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Abstract

Localization has an import role in wireless sensor networks, as it adds context to
gathered data. The goal of this thesis is to create an application that determines the
location of a mobile sensor node in an indoor environment. A secondary goal is
to get practical experience with indoor localization. Previously, in a literature re-
view, we selected two localization algorithms for this purpose. RIPS was selected
since it was tested in practice, uses no additional hardware and has a very good
accuracy. CAB was selected because it is a range-free localization algorithm and
has low computational complexity. RIPS turned out to be too hardware specific
and was not portable to the target hardware. CAB failed because of multipath
effects. However, by transmitting beacons on multiple frequencies and averaging
over the received signal strength, these multipath effects can be mitigated. In this
thesis, we tested the effect of multiple frequencies on a simple proximity algo-
rithm. Although the accuracy did not improve as we expected, it did improve the
robustness against temporal disturbances. We also tested the effect of multiple
frequencies on two different fingerprinting systems, with the fingerprint database
constructed in two ways: a small database, where samples are averaged over all
channels and a large database, where samples are averaged per channel. We show
that the small database provides the best accuracy with a mean localization error
of 2.19 meters.
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CHAPTER 1

Introduction

Large-scale networks of wireless sensors have become a popular research topic. Ad-
vances in hardware technology have led to dramatic reductions in size, energy con-
sumption and cost of digital circuitry, radio chips and sensors. This has led to the
concept of “Smart Dust” [11], a hypothetical network of tiny Micro ElectroMechani-
cal Systems (MEMS) equipped with wireless communication that can detect anything
from light and temperature, to vibrations and radiation. These networks of small,
cheap, energy-efficient and robust sensor nodes can be used for a wide range of ap-
plications, such as the long-term monitoring of seabirds living in an adverse envi-
ronment [20]. Other possible applications are water quality monitoring [7] and the
detection of forest fires [36]. With a live demo of a sensor network of 800 nodes at
the Intel Developers Forum in 2001, the Smart Dust project was a huge success and
has sparked a whole new research field now commonly known as Wireless Sensor
Networks (WSNs).

Localization is the process of determining the physical position of a sensor node. It
has an important role in WSNs. In many applications it is necessary to locate the nodes
and add location information to the gathered data. For example, a forest-fire detection
network that only reports that it detected a fire is not very useful. For the gathered
data to be meaningful it is essential to know where the fire has been detected. Location
information adds context to the measured values. In a deployment where the nodes are
mobile, localization information is key. For instance when monitoring the migration
and interaction of zebras [37]. For indoor environments there are many location-aware
applications such as navigational tools for humans, asset tracking, resource discovery
and security.

A possible solution to the localization problem is the Global Positioning System
(GPS), a well known and freely usable system. There are, however, a number of rea-
sons why GPS is often not a viable option for WSNs. Firstly, adding a GPS chip
significantly increases the price of a sensor node. For example, the low-power SiRF-
starIII GSC3f/LP [27] costs around $60, while a typical sensor node cost around $50.
Secondly, a GPS chip has a relatively high power consumption. The previously men-
tioned low-power SiRFstarIII GSC3f/LP draws a current of around 60 mA in tracking
mode, while a typical sensor node has a peak current consumption of around 20 mA.
High power consumption greatly reduces the lifetime of a sensor node. Thirdly,
GPS is often not usable indoors. There are more sensitive chips such as the u-blox
NEO-5Q [31] that can position indoors, but they cost around $100. Finally, a GPS
chip often requires a separate antenna increasing the form factor of the node consid-
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2 Introduction

erably. GPS is for these reasons not a practical option in WSNs for many applications
and thus a new approach to indoor localization is required.

1.1 Problem Statement

The goal of this master thesis is to create an application that determines the location
of a mobile node in indoor environments. Previous work on this subject either used
specialized and expensive hardware or achieved at best room-level accuracy. Our aim
is to achieve sub-room level accuracy with no additional hardware. As a secondary
goal, we would like to gain practical experience with localization in an indoor en-
vironment. Localization algorithms are often designed with certain assumptions on
the behavior of radio messages in an indoor environment. With practical experience
we can verify certain assumptions and acquire new assumptions, which helps in the
development of new localization algorithms.

1.2 Approach

To create a localization application a suitable algorithm has to be implemented. Pre-
viously, in a literature review of localization algorithms we selected two localization
algorithms suitable for our localization application [5]. We selected RIPS, because
it was tested in practice, uses no additional hardware and has a very good accuracy.
The second algorithm we selected was CAB, because it is a range-free localization
algorithm and has low computational complexity. Since the algorithms have not been
tested in an indoor environment the first step in reaching our goal is to perform an
experiment to see whether they are suitable. From the result of these experiments we
decided that neither of these algorithms were suitable for our target application. RIPS
was too hardware specific and could not be ported to our target platform. CAB did
not work due too multipath effects. However, by transmitting beacons on multiple fre-
quencies and averaging over the received signal strength, these multipath effects can
be mitigated [16]. We tested this approach a simple proximity localization. The use
of multiple frequencies did increase the robustness against temporal disturbances, but
the accuracy was not sufficient for our target application. We use multiple frequencies
in a fingerprinting system to achieve sub-room level accuracy.

1.3 Structure

In Chapter 2 the requirements and limitations of the localization application are de-
scribed. An overview of related work is given in Chapter 3. RIPS and CAB are
described in Chapter 4, after which Chapter 5 looks at the use of multiple frequen-
cies. Chapter 6 presents fingerprinting with the application of multiple frequencies.
Conclusions and directions for future work are given in Chapter 7.



CHAPTER 2

Localization Application

This chapter describes our target application. Section 2.1 describes the application
itself. Sections 2.2 and 2.3 presents the deployment environment and the hardware we
used. The application limitations are described in Section 2.4.

2.1 Overview

The purpose of our application is to localize mobile nodes in an indoor environment
using a wireless sensor network. An overview of the application is shown in Fig-
ure 2.1.

Figure 2.1: Application overview. The square indicates the mobile node, the dots
indicate the static sensors with the communication range indicated by a gray circle.

There are three components in the application: the sensor network, one or more
trackable mobile nodes and a base station. The sensor network is a collection of static,
autonomous nodes, which communicate wirelessly with each other. The task of the
sensor network is to detect and localize the mobile node. The sensor nodes send their
information to the base station.

The target is an object that roams freely in the environment. It is not necessarily
in range of the sensor network. In our target application, the mobile object is a sensor
node, which actively participates in the localization process.

