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Promises of Deep Kernel Learning
for Control Synthesis

Robert Reed , Member, IEEE , Luca Laurenti , Member, IEEE , and Morteza Lahijanian , Member, IEEE

Abstract—Deep Kernel Learning (DKL) combines the
representational power of neural networks with the uncer-
tainty quantification of Gaussian Processes. Hence, it is
potentially a promising tool to learn and control complex
dynamical systems. In this letter, we develop a scalable
abstraction-based framework that enables the use of DKL
for control synthesis of stochastic dynamical systems
against complex specifications. Specifically, we consider
temporal logic specifications and create an end-to-end
framework that uses DKL to learn an unknown system
from data and formally abstracts the DKL model into an
interval Markov decision process to perform control synthe-
sis with correctness guarantees. Furthermore, we identify
a deep architecture that enables accurate learning and
efficient abstraction computation. The effectiveness of our
approach is illustrated on various benchmarks, including
a 5-D nonlinear stochastic system, showing how control
synthesis with DKL can substantially outperform state-of-
the-art competitive methods.

Index Terms—Machine learning, robust control,
stochastic systems.

I. INTRODUCTION

DATA-DRIVEN control synthesis is emerging as a central
research topic in recent years [1], [2], [3], [4], [5].

This is due to three main reasons: (i) increased complexity
of modern systems, (ii) availability of data in large scale,
and (iii) increased capability of machine learning (ML) tech-
niques. There are however several challenges in data-driven
approaches for control systems, especially in safety-critical
applications where robustness guarantees are vital. Such guar-
antees are conditioned on quantification of the learning error
and its propagation through the control synthesis procedure.
While there exist ML techniques that supply information about
the error [6], they are often empirical and lack necessary
mathematical rigor. Those methods that do provide formal
error analysis [7] suffer from scalability [8], [9]. This letter
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aims to provide a scalable data-driven synthesis framework
with robustness guarantees.

Formal synthesis is a rigorous approach to providing
guarantees on the performance of control systems against
complex properties [10], [11]. In that approach, specifications
are expressed in a formal language such as linear tempo-
ral logic (LTL) over finite behaviors (LTLf) [12] and the
system progression is abstracted into a finite model called an
abstraction. Then, automated model-checking-like algorithms
are used on the abstraction to synthesize a controller. To
ensure correctness, the abstraction must have a simulation
relation with the system, which is often achieved by includ-
ing all the uncertainties, e.g., errors due to discretization,
stochasticity, and learning, in the abstraction. A popular
model that allows that is Interval Markov Decision Process
(IMDP) [13], which is shown to also enable scalability to
high dimensional systems [14]. Constructing a scalable IMDP
abstraction, however, requires tight uncertainty bounds, which
is difficult to achieve in a data-driven setting.

A widely-used method for accurate representation of the
latent control system from data is Gaussian Process (GP)
regression [7], [8], [15]. Its power lies in rigorous uncer-
tainty quantification, which comes at the expense of cubic
computational complexity in the size of data. That makes
GPs ideal for formal control synthesis, but they suffer in
high dimensional spaces, where a massive amount of data
is required to obtain small uncertainty. For high-dimensional
systems, neural networks (NNs) are successfully used to learn
the dynamics, called NN dynamic models (NNDMs) [16], with
control synthesis methods [17], [18]. However, quantification
of the learning error of NNDMs in a formal manner remains
an open problem in spite of recent attempts to use confidence-
based approaches [6], which cannot be propagated through the
synthesis procedure.

In this letter, we bridge the gap by introducing a scal-
able synthesis framework that employs deep kernel learning
(DKL) [19], [20], which uses NNs as informed priors for
GPs while maintaining an analytical posterior, to efficiently
construct (accurate) IMDP abstractions. We leverage recent
techniques for linear relaxations of NNs [21] and provide
bounds on the mean and variance of the GP. Critically, we
show that the optimization problems that bound the prob-
abilities in the IMDP construction reduce to evaluations of
a finite set of points on an analytical function, resulting in
computational efficiency. Then, we employ existing tools [11]
to synthesize a strategy on the IMDP that maximizes the
probability of satisfying a given LTLf specification and is
robust against the learning error. We prove that this strategy
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can be mapped to the underlying latent system with correctness
guarantees. We illustrate the efficacy of our framework on
various benchmarks, which show control synthesis with DKL
substantially outperforms state-of-the-art methods. We also
identify a DKL architecture that results in high accuracy and
efficient abstraction construction, promoting further scalability.

