</td>
<td>0,68</td>
<td></td>
</tr>
<tr>
<td>Onderrand HE120A 2524</td>
<td>590,5</td>
<td>310,0</td>
<td>310,0</td>
<td>0,62</td>
<td></td>
</tr>
<tr>
<td>Diagonaal HE140A 3142</td>
<td>738,4</td>
<td>122,8</td>
<td>0,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagonaal 60,2-2,9 732</td>
<td>172,0</td>
<td>40,9</td>
<td>64,9</td>
<td>0,37</td>
<td></td>
</tr>
</tbody>
</table>

Stabiliteit

Algemeen hallen
De hallen bestaan uit een ongeschoorde constructie: een raamwerkconstructie waarbij de kolommen aan de voet scharnierend zijn bevestigd. De krachten op de fundatie blijven dan beperkt tot horizontale en verticale krachten. Behalve bij de rechterkolom van hal 2, daar is de kolom ingeklemd en kan door middel op een driehoekige poer met palen momenten opnemen. De stijfheid van een vakwerkligger is groot. Hierdoor ontstaat een gunstige krachtsverdeling op de kolommen en kan de kniklengte worden verkort.

Stabiliteit in lengterichting spanten
De stabiliteit in lengterichting wordt door de spannen in de hallen zelf gewaarborgd (zie voor tekeningen figuur 6.5, links en bijlage 11). Behalve bij de twee gedeelten met platte daken (as 2-4 en 24-27); daar wordt de stabiliteit in lengterichting verzorgd door stabiliteitsverbanden. De magazijnen worden ook in lengterichting door middel van kruisverbanden gestabiliseerd. De horizontale en verticale verbanden hebben meerdere functies:
- Het overbrengen van de horizontale belasting door wind en scheefstand naar de verbanden in de eindgevel, respectievelijk de fundatie.
- Het verzorgen van de stabiliteit en vormvastheid in dwars- en lengterichting van de hal.
- Het zijdelingen steunen van de op druk belaste elementen, bijvoorbeeld de bovenranden van de dakliggers.

Stabiliteit in dwarsrichting spannen
Er zijn kruisverbanden in het dakvlak en spanvlak in de hallen. De verbanden in het dakvlak zorgen voor de algemene stabiliteit van de spannen in dwarsrichting. De verbanden in het spanvlak zorgen voor samen met de 'gordingen' tussen de spannen in de hallen (buizen met diameter variërend van 63,5 - 72,5 mm met een dikte van respectievelijk 4,0 - 2,9 mm) voor stijve vakwerken, welke niet om kunnen kantelen. De magazijnen worden in dwarsrichting evenals in lengterichting stabiel gemaakt door schoren.

Algemeen magazijnen
De magazijnen bestaan uit geschoorde raamwerken en zijn in drie van de vier gevelvlakken voorzien van stabiliteitsverbanden. Dit is voldoende voor een stabiel geheel. Doordat de hallen in fasen gebouwd zijn, zijn voor elk geïnsasseerd deel stabiliteitsverbanden aangebracht. Om de horizontale remkrachten van de (voormalige) loopkranen te kunnen opvangen, zijn hiervoor aparte schoren met funderingsblokken toegepast.

- Stabiliteitsverbanden
Een schoor of steungevend constructiedeel dient te worden getoetst op belastingen die op de schoorconstructie zelf aangrijpen; horizontale belastingen op dat deel van de constructie waardoor des schoorconstructie de stabiliteit waarborgt; gevolgen van initiële scheefstand die in rekening kan worden gebracht door een vervangende equivalent horizontale belasting F_eaud. De bepaling van F_eaud gebeurt volgens NEN 6770. Hierbij wordt aangenomen dat alleen de getrokken diagonaal de totale steungevende kracht overbrengt.
De totale horizontale belasting is de som van de direct werkende horizontale belasting en de equivalent horizontale belasting. Bij de tweedeorde berekening wordt de invloed van de vervormingen van de constructie meegenomen, in tegenstelling tot de eersteorde berekening. Een verbetering van de diagonaal veroorzaakt een horizontale verplaatting u van het raamwerk. Verticale belastingen veroorzaken daardoor een extra tweedeorde horizontale belasting. Het evenwicht in vervormde toestand is:

$$ S \cos \alpha = \Sigma H + \frac{u}{h} \Sigma Q $$

met cos α = l/l en u/h = p en de aanneming dat vloeiens van de brutodoornsde van de diagonaal maatgevend is i.p.v. de uiterste sterkte van de netto-doornsde ter plaatse van de verbinding volgt:

$$ A_s = \frac{l}{l_{vd}} \Sigma H + \frac{I^3}{l^2 E_d} \Sigma Q $$

Bij deze verhouding van ΣH en ΣQ overheerst de eersteorde term. Voor lage gebouwen kan daarom veelal worden volstaan met een eersteorde berekening, waarbij de benodigde oppervlakte van de schoor dient te zijn:

$$ A_s = \frac{l}{l_{vd}} \Sigma H $$

De horizontale krachten op de kopgevel in hal 2 zijn, wanneer het aandeel van windwrijving wordt verwaarloosd:

$$ F = 1,5 \cdot A \cdot p_{xx} $$

De oppervlakte A is de helft van de koppelde van hal 2, aangezien elke zijde een stabiliteitsverband aanwezig en de helft van de windkracht naar elke zijde wordt afgedragen via de regels en de dakstabiliteitsverbanden. De halve oppervlakte is: $\frac{1}{2} \cdot 24,0 \cdot 10,5$ (gem. hoogte) = 126,0 m².

$$ p_{xx} = C_{dim} \cdot C_{index} \cdot P_w = 0,93 \cdot 1,2 \cdot 0,60 = 0,67 \text{kN/m}^2 $$

De horizontale kracht op het stabiliteitsverband is zodoende:

$$ F = 1,5 \cdot 126,0 \cdot 0,67 = 266,6 \text{kN} $$

De benodigde oppervlakte wordt dan, wanneer een stabiliteitsverband 4,6 m hoog is en 5,0 m breed:

$$ A_s = 4,6/5,0 \cdot 126,6 \cdot 10^3 / 235 = 501,0 \text{mm}^2 $$

De bestaande stabiliteitsverbanden zijn gerealiseerd met de profielen beschreven in tabel 6.3. Te zien is dat de stabiliteitsverbanden in de langevel van hal 2 voldoende gEDIATEERD zijn. De verbanden in het dak dienen maar, aangezien er vier stabiliteitsverbanden in het dakvlaag liggen, een deel van de horizontale kracht op de kopgevel op te nemen. Dit leidt tot een benodigd oppervlak van 247,9 mm².

Tabel 6.3: Controle aanwezige stabiliteitsverbanden.

<table>
<thead>
<tr>
<th>Locatie</th>
<th>Profiel</th>
<th>A [mm²] aanwezig</th>
<th>Aₛ [mm²] benodigd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dakvlaag</td>
<td>L50*5</td>
<td>408,3</td>
<td>247,9</td>
</tr>
<tr>
<td>Spanvlaag</td>
<td>L60*6</td>
<td>690,9</td>
<td>247,9</td>
</tr>
<tr>
<td>Kopwand/ Langwand</td>
<td>L70*7</td>
<td>939,7</td>
<td>501,0</td>
</tr>
<tr>
<td>Langwand</td>
<td>L80*8</td>
<td>1227</td>
<td>501,0</td>
</tr>
</tbody>
</table>

Vakwerken

De op zuiver druk belaste staven dienen getoetst te worden op knik. De kracht waarbij de staafrukt wordt de Eulerse knikkracht genoemd en bepaald met:

$$ F_k = \frac{\pi^2 EI}{l_k^2} $$
De formule kan omgewerkt worden tot een formule voor de knikspanning \(\sigma_E \). Hierbij is slankheid van de gedrukte staaf bepalend.

Deze formule is echter afgeleid onder de theoretische aannemer dat de staaf perfect recht en perfect van vorm is. Er zijn echter afwijkingen en daarom dient de knikkracht bepaald worden aan de hand van knikkrommen, welke afhankelijk is van het soort profiel en de buigingsrichting.

Met behulp van de relatieve slankheid \(\lambda_{rel} \) en de knikfactor \(\omega_{buc} \) kan een unity check voor de drukstaaf worden uitgevoerd.

\[
\lambda_{rel} = \sqrt{\frac{N_{pl,d}}{F_E}} \text{ hiermee kan } \omega_{buc} \text{ worden bepaald.}
\]

Dan moet tenslotte gelden:

\[
\frac{N_{cr,d}}{\omega_{buc} * N_{pl,d}} \leq 1
\]

Als gevolg van het eigen gewicht en excentrische oplegging van de gorden t.o.v. de staven ontstaan ook momenten in de vakwerkstaven, welke opgenomen dienen te worden (zie figuur 6.9). Dit wordt besproken bij toetsing van de stabiliteit.

![Figuur 6.9: Extra moment t.o.v. excentrische belasting gording.](image)

Zodoende dient de stabiliteit van de vakwerken getoetst te worden met de formule:

\[
\frac{N_{cr,d}}{\omega_{buc} N_{u,cr,d}} + \frac{2}{3} \frac{M_{cr,d}}{M_{u,cr,d}} \leq 1.0
\]

De resultaten van de berekening zijn te zien in tabel 6.4. De profielen voldoen allen aan de unity-check.

Tabel 6.4: Stabiliteitsocontrole vakwerk hal 1.

<table>
<thead>
<tr>
<th>Profiel</th>
<th>W [mm³]</th>
<th>l [mm]</th>
<th>Ncr;d [kN]</th>
<th>Nc;ud [kN]</th>
<th>I [mm⁴]</th>
<th>Ay;rel</th>
<th>Instabiliteits krommen</th>
<th>(\omega_{buc})</th>
<th>My;ud [kNm]</th>
<th>Ms;d [kNm]</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovenrand HE100A</td>
<td>7,276E+04</td>
<td>3,492E+06</td>
<td>60,2</td>
<td>499,1</td>
<td>2600</td>
<td>0,68</td>
<td>c</td>
<td>0,72</td>
<td>17,19</td>
<td>1,35</td>
<td>0,22</td>
</tr>
<tr>
<td>Onderrand HE120A</td>
<td>1,063E+05</td>
<td>6,062E+06</td>
<td>66,9</td>
<td>595,5</td>
<td>4488</td>
<td>0,96</td>
<td>c</td>
<td>0,55</td>
<td>24,98</td>
<td>1,19</td>
<td>0,24</td>
</tr>
<tr>
<td>Diagonalen 76-6</td>
<td>1,864E+04</td>
<td>7,092E+05</td>
<td>13,4</td>
<td>269,5</td>
<td>4280</td>
<td>1,83</td>
<td>b</td>
<td>0,25</td>
<td>4,38</td>
<td>0,26</td>
<td>0,24</td>
</tr>
<tr>
<td>Diagonalen 76-4</td>
<td>1,552E+04</td>
<td>5,908E+05</td>
<td>51,0</td>
<td>237,8</td>
<td>3252</td>
<td>1,43</td>
<td>b</td>
<td>0,36</td>
<td>3,65</td>
<td>0,06</td>
<td>0,61</td>
</tr>
</tbody>
</table>

In hal 2 blijkt de bovenrand van het vakwerk niet te voldoen aan de unity-check (zie tabel 6.5).

Tabel 6.5: Stabiliteitsocontrole vakwerk hal 2.

<table>
<thead>
<tr>
<th>Profiel</th>
<th>W [mm³]</th>
<th>l [mm]</th>
<th>Ncr;d [kN]</th>
<th>Nc;ud [kN]</th>
<th>I [mm⁴]</th>
<th>Ay;rel</th>
<th>Instabiliteits krommen</th>
<th>(\omega_{buc})</th>
<th>My;ud [kNm]</th>
<th>Ms;d [kNm]</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovenrand HE100A</td>
<td>7,276E+04</td>
<td>3,492E+06</td>
<td>321,9</td>
<td>499,1</td>
<td>3383</td>
<td>0,89</td>
<td>c</td>
<td>0,61</td>
<td>17,10</td>
<td>7,22</td>
<td>1,34</td>
</tr>
<tr>
<td>Onderrand HE160A</td>
<td>2,201E+05</td>
<td>1,673E+07</td>
<td>305,8</td>
<td>595,5</td>
<td>6172</td>
<td>0,81</td>
<td>c</td>
<td>0,66</td>
<td>51,72</td>
<td>4,03</td>
<td>0,83</td>
</tr>
<tr>
<td>Diagonalen HE140A</td>
<td>1,035E+05</td>
<td>1,033E+07</td>
<td>122,8</td>
<td>738,4</td>
<td>6796</td>
<td>1,25</td>
<td>b</td>
<td>0,46</td>
<td>36,52</td>
<td>1,71</td>
<td>0,40</td>
</tr>
<tr>
<td>Diagonalen 60,9-2,9</td>
<td>1,282E+04</td>
<td>4,876E+05</td>
<td>64,4</td>
<td>172,0</td>
<td>1314</td>
<td>0,54</td>
<td>b</td>
<td>0,88</td>
<td>3,01</td>
<td>0,00</td>
<td>0,44</td>
</tr>
</tbody>
</table>

De ligger van de raamwerken van de magazijnen voldoet ruim aan de unity-check van de huidige NEN-normen voor stabiliteit (zie tabel 6.6).
Tabel 6.6: Stabiliteitscontrole ligger magazijnen.

<table>
<thead>
<tr>
<th>Profiel</th>
<th>W (mm³)</th>
<th>I (mm⁴)</th>
<th>Ncₐ/s; d (kn)</th>
<th>Ncₐ; d (kn)</th>
<th>Ibcuc (mm²)</th>
<th>Jyrel</th>
<th>lobuc</th>
<th>Instabiliteitskromme</th>
<th>Mycₐ; d (knm)</th>
<th>Mysₐ; d (knm)</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPE550 ligger</td>
<td>2,78E+06</td>
<td>4,820E+08</td>
<td>18,7</td>
<td>3,158,4</td>
<td>15,000</td>
<td>0,84</td>
<td>0,63 c</td>
<td></td>
<td>654,95</td>
<td>176,7</td>
<td>0,19</td>
</tr>
</tbody>
</table>

- **Kolommen**

De kolommen van de spanten en magazijnen zijn gecontroleerd op combinatie van momenten en krachten. Artikel 11.3.1.1 van NEN 6770 geeft een aantal waarvoorden weer, waaruit de interactieformule van I-profielen komt. In dit geval treedt buiging om de sterke as op en wordt voldaan aan de waarvoorden:

\[V_{s㎏d} \leq 0,5 V_{zpqld} \text{ en } N_{z㎏d} \leq 0,5 a_{1} N_{zpqld} \]

De volgende formule dient als controlemiddel toegepast te worden:

\[M_{y㎏d} / M_{zpqld} \leq 1,0 \]

\[a_{1} = \text{de kleinste waarde van } (A - 2b_{p}t_{f} / A) \text{ een 0,5, waarbij } A \text{ de oppervlakte van het profiel is, } b_{p} \text{ en } t_{f} \text{ respectievelijk de breedte en dikte van de flens van het profiel is.} \]

In tabel 6.7, 6.8 en 6.9 zijn de resultaten van de sterke en stabiliteitsberekeningen van respectievelijk de kolommen in hal 1, hal 2 en de magazijnen. Geconcludeerd kan worden dat de kolommen (waarbij ook de belasting ten gevolge van de tussenverdieping meegenomen zijn bij de berekeningen), zowel op sterke als stabiliteit aan de NEN-normen voldoen.

Tabel 6.7: Controle kolommen hal 1 op sterke en stabiliteit.

<table>
<thead>
<tr>
<th>Linkerkolom</th>
<th>HE260B</th>
<th>W (mm³)</th>
<th>I (mm⁴)</th>
<th>A (mm²)</th>
<th>Rechterkolom</th>
<th>HE260B</th>
<th>W (mm³)</th>
<th>I (mm⁴)</th>
<th>A (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benaming</td>
<td>Waarde</td>
<td>Eenheid</td>
<td>Formule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vₚₗd</td>
<td>28,44</td>
<td>kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nₚₗd</td>
<td>350,25</td>
<td>kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mₚₗd</td>
<td>73,3</td>
<td>kNm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vooraarden</td>
<td><0,5Vₚₗd</td>
<td></td>
<td><0,5Vₚₗd</td>
<td></td>
<td><0,5Vₚₗd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voorwaarden</td>
<td><0,5Nₚₗd</td>
<td></td>
<td><0,5Nₚₗd</td>
<td></td>
<td><0,5Nₚₗd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mₚₗd</td>
<td>301,5</td>
<td>kNm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unity check</td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₁</td>
<td>0,23</td>
<td><0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 6.8: Controle kolommen hal 2 op sterke en stabiliteit.

<table>
<thead>
<tr>
<th>Linkerkolom</th>
<th>HE200A</th>
<th>W (mm³)</th>
<th>I (mm⁴)</th>
<th>A (mm²)</th>
<th>Rechterkolom</th>
<th>2°HE240B</th>
<th>W (mm³)</th>
<th>I (mm⁴)</th>
<th>A (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benaming</td>
<td>Waarde</td>
<td>Eenheid</td>
<td>Formule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vₚₗd</td>
<td>137,9</td>
<td>kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nₚₗd</td>
<td>460,0</td>
<td>kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mₚₗd</td>
<td>0,6</td>
<td>kNm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vooraarden</td>
<td><0,5Vₚₗd</td>
<td></td>
<td><0,5Vₚₗd</td>
<td></td>
<td><0,5Vₚₗd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voorwaarden</td>
<td><0,5Nₚₗd</td>
<td></td>
<td><0,5Nₚₗd</td>
<td></td>
<td><0,5Nₚₗd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mₚₗd</td>
<td>437,6</td>
<td>kNm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unity check</td>
<td>0,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₁</td>
<td>0,25</td>
<td><0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 78: Ontwikkeling multifunctioneel evenementencomplex te Roosendaal
Tabel 6.9: Controle kolommen magazijnen op sterkte en stabiliteit.

<table>
<thead>
<tr>
<th>Kolom</th>
<th>W</th>
<th>I</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE260A</td>
<td>8,36E+06</td>
<td>1,05E+08</td>
<td>8,86E+03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Benaming</th>
<th>Waarde</th>
<th>Eenheid</th>
<th>Formule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vz,s,d</td>
<td>18,7</td>
<td>kN</td>
<td></td>
</tr>
<tr>
<td>Nc,s,d</td>
<td>671,5</td>
<td>kN</td>
<td></td>
</tr>
<tr>
<td>My,s,d</td>
<td>443</td>
<td>kNm</td>
<td></td>
</tr>
<tr>
<td><0,5*Vz,p,d</td>
<td>195,0</td>
<td>kN</td>
<td>0,50,58Tzd*Aaw</td>
</tr>
<tr>
<td><0,5 Nc,p,d</td>
<td>256,4</td>
<td>kN</td>
<td>0,5*Tnc,p,d</td>
</tr>
<tr>
<td>My,p,d</td>
<td>196,6</td>
<td>kNm</td>
<td></td>
</tr>
<tr>
<td>Unity check</td>
<td>0,23</td>
<td></td>
<td>Nyc,d/My,p,d</td>
</tr>
<tr>
<td>a1</td>
<td>0,25</td>
<td><0,5</td>
<td></td>
</tr>
<tr>
<td>A*fyd</td>
<td>2,92E+06</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>voorwaarde</td>
<td>E1</td>
<td>2,20E+13</td>
<td>N/mm2</td>
</tr>
<tr>
<td>voorwaarde</td>
<td>lK</td>
<td>9350</td>
<td>mm</td>
</tr>
<tr>
<td>A*fyd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ayrel</td>
<td>1,09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>instabiliteitskromme</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w*buc</td>
<td>0,71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unity check (<1)</td>
<td>0,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vervorming

De spanten dienen volgens NEN 6702 niet meer dan 0,004*i*rep verticaal doorbuigen. In tabel 6.10 zijn de verticale doorbuigingen van de spanten van de hallen weergegeven. De werkelijke verticale doorbuiging is minder dan de toelaatbare doorbuiging en voldoet daarmee aan de huidige NEN-normen.

Uit de eis voor horizontale uitbuiging volgt dat de spanten van de hallen en de raamwerken van de magazijnen niet meer dan 1/150*hoogte horizontaal mogen vervormen. Dit geldt alleen bij industriële laagbouw, zoals dat nu het geval is voor het Konings Staal gebouw. Bij toekomstige herbestemming wordt de eis zwaarder en dient de horizontale vervorming niet meer dan 1/300*hoogte te bedragen. Aan deze eis voldoen de spanten van hal 1 niet en dienen versterkt te worden. Echter zijn bij deze berekeningen niet de aanwezige kraanbanen en onderliggende kolommen meegenomen. In werkelijkheid zal deze constructie (zie figuur 6.6) werken als een samengestelde kolom. (De mate van samenwerking kan pas bepaald worden als de verbindingen tussen de twee kolommen nader bekeken zijn). Daarmee zal de horizontale uitbuiging minder zijn dan berekend. Nader onderzoek dient verricht worden.

Tabel 6.10: Controle vervorming spanten hal 1, links, hal 2, midden en magazijnen, rechts.

<table>
<thead>
<tr>
<th>lrep horizontaal</th>
<th>20,000</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>lrep verticaal</td>
<td>12,000</td>
<td>mm</td>
</tr>
<tr>
<td>utolv</td>
<td>60,2</td>
<td>mm</td>
</tr>
<tr>
<td>ais (1/250*lrep)</td>
<td>80,0</td>
<td>mm</td>
</tr>
<tr>
<td>utolh</td>
<td>54,2</td>
<td>mm</td>
</tr>
<tr>
<td>ais (1/300*lrep)</td>
<td>40,0</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>lrep horizontaal</th>
<th>24,000</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>lrep verticaal</td>
<td>12,000</td>
<td>mm</td>
</tr>
<tr>
<td>utolv</td>
<td>72,3</td>
<td>mm</td>
</tr>
<tr>
<td>ais (1/250*lrep)</td>
<td>96,0</td>
<td>mm</td>
</tr>
<tr>
<td>utolh</td>
<td>24,8</td>
<td>mm</td>
</tr>
<tr>
<td>ais (1/300*lrep)</td>
<td>40,0</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>lrep horizontaal</th>
<th>15,000</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>lrep verticaal</td>
<td>9,070</td>
<td>mm</td>
</tr>
<tr>
<td>utolv</td>
<td>43,1</td>
<td>mm</td>
</tr>
<tr>
<td>ais (1/250*lrep)</td>
<td>60,0</td>
<td>mm</td>
</tr>
<tr>
<td>utolh</td>
<td>20,8</td>
<td>mm</td>
</tr>
<tr>
<td>ais (1/300*lrep)</td>
<td>30,2</td>
<td>mm</td>
</tr>
</tbody>
</table>

6.2 Controle vloer & fundering

In deze paragraaf worden de huidige vloer, welke op staal in gefundeerd, en de overige (paal)fundering getoetst op sterkte en vervorming.

6.2.1 Controle vloer

Vroeger zijn in de hallen en magazijnen staalprofielen verwerkt en opgeslagen. Hierdoor is de grond onder de betonvloerplaten (met dilatatievogen van 5,00 bij 6,00 m) gedurende tientallen jaren ingeklonken. Bij nieuwe belasting is van belang te kijken wat de oude belasting op de grond was, zodat eventuele nieuwe zettingen voorkomen worden. De betonplaten (15 cm hoog) hadden een belasting op de ondergrond (eigen gewicht) per m²:

\[0,15 \text{ m} \times 2300 \text{ kg/m}^3 \text{ (licht gewapend beton)} \times 9,81 \text{ m/s}^2 = 3,38 \text{ kN/m}^2 \]
Op deze platen konden staalprofielen gelegd worden tot een hoogte van maximaal 2,5 m (maximale hefniveau van bovenloopkraan). Deze hadden gemiddeld een gewicht per m², als wordt aangenomen dat staalplaten op elkaar gestapeld zijn:

\[7850 \text{ kg/m}^2 \times 2,5 \text{ m} \times 9,81 \text{ m/s}^2 = 192.5 \text{ kN/m}^2 \]

Deze waarde is erg hoog en zal niet in deze mate voorgekomen zijn, doordat er ruimten tussen de staalplaten aanwezig waren.

Op de plaats waar de betonblokken liggen (2 x 8 rijen van 25 m lang) zijn geen betonplaten gelegd (zie figuur 6.10). De belasting op de ondergrond van deze betonblokken komt voort uit het eigen gewicht van deze betonblokken en de daarop rustende staalprofielen. De oppervlakte van een betonblok bedraagt ongeveer 0,467 m². De h.o.h. afstand tussen de betonblokken is 1000 mm. Zodoende wordt de belasting per m² door een betonblok:

\[0,467 \text{ m}^2 \times 2400 \text{ kg/m}^2 \text{ (gewapend beton)} \times 9,81 \text{ m/s}^2 = 11,0 \text{ kN/m}^2 \]

Figuur 6.10: Doorsnede betonblok met afmetingen.

Op deze betonblokken hebben vroeger ook tijdelijk staalprofielen gelegen, waardoor de belasting veel hoger was dan 11 kN/m².

Geconcludeerd kan worden dat de nieuwe (dynamische) belasting (7 kN/m²) ten gevolge van de bezoekers onder de oude belasting is. Als gevolge hiervan zullen de toekomstige zittingen van de ondergrond gering zijn en zullen de betonplaten voldoende sterk zijn.

6.2.2 Controle fundering

Er zijn boor- / pulspalen (diameter 400 mm) van 7,00 m lang, toegepast voor de fundering van hal 1 van het Konings Staal gebouw. Boorpalen en pulspalen zijn palen waarbij de grond verwijderd wordt als de palen in de grond gaan. Bij boorpalen wordt de grond eerst geboord en bij pulspalen wordt een boorgat gemaakt door middel van pulsen. Daarnaast zijn heupalen van verschillende afmetingen (280 * 280, 300 * 300, 350 * 350 mm) en verschillende lengten (11,50, 12,30 en 12,75 m) toegepast voor de fundering van hal 2. De fundering van de magazijnen is door gebrek van de juiste tekening niet bekend. Aangenomen wordt dat dezelfde funderingspalen zijn toegepast als het eerste gedeelte van hal 1, welke samen gerealiseerd zijn in 1967. Dit zijn poeren met two pulspalen (diameter 400 mm) van 7,00 m lang. Aangezien het Konings Staal gebouw in verschillende phases is gerealiseerd zijn verschillende funderingen toegepast. Dit komt deels door de tijd waarin het gerealiseerd is (manier van funderen, normen van die tijd), deels door de opbouw. Zo blijkt dat de spanten van hal 1 in de eerste fase (middelste gedeelte hal 1) eerste gefundeerd te zijn op poeren, welke in de lengterichting van de spanten lagen en later op poeren in de dwarsrichting op de spanten. In hal 2 aan de Oostelijke Havendijk werd eerst een kleine aanbouw aan hal 1 gemaakt, welke later vervangen is door een nieuw gedeelte. De fundering is echter achtergebleven.

Veel onzekerheden zijn er echter op de wijze waarop de oude fundering van hal 1 bevestigd is aan de latere fundering. Dit kan echter wel van belang zijn bij de mate van reserve van de fundering. Op deze vraag kan alleen antwoord gegeven worden door te kijken in situ. Echter dat gaat buiten het kader van deze afstudeerderzoek. Aangenomen wordt daarom dat deze oude fundering niet meegenomen wordt bij verder berekeningen van eventuele reserve. De reserve van de funderingspalen kan bepaald worden door het verticale draagvermogen van de paal, welke bepaald is aan de hand van sonderingen, te verminderen met de oude verticale belasting. De resultaten van de maximale draagkrachtberekeningen zijn in tabel 6.11 weergegeven. Daarbij geldt dat de rekenwaarde van de maximale draagkracht de laagste waarde van de 3 soorten van de bouwstructuren en deze bepalend is voor verdere berekeningen (zie bijlage 17). De maximale rekenwaarde voor de draagkracht is hier, rekening houdend met de negatieve kieel 116 kN (zie voor berekeningen bijlage 18).
Tabel 6.11: Resultaten berekening maximale draagkracht uit de 3 sonderingen.