3



4 Localization Application

The base station is the end point in the sensor network and receives the localization
information of the nodes. The task of the base station is to visualize the location
information.

2.2 Deployment Environment

The application is going to be deployed in an indoor environment on the 9th floor of
the EEMCS building at Delft University of Technology. The floor layout is shown in
Figure 2.2. The floor includes 25 rooms.

4.0 m

6.
5 

m
6.

5 
m

2.
3 

m

3.8 m 3.8 m72 m

Figure 2.2: Layout of the 9th floor of the EEMCS building at Delft University of
Technology. The black dots indicate the position of the nodes in the testbed.

2.3 Hardware

The application uses three types of components: a static sensor network, several mo-
bile nodes and a base station.

Sensor Network The sensor network is a testbed of 8 Moteiv Tmote Sky nodes
with known positions, located on the 9th floor of the EEMCS building. The Tmote
Sky (Figure 2.3a) has an 8 MHz MSP430 CPU with 10 KB RAM and 48 KB flash,
1024 KB of flash storage and an IEEE 802.15.4 compliant CC2420 radio. The nodes
are mounted in the ceiling space, where there is no line of sight with the room be-
low. Localization using infrared or ultrasound, like Active Badge [33] is therefore not
possible in this setup. The nodes are connected via USB to Linksys NSLU2’s run-
ning an embedded Linux platform, which enables the nodes to send serial data over
an Ethernet backbone to the central base station.

Mobile Node The user carries a Tmote Invent node (Figure 2.3b), which actively
participates in the localization. The Tmote Invent is a Tmote Sky in a user-friendly
package, with some additional components, including a 2-axis accelerometer, micro-
phone, a light sensor, an internal temperature and an internal voltage sensor. For user
feedback and control there is a speaker, three LEDs, a programmable user button and
a reset button.
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(a) Tmote Sky. (b) Tmote Invent.

Figure 2.3: Moteiv hardware.

Base Station The base station is a desktop-class PC, which is intended to visualize
the localization it receives. The base station can participate in the localization com-
putation. The visualization of the information is, for example, done using a floor plan
with the current location of the mobile node and its track.

2.4 Requirements

Given the application requirements and available hardware, there are certain limita-
tions in size, accuracy, latency and privacy.

Size The size of the sensor network is limited to a total of 8 anchor nodes, which
span an area of approximately 122 square meters.

Accuracy For practical deployment, at least room level accuracy should be achieved.
We aim for sub-room level accuracy, which means an accuracy in the order of 3 me-
ters.

Latency Latency is the time it takes between the start of the localization process and
when the position of the mobile node is calculated. Since we intend to use this system
at a later stage for tracking, the latency should be no more than 3 seconds. This should
be enough to accurately localize a walking person.

Privacy Privacy is the condition that the (estimated) position of the mobile node is
only known by the mobile node itself. Because of the setup of the application we do
not take privacy in consideration.





CHAPTER 3

Related Work

This chapter describes the related work. Section 3.1 gives a definition of localiza-
tion and introduces terminology often used. Sections 3.2 and 3.3 present range-based
and range-free localization. Several indoor localization deployments are described in
Section 3.4.

3.1 Definition and Terminology

Localization is the process of determining the physical position of a node. This po-
sition can either be expressed descriptive, i.e. room 12, or spatial such as (3, 5). A
spatial position can either be expressed in a global coordinate system or in a local
coordinate system. In a global system, the coordinates are expressed in externally
meaningful geographic coordinate system, such as latitude/longitude. In a local sys-
tem, the location of a node is based purely on the topology of the network nodes. Most
of the time, the local coordinate system is set up in such a way that there exists a rigid
transformation (rotation, reflection, translation) to a global coordinate system.

To simplify the task of assigning coordinates to the nodes, a small number of
nodes, so called anchor nodes (also often referred to as beacon nodes) know their
location beforehand. The location knowledge can be pre-programmed, or acquired
through additional hardware such as a GPS receiver.

Many localization algorithms follow a three-phase approach to calculate the node
positions, as described by Langendoen and Reijers [17]. The three phases consist of
(i) determining the distances between nodes and anchors, (ii) calculating the position
of the nodes and (iii) refining the positions using information from neighboring nodes.

There are several methods to calculate the position of a node from the distances
between nodes and anchors. Trilateration is an often applied method using the inter-
section of three circles to calculate the position of a node. Another method is multi-
lateration in which an overdetermined system of non-linear equations is solved. With
this approach, the distances from more than three anchors can be used. Multidimen-
sional scaling (MDS) is a data analysis technique from mathematical psychometrics
and psychophysics, which determines the placement of points given only the pairwise
distances between the points.

Over the years, many localization schemes have been proposed. From the different
proposed taxonomies of localization techniques [1, 2, 4, 8, 9, 29, 35], there is a clear
division between range-based and range-free localization.
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8 Related Work

3.2 Range-based Localization

Range-based localization tries to directly determine the distance between two nodes to
localize nodes. This process often requires additional hardware. There are a number
of techniques to measure the distances between nodes.

RSSI Received Signal Strength Indication (RSSI) is one of the few ranging tech-
niques that does not require additional hardware. Many radio chips can measure the
RSSI of a message. By applying a radio signal propagation model, one can calculate
the distance from the received signal strength.

RSSI however is not very suitable for indoor localization due too the relative fine-
grained requirements. In addition it is difficult to construct a robust propagation model
due to multipath, fading and shadowing effects typical for indoor environments [26].

Time of Flight Time of Flight (ToF) measures how long it takes to transfer a radio
message from one node to another. Since radio waves travel at the speed of light,
one can calculate the distance between two nodes from the duration. Unfortunately,
the timers on microcontrollers often used in sensor nodes are not precise enough to
be useful. This problem can partially be solved by using ultrasound, which travels
at much lower speeds. Ultrasound however requires additional hardware and has a
limited range. In addition, ToF requires that the clocks on the nodes are synchronized.

Time Difference of Arrival Time Difference of Arrival (TDoA) exploits the fact
that signals with significantly different frequencies travel at different speeds. By mea-
suring the difference in arrival time, one can determine fairly precise the distance
between two nodes. This method is often applied with ultrasound and radio messages.
TDoA circumvents the time synchronization problem of ToF.

3.3 Range-free Localization

Since additional hardware is often not desired, many range-free localization tech-
niques have been proposed. Range-free localization tries to determine the distance
between nodes from radio connectivity.