In summary, the contributions are: (i) a scalable data-driven
framework for control synthesis with complex specifications
and hard guarantees, (ii) an efficient finite abstraction tech-
nique for DKL models with correctness guarantees, (iii) a
DKL architecture design for fast and accurate abstraction, and
(iv) illustration of the efficacy and scalability of the framework
via benchmarking against state-of-the-art methods on a set of
rich case studies with complex nonlinear stochastic systems
up to 5 dimensions.

II. PROBLEM FORMULATION

Consider the following discrete-time stochastic system:

x(k + 1) = f (x(k), u(k)) + v(k), (1)

where x(k) ∈ R
n, u(k) ∈ U, U = {a1, . . . , a|U|} is a finite set

of actions or control laws, v(k) ∈ R
n is a Gaussian random

variable v(k) ∼ N (0,V) with zero mean and covariance V ∈
R

n×n, and f : Rn × U → R
n is an unknown function. Without

loss of generality, we assume covariance V is diagonal.1

Intuitively, System (1) represents a switched stochastic systems
with additive noise and unknown dynamics.

We define a finite trajectory of length N ∈ N of System (1)
as ωN

x = x0
u0−→ x1

u1−→ · · · uN−1−−−→ xN , where each xk ∈ R
n is

a sample from System (1). We denote the i-th element of ωN
x

by ωN
x (i) and the set of all finite trajectories by X∗. A control

strategy π : X∗ → U is a function that chooses the next action
u ∈ U given a finite trajectory. Under π and initial condition
x0 ∈ R

n, System (1) defines a unique probability measure Px0

over X∗ [22].
We impose a standard smoothness (well-behaved) assump-

tion on f . Namely, we assume f is a sample from a Gaussian
process (GP)2 (see Section III for details). Since f is unknown,
we aim to reason about System (1) solely from a set of input-
output data. Specifically, we assume D = {(xi, ui, x+

i )}m
i=0

is a set of identically and independently distributed (i.i.d.)
data, where x+

i is a sample of a one time-step evolution of
System (1) from xi ∈ R

n under action ui ∈ U.
We are interested in the temporal properties of x in a

compact set X ⊂ R
n w.r.t. a set of regions R = {r1, . . . , rl},

where ri ⊆ X. To this end, we define a set of atomic
proposition � = {p1, . . . , pl}, where pi is true iff x ∈ ri. Let
L : X → 2� be a labeling function that assigns to each state the
set of atomic propositions that are true at that state. Then, the
observation trace of trajectory ωN

x is ρ = ρ0ρ1 . . . ρN , where
ρi = L(ωN

x (i)) for all 0 ≤ i ≤ N. To express the temporal
properties of System (1), we use LTLf [12].

Definition 1 (LTLf): Given a set of atomic propositions �,
an LTLf formula is defined recursively as

1There always exists a linear transformation, namely the Mahalanobis
transformation, that enables diagonalization of the covariance matrix.

2Note that the restrictions that this assumption poses on f depends on the
choice of the covariance (kernel) function for the GP, and there exist universal
kernels, such as the squared exponential, that allow for a GP to approximate
any continuous f arbitrarily well.

ϕ = p | ¬ϕ | ϕ ∧ ϕ | ©ϕ | ϕUϕ | Fϕ | Gϕ

where p ∈ �, and ©, U , F , and G are the ‘next’, ‘until’,
‘eventually’, and ‘globally’ temporal operators, respectively.

The semantics of LTLf are defined over finite traces [12].
We say trajectory ωx ∈ X∗ satisfies formula ϕ, denoted by
ωx |= ϕ, if a prefix of its observation trace satisfies ϕ.