<table>
<thead>
<tr>
<th>Sondering</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paalpunt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$q_{1\text{um}}$ (N/mm²)</td>
<td>6,9</td>
<td>6,5</td>
<td>6,4</td>
</tr>
<tr>
<td>$q_{2\text{um}}$ (N/mm²)</td>
<td>5,4</td>
<td>5,6</td>
<td>5,5</td>
</tr>
<tr>
<td>$q_{3\text{um}}$ (N/mm²)</td>
<td>1,8</td>
<td>1,9</td>
<td>2,0</td>
</tr>
<tr>
<td>$P_{\text{max,punt}}$ (N/mm²)</td>
<td>4,0</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>A_{vout} (mm²)</td>
<td>90000</td>
<td>90000</td>
<td>90000</td>
</tr>
<tr>
<td>$F_{\text{rmax,punt}}$ (kN)</td>
<td>360</td>
<td>360</td>
<td>360</td>
</tr>
<tr>
<td>Schacht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_{c} (N/mm²)</td>
<td>5,0</td>
<td>5,1</td>
<td>2,1</td>
</tr>
<tr>
<td>$P_{\text{max,schacht}}$ (N/mm²)</td>
<td>0,050</td>
<td>0,051</td>
<td>0,021</td>
</tr>
<tr>
<td>O_{0} (mm)</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>a_{0} (mm)</td>
<td>1500</td>
<td>1600</td>
<td>2700</td>
</tr>
<tr>
<td>$F_{\text{rmax,schacht}}$ (kN)</td>
<td>90</td>
<td>98</td>
<td>68</td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{rmax} (kN)</td>
<td>450</td>
<td>458</td>
<td>428</td>
</tr>
<tr>
<td>F_{rres} (kN)</td>
<td>355</td>
<td>362</td>
<td>338</td>
</tr>
<tr>
<td>F_{rd} (kN)</td>
<td>284</td>
<td>289</td>
<td>270</td>
</tr>
<tr>
<td>Negatieve kleef</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T (kN/m²)</td>
<td>6,25</td>
<td>6,25</td>
<td>6,25</td>
</tr>
<tr>
<td>h (m)</td>
<td>11,5</td>
<td>11,5</td>
<td>11,5</td>
</tr>
<tr>
<td>F_{kk} (kN)</td>
<td>86</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>Totaal met neg. kleef</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{rmax} (kN)</td>
<td>364</td>
<td>372</td>
<td>184</td>
</tr>
<tr>
<td>F_{rd} (kN)</td>
<td>230</td>
<td>235</td>
<td>116</td>
</tr>
</tbody>
</table>

De draagkracht van deze paal is gebruikt voor het bepalen van de reserve van de fundering per spant. Uit tabel 6.12 is af te lezen dat de reserve links 139 kN en rechts 173 kN bedraagt voor hal 2. Door het aanbrengen van een extra verdieping (met een maatgevende belasting van 6,3 kN/m² met een belastingfactor van 1,5 en een permanente belasting van circa 3,0 kN/m² en een belastingfactor van 1,2), opgelegd op de bestaande fundering en zonder toevoeging van een kolom in het midden van de overspanning, leidt tot een resultaat van een reserve van -221 kN op de linkerpafundering, en een resultaat op de rechterfundering van -164 kN. Hierbij dient de bestaande fundering verwaard te worden door een extra heipaal te slaan. Wanneer een kolom in het midden van de verdiepingoverspanning wordt geplaatst, dan wordt de reserve op de linkerfundering 31 kN en 65 kN op de rechterfundering. Zodoende hoeft de bestaande fundering niet verwaard te worden. Deze berekening dient ook gedaan te worden voor de fundering van hal 1 en de magazijnen. Dat gaat echter buiten bereik van dit afstudeeronderzoek. Gekozen is voor hal 2, omdat deze als gevolg van de grootste overspanning, de grootste belastingen op de fundering heeft.

Tabel 6.12: Resultaten reserve fundering per spant van hal 2.

Belasting links per paal	46,7	kN		
Belasting rechts per paal	58,4	kN		
Draagkracht heipaal 300 * 300 mm	118	kN		
Reserve links per paal	69,3	kN		
Reserve rechts per paal	57,6	kN		
Reserve per spant links	139	kN		
Reserve per spant rechts	173	kN		
Belasting verdiepingsvloer				
Over	Vier	Lengte	Breedte	Totaal
kN/m²	m	m	kN	
Veranderlijke belasting zonder kolom	6,3	22	5	518,0
Permanente belasting zonder kolom	3,0	22	1	38,6
Extra belasting per poer	279,7	kN		
Verschil reserve - extra belasting	-221 [kN] links		-164 [kN] rechts	
Veranderlijke belasting met kolom	6,3	11	5	194,9
Permanente belasting met kolom	3,0	11	1	19,8
Extra belasting per poer	107,4	kN		
Verschil reserve - extra belasting	31 [kN] links	65 [kN] rechts		
6.3 Ontwerp verdiepingsvloer

Deze paragraaf behandelt het constructief ontwerp voor de nieuw te realiseren verdiepingsvloer. Aan de hand van de uitgangspunten zijn vier alternatieven bedacht, waarna één alternatief verder is uitgewerkt.

6.3.1 Uitgangspunten ontwerp verdiepingsvloer

Voor het ontwerp van de verdiepingsvloer dienen de volgende uitgangspunten worden beschreven:

- Een belastingscombinatie voor het complex met de gebruiksfunctie van bijeenkomstfunctie en ontsluitingswegen/ vluchtwegen waar de constructie op belast dient te worden, is de extreme waarde van de veranderlijke vloerbelasting gelijktijdig aanwezig op alle bouwlagen. Echter bestaat het complex uit twee bouwlagen waarin de onderste bouwlag op staal is gefundeerd en niet door de constructie opgenomen hoeft te worden.
- De dimensionering van de vloer dient te gebeuren aan de hand van de eisen op stijfheid, eigenfrequentie en brandveiligheid.
- De eis van stijfheid kan vertaald worden in de maximale doorbuiging in bruikbaarheidsgraadstoestand. De maximale doorbuiging in eindtoestand dient kleiner te zijn dan \(u_{eind} < 0.004 \times l_{rep} \), waarin \(l_{rep} \) de lengte van de overspanning is. De bijkomende doorbuiging (\(u_{bik} \)) mag niet groter zijn dan 0,003 \(\times l_{rep} \). Dit resulteert in een eis bij de maatgevende overspanning van circa 22 m:
 \[u_{eind} < 0.004 \times 22000 \text{ mm} = 88 \text{ mm} \]
 \[u_{bik} < 0.003 \times 22000 \text{ mm} = 66 \text{ mm} \]
- De eis van eigenfrequentie, waarbij volgens NEN 6702 geëist wordt dat een vloer waarop gedanst de eerste eigenfrequentie van de vloerconstructie niet lager mag zijn dan 5 Hz. De eerste eigenfrequentie van vloeren kan bepaald worden met behulp van de formule:

\[
f_e = \frac{\alpha}{\delta}
\]

waarin
- \(f_e \) = de eerste eigenfrequentie van de vloer in Hz,
- \(a \) = een grootheid, afhankelijk van het statisch systeem en de verdeling van de massa in het systeem in m/s²,
- \(\delta \) = de grootste doorbuiging van de vloer in m.

Aangezien de vloeren scharnierend worden opgelegd heeft \(a \) de waarde 0,325 m²/s². Dit leidt tot de eis dat de doorbuiging \(\delta \) < 13,0 mm.
- De eis van de brandwerendheid van de hoofdconstructie geeft aan dat de hoofdconstructie minimaal 30 minuten brandwerend dient te zijn, voordat de constructie bezwijkt.
- De dynamische belasting is maatgevend als veranderlijke belasting. Deze bedraagt 7 kN/m², maar mag vermenigvuldigd worden met een correctiefactor \(\psi_t \), welke afhankelijk is van de referentieperiode.

Deze referentieperiode is weliswaar 5 jaar, maar wordt toch op 15 jaar gehouden, aangezien constructiedelen van het complex hergebruikt kunnen gaan worden en het complex voornamelijk een bijeenkomstfunctie heeft en daarmee hoge eisen aan de hoofddraagconstructie worden gesteld. Bij een momentaanfactor van 0,25 bij bijeenkomstfunctie en een referentieperiode van 15 jaar, bedraagt de correctiefactor 0,90, waardoor de maatgevende gelijkverdeelde veranderlijke belasting 6,3 kN/m² is.
- Als materiaal voor de hoofddraagconstructie wordt gekozen voor staal, aangezien dit enerzijds past bij de structuur van de huidige hallen (stalen spanten in een staalverwerkinghal) en anderzijds zeer geschikt is om een overspanning van maximaal 22,00 m te maken. Om de constructiehoogte zo hoog mogelijk te krijgen en daardoor gunstig voor de dimensionering van de elementen, wordt gekozen voor een (ruimte)vakwerk. Een (ruimte)vakwerk is een constructieonderdeel dat is samengesteld uit trek- en drukstaven. Deze staven vormen een stelsel van (ruimtelijke) stabiele vormen. De staven zijn onderling scharnierend verbonden. Ook dit past in het plaatje van de hallen, waarin vakwerkspanten zijn toegepast. Een ander voordeel is dat leidingen voor de installaties gemakkelijk geïntegreerd kunnen worden tussen de vakwerkliggers en de vakwerkligger zelf een open uitstraling heeft. Bovendien lenen vakwerk zich goed om in onderdelen gefabriceerd, getransporteerd en tot één geheel gemonteerd te worden.
- De vrije hoogte op de begane grond dient ten minste 4,10 m te bedragen, aangezien een vrachtwagen in de zaal rond dient te kunnen rijden.

\[1\] Dit kan verkregen worden door of de hoofdconstructie te behandelen met brandweerende verf of in te pakken met brandwerend materiaal of over te dimensioneren.
Daardoor is tevens een kolomvrije overspanning gewenst. Tevens dient de vrije hoogte op de tussenvoordieping minimaal 2,60 m te zijn (zie figuur 6.11). Dit leidt tot een maximale constructiehoogte van 1.26 m.

Tegenwoordig worden ook strenge additionele eisen gesteld door een verzekeringmaatschappij bij het afsluiten van een technische verzekering van een gebouw. Echter wordt bij dit ontwerp daar geen rekening mee gehouden.

De maatgevende eis voor de dimensionering blijkt de maximale doorbuigingseis met betrekking tot de eigenfrequentie te zijn. Eerst is uitgegaan van de eenvoudige NEN-eis.

![Figuur 6.11: De vrije hoogte van zowel de begane grond als de tussenvoordieping geven beperkingen ten opzichte van de verdiepingsoverdeelingsconstructiehoogte.](image)

6.3.2 Ontwerproces verdiepingsoverdeelingsconstructie

Via een aantal stappen wordt de dimensionering van de verdiepingsoverdeelingsconstructie verkregen. Allereerst dient de maatgevende belasting te bepaald worden, waarna de doorbuiging berekend kan worden. Echter dient voor ter bepaling van de permanente rustende belasting het vloertype gekozen te worden. Vervolgens zijn vier verdiepingsoverdeelingsconstructies bedacht voor de (maatgevende) overspanning van hal 2, welke in de volgende subparagraaf besproken zullen worden.

Vloerconstructies

De volgende vloerconstructies kunnen worden toegepast voor het ontwerp van de (tussen)verdieping:

- Stalen liggers plus kanaalplaatvloer

- Staalplaat-betonvloeren
 Bij stalplaat-betonvloeren heeft de stalplaat naast een bekistingfunctie ook de functie van wapening. De platen kunnen 'met de hand' worden gemonteerd. Bij stalplaat-betonvloeren is minder beton nodig dan bij in het werk gestorte betonvloeren. Ze zijn hierdoor ook aanmerkelijk lichter.

- Staalplaatvloer
 Een stalplaatvloer bestaat uit cassettes van dunne stalplaat, welke op de geïntegreerde liggers opgelegd zijn. Dwars daarop ligt een geprofileerde stalplaat met een deklaag op verende strips om het contactgluid te reduceren. De stalen cassettes zijn voor de helft gevuld met minerale wol en bieden ruimte voor installatieleidingen.

Gekozen wordt voor de vloerconstructie op de tussenvoordieping voor een stalplaat-betonvloer. De volgende redenen komen tot deze keuze:

- **Grote bouwsnelheid**: grote hoeveelheden vloerplaten kunnen eenvoudig in de constructie gehesen worden en kunnen relatief snel gemonteerd worden. Daarnaast kunnen de staalplaatbetonvloeren stempelvrij gerealiseerd worden, wat leidt tot een efficiënte bouwlocatie.
Laag gewicht: De profilering van de staalplaten reduceert het betonvolume en creëert een efficiënte doorsnede. Dit wordt bevorderd wanneer voor lichtbeton wordt gekozen (met een massa van 2000 kg/m³).

Geringe constructiehoogte: staalplaatbetonvloeren kunnen fungeren als drukzone voor staalbetonconstructies, waardoor volstaan kan worden met een lichtere of lagere stalen constructie. De vloer wordt zelf ook slank uitgevoerd, waardoor de constructiehoogte kan worden gereduceerd.

Aandeel stabiliteit: De beplating fungeert als kipsteun voor de stalen ligger en levert door schijfwerking een bijdrage aan de stabiliteit van de constructie tijdens de uitvoering. Vervolgens kan ook in uiteindelijke toestand de vloer een bijdrage leveren aan de stabiliteit van de (tussen)verdieping.

Minimaal 30 minuten brandwerend: de staalplaatbetonvloer is minimaal 30 minuten brandwerend en kan met een geringe extra wapening en een beperkte toename van de vloerdikte de brandverdurendheid worden verhoogd.

De andere vloersystemen zijn te

Belasting

De maatgevende belasting is de permanente belasting (als gevolg van het eigen gewicht van de vloer en stalen (vakwerk) ligger en de hoogste veranderlijke belasting, wat in dit geval de dynamische belasting is. Deze belasting werkt op de gehele verdiepbrededte.

Een staalplaatbetonvloer kan een overspanning maken van 5,00 m en heeft een afmeting van 5,0 * 1,0 * 0,15 m. Het eigen gewicht van de staalplaatbetonvloer bedraagt 2,6 kN/m².

De hoogte van de (vakwerk)ligger kan bepaald worden met de vuistregel h = 1/16 * L waarbij L de overspanning is. De geschatte hoogte wordt 0,6 m. Het eigen gewicht van de (vakwerk) ligger wordt geraamd op 2,0 kN/m.

De totale permanente belasting is dan bij een h.o.h. overspanning van 5,00m 2,8*5,00 + 2,0 = 16,0 kN/m en bij een h.o.h. overspanning van 2,50 m een belasting van 8,0 kN/m.

De maatgevende veranderlijke belasting is de dynamische belasting met een waarde van 6,3 kN/m². De lijnlast op het vakwerk wordt dan respectievelijk 6,3 * 5,00 m = 31,5 kN/m en 15,8 kN/m (2,50 m h.o.h.).

Doorbuiging

De doorbuigingseisen zijn als algemene, materiaalonafhankelijke eisen vastgelegd in NEN6702 en hebben betrekking op de bruikbaarheidsbronsoestand.

De totale belasting voor bruikbaarheidsbronstoeastand (BGT) heeft belastingfactoren met de waarde 1,0 en wordt 16,0 + 31,5 kN/m = 47,5 kN/m bij h.o.h. van 5,00 m.

De doorbuiging in het midden van het vloerveld bedraagt:

\[
\delta = \frac{5}{384} \frac{q\cdot l^4}{EI} = \frac{5}{384} \frac{47,5\cdot 22^4}{EI}
\]

De doorbuiging is afhankelijk van de buigstijheid van de constructie. Als maatgevende eis is gesteld dat de doorbuiging kleiner dan 13,0 mm dient te zijn. De buigstijheid (EI) van de constructie dient dan minimaal een buigstijheid te hebben van:

\[
EI = \frac{5}{384} \frac{q\cdot l^4}{\delta} = \frac{5}{384} \frac{47,5\cdot 22^4}{13,0\cdot 10^{-3}} = 1.11\cdot 10^7 kNm^2
\]

Met de elasticiteitsmodulus van staal E = 2,1 *10^8 kN/m² dient de constructie een traagheidsmoment (I) te hebben van:

\[
1.11\cdot 10^7/2.1\cdot 10^8 = 5.307.139\cdot 10^4 mm^4 = 5,31 \cdot 10^{-2} m^4
\]

Ter vergelijking heeft de zwaarste beschikbare HE-M profiel, de HE1000M een traagheidsmoment van 722.299*10^4 mm^4, wat niet voldoende is.
Een optie is om in het midden van de overspanning een kolom te plaatsen. De doorbuiging en hoekverdraaiing ter plaatse van de kolomoplegging is nihil. De formule voor de doorbuiging in het veld wordt nu:

$$\delta = \frac{1}{192} \cdot \frac{q \cdot l^4}{EI} = \frac{1}{192} \cdot \frac{47,5 \cdot 11^4}{EI} = 13,0$$

Dit leidt tot een benodigd traagheidsmoment van: $1,33 \cdot 10^5$ kN/m². Deze waarde is een orde 2 lager dan een kolomvrije overspanning. Zoals gezegd is de doorbuiging maatgevend voor de dimensionering. Het gekozen alternatief wordt echter getoetst op sterkte en stabiliteit.

6.3.3 Alternatieven verdiepingsconstructies

De benodigde stijfheid van de verdiepingsconstructie kan behaald worden met verschillende constructies. Voor een vierendeelligger (4 profielen), een ruimtelijk vakwerkkligger (drie profielen) en een vakwerkkligger (twee profielen) is bepaald welke profielen benodigd zijn om aan de trillingseis te voldoen. Uiteindelijk is ook gekeken naar een vakwerkkligger met kolom. Bij alle constructies dient het traagheidsmoment bepaald te worden om zodoende met de constante elasticiteitsmodulus van staal aan de gevraagde buigstijfheid te voldoen. De stabiliteit van de vloer wordt verzorgd worden door de schijfwerking van de betonnen afwerkingsvloer.

1. **Vierendeelligger (4* HE900B liggers)**

Het eerste alternatief is een ruimtelijk vakwerk met vier profielen, ook wel een vierendeel ligger genoemd (zie figuur 6.12). Het traagheidsmoment van een vierendeelligger kan bepaald worden met de formule:

$$I_{tot} = 4 \cdot \left(I_{eigen} + \left(\frac{1}{2} \cdot a \right)^2 \cdot A \right) \cdot 0,85$$

Waar
- h = de hoogte van het profiel
- b = de breedte van het profiel
- a = de afstand tussen het zwaartepunt van het onderste profiel en het zwaartepunt van het bovenste profiel.

Het eerste deel van de formule geeft het eigen traagheidsmoment van het profiel weer en het tweede deel de regel van Steiner. Dit geldt echter alleen in de ideale situatie, waarin elk element stijf is verbonden, zodat de profielen tegelijk meewerken. Echter zal in deze situatie in de praktijk nooit geheel optreden, vandaar dat een factor 0,85 toegekend dient te worden aan I_{tot} om tot een veilige constructie te komen.

Met een waarde van 1,5 m van de inwendige hoogte van de constructie blijkt dat een HE900B-profiel voldoet voor een constructie van een ruimtelijke vakwerkkligger met vier profielen (zie bijlage 19).
2. Ruimtevakwerkligger (3*HE400*468 liggers)
Vervolgens is gekozen voor een ruimtevakwerkligger met drie profielen. Het traagheidsmoment deze overspanningconstructie kan bepaald worden met de formule:

$$I_{tot} = I_{eigen} + \left(2 \cdot \left(\frac{1}{3} a \right)^2 \cdot A + \left(\frac{2}{3} a \right)^2 \cdot A \right) \times 0,85$$

Met een waarde van 1,5 m van de inwendige hoogte van de constructie blijkt dat een HE400*468-profiel voldoet voor een constructie van een ruimtevakwerkligger met drie profielen (zie figuur 6.13). Dit is echter een speciale maat, waardoor de kosten voor deze constructie relatief hoger zullen zijn dan de gangbare profielen.

3. Vakwerk (2*HE650*579 liggers)
Daarna is gekeken naar een vakwerk met twee profielen. Het traagheidsmoment van deze vakwerkligger kan bepaald worden met de formule:

$$I_{tot} = 2 \cdot \left(I_{eigen} + \frac{1}{2} a \right)^2 \cdot A \times 0,85$$
Met een waarde van 1,5 m van de inwendige hoogte van de constructie is een HE650*579-profie geschikt voor een constructie van een ruimtelijke vakwerkligger met twee profielen (zie figuur 6.14). Dit is echter net zoals alternatief 2 een speciale maat, waardoor de kosten voor deze constructie relatief hoger zullen zijn dan de gangbare profielen.

Figuur 6.14: Optie verdiepingsconstructie vakwerk met twee profielen.

4. **Verzwaarde spannen met ophangen vloer**

Het laatste alternatief heeft zijn krachtssafdracht niet via een directe oplegging of ophanging op de kraanbanen en/of kolommen, maar via de spannen. Daarbij worden enkele spannen vervangen door verzwaarde spannen met dezelfde geometrie. Vervolgens worden aan deze spannen de verdiepingsvloer opgehangen.

Figuur 6.15: Optie verdiepingsconstructie vakwerk opgehangen aan verzwaarde spannen.

Bij dit alternatief wordt echter niet het traagheidsmoment berekend op de trillingseis, aangezien er een groot aantal noden kleef aan dit alternatief, te weten:

- Vervanging van de spannen is een arbeidsintensieve zaak; allereerst dient de dakhuid en gordingen gedemonteerd te worden, vervolgens de constructie, waarbij tijdelijke stabiliteitsvoorzieningen voor de overige spannen gerealiseerd dienen te worden. Dan dienen de nieuwe verzwaarde spannen ingehesen te worden Daarna kunnen de gordingen en dakhuid weer gemonteerd te worden.
- De kosten zijn zodoende relatief hoger dan de andere alternatieven.

Echter geeft dit alternatief wel weer dat het mogelijk is om, wanneer de huidige spannen bij nader onderzoek versterkt dienen te worden, een verdieping deels op te hangen op de verstekte spannen.
Voorlopige keuze vloerconstructie
De beschreven vloeralternatieven hebben elk zijn voordelen en nadelen. Bij de ligger met vier profielen dienen de profielen momentvast aan elkaar gemaakt worden, om zodoende een effectieve krachtverdeling te krijgen en te voorkomen dat de boven- en onderkant afgebouwd worden. Dit is echter een arbeidsintensieve ingreep, want de liggers dienen in delen in de hallen- en magazijnen ingehesen te worden en vervolgens met bomen tijdelijk vastgezet te worden. Vervolgens dienen dan een momentvaste verbinding gerealiseerd te worden door of meerdere bomen te gebruiken of door te lassen. Dit laatste mogelijk is vanwege de werkhoogte van minimaal 4,10 m. Alternatief 2 is een zeer geschikte ligger om de nodige traagheidsmoment te verkrijgen. Datzelfde geldt in mindere mate van de vakwerkligger met twee profielen (variant 3). Opgemak tient dient te worden dat ten behoeve van de knik en kipstabiliteit bispromeliën geschikter zijn i.p.v. de gekozen profielen. Zoals gezegd valt alternatief 4 af, vanwege de relatief hoge uitvoerkosten.

Variant 3 wordt in eerste instantie uitgewerkt als voorlopige verdiepingconstructie. Aangezien het benodigd traagheidsmoment alleen met zeer grote en afwijkende profielen te realiseren valt, is vervolgens gerekend naar de invloed van de staalplaatbetonvloer (zie bijlage 20). Echter is de bijdrage van de staalplaatbetonvloer tot de totale traagheidsmoment maar circa 11%, de overige 89% wordt geleverd door het aandeel van de ruimtevakwerkligger. Dit is te verklaren doordat de hoogte van de staalplaatbetonvloer ten opzichte van de ruimtevakwerkligger erg klein is, zodoende werkt dit in het traagheidsmoment-bepaling niet erg door (hoogte tot de tweede en derde macht), waardoor het aandeel beperkt blijft. Bij de dimensionering van de verdiepingconstructie wordt daarom niet invloed van de staalplaatbetonvloer meegenomen.

Vervolgens zijn de afwijkende H-profielen (zie figuur 6.16, stap 1) vervangen door bispromeliën om een gangbaar profiel te verkrijgen. Bovendien is ten behoeve van de knik en kipstabiliteit deze profielen geschikter. Een overspanming van 22,0 m is echter alleen te realiseren met een hoge constructiehoogte en kleine h.o.h. afstand (2,5 m) (zie figuur 6.16, stap 2), Dit laatste zorgt ervoor dat extra voorzieningen tussen de bestaand kolommen gerealiseerd dienen te worden. Daarom is de constructie van stap 3 gekozen, welke een h.o.h. afstand van 5,00 m heeft. Echter is het gewenst dat een vrachtvagen (met een vrije hoogte profiel van 4,10 m) in de exploitatieperiode de hallen in kunnen rijden voor het lossen van materiaal. Daarbij hebben de bezoekers op de tussenverdieping een vrije hoogte van 2,70 m nodig. Dit leidt ertoe dat de voorgaande constructie een te grote verdiepingconstructiehoogte heeft. Stap 4 geeft een constructie weer die wel aan deze laatste eis voldoet. Te zien is echter dat het ruimtelijk vakwerk-vorm minimaal is geworden en dat er geen arm zit tussen de profielen, wat gunstig is voor het traagheidsmoment. Daarom is gekozen naar de achtergrond van de trillingsseis in bijlage 21. De trillingsseis is mede afhankelijk van de eigenfrequentie van de verdiepingconstructie, welke gescanpast is kan worden als een buigligger. De eigenfrequentie wordt berekend op basis van de algemene formule voor de eigenfrequentie van een buigligger:

\[f_s = \frac{C_1}{2\pi} \sqrt{\frac{EI}{ml^2}} \ [Hz] \]

De bepaling van de eigenfrequentie hangt af van een aantal factoren zoals:
- Oplegcondities constructie
- Buigstijfheid constructie
- Massa constructie
- Overspanning constructie

Als de lengte van de overspanning met de helft vermindert zal dit leiden tot een verhoging van de frequentie met een factor 1,5. Verlaging van de massa en verhoging van het traagheidsmoment leidt tot een vergroting van de eigenfrequentie met een factor 0,5. Verminderen van de overspanning leidt tot de effectiefste verhoging van de eigenfrequentie. Deze vermindering kan door middel van schoren gerealiseerd worden, zodat de vrije ruimte in het midden van de overspanning gewaarborgd blijft of door middel van een kolom in het midden. Voor deze laatste oplossing wordt gekozen, omdat de overspanning zo met de helft vermindert, en er maar één extra element toegevoegd hoeft te worden in plaats van twee schoren. Bovendien verandert door toevloed van een kolom ook de oplegcondities, aangezien de hoekverdraaiing van de verdiepingconstructie bij de kolomploeglegging nul is. Vervolgens zal, door lichte dimensionering, de massa kleiner worden, wat ook leidt tot een grotere eigenfrequentie.
Stap 1
Staalplaatbetoenvloer gecombineerd met een ruimtelijk vakwerkligger

Gegevens:
- Overspanning = 2,2 m
- Ho.h. afstand ruimtelijke vakwerkligger = 2,5 m
- Overspanning staalplaatbetoenvloer = 3,0 m

Stap 2
Staalplaatbetoenvloer gecombineerd met een ruimtelijk vakwerkligger

Gegevens:
- Overspanning = 2,2 m
- Ho.h. afstand ruimtelijke vakwerkligger = 2,5 m
- Overspanning staalplaatbetoenvloer = 3,0 m

Stap 3
Staalplaatbetoenvloer gecombineerd met een ruimtelijk vakwerkligger

Gegevens:
- Overspanning = 2,2 m
- Ho.h. afstand ruimtelijke vakwerkligger = 2,5 m
- Overspanning staalplaatbetoenvloer = 3,0 m

Stap 4
Staalplaatbetoenvloer gecombineerd met een ruimtelijk vakwerkligger

Gegevens:
- Overspanning = 2,2 m
- Ho.h. afstand ruimtelijke vakwerkligger = 2,5 m
- Overspanning staalplaatbetoenvloer = 3,0 m

Figuur 6.16: Volgorde bepaling doorsnede verdiepingsconstructie. Deze doorsneden zijn alleen niet geschikt voor de verdiepingsconstructie.

6.3.4 Definitieve keuze vloerconstructie
In bijlage 22 is beschreven dat een ruimtelijke vakwerkligger niet haalbaar was voor een overspanning van maximaal 22,0 m en een beperkte constructiehoogte. Door toevoeging van een kolom in het midden bleek de (veranderde) benodigde stijfheid haalbaar te zijn met een vakwerkligger van twee profielen en een hart op hart afstand van 5,00 m. De randstaven van dit vakwerk wordt vervaardigd uit rechtshoekige buisprofielen van 200*150*12,5 mm (zie figuur 6.17 en 6.18). De werkelijk doorbuiging is beschreven in bijlage 22. Daaruit blijkt dat het rechthoekig van de vakwerkligger in hal 2 maximaal 12,9 mm verticaal doorbuigt en aan de trillingseis voldoet.

Figuur 6.17: Optie verdiepingsconstructie vakwerkligger met kolom.
Figuur 6.18: Doorsnede definitieve verdiepingsvloerconstructie met principedetails.

Toetsing vakwerkkliggen op sterkte
De vakwerkkliggen wordt tevens getoetst op sterkte-eisen. Hiermee kan inzicht verkregen worden in de verhouding van de dimensies. De optimale dimensionering ontstaat bij een ongeveer gelijke verhouding van de eisen ten gevolge van de sterkte en stijfheid.

De totale belasting voor de uiterste grenstoestand (UGT) is als volgt:
\[16,0 \text{ kN/m} \times 1,2 + (6,3 \times 5,0) \text{ kN/m} \times 1,5 = 66,45 \text{ kN/m} \]

Met deze belasting kan bepaald worden wat de dimensionering van het vakwerk dient te worden met de sterkte-eisen. Het maximale steunmoment \(^2\) wat als gevolg van buiging ontstaat is te bepalen met de formule:
\[M_{\text{max-stuur}} = \frac{1}{6}q* \frac{l^2}{8} \]

Boven-/onderrand
Dit moment wordt door opgenomen door de boven- en onderrand van het vakwerk. Deze normaalkrachten met een hefboom van 0,6 m dienen dan op te nemen:
\[N = \frac{q* \frac{l^2}{8}}{8*h} = \frac{66,5*11,5^2}{8*0,7} = 1570 \text{ kN} \]

De benodigde oppervlakte van de onderrand dient minimaal te zijn:

\(^2\) Het maximale veldmoment bedraagt 0,0703\(q*l^2\).
\[A_{ben} = \frac{N}{f_{yd}} = \frac{1570 \times 10^3 N}{235 N / mm^2} = 6680 mm^2 \]

Een koudgewalst rechthoekig buisprofiel 250*150*10 mm voldoet hieraan en heeft een eigen gewicht 0,588 kN/m.