Proximity Proximity assigns the position of the strongest anchor to the unlocalized
node. While this is a very crude method, there are proximity algorithms that are a bit
more sophisticated. Centroid [6], for example, defines that the location of the node is
at the center of gravity (centroid) of all the anchors it can hear. Proximity-based local-
ization methods are useful in situations where nodes have very limited computational
power. The accuracy of this approach however, is not very high. Particularly when
the anchor density is low, unevenly distributed or for nodes that are on the edges of
the network.

Hop-counting Hop-counting is based on the observation that if two nodes can com-
municate with each other, the distance between them can be at most the maximum
range of their radios. By keeping track of the paths to other nodes in the network, a
node can estimate the distance to another node by counting the number of hops on
the shortest path. In many hop-counting algorithms, such as the Gradient algorithm
by Nagpal et al. [22] or the Ad Hoc Positioning System by Niculescu and Nath [23],
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an anchor node initiates a flood of the network by broadcasting its position and a
counter, which gets increased at every hop. When a node has estimated the distance to
at least three anchors, it can use, for instance, multilateration to infer its own location.

Fingerprinting Fingerprinting is a technique that uses measurements of signal char-
acteristics (fingerprints) to estimate the position of a node. By recording a database
of fingerprints at known positions, a node can estimate its position by comparing its
measurements with the database. Many fingerprint systems have been proposed that
differ in scale, the signal characteristic that is recorded, how the fingerprints are col-
lected, how the fingerprints are used and how the node estimates its position [12].
Fingerprinting is discussed in more detail in Chapter 6.

3.4 Indoor Localization

Of particular interest to us are indoor localization systems deployed into practice.
One of the earliest indoor localization systems is the Active Badge Location System
by Want et al. [33]. In this system people carry an Active Badge (see Figure 3.1)
that transmits a unique code via infrared every 15 seconds. These periodic signals are
received by sensors, which are placed at fixed positions within a building and relayed
to the location manager software. The location manager software is able to provide
information about the person’s location to the requesting services and applications.
Active Badge was able to localize people at room level.

Figure 3.1: Active Badge.

Due to the requirement for a fine-grained three-dimensional location system, which
Active Badge could not supply, the Bat Ultrasonic Location System was developed [34].
The Bat System works similar as Active Badge, but instead of using infrared pulses,
the Bat (see Figure 3.2) periodically transmits an ultrasound pulse and a radio mes-
sage at the same time. Receivers located in the ceiling receive these messages and use
TDoA to calculate the distance. The three-dimensional position of the Bat is calcu-
lated by a centralized system using trilateration. The Bat System was able to achieve
an accuracy of around 14 centimeters.

The Cricket Indoor Location System by Priyantha [24] improves on the Bat Sys-
tem by introducing a decentralized approach. Cricket inverses the operation of the Bat
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Figure 3.2: Ultrasonic Bat.

System, by letting the anchors transmit the ultrasound pulse and radio message. The
mobile node then calculates its position using a least-squares minimization. With this
approach, Cricket achieved an accuracy of 10 centimeters.

RADAR by Bahl and Padmanabhan [3] is a fingerprint-based system for locat-
ing and tracking users inside buildings. It operates in two phases: an offline data-
collection phase and a real-time phase. In the offline data-collection phase, static
nodes record the coordinates of a mobile node, along with the received signal-strength
information (received signal-strength and signal-to-noise ratio) of packets (beacons)
the mobile node periodically broadcasts. The combination of signal-strength informa-
tion and coordinates of the mobile node (the signature) are stored in a central database.

In the real-time phase the central database is used to localize a mobile node. Just
as in the offline data-collection phase, the static nodes measure the signal-strength
information of the beacons the mobile node periodically broadcasts. The location
of the mobile node is determined by averaging over the physical coordinates of the
k-nearest neighbors in signal space of the observed signals.

On an experimental testbed, RADAR achieved an accuracy of 2 to 3 meters with
ranges up to 40 meter. Since a significant effort is needed to construct the data set, a
second approach was devised that uses a propagation model to reduce the dependency
on empirical data. While this makes deployment much easier, the accuracy went down
to 5 meters.

While RADAR seems like an ideal candidate for our target application, there are
a few drawbacks. For each environment a significant effort is needed to construct
the data set. In addition, this process needs to be repeated whenever the environ-
ment changes, for example, when anchor nodes or physical objects such as closets are
moved. This approach is therefore not very robust.



CHAPTER 4

RIPS and CAB

This chapter describes the two algorithms we selected from a review of the localization
literature [5] and tested to see whether they are suitable for our target application.
RIPS is discussed in Section 4.1, CAB in Section 4.2

4.1 RIPS

Radio interferometry is a novel approach in sensor node localization, first applied in
the Radio Interferometric Positing System (RIPS) by Maróti et al. [21]. Traditional
radio interferometry is based on two directional antennas measuring the radio signal
from a single source and performing a cross correlation. This requires tunable di-
rectional antennas, very high sampling rates and high-precision time synchronization.
Since these are generally not available in a WSN, the method is not directly applicable.

The idea behind RIPS is to have two transmitters that create an interference signal
directly (see Figure 4.1). If the frequency of the signals are almost the same, the
frequency of the interference signal is low enough to be measured by the hardware
of a sensor node. Using the measured signal to calculate the node location directly
requires tight time synchronization. Since this requires special hardware, which is
generally not available, the relative phase offset of two receivers is used. By making
multiple measurements in a network of at least 6 nodes, it is possible to calculate the
relative position of the nodes in 2D.

In a field experiment RIPS achieved an average localization accuracy of 3 cen-
timeters with a maximum error of 6 centimeters over ranges of up to 160 meters.
Compared with other methods that use standard hardware this is quite impressive.

RIPS, however, does come at a price. Although the signal measurements takes
place on the nodes themselves, the actual calculation of the positions takes place on a
central computer. RIPS uses a genetic algorithm to solve the set of nonlinear equations
that is too computational intensive for sensor nodes. In a 16-node network it took
80 minutes to localize all the nodes. Improved versions of RIPS such as inTrack [13],
mTrack [15] and dTrack [14] reduce the computational complexity of the method and
speed up the localization process significantly to around two seconds per node. The
downside of reducing the computational complexity is that the accuracy went down
from the original 3 – 6 centimeters in the best and worst case to 1.3 – 2.2 meters in
the best and worst case.

The first versions of RIPS are not suitable for an indoor environment, because

11



12 RIPS and CAB

D

CB

A

!