Problem 1 (Control Synthesis): Given a dataset D =
{(xi, ui, x+

i )}m
i=1 of i.i.d. samples of System (1), compact set X,

and LTLf formula ϕ, find control strategy π∗ that maximizes
the probability of satisfying ϕ without existing X, i.e., for every
x0 ∈ X,

π∗ = arg max
π

Px0(ωx |= ϕ | D, π) (2)

There are three main challenges in Problem 1: (i) the
dynamics of System (1) are unknown, can be nonlinear, and
its evolution is stochastic, (ii) guarantees are required for
the underlying system to satisfy complex specifications, and
(iii) scalability to higher dimensions is necessary, which is an
additional challenge that we impose. In our approach, we show
that challenge (i) can be successfully addressed by utilizing
the power of DKL to approximate f . For challenges (ii) and
(iii), we draw inspirations from formal methods literature and
construct a discrete abstraction of the dynamics as an IMDP.
With an LTLf specification, we can then use off-the-shelf tools
for synthesizing provably correct strategies.

III. MODELLING DYNAMICAL SYSTEMS USING

DEEP KERNEL LEARNING

To describe how we learn f in System (1), we first need to
introduce GPs. Then, we present DKL in the GP framework.

Gaussian Process Models: A GP is a collection of random
variables, such that any finite collection of those random
variables are jointly Gaussian [15]. Because of the favorable
analytical properties of Gaussian distributions, GPs are widely
employed to learn unknown functions, such as f in System (1),
from observations of the system [7], [23]. In particular, given a
prior GP, GP(μ, kγ ), where μ : Rn → R is the mean function
and kγ : Rn × R

n → R is a positive semi-definite covariance
function (or kernel) with hyper-parameters γ , the assumption
is that for each a ∈ U and for each j ∈ {1, . . . , n}, f (j)(·, a), the
j-th component of f (·, a), is a sample from GP(μ, kγ ). Then,
given dataset D = {(xi, ui, x+

i )}m
i=1 of samples of System (1),

which we partition in |U| subsets Da = {(x, u, x+) ∈ D |
u = a}, we obtain that, at every point x∗ ∈ R

n, the posterior
predictive distribution of f (j)(x∗, a) given D is still Gaussian
with mean and variance:

E

(
f (j)(x∗, a) | D

)
= μ

(
x∗) + β(Y − μ(X )), (3)

cov
(

f (j)(x∗, a) | D
)

= Kx∗,x∗ − βKX ,x∗ , (4)

where X = (x1, . . . , x|Da|), Y = (x(j)+
1 , . . . , x(j)+

|Da|), β =
Kx∗,X (KX ,X + σ 2I)−1, and KX ,X ∈ R

|Da|×|Da| is a matrix
whose i-th row and l-th column is kγ (xi, xl).

A widely-used kernel function is the squared exponential
kγse(x, x′) = σs exp(−‖x − x′‖ / 2l2), with the set of hyper-
parameters γse = {σs, l}, where σs and l are the output scale
and length scale, respectively. These hyper-parameters are
generally learned by minimizing the negative marginal log-
likelihood of the data [15].

Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2024 at 13:17:31 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 1. Results on learning a 2D vector field with (left) DKL and (right)
GP. Top: Vector Field. Bottom: scaled correlation function for the first
dimension at one point. 1000 samples were used to pre-train the NN.
Both methods use 100 samples for predictions.

Deep Kernel Learning: The squared exponential kernel,
like most commonly-employed kernels for GP regression [15],
only depends on few hyper-parameters. This limits the flexi-
bility of GPs in learning complex representations of data [24],
often resulting in predictions with large uncertainty (variance).
One can reduce this uncertainty with more data, but that leads
to computational intractability since the time complexity of
GP regression is O(|D|3) [15]. DKL aims to address this issue
by considering a kernel that is composed with a NN. The
underlying idea is that a fully connected NN gw

a : Rn → R
s,

parameterized by weights and biases vector w over action a,
is employed to map the input into an s-dimensional feature
space, where GP regression is performed. Specifically, starting
with a base kernel kγ (which we always assume kγ = kγse),
we define a deep kernel as

kdkl
(
x, x′) = kγ

(
gw

a (x), gw
a (x′)

)
. (5)

Then, with kdkl, predictions still use GP’s mean and covariance
equations in (3)–(4), but the number of hyper-parameters
(i.e., γ and w) are drastically increased. This significantly
improves the flexibility and representational power of GPs.