Voor het bepalen van de benodigde oppervlakte van de gedrukte bovenrand dient, om voldoende knikreserve te hebben, een vloei spanning van 0,85*f_{y,d} = 0,75 \times 235 = 200 N/mm² toegepast te worden.

\[A_{ben} = \frac{N}{f_{yd}} = \frac{1570 \times 10^3 N}{200 N / mm^2} = 7850 mm^2 \]

Een koudgewalst rechthoekig buisprofiel 250*150*12,5 mm voldoet hieraan en heeft een gewicht van 0,723 kN/m. Deze dimensionering is gelijk aan de dimensionering ten gevolge van de stijheid.

Drukstaven

De op zuiver druk belaste staven dienen getoetst te worden op knik. De kracht waarbij de staaf uitknikt wordt de Eulerse knikkkracht genoemd en bepaald met:

\[F_E = \frac{\pi^2 E I}{l_k^2} \]

De formule kan omgewerkt worden tot een formule voor de knikspanning \(\sigma_E \). Hierbij is slankheid van de gedrukte staaf bepalend. Gekozen wordt voor een warmgewalst vierkant buisprofiel 200*200*10 mm (uit de stijheideisren). De Eulerse knikkkracht, wordt met een maximale kniklengte van 700 mm:

\[F_E = \frac{\pi^2 \cdot 2,1 \cdot 10^5 \cdot 4470 \cdot 10^4}{700^2} = 189,073 kN \]

Deze formule is echter afgeleid onder de theoretische aanname dat de staaf perfect recht en perfect van vorm is. Er zijn echter afwijkingen en daarom dient de knikkkracht bepaald worden aan de hand van knikkomen, welke afhankelijk is van het soort profiel en de buigingsrichting.

Met behulp van de relatieve slankheid (\(\lambda_{rel} \)) en de knikfactor (\(\omega_{buc} \)) kan een unitycheck voor de drukstaaf worden uitgevoerd.

\[\lambda_{rel} = \sqrt{\frac{N_{pl,d}}{F_E}} \] hiermee kan \(\omega_{buc} \) worden bepaald.

Met \(N_{pl,d} = A\cdot f_{y} = 7493 \times 235 = 1761 kN \). De relatieve slankheid wordt dan \(\sqrt{1761/ \ 189,073} = 0,1 \), met instabiliteitkomme a wordt \(\omega_{buc} = 1,00 \). Dan volgt de unity-check voor knik.

\[\frac{N_{ex,d}}{\omega_{buc} \cdot N_{pl,d}} \leq 1 \]

Deze wordt vervolgens, wanneer uit Matrixframe blijkt dat de maximale drukkracht \(N_{ex,d} = 79 kN \) is:

\[79 / 1,00 \times 1761 = 0,05 \]. Hieruit blijkt dat de dimensionering ten gevolge van de stijheid zeer zwaarder is dan ten gevolge van de sterkte.

Trekstaven

De rekenwaarde van de trekkkracht in de diagonalen is te bepalen uit het knopenevenwicht van knoop B (zie figuur 6.19). De diagonalen bij de middelste oplegging worden immers het zwaarst belast en daarmee maatgevend voor de dimensionering. De bovenrand heeft een drukkracht van maximaal 1570 kN. Aangenomen wordt dat wanneer de diagonalen dezelfde geometrie hebben,
beide dezelfde normaalkracht hebben, hetzij dan wel een trekkracht als een drukkracht. Het
momentenevenwicht om knooppunt A wordt dan: \(F_{\text{bovenrand}} \cdot 0,7 \text{ m} - 0,7 \cdot 1,2 \cdot F_{\text{diagonaal}} \cdot 0,7 \text{ m} + F_4 \cdot 5,4 \text{ m} - R_{\text{links}} \cdot 10,8 \text{ m} = 0. \)

Hierbij is \(F_4 \) de kracht ten gevolge van de verdeelde belasting met een waarde 66,45 kNm \(* 10,8 \text{ m} = 718 \text{ kN} \) en \(R_{\text{links}} \) de linker oplegkracht, met als waarde 0,375 * q * l = 0,375 * 66,45 * 10,8 \text{ m} = 269 \text{ kN} \) (zie figuur 6.20).

Hieruit volgt: 1570 * 0,7 - 0,4 \(F_{\text{diagonaal}} \cdot 718 \cdot 5,4 \text{ m} - 269 \cdot 10,8 \text{ m} = 0. \)

Dan wordt \(F_{\text{diagonaal}} = 2071/0,4 = 1726 \text{ kN}. \)

![Figuur 6.19: Schema van einddiagonaal (links) en krachtenveelhoek knoopp B (rechts).](image)

De uiterste trekkracht van de diagonalen is te bepalen met \(N_{\text{vkl}} = A \cdot f_{\text{cd}}. \)
Hieruit volgt dat de benodigde oppervlakte \(A = 1726 \cdot 10^2/235 = 7345 \text{ mm}^2 \) dient te zijn. Een warmgewalst vierkant buisprofiel 200*200*10 voldoet hieraan. De eis is dat de rekenwaarde van de trekkracht kleiner is dan de uiterste capaciteit. In formule vorm wordt dit de unity-check genoemd:

\[
\frac{N_{\text{vkl}}}{N_{\text{cd}}} \leq 1
\]

Bij het gekozen profiel wordt de unity-check:
\[
1726 \cdot 10^3/7345 = 235 = 0,98.
\]

Met behulp van het rekenprogramma MatrixFrame zijn de werkelijke krachten en momenten berekend. De sterkte van de vakwerkligger zijn volgens de NEN-normen getoetst en blijken te voldoen (zie tabel 6.13).

<table>
<thead>
<tr>
<th>Profiel</th>
<th>A [mm²]</th>
<th>(N_{\text{cd}}) [kN]</th>
<th>(N_{\text{vkl}}) [kN]</th>
<th>(N_{\text{cd}}) [kN]</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randstaven 25015012,5</td>
<td>9207</td>
<td>2,163,6</td>
<td>1,471,4</td>
<td>1,315,7</td>
<td>0,68</td>
</tr>
<tr>
<td>Diagonalen/drukstaven 20020010</td>
<td>7257</td>
<td>1,705,4</td>
<td>427,7</td>
<td>599,3</td>
<td>0,35</td>
</tr>
</tbody>
</table>

Tevens is de stabiliteit van de vakwerkligger gecontroleerd. De resultaten staan in tabel 6.14 en geven aan dat aan de formule:

\[
\frac{N_{\text{vkl}}}{N_{\text{cd}}} + \frac{2}{3} M_{\text{vkl}} \leq 1,0
\]

Tabel 6.14: Controle vakwerkligger op stabiliteit.

<table>
<thead>
<tr>
<th>Profiel</th>
<th>W [mm³]</th>
<th>I [mm⁴]</th>
<th>(N_{\text{vkl}}) [kN]</th>
<th>(N_{\text{cd}}) [kN]</th>
<th>(I_{\text{buc}}) [mm³]</th>
<th>(J_{\text{rel}})</th>
<th>Instabiliteits kromme</th>
<th>(\omega_{\text{buc}}) [kNm]</th>
<th>Myx [kNm]</th>
<th>Myy [kNm]</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randstaven 25015012,5</td>
<td>5,907E+05</td>
<td>7,384E+07</td>
<td>1,471,4</td>
<td>2,163,6</td>
<td>2600</td>
<td>0,31</td>
<td>b</td>
<td>0,95</td>
<td>138,81</td>
<td>11,8</td>
<td>0,77</td>
</tr>
<tr>
<td>Diagonalen/drukstaven 20020010</td>
<td>4,241E+05</td>
<td>4,241E+07</td>
<td>427,7</td>
<td>1,705,4</td>
<td>4488</td>
<td>0,63</td>
<td>b</td>
<td>0,81</td>
<td>99,66</td>
<td>0,14</td>
<td>0,31</td>
</tr>
</tbody>
</table>
Dimensionering middenkolen

De middenkolen dient een kracht over te brengen van 1,25ql (zie figuur 6.20). Dit houdt in dat de kolen circa 914 kN dient over te brengen. Rekening houdend met het verschijnsel knik dient de kolen uitgevoerd te worden als een HE160B profiel (kniklengte is 4100 mm).

![Diagram van middenkolen](image)

Figuur 6.20: Oplegreacties kolommen t.g.v. de belasting op de verdiepingsvloer.

Deze kolom is vervolgens aan de NEN-normen getoetst, waarvan de resultaten in tabel 6.15 zijn te zien. De kolom voldoet aan zowel de sterkte en stabiliteits eisen.

Tabel 6.15: Controle middenkolen op sterkte en stabiliteit.

<table>
<thead>
<tr>
<th>Snelheid</th>
<th>W</th>
<th>I</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE160B</td>
<td>3,54E+05</td>
<td>2,49E+07</td>
<td>5,43E+03</td>
</tr>
</tbody>
</table>

Sterkte

<table>
<thead>
<tr>
<th>Voorwaarden</th>
<th>Waarde</th>
<th>Eenheid</th>
<th>Formule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nc,kd</td>
<td>959,3 kN</td>
<td>kN</td>
<td></td>
</tr>
<tr>
<td>My,kd</td>
<td>0</td>
<td>kNm</td>
<td></td>
</tr>
<tr>
<td>Mv,kd</td>
<td>148,6 kN</td>
<td>kN</td>
<td></td>
</tr>
<tr>
<td>My,kd</td>
<td>83,2 kN</td>
<td>kN</td>
<td></td>
</tr>
<tr>
<td>Unity check</td>
<td>0,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a=</td>
<td>0,23</td>
<td>0,5</td>
<td></td>
</tr>
</tbody>
</table>

Stabiliteit

<table>
<thead>
<tr>
<th>Voorwaarden</th>
<th>Waarde</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,7yd</td>
<td>1,27E+06 N</td>
<td></td>
</tr>
<tr>
<td>El</td>
<td>5,23E+12 N/mm²</td>
<td></td>
</tr>
<tr>
<td>Iy</td>
<td>4000 mm</td>
<td></td>
</tr>
<tr>
<td>Ay,ref</td>
<td>0,64</td>
<td></td>
</tr>
<tr>
<td>Instabiliteitsen</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>stdbio</td>
<td>0,77</td>
<td></td>
</tr>
<tr>
<td>Unity check (<1)</td>
<td>1,0</td>
<td></td>
</tr>
</tbody>
</table>

De definitieve plattegrond van de verdiepingsconstructie is te zien in bijlage 23.

6.3.5 Vloer kantoren/ backstage ruimten

Aangezien de vloerconstructie bij de backstage/ kantoren geen maatgevende eis hebben van de doorbuiging ten gevolge van de dynamische belasting en ook niet wat betreft een kolomvrij overspanning van minimaal 15 m en maximaal 22 m, wordt gekozen voor een andere vloerconstructie.

Bordessysteem

Een mogelijkheid is om een magazijnstellingvloer toe te passen (zie figuur 6.21). Dit zogenaamde bordessysteem wordt vooral toegepast, zoals de naam al doet vermoeden, in een magazijn. Het is een demontabel systeem, zodat na 5 jaar dit onderdeel weer gedemonteerd en hergebruikt kan worden. Op deze vloerconstructie kunnen vervolgens kantoreenheden gebouwd worden.
Figuur 8.21: Bordessysteem met onderdelen.

Onderdelen Bordessysteem
- Kolom met zware voetplaat
- Draagligger geschroefd
- Dwarsligger voor vloerondersteuning
- Handreling van vierkante buis
- Schopreling en afrolbeveiliging
- Vloerdek van hout en staal
- Roostervloer
- Trap
- Aanrijdbeschermers
- Stabiliteitsverbinder

Kombi-unit
Een andere optie is om stapelbare kant-en-klare bouwsystemen te kiezen. Deze 'kombi-units' voor bijvoorbeeld de kantoren kunnen boven de backstage-units gestapeld worden, zodat er geen aparte vloerconstructie gerealiseerd hoeft te worden (zie figuur 6.22).
Bovendien heeft dit systeem als voordeel dat na 5 jaar deze units in zijn geheel naar buiten gereden kunnen worden en vervolgens hergebruikt kunnen worden. Bijkomend voordeel is dat deze units thermisch en geluidstechnisch geïsoleerd geleverd worden, waardoor vervolgens geen extra voorzieningen gemaakt dienen te worden.

Gekozen wordt daarom voor een kombi-unit. Dit systeem zal tevens gebruikt worden voor de toiletgeroepen, waardoor deze ook na 5 jaar in zijn geheel (met afvoerledingen) afgevoerd kan worden en vervolgens hergebruikt kan worden, waardoor deze units niet binnen 5 jaar afgeschreven hoeven te worden.

6.4 Ontwerp gevel

De gevel grenzend aan de Oostelijke Havendijk bepaalt het beeld van de entree van het complex. Zodoende wordt deze gevel hier verder in deze paragraaf uitgewerkt. Uitgangspunt hierbij is dat de gevel op het complex overdag niet erg opvallt in de omgeving, maar toch een beeld geeft van een evenementencomplex, waarin vele functies in gevestigd zijn en 's avonds een opvallende werking heeft op de omgeving, zodat iedere bezoeker vanaf de omgeving ziet dat daar het complex zich bevindt. Met behulp van een gevelstudie is onderzocht welke vorm en dimensionering de nieuwe gevel op basis van de criteria esthetica, functionaliteit en kosten, krijgt.

Vorm
Daarbij zorgt het centrale entree gedeelte, met lagere verticale hoogte dan de naastliggende gevels voor een 'zigende' werking voor bezoekers, wat de foyerfunctie benadrukt. Verder zijn het entree gedeelte en naastliggende gedeelten in een afwijkende vorm dan de schuinhellende daken
van de bestaande hallen ontworpen, zodat het contrast tussen nieuw en bestaand wordt benadrukt.

Gevelconcept 'Decorated wall'
Er zijn drie gevelconcepten bedacht, welke beschreven staan in bijlage 24.
1. 'Decorated wall'
2. 'Massive façade'
3. 'Containerized wall'

Gekozen is voor gevelconcept 'Decorated wall'. Deze gevel wordt als een vliesgevel rond de bestaande hallen en het nieuw gedeelte aanbracht. Zodoende worden de achterliggende bouwvolumes verborgen. Dit concept is vaak toegepast bij casino's in Las Vegas. Door de vliesgevel op te bouwen uit diverse panelen van verschillende materialen, welke alle dezelfde relatief handzame afmetingen hebben, ontstaat een divers geheel (zie figuur 6.23). Overdag zorgen deze panelen voor een afwisselend geheel en 's avonds ontstaat door middel van schijnlichten achter de gevel een afwisselend kleuren gevel, welke opvalt tussen de homogene gevels in de omgeving. Deze gevel kan daarnaast ook demontabel uitgevoerd worden, zodat deze voor de definitieve locatie hergebruikt kan worden. De entree van zowel de foyer als de discotheek wordt door middel van een licht uitstekende luidrui, benadrukt. Echter door toevoeging van een achter-de-gevel-gelegen entree van concept 2, zorgt voor een betere leidende werking naar de foyer. Daarnaast zal de toevoeging van de 'functie-woorden' van gevelconcept 3 de duidelijkheid van de te herbergen functies in het evenementencomplex vergroten.

![Aanzicht Oostelijke Havendijk](image)

Figuur 6.23: Gekozen gevelconcept 'Decorated wall'

Vliesgevel
Er is gekozen omdat een vliesgevel veel voordelen biedt ten opzichte van de veel gebruikte koude/warme spouwfaçade, te weten:
- Minder bevestigingspunten dan bij spouwfaçade
- Dunne gevel
- In fabriek gemaakt en zodoende 'exact' op maat
- Snel aan te brengen

Deze voordelen wegen zwaarder dan de nadelen (goede zonwering noodzakelijk, gevaar voor koudebruggen en hoge eisen aan lucht- en waterdichtheid en wordt verder uitgewerkt.

Een beperkt assortiment van gevelementen van een breedte van 1,4 m en een hoogte van 2,4 m met verschil in zicht en licht opening en geheel dicht met ertussen een neopreen voegprofiel wordt
toegepast. Deze gevelpanelen zijn door het neopreen voegprofiel demontabel. De materialen die worden toegepast zijn:
- Glas
- Matglas
- Gekleurde staalplaat
- Roestvrij stalen roosters

Figuur 6.24: Aanzichten vleesgevel.

Voor de nieuwe vleesgevel aan de westkant en gedeeltelijk aan de noord/zuidkant wordt gekozen voor een stijl- en regelwerkgevel. De montage vindt op het werk plaats (voor meer informatie wordt verwezen naar bijlage 24).

Dimensionering vleesgevel
De vleesgevel wordt blootgesteld aan verschillende belastingen, namelijk de winddruk, windzuiging en eigen gewicht. In het algemeen kan worden aangehouden dat wanneer aan de eisen ten aanzien van de stijfheid is voldaan, eveneens aan de sterkte-eisen kan worden voldaan. De stijfheid van de gevel kan beschreven worden aan de mate van horizontale doorbuiging (als gevolg van de windbelasting) en de verticale doorbuiging (als gevolg van eigen gewicht). Bij de dimensionering van de stijl is de doorbuigingsrees bepalend. Deze eis volgt o.a. uit psychologische factoren, de aansluiting van binnenwanden op gevel en de toelaatbare vervorming voor het plaatmateriaal.

De eis voor dubbel glas is 0,002* kleinste overspanning (=0,002* 1400 =2,8 mm). Bij de overige materialen is het 0,005* kleinste overspanning (=7,0 mm).

Als materiaal voor de stijlen wordt gekozen voor aluminium vanwege de grote vrijheid in het kiezen van de profieldoorsnede. Staal heeft maar een beperkt aantal profieldoorsnede, maar blijft door zijn grote buigstijfheid wel slanker dan aluminium stijlen.

De verankering zorgt voor een blijvende mechanische bevestiging tussen de dragende delen van de vleesgevel en de achterliggende constructie; deze is stelbaar in alle richtingen. Om de lengteveranderingen onder invloed van wisselende (buiten)-temperaturen te kunnen opvangen is het noodzakelijk dat de stijlen en de regels onderbroken worden. De afmetingen van de dilataties worden enerzijds bepaald door de te verwachten uitzetting, anderzijds door de toleranties van de gevelementen. De uitzetting van de elementen, vervaardigd uit een bepaald materiaal, is te bepalen uit:

\[\Delta L = L \cdot \alpha \cdot \Delta T \]

waarin \(L \) de profiel lengte in mm is, \(\alpha \) de uitzettingscoëfficiënt is en \(\Delta T \) het temperatuurverschil in °C of K is. Aluminium heeft een lineaire uitzettingscoëfficiënt van 24 * 10^-6 per °C per mm. Uitgegaan wordt dat het temperatuurverschil 50 °C bedraagt. Zodoende wordt de uitzetting van de stijlen welke maximaal 12,0 m bedragen:

\[\Delta L = 12,000 \cdot 24 \cdot 10^{-6} \cdot 50 = 14,4 \text{ mm} \]

3 Referentie: Freie Universität in Berlijn.
De regels zullen 1,4 m bedragen en daarmee een uitzetting van 1,68 mm hebben.

Om warmteverlies vanuit het interieur naar buiten en condensatiereschijnselen op de binnenzijde van het profiel te beperken, worden koudebrugonderbrekingen aangebracht. De ongunstige thermische eigenschappen van metalen gevelprofielen waarmee vliessvels worden samengesteld maken dit noodzakelijk; aluminium heeft een warmtegeleidingcoëfficiënt van 200 W/m²K en staal 50 W/m²K (vergelijk met isolatiemateriaal 0,035 W/m²K). De vliessvel wordt tevens uitgevoerd als een warme gevel. Daarbij is het binnenprofiel van stijlen en regels voor het merendeel aan de warme zijde van het isolatiepakket. Hierdoor vindt bij profielen, voorzien van een koudebrugonderbreking, geen thermische kortsuiting plaats. Het voordeel van een warme gevelconstructie is de vlakke isolatielijn; de isolatiepanelen bevinden zich in één vlak met de isolerende beglazing. Hierdoor worden koudebruggen voorkomen of is een complexe detaillering voor het aanbrengen van het isolatiemateriaal niet nodig.

Het vliessveldseysteem is opgebouwd met een tweevoudige afdichting: de buitenste afdichting wordt beschouwd als een waterkering, terwijl de binnenafdichting de luchtdichtheidseisen zal moeten volbrengen.

Samenvatting constructieve aspecten
- Spanten hallen en raamwerken magazijnen
 De huidige spanten van hal 1 zijn gедimensioneerd volgens de huidige normen. De bovenrand in hal 2 dient ter verbetering van de stabiliteit versterkt te worden. De raamwerken van de magazijnen bieden voldoende weerstand tegen de belastingen van de hedendaagse normen.
- Vloer en fundering
 Omdat de vloeren vroeger gebruikt werden als opslag van stalen profielen/ platen, is de vloer, welke op staal is gefundeerd, in de loop der jaren gezet, waardoor er geringe zetting op zal treden als gevolg van de toekomstige belasting. De huidige fundering heeft reservevermogen waar de toekomstige verdiepingsvloer zijn krachten deels op af kan dragen. Alleen bij de kolommen in het midden en bij het nieuwbouwgedeelte dienen nieuwe palen gehecht te worden. Vanwege het ruimtegebruik voor de middenkolommen stalen buispalen toegepast, die in delen in de grond gehecht kunnen worden en vervolgens aan elkaar vast gelast kunnen worden.
- Verdiepingsvloerconstructie
 De trillingseis is maatgevend voor de dimensionering. Dit leidt ertoe dat een vakwerkklap, bestaande uit een rechthoekig (200×150×12,5) buisprofiel als randstaven en diagonale en verticale drukstaven uitgevoerd als een vierkant (200×200×10) buisprofiel met een middenkolkom (HE180B) gerealiseerd dient te worden, welke h.o.h. 5,00 m staan. De vrije hoogte van 4,10 m kan niet verhoogd worden, aangezien de vrije ruimte op de tussenverdieping minimaal 2,60 m dient te bedragen. Een aanbeveling is dat de VIP-ruimte opgesplitst wordt in gedeelten, waardoor de vrije hoogte op begane grond gedeeltelijk hoger is.
- Vliesgevel
 De vliessvel, welke gesitueerd is aan de westkant en gedeeltelijk noord- en zuidoostkant van het evenementencomplex, bestaat uit een willekeurige rangschikking van panelen, die gemaakt zijn van verschillende materialen. De toegepaste materialen zijn, dubbel glas met rode, blauwe en zilvergrijsglazen fijnmazige coating, matglas en roestvrij stalen roosters. De panelen hebben een afmeting van 1,4 bij 2,4 m en is met een aluminium stijl- en regelwerk bevestigd aan het constructieve staalskelet.

Bronnen:
- NEN 6720: Belastingen vervormingen.
- NEN 6770: Staalconstructies.

Ontwikkeling multifunctioneel evenementencomplex te Roosendaal

97
H7 Bouwfysische aspecten

In dit hoofdstuk komen de bouwfysische aspecten van het ontwerp aan bod. Het betreft met name de voorzieningen die nodig zijn om de geluidsisolatie, thermische isolatie, brandveiligheid en ventilatie voldoende te krijgen. Deze aspecten zijn van belang voor de technische haalbaarheid van het evenementencomplex. Bovendien geldt vooral bij de bouwfysische aspecten, dat wanneer aan deze aspecten niet voldoende aandacht is geschonken, de kosten bij verbetering/verandering zeer hoog zullen uitvallen.

7.1 Geluid evenementencomplex

Het evenementencomplex bevat vele functies op korte wederzijdse afstand. Daarnaast zijn vlakbij het Konings Staal gebouw woningen aanwezig. Dit zorgt ervoor dat de toekomstige geluidsproductie (met name door popconcerten en disco) een grote belasting wordt op de isolatie en akoestiek van het complex. Daarom wordt achtereenvolgens de geluidabsorptie, akoestiek en geluidsisolatie van het complex behandeld.

Het geluid kan via contactgeluid, flankerende geluidsoverdracht en luchtgeluid verspreid worden naar de omgeving. De mate van het gecreëerde geluid wordt weergegeven in dB(A). Dit gewogen geluidniveau houdt rekening met de gevoeligheid van de menselijke oor. Als het niveau van geluid van constante sterkte, dat over een bepaalde tijd genomen evenveel akoestische energie vertegenwoordigt als het in sterkte, wordt bepaald in dB(A) wordt dit het 'equivalent geluidniveau' genoemd.

7.1.1 Geluidabsorptie

Wanneer geluid op een constructie valt, wordt een gedeelte gereflecteerd, een gedeelte wordt doorgezogen en een gedeelte blijft in de constructie achter (zie figuur 7.1). De hoeveelheid geluid die wordt doorgezogen is doorgaans naar verhouding erg klein en wordt daarom bij absorptieproblemen verwaarloosd. Hierdoor geldt voor de absorptie- (a) en reflectiecoëfficiënt (r):

\[a + r = 1 \]

Dat wil zeggen dat wat niet wordt gereflecteerd, wordt geabsorbeerde en andersom. Hoe harder de constructie, hoe meer geluid wordt gereflecteerd. Daarnaast kunnen poreuze oppervlakken meer geluid absorberen.

![Figuur 7.1: Opvallende en doorgezogen, geabsorbeerde en gereflecteerde geluidenergie.](image)

In principe kan absorptie van geluid op twee manieren worden gerealiseerd:
- Door wijzing bij luchtbeweging in poreuze materialen
- Door middel van resonantie

De totale geluidabsorptie in een vertrek (A) wordt bepaald door van alle omwendingen het oppervlak (S) te vermenigvuldigen met de bij het betreffende materiaal behorende absorptiecoëfficiënt (a):

\[A = a_1S_1 + a_2S_2 + ... \quad \text{[m}^2 \text{ o.r.]} \]

Absorptiematerialen worden toegepast voor niveaureductie in een ruimte, geluid demping in ventilatiekanaal, echo onderdrukking en om de nagalmtijd te verkorten.

\[1 \text{ m}^2 \text{ o.r. is de eenheid van geluidabsorptie en staat voor vierkante meter open raam.} \]
7.1.2 Akoestiek
Aangezien de hallen en magazijnen voornamelijk zijn opgebouwd uit het materiaal staal, is de akoestiek slecht. Voor de toekomstige functies worden aan de ruimten verschillende eisen gesteld in verband met de bespreekbaarheid en muziek. Daarbij kan gezegd worden dat de huidige nagalmijd is te hoog voor de toekomstige functies. Deze dient verlaagd te worden door middel van het aanbrengen van geluidsabsorberende materialen, zoals bijvoorbeeld baffles (functionele absorbers) onder het plafond.

Nagalmijd
De (huidige) akoestiek in de hallen en magazijnen is te meten aan de nagalmijd T (in seconden). De nagalmijd is afhankelijk van de absorptie in de ruimte: hoe meer geluidsaabsorptie aanwezig is, des te korter is de nagalmijd.

De nagalmijd kan worden bepaald met de formule van Sabine:

$$T = \frac{\frac{1}{V}}{\frac{1}{6} \cdot \frac{1}{A}}$$

Hierin is V het volume in de ruimte [m3], A de aanwezige geluidsaabsorptie [m2 o.r.], a_1, a_2, ... de absorptiecoëfficiënten van het materiaal en $S_{1,2}$... de oppervlakten van de constructie [m2] (zie tabel 7.1).

Tabel 7.1: Bepaling huidige nagalmijd in de hallen.

<table>
<thead>
<tr>
<th>Materiaal</th>
<th>Frequenties [Hz]</th>
<th>120</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S [m2]</td>
<td>a</td>
<td>a2</td>
<td>a</td>
<td>a2</td>
<td>a</td>
<td>a2</td>
</tr>
<tr>
<td>Beton</td>
<td>3000</td>
<td>0.01</td>
<td>39.0</td>
<td>0.01</td>
<td>58.0</td>
<td>0.03</td>
<td>72.0</td>
</tr>
<tr>
<td>Steel</td>
<td>3000</td>
<td>0.42</td>
<td>153.0</td>
<td>0.15</td>
<td>286.0</td>
<td>0.10</td>
<td>295.0</td>
</tr>
<tr>
<td>Staal</td>
<td>1114</td>
<td>0.01</td>
<td>11.1</td>
<td>0.02</td>
<td>22.3</td>
<td>0.02</td>
<td>22.3</td>
</tr>
<tr>
<td>Durox</td>
<td>316</td>
<td>0.05</td>
<td>25.3</td>
<td>0.16</td>
<td>36.6</td>
<td>0.14</td>
<td>34.4</td>
</tr>
<tr>
<td>Staal</td>
<td>946</td>
<td>0.01</td>
<td>9.4</td>
<td>0.02</td>
<td>18.8</td>
<td>0.01</td>
<td>18.8</td>
</tr>
<tr>
<td>Aloit</td>
<td>1715.6</td>
<td>678.7</td>
<td>537.3</td>
<td>374.2</td>
<td>405.4</td>
<td>322.7</td>
<td></td>
</tr>
<tr>
<td>Volume [m3]</td>
<td>32400</td>
<td>3.15</td>
<td>7.95</td>
<td>10.05</td>
<td>14.43</td>
<td>13.32</td>
<td>16.73</td>
</tr>
</tbody>
</table>

Richtwaarden van nagalmijten in verschillende ruimtes zijn te zien in tabel 9.2. Echter bepalen de grootte van het vertrek en de diffusiteit van de ruimte mede de gewenste nagalmijd. De waarden dienen dus alleen als richtwaarden genomen te worden. Voor de zaal geldt zodoende dat de nagalmijd binnen de marge van 0,8 en 1,3 dient te liggen.