Figure 4.1: Radio interferometric ranging technique. Nodes A and B emit the in-
terfering radio wave, nodes C and D measure the interfering frequency. The relative
phase offset, denoted with δ, is used to calculate the in-between distances of sender
and receiver.

multipath effects, which are typical for this environment, change the phase of a signal.
Measuring the relative phase offset in an indoor environment is therefore not possible.
A solution to this problem is to measure Doppler shifts, as introduced with dTrack.
Multipath effects do not change the frequency of a signal. This approach, however,
has only been tested in an open outdoor environment.

4.1.1 Feasibility Study

RIPS is an interesting technique because it can provide a high accuracy using standard
hardware, a feature that many indoor localization algorithms do not have. In order to
use RIPS in our target application, there are two questions that need to be answered.
The first question is whether it is possible to use RIPS indoors. The earlier versions
are not suitable, as explained in Section 4.1. The Doppler shift variant should not have
this problem, but this has not been tested in practice.

The second question is whether it is possible to run RIPS on our target platform.
The standard hardware that RIPS used were the MICA2 and the eXtreme Scale Mote
(a ruggedized MICA2 clone). The CC1000 radio chip used on the MICA2 is quite
different from the CC2420 used on our target platform (see Section 2.3). For RIPS
to work, the radio has to meet two requirements. Firstly, the radio has to be able to
send an unmodulated sine wave. In normal operation, the CC2420 sends messages
using OQPSK modulation. It is possible to set the CC2420 in a transmitter test mode,
in which it can transmit an unmodulated sine wave. So the CC2420 meets the first
requirement.

The second requirement is that the radio needs a relative fine-grained frequency
control. The fine-grained frequency control is necessary to be able to transmit two sig-
nals that have a low enough interfering frequency that can be measured. The CC1000
has a frequency resolution of 65 Hz. The CC2420 however, has a frequency resolution
of 1 MHz, which produces an interfering frequency that is too high to be measured.
RIPS is therefore unsuitable for our target platform.

Since we still wanted to test RIPS, we decided to compile and run the publicly
available mTrack on TNOdes. TNOdes (see Figure 4.2) are coin-size MICA2 clones,
developed by TNO. The only difference between the MICA2’s that were used with
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RIPS and the TNOdes we are using is the operating frequency of the radio. The
MICA2 operates in the 433 MHz ISM band, while the TNOde uses the 868 MHz
ISM band. It is not possible for the TNOdes to use the 433 MHz band, because of
regulations and the required changes in hardware (capacitors, resistors). Although
this is a seemingly minor difference, this difference broke the protocol. RIPS uses a
custom radio driver, which has a very precise timing for every phase of calibrating,
tuning, transmitting and measuring. Changing the frequency of the radio changes
these timings. Because of the convoluted source code of mTrack and the unavailability
of the equipment to measures these timings, we could not port RIPS to the TNOdes.
RIPS is therefore not feasible for our target application.

Figure 4.2: TNOde.

4.2 CAB

Concentric Anchor Beacon (CAB) by Vivekanandan and Wong [32] is a range-free
localization scheme, where anchors emit beacons at different power levels. Each bea-
con includes the anchor’s id, location, the transmitted power level and the estimated
maximum transmission distance. An unlocalized node then determines in which cir-
cular ring it is located with each anchor (see Figure 4.3). By taking the center of the
intersections of the circular rings, a node can estimate its position. The advantages
of CAB is that it requires only a small number of anchors, has a low computational
complexity and does not require any communication between neighboring nodes.

The disadvantage of CAB is that it assumes a circular radio model. Although CAB
performed well in simulations with an irregular radio propagation pattern [9], it has
not been tested by an experiment.



14 RIPS and CAB

Figure 4.3: Example of localization using CAB. The black dots indicate the anchors,
the grey circular rings indicate the range to the beacons, the white dot is the estimated
location of the node.

4.2.1 Experimental Setup

To test CAB in practice, we decided to perform an experiment to validate one of
the fundamental assumptions of CAB. CAB assumes that a beacon transmitted at a
particular power level covers a certain area. To validate this assumption, we placed
8 Tmote Invents on the floor in a hallway, 2 meters apart, covering a range of 14
meters (see Figure 4.4). One node acted as an anchor node, transmitting beacons at a
regular interval, with increasing power level. The power level of the CC2420 can be
configured using a 5-bit value in the transmit control register, where 31 equals 0 dBm.

The other nodes recorded the RSSI of the received beacons. When 1024 beacons
were transmitted, the 7 receiving nodes were moved to cover the range of 16 until 28
meters and the experiment was repeated. In total a range of 50 meters was covered,
which is the specified maximum distance for the Tmote Invent in an indoor environ-
ment. The experiment was repeated several times, during different parts of the day.

2 m

Figure 4.4: CAB experimental setup. The black dot is the anchor node, the white dots
are the receiving nodes. The nodes lie 2 meters apart.

4.2.2 Results

The result of the experiment is shown in Figure 4.5. The figure shows the mean RSSI
versus distance. While the 5-bit power level register should give us 32 different power
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levels, we noticed that only 8 of them gave a different RSSI at the same distance. The
data sheet of the CC2420 has a table with 8 register values and their corresponding
output power in dBm and power consumption [30, pg. 51]. The 8 power levels spec-
ified in the data sheet corresponded with the 8 power levels that produced a different
result in the experiments. Figure 4.5 therefore only contains these 8 power levels,
even though all measurements were made on all 32 levels.

-90

-80

-70

-60

-50

 0  4  8  12  16  20  24  28  32  36  40  44  48

R
S

S
I (

dB
m

)

Distance (m)

TX Power (dBm)
0

-1
-3
-5
-7

-10
-15
-25

Figure 4.5: Mean RSSI versus distance with different power levels.

While the figure shows that the signal strength decreases exponentially with the
distance, as is stated by the theory, the curve decreases very erratic, with a sudden
drop at 36 meters. The erratic behavior is most likely due too multipath effects caused
by the environment. We repeated the experiment several times, on different parts of
the day with different nodes. The results were similar with respect to the drops.

With this experiment we wanted to validate the assumption in CAB that beacons
transmitted at a certain power level cover a certain area. If we look, for instance, at
beacons transmitted with a transmit power of -10 dBm this is clearly not the case.
Beacons transmitted at this power level can be received up to 34 meters, between 38
and 40 meters, between 44 and 46 meters and at 50 meters. The area it covers is not
continuous. We could solve this by using a threshold, but the same problem would
arise with the other power levels.

Another problem is that most of the power levels are very close to each other. The
idea of using different power levels was to have a finer granularity than when using
centroid. From the 8 power levels, 6 power levels can reach up to 50 meters. Even the
lowest power of -25 dBm has a range of at least 14 meters. This gives us an accuracy
that is not much better than centroid. CAB is therefore not a suitable localization
scheme for our target application.