The learning of the parameters in γ and w can be achieved
by either minimizing the negative marginal log-likelihood or
considering a fully Bayesian approach [20]. Furthermore, the
NN portion of DKL models can be pre-trained and its param-
eters fixed. This minimizes the number of parameters being
optimized through the marginal log-likelihood and mitigates
the possibility of DKL over-fitting the data [20].

The combination of flexibility (NNs) and principled uncer-
tainty quantification (GPs) in DKL is particularly important
for problems that require learning complex dynamics with
robustness analysis. The former often requires large amounts
of data and the latter reasoning about uncertainty. The power
of DKL is illustrated in Figure 1, where we consider learning
a 2D vector field f (x) = (sin (x1 + x2), cos (x1 − x2))

T with
noise distribution N (0, 0.01) by using both a standard GP and
DKL. We observe that the kdkl learns the oscillatory behavior
of the data, while the GP with kγse only correlates nearby
points. As a consequence, with the same data, the predictions
of DKL are more accurate and less uncertain compared to the
ones of the GP. Particularly, in our synthesis framework, which

relies on abstraction-based techniques, the lower uncertainty
associated with DKL can lead to less conservative abstractions
and probabilistic guarantees.

IV. IMDP ABSTRACTION

DKL allows one to predict the one-step evolution of
System (1) from a given x ∈ X and u ∈ U . To analyze
LTLf properties of System (1), however, we need to reason
over finite trajectories (with arbitrary lengths) of System (1)
and consequently perform multi-step predictions of arbitrary
length. Unfortunately, such analysis is intractable for standard
GPs even for a fixed finite horizon [25]. To address this
problem we rely on finite abstractions, which in turn allows
one to use existing LTLf control synthesis tools [11], [26].
Specifically, we use an IMDP [13] as the abstraction model.

Definition 2 (IMDP): An interval Markov Decision Process
(IMDP) is a tuple I = (Q, A, P̂, P̌,�, L), where Q is a finite
set of states, A is a finite set of actions, P̌, P̂ : Q × A × Q →
[0, 1] are functions that define the lower and upper bounds,
respectively, of the transition probability from state q ∈ Q
to state q′ ∈ Q under action a ∈ A, � is a set of atomic
propositions, and L : Q → 2� is a labeling function that
assigns to each state q ∈ Q a subset of �.

It holds for all q, q′ ∈ Q and a ∈ A(q) that P̌(q, a, q′) ≤
P̂(q, a, q′) and

∑
q′∈Q P̌(q, a, q′) ≤ 1 ≤ ∑

q′∈Q P̂(q, a, q′). A
finite path of I, denoted by ωI ∈ Q∗, is a finite sequence of
states in Q. A strategy of I is a function πI : Q∗ → A that
maps ωI to an action in A. We describe how to efficiently
build I for System (1) from its DKL model below.

States and Actions: First, we partition X into a set of convex
regions Q̄ = {q1, . . . , q|Q̄|}, e.g., by using a grid. We consider
an additional region qu = R

n \ X and call Q = Q̄ ∪ {qu} the
set of IMDP states. We assume that the discretization Q̄ of X
respects the regions of interest in R, i.e., ∀r ∈ R, ∃Qr ⊆ Q̄
such that ∪q∈Qr q = r. With an abuse of notation, we use
q to denote both a state in the IMDP and its corresponding
region, i.e., q ∈ Q and q ⊂ R

n. Note that for every x, x′ ∈ q,
L(x) = L(x′); accordingly, we set the IMDP labeling function
as L(q) = L(x). The set of IMDP actions A is given by the
set of actions U and all actions are allowed to be available at
each state q ∈ Q.