Tabel 7.2: Richtwaarden nagalmijten.

<table>
<thead>
<tr>
<th>Ruimte</th>
<th>T [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kantoorvertrek</td>
<td>0.5 - 0.7</td>
</tr>
<tr>
<td>Muziekmusicaal</td>
<td>0.8 - 1.2</td>
</tr>
<tr>
<td>Schouwburg</td>
<td>0.9 - 1.3</td>
</tr>
<tr>
<td>Concertzaal</td>
<td>1.7 - 2.3</td>
</tr>
</tbody>
</table>

Akoestiek evenementencomplex
Multifunctioneel gebruik van zalen komt overal voor (theaters, concert en toneelgezichten). Een zaal is echter niet zonder meer geschikt voor multifunctioneel gebruik; dit heeft onder meer te maken met de akoestiek. Een goede akoestiek voor een concert is meestal niet geschikt voor toneel, en voor elektronisch versterkte muziek (musical en pop) zijn de eisen weer anders. Voor multifunctioneel gebruik is het dus onder meer nodig de akoestiek te kunnen varieeren. Dat kan door de zaal te vergroten of te verkleinen. Hoe meer volume, hoe langer de nagalmijd. Een lange nagalmijd is geschikt voor onversterkte symfonische muziek. Voor versterkte muziek is een te lange nagalmijd juist ongewenst. Er kan gekozen worden voor een bouwkundige oplossing. Een voor de hand liggende oplossing is dan het variëren van de plafondbouw, en of gebruik te maken van verplaatsbare wanden:
- Beweegbare plafonds
 Beweegbare plafonds zijn over het algemeen frames die aan één zijde bekleed zijn met plaatmateriaal. De frames worden op en neer bewogen met behulp van staalraden of kettingen.
- Verplaatsbare wanden
 Een zaal kan natuurlijk ook vergroot of verkleind worden door wanden te verplaatsen. De eenvoudigste en verreweg goedkoopste manier is het aanbrengen van gordijnen.

De nagalmijd is gedefinieerd als de tijd die verloopt voordat, als de geluidsbron wordt uitgeschakeld, het geluidsniveau 60 dB is gedaald.
Zowel visueel als akoestisch kunnen hier goede resultaten mee worden behaald. Een gordijn is niet stevig, er kunnen geen deuren in en er kan niets aan worden opgehangen.

Een wat steviger wand dan een gordijn is de vouwwand of de panelwand. Een vouwwand bestaat uit een metalen schaarsysteem, aan weerszijden bekleed met zware flexibele kunststof. De wand hangt aan een rail. De vouwwand is een relatief goedkope en een zeer snelle manier om een zaal te verdelen in meerdere kleine zalen. Nadeel is dat de geluidsisolatie meestal matig is.

Een panelwand heeft een betere geluidsisolatie en de wand is ook meer solide.

In een panelwand kunnen daarom ook deuren worden opgenomen. Een panelwand is daarentegen duurder dan de vouwwand en vergt ook meer opslagruimte.

7.1.3 Geluidsisolatie

De geluidabsorptie is belangrijk voor de geluidbeheersing in het betreffende vertrek. Daar waar hinder bestaat van het geluid van of naar buiten, wordt de geluidsisolatie van groot belang.

Wanneer naar de geluidsisolatie bekeken wordt, wordt juist het deel van het geluid dat wordt doorgelaten, belangrijk. De geluidsisolatie is gedefinieerd als de verhouding tussen opvallend en doorgegaan geluid. Deze verhouding wordt uitgedrukt in decibel (dB). De formule om de luchtgeluidsisolatie (R) te bepalen is als volgt:

\[R = 10 \log \left(\frac{1}{d} \right) \text{ [dB]} \]

met d = doorgelaten deel van geluid.

Geluidsisolatie gevel

Het voorgaande betrof de geluidsisolatie binnen een gebouw tussen twee vertrekken. Bij plaatsing van een geluidbron in een ruimte van een gebouw kan buiten dat gebouw (bijvoorbeeld bij woningen) geluidshinder optreden, zoals bij de disco en zaal. In dit geval geldt dat er geluidsoverdracht van een (min of meer) diffuus geluidveld (binnen) door een gebouwsmuur (gevel en dak) naar het vrije veld (buiten) waar met vlak lopende golven gerekend kan worden.

De geluidswijziging van de gevel (G) wordt bepaald met de volgende formule:

\[G = L_{d1} - L_{d2} + 10 \log \left(\frac{T_{1}}{T_{2}} \right) \text{ [dB]} \]

waarbij \(L_{d1} \) respectievelijk \(L_{d2} \) het geluidsniveau buiten c.q. binnen is in dB, en \(T \) de nagalmtijd in de ruimtes in s en \(T_0 \) de referentie-nagalmtijd is s.

Omdat er reflecties optreden tegen de gevel zal het gemeten geluidsniveau hoger zijn dan het werkelijk invalidd geluidsniveau. Hiervoor dient een correctiefactor (\(C_r \)) worden ingevoerd, zodat de partiele geluidswering van een scheidsconstructie voor octaafband I geldt:

\[G_i = L_{d1} - L_{d2} + 10 \log \left(\frac{T_{1}}{T_{2}} \right) - C_r \text{ [dB]} \]

Het menselijk oor is niet voor alle frequenties even gevoelig. Daarom wordt een term \(C_i \) ingevoerd, welke is afgeleid uit de oorvergelijking voor verschillende soorten buitengeluid. Voor omrekening van de partiele geluidswering (G) naar GA (dB(A)) geldt:

\[G_A = -10 \log \left(10^{(C_i)} \right) \text{ [dB]} \]

met GA is de geluidswerving van de scheidsconstructie in dB(A) en \(C_i \) is de sommatie voor de 5 octaafbanden.

In het bouwbesluit wordt zoveel mogelijk gewerkt met inbeddingsohne onafhankelijke grootheden, zodat GA wordt omgezet in de karakteristieke geluidswerving van de uitwendige scheidsconstructie (GAk): Dit geldt alleen voor woningen.

\[G_{A,k} = G_A - 10 \log \left(\frac{V}{6T_{f} \cdot S} \right) \text{ [dB]} \]

Hiermee kan de mate van geluidsisolatie van de omliggende huizen worden weergegeven. Zodoende kan gegekeken worden of beschreven geluidniveaus in tabel 7.3 voldoende kunnen worden tegengesteld richting de omgeving. Hierbij is het waarnebben geluidsniveau ter plaatse van de gevels van de rijtjeshuizen en vrijstaande woning aan de Industriestraat maatgevend. Uit de eisen beschreven in hoofdstuk 5 blijkt dat de eis in de nachtelijke perio de ‘s t rent van opzicht van overdag en ‘s avonds. De grenswaarde van het geluid dient vanaf de dichtstbijzijnde woning volgens de Wet op Geluidshinder niet meer te bedragen dan 50 dB(A) tussen 07.00 en 19.00 uur, 45 dB(A) tussen 19.00 en 23.00 uur en 40 dB(A) tussen 23.00 en 07.00 uur. Daarbij dient als men ‘s avonds bij de dichtstbijzijnde woning muziek herkent de grenswaarde vermindert te worden met 5 dB(A) en ‘s nachts met 10 dB(A). Dit geldt vooral bij muziek met lage basen erin, zoals housemuziek. Zodoende houdt in dat een geluidsisolatie van bijvoorbeeld de discotheek 105 dB(A) - (40 dB(A) (norm) - 10 dB(A) (muziekstraf)) = 75 dB(A) dient te zijn.
Hoewel de woningen in een industriezone liggen, waarvoor soepelere geluidseisen gelden dan in een gebied dat bestemd is voor woningbouw, houdt de gemeente wel rekening met deze huizen bij de toelaatbare geluidbelasting. De equivalente etmaalwaarde van 50 dB(A) kan opgeschroefd worden naar 55 dB(A) en maximaal 60 dB(A) bij aanwezige woningen. Bovendien is er een verschil in het spectrum van popmuziek, housemuziek en live-muziek, waardoor voor sommige muziekstijlen aanwezige geluidsisolatie beter werkt dan bij andere. Een klein voordeel is dat de popconcerten over het algemeen maximaal om 23.30 uur zijn afgebroken, zodat er hoogstens maar een half uur de zware eisen van de nachtperiode gelden. Dit half uur met 10 dB(A) extra telt echter maar mee in het equivalente geluidsniveau.

<table>
<thead>
<tr>
<th>Type bedrijf</th>
<th>Kenmerken</th>
<th>Equivalent geluidniveau in dB (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restaurant</td>
<td>praten/ praten + achtergrondmuziek</td>
<td>55 - 75</td>
</tr>
<tr>
<td>Café</td>
<td>rustig (bruin) café / bar</td>
<td>75 - 80</td>
</tr>
<tr>
<td></td>
<td>café / bar met drukte en muziek</td>
<td>80 - 95</td>
</tr>
<tr>
<td></td>
<td>café / bar + dansen</td>
<td>90 - 100</td>
</tr>
<tr>
<td>Disco/ feestzaal</td>
<td>voor ouderenpubliek</td>
<td>85 - 95</td>
</tr>
<tr>
<td></td>
<td>voor jongeren</td>
<td>90 - 105</td>
</tr>
<tr>
<td></td>
<td>met live muziek (pop, punk, hardrock)</td>
<td>95 - 105</td>
</tr>
<tr>
<td></td>
<td>met housemuziek</td>
<td>95 - 105</td>
</tr>
</tbody>
</table>

Een geluidniveau in dB(A), dat alle octaven in één getal meeweeegt, is voor de beoordeling van geluidshinder handzaam, echter bij berekeningen van geluidsoverdracht, geluidsisolatie en geluidabsorptie is de geluids frequenties bepalend. Daarom wordt in tabel 6.4 weergegeven hoe verschillende totale geluidsniveaus verdeeld zijn over de diverse frequentiebanden: de spectrale verdeling. Bij het dimensioneren van akoestische voorzieningen voor housemuziek zou ook rekening moeten worden gehouden met de geluidsdruk in de 31,5 Hz octaafband. Dit is echter niet eenvoudig omdat veelal geen betrouwbare informatie beschikbaar is over de geluidsisolatie van constructies in deze octaafband. Ook is meting van het geluidniveau in de 31,5 Hz octaafband in een woontrek niet nauwkeurig mogelijk en is een beoordeling op dB(A) niveau niet geschikt om de hinderbeleving te karakteriseren. De geluidenergie in deze laagfrequent octaafband zal in de beleving van iemand in een woning een samenstelling zijn van hoorbaar geluid en min of meer voelbare trillingen. Hetzelfde geldt in mindere mate voor 63 Hz octaafband en wordt daarom niet meegegenomen in de berekeningen.

<table>
<thead>
<tr>
<th>Tabel 7.4: Verschillende geluidsspectra.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-weging</td>
</tr>
<tr>
<td>[dB]</td>
</tr>
<tr>
<td>-26.1</td>
</tr>
<tr>
<td>-16.1</td>
</tr>
<tr>
<td>-8.6</td>
</tr>
<tr>
<td>-3.2</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>Frequentie [Hz]</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>125</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>4000</td>
</tr>
<tr>
<td>Standaard Popmuziek Spectrum [dB(A)]</td>
</tr>
<tr>
<td>-27</td>
</tr>
<tr>
<td>-14</td>
</tr>
<tr>
<td>-9</td>
</tr>
<tr>
<td>-6</td>
</tr>
<tr>
<td>-5</td>
</tr>
<tr>
<td>-6</td>
</tr>
<tr>
<td>-10</td>
</tr>
<tr>
<td>Standaard spectrum wegverkeerslawaai [dB(A)]</td>
</tr>
<tr>
<td>-14</td>
</tr>
<tr>
<td>-10</td>
</tr>
<tr>
<td>-6</td>
</tr>
<tr>
<td>-6</td>
</tr>
<tr>
<td>-7</td>
</tr>
<tr>
<td>-7</td>
</tr>
<tr>
<td>-10</td>
</tr>
<tr>
<td>Standaard House Spectrum [dB(A)]</td>
</tr>
<tr>
<td>-13</td>
</tr>
<tr>
<td>-8</td>
</tr>
<tr>
<td>-6</td>
</tr>
<tr>
<td>-7</td>
</tr>
<tr>
<td>-7</td>
</tr>
<tr>
<td>-9</td>
</tr>
<tr>
<td>-10</td>
</tr>
</tbody>
</table>

Toepassing evenementencomplex

Bij het bepalen van het noodzakelijke geluidsisolatie voor de verschillende ruimten in het evenementencomplex (met als maatgevende ruimten de evenementenzaal en de discotheek) wordt eerst met een grove bepaling gekeken in hoeverre deze isolatie noodzakelijk is. Allereerst zal de zaal besproken worden. Daarbij wordt eerst gekeken naar het geluid wat via de gevel van het complex naar de gevels van de rijtjeshuizen gaat. Vanuit het maatgevende geluidsniveau (105 dB(A)) wordt bepaald wat het vermogensniveau in het complex is, met de eerder beschreven formule voor een diffuse ruimte:

\[L_L = L_w + 10 \log_{10} A \, [dB] \]

met \(L_L \) het geluidsniveau in dB, \(L_w \) is het vermogensniveau in dB en A is de totale geluidabsorptie in de ruimte in m² o.r. (zie tabel 7.5). Te zien is dat de akoestiek sterk is verbeterd ten opzichte van de huidige situatie. De nagalmtijden per octaafband liggen allemaal tussen de richtwaarden (0.8 - 1.3 s), behalve bij 125 Hz.
Tabel 7.5: Bepaling geluidabsorptie zaal.

<table>
<thead>
<tr>
<th>Material</th>
<th>Frequency [Hz]</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S [m²]</td>
<td>a</td>
<td>a' s</td>
<td>a' s</td>
<td>a</td>
<td>a' s</td>
<td>a</td>
</tr>
<tr>
<td>Beton</td>
<td>3000</td>
<td>0.01</td>
<td>35.0</td>
<td>0.83</td>
<td>38.0</td>
<td>0.83</td>
<td>72.0</td>
</tr>
<tr>
<td>Rockfon Baffles</td>
<td>3000</td>
<td>0.12</td>
<td>42.0</td>
<td>0.27</td>
<td>1.332</td>
<td>0.61</td>
<td>21.6</td>
</tr>
<tr>
<td>Ytong</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ytong</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menschen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume [m³]</td>
<td>32400</td>
<td></td>
<td>2.13</td>
<td>1.33</td>
<td>0.94</td>
<td>0.94</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Aangetrokken de absorptie en houseespectrum per octaafband zijn beschreven dienen ook LW per octaafband berekend worden (zie tabel 7.6), voordat het totale vermogensniveau bepaald wordt met:

$$10 \log LW_{10}^{125} = 136 \text{ dB(A)}$$

Tabel 7.6: Bepaling vermogensniveau in zaal.

<table>
<thead>
<tr>
<th>Frequency [Hz]</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard House Spectrum [dB(A)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lp [bron - spectrum]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>10log 4A</td>
<td></td>
<td>-28.0</td>
<td>-30.1</td>
<td>-31.5</td>
<td>-32.3</td>
<td>-32.3</td>
<td>-32.0</td>
</tr>
<tr>
<td>LW [dB(A)]</td>
<td></td>
<td>136</td>
<td>125</td>
<td>127</td>
<td>129</td>
<td>130</td>
<td>128</td>
</tr>
</tbody>
</table>

Vervolgens wordt de intensiteit bepaald in de zaal met:

$$LW = 10 \log \frac{W}{W_0} \rightarrow \log W = LW_{10} + \log W_0 \rightarrow W = 10^{\frac{LW_{10}}{10} + \log W_0} \left(\text{W/m}^2\right)$$

met W is het geluidvermogen in watt, W₀ is het referentievermogen (10⁻¹² W)

Vervolgens wordt met het geluidvermogen bepaald wat de geluidslenintensiteit is. Daarbij wordt uitgegaan van de formule:

$$I = \frac{W}{A} \left(\text{W/m}^2\right)$$

met W is het geluidvermogen van de bron in watt, A is de totale geluidabsorptie in een vertrek in m² o.r.

Geluid via kopse wand evenementencomplex

De backstage ruimten, kantoren en berging werken als bufferruimte tussen de zaal en rijtjeshuizen. Nu wordt aangenomen dat de gevel bestaat uit een grote spouwconstructie, welke bestaat uit de kopse wand van de zaal en een gevel grenzend aan de backstage ruimten/berging en de tussenliggende ruimte als spouw.

De 'spouwconstructie' heeft een geluidswering van 70 dB(A) (zie bijlage 25). De geluidslenintensiteit neemt zodoende ook af met een factor 10⁻¹² in W/m². Door deze intensiteit te vermenigvuldigen met het oppervlak van de gevel van het evenementencomplex, kan het geluids niveau van de bron bepaald worden (zie tabel 7.7):

$$W = I \times \text{opp} \left(\text{W}\right)$$

$$LW = 10 \log \frac{W}{W_0} \left(\text{dB(A)}\right)$$

met W is het geluidvermogen in watt, W₀ is het referentievermogen (10⁻¹² W)

Tabel 7.7: Bepaling geluidvermogen buiten met buffer.

<table>
<thead>
<tr>
<th>Bron</th>
<th>105 dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻¹² \left(10 \log \frac{W}{10+\log W_0}\right)</td>
<td>395,54 W/m²</td>
</tr>
<tr>
<td>I=W/A</td>
<td>1,23E-02 W/m²</td>
</tr>
<tr>
<td>W = I \times \text{opp}</td>
<td>5,46E+00 W</td>
</tr>
<tr>
<td>Wdor ('dubbele gevel' heeft 70 dB)</td>
<td>5,46E-07 W</td>
</tr>
<tr>
<td>LW buiten</td>
<td>57,4 dB(A)</td>
</tr>
</tbody>
</table>

Geluid via dak evenementencomplex

De geluidsprediing via het dak wordt door de buffer waar de wanden maatgevend. Door middel van het plaatsen van een scherm aan de dakrand wordt deze geluidsprediing gereduceerd richting de omgeving. Het dak kan door middel van aanbrengen van extra isolatie (door een verlaagd plafond slap verbonden met de huidige spanen) een geluidisolatie van 40 dB(A) bereiken. Het scherm kan
tevens een reductie geven van circa 15 dB(A). Als aangenomen wordt dat het dak een geluid uitstraalt als een halve bol in het vrije veld, dan wordt de geluidsniveau ter plaatse van de woningen:

\[L_p = L_w - 10 \log(4\pi r^2/Q) \]

Met \(L_w \) is het geluidsniveau van de geluidsbron (en heeft hier de maatgevende waarde van 87,5 dB(A)), \(r \) is de kleinste afstand van het complex tot de nabij-liggende huizen (27 m) en Q is de richtingsfactor welke bij een geluidsbron op de grond een waarde 2 heeft. Hieruit blijkt dat, aangezien de hoeveelheid energie van de geluidsbron over de afstand over een groter oppervlakte wordt verdeeld, de geluidsdruk zo'n 35,9 dB(A) bedraagt (zie tabel 7.8). De eis die gesteld wordt voor de periode overdag is 50 dB(A), waarbij de muziekstraat er nog afgetrokken dient te worden (5 dB(A)). In de nacht wordt de eis 40 dB(A) minus de muziekstraat van 10 dB(A). Het geluidsniveau voor de gevel dient dus lager dan 50 dB(A) te zijn. Aan de nachtelijke eisen wordt dus niet voldaan.

Tabel 7.8: Berekening geluidsdruk voor de gevel van een rijtjeshuis.

<table>
<thead>
<tr>
<th>Bron</th>
<th>105 dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W = 10^8(L_w/10+logWo))</td>
<td>395,54 W/m²</td>
</tr>
<tr>
<td>(l = W/A)</td>
<td>1,23E-02 W/m²</td>
</tr>
<tr>
<td>(W = l^{opp})</td>
<td>5,67E+00 W</td>
</tr>
<tr>
<td>(W_{door}) (geïsoleerd dak heeft 40 dB)</td>
<td>5,67E-04 W</td>
</tr>
<tr>
<td>(L_w) buiten</td>
<td>87,5 dB(A)</td>
</tr>
<tr>
<td>(L_s) scherm</td>
<td>15,0 dB(A)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Buiten via het dak</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geluidsvormogen</td>
<td>Lw</td>
</tr>
<tr>
<td>Afstand</td>
<td>r</td>
</tr>
<tr>
<td>Richtingsfactor</td>
<td>Q</td>
</tr>
<tr>
<td>Geluidsdruk nabij gevel</td>
<td>Lp</td>
</tr>
<tr>
<td></td>
<td>72,5dB(A)</td>
</tr>
<tr>
<td></td>
<td>27 m</td>
</tr>
<tr>
<td></td>
<td>35,9 dB(A)</td>
</tr>
</tbody>
</table>

Met een verdere berekening kan het maatgevende geluidniveau achter de gevel van het rijtjeshuis bepaald worden. De formule voor deze berekening is:

\[L_{ontv} = L_{zend} - R_A + 10 \log(4S/A_{ontv}) \] [dB],

Met \(L_{ontv} \) is de geluidsdrukniveau in het ontvangentrek, \(L_{zend} \) is de geluidsdrukniveau voor de gevel, \(R_A \) is de geluidsisolatie van de gevel [dB(A)], \(S \) is het oppervlak van de scheldingsconstructie [m²] en \(A_{ontv} \) is de totale absorptie in het ontvangentrek, wat de woonkamer in het rijtjeshuis is (zie tabel 7.10).

De geluidsisolatie van de gevel van het huis wordt bepaald met de formule:

\[R_A = -10 \log(\sum_S S/S_1^{10^{RA/10}} + K) \]

Waarbij \(S_1 \) het oppervlak van gevelelement in m² is, \(S \) de totale geveloppervlak in m², \(R_A \) is de geluidsisolatiewaarde van gevelelement \(j \) in dB(A) en K is de kierterm. De kierterm wordt aangenomen op de waarde 1*10^-3. Eerst wordt echter de geluidsisolatie per octaafband bepaald rekening houdend met het spectrum housemuziek (zie tabel 7.9).

Tabel 7.9: Bepaling RA-waarde gevel huis.

<table>
<thead>
<tr>
<th>Gevel huis</th>
<th>Octaafband [Hz]</th>
<th>325</th>
<th>625</th>
<th>1250</th>
<th>2500</th>
<th>5000</th>
<th>10000</th>
<th>20000</th>
<th>RA [dB(A)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>steenachtige spouwmuur + minerale wol</td>
<td>33</td>
<td>37</td>
<td>41</td>
<td>46</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>38,77</td>
</tr>
<tr>
<td>spectrum geluidisolatie muur</td>
<td>41</td>
<td>45</td>
<td>48</td>
<td>53</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>38,77</td>
</tr>
<tr>
<td>dubbeeltaks (4-6)</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>32</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>spectrum geluidisolatie glas</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>39</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>25,58</td>
</tr>
<tr>
<td>spectrum housemuziek</td>
<td>-8</td>
<td>-8</td>
<td>-7</td>
<td>-7</td>
<td>-7</td>
<td>-7</td>
<td>-7</td>
<td>-7</td>
<td>-9</td>
</tr>
<tr>
<td>RA</td>
<td>35,06 dB(A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>kierterm is 0,01</td>
</tr>
</tbody>
</table>
Tabel 7.10: Berekening geluidsisolatie gevel.

<table>
<thead>
<tr>
<th>Huis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ra</td>
<td>35.09 dB(A)</td>
</tr>
<tr>
<td>A</td>
<td>18.0 m² o.r.</td>
</tr>
<tr>
<td>S</td>
<td>10.8 m²</td>
</tr>
<tr>
<td>10log 4S/A</td>
<td>3.80</td>
</tr>
<tr>
<td>Linhuis</td>
<td>8.65 dB(A)</td>
</tr>
</tbody>
</table>

Het geluidsniveau binnen in het huis bedraagt 8.65 dB(A).

Geluidsisolatie ontwerp evenementencomplex

Om voldoende geluidsisolatie te realiseren in de discotheek dient een doos-in-doos constructie toegepast te worden. De binnenste doos staat op trillingsisolatoren in de buitenste doos. In de spouw tussen de wanden en plafond van beide dozen bevindt zich absorberend materiaal (glas- of steenwol). De vloer van de binnenste doos is steenachtig. De wanden zijn van metalen stijl- en regelwerk met meervoudige gipskartonbeplating. Een probleem hierbij is dat het regelwerk niet voldoende stijf is om een overspanning van minimaal 15.0 m (= afstand tussen de spaties) te maken. Een niet-bouwkundige voorziening is het verlenen van tijdelijke ontheffingen. Deze ontheffingen kunnen maximaal 12 keer per jaar verleend worden voor speciale feesten en concerten, zodat deze geluidsspiekken niet door bouwkundige voorzieningen opgevangen hoeven te worden. De maximale toelaatbare extra geluidsbelasting dient niet meer dan 18 dB(A) te zijn, aangezien dan de donder onduidelijk geworden is (bron ISO-normblad). Tenslotte is er een mogelijkheid om 's nachts een bepaald maximaal geluidsparticuliereniveau aan te houden. In het ontwerp zijn buffers aan beide kopse kanten van de zaal aangebracht ten behoeve van het geluid. De saunafreminen zullen er toch bouwkundige voorzieningen gerealiseerd te worden om voldoende geluidsisolatie te krijgen. Een buisloper wand langs de binnengewel is dan een oplossing (zie uitwerking bijlage 25). Het dak kan met een gipskartonplaat welke niet stijf is verbonden aan de spaties en gordingen een praktische oplossing voor geluidsisolatie zijn. Door bovendien een gedeelte van het verlaagd plafond uit te voeren in geluidsisolerend glas, blijft het beeld van de oude spaties behouden. Er kunnen geluidsspiekken ontstaan bij openingen zoals de nooddeuren. Daarom dienen deze nooddeuren vervaardigd te worden uit dubbel stalen platen met geluidsisolatie erin.

7.2 Brandveiligheid evenementencomplex

Het evenementencomplex heeft een bijeenkomstfunctie, waar vele bezoekers tegelijk op een bepaald oppervlak aanwezig zijn. Daarom is van belang dat veiligheid voor de aanwezigen en omgeving van het evenementencomplex bij brand gewaarborgd wordt. Daarnaast dient bij de brand de schade aan het gebouw plus inventaris en aan de omgeving beperkt te worden. Daarom zijn er voorschriften opgesteld, welke zowel niet-bouwkundig (Bouwverordening en Arbo-wet) als bouwkundig (Wet Milieubeheer en Bouwbesluit) van aard zijn.

Twee belangrijke brandaspecten van het toekomstig gebruik van het evenementen-complex zullen behandeld worden. Ten eerste de beheersbaarheid van brand opdat zo weinig mogelijk nadelig effect buiten een vooraf bepaald gebied ontstaat. Ten tweede veilig vluchtmogelijkheden voor de bezoekers van evenementen in het complex, zodat bij brand het aantal slachtoffers zoveel mogelijk beperkt wordt. De bevestigingsgraadklasseën spelen een grote rol bij de eisen voor brandveiligheid. Daarom is per ruimte weergegeven wat voor bezettingsgraadklasse deze heeft (zie tabel 7.12). Deze bezettingsgraadklasse is enerzijds gebaseerd op de gebruiksoppervlakte van een (deel van een) gebruiksfunctie, aangezien deze toegepast worden bij de brandveiligheidseisen voor een rookcompartiment en voor vluchtroutes en anderzijds op de vloeroppervlakte van verblijfsgebieden en verblijfsruimten, welke gebruikt worden bij nagenoeg alle ander eisen (zie tabel 7.11). Daarbij is de minimale bezettingsgraadklasse van een bijeenkomstfunctie voor dit complex klasse B3.

3 De discotheek 'Paard van Troje' in Den Haag heeft doos-in-doos principe toegepast, aangezien gelijk emaas wonhuizen liggen.
4 Het Flora theater in Delft had het dek verzwaard, de wanden verzwaard tot minimaal 200 kg/m² en een limiet van B5 dB(A) toegepast.
5 De discotheek 'Now & Wow' in Rotterdam heeft stalen platen gebruikt als verbetering van de geluidsisolatie. Ook de nooddeuren zijn opgebouwd uit dubbele stalen platen.
6 Er zijn 5 verschillende bezettingsgraadklasseën, variërend van B1 tot en met B5. Elke klasse heeft een eigen bandbreedte, uitgedrukt in het aantal m² gebruiksoppervlakte of vloeroppervlakte per persoon. Klasse B1 gaat uit van het grootste aantal personen per m² en stelt zodoende de zwaarste eisen.
Bovendien geldt dat aansluitende ruimten met een lagere bezettingsgraad ook de eisen van de hogere bezettingsgraad van de naastliggende ruimte krijgen. Zodoende zal bijvoorbeeld de verkeersruimte de eisen van bezettingsgraadklasse B1 krijgen, aangezien de zaal eraan grenst ook deze bezettingsgraadklasse heeft; De vluchtende bezoekers komen zo niet in de verkeersruimte waar minder eisen aan zijn gesteld (zoals aantal meters deurbreedte) en daardoor een bottleneck wordt veroorzaakt.