CHAPTER 5

Multiple Frequencies

This chapter describes the use of multiple frequencies to reduce multipath effects.
Section 5.1 describes the use of multiple frequencies. Experimental setup and results
are discussed in Section 5.2 and 5.3. Section 5.4 describes the proximity localization
scheme, which is used as a test case for multiple frequencies.

5.1 Multiple Frequencies

As we have seen from the experiments with CAB (see Section 4.2.2), the environment
has a major influence on the propagation of radio signals. Especially multipath effects
that are typical for an indoor environment influence the radio signals. Since we only
have the radio as means to measure the ‘distances’ between nodes and we do not want
to add any additional hardware, we will have to find a way to reduce these multipath
effects.

Ladha et al. [16] describe a technique of using multiple frequencies to mitigate
multipath effects. The idea is that radio signals with different frequencies are influ-
enced differently by the environment. Some of the radio signals at a certain frequency
get dampened, while signals at another frequency get amplified. By simply averaging
over the RSSI of signals, transmitted on multiple frequencies, multipath effect can be
dramatically reduced.

The effects of using multiple frequencies has been tested by the authors in an
indoor environment. These experiments however, were taken in an open office envi-
ronment, where the nodes have a line of sight. In our target application the mobile
nodes do not have a line of sight with the anchors.

We first performed a set of experiments to verify the effect of multiple frequencies.
Since the results were promising, we tested the use of multiple frequencies on a simple
proximity localization protocol.

5.2 Experimental Setup

The setup for the experiment is similar to the experiments performed with CAB (see
Section 4.4). We placed 8 Tmote Invents on the floor in a hallway, 2 meters apart, cov-
ering a range of 14 meters. One node acted as an anchor node, transmitting beacons
at a regular interval, with increasing frequency at maximum transmission power.

The frequency of the CC2420 can be configured using a 10-bit value in the fre-
quency control register, with 1 MHz resolution. We did not use this fine-grained
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frequency control for two reasons. Firstly, while the frequency control register has a
range of 2048 – 3072 MHz, the hardware of the Tmote Invent is designed to operate in
the range of 2400 – 2483.5 MHz. Secondly, the CC2420 has a channel bandwidth of 4
MHz. Using steps of 1 MHz results in overlapping channels that could interfere with
each other. We therefore used the IEEE 802.15.4-2006 channel model [10], which
specifies 16 channels within the 2.4 GHz band, in 5 MHz steps, numbered 11 trough
26 1. This gives us a frequency range of 2405 – 2485 MHz. In this way the channels
do not overlap and thus cannot interfere with each other.

The other nodes recorded the RSSI of the received beacons. While in the CAB
experiment the nodes could just passively listen for beacons, the nodes now had to
switch to the next channel after receiving a beacon. They did this until they had
received 32 beacons per channel. In total a range of 32 meters was covered. The
experiment was repeated several times, during different parts of the day.

5.3 Results

Figure 5.1a shows the mean RSSI versus distance for all 16 channels separately. The
curve for every channel shows the same erratic behavior as we have seen in Figure 4.5.
Some channels have an excellent RSSI at a certain range, while other channels have a
very bad RSSI. If we look, for example, at 6 meters, beacons transmitted on channel
16 have an average RSSI of -67 dBm, while beacons transmitted on channel 21 have
an average RSSI of -79 dBm.

Figure 5.1b shows the mean RSSI versus distance averaged over all channels.
While the curve is not a smooth exponential decrease, it approaches the theory much
better than using one channel. Using multiple frequencies does mitigate multipath
effects. There are still a few irregularities, for example, at 12 meters where the hallway
changes from glass windows on one side and office rooms on the other side to office
rooms on both sides. Also from 26 meters to 30 meters there is an increase instead of
a decrease in RSSI.

While this result suggest that the application of a propagation model would be
feasible, constructing a robust propagation model for an indoor environments is still
quite difficult. The main reason is that we would need a propagation model for every
situation. A propagation model based on the data from the experiments in the hall-
way does not work for the nodes that are located in the ceiling space. The effect of
obstacles like walls and cabinets should be included in the propagation model. In ad-
dition, we noticed small differences in the order of 1∼2 dBm in RSSI between nodes
at the same distance. Because of the inverse exponential relation between RSSI and
distance, this small difference in RSSI could translate in an error in the order of tens
of meters.

In conclusion, using multiple frequencies does mitigate multipath effects, but there
are still a lot of factors that should be considered in constructing a robust propagation
model for RSSI-based localization in an indoor environment.

5.4 Proximity

Since the use of multiple frequencies showed some promising results, we wanted to
test its effect in a more real-world deployment. The previous experiments were taken

1Channel 0 is in the 868 MHz band, channel 1 – 10 are in the 915 MHz band.
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Figure 5.1: Multiple frequencies experimental results.

in a one-dimensional setup, where all nodes lie on one line. As a test case we use
proximity localization. The idea of proximity localization is quite simple: the position
of the node is the position of the strongest anchor.

5.4.1 Experimental Setup

For this experiment we used the 8 Tmote Sky nodes of the testbed as anchors. There
is one mobile node that transmitted beacons with maximum power at a regular inter-
val on increasing frequency. The mobile node is placed, preferably on a desk, in 6



20 Multiple Frequencies

locations in the 4 rooms that the anchors cover. At each location, the mobile node
transmitted 4800 beacons distributed over 16 channels, which results in 300 beacons
per channel. The beacons are transmitted at an interval of 31.25 milliseconds. Fig-
ure 5.2 shows the location of the anchors and the positions of the mobile node.

9.080 9.070

9.320 9.310

Figure 5.2: Proximity experimental setup. Black circles are the anchor nodes, white
circles the positions of the mobile node.

The anchors send the RSSI of each received beacon to a central computer. While
usually the anchors transmit the beacons and the mobile nodes listens, we chose to
invert this scheme to simplify the scheduling problem. If the anchors were active
transmitters, a schedule is needed to determine who transmits when at which chan-
nel. This schedule could either be predetermined or generated ad hoc. By letting the
mobile node transmit at a regular interval, the anchors only have to switch to the next
channel when they receive a beacon. Furthermore, we can now reach 8 anchors at the
same time, while otherwise we need 8 beacons to get the RSSI for the 8 anchors.