Probability Bounds: The key step to building an IMDP
abstraction of System (1) is the computation of the transition
probability functions P̂ and P̌. Given q ⊂ R

n, a ∈ U, and
x ∈ X, we define the transition kernel Ta(q | x) as:

Ta(q | x) =
∫

q
N (v | E(f (x, a) | D),

cov(f (x, a) | D) + V)dv (6)

That is, Ta(q | x) is the probability that, given the data D,
our Gaussian prior assumption on f , and an initial state x,
System (1) transitions to q under a in one time step. Note
that Ta(q | x) is defined by marginalizing the DKL predictive
distribution for f over the dynamics of System (1) and the
resulting kernel is still Gaussian due to the closure of Gaussian
random variables under linear combinations [15]. As we show
in Theorem 2 in Section V, this marginalization guarantees
that our abstraction accounts for the uncertainty coming from
the DKL predictions.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2024 at 13:17:31 UTC from IEEE Xplore.  Restrictions apply. 
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Consequently, for q, q′ ∈ Q̄, it follows that

P̌
(
q, a, q′) = min

x∈q
Ta

(
q′ | x

)
, (7)

P̂
(
q, a, q′) = max

x∈q
Ta

(
q′ | x

)
, (8)

and for the unsafe region qu, it holds that P̌(q, a, qu) = 1 −
maxx∈q Ta(X | x) and P̂(q, a, qu) = 1 − minx∈q Ta(X | x).
Lastly, since reaching qu violates the requirement of not
leaving X, we set qu to be a sink state, i.e., ∀a ∈ A,
P̌(qu, a, qu) = P̂(qu, a, qu) = 1.

In the remainder of this section, we show how to efficiently
compute the bounds in (7)-(8). We note that existing results
for GPs [27, Propositions 4 and 7] allow for output bounding
of standard kernel functions (e.g., the squared exponential)
given a compact input set. We abstract the NNs in DKL via
local linear relaxations, which can be built in constant time by
utilizing algorithms in [21], to provide a compact input set to
the base kernel for bounding. That is, for NN gw

a and region
q ⊂ R

n, [21] finds matrices Ǎq, Âq ∈ R
s×n and b̌q, b̂q ∈ R

s

such that ∀x ∈ q, Ǎqx + b̌q ≤ gw
a (x) ≤ Âqx + b̂q.

We use such relaxations to propagate q through the NN prior
and produce compact set Zq,a that contains the output of gw

a (x)
for every x ∈ q. Then, Zq,a is propagated through the base
kernel using results from [27] (i.e., four convex optimization
programs), obtaining the ranges of posterior mean and variance
for all x ∈ q. Then, we obtain mean bounds Mq,a, Mq,a ∈ R

n

and variance bounds 
q,a, 
q,a ∈ R
n
≥0 such that, for every

x ∈ q and every j ∈ {1, . . . , n},
E

(
f (j)(x, a) | Da

)
∈

[
M(j)

q,a, M
(j)
q,a

]
, (9)

cov
(

f (j)(x, a) | Da

)
∈

[

(j)

q,a, 

(j)
q,a

]
. (10)

Theorem 1 (Efficient Computation for Tran. Prob. Bounds):
For μ ∈ R and σ ∈ R≥0 and closed interval θ = [θ, θ ] ⊂
R, define function h(θ, μ, σ ) = 1

2

(
erf

(
θ−μ√

2σ

)
− erf

(
θ−μ√

2σ

))
.

Further, given region q ∈ Q̄, let [Mq,a, Mq,a] and [
q,a, 
q,a]
be the poster mean and variance of DKL as reported
in (9)–(10). Additionally, for region q′ ∈ Q̄, denote its centroid
by cq′ and define points

z = arg min
z∈

[
Mq,a,Mq,a

] ‖z − cq′ ‖, z = arg max
z∈

[
Mq,a,Mq,a

] ‖z − cq′ ‖.