Tabel 7.11: Eisen per bezettingsgraadklasse zowel voor verblijfsgebied als voor een rookcompartment.

<table>
<thead>
<tr>
<th>Verblijfsgebied / verblijfseruimte</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimaal beschikbaar vloeroppervlakte (m²) per persoon</td>
<td>0,5</td>
<td>1,3</td>
<td>3,3</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>Uitgangsbreedte in mm, per m² met een minimum van 600 mm</td>
<td>13,75</td>
<td>5,5</td>
<td>2,2</td>
<td>0,92</td>
<td>0,37</td>
</tr>
<tr>
<td>Deur niet tegen de vluchtrichting indien op de toegang meer dan het aangegeven aantal m² is aangewezen</td>
<td>20</td>
<td>50</td>
<td>125</td>
<td>375</td>
<td>750</td>
</tr>
<tr>
<td>Maximum aantal personen op toedraaiende deur</td>
<td>40</td>
<td>38</td>
<td>37</td>
<td>46</td>
<td>37</td>
</tr>
<tr>
<td>Maximum aantal personen per meter uitgangsbreedte, afgezien deur</td>
<td>145</td>
<td>139</td>
<td>137</td>
<td>135</td>
<td>135</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rookcompartment</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimaal beschikbaar gebruiksoppervlakte (m²) per persoon</td>
<td>0,8</td>
<td>2</td>
<td>5</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>Uitgangsbreedte in mm, per m² met een minimum van 600 mm</td>
<td>9,2</td>
<td>3,7</td>
<td>1,5</td>
<td>0,6</td>
<td>0,2</td>
</tr>
<tr>
<td>Deur niet tegen de vluchtrichting indien op de toegang meer dan het aangegeven aantal m² is aangewezen</td>
<td>30</td>
<td>75</td>
<td>187,5</td>
<td>450</td>
<td>1125</td>
</tr>
<tr>
<td>Maximum aantal personen op toedraaiende deur</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Maximum aantal personen per meter uitgangsbreedte, afgezien deur</td>
<td>135</td>
<td>135</td>
<td>133</td>
<td>138</td>
<td>166</td>
</tr>
</tbody>
</table>

Tabel 7.12: Bezettingsgraadklassen gebaseerd op vloeroppervlakte en verblijfoppervlakte.

<table>
<thead>
<tr>
<th>Gebruiksfunctie</th>
<th>Bezettingsgraadklasse</th>
<th>'Verblijfsgebied'</th>
<th>'Rookcompartment'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zaal</td>
<td>B1</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Backstage + Berging</td>
<td>B3</td>
<td>B3</td>
<td></td>
</tr>
<tr>
<td>VIP ruimte</td>
<td>B1</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Discotheek</td>
<td>B1</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Lounge room</td>
<td>B1</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Congresruimte</td>
<td>B1</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Kinderdagverblijf</td>
<td>B3</td>
<td>B3</td>
<td></td>
</tr>
<tr>
<td>Foyer</td>
<td>B1</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Centrale keuken</td>
<td>B3</td>
<td>B3</td>
<td></td>
</tr>
<tr>
<td>Kleine keuken</td>
<td>B3</td>
<td>B3</td>
<td></td>
</tr>
<tr>
<td>Kantoren</td>
<td>B3</td>
<td>B3</td>
<td></td>
</tr>
<tr>
<td>Sanitaire voorzieningen</td>
<td>B2</td>
<td>B2</td>
<td></td>
</tr>
<tr>
<td>Jongerencentrum</td>
<td>B1</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Café</td>
<td>B1</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Sushi-cocktailbar</td>
<td>B1</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Restaurant</td>
<td>B1</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Grillrestaurant</td>
<td>B1</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Snack corner</td>
<td>B1</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Verkeersruimten</td>
<td>B2</td>
<td>B2</td>
<td></td>
</tr>
</tbody>
</table>

De primaire eisen betreffende compartimentering en vluchtwegen worden door de overheid (via de Bouwverordening en Bouwbesluit) gesteld en door de brandweer gecontroleerd. Daarnaast worden door verzekeraars additionele eisen gesteld, wanneer deze een technische verzekering afsluit.
7.2.1 Compartimentering
Een brandcompartment is bedoeld om gedurende een bepaalde tijd te voorkomen dat de brand zich verder kan uitbreiden dan het brandcompartment waarin de brand is ontstaan. Binnen deze tijd kan de brandweer handelend optreden en voorkomen dat de brand een grotere omvang aanneemt dan de omvang van het compartiment. Tevens kunnen gebruikers deze tijd benutten om zich, buiten het compartiment waarin de brand is, zich veilig te stellen.
- Het oppervlak van een brandcompartment van een bijeenkomstgebouw mag in beginsel niet groter zijn dan 1000 m² (Bouwbesluit) 7.
- De branderendheids van de hoofdraagconstructie dient ten minste, aangezien de hoogst gelegen vloer op circa 4,5 m ligt, bij nieuwbouw 8 30 minuten te bedragen. De huidige staalconstructie dient zoodanig branderend bekleed te worden (d.m.v. branderende voorzieningen in de vorm van een bekledingsplaat, spuitlaag of opschuimende coating het profiel; deze branderende verf is vooral geschikt als de constructie in het zicht moet blijven).
- De weerstand tegen branddoorslag (WBD) en brandoverslag (WBO) tussen een brandcompartment en een andere doorrijtuimte, niet zijnde een toiletruimte, die is gelegen in hetzelfde gebouw als waarvan het brandcompartment deel uitmaakt, moet ter beperking van uitbreiding van brand, bepaald overeenkomstig die norm, ten minste 60 minuten zijn (Bouwbesluit).
- De gevel grenzend aan het Kandij terrein dient een WBDBO van 60 minuten te hebben, met als gevolg wanneer de gevel zijn draagvermogen aan de hoofdraagconstructie ontneemt, deze hoofdraagconstructie ook 60 minuten branderend dient te zijn.
- Een stookruimte heeft een eigen brandcompartment nodig.
- De compartimentering dient 'doorgetrokken' te worden naar het dak i.v.m. gevaa op brandoverslag. Daarbij dient het dak zelf niet brandgevaarlijk te zijn.
- Ventilatieschachten welke door de compartimenten lopen, dienen voorzien te zijn van brandkleppen.
- Voor rookbeheersing, d.w.z. creëren van rookvrije en aanvalsmogelijkheden met een gecarreerde instandhouding, dient er ook rookcompartimentering in het complex ge realiseerd te worden.
- Een rookcompartment mag ten behoeve van de loopafstanden maximaal 1000 m² en een maximale lengte van 60 m (2*30m) hebben (zie figuur 7.2, links).
- De loopafstand in een rookcompartment is bij een ingerichte ruimte 20 m en bij een lege ruimte een factor 1,5 groter (=30 m).
- Een uitgang per rookcompartment is toegestaan als de gebruiksoppervlakte niet meer dan 120 m² is bij een bezettingsgraadklasse B1, 300 m² is bij B2 en 750 m² is bij B3. Hierbij geldt echter wel dat de loopafstand maximaal 15 m bedraagt (zie figuur 7.2, rechts).

![Figuur 7.2: Maximale afmetingen van een rookcompartment, afhankelijk van het aantal toegangsdeuren en vervolgens loopafstand af oppervlakte.](image)

7 Een brandweerauto met 6 brandweermannen kunnen maximaal een ruimte van 1000 m² in geval van brand blussen.
8 Door de functiewijziging van het gebouw (van industrie → bijeenkomstfunctie) treedt er nieuwbouw op ten behoeve van de eisen (in het Bouwbesluit).
7.2.2 Vluchtwegen
Voor het veilig kunnen vluchten dient gebruik gemaakt te worden van een rookvrije vluchtmogelijkheid. Het inrichten van vluchtwegen, waaronder mensen het gebouw snel kunnen verlaten, is de meest doeltreffende om omgevallen door een eenmaal ontstane brand te voorkomen, daarbij kan voorlichting en training het vluchten versnellen.
- Algemeen uitgangspunt in de vluchtweg bepaling is dat een persoon maximaal 30 seconden aan rook kan worden blootgesteld. Tevens dient een gebouw in 15 minuten geheel ontruimd te zijn en mag een eenmaal in gang gekomen vluchtende mensenmassa niet afgerekend worden.
- Vanaf de toegang tot een rookcompartment moeten er in beginsel twee onafhankelijke vluchtroutes leiden naar een terrein ter plaatse van de toegang van het gebouw. Het ontvluchten dient via vaste trappen, hellingen, deuren en verkeersruimten te gebeuren volgens het (nieuwe) Bouwbesluit.
- Een rookvrije vluchtroute heeft een vrije doorgang met een breedte die niet kleiner is dan 0,6 m en een hoogte van ten minste 2,1 m.
- De deuren dienen te voldoen aan de eisen beschreven in tabel 7.11. Vluchtdoorsingen dienen daarbij minimaal 5 m van elkaar te liggen (zie figuur 7.3).
- De vluchtdoorsingen dienen van binnenuit, zonder gebruik te maken van een sleutel of ander los voorwerp geopend te kunnen worden.
- Om te voorkomen dat er een lek in het beveiligingscircuit komt, dient er een zwaallicht 9 o.i.d. boven de vluchtdoor aan te gaan, waarnemer deze geopend wordt.
- De deuren in een vluchtroute worden door middel van zware magneten open gehouden. Bij brand zullen deze deuren automatisch sluiten.

![Figuur 7.3: Toegangsdeuren dienen zo ver mogelijk van elkaar geplaatst worden om blokkade van uitgangen te voorkomen.](image)

7.2.3 Installatietechnische voorzieningen
- Er dient nood- en transparantverlichting toegepast te worden ten behoeve van de vluchtweganduiding, welke voldoen aan NEN1838 en NEN6088.
- Een ontruimingsalarminstallatie (type A) dient te worden toegepast (Brandveilig Gebouwen en tevens een brandmeldinstallatie, welke voldoen aan respectievelijk NEN2535 en NEN2535. Bovendien dient bij elke sprinklerwerking een rechtstreekse brandweermelding komen.
- In een bijeenkomstgebouw met een rookcompartment groter dan 500 m² dienen brandlangehospes bij te worden toegepast. Deze hebben een bereik van 35 m, als de ruimte niet ingericht is en 25 m bij een ingerichte ruimte 10.
- Een noodstroomvoorziening dient in het gebouw gerealiseerd te worden.

9 Een automatische kleefmagneet, welke de vluchtdoor automatisch opent bij brand, wanneer deze is opgemerkt door een brandmeldinstallatie wordt toegepast mits de vluchtdoorsingen ook bij geen brand (relen, te hoge temperatuur etc.) geopend kunnen worden. Dit kan door een groen noodknop kastje naast de vluchtdoorsingen te monteren.
10 Deze afstand is bepaald uit een slang van 30 m en een 'worp' van 5 m, waarbij in geval van aanwezige beleningen 10 m afgetrokken dient te worden.
7.2.4 Conclusie
Bij de beoordeling van het brandveiligingsconcept van het complex is de vuurbelasting de basis. De vuurbelasting is de vuurlast (totaal in het compartiment aanwezige verbrandingsenergie) gedeeld door het oppervlak. De vuurlast, welke de eenheid heeft van MJ/m² of kg/m², wordt bepaald in NEN6090. De maximale compartimentergrootte hangt af van de gemiddelde vuurbelasting q. Deze bestaat uit een permanente belasting, welke gebouwafhankelijk is en uit een variabele belasting, welke afhanger van de inrichting. Echter zal de permanente en variabele vuurbelasting voor een complex met als functie een bijeenkomstgebouw, waarbij de inrichting elke keer anders is, niet te bepalen zijn. Naast de vuurbelasting zijn dan de volgende zaken van belang bij het bepalen van de maximale brandcompartmentgrootte:
- Wel/geen binnenaanvoer van de brandweer mogelijk. Dit is wel mogelijk mits een brandmeldinstallatie met volledige bewaking, een beperkte brandvang en een rook/warmteafvoer (RWA) aanwezig is.
- Het aantal verbindingen.
- Wel/geen automatische blussing, zoals de aanwezigheid van sprinklers.
- De afbrandsnelheid en uitbreidingsnoodzakelijkheid
- Brandmelding

Het complex heeft een bebouwd oppervlakte van respectievelijk circa 9.800 m² (begane grond) en 4.980 m² (tussenverdieping). Er zullen twee brandcompartimenten gerealiseerd worden:
1. De hallen (begane grond; 5.750 + tussenverdieping; 2.200 = 8.250m²)
2. De magazijnen plus nieuwbouw (begane grond; 3.840 + tussenverdieping; 2.300 = 6.140 m²)

Door deze compartimentering ontstaan twee veilige gebieden in het complex. Bij brand kunnen de bezoekers enerzijds vluchten direct naar buiten of naar het ander compartiment wat een veilig gebied is en daar kunnen de bezoekers verder rustig het complex verlaten. Deze compartimenten zijn echter groter dan de maximale voorschreven grootte van 1.000 m². Daarom worden verschillende voorzieningen toegepast om aan het gelijkwaardigheidsbeginsel te voldoen. Door de aanwezigheid van een verdieping in de hallen is het niet mogelijk om overal een rook/warmteafvoer (RWA) systeem toe te passen, aangezien bij dit systeem het rookcompartment direct aan een dakzijde dient te grenzen (zodat daar luiken gerealiseerd kunnen worden). Gewoon aan de eis van de maximale loopafstand te voldoen, zijn deze brandcompartimenten opgesplitst in rookcompartimenten. Hierbij dient opgemerkt te worden dat een brand/ rookvrije trappenhuis buiten de brandcompartimentering valt. Een rookvrije trappenhuis mag wel in een brandcompartimentering vallen. Om verder aan het gelijkwaardigheidsbeginsel 11 te voldoen (zie figuur 7.4), dient gelijkwaardigheid getoond worden aan de beheersbaarheid van brand, snel en veilig vluchten en doelmatig bestrijden van brand. Dit gebeurt door het nemen van een aantal maatregelen:
1. Brandveilig bouwen
 - Materiaalkiezen; de bouwdelen en het interieur bestaan zoveel mogelijk uit niet brandbare materialen. Materialen dienen bij brand een minimale rookontwikkeling en geen gevaar voor vergiftiging op te leveren.
 - Beheer en onderhoud; brandblussmiddelen en zelfsluitende deuren dienen goed te onderhouden te worden.
2. Voorkomen van ontwikkeling en uitbreiding van brand
 - Sprinklers (automatische blusinstallaties) helpen niet alleen de brand te blussen en branduitbreiding te voorkomen, maar verminderen eveneens de rookontwikkeling. Hierdoor hoeft er tevens geen droge bluswatervoorziening te worden aangelegd.
 - Brandmelding
 - Ventilatie
3. Voorkomen van bezwijken van het gebouw
 - Verhogen van constructieve veiligheid (brandwerendheid 12) in lage gebouwen is geen effectieve manier om ongevallen te voorkomen en schade te beperken. Bij hallen volgt na brand vrijwel altijd sloop. Extra kosten om de brandwerendheid te verhogen zijn daarom kapitaalvernietigend.
 - Het is effectiever deze gebouwen te compartimenteren en van een brandventilatie en/ of een sprinklerinstallatie te voorzien, naast uiteraard aandacht voor vluchtwegen. Bovendien dient er in de buurt van het complex brandkranen aanwezig te zijn (zie bijlage 26).

11 Dit wil zeggen dat er van de standaard eisen afgeweken mag worden mits er compenserende maatregelen tegenover staan.
12 De brandwerendheid is gedefinieerd (Bouwbesluit) als de tijd gedurende, welke een constructieonderdeel bij verhitting volgens de standaardkromme, weerstand kan bieden aan de eroport werkende belasting.
De sprinklerinstallatie bestaat uit de leidingen met sprinklerklokstukken, de werktuigbouwkundige installaties en de opslagtanks. Deze opslagtanks vermenigvuldigen veel kubieke meters. Door deze echter als prefabkelder van het nieuwbouwgedeelte te realiseren, gaat er geen ruimte verloren voor de overige functies. Bovendien kan zodoende een leiding gemaakt worden met de naastgelegen Roosendaalse Vliet, waarmee de opslagtanks gevuld kunnen worden. Daarnaast kunnen de opslagtanks kleiner uitgevoerd worden, doordat een andere opslagmedium (namelijk de Roosendaalse Vliet) dichtbij aanwezig is.

![Diagram](image)

Figuur 7.4: In beginsel mag een brandcompartment niet groter zijn dan 1000 m², echter bij aantonen van gelijkwaardigheid mag van de maximale afmetingen afgeweken worden.

In tabel 7.14 is aangegeven per ruimte hoeveel meter aan deuren ten behoeve ontvluchting gerealiseerd dient te worden, om te voldoen aan de eisen in het Bouwbesluit (zie tabel 7.13). Daarbij dient opgemerkt worden dat er verschillende ruimten in één rookcompartment aanwezig zijn. Dus de tweede kolom geeft alleen het aantal meters deur weer als die ruimte een eigen rookcompartment vormt, hetgeen niet waarschijnlijk is.

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Verblifsgebied</th>
<th>Rookcompartment</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>13,75</td>
<td>8,2</td>
</tr>
<tr>
<td>B2</td>
<td>6,6</td>
<td>3,7</td>
</tr>
<tr>
<td>B3</td>
<td>2,2</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Tabel 7.13: Eisen bouwbesluit van uitgangsbreedte in mm, per m² vloer/ verblijfsoppervlakte.

<table>
<thead>
<tr>
<th>Gebruiksfunctie</th>
<th>Verblifsgebied</th>
<th>Rookcompartment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zaal</td>
<td>55,7</td>
<td>37,2</td>
</tr>
<tr>
<td>Backstage+Berging</td>
<td>3,80</td>
<td>1,00</td>
</tr>
<tr>
<td>VIP ruimte</td>
<td>16,4</td>
<td>11,0</td>
</tr>
<tr>
<td>Discotheek beneden</td>
<td>13,8</td>
<td>9,20</td>
</tr>
<tr>
<td>Discotheek boven</td>
<td>11,0</td>
<td>7,36</td>
</tr>
<tr>
<td>Lounge room</td>
<td>15,2</td>
<td>10,2</td>
</tr>
<tr>
<td>Congresruimte</td>
<td>10,5</td>
<td>7,00</td>
</tr>
<tr>
<td>Kindertagesverzorging</td>
<td>0,70</td>
<td>0,40</td>
</tr>
<tr>
<td>Foyer</td>
<td>4,80</td>
<td>3,20</td>
</tr>
<tr>
<td>Centrale keukens</td>
<td>0,70</td>
<td>0,50</td>
</tr>
<tr>
<td>Klare keukens</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>Kantoren</td>
<td>1,00</td>
<td>0,70</td>
</tr>
<tr>
<td>Sanitaire voorzieningen</td>
<td>1,60</td>
<td>1,10</td>
</tr>
<tr>
<td>Jongerencentrum</td>
<td>2,60</td>
<td>1,80</td>
</tr>
<tr>
<td>Café</td>
<td>2,20</td>
<td>0,60</td>
</tr>
<tr>
<td>Sushi-cocktailbar</td>
<td>4,10</td>
<td>1,10</td>
</tr>
<tr>
<td>Restaurant</td>
<td>3,60</td>
<td>1,00</td>
</tr>
<tr>
<td>Grillrestaurant</td>
<td>11,5</td>
<td>7,70</td>
</tr>
<tr>
<td>Snack corner</td>
<td>1,70</td>
<td>1,10</td>
</tr>
<tr>
<td>Verkeersruimten</td>
<td>13,7</td>
<td>9,10</td>
</tr>
</tbody>
</table>

Tabel 7.14: Aantal meter aan (vluch)deuren per ruimte.
Op de tekeningen in bijlage 28 staat aangegeven waar de brand en rook-compartimenteringen zich bevinden en waar de overige installaties ten behoeve van brandveiligheid zich bevinden. De eisen van de vluchtdeuren van de rookcompartimenten zijn in tabel 7.15 weergegeven met daarnaast de aanwezige vluchtdeuren in het ontwerp.

Tabel 7.15: Vluchtmoelijkheden rookcompartimenten eis versus ontwerp.

<table>
<thead>
<tr>
<th>Rookcompartiment</th>
<th>Oppervlakte [m²]</th>
<th>eis [mm]</th>
<th>vereiste totale minimale breedte toegang [m]</th>
<th>Aanwezige totale breedte [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disco boven</td>
<td>800</td>
<td>9,2</td>
<td>7,40</td>
<td>8,10</td>
</tr>
<tr>
<td>Disco beneden</td>
<td>1000</td>
<td>9,2</td>
<td>9,20</td>
<td>10,4</td>
</tr>
<tr>
<td>Kinderdagverblijf + toilettens + gang</td>
<td>800</td>
<td>9,2</td>
<td>7,40</td>
<td>24,9</td>
</tr>
<tr>
<td>Congres, foyer</td>
<td>1200</td>
<td>9,2</td>
<td>11,8</td>
<td>28,8</td>
</tr>
<tr>
<td>Restaurant, café, centrale keuken</td>
<td>1122</td>
<td>9,2</td>
<td>10,3</td>
<td>15,3</td>
</tr>
<tr>
<td>Zaal</td>
<td>3600</td>
<td>9,2</td>
<td>33,1</td>
<td>48,6</td>
</tr>
<tr>
<td>Berging, backstage ruimtes, kantoren</td>
<td>960</td>
<td>1,5</td>
<td>1,40</td>
<td>2,10</td>
</tr>
<tr>
<td>VIP ruimte</td>
<td>1200</td>
<td>9,2</td>
<td>11,0</td>
<td>8,10</td>
</tr>
<tr>
<td>Lounge ruimte</td>
<td>1000</td>
<td>9,2</td>
<td>9,20</td>
<td>15,3</td>
</tr>
<tr>
<td>Grill restaurant, Sushi</td>
<td>1370</td>
<td>9,2</td>
<td>12,6</td>
<td>22,8</td>
</tr>
</tbody>
</table>

Het aantal personen waaraan een gang, trap of deur in de vluchtroute bij brand veilig doorgang biedt, is evenredig met de breedte. Om inzicht te krijgen in het aantal personen dat maximaal door deuren, trappen en gangen het complex bij brand dienen te verlaten is in figuur 7.6 de maximale verkeersstromen weergeven in het complex, waarbij een gedragde avond, zoals beschreven is in paragraaf 5.3 als scenario wordt genomen en vervolgens brand uitbreekt. Situatie 1 gaat uit van brand in de discotheek zijde en situatie 2 van brand in de zaal zijde van de brandcompartimentscheiding. Daarvan is van belang dat niet alle functies gelijkvrijdig open zijn (zie tabel 7.16).

Tabel 7.16: Overzicht gelijktijdige openingsuren functies in het evenementencomplex.

<table>
<thead>
<tr>
<th>'s ochtends</th>
<th>'s middags</th>
<th>'s avonds / 's nachts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zaal</td>
<td>Zaal</td>
<td>Zaal</td>
</tr>
<tr>
<td>Berging</td>
<td>Berging</td>
<td>Berging</td>
</tr>
<tr>
<td>Kantoor</td>
<td>Backstage ruimten</td>
<td>Backstage ruimten</td>
</tr>
<tr>
<td>Café</td>
<td>Kantoor</td>
<td>Kantoor</td>
</tr>
<tr>
<td>Restaurant</td>
<td>Café</td>
<td>Restaurant</td>
</tr>
<tr>
<td>Snackcorner</td>
<td>Restaurant</td>
<td>Restaurant</td>
</tr>
<tr>
<td>Congres ruimten</td>
<td>Snackcorner</td>
<td>Snackcorner</td>
</tr>
<tr>
<td>Kinderdagverblijf</td>
<td>Congres ruimten</td>
<td>Keuken</td>
</tr>
<tr>
<td>Keuken</td>
<td>Kinderdagverblijf</td>
<td>Terras</td>
</tr>
<tr>
<td>Jongerencafé</td>
<td>Jongerencafé</td>
<td>Dinnertheek</td>
</tr>
<tr>
<td>Internetcafé</td>
<td>Internetcafé</td>
<td>Grill restaurant</td>
</tr>
<tr>
<td>Terras</td>
<td>Terras</td>
<td>Cocktail-Sushibaro</td>
</tr>
<tr>
<td>Keuken</td>
<td>Lounge ruimte</td>
<td>VIP ruimte</td>
</tr>
</tbody>
</table>

Op zo'n gedragde avond zijn 5.000 bezoekers gezamenlijk in de zaal en VIP ruimte aanwezig, 1.500 bezoekers in de discotheek en de overige 500 bezoekers gedeeltelijk in het café, sushi-cocktailbar, lounge en snackcorner aanwezig. De dikte van de pijn geven de hoeveelheid personen weer. Zoals gezegd worden twee situaties bekeken, aangezien als er brand in de zaalzijde uitbreekt de bezoekers daar of direct via de nooddeuren aan de noordzijde naar buiten kunnen vluchten en/of richting discotheek vluchten in de hoefdag. Daar zijn ze echter in een ander brandcompartiment. De bezoekers in de discotheek hoeven dan ook niet te meteen te vluchten. Dit geldt ook voor vice versa.

Op basis van het bouwbesluit artikel 2.173 dient de opvang en doorstroomcapaciteit van de vluchtroute bepaald te worden volgens de ministeriële regelgeving. Bepalend hierbij zijn de doorstromintensiteit en de loopssnelheid. Daarbij geldt dat in een vluchtroute per 55 cm breedte 50 personen per minuut door kunnen. Dit is bijvoorbeeld van toepassing voor het bepalen van de breedte van de verkeersruimtes (met daarin rookcompartimenterscheidingen). Voor de breedte van een trap geldt dat per 1,1 m breedte 50 personen per minuut de trap kunnen afda len/ beklimmen.
Daarnaast staat beschreven in artikel 3.1 dat de opvangcapaciteit van een vloer 4 personen per m² vrije vloeroppervlakte is en van een trede van een trap, uitgedrukt in personen 0,9*de breedte van de trap (m) is. Met deze regels kan bepaald worden of de ontworpen gangen en trappen voldoende zijn voor het garanderen van een veilige vluchtroute. Daarbij wordt aangenomen dat wanneer de bezoekers eenmaal uit een rookcompartment zijn (binnen 30 s) via de rookvrije verkeersruimte met een opvangcapaciteit het complex binnen 15 minuten zullen verlaten, en zodoende niet ineens allemaal tegelijk. Ditzelfde geldt voor de aangebrachte bordessen, waardoor de bezoekers eenmaal op dit bordes binnen 15 minuten op het maaiveld staan.

Toelichting figuur verkeersstromen: Aangenomen wordt dat in situatie 1, 22,5% van de 1000 bezoekers in de discotheek op de begane grond, via de hoofdentree naar buiten vlucht. Van de overige 775 zal 20% via de nooddag bij het kinderdagverblijf naar buiten gaan, 17,5% via de nooddieven naar de oostelijkste toliengroep en de overige 40% via de nooddieven naar de ‘hoofdgang’. In de disco, op de tussenvlucht zullen van de 500 bezoekers 33% vluchten via de hoofdtrap aan de Industriestraat en 66% via de hoofdgang op de eerste verdieping. In de hoofdgang op de begane grond zullen dus in het totaal circa (200 + 200 + 175 =) 575 personen terecht komen. Echter komt ook een gedeelte van de bezoekers op de tussenvlucht naar beneden via de trappen. Dit zullen ook 350 bezoekers bedragen, waardoor de maatgevende hoeveelheid personen 925 zijn. Hiervan zullen circa 60% via de foyer naar buiten vluchten en ongeveer 40% richting industriestraat rennen. Dit leidt tot een verdeling van 550/375.

In situatie 2 zal 40% van de 4500 bezoekers in de zaal 40% via de nooddieven in de noordzijde vluchten, 40% van de bezoekers zal de zaal via de zuidzijde verlaten en 20% zal naar de zijweg vluchten. Van de 40% die via de zuidzijde de zaal verlaten zal 150 personen via de gang naar de backstage ruimten vluchten. In de VIP-ruimte zal 50% van de 500 bezoekers naar de noordtrappen aan de noordzijde vluchten en 50% naar de hoofdgang op de tussenvlucht. De 500 bezoekers verdeeld in de Sushi-restaurant en lounge, zal 60% via de hoofdtrappen op de tussenvlucht vluchten en 40% via de bordessen en nooddieven aan de noordzijde ter plaatse van de lounge room en terras. In de hoofdgang op de begane grond zullen dus in het totaal circa 2100 personen zijn plus een gedeelte van de bezoekers van de VIP ruimte op de tussenvlucht, welke naar beneden via de trappen gaan. Dit zijn er per trap 125 personen. Van de in totaal 2350 zal 60% via de foyer naar buiten vluchten en 40% richting industriestraat rennen. In de zijweg op de begane grond zullen 450 bezoekers richting foyer en noordzijde vluchten.

Een verbetering van de vluchtwegen aan de zuidzijde van het complex kan verkregen worden door de naast- en braakliggende grond (gedeelde, te huren/kopen (zie figuur 7.5).

Figuur 7.5: Huur/ aankoop van de naastliggende grond leidt tot een verbetering van de vluchtweg aan de zuidzijde van het complex.

14 Vergelijk maximale gezamenlijke capaciteit café, restaurant, keuken en snackcorner (= 125+ 120+ 20+ 10 =) 275 bezoekers.)
Figuur 7.6: Verkeersstromen vluchtende bezoekers bij situatie 1.

Figuur 7.6: Verkeersstromen vluchtende bezoekers bij situatie 2.