The anchors initially listened on channel 11 for a beacon. As soon as they re-
ceived a beacon, they switch to the next channel. To be resilient to single packet loss,
the anchor switched to the second next channel if it did not receive a beacon within
1.5 times the beacon interval. After this the anchor did not switch to another channel
anymore, unless it received a beacon.

5.4.2 Results

Figure 5.3 shows the positions of the mobile node, with a line from the position to the
closest anchor. The closest anchor is defined as being the one that receives the most
beacons with the strongest RSSI. In the ideal case this would mean that the closest
anchor receives 4800 of these beacons. In most cases the closest anchor receives
between 80 – 100% of the beacons, although there is a case where the closest anchor
receives at most 48% of the strongest beacons.
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9.080 9.070

9.320 9.310
(a) Proximity using a single channel.

9.080 9.070

9.320 9.310
(b) Proximity using mean RSSI over all channels.

Figure 5.3: Proximity experimental results. Black circles are the anchors, white cir-
cles the positions of the mobile node. The lines indicate which anchor is the ‘closest’
for that particular position. A red line indicates an incorrect association.

Figure 5.3a shows the result of using only a single channel for proximity local-
ization. What we can see from the figure is that the anchor receiving the strongest
beacons is not necessarily the closest anchor. In all of the rooms, there is at least one
position that is associated with an anchor at the other end of the room. Even in two
cases, the position is associated with an anchor in another room. In total there are 7
positions associated with the wrong anchor.

Figure 5.3b shows the result of using the mean RSSI over all channels for prox-
imity localization. Compared to using a single channel for proximity, the results are
actually a bit worse. In total there are now 8 incorrect associations, one more than in
the previous experiments. What is noticeable is that most of these incorrect associa-
tions are different from the single channel case. Some positions that were incorrectly
associated in the previous case are now associated with correct anchors and vice versa.

So using multiple frequencies does not improve the accuracy of proximity lo-
calization. Actually, the closest anchor is not necessarily the one that receives the
strongest beacons. Using multiple frequencies for proximity localization however,
does provide one improvement. The average number of beacons that the strongest
anchor receives over time improved from 88% to 94%. This means that while the
position can be associated with the wrong anchor, it is more resilient to temporal per-
turbations.

While the use of multiple frequencies slightly improves the robustness of proxim-
ity localization, the acquired accuracy is not good enough for our target application.
With this approach a node can only be localized in a room where there is at least an
anchor node. In addition the best accuracy that can be achieved with this approach is
room level, while our goal is sub-room level localization.





CHAPTER 6

Fingerprinting

As we have seen in the previous chapters, using RSSI to measure the inter-node dis-
tance directly via a propagation model or indirectly by using CAB, or to determine
proximity does not provide the required accuracy for the target application. In ad-
dition, these approaches often require a uniform deployment of anchors to cover a
certain area. In order to provide an accurate localization method using RSSI we need
a different approach. We previously dismissed fingerprinting as being too labor in-
tensive and not resilient to environmental changes [5]. Since the use of multiple fre-
quencies can improve the robustness of a localization method, we take a second look
at fingerprinting to see how it performs in practice.

Section 6.1 describes fingerprinting itself. Measurement setup and algorithms are
discussed in Section 6.2. The results of the experiments are presented and discussed
in Section 6.3 and Section 6.4.

6.1 Fingerprinting

The core idea of fingerprinting is that the position of the mobile node correlates with
one or more signal characteristics. Often RSSI and anchor ID are used, but charac-
teristics like reception rate, link quality indication and signal-to-noise-ratio have also
been used. By measuring these signal characteristics at known positions and storing
them in a database, the position of a mobile node can be approximated by measur-
ing the same signal characteristics and comparing it to the database. Fingerprinting
does not depend on theoretical signal propagation properties but actually exploits the
erratic behavior of signal propagation.

6.1.1 Setups

There are several setups proposed for fingerprinting. One of the most common se-
tups is an infrastructure-based approach. Several fixed base stations transmit or re-
ceive beacons, and one or more mobile nodes receive or transmit beacons. Often a
central computer is used to store the database. Less common is an infrastructure-
less approach, which only uses mobile nodes and distributes the database across the
nodes. Given the requirements of the target application, we used an infrastructure-
based setup, with the nodes of the testbed as fixed base stations.

Storing the database on either a central computer, the base stations, or on the mo-
bile node itself has its advantages and disadvantages in terms of scalability, privacy,
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resource-requirements etc. Storing the database on the mobile node is attractive be-
cause of the inherent support for privacy. On the other hand, mobile nodes are often
resource-poor and can therefore only store a part of the database. Storing the database
on a central computer on the other hand, can be a problem in terms of privacy, since the
mobile node has to communicate with the server to determine its positions. We chose
to store the database on the central computer, because we have a central computer in
our setup and privacy is not a requirement of the target application.

6.1.2 Estimation Methods

A central part in a fingerprinting system is the estimation method used for predict-
ing the position of the mobile node from the measured signal characteristics and the
available database. Estimation methods can be globally divided into two categories:
deterministic and probabilistic. A deterministic estimation method uses the entries
in the database only by their values, while a probabilistic approach considers these
values as part of a random process. For the experiments we used the deterministic k-
nearest neighbor search and the probabilistic probability maps as estimation methods.
A description of other estimation methods can be found in [12].

k-Nearest Neighbor Search The k-nearest neighbor search (k-NNS) is one of the
most often used deterministic estimation methods. k-NNS calculates distances in
signal space between the measured sample and the samples in the database. The k
database samples with the shortest distance are then used for the position estimate,
which is often the weighted centroid of the positions. For measuring the distance the
Euclidean distance metric is often used (

√
(p1 − q1)2 + . . .+ (pn − qn)2).

Probability Maps Probability maps (PM) is a probabilistic estimation method in
which a measured sample is represented by a normal distribution. For each anchor, a
radio map is calculated by fitting the database samples to a uniform grid covering the
deployment area. Then for each anchor a probability map is calculated by applying
the probability density function (pdf ) to the radio map. By combining these proba-
bility maps using multiplication, the position of the node can be approximated as the
coordinates with the highest probability.

6.2 Experimental Setup

This section describes the experimental setup. Section 6.2.1 describes how the mea-
surements were done. How the fingerprint databases are constructed and an outline of
the algorithms is given in Section 6.2.2 and 6.2.3.

6.2.1 Measurement Setup

The measurement setup is similar to the proximity experiment as described in Sec-
tion 5.4.1. We used the same 24 positions and the same measurement approach. In
addition, we took measurements in rooms where there are no anchors and in the hall-
way. In total we added 53 new positions, for a total of 77 positions. Figure 6.1 shows
the location of the anchors and the positions of the mobile node.
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Figure 6.1: Fingerprinting measurement setup. Black circles are the anchor nodes,
white circles the positions of the mobile node.