Then, denoting the closed interval obtained by projecting
q′ ⊂ R

n onto the j-th dimension by q′(j) ⊂ R, it holds that

min
x∈q

Ta
(
q′ | x

) ≥
n∏

j=1

min
τ∈{
(j)

q,a,

(j)
q,a}

h
(

q′(j), z(j), τ + V(j,j)
)
,

max
x∈q

Ta
(
q′ | x

) ≤
n∏

j=1

max
τ∈{
(j)

q,a,

(j)
q,a}

h
(

q′(j), z(j), τ + V(j,j)
)
,

where V(j,j) is the j, j element of the noise covariance V .
Proof: In the proof, we consider the min case; the max

case follows similarly. Note that h(θ, μ, σ ) is the integral
of N (μ, σ ) over θ . Then, under the assumption of diagonal
cov(f (j)(x, a) | Da) and V , it holds that for every x ∈ q,
Ta(q′ | x) = ∏n

j=1 h(q′(j),E(f (j)(x, a) |D), cov(f (j)(x, a) |D) +
V(j,j)) ≥ ∏n

j=1 min
μ∈[M(j)

q,a,M
(j)
q,a], τ∈[
(j)

q,a,

(j)
q,a]

h(q′(j), μ, τ +

V(j,j)). Consequently, what is left to show is how to place mean
μ and variance τ of a uni-dimensional Gaussian to minimize
its integral over the respective dimension of q′. Each of these
is minimized by first maximizing the distance of z(j) from c(j)

q′ ,
hence z can be chosen according to arg maxz∈[Mq,a,Mq,a] ‖z −
cq′ ‖. Then, there are two cases: z(j) ∈ q′(j) and z(j) �∈ q′(j). In
the first case, T is minimized if we minimize the probability
mass in q′, which results in τ = 


(j)
q,a. In the second case,

with a similar reasoning we obtain τ = 

(j)
q,a or τ = 


(j)
q,a.

Theorem 1 shows that we can compute transition bounds
for (7)–(8) by simply evaluating an error function at 4n points,
thus guaranteeing efficient abstraction construction.

V. CONTROL SYNTHESIS AND REFINEMENT

Once we obtain IMDP abstraction I, our goal is to synthe-
size a strategy πI that maximizes the probability of satisfying
specification ϕ on I and then map it back to System (1) to
obtain control strategy π .

Let D(Q) be the set of all probability distributions over Q.
We define an adversary νI : Q∗ × A → D(Q) to be a
function that maps a finite path ωI ∈ Q∗ and an action
a ∈ A to a transition probability distribution such that, ∀q′ ∈
Q, P̌(last(ωI), a, q′) ≤ νI(ωI , a)(q′) ≤ P̂(last(ωI), a, q′),
where last(ωI) is the last state in ωI . Given πI and νI , a
probability measure Pr over paths in Q∗ is induced [11]. Our
objective can be translated as finding an optimal π∗

I that is
robust to all uncertainties induced by abstraction, i.e., π∗

I =
arg maxπI minνI Pr(ωI |= ϕ | πI , νI , ωI(0) = q). Then,
π∗
I can be computed using off-the-shelf tools with a time

complexity polynomial in Q [11].
We can then define π according to π∗

I by using a mapping
between trajectories of System (1) and paths of I. Let
M : X → Q̄ be a mapping such that M(x) = q for all x ∈ q.
With an abuse of notation, for a finite trajectory ωx ∈ X∗ with
length N, we define M(ωx) = M(ωx(0)) . . .M(ωx(N)) ∈ Q∗.
Then, the control strategy of System (1) is given by: π(ωx) =
π∗
I(M(ωx)). Furthermore, for π∗

I , we also obtain lower bound
probabilities of satisfaction of ϕ from every q ∈ Q̄ as p̌(q) =
minνI Pr(ωI |= ϕ | π∗

I , νI , ωI(0) = q), the upper bound p̂(q)

is then found on maxνI . The following theorem shows that
these bounds also hold for System (1).

Theorem 2 (Correctness): For q ∈ Q, let p̌(q) and p̂(q) the
lower- and upper-bound probabilities of satisfying ϕ from q.
Then, it holds that

Px0(ωx |= ϕ|D, π, x0 ∈ q) ∈ [
p̌(q), p̂(q)

]
.