Het benodigde aantal meters aan vluchtagangen en trappen in het complex is per situatie weergegeven in tabel 7.17 en 7.18.
Tabel 7.17: Vereiste breedte vluchtgangen bij een gegeven aantal personen.

<table>
<thead>
<tr>
<th>vluchtgangen</th>
<th>aantal personen</th>
<th>vereiste breedte [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situation 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>begane grond</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hoofdgang</td>
<td>550</td>
<td>6,1</td>
</tr>
<tr>
<td>disco-ingang</td>
<td>225</td>
<td>2,5</td>
</tr>
<tr>
<td>noodgang KDV</td>
<td>200</td>
<td>2,2</td>
</tr>
<tr>
<td>tussenverdieping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hoofdgang</td>
<td>175</td>
<td>1,9</td>
</tr>
<tr>
<td>Situation 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hoofdgang</td>
<td>990</td>
<td>10,9</td>
</tr>
<tr>
<td>zijgang</td>
<td>450</td>
<td>5,0</td>
</tr>
<tr>
<td>foyer</td>
<td>1535</td>
<td>14,1</td>
</tr>
<tr>
<td>tussenverdieping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hoofdgang</td>
<td>300</td>
<td>3,3</td>
</tr>
</tbody>
</table>

Tabel 7.18: Vereiste breedte van de trappen bij een gegeven aantal personen.

<table>
<thead>
<tr>
<th>trappen</th>
<th>aantal personen</th>
<th>vereiste breedte [m]</th>
<th>vereiste oppervlakte [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>foyer</td>
<td>425</td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td>hoofdgang/ KDV</td>
<td>175</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>bordes</td>
<td>250</td>
<td>2,8</td>
<td>62,5</td>
</tr>
<tr>
<td>kantoren</td>
<td>40</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>loungeterras</td>
<td>200</td>
<td>2,2</td>
<td>50,0</td>
</tr>
<tr>
<td>terras</td>
<td>200</td>
<td>2,2</td>
<td></td>
</tr>
</tbody>
</table>

De vluchtgangen, bordessen en trappen hebben in het ontwerp de vereiste breedte of meer. Zo kan geconcludeerd worden dat het ontwerp brandveilig is, ook al zal bij de verdere uitwerking enkele zaken veranderd dienen te worden. De hoofdzaken zijn met betrekking tot brandveiligheid behandelde en verwerkt in het ontwerp, zodat de technische haalbaarheid van het ontwerp is aangetoond.

7.3 Klimaatinstallaties evenementencomplex

Aangezien installaties een groot aandeel hebben in de ontwikkelingskosten (zie tabel 7.19), worden de klimaatinstallaties bepaald in deze paragraaf. Te zien in tabel 7.19 blijkt dat voor kantoren en bedrijfsruimten respectievelijk 28 en 36% van de ontwikkelingskosten bestaan uit installaties. Het evenementencomplex zal tussen de waarden van kantoren en bedrijfsruimten liggen. Dit betekent dat ongeveer 30% van de ontwikkelingskosten bestaat uit installaties.

Tabel 7.19: Indicatie aandeel installaties in ontwikkelingskosten bij kantoren en bedrijfsruimten.

<table>
<thead>
<tr>
<th>Ontwikkelingskosten [€/m² bvo]</th>
<th>Kantoren</th>
<th>bedrijfsruimten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwarming [%]</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Ventilatie/ klimaatregeling [%]</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Sanitair [%]</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Elektrische installaties [%]</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Communicatie/ beveiliging [%]</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Transportinstallaties [%]</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Totaal aandeel [%]</td>
<td>28</td>
<td>36</td>
</tr>
</tbody>
</table>

Voor het evenementencomplex dient het binnenklimaat voldoende geregeld te worden. Het (binnen)klimaat geeft weer de combinatie van omgevingsfactoren, die de warmte uitwisseling en vochtuitwisseling tussen mens en zijn omgeving bepaalt.

15 Aangezien bij deze situatie de hoofdgang in het 'veilige' brandcompartment ligt, hoeft niet aan deze eis te worden voldaan.
De factoren zijn luchttemperatuur, gemiddelde stralings-temperatuur, luchtbeweging en luchtvochtigheid. Daarnaast wordt ook luchtreinheid tot het binnenklimaat gerekend.

Het klimaat is voor mensen thermisch comfortabel als ze geen behoefte hebben aan een hogere of lagere temperatuur. Als er iets wordt voor het thermisch comfort gegeven dat tenminste 90% van de bezoekers ten minste 90% van de tijd tevreden zijn en dat niet meer dan 25% van de bezoekers ontevreden mag zijn. In de praktijk wordt het percentage (on)tevreden afgeleid met de PMV/PPD index. Deze index is gebaseerd op het comfortmodel van Fanger; PMV staat voor 'Predicted Mean Vote' en PPD voor 'Predicted Percentage Dissatisfied'. De eis 'ten minste 90% komt overeen met $-0,5<\text{PMV}<0,5$ en $-1,0<\text{PMV}<1,0$. Voor 10% van de jaarlijkse verblijftijd wordt een PMV tussen de $-0,8$ en $0,8$ geaccepteerd. De PMV/PPD-indexen zijn te herleiden tot een luchttemperatuur. Omdat de PMV/PPD-indexen bepaald worden door 6 factoren, dienen de overige 5 factoren bekend te zijn. Het comfort dat samenhangt met de luchtreinheid wordt 'olfactief' comfort genoemd. De luchtreinheidseisen worden meestal weergegeven in de per persoon toe te voeren hoeveelheid verse lucht. Daarnaast wordt luchtverversing ook aangegeven als ventilatievoud.

Voor het beheersen van het binnenklimaat dienen installatietechnische of bouwkundige voorzieningen gerealiseerd worden. Deze voorzieningen kunnen de volgende functies hebben:

- verwarming
- koeling
- luchtverversing
- vochtregeleer

Een luchtbereinigingsinstallatie is een installatietechnische voorziening die verschillende klimaatregelfuncties heeft. De kern bestaat uit een mechanische ventilatie met luchtfiltering en verwarming, waaraan koeling en/ of vochtregeleer is toegevoegd. Voor het kiezen van een juist systeem dienen per ruimte de ventilatie-, koeling- en verwarmingsbehoefte te worden bekeken. De grootte van een ventilatievrouwenbehoefte van verwarming, koeling of verwarming per ruimte bepaald de uiteindelijk capaciteit van het luchtbereinigingsinstallatie. In de volgende paragrafen wordt hierop ingegaan (zie voor uitgebreider berekeningen bijlage 27). In het gehele complex komen zodoende verschillende systemen. De zaal zal uitgebreid behandeld worden, aangezien deze ruimte de grootste oppervlakte van het complex heeft.

7.3.1 Ventilatie installaties

Volgens het Bouwbesluit zal het complex beoordeeld worden als een bijeenkomstgebouw met een bezettingsgraad variërend van klasse B1 tot B3. Hiervoor geldt een minimale ventilatie-eis van $4,8 \text{ dm}^3/\text{s}$ per m^2 gebruiksoppervlak. Daarnaast hebben de kantoren en kinderdagverblijf een lager minimale ventilatie-eis. Deze heeft respectievelijk de waarde $1,3$ en $0,8 \text{ dm}^3/\text{s}$ per m^2 gebruiksoppervlak. Zodoende komt met een totaal vloeroppervlak van circa 14.300 m^2 de verversingseisen neer op een totale ventilatiehoeveelheid van $247.100 \text{ m}^3/\text{h}$ en $35,3 \text{ m}^3/\text{h}$ per persoon. Dit is aan de ruimte kant, maar aangezien het toekomstig gebruik van de hal, waarbij een grote concentratie mensen een bovennormaal activiteitsniveau zullen ontwikkelen, is dit een noodzakelijke ventilatiehoeveelheid. Echter per ruimte en functie zullen deze ventilatiehoeveelheid per persoon variëren (zie tabel 7.20). Opvallend is dat de zaal maar een ventilatievoud van 1,8 per uur heeft. Dit komt vooral door de hoogte van de zaal; hoe hoger de zaal hoe minder lucht er versterst hoeft te worden om aan de verversingseis te voldoen.

15 Vergelijk met waarde verkeer luchtbehoeftte kantoren 30-50 m3/h per persoon.
Randvoorwaarden ventilatieconcepten zaal
- Aangezien de zaal plaatselijk circa 12 m hoog is, kunnen geen normale ventilatieroosters worden toegepast, aangezien deze niet in staat zijn om de lucht van deze hoogte in de leefzone (tot 2 m boven vloenniveau) te brengen.
- Het complex bevat vele functies, welke niet allen dezelfde eisen hebben wat betreft het klimaat. Zo zijn er in de congresruimten hoge kwaliteitseisen, aangezien de huurders luxe willen en gevoelig zijn voor temperatuur-verschillen. Echter bij de hal en discotheek zijn de eisen wat betreft temperatuurverschillen minder noodzakelijk, aangezien de bezoekers minder 'gevoelig' zijn.
- Vanwege het gevaar van uitstraling van geluid naar de omgeving is het niet mogelijk om het complex natuurlijk te ventileren. Het ventilatiesysteem dient een zeer goede geluidstechnisch scheiding tussen binnen- en buitenomgeving te bewerkstelligen. Dit geldt zowel voor toeverwarschathouders als retourventilatie.
- Om de kanaalafmetingen binnen de perken te houden zijn hoge luftsnelheden noodzakelijk. Dit kan leiden tot geluidproblemen bij gebruik van conventionele inblaas- en retourroosters.
- Vanwege de grote hoeveelheid ventilateluucht is het noodzakelijk een ventilatievoorziening te kiezen welke in staat is om grote hoeveelheden lucht in te blazen.

Ventilatieconcepten zaal
De eerste manier om grote hoeveelheden lucht in de zaal te blazen is door gebruik te maken van luchtverdrijvingsslangen (zie figuur 7.7). Deze slangen zijn gemaakt van een flexibele, porieuze materiaal.
De slangen worden aangesloten op een kanaalsysteem en worden door middel van een luchtbehandelingkast op druk gebracht. Doordat het materiaal porieuze is, wordt de lucht door de slangen naar buiten geperst. De slangen hebben de volgende eigenschappen:
- Goede menging van inblaaslucht met de ruimtelucht (inductie) zodat problemen met tocht bij voorbaat voorkomen worden.
- Mogelijkheid om zeer grote luchthoeveelheden in te blazen vanaf grotere hoeveelheid (8 tot 10 m).
- Mogelijkheid tot het realiseren van specifieke uitblaaspatronen door het aanbrengen van gerichte perforaties.
- Laag geluidsniveau door heel lage indringesnelheden in de leefzone.
- Reinigbaar.
Figuur 7.7: Concept lucht verdringingsslangen + stralingspanelen (rechts doorsnede).

De tweede optie is om de ventilatielucht in de hal te brengen met behulp van inblaasnozzles (zie figuur 7.8). Inblaasnozzles zijn straalpijp- of pakjes plopende ornamenten en hebben de volgende eigenschappen:

- Hoge capaciteit, 1200 m3/h per stuk.
- Hoge inblaas- en uitlaatcapaciteit (4-10 m/s).
- Grote werking, waardoor de lucht van een hoogte tot 8 m tot in de leefzone geblazen kan worden.
- De nozzles zijn geheel instelbaar zodat een optimale luchtverdeling is te realiseren.
- De nozzles realiseren een hoge inductie waardoor de inblaaslucht snel is vermengd met de ruimtelucht.
- Laag geluidsniveau.

Figuur 7.8: Concept inblaasnozzles.

Conclusie
Het blijkt dat een systeem met verdringingsslangen goedkoper is dan een systeem met inblaasnozzles. Op basis van de kosten en eigenschappen wordt gekozen voor een ventilatiesysteem met lucht verdringingsslangen. In het kader van energiebesparing wordt tevens gekozen voor een ten minste tweevoer op een regeling op de luchtbekledingkasten op te nemen. De ventilatielucht zal gebruikt worden om de hal ook te koelen. Voor verwarming zullen stralingspanelen gebruikt worden (zie subparagraaf 7.3.3).

7.3.2 Koeiloadinstallatie
Per ruimte dient de koeilading berekend te worden. Met deze 'koeilading' kan bekeken worden wat voor koelsysteem er gekozen moet worden.
De berekeningen zijn gebaseerd op NEN5067 en ISSO8.

De globale koeilading is de koeilading van een ruimte berekend op het tijdstip met de hoogste warmtebelasting.
De koeilading (Φ_b) wordt bepaald door:
$$\Phi_b = \Phi_i + \Phi_e \quad [W]$$
waarin: Φ_i = interne warmtebelasting [W]
Φ_e = externe warmtebelasting [W]

17 Bron: Rapport Docklandshal, uitgevoerd door Dossers Dossersgraaf.
18 ISSO staat voor Instituut voor Studie en Stimulering van Onderzoek op het gebied van gebouwinstallaties.
De interne belasting (Φ_i) bestaat uit de warmtebelasting door personen (Φ_p), de warmtebelasting door verlichting (Φ_l) en de warmtebelasting door apparatuur (Φ_a). In formule:
$$\Phi_i = \Phi_p + \Phi_l + \Phi_a \quad [W]$$

De externe warmtebelasting (Φ_e) wordt bepaald door de warmtebelasting door zoninstraling via de beglazing van gevel en dak ($\Phi_{g,d}$), de warmtebelasting door transmissie via het glas ($\Phi_{g,d}$), de warmtebelasting door zonbelasting van gesloten buitenwanden en het dak ($\Phi_{z,w}$) en de warmtebelasting door infiltratie (Φ_{inf}). In formulevorm:
$$\Phi_e = \Phi_{z,g} + \Phi_{ir,d} + \Phi_{z,w} + \Phi_{inf} \quad [W]$$

Tabel 7.21 geeft de berekende koellasten weer per gebruiksruimte. Hierbij staat ook de specifieke koellast; Dit is de koellast per m² vloeroppervlakte; zodoende kan men de koellasten binnen de verschillende ruimte vergelijken en een koelsysteem kiezen. Tevens is de benodigde hoeveelheid koele lucht weergegeven ($Q_{v, koel}$) in m³/s en het ventilatievoud in 1/h.

Tabel 7.21: Berekende koellasten, specifiek koelvermogen, hoeveelheid gekoelde lucht en ventilatievoud.

<table>
<thead>
<tr>
<th>Gebruiksfunctie</th>
<th>Φ_l [W]</th>
<th>Φ_e [W]</th>
<th>Φ_k [W]</th>
<th>$\Phi_{kv,sp}$ [W/m²]</th>
<th>$Q_{v, koel}$ [m³/s]</th>
<th>$\Delta\Theta$ [°C]</th>
<th>n [1/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zaal</td>
<td>601.400</td>
<td>59.684</td>
<td>661.084</td>
<td>164</td>
<td>37</td>
<td>15</td>
<td>3.4</td>
</tr>
<tr>
<td>Backstage+Berging</td>
<td>11.450</td>
<td>682</td>
<td>12.112</td>
<td>18</td>
<td>1</td>
<td>8</td>
<td>1.4</td>
</tr>
<tr>
<td>VIP ruimte</td>
<td>145.880</td>
<td>53.098</td>
<td>198.978</td>
<td>166</td>
<td>11</td>
<td>15</td>
<td>6.9</td>
</tr>
<tr>
<td>Discotheek</td>
<td>442.265</td>
<td>137.802</td>
<td>580.067</td>
<td>308</td>
<td>32</td>
<td>15</td>
<td>13.7</td>
</tr>
<tr>
<td>Lounge room</td>
<td>79.600</td>
<td>118.770</td>
<td>198.370</td>
<td>130</td>
<td>11</td>
<td>15</td>
<td>7.5</td>
</tr>
<tr>
<td>Congresruimte</td>
<td>103.345</td>
<td>18.087</td>
<td>121.432</td>
<td>164</td>
<td>7</td>
<td>15</td>
<td>6.8</td>
</tr>
<tr>
<td>Kinderdagverblijf</td>
<td>14.110</td>
<td>6.362</td>
<td>20.472</td>
<td>69</td>
<td>1</td>
<td>15</td>
<td>3.1</td>
</tr>
<tr>
<td>Foyer</td>
<td>18.990</td>
<td>132.457</td>
<td>151.447</td>
<td>433</td>
<td>8</td>
<td>15</td>
<td>18.1</td>
</tr>
<tr>
<td>Centrale keuken</td>
<td>10.568</td>
<td>6.007</td>
<td>16.574</td>
<td>55</td>
<td>1</td>
<td>15</td>
<td>2.3</td>
</tr>
<tr>
<td>Kleine keuken</td>
<td>2.400</td>
<td>2.593</td>
<td>4.993</td>
<td>83</td>
<td>0</td>
<td>15</td>
<td>3.5</td>
</tr>
<tr>
<td>Kantoren</td>
<td>11.200</td>
<td>442</td>
<td>11.642</td>
<td>25</td>
<td>1</td>
<td>8</td>
<td>2.0</td>
</tr>
<tr>
<td>Sanitaire voorzieningen</td>
<td>20.238</td>
<td>281</td>
<td>20.518</td>
<td>70</td>
<td>2</td>
<td>15</td>
<td>5.5</td>
</tr>
<tr>
<td>Jongerencentrum</td>
<td>33.500</td>
<td>2.509</td>
<td>36.009</td>
<td>180</td>
<td>2</td>
<td>15</td>
<td>7.5</td>
</tr>
<tr>
<td>Café</td>
<td>25.150</td>
<td>3.955</td>
<td>29.115</td>
<td>182</td>
<td>2</td>
<td>15</td>
<td>7.6</td>
</tr>
<tr>
<td>Sushi-cocktailbar</td>
<td>38.910</td>
<td>21.085</td>
<td>59.975</td>
<td>202</td>
<td>3</td>
<td>15</td>
<td>8.4</td>
</tr>
<tr>
<td>Restaurant</td>
<td>24.774</td>
<td>15.429</td>
<td>40.203</td>
<td>155</td>
<td>2</td>
<td>15</td>
<td>6.5</td>
</tr>
<tr>
<td>Grill restaurant</td>
<td>81.440</td>
<td>39.246</td>
<td>120.686</td>
<td>144</td>
<td>7</td>
<td>15</td>
<td>8.0</td>
</tr>
<tr>
<td>Snack corner</td>
<td>6.981</td>
<td>2.138</td>
<td>9.119</td>
<td>75</td>
<td>1</td>
<td>15</td>
<td>3.1</td>
</tr>
<tr>
<td>Verkeersruimten</td>
<td>50.903</td>
<td>3.488</td>
<td>54.390</td>
<td>55</td>
<td>3</td>
<td>15</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Concept zaal
Een manier om de zaal te koelen is door gebruik te maken voor de buitenlucht. Echter dient dit wel via mechanische ventilatie te gebeuren, vanwege het gevaar voor uitstralings geluid naar de omgeving.

7.3.3 Warmte-installaties
De berekening van de warmtevoorte van ruimten is gebaseerd op NEN5066. De 'transmissierekening' berekent de warmtevoorte van een ruimte (Φ_{ru}) door het warmteverlies door transmissie (Φ_{t}), natuurlijke ventilatie of infiltratie (Φ_{inf}) en warmwarme van de ruimte na een nacht of weekkende met een lagere ruimteliciencies (Φ_{ruwu}) bij elkaar op te tellen. In formulevorm:
$$\Phi_{ru} = \Phi_{t} + \Phi_{v} + \Phi_{ruwu} \quad [W]$$

In tabel 7.22 is de totale warmtevoorte en specifieke warmtevoorte weergeven.
Tabel 7.22: Totale warmtebehoefte en specifieke warmtebehoefte per gebruiksfunctie.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zaal</td>
<td>293.334</td>
<td>193.956</td>
<td>18.818</td>
<td>80.560</td>
<td>72.82</td>
<td>6.11</td>
<td>40</td>
<td>0.57</td>
</tr>
<tr>
<td>Backstage + Berging</td>
<td>37.560</td>
<td>17.208</td>
<td>6.552</td>
<td>13.800</td>
<td>54.43</td>
<td>1.56</td>
<td>20</td>
<td>1.70</td>
</tr>
<tr>
<td>VIP ruimte</td>
<td>98.010</td>
<td>66.220</td>
<td>7.869</td>
<td>23.920</td>
<td>81.95</td>
<td>4.08</td>
<td>20</td>
<td>2.56</td>
</tr>
<tr>
<td>Discoteek</td>
<td>134.761</td>
<td>86.556</td>
<td>10.585</td>
<td>37.620</td>
<td>71.64</td>
<td>2.81</td>
<td>40</td>
<td>1.19</td>
</tr>
<tr>
<td>Lounge room</td>
<td>116.630</td>
<td>78.470</td>
<td>16.081</td>
<td>22.600</td>
<td>105.64</td>
<td>4.46</td>
<td>20</td>
<td>3.30</td>
</tr>
<tr>
<td>Congresruimte</td>
<td>47.116</td>
<td>21.690</td>
<td>10.606</td>
<td>14.820</td>
<td>63.58</td>
<td>1.96</td>
<td>20</td>
<td>1.99</td>
</tr>
<tr>
<td>Kinderdagverblijf</td>
<td>21.636</td>
<td>10.003</td>
<td>5.693</td>
<td>5.940</td>
<td>72.85</td>
<td>0.90</td>
<td>20</td>
<td>2.43</td>
</tr>
<tr>
<td>Foyer</td>
<td>78.580</td>
<td>67.604</td>
<td>3.986</td>
<td>6.990</td>
<td>224.84</td>
<td>1.64</td>
<td>40</td>
<td>3.51</td>
</tr>
<tr>
<td>Centrale keuken</td>
<td>18.512</td>
<td>9.132</td>
<td>3.336</td>
<td>6.045</td>
<td>61.25</td>
<td>0.77</td>
<td>20</td>
<td>1.91</td>
</tr>
<tr>
<td>Kleine keuken</td>
<td>5.568</td>
<td>4.398</td>
<td>0</td>
<td>1.200</td>
<td>92.80</td>
<td>0.23</td>
<td>20</td>
<td>2.90</td>
</tr>
<tr>
<td>Kantoren</td>
<td>29.547</td>
<td>9.056</td>
<td>11.291</td>
<td>9.200</td>
<td>64.23</td>
<td>1.23</td>
<td>20</td>
<td>2.01</td>
</tr>
<tr>
<td>Sanitaire voorzieningen</td>
<td>18.533</td>
<td>9.983</td>
<td>0</td>
<td>5.850</td>
<td>54.13</td>
<td>0.66</td>
<td>20</td>
<td>1.69</td>
</tr>
<tr>
<td>Jongerencentrum</td>
<td>9.037</td>
<td>3.326</td>
<td>1.711</td>
<td>4.000</td>
<td>45.18</td>
<td>0.38</td>
<td>20</td>
<td>1.41</td>
</tr>
<tr>
<td>Café</td>
<td>12.131</td>
<td>6.194</td>
<td>2.737</td>
<td>3.200</td>
<td>75.82</td>
<td>0.51</td>
<td>20</td>
<td>2.37</td>
</tr>
<tr>
<td>Sushi-cocktailbar</td>
<td>28.226</td>
<td>20.404</td>
<td>1.882</td>
<td>5.940</td>
<td>95.04</td>
<td>1.18</td>
<td>20</td>
<td>2.97</td>
</tr>
<tr>
<td>Restaurant</td>
<td>17.266</td>
<td>9.823</td>
<td>2.275</td>
<td>5.187</td>
<td>66.65</td>
<td>0.72</td>
<td>20</td>
<td>2.08</td>
</tr>
<tr>
<td>Grill restaurant</td>
<td>82.937</td>
<td>54.071</td>
<td>12.146</td>
<td>16.720</td>
<td>99.21</td>
<td>3.46</td>
<td>20</td>
<td>3.10</td>
</tr>
<tr>
<td>Snack corner</td>
<td>12.279</td>
<td>5.926</td>
<td>3.918</td>
<td>2.436</td>
<td>100.82</td>
<td>0.51</td>
<td>20</td>
<td>3.15</td>
</tr>
<tr>
<td>Verkeersruimten</td>
<td>62.910</td>
<td>38.231</td>
<td>4.809</td>
<td>19.870</td>
<td>63.32</td>
<td>1.31</td>
<td>40</td>
<td>0.99</td>
</tr>
</tbody>
</table>

concept zaal
Bij een multifunctionele zaal is stralingsverwarming zeer geschikt. Bij stralingsverwarming kan, bij gelijkblijvend comfort, een lagere luchttemperatuur worden toegepast dan bij luchtverwarming. Met behulp van stralingspanelen (stevige metalen platen die aan watervoerende buizen zijn gelast) wordt de zaal verwarmd.

7.3.4 Keuze overige klimaataanpassingen
De systeemkeuze voor klimaatregeling wordt in ieder geval bepaald door het benodigde vermogen voor koeling, verwarming en luchtverversing (en vochtregeling). Verder beïnvloeden eisen met betrekking tot energiezuinigheid, bedieningsgemak, kosten (investering en exploitatie), flexibiliteit, geluidsproductie en natuurlijk ook de inpasbaarheid in het architectonisch ontwerp de keuze.

- De VIP-ruimte wordt verwarmd door dezelfde elementen als in de zaal; echter zal door gerichte aansluiting van de luchtverdrijvingsslangen en stralingspanelen alleen de VIP-ruimte gekoeld, geventileerd en/of verwarmd worden. Door middel van tijdelijke afwikkeling wordt de warmte / koelte in de VIP-ruimte gehouden, ten tijde dat de zaal niet gebruikt wordt.

Het vermogen van de luchtbehandelkast, welke gekoppeld is aan de luchtverdrijvingsslangen, wordt bepaald door de koelbehoefte (166 W/m²).

- De lounge room worden door middel van luchtverdrijvingsslangen gekoeld en geventileerd en met stralingspanelen verwarmd. Ook hier is de koelbehoefte bepalend voor het vermogen van de luchtbehandelkast (180 W/m²).

- De backstageruimtes en kantoren zullen aparte voorzieningen krijgen, aangezien ze bestaan uit mobiele units. Ze worden gekoeld / verwarmd met elektrische mechanische ventilatie en verwarmd met radiatoren. Het vermogen van de elektrische mechanische ventilatie wordt bepaald door de verversingbehoefte.

- De discoteek wordt gekoeld, verwarmd en mechanisch geventileerd via kanalen met roosters. Het vermogen van de luchtbehandelkast wordt bepaald door de koelbehoefte (308 W/m²).

- Het café, restaurant, sushi-cocktailbar en grillrestaurant, kinderdagverblijf en congresruimten dienen een mechanische ventilatie te krijgen, waarbij luchtverversing en natuurlijke koeling plaatsvindt door toepassing van plafondroosters. Verwarming zal plaatsvinden met een centrale verwarming met radiatoren, aangezien radiatoren met een specifieke verwarmingsvermogen van 200 W/m², zeer geschikt zijn voor al deze functies (kijkend naar hun specifieke warmtebehoefte).

- De foyer wordt mechanisch geventileerd. Tevens wordt met deze lucht gekoeld en verwarmd door middel van roosters. Het vermogen wordt bepaald door de koelbehoefte (433 W/m²).
De berging wordt verwarmd/ gekoeld door de lucht vanuit de zaal af te zuigen, aangezien hier weinig mensen zullen zijn en de eisen daarom niet zo hoog zijn.

De toiletten worden verwarmd door radiatoren en geventileerd/ gekoeld door afzuiging van de lucht in de verkeersruimten.

Een overzicht van de verschillende installaties per functie is te zien op figuur 7.9.

De capaciteit van de luchtheerleidingkasten hangt af van de hoogste waarde van het ventilatievoud per ruimte, bepaald voor ventileren, koelen en verwarmen. In de zaal blijkt voor het koelen de hoogste ventilatievoud te gelden (3,4 tegen 1,18 en 0,57).

Door gebruik te maken van meerdere (kleinere) units kan enerzijds meer gerichte koeling/ verwarming en verversing plaatsvinden en anderzijds kunnen deze units na 5 jaar makkelijker hergebruikt worden en heeft daarom een restwaarde.

![Figuur 7.9: Overzicht installaties t.b.v. koelen, verwarmen en luchtverversing.](image)

Samenvatting Bouwphysieke aspecten evenementencomplex

- **Geluid**
 De huidige stalen hallen en magazijnen zijn slecht geïsoleerd en dienen voor toekomstig gebruik geïsoleerd te worden. Door plaatsing van verschillende relatief laag geluidssproducerende functies als een buffer aan de west en oostkant van de functies discotheek en evenementenhal, kunnen deze buffers werken als grote spouwmuuren. De hallen kunnen door middel van een voorzetwand met gipskartonplaten aan de langszijden van de hall voldoende geïsoleerd worden. Echter het dak wordt, hoewel hij met een verlaagd plafond.

- **Brandveiligheid**
 Ten behoeve van de brandveiligheid dienen drie 'hoofd' noodroutes in het complex gerealiseerd te worden. Tevens wordt het evenementencomplex opgedeeld in twee brandcompartmenten (de hallen en de magazijnen + nieuwbouw). Omdat deze twee brandcompartmenten groter zijn dan 1000 m² dient gelijkwaardigheid aangetoond worden. Door middel van opsplitting van de brandcompartmenten in rookcompartmenten en toepassing van een sprinklerinstallatie. Daarnaast dienen er brandblusmiddelen en zelfsluitende deuren in het complex gerealiseerd te worden.
Ontwikkeling multifunctioneel evenementencomplex te Roosendaal
Tenslotte is een brandmeldinstallatie en een ontruimingsalarminstallatie van belang. Verder dient er per ruimte voldoende nooduitgangen aanwezig te zijn.