6.2.2 Database Setup

From the measured data, we used for every position 70% of the data to construct the
database and 30% as input for evaluation. We construct three different databases.
The first is baseline, which uses the data from only one channel. The purpose of this
database is to evaluate whether using multiple frequencies provides any improvement.
The second database is combined, where per position the samples are averaged over
all channels. This results in a database with 77 (x, y) vectors and corresponding
8-dimensional RSSI vectors, since their are 8 anchors in the setup. The last database
is separated, where per position the samples are averaged per channel. This gives a
database with 1232 (x, y, channel) vectors with corresponding 8-dimensional RSSI
vector. The general consensus in fingerprinting systems is the more different signal
characteristics, the better. With this approach we can also use the channel information
in the calculations.

6.2.3 Algorithms Outline

The input for all the algorithms is an array of s samples. A sample is defined as being
an 8-dimensional vector with the RSSI of one beacon, received by at least one anchor
and the channel on which the beacon was transmitted. In the ideal case, all 8 anchors
receive the beacon. If an anchor has not received the beacon, the value is ‘undefined’
and ignored when calculating sums and means. For all the algorithms, the vector
mean of the s samples is calculated, resulting in an 8-dimensional RSSI vector, with
the mean RSSI for each anchor.

k-NNS An outline of the k-NNS algorithm for combined is shown in Figure 6.2.
From the averaged sample the Euclidean distance is calculated for each of the 77
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Figure 6.3: k-Nearest Neighbor Search separated algorithm outline.

RSSI vectors in the database. The output is an array of 77 (x, y) coordinates and the
distance d from the averaged sample. The k samples with lowest distance d are used in
a weighted centroid with weights 1

d to calculate the position estimate. If the distance
d is 0, the (x, y) coordinate is used as the position estimate.

An outline of the k-NNS for separated is shown in Figure 6.3. The algorithm
for k-NNS separated is similar to that of k-NNS combined. The main difference is
what data from the database is used to calculate the Euclidean distances. In the case
of k-NNS all the available data is used. In the case of k-NNS separated, a subset
of the database is used based on which channels the beacons were received. This
subset is averaged per position, resulting in an array of 77 (x, y) coordinates and the
corresponding 8-dimensional averaged RSSI vector. The remainder of the algorithm
is the same as k-NNS combined.

The algorithm for k-NNS baseline is the same as the algorithm for k-NNS com-
bined.

Probability Maps An outline of the PM algorithm for combined is shown in Fig-
ure 6.4. For each anchor a radio map is generated by fitting the database samples from
that anchor to a uniform u × v grid using cubic interpolation. In addition for each
radio map, a correction factor γ is calculated, which is defined as γ = 1

(σrm)α , where
σrm is the standard deviation of the radio map. For every anchor, a probability map
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is calculated, using a normal distribution with µ = rssin and σ = β‖γn‖, where
rssin is the sample’s mean RSSI of anchor n and ‖γn‖ the normalized standard devi-
ation of the radio map for anchor n. For our situation, we determined empirically that
α = 3 and β = 3 are good values. All the probability maps are then multiplied and
from this single map the spatial mean is calculated. While initially we used the spatial
maximum as a position estimate, using the spatial mean produced a much lower error.

An outline of the PM algorithm for separated is shown in Figure 6.5. The algo-
rithm is similar to k-NNS separated. We also use a selector to only select the radio
maps with the same channel. Then for every anchor the radio maps are matrix aver-
aged. The remainder of the algorithm is the same as with PM combined.

The algorithm for PM baseline is the same as the algorithm for PM combined.
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6.3 Results

We gathered almost 3 million raw samples. From these samples we constructed three
different databases as described in Section 6.2.2. We used 30% of the measured data
as input for evaluation. For every test vector, we excluded the vector from the database
to emulate the real-time localization process. The results are therefore somewhat con-
servative. The error is defined as the Euclidean distance between the real position and
the estimated position. For evaluation we use the mean error. The results for k-NNS
and PM are discussed in Section 6.3.1 and 6.3.2.

6.3.1 k-Nearest Neighbor Search

Figure 6.6 shows the mean error when applying k-NNS on a single channel for k = 4.
Other values of k produced similar shapes in terms of curve and channel order. There
are two important observations that we can make from this figure. Firstly using more
than 30 samples does not improve the mean error that much. If we look at channel 26,
the difference in error between using 45 samples and 90 samples is 1 centimeter.
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Figure 6.6: Mean error vs. the number of samples for k-NNS baseline, k = 4. Please
note that the y-axis starts at 2.

The second observation we can make is that there is a significant difference be-
tween individual channels. Between the best channel (21) and the worst channel (12)
there is a difference in mean error of at least 1 meter. We suspect that interference of,
for instance, Wi-Fi and Bluetooth is the cause of this effect. For the remainder of the
evaluation, we use channel 21 for baseline.

In order to evaluate the performance of k-NNS, we first need to determine the
optimal number of neighbors. Figure 6.7 shows the number of neighbors vs. the mean
error with s = 30. What is noticeable is that at around 4 neighbors the mean error
increases. This effect is caused by the fact that signal space is not equal to the physical



6.3. Results 29

 0

 1

 2

 3

 4

 0  1  2  3  4  5  6  7  8  9  10

M
ea

n 
er

ro
r 

(m
)

Number of neighbors

combined
separated

baseline (channel 21)

Figure 6.7: Mean error vs. the number of neighbors for k-NNS, s = 30.

space. Positions in physical space which are close to each other, do not necessarily
have to be close to each other in signal space. This effect is also described by Bahl
and Padmanabhan [3]. Because 4 neighbors produced the best result we use this value
for the remainder of the evaluation.

Figure 6.7 also shows that for k = 4, combined and separated reduce the mean
error by 0.3 meter compared to the best baseline. On the other hand, using separated
does not provide an improvement over combined.

Figure 6.8 shows mean error vs. the number of samples. As we have seen in
Figure 6.6, using more than 30 samples for combined and separated also does not
improve the mean error that much. What is noticeable is that separated actually per-
forms worse than baseline up until 5 samples. The reason for this is that separated
uses all the channels, while baseline only uses the best channel. Averaging reduces the
negative impact of the noisy channels on the mean error. So for separated to perform
better than baseline we need at least 6 channels.