Proof: x(j)(k + 1) = f (j)(x, a) + v(j)(k) is a Gaussian
process with zero mean and covariance kdkl(x, x) + V(j,j).
Consequently, for x1, . . . , xl ∈ Da the joint distribution of
f (x1, a) +v(k), . . . , f (xl, a) +v(k) is still Gaussian. Then the
transition kernel Ta(q | x) in (6) defines the one step dynamics
of System (1). Then, for any strategy π , the upper and lower
bound probabilities returned by the IMDP from initial region
q as built in Section IV contains Px0(ωx |= ϕ | D, π, x0 ∈ q)

as follows from [8, Th. 2].
Refinement: The uncertainty induced by the discretization

of X may result in undesirable results where much of the space
has a large gap between p̌ and p̂. We consider a refinement
strategy similar to that in [17], [28] to efficiently reduce this
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TABLE I
CONSIDERED SYSTEMS WITH DIMENSION DIM., ACTION SET U ,

DATASET PER ACTION Da , DATASET USED FOR POSTERIOR
PREDICTIONS DPRED

a ⊂ Da , NUMBER OF LAYERS #L AND #N/L
NEURONS PER LAYER OF THE NNS. DATASETS WERE GENERATED BY

UNIFORMLY SAMPLING STATES IN X

conservatism. In particular, to decide on which states to refine,
we define a scoring function η : Q̄ → R≥0 as η(q) = (p̂(q) −
p̌(q))

∑
a∈U

∑
q′∈q(P̂(q, a, q′) − P̌(q, a, q′)). η gives higher

score to states that have the most uncertainty associated with
satisfying ϕ and states with conservative outgoing transition
probabilities. We refine the nref states with the highest score
and for each state we only split in half the dimension that
minimizes the volume of Zq,a (i.e., conservatism induced by
the NN linear relaxation).

VI. CASE STUDIES

We evaluate our DKL control synthesis framework on var-
ious nonlinear systems and cases studies. First, we assess the
learning performance of DKL under different NN architectures
against other GP-based methods. Then, we show the efficacy
of our control synthesis framework in various environments
and specifications. Experiments were run on an Intel Core i7-
12700K CPU at 3.60GHz with 32 GB of RAM limited to 10
threads. Our tool is available on GitHub [29].

Setup and Training: We consider three nonlinear systems
from [3], [17] as shown in Table I. To learn their dynamics, we
use four learning models: GP: the squared exponential kernel,
NN-GP: joint NN and GP model where the NN is trained as
a predictor of the dynamics on Da and a GP is regressed to
predict the error of the NN from truth, DKLF: DKL with a NN
that is trained on Da and the full output of the NN is provided
as an input to the base kernel, DKLS: similar to DKLF but only
the corresponding output dimension of the NN is provided as
an input to the base kernel.

All NNs use the ReLU activation function (ReLU(t) =
max(0, t)) and all base kernels use Dpred

a for predictions. We
train the NN priors via stochastic mini-batching as a scaled
predictor of the dynamics (i.e., s = n) and fix the parameters
before learning the kernel parameters via maximum log like-
lihood. Details on the models are in Table I. The number of
parameters in the NNs are kept small to produce tighter linear
relaxations.

Accuracy of Deep Kernel Learning: We first demonstrate
the advantages of DKL by comparing the predictive accuracy
of the learning models. We define the predictive mean error
and uncertainty of each model at a point x under action a
as errμ(x, a) = ‖E(f (x, a) | D) − f (x, a)‖2 and errσ (x, a) =
trace(cov(f (x, a) | D))

1
2 , respectively. Table II shows the

maximum values over 100,000 test points for a fixed action.
In all cases, GP has the worse performance in mean error

(errμ) and compensates with large uncertainty (errσ ). For low
dimensional systems, NN-GP performs well in mean error but
retains a large uncertainty due to poor correlation between
data points in the GP. In higher dimensions DKLS has the best
performance. This is mainly due to the NN used in the prior for

Fig. 2. 3D system. left: DKLS, right: GP, top: initial abstraction, bottom:
2 refinements. Green: Qyes , yellow: Q?, red: Qno .