Installaties

Bronnen:

H8 Haalbaarheid Evenementencomplex

In dit hoofdstuk komt de haalbaarheid van het evenementencomplex aan bod. Allereerst wordt de bepaling van de haalbaarheid van een project besproken in paragraaf 8.1. Vervolgens wordt in paragraaf 8.2 de uitvoeringsmethode van het te bouwen evenementencomplex beschreven. Vervolgens kan aan de hand van kantallen de bouwkosten en andere kosten bepaald worden (8.3). Daarna worden in paragraaf 8.4 de opbrengsten van het complex in de eerste 5 jaar besproken. Daarmee kan een beeld worden gegeven van de haalbaarheid en mogelijke financiering van het complex (paragraaf 8.5). Kijkend naar het ontwerp van het nieuwe evenementencomplex na 5 jaar en de mogelijkheden om onderdelen te verplaatsen naar het definitieve gebouw, wordt de integratie besproken in paragraaf 8.6. Tevens wordt gekeken naar de toekomstige definitieve locaties van het evenementencomplex.

8.1 Bepaling haalbaarheid evenementencomplex

Het bepalen van de haalbaarheid van een project is een belangrijk aspect in het ontwikkelproces. In een haalbaarheidsstudie wordt het projectvoornemen in alle aspecten 'vooruit berekend' en wordt bepaald welke de kritische succes (en faal) factoren van het project zijn. Is de uitkomst van deze studie negatief dan moet besloten worden het project niet verder uit te werken of aan te passen. Is de uitkomst positief dan kan vastgesteld worden dat er een kans van slagen is.

De haalbaarheidsstudie is naast een marktanalysetool ook een belangrijke techniek voor het beheersen van risico's. In dit vroege stadium komen vele aspecten aan het licht welke risico's met zich mee nemen. Door een gevoeligheidsanalyse toe te passen op deze aspecten kan bepaald worden in hoeverre zij gevoelig zijn voor kleine veranderingen in het proces en zodoende in welke mate van risico. Daarmee kunnen gevoelige en dus risicovolle aspecten al vroeg in het ontwikkelingsproces beheerd en onder controle gehouden worden.

Een vastgoed project is haalbaar wanneer de vastgoedanalist heeft bepaald dat er een aannemelijke waarschijnlijkheid van uitdrukkelijke bevredigende doelstellingen is, wanneer een gekozen manier van actie is getoetst op het passen in een samenhang van specifieke randvoorwaarden en beperkte middelen (definitie A. Graaskamp, 1973).

Deze definitie geeft weer dat haalbaarheid nooit zekerheid geeft, echter bestaat wel een grote waarschijnlijkheid dat een project zijn doelstellingen haalt. Een goede uitkomst van een haalbaarheidsstudie geeft echter geen garantie op slagen van een project.

De haalbaarheidsstudie is een formele weergave dat een voorgesteld project levensvatbaar is of niet. Naast kaarten, tekeningen en samenvattingen, bevat een typische haalbaarheidsstudie een hoofdsamenvatting, een marktstudie, voorlopige werktekeningen, kostenramingen, informatie over de leners en investeerders, overheidsoverwegingen (o.a. vergunningen) en de geschatte waarde van het project.

Het resultaat van een haalbaarheidsstudie kan beschreven worden in een investeringsvoorstel. Deze bestaat uit verschillende onderdelen:

- **Marktverkenning en selectie doelgroep + locatie**

 De marktverkenning leidt tot een keuze van de doelgroepen en een bepaalde locatie. Hierbij wordt ingegaan op omgevings- en bereikbaarheidsaspecten. Bovendien wordt ook het ontwikkelings-, afzet- en exploitatierisico van de ontwikkelaar en belegger beschreven. Tevens wordt een concurrentieanalyse gegeven (dit is onder meer beschreven in de hoofdstukken 1 en 2).

- **Programma, locatie en bouwmassa**

 De te huisvesten organisatie dient geanalyseerd te worden op basis van haar maatschappelijke positie (doelstellingen en uitgangspunten), de organisatiestructuur en in de toekomst en daaruit voortvloeiende gebruikerseisen voor de locatie, gebouw, ruimten en flexibiliteit. Hiermee wordt een Programma van Eisen opgesteld. Daarnaast wordt een locatieverantwoording gegeven, welke de ruimtelijke bebouwingsmogelijkheden van de locatie beschrijft (zoals te zien in hoofdstuk 3 en 4).

- **Concept, functioneel ontwerp en maatsysteem**

 Naar aanleiding van de analyse van de organisatie en programma van eisen wordt een keuze gemaakt naar een concept gebouw. Het gekozen concept wordt uitgewerkt in een functioneel ontwerp, waarbij een maatsysteem is toegepast (zie hoofdstuk 5).
Bouwkosten en bouwkundige kwaliteit
De numerieke gegevens van het functioneel ontwerp worden gebruikt om een begroting te maken van de bouwkosten. Hierbij dienen ook de staatkosten (bouwplaatskosten, algemene kosten, winst en risico aannemer, advieskosten, ontwerpkosten, bijkomende kosten) meegenomen te worden, aangezien deze grote invloed op de totale investering hebben (hoofdstuk 8).

Haalbaarheid, Financiering, beslissingsruimte en eindvoorstel
Alvorens een eindvoorstel gemaakt wordt, dient gekeken te worden naar welke beslissingsruimte met betrekking tot locatie, huur, bouwkundige kwaliteit, gebruikers-kwaliteit, grondprijs, bouwkosten, rendementseisen bij het investeringsvoorstel hoort (hoofdstuk 8).

8.2 Uitvoering bouw evenementencomplex

In deze paragraaf wordt de uitvoering van het te bouwen evenementencomplex besproken. De uitvoeringsmethode heeft namelijk grote invloed op (uitvoerings)kosten en daarmee de haalbaarheid van het complex.

In de voorbereidingsfase ziet men de contractbespreking met verschillende partijen, grondoverdracht, financiering, vergunningen afhandelen en dergelijke plaats. Vervolgens kan er begonnen worden met de sloop van de volgende punten:
- De betonnen balken in hal 1
- Het kantoorgebied en winkelcentrum
- Gedeeltelijk strippen van de gevel
- Betonnen vloeren daken in de hallen waar de toekomstige kolommen van de tussenverdieping komen te staan.

Tegelijkertijd dient de bouwplaats te begaan worden. Zodoende dienen oude bestrating en groenverzorging verwijderd te worden. Tevens worden in deze fase bouwplaatsvoorziening geleverd, zoals de bouwmeester en het werk. Vervolgens kan begonnen worden met de nieuwe fundering. In de voorbereidingsperiode hebben al sonderingen plaatsgevonden en zijn de bestaande fundering door middel van steekboringen gecontroleerd. Op het nieuw bouwgedeelte werden helpen geslagen en het gedeelte waar de pref sprinkleropslagkelders komen uitgegraven en de kelders gebracht. Na de fundering en koppenstellen van de helpen kan begonnen worden met het bouwen van het staal skelet op de nieuw bouwgedeelte. In de oude hallen/magazijnen werden de middenkolommen op stalen buisplaten gefundeerd, welke met een lichte heisting gedeeltelijk in de grond wordt geslagen en vervolgens aan elkaar gelast, zodat een de 12 m diepe holle buis met beton en wapening gevuld kan worden. De middenkolom wordt niet op staal gefundeerd omdat de investering geëconomiseerd is met het investeren op staal zeker niet verploegt tegen funderen op palen. Dit komt omdat bij op staal gefundeerde kolomen:
- De verbinding tussen de vloerplaat en kolom ook bestand dient te zijn voor horizontale (stoot)belasting.
- Er continue door een extern deskundig bedrijf naar de optredende zettingen gekeken dient te worden.
- Om de zoveel tijd de kolom opgevijzel dient te worden.
- De bovenliggende constructie zodoende aangepast dient te zijn, dat deze de zettingen zonder problemen op kan vangen.

De grond rondom de buisplaten dient goed te verdicht te worden om geen grote zettingen rondom de palen te krijgen. Per middenkolom zullen twee stalen buisplaten met een diepte van 12,0 m gerealiseerd gaan worden. De kosten per paal bedragen 70 €/m en met 28 middenkolommen in het totaal wordt de kostenpost voor dit werk zo'n 28*2.880 = 80.460 euro’s. Vervolgens kunnen de verdiepingsvloerplatten erin geplaatst worden. Dit kan door middel van heftruck gebeuren vanuit binnenuit of door middel van een mobiele kraan van buiten uit2. Dit laatste impliceert, dat het dak gedeeltelijk verwijderd dient te worden. Dit dient echter toch te gebeuren in verband met het nieuwe geiseleerde dakplaten. Zodra de verdiepingssliggers erin liggen, kunnen de staalplaatvloeren gemonteerd worden en vervolgens met beton gestort worden. De isolerende laag onder het dak en de voorzetwanden kunnen reeds geplaatst worden.

1 Een helpaal kost all-in zo'n 40 €/m, wanneer meerder helpen zonder belemmeringen geslagen kunnen worden, wat het geval is bij de nieuw bouwlocatie.
2 De uitvoering van de verdiepingvloer kan eventueel met behulp van de oude kraanbaan in de hallen en magazijnen plaatsvinden.
De vleugel aan de westzijde en gedeeltelijk noord/zuid zijde, worden door middel van stijlen en regels aan de (bestaande) kolommen bevestigd. Vervolgens kunnen de gevelplaten/ ramen aangebracht worden. Wanneer het complex regedicht is, kan begonnen worden met het aanleggen van de installaties en tussenwanden. Tevens worden begonnen met de afwerking/inrichting. Een globale tijdsplanning is te zien in tabel 8.1.

<table>
<thead>
<tr>
<th>Activiteit / maand</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voorbereiding</td>
<td></td>
</tr>
<tr>
<td>Sloop/ bouwrijp</td>
<td></td>
</tr>
<tr>
<td>Fundering</td>
<td></td>
</tr>
<tr>
<td>Verdieping</td>
<td></td>
</tr>
<tr>
<td>Nieuwe gevel</td>
<td></td>
</tr>
<tr>
<td>Dak (renovatie)</td>
<td></td>
</tr>
<tr>
<td>Afwerking</td>
<td></td>
</tr>
<tr>
<td>Inrichting</td>
<td></td>
</tr>
</tbody>
</table>

Aansprakelijkheid
Gedurende de bouw tot en met de onderhoudstermijn is het gebruikelijk een bedrijfsschadeverzekering en een Constructie All Risks (CAR) verzekering af te sluiten, waaronder alle werkzaamheden worden opgenomen. Zowel de architect als de aannemer(s) blijven gedurende tien jaar na oplevering verantwoordelijk voor gebreken welke een gevolg zijn van bouwfouten. Beide zaken zijn gunstig voor het slagen van het evenementencomplex.

8.3 Investerings- & Exploitatiekosten evenementencomplex

De investeringskosten (stichtingskosten) bestaan uit (NEN 2631):

- Grondkosten
 De grondkosten omvatten de volgende kosten:
 - Verwervingskosten (belastingen, kadastrale kosten)
 - Kosten infrastructurale voorzieningen
 - Kosten bouwrijp maken
- Bouwkosten
 Bouwkosten worden onderscheiden in:
 - Bouwkundige werken
 - Werktuigbouwkundige installaties
 - Elektrotechnische installaties
 - Bijzondere installaties
 - Vaste inrichtingen
 - Terreinvoorziening (bestrating)
- Bijkomende kosten
 Bijkomende kosten hebben betrekking op:
 - Voorbereidings- en begeleidingskosten (programma van eisen, opmeting terrein, ontwerp en adviezen, toezicht)
 - Onvoorzien uitgaven
 - Risico-verrekeningen (lonen, materialen)
 - Overige bijkomende kosten (heffingen, verzekeringen, aanloopkosten en financieringskosten)
- Directiekosten
- Inventariskosten
 Dit zijn de inrichtingskosten en kunnen verdeeld worden naar:
 - Losse inrichting
 - Bedrijfsinstallaties
 - Bouwkundige voorzieningen en/of installatietechnische werken t.b.v. bedrijfsinstallaties en losse inrichtingen.
- Overige kosten (reserves, rente tijdens bouw, startkosten)
De exploitatiekosten bestaan uit alle zaken wat met de bedrijfsvoering te maken heeft om te exploiteren (NEN 2632):

- **Vaste kosten**
 - Vaste kosten zijn gerelateerd aan het eigendom van het onroerend goed.
 - Rente
 - Vervangingsreserve
 - Huur
 - Belastingen en andere heffingen
 - Verzekeringskosten

- **Energiekosten**
 - Energielasten zijn de kosten van energieverbruik in of aan onroerend goed. De kosten worden onderscheiden in het gebruik van:
 - Elektriciteit
 - Brandstoffen
 - Water
 - Andere energiebronnen

- **Onderhoudskosten**
 - De onderhoudskosten worden onderscheiden in kosten van:
 - Technisch onderhoud
 - Schoonmaakkosten

- **Administratieve kosten**
 - De administratieve beheerskosten zijn de kosten van administratieve, uitsluitend met betrekking tot het beheer van het onroerend goed (boekhouding, administratieve personeelskosten)

- **Specifieke bedrijfskosten**
 - Specifieke bedrijfskosten zijn de kosten van het gebruik van onroerend goed die voortvloeien uit het functioneren van het bedrijf. (Personeelskosten, inkoop van evenementen, goederen en diensten)

Bij dit project zijn de grondkosten, bijkomende kosten, directie kosten en overige kosten in één post 'bijkomende kosten' samengebracht. Vervolgens is er een post 'bouwkosten' en inrichtingskosten (inventariskosten) bepaald.

De kosten van de hoofdsom, bestaande uit de aanneemsom voor het gebouw plus de inrichting en bijkomende kosten van het project, worden in de loop van de exploitatie afgeschreven. Er zijn drie afschrijvingsmethoden:

1. Afschrijven met een vast percentage van de aanschafwaarde,
2. Afschrijven met een vast percentage van de boekwaarde,
3. Annuitetenmethode.

De eerste methode (lineaire afschrijving) zal worden gebruikt voor de afschrijving van het gebouw en de inrichting.

Aan de hand van kengetallen zijn de globale bouwkosten van het complex bepaald (zie bijlage 29). De bouwkosten bepaald door Peritas Bouwkosten Adviseurs en Evion Bouwconsult verschillen van elkaar. Beide waarden zijn bepaald door kengetallen en ervaring. Door de onzekerheid van de uitgangspunten, aannames e.d. van de haalbaarheidsfase dienen aan allebei de waarden een marge van +/- 15% toegekend worden. Deze marge dient gezien te worden als een waarschijnlijk in de vorm van een Gausse-verdeling. De bandbreedte van beide waarden komt voor een groot deel overeen, wat de mate van waarschijnlijk van de orde van grootte van de kosten groot maakt (zie figuur 8.1). Met ruime zekerheid (met name voor de haalbaarheidsanalyse) kan geconcludeerd worden dat de bouwkosten in de orde van 18 miljoen euro liggen.
De inrichtingskosten zijn aan de hand van verschillende offertes bepaald (bron MaVer) en bedragen 4,8 miljoen euro. De exploitatiekosten zijn geraamd op een percentage (63%) van de opbrengsten en zijn weergeven in tabel 8.2.

8.4 Opbrengsten evenementencomplex

De verwachte opbrengsten gedurende de eerste 5 jaar van de exploitatie van het evenementencomplex komen hier aan bod. MaVer verwacht dat de opbrengsten in het tweede en derde jaar zal groeien met een percentage van 10% ten opzichte van het voorgaande jaar (exclusief de inflatie). Vervolgens zal vanaf het vierde jaar een afname van de groei optreden door verzadiging van de markt en zal de opbrengsten met 8% ten opzichte van het voorgaande jaar groeien. In het laatste exploitatiejaar zal er een groei van 7% optreden. De opbrengsten zijn als contante waarde in tabel 8.2 weergeven.

Tabel 8.2: Contante opbrengsten in de loop van de exploitatiefase.

<table>
<thead>
<tr>
<th>Exploitatiemaar</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

De vraag is echter of deze groeipercentages werkelijk zullen plaatsvinden (hoewel bij de opzet van minimale waarden is uitgegaan). Daarom zal er in de volgende paragraaf een gevoeligheidsanalyse besproken worden, waarin de mogelijke risico's ten gevolge van onveraagde werkelijke groei van de opbrengsten, in beeld worden gebracht.

8.5 Haalbaarheid & financiering evenementencomplex

Met de bouwkosten en opbrengsten, beschreven in de vorige paragrafen kan bepaald worden wat de economische haalbaarheid van dit project is. Een haalbaarheidsonderzoek maakt de kosten en opbrengsten van grondgebruik op een bepaalde locatie en in een bepaalde tijd zichtbaar. In deze paragraaf wordt alleen gekkeken naar de financiële haalbaarheid; politiek-bestuurlijk, en maatschappelijk haalbaarheid vallen buiten dit onderzoek.

8.5.1 Haalbaarheid evenementencomplex

In deze subparagraaf wordt de haalbaarheid van het evenementencomplex besproken. Dit kan op verschillende methoden. Allereerst worden deze methoden apart besproken, waarna met enkele methoden de haalbaarheid van dit project wordt bepaald.

Bruto-aanvangsrendement (BAR)

Het bruto-aanvangstrendement (BAR) dient een financiële dekking op te leveren voor de verwachte inspanning c.q. de kosten gedurende de exploitatiperiode die de investeerder moet maken. Dit rendement dient de inspanning en kosten te overstijgen; de investering moet meer opleveren dan een eventueel alternatief (zoals staatsobligaties).
De BAR-eis die gehanteerd wordt, is afhankelijk van de markt. De BAR wordt gebruikt voor het vaststellen van de 'onderhandse verkoopwaarde in verhuurde staat'. De BAR-eis wordt alleen bij projecten gebruikt waarbij veel ervaring is, zoals bij woningbouwprojecten: hierbij weet men uit ervaring wat de opbrengsten uit de huur zullen zijn en waarbij de opbrengsten in de jaren in vergelijking met het eerste jaar nagenoeg lineair verlopen. Daarom kan men met de BAR-eis het rendement op het gehele project weergeven. De BAR methode wordt vooral gebruikt bij het bepalen van de haalbaarheid van een project waarbij huurinkomsten de opbrengsten zijn, zoals huurwoningen. Bij het evenementencomplex zijn de eigenaar en gebruiker hetzelfde bedrijf en kan er niet gekeken worden naar de huuroperbrengst van het eerste jaar ten opzichte van de totale investeringskosten. Bovendien geeft de BAR-eis op dit project een verkeerd beeld en wordt zodoende niet toegepast.

Baten/kosten verhouding methode
De baten/kosten verhouding methode (BKV of 'profitability index' of 'benefit-cost ratio' genoemd) houdt hier wel rekening mee. De baten/kosten verhouding geeft de verhouding weer tussen de contante waarde van de netto inkomsten in de exploitatiefase en de contante waarde van de uitgaven in de ontwerp-, bouw- of investeringsfase. Een project is rendabel als de baten/kostenverhouding groter dan één is. Voordelen van deze methode zijn dat het een kasstroombenadering is en dat de tijdswaarde van het geld en tijdstip van de kasstomen worden meegenomen met de berekening. Nadeel is echter dat de grootte van het investeringsbedrag en de grootte van de kasstomen worden verwaarloosd.

Intern rendement (IRR)
Het interne rendement (Internal Rate of Return) van een investering is die rentevoet waarbij de Netto Contante Waarde nul is. De berekening ervan is een iteratief proces. Er wordt een rentevoet aangenoem, daarmee de NCW berekend wordt en gekeken of deze nul is. Zo niet, dan wordt een andere rentevoet genomen en de NCW opnieuw berekend. Voordelen van deze methode zijn dat het een kasstroombenadering is en dat de tijdswaarde van het geld beschouwd wordt. Nadeel is dat meerder IRR's mogelijk zijn per project en zodoende niet eenduidig is en dat de IRR geen rekening houdt met de grootte van de bedragen.

Netto Contante Waarde-methode (NCW)
Met deze methode wordt het verschil tussen opbrengsten en kosten over de levensduur van een project bepaald. Omdat de kosten en opbrengsten afhangen van rentegevers worden deze posten met behulp van een (interne) rentevoet teruggereld naar bedragen in het beginjaar van de investering, de contante waarde. De positieve contante waarden worden vervolgens verminderd met de negatieve contante waarden. Zodoende worden kasstomen die op verschillende tijdstippen plaatsvinden naar één tijdstip contant gemaakt en opgeteld. Dit maakt het mogelijk om te beoordelen of de opbrengsten op termijn kosten van nu kunnen dekken. Voordeel is ook dat er rekening wordt gehouden met de grootte van de kasstomen.

Monte-Carlo simulatie
Met de beschikking over informatie over de grondkosten, bouwkosten, bijkomende kosten en de marktwaarde van het ontwikkelde project kan de haalbaarheid van het project bepaald worden. Echter kunnen de bedragen vanwege de fase van het proces hoger of lager uitvallen dan geraamd. In een dergelijke situatie kunnen enkele scenario's doorgerekend worden waarbij gekeken wordt of er sprake is van een positief projectresultaat. Een Monte-Carlo Simulatie is een andere techniek welke inzicht biedt in het risico dat gepaard gaat met het ontwikkelingsproces. De berekening wordt gemaakt via drie invoerwaarden per variabele. Er wordt gewerkt met bandbreedtes in plaats van enkelvoudige waarden. De drie waarden vormen de basis voor een kansberekening van de waarde van de betreffende variabele. In deze simulatie wordt uitgegaan van een zgn. 'beta' kansverdeling (zie figuur 8.2).
Per variabele (bouwkosten, marktwaarde, etc.) worden de ‘low’, ‘best’ en ‘high’ waarden ingevuld:
- De ‘low’-waarde is de ondergrens van de schatting;
- De ‘best’-waarde is de waarde welke het meest waarschijnlijk wordt geacht;
- De ‘high’-waarde is de bovengrens van de schatting;

Nadat alle gegevens zijn ingevoerd worden 10.000 scenario’s doorgerekend en worden de uitkomsten gepresenteerd, die inzicht geven in de spreiding van uitkomsten. In deze berekening wordt per scenario uitgerekend wat het bijbehorende interne rendement is. De uitkomsten kwantificeren het risico en aan de hand hiervan kan beoordeeld worden of het gekwantificeerde risico acceptabel is. Dit is echter een zeer uitgebreide methode en is voor dit project ongeschikt.

Keuze methoden
Voor dit project zal de Netto Contante Waarde methode toegepast worden, evenals de batenkostenverhouding en de interne rentevoet technieken, aangezien deze de verschillende baten- en kostenstromen tot één tijdstip herleiden, c.q. tijdneutral maken.

De ingaande en uitgaande hoeveelheden geld voor het bedrijf MaVer kunnen in kasstromen (cashflows) worden weergegeven (zie figuur 8.3). De tijd is horizontaal uitgezet en verticaal de kosten en opbrengsten. De kasstromen vinden plaats aan het einde van het desbetreffende jaar. De kosten en opbrengsten kasstromen zijn niet op schaal weergegeven. De kosten bestaan zoals beschreven uit de hoofdsom, welke bestaat uit de aangeeemsom en de bijkomende kosten, de lineaire afwijking van de hoofdsom aan de investeerders e.d., de rente op deze lening, de huurkosten aan BPF Bouwinvest en de exploitatiekosten. De opbrengsten bestaan uit de vergoeding voor onder andere huren van de verschillende ruimten en consumptie door externen.

Om kasstromen die plaatsvinden op verschillende tijdstippen met elkaar te kunnen vergelijken, dienen deze te worden omgerold naar hetzelfde tijdstip. Dit gebeurt door alle kasstromen contant te maken. Aangezien dit project bestaat uit wisselende kasstromen op verschillende tijdstippen, dient de netto contante waarde (NCW) bepaald te worden als de som van de contante waarden van alle individuele, wisselende en/ of gelijkblijvende kasstromen.
In formule vorm:
\[NCW = C_0 + \frac{C_1}{(1+r)^1} + \frac{C_2}{(1+r)^2} + \frac{C_3}{(1+r)^3} + \ldots + \frac{C_n}{(1+r)^n} \]

met \(r \) is de rente en \(C \) is de kasstroom.

De rente is geraamd op circa 5,5%. Deze bestaat uit een risicovergoeding en een gedeelte voor uitgestelde consumptie. De inflatie wordt niet meegenomen bij de berekeningen, aangezien dit voor het saldo geen verschil uitmaakt (zowel de kosten, als batenkant neemt dan met een evenredige percentage toe).

De geraamde contante waarden van de kosten en baten van het project zijn weergeven in tabel 8.4. Daarbij zijn de baten-kostenverhouding en de interne rentevoet ook bepaald. Het rendement op de investering is 23,1%, wat hetzelfde weergeeft als de baten-kosten verhouding van 1,23. De NCW is ruim 22 miljoen euro, wat allemaal positieve waarden zijn voor de rendabiliteit van het project.

Tabel 8.3: Kosten versus baten van het project.

<table>
<thead>
<tr>
<th>NCW</th>
<th>Kosten</th>
<th>Baten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoofdsom</td>
<td>€ 22.377.980</td>
<td></td>
</tr>
<tr>
<td>Opbrengsten bedrijfsvoering</td>
<td></td>
<td>€ 121.654.912</td>
</tr>
<tr>
<td>Restwaarde</td>
<td>€ 80.000</td>
<td></td>
</tr>
<tr>
<td>Exploitatiekosten</td>
<td>€ 76.480.438</td>
<td></td>
</tr>
<tr>
<td>Sommatie</td>
<td>€ 98.868.418</td>
<td>€ 121.654.912</td>
</tr>
<tr>
<td>Rendement</td>
<td>23,1%</td>
<td></td>
</tr>
<tr>
<td>Baten-kosten verhouding</td>
<td>1,23</td>
<td></td>
</tr>
<tr>
<td>Netto contante waarde</td>
<td>€ 22.796.494</td>
<td></td>
</tr>
</tbody>
</table>

In grafiekvorm (figuur 8.4) is te zien dat de baten hoger liggen dan de kosten.

![Baten versus Kosten VO](image)

Figuur 8.4: Baten versus kosten van het project.

Wordt gekeken naar de kasstroomen van het project gezien vanuit de investeerders dan heeft dit project een IRR van 34,13% en een Baten-kosten verhouding van 1,23, wat neerkomt op een rendement van 23% (zie tabel 8.4 en figuur 8.5).
De waarden van het rendement en IRR lijken hoog, maar doordat er geen kosten voor aankoop grond en degelijke vallen deze waarden hoger uit de referentieprojecten. Bovendien zijn in deze branche deze waarden van die hoogte om zo te kunnen ondernemen in de leisure-wereld.

Tabel 8.4: Cashflow VO in absolute getallen.

<table>
<thead>
<tr>
<th>JAREN</th>
<th>NCW</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoofdinvest</td>
<td>€ -22.377.980</td>
<td>€ -22.377.980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restuurderde</td>
<td>€ 60.000</td>
<td>€ 76.480.438</td>
<td>€ 13.414.105</td>
<td>€ 15.567.008</td>
<td>€ 18.065.584</td>
<td>€ 20.583.928</td>
<td>€ 23.233.165</td>
</tr>
<tr>
<td>Baten-kosten ratio</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figuur 8.5: Cashflow VO.

Deze kasstromen kunnen ook weergegeven worden als euro's per vierkante meter. Zodoende wordt inzicht verkregen in de onderlinge verhoudingen van de kosten en batenposten (zie tabel 8.5 en figuur 8.6). De opbrengsten in het laatste exploitatiejaar bedragen 1.604 euro per m². MaVer dient echter 1.260 euro per m² aan kosten toe te rekenen. Dit leidt er toe dat 344 euro per m² positief resultaat behaald wordt.

Tabel 8.5: Cashflow VO in euro's per vierkante meters.

<table>
<thead>
<tr>
<th>Jaren</th>
<th>eenheid</th>
<th>Totaal</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opbrengsten</td>
<td>euro/m²</td>
<td>€ 6.849</td>
<td>€ 1.145</td>
<td>€ 1.260</td>
<td>€ 1.386</td>
<td>€ 1.497</td>
<td>€ 1.601</td>
</tr>
<tr>
<td>Exploitatiekosten</td>
<td>euro/m²</td>
<td>€ 4.331</td>
<td>€ 7.20</td>
<td>€ 7.02</td>
<td>€ 8.71</td>
<td>€ 241</td>
<td>€ 1.007</td>
</tr>
<tr>
<td>Hoofdinvest</td>
<td>euro/m²</td>
<td>€ 1.267</td>
<td>€ 253</td>
<td>€ 253</td>
<td>€ 253</td>
<td>€ 253</td>
<td>€ 253</td>
</tr>
<tr>
<td>Restuurderde</td>
<td>euro/m²</td>
<td>€ 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendement (per jaar)</td>
<td></td>
<td>1.23</td>
<td>1.18</td>
<td>1.21</td>
<td>1.23</td>
<td>1.26</td>
<td>1.27</td>
</tr>
</tbody>
</table>
Figuur 8.6: Jaarlijkse kasstromen voor MaVer in eenheid euro/m².

Gevoeligheidsanalyse

Omdat in de haalbaarheidsfase nog niet voldoende informatie beschikbaar is over het uiteindelijk ontwerp, kunnen de ramingen van de kosten en baten afwijken. Door een gevoeligheidsanalyse toe te passen kan gekozen in welke mate de haalbaarheid beïnvloed wordt door afwijkingen van de reeds gemaakte ramingen (zie tabel 8.6).

Tabel 8.6: Gevoeligheidsanalyse kosten en baten.

<table>
<thead>
<tr>
<th>laag</th>
<th>middel</th>
<th>hoog</th>
<th>bandbreedde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bouwkosten</td>
<td>€ -21.259.081</td>
<td>€ -22.377.990</td>
<td>€ -23.496.879 (+/-)</td>
</tr>
<tr>
<td>Exploitatiekosten</td>
<td>€ -66.820.383</td>
<td>€ -76.480.438</td>
<td>€ -86.040.493 (+/-)</td>
</tr>
<tr>
<td>Restwaarde</td>
<td>€ 56.400</td>
<td>€ 60.000</td>
<td>€ 63.600 (+/-)</td>
</tr>
<tr>
<td>Opbrengsten</td>
<td>€ 109.489.421</td>
<td>€ 121.654.912</td>
<td>€ 133.820.403 (+/-)</td>
</tr>
<tr>
<td>Totaal</td>
<td>€ 21.386.357</td>
<td>€ 22.856.494</td>
<td>€ 24.346.631</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sommatie</th>
<th>Rendement</th>
<th>Baten-kosten verhouding</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Laag opbrengsten - hoge kosten)</td>
<td>€ 8.449</td>
<td>0,0%</td>
</tr>
<tr>
<td>(Hoge opbrengsten - lage kosten)</td>
<td>€ 45.704.639</td>
<td>51,83%</td>
</tr>
<tr>
<td>(Hoge opbrengsten - hoge kosten)</td>
<td>€ 24.346.361</td>
<td>22,23%</td>
</tr>
<tr>
<td>(Laag opbrengsten - lage kosten)</td>
<td>€ 21.386.357</td>
<td>24,23%</td>
</tr>
</tbody>
</table>

Deze verschillende waarden van de kosten zijn ook weergegeven in figuur 8.6, waarbij de kosten links per scenario zijn weergegeven en de baten per scenario aan de rechterkant. Tevens is het resultaat per scenario weergegeven. Scenario 1 heeft verhoudingsgewijs geen verschil tussen de kosten en baten.
Figuur 8.6: lage, middel en hoge waarde van de kostenrampingen.

Uit de gevoeligheidsanalyse blijkt dat vooral afwijkingen in de opbrengsten leiden tot een lager rendement. Dit is logisch aangezien deze post groter is dan de bouwkosten en rente, aflossing etc. Ditzelfde geldt ook in mindere mate voor de exploitatiekosten, welke gekoppeld is aan de opbrengstenfunctie. Het scenario 'lage opbrengsten - hoge kosten' kan in het extreme geval leiden tot een rendement nagenoeg gelijk aan 0%. Bij een zeer positieve toekomst (scenario 'hoge opbrengsten - lage kosten') zal het rendement ruim 50% zijn.

8.5.2 Financiering

De kosten voor het realiseren van het evenementencomplex op de Konings Staal locatie kunnen verdeeld worden over de post 'verbouwen van het casco van het evenementencomplex' en over de post 'inrichting van het evenementencomplex'. Bij het verbouwen van het casco wordt bedoeld dat het evenementencomplex gereed is voor de plaatsing van de inrichting. Hier wordt ook de wand-, plafond-, en vloerafwerking bij inbegrepen, zoals de betegeling en de isolatie. De volledige 100% (18 miljoen euro) dient binnen de exploitatietijd van 5 jaar afgeschreven worden (zie tabel 8.7). De kosten voor de inrichting kunnen voor 50% gefinancierd worden door gebruik te maken van leasing (zoals de muziekinstrumenten) en franchising (bijvoorbeeld een Grolsch-bar). Van deze 2,4 miljoen euro dient 40% (960 duizend euro) afgeschreven te zijn in 5 jaar. De overige 60% (1,44 miljoen euro) kan doorgeschoven worden naar de definitieve locatie. Dit hoge percentage komt vooral door de gemakkelijke verplaatsbaarheid van de onderdelen. De overige 50% kosten van de inrichting zal een investering zijn van bijvoorbeeld een bank. Verder kan een lening afgesloten worden bij een brouwerij, leverancier(s) 3, aannemer(s) en/of familie.

<table>
<thead>
<tr>
<th>Casco</th>
<th>Inrichting</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.000.000</td>
<td>2.400.000</td>
</tr>
<tr>
<td>100% binnen 5 jaar afschrijven</td>
<td>50% lease/franchise</td>
</tr>
<tr>
<td></td>
<td>1.440.000</td>
</tr>
<tr>
<td></td>
<td>60% doorschuiven</td>
</tr>
<tr>
<td></td>
<td>960.000</td>
</tr>
<tr>
<td></td>
<td>40% binnen 5 jaar afschrijven</td>
</tr>
<tr>
<td></td>
<td>2.400.000</td>
</tr>
<tr>
<td></td>
<td>50% investering</td>
</tr>
<tr>
<td>18.000.000</td>
<td>4.800.000</td>
</tr>
</tbody>
</table>

3 In het algemeen heeft het de voorkeur de financiering zo weinig mogelijk via de toekomstige leverancier te laten lopen, aangezien de financiering terugbetaald wordt samen met 2 tot 3% hogere inkoopprijzen.
Het bouwbedrijf zal in de eerste fase als mede-investeerder van het evenementencomplex optreden. In ruil daarvoor krijgen zij de garantie dat zij het gebouw in de tweede fase mogen bouwen. Het bouwbedrijf zal zodoende 18,96 miljoen euro (18 miljoen euro plus 960 duizend euro) moeten investeren. Deze kosten kan het bouwbedrijf in de vorm van een maandelijkse huur aan MaVer met een bedrag van circa 316.000 euro voor gedurende 60 maanden afschrijven.

BPF Bouwinvest heeft in de huurovereenkomst aangegeven dat MaVer alleen als huur de rentelast dient te betalen. Deze huur zal circa 30.000 euro per jaar (2.500 euro per maand) bedragen. Na 5 jaar dient het evenementencomplex niet in de huidige staat opgeleverd worden. Zodoende zullen hiervoor geen sloopkosten na 5 jaar voor MaVer optreden. BPF Bouwinvest wil in de volgende fase ook als investeerder optreden.

Voor het betalen van de salarissen, inkoop van voedsel etc. dient ook een startkapitaal van 2 miljoen euro geïnvesteerd worden. Dit bedrag zal door particuliere investeerders in de vorm van aandelen gefinancierd worden.

Enkele financieringsmogelijkheden welke ook geschikt voor het te realiseren evenementencomplex zijn:

- **Borgstelling**
 Kredieten onder staatsgarantie, worden tevens borgstellingkrediet genoemd. Bij een borgstellingkrediet verstrekt de bank het kredietbedrag en stelt de overheid zich jegens de bank gedeeltelijk garant voor de aflossing van het kredietbedrag.

- **Garantiekrediet**
 Door middel van achtergestelde leningen, waarbij de gehele of gedeeltelijke garantie geregeld wordt door de Nationale Investeringsbank, wordt het garantiemomgen vergroot, waardoor de solvabiliteit van het exploitatiedrag verbetert. Er zijn 3 soorten garantiekrediet; namelijk Vermogensversterkingkrediet, Bijzondere Hypothecaire Geldlening en Bedrijfskrediet.

8.6 Integratie ontwerp 2e fase

In deze paragraaf komt de integratie met het ontwerp in de 2e fase naar voren. Hoewel het nog niet duidelijk is hoe het nieuw ontwerp in de 2e fase er uit gaat zien, wat dus na 5 jaar na de exploitatie van het evenementencomplex in het Konings Staal gebouw gerealiseerd is, is het toch mogelijk bij het ontwerp van de eerste fase hier mee rekening te houden.

8.6.1 Flexibiliteit ontwerp

In deze subparagraaf wordt beoordeeld in hoeverre de onderdelen in het ontwerp van de eerste fase meegenomen kunnen worden in het ontwerp van de tweede fase of in ieder geval hergebruikt kan worden.

Stramienmaten

Door te kijken naar stramienmaten van de verschillende gebouwonderdelen van het evenementencomplex kan beoordeeld worden of de onderdelen meegenomen kunnen worden of in ieder geval hergebruikt kunnen worden (door middel van verkoop). Stramienmaten welke opgebouwd zijn uit modulaire maten (een veelvoud van 0,30 m), zijn geschikt voor hergebruik dan andere maten, omdat in de praktijk voornamelijk met deze modulaire maat gewerkt wordt en zodoende vele bouwonderdelen deze maat hebben. Bovendien vergt een afwijkende van deze maten meerwerk en wordt zodoende kostbaarder. In tabel 8.8 staan de afmetingen van de verschillende onderdelen van de nieuwbouw. Gefkozen wordt voor een stramienmaat voor de constructieonderdelen en zodoende ook de afbouwdelen van 5,40 m. Zodoende worden 9 kolommen in de dwarsrichting van het nieuwbouwgebied toegepast. De overspanning in de congresruimte en jongerencentrum wordt gemaakt door een vakwerkligger, bestaande uit 15 delen van 1,2 m. Een kolomvrije overspanning is gewenst, waardoor een hogere constructiehoogte vereist worden dan bij de hallen. Vanwege de 'vrije' keuze voor het vrije ruimteprofiel (minimaal 2,60 m hoog) zorgt een hogere constructiehoogte niet voor problemen.

<table>
<thead>
<tr>
<th>Onderdeel</th>
<th>lengte [m]</th>
<th>breedte [m]</th>
<th>stramien [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nieuwbouw</td>
<td>49,5</td>
<td>39,4</td>
<td>9 * 5,40 = 48,6 of 7 * 7,20 = 50,4*</td>
</tr>
<tr>
<td>Congresruimte</td>
<td>39,5</td>
<td>19,0</td>
<td>15 * 1,2 = 18,0</td>
</tr>
<tr>
<td>Jongerencentrum</td>
<td>10,0</td>
<td>19,0</td>
<td>15 * 1,2 = 18,0</td>
</tr>
<tr>
<td>Grillrestaurant</td>
<td>22,8</td>
<td>20,0</td>
<td>16 * 1,2 = 19,2</td>
</tr>
</tbody>
</table>

*Tabel 8.8: Dimensionen functies in nieuwbouw versus stramienmaten, * kunnen door ruimtegebrek niet worden toegepast.*
Tabel 9.8 geeft de afmetingen van de magazijnen en hallen weer. De tussenverdieping dient opgebouwd worden uit bepaald aantal elementen, elk met een modulaire maat. De magazijnen hebben een hoofdoverspanning van 15,0 m. De tussenverdieping dient tussen de bestaande kolommen gerealiseerd te worden. Een vakwerkklippert opgebouwd uit 12 elementen met een lengte van 1,2 m heeft een totaaloerspanning van 14,4 m. De overige 600 mm worden gebruikt voor stelsruimte en de verbinding.

<table>
<thead>
<tr>
<th>Onderdeel</th>
<th>lengte [m]</th>
<th>breedte [m]</th>
<th>stramien [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magazijnen</td>
<td>45,0</td>
<td>39,4</td>
<td>15 * 1,2 = 18,0 of 16 * 1,2 = 19,2*</td>
</tr>
<tr>
<td>Hal 1</td>
<td>124,5</td>
<td>20,0</td>
<td>19 * 1,2 = 22,8 of 20 * 1,2 = 24,0*</td>
</tr>
<tr>
<td>Hal 2</td>
<td>124,5</td>
<td>24,0</td>
<td></td>
</tr>
</tbody>
</table>

Hal 1 heeft een overspanning van 20,0 m. Echter staan tussen beide spankolommen kraankaal- kolommen met een kraanaanleg om de 5,0 m. Daarom worden 15 elementen van 1,2 m gebruikt voor de verdiepingenstructuur met een totaaloerspanning van 18,0 m. De restruimte wordt gebruikt voor stelsruimte en de nieuw te realiseren verbinding. Hal 2 wordt overspannen met een verdiepingenstructuur, bestaande uit 19 vakwerkelementen met een totaallengte van 22,8 m.

Gekozen wordt om overal vakwerkklippers (met kolommen) toe te passen. De reden voor deze keuze is voornamelijk dat een overspanning tussen 15,0 en 24,0 m zeer geschikt is voor een vakwerkklipper. Bovendien ontstaat zo schaalvergroting en gaan de kosten per ligger omlaag.

Kombi-units

De verplichte units worden gebruikt voor de volgende functies:
- Toiletten
- Backstage ruimten
- Kantoren
- Keuken, de centrale keuken wordt opgebouwd uit een keukenunit voor de warme/koude keuken, een afwasunit, opslagunit en koelcelunits.

Deze units kunnen gehuurd/ gekocht worden en na vijf jaar weer ingeleverd/ verkocht worden. Voordeel van deze units is dat geen voorzieningen in het Konings Staal gebouw voor vijf jaar gebouwd dienen te worden, slechts de aansluitingen (van elektra, riool, water en gas). De units geven bovendien een duidelijk contrast met het huidig gebouw.

Overige bouwdeelen

De spanen van het huidige winkel/ magazijnbedeel kan gedemonteerd worden en gebruikt worden voor het complex in 1e fase. De zeven liggers (IPE500) hebben net zoals bij de magazijnen een lengte van 15,0 m; de hoogte is echter kleiner en zullen verlengd dienen te worden (zie figuur 8.7). Dit geldt ook voor de fundering van de dit bouwgedeelte langs als A.

![Figuur 8.7: Liggers van het winkel/ magazijnbedeel kunnen hergebruikt worden.](image)

De standaard stalen nooddeuren kunnen gebruikt worden in het ontwerp van het nieuwe evenementencomplex. Het nieuwe evenementencomplex dient dan wel of in fasen opgeleverd worden of een maand gesloten zijn (bijvoorbeeld in de zomerperiode), om de nooddeuren te demonteren op de Konings Staal locatie en te plaatsen in het nieuwe gebouw.
De stelconplaten op het buitenterrein, die het industriële karakter van het Konings Staal benadrukkken, kunnen na vijf jaar zonder problemen hergebruikt worden. Dit geldt in mindere mate voor de vakwerkkliggers, gebruikt in de tussenverdiepingconstructie. Deze kunnen in delen meegenomen worden naar het ontwerp in de tweede fase, mits de bouw van het nieuwe evenementencomplex in fasen verloop, zodat deze constructie elementen hergebruikt kunnen worden in de nieuwe constructie. Een andere optie is de elementen te verkopen (als oud ijzer, of voor hergebruik als onderdeel van een baileybrug).

Veel van de afbouw, zoals de demontabele gevelementen van de vloesgevel kan meegenomen worden naar het complex in de tweede fase. Deze kunnen in het nieuwe complex als afbouwpanelen in het interieur dienen, bijvoorbeeld in de nieuwe discotheek, zodat de verhuis- bouwtijd zo kort mogelijk wordt. De gevelementen hebben een afmeting van 2,4 m bij 1,4 m, waarvan er dus 8 in de modulaire maat van 11,20 m kunnen.

Het staalskelet van de nieuwbouw kan gedemonteerd worden en als oud ijzer hergebruikt worden. De kosten om het staalskelet industrieel flexibel demontabel (IFD) te realiseren zijn hoger dan de kosten voor nieuwbouw van een staalskelet. Zodoende worden deze constructieve elementen niet meegenomen naar het nieuwe evenementencomplex.

8.6.2 Locatie evenementencomplex tweede fase

In deze subparagraaf komen de mogelijkheden voor een nieuwe locatie van het evenementencomplex in de tweede fase naar voren. Zodoende kan gekomen worden of de huidige plus de nieuwe functies wel gestudeerd kunnen worden in de nabije omgeving in Roosendaal.

De extra functies die in de 2e fase gerealiseerd zullen worden:
- **Restaurant** (500 m²),
- **Café** (300 m²),
- **Health center** (1500 m²),
- **IJssalon** (400 m²),
- **Keten restaurant** (500 m²),
- **Hotel** (500 m²),
- **Kinderpaleis** (600 m²),
- **Oefenruimtes** (150 m²).

De overige functies zullen een grotere oppervlakten in beslag nemen. Zodoende zal het ontwerp in de 2e fase een minimale gebruiksoppervlakte van 14.580 + 4.450 = 18.630 m².

Mogelijke locaties evenementencomplex 2e fase:
- Op de huidige locatie, wanneer artikel 19 WRO plaatsvindt. Artikel 19 houdt in dat permanente herbestemming plaats zal vinden op de Konings Staal locatie (zie figuur 8.7, situatie 0). De bestemming industrie wordt dan vervangen door de bestemming horeca.

Korte omschrijving

Een bestemmingsplanvrijstelling artikel 19 Wet op de Ruimtelijke Ordening (WRO) geeft toestemming om in strijd met het geldende bestemmingsplan te bouwen, grondwerken te verrichten of een bouwwerk of perceel te gebruiken.

Uitleg

Op basis van dit artikel kan vrijstelling worden verleend voor het (ver)bouwen van bouwwerken (bouwvergunning), het uitvoeren van grondwerken (aanlegvergunning) of het gebruik van een bouwwerk of perceel in strijd met het bestemmingsplan, maar waartegen geen bezwaren bestaan.

Als een aanvraag in strijd is met het bestemmingsplan moet eigenlijk het geldende bestemmingsplan worden aangepast. Dit is een langdurig proces. Door het volgen van een artikel 19 vrijstellingsprocedure hoeft niet te worden gewacht totdat het bestemmingsplan is aangepast.

- Nieuwbouw op de voormalige koeienvelden nabij de Suikerunie. Deze locatie ligt tegenover het RBC Roosendaal voetbalstadion en bestaat uit braakliggende grasland (zie figuur 8.7, situatie 3). Voordeel van de locatie is dat bijna geen belemmeringen aanwezig zijn voor nieuwbouw. De eigenaar van het perceel dient echter wel toestemming te geven om voor de bestaande fabriek een evenementencomplex te vestigen. Daarnaast liggen in de nabije omgeving vrijstaande woningen die hinder zullen ondervangen van het complex.

- Herbestemming huidige station Roosendaal, wanneer een nieuw station nabij het huidige ROC terrein volgens het Masterplan SpoorHaven komt (zie figuur 8.7, situatie 4). Nadeel is echter dat het huidig station op de industriële erfgoedlijst staat en daarmee flink aantal beperkingen voor verbouw van het station met zich mee brengt. Voordeel is echter de prominente ligging aan de rand van het stadscentrum.
Figuur 8.7: Mogelijke nieuwe locaties evenementencomplex in 2e fase.

Geconcludeerd kan worden dat voldoende nieuwe locaties voor het evenementencomplex in de 2e fase in de nabijheid van het huidige complex aanwezig zijn. De nieuw te realiseren onderdelen in het Konings Staal gebouw kunnen voor een deel worden meegenomen worden naar het definitieve complex.

Bronnen:
- Vastgoed in cijfers, ir. H. de Jonge, Bouwkunde, Delft, juni 2002
H9 Conclusies & aanbevelingen

In dit laatste hoofdstuk worden de conclusies en aanbevelingen van de haalbaarheidsstudie beschreven. Deze haalbaarheidsstudie betreft het ontwikkelen van een evenementencomplex op de Konings Staal locatie in het industrieterrein Borchwerf. Door middel van hergebruik zal het evenementencomplex de eerste vijf jaar in het Konings Staal gebouw worden geëxploiteerd. Na de exploitatieperiode dient het evenementencomplex op een andere (definitieve) locatie worden gehuisvest.

9.1 Conclusies

Na het uitvoeren van een haalbaarheidsstudie naar 'de ontwikkeling van een evenementencomplex te Roosendaal' worden de volgende conclusies getrokken.

9.1.1 Algemeen
- Een evenementencomplex te Roosendaal is geografisch haalbaar. De acht evenementenhallen binnen Roosendaalse invloedssfeer zijn alleen concurrerend voor de provinciale en landelijke markt. De omvang van activiteiten op deze markt in het toekomstige evenementencomplex is beperkt en het aantal potentiële bezoekers is groot. Door het wegvallen van de huidige evenementenhall te Roosendaal en gebrek aan andere evenementenhallen in West-Brabant bestaat er op regionaal niveau behoefte aan een evenementenhal.
- Een discotheek met een oppervlakte van 1.800 m² vervult de behoefte aan een dergelijke discotheek rondom Roosendaal op.
- De aanvullende functies, zoals een café, (grill)restaurant, jongerencentrum, lounge en VIP ruimte, congresruimte, kinderdagverblijf, sushicocktailbar en terras vormen als totaalconcept een toevoeging op het bestaande horeca-aanbod in Roosendaal en omstreken.

9.1.2 Functionele aspecten
- In de bestaande hallen worden de functies evenementenhal (zaal) met podium, backstageruimtes en berging aan de oostkant van de zaal en café, restaurant, snackcorner en centrale keuken aan de westkant van de zaal gehuisvest. De nieuwe tussenverdieping herbergt de functies VIP en lounge ruimte en een dakterras.
- De bestaande magazijnen zullen hergebruikt worden voor verkeersruimte, discotheek, kinderdagverblijf, jongerencentrum en sanitaire voorzieningen. Op de nieuwe tussenverdieping komt een vide van de discotheek, sanitaire voorzieningen, verkeersruimte en gedeeltelijk het grillrestaurant.
- De nieuwbouw bevat een congresruimte met sanitaire voorzieningen en een foyer op de begane grond en op de 1e verdieping een dakterras met grillrestaurant. De foyer krijgt een centrale ligging aan de entreezijde van het complex.
- De personen hebben in de evenementenhall een belemmering van hun zichtlijnen door de aanwezige kolommen (zie figuur 9.1). De tussenverdieping (met name de VIP ruimte), met de toegevoegde middenkolommen, versterken deze belemmering.

Figuur 9.1: Beperking van de zichtlijnen van het toekomstig publiek ten gevolge van de aanwezige kolommen.
9.1.3 Constructieve aspecten
- De verdiepingssloot wordt vervaardigd uit een vakwerk- en kolom met een uitwendige hoogte van 1,26 m, waarbij in het midden van de overspanning in de hallen een nieuwe kolom staat. Deze vakwerk- en kolom, met daarop een staalplattebetonvloer, staan h.o.h. 5,00 m.
- De huidige spanventen van de hallen en raamwerken van de magazijnen voldoen aan de huidige NEN-normen. De bovenrand van hal 2 dient echter versterkt te worden.
- De bestaande fundering heeft een reservevloer, die gebruikt wordt voor het afvragen van een gedeelte van de verticale belasting van de tussenverdiepings.
- De vleugels, die aan de entreezijde wordt aangebracht, wordt opgebouwd uit willekeurige gevelpanelen, die uit verschillende materialen zijn vervaardigd. Deze panelen worden via aluminium stijl- en regelwerk aan de bestaande constructie bevestigd.

9.1.4 Bouwfysische aspecten
- Het complex wordt ten behoeve van de interne geluidssproductie geïsoleerd door in de hallen voorzetwand, bestaande uit gipskartonplaten met isolatie toe te passen en de daken van de hallen te verzwarnen met een verlaagd plafond, die aan de schuine daken via een losgekoppelde regelwerk is bevestigd. Aanbevolen wordt de discoteek als doos-in-doos constructie uit te voeren. Een doos-in-doos constructie is een betonnen vloer op trillingsdemper met metalenstudwanden en plafond, die uit meerdere gipskartonplaten en profielen bestaan.
- Rekeninghoudend met de brandveiligheid dient het complex opgesplitst te worden in twee brandcompartimenten. Deze twee brandcompartimenten dienen vervolgens verdeeld te worden in rookcompartimenten met een sprinklerinstallatie. De drie hoofdvluchtpijpen (as A, H en O) zorgen, in combinatie met installatietechnische voorzieningen en nooddeuren, voor veilige vluchtroutes in geval van brand.
- Voor de luchtverversing, warmtebehoefte en koelbehoefte dienen in de zaal, lounge en VIP ruimte luchtvrederingsslangen met stralingspanelen gerealiseerd te worden. Aanbevolen wordt de discoteek te koelen, verwarmen en mechanisch te ventileren via kanalen met roosters. Het café, restaurant, sushi-cocktailbar, grillrestaurant en congressruimten zijn voorzien van een mechanische ventilatie door middel van plafondroosters, waar luchtverversing en koeling plaatsvindt. Verwarming wordt verzorgd door een centrale verwarming met radiatoren.
- De mobiele kombi-units (voor kantoren, sanitaire voorzieningen en dergelijke) hebben aparte voorzieningen voor luchtverversing/koeling (mechanische ventilatie) en verwarming (radiatoren).

Economische aspecten
- Een evenementencomplex in het Konings Staal gebouw is economisch haalbaar, indien alleen de bestaande hallen en magazijnen worden gebruikt met de basisfuncties of als bij de bestaande hallen en magazijnen een tussenverdieping en nieuwbouw met alle beoogde functies worden toegevoegd.
- Het evenementencomplex met alle beoogde functies heeft een netto contant waarde van circa 22,8 miljoen euro en een rendement van 23,1%.
- De vleugels kan gedemonteerd worden en meegenomen worden naar het definitieve gebouw. Dit geldt ook voor de stalen nooddeuren en de kombi-units, die gebruikt zijn voor de keuken, sanitaire voorzieningen, kantoren en backstageruimtes. De stelconplaten, die gebruikt zijn voor de buitenruimte, kunnen ook herbruikt worden. Dit geldt ook in minder mate voor staalonderdelen van de vakwerk- en kolom.
- De huidige materialen (lijgers en kolommen) van het te slopen kantongedeelte en winkel/magazijn kunnen herbruikt worden in de 1e fase.

9.2 Aanbevelingen
De volgende aanbevelingen voor nader onderzoek worden gegeven.

9.2.1 Algemeen
- De mobiele kombi-units dienen nader onderzocht te worden op de criteria indeelbaarheid en kosten. Tevens dienen de technische specificaties van de te herbergen functies uitgewerkt worden en beoordeeld te worden op functionaliteit.

9.2.2 Functionele aspecten
- Zodra de hallen leeg zijn, dient beoordeeld te worden in welke mate de zichtlijnen van de toekomstige bezoekers worden beperkt door de aanwezige middenkolommen. Daarbij dient
afgewogen te worden of de kosten van het weghalen van kolommen op wegen tegen de verbetering van de zichtlijnen.

- Aanbevolen wordt te onderzoeken of de VIP ruimte wel een toegevoegde waarde heeft voor het complex, of dat deze in een andere vorm wordt gerealiseerd, zodat de belemmering van de zichtlijnen geminimaliseerd wordt. Doordat de opbrengsten van de VIP-ruimte gedeeltelijk niet te definiëren zijn (deze worden als totaalconcept meegerekend en bestaan vooral door de synergie met andere functies, zoals de zaal), is het niet mogelijk een nauwkeurig onderzoek te doen naar haalbaarheid van de VIP ruimte op zich.

9.2.3 Constructieve aspecten
- Voor de constructieve berekeningen met bestaande constructies dienen de verbindingen en profielen in situ gecontroleerd te worden.
- Gekeken dient te worden of het mogelijk is de nieuwe bouwwerken te funderen op staal (met grondverbetering).
- De geluidsisolatie, welke onder het dak van de hallen wordt aangebracht, zorgt voor een extra belasting op de bestaande spanten. Onderzocht dient te worden of deze extra belasting zonder extra maatregelen door de spanten opgenomen kan worden.

9.2.4 Bouwfysische aspecten
- Nader onderzoek dient verricht te worden naar de toekomstige geluidbelasting in en rondom het evenementencomplex. Door geluidsbronnen op de gevel en het dak als puntbronnen te schematiseren kan met behulp van het programma GEONOISE op elke afstand van het complex de geluidbelasting worden berekend. Zodoende kan worden aangetoond dat de gekozen geluidsisolatie voldoet aan de Wet op Geluidshinder.
- Ten behoeve van de brandveiligheid wordt aanbevolen te onderzoeken of het braakliggende land, direct grenzend aan de zuidkant van het complex (voor een deel) te huren/ kopen voor nooduitgangen en parkeergelegenheid.

9.2.5 Economische aspecten
- De kosten en opbrengsten van het definitieve voorlopig ontwerp dienen nader te worden uitgewerkt. Aanbevolen wordt een elementenbegroting te maken.
Literatuurlijst

Geraadpleegde bronnen
- NEN 6720: Belastingen vervormingen.
- NEN 6770: Staalconstructies.
- Bouwbesluit

Geraadpleegde webpagina's
- www.staalbouw.nl: bouwen met staal.
- www.bbn.nu: brandveilig bouwen.
- www.ncp.nl: nationaal centrum van preventie.
- www.dynamomarchitecten.nl: architectenbureau Docklandshal.
- www.thefactory.nl: herbestemde hal; the Factory.
- www.lichtfabriek.nl: herbestemd complex 'de Lichtfabriek'.
- www.westergasfabriek.nl: herbestemd complex 'Westergasfabriek'.
- www.panama.nl: herbestemd gebouw 'Panama'.
- www.horeca.org: koninklijke horeca Nederland.
- www.roosendaal.nl: gemeente Roosendaal.
- www.mobiusconsult.nl: ingenieursbureau gespecificeerd op o.a. akoestiek en brandveiligheid.
- www.isovert.nl: geluifisooleerde wanden.
- www.priclad.nl: vliesgevelleverancier.
- www.sev.nl/ifd: industrieel flexibel bouwen portaal.
- www.dutchengineering.nl: staal beton vloersystemen.
- www.demeeuw.com: leverancier kombi-units.
- www.vrom.nl: wetten en regels.