6.3.2 Probability Maps

By plotting a contour plot of the radio maps which are generated as part of the PM
algorithm we get a nice view of the distribution of RSSI over the deployment area.
Figure 6.9a and Figure 6.9b show the radio map of anchors 3 and 2. While the shape
of the RSSI levels around anchor 3 are somehow circular, they get more irregular
further away from the anchor. The radio map of anchor 2 is even worse, showing two
peaks of which one lies near the anchor. This is exactly the kind of irregularity we can
exploit with fingerprinting to identify the position of a node.

Figure 6.10a and Figure 6.10b show the radio map of channels 11 and 22 of anchor
8. Once again we can see that there is a significant difference between channels.
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Figure 6.8: Mean error vs. the number of samples for k-NNS, k = 4. Please note that
the y-axis starts at 2.

Figure 6.11 shows the mean error when applying PM on a single channel. As with
k-NNS baseline, there is a significant difference between channels. The mean error
between the best channel (21) and the worst channel (26) is 0.75 meter. Also, using
more than 30 samples does not reduce the mean error that much.

Figure 6.12 shows the mean error vs. the number of samples for PM combined,
separated and baseline on channel 21. As with k-NNS we see that separated initially
performs worse than baseline. The main difference is that when using 2 or more
samples it performs better, while with k-NNS we needed at least 6 samples. The
cause of this effect is the averaging that was already done when generating the radio
maps.

6.4 Discussion

Table 6.1 provides an overview of the accuracy of k-NNS and PM with baseline, com-
bined and separated. The table contains the mean error as well as the 90th percentile
error, which gives an indication on the number of outliers. If we look at the accuracy
of baseline, it does not matter which estimation method we use. Both k-NNS and PM
have a mean error of 2.75 meter. Although the 90th percentile error of PM is 5 cen-
timeters more, this difference is negligible. Fingerprinting without the use of multiple
frequencies therefore meets the requirement of an accuracy of 3 meters as defined in
Section 2.4.

Using multiple frequencies, however, does offer a much better accuracy with little
effort. For k-NNS the accuracy increases by 12% and for PM by 20%. In addition,
we do not have to choose which channel we want to use. While channel 21 produced
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(b) Anchor 2.

Figure 6.9: Radio map of two anchors. The cross indicates the position of the anchor.

the best results in our experiments, in other deployments it is possible that a different
channel performs better. In terms of storage, baseline and combined require the same
amount of space. Only separated requires 16 times more storage space, since channels
are stored separately.

Using separated, however, does not provide the better accuracy over combined
as we had expected. The mean error is either the same as with k-NNS or slightly
higher as with PM. The only improvement separated has over combined is a slightly
lower 90th percentile error. It is the question whether this improvement is worth the
additional storage required.

In terms of latency, the whole localization process should take no more than 3 sec-
onds as defined in Section 2.4. With the current implementation, recording one sample
takes around 31.25 milliseconds. Recording 30 samples therefore takes 937.5 mil-
liseconds. Table 6.2 provides an overview of the computation time needed per aver-
aged sample for k-NNS and PM with baseline, combined and separated. The algo-
rithms were run a computer with an Intel Core 2 Duo 2.4 GHz processor and 4 GB
RAM. The localization algorithms are single threaded. Independent of what estima-
tion method or database setup we use, a position can be estimated in under 1 second.
Consequently we amply meet the latency requirement.
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(b) Channel 22.

Figure 6.10: Radio map of anchor 8 on two different channels. The cross indicates
the position of the anchor.
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Table 6.1: Overview of the mean error of k-NNS and PM for baseline, combined and
separated, with k = 4, s = 30. The 90th percentile error is given in parentheses.

baseline (ch 21) combined separated

k-NNS 2.75 m (4.55 m) 2.43 m (4.56 m) 2.43 m (4.47 m)
PM 2.75 m (4.60 m) 2.19 m (3.75 m) 2.22 m (3.71 m)

Table 6.2: Computation time per averaged sample, with k = 4, s = 30.

baseline (ch 21) combined separated

k-NNS 2.18 ms 2.14 ms 37.1 ms
PM 6.04 ms 6.22 ms 41.1 ms





CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

The goal of this thesis was to create an application that can determine the location of
a mobile node in indoor environments. The challenge was to achieve a sub-room level
accuracy of around 3 meters, without any additional hardware. As a secondary goal
we wanted to get practical experience with indoor localization.

From a review of the localization literature, we selected two algorithms: Radio
Interferometric Positing System (RIPS) and Concentric Anchor Beacons (CAB). RIPS
was selected since it was tested in practice, used no additional hardware besides the
radio and achieved a remarkable accuracy of 3 centimeters. CAB was selected as it is
a range-free localization algorithm and for its simplicity.

Regarding RIPS there were two questions that needed to be answered. Firstly,
RIPS was only tested outside in an open field. There were known problems with
using RIPS in an indoor environment, due to multipath effects. A solution has been
proposed in the form of measuring Doppler shifts instead of phase shifts, but this
has not yet been tested in practice. The second question was whether RIPS could be
applied to our target platform. The radio used in the experiments with RIPS was a
CC1000, while we wanted to use a CC2420 radio. Although the CC2420 met some of
the fundamental requirements, it was not accurate enough to be used with RIPS. We
did try to use RIPS with nodes that have a CC1000 radio, but the hardware we had at
our disposal differed too much in terms of operating frequency. The source code was
too convoluted to port to our hardware. RIPS was therefore not a viable option.

The second candidate, the CAB algorithm, was only tested in simulation. One of
the first steps was to test whether one of the fundamental assumptions of CAB holds
in practical settings. CAB broadcasts beacons with different power levels and with
the effective range of that particular setting. With this, a node can calculate in which
‘ring’ from the anchor it resides. During a practical experiment, we discovered that
this assumption did not hold. Beacons that were transmitted on a lower power level
did have a smaller range compared to beacons transmitted with a higher power level.
There were however gaps in the range where beacons could, for example, be received
up to 34 meters, between 38 and 40 meters, between 44 and 46 meters and on 50
meters. CAB was therefore also not a viable option.

We learned from these experiments that multipath effects have a major influence
on the radio signals. If we want to use signal strength based localization, we need
a method to reduce these multipath effects. We chose a technique called ‘multiple
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frequencies’ [16]. By transmitting not on a single channel, but on multiple frequencies
and simply averaging over the RSSI of the received beacons, multipath effects can be
significantly reduced. Rather than modeling these multipath effects, we could use
these effects to improve the performance. We verified this effect with an experiment
that showed some promising results.

The use of multiple frequencies was tested in a practical setting using a simple
proximity