TABLE II
MAXIMUM PREDICTIVE MEAN (ERRμ) AND VARIANCE ERRORS (ERRσ )
OVER 100,000 TEST POINTS FOR A FIXED ACTION OF EACH SYSTEM

TABLE III
3D SYSTEM RESULTS. PERCENT VOLUME OF SPACE FOR Qyes/no AND

TIME TAKEN FOR NN RELAXATION (NN R.), KERNEL BOUNDING
(KERNEL B.), TRANSITION PROBABILITY BOUNDING (PROB.), AND

SYNTHESIS (SYN.) FOR 0 & 2 REFINEMENTS (#R). ALL TRAN. PROBS.
WERE RECALCULATED FOR #R=2

the kernel, which improves both mean and variance accuracy,
unlike the NN-GP. We note that an ill-formed prior may result
in uncertainty being underestimated hence, care must be taken
when training the NN prior and stochastic mini-batching is
shown to be effective [20].

Synthesis Results: Here, we illustrate the efficacy of our
control synthesis framework. Our metrics are the computation
time and percent volume of the space from which the system
under the synthesized control strategy is guaranteed to satisfy
the specification with probability p̌ ≥0.95 called Qyes, p̂ <0.95
called Qno, and the remaining states called Q?. All results are
validated using 1000 MC simulations.

1) Refinement and Computation Time: We consider the
3D Dubin’s car system, with the state space representing
position and orientation, and synthesize a strategy for a static
overtaking scenario as shown in Figure 2. We label the
stationary car as b and the goal region as a. The LTLf
specification ϕ1 = G(¬b) ∧ F(a) then defines the task.
The control synthesis results can be seen in Table III and a
visualization is shown in Figure 2. Simulated trajectories under
the strategy are shown in black lines, starting from the black
dot and ending at the purple star. Synthesis for the NN-GP
model timed out after 5000 min.

We see that DKLS has the best performance, leaving only
13.27% of the state space volume as undetermined (Q?). This
is expected as the DKLS model has the highest accuracy as
shown in Table II and follows the prediction that the lower
uncertainty would result in a less conservative abstraction.
DKLF provides guarantees on a lower volume of space than
GP but achieves similar results in one tenth the time with a
larger volume of Qyes. The computational bottleneck for GP
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Fig. 3. Lower bound satisfaction probabilities p̌(q) for Experiments 2
(left: 2D system) and 3 (right: 5D system).

abstractions comes from bounding the kernel outputs, and the
DKL models vastly outperform the GP here due to the NN
producing a more informative input to the base kernel.

2) Control Synthesis With Complex Specifications: We
perform control synthesis on the 2D system given the same
labeling considered in [3], [17] and complex LTLf specifica-
tion ϕ2 = G(¬b) ∧ F(a) ∧ F(c). In this low dimensionality,
there is little difference between the synthesis results for the
4 learning models. We show results for the DKLF. After
two refinements, which take 12.57 minutes, a control strategy
where 73.48% of the space is in Qyes and 0.07% in Q? is
synthesized; results are shown in Figure 3.

3) Scalability to Higher Dimensions: We synthesize a con-
trol strategy for the 5D system on the environment described
in [17] and specification ϕ1 = G(¬b) ∧ F(a). Here we only
show results for the DKLS, as the GP model cannot scale.
After two refinements, which take 344 minutes of which only
6 minutes are used to bound the kernel, we synthesize a control
strategy where 44.36% is Qyes and 39.46% is Q? producing
comparable results to [17], which assumes given dynamics,
but ours is from data. The final abstraction has roughly one
tenth the states a uniform discretization produces; results are
shown in Figure 3.

VII. CONCLUSION

We introduced an abstraction framework for unknown,
stochastic dynamics via DKL which can be used to synthesize
strategies with guarantees on the behavior of the system.
This letter shows that the NN prior enables more accurate
predictions, easier computation of posterior bounds, and faster
synthesis times than standard kernels; enabling scalable data-
driven synthesis. DKL models can effectively use large data
sets by optimizing the NN prior over all the data and using a
subset for posterior predictions. This is promising for systems
with millions of data points available, as this allows for a
computationally tractable form of uncertainty quantification.
Our method relies on discrete actions, but recent works have
provided methods for IMDP synthesis over continuous action
spaces [30]. We plan to expand our method to this domain in
future work.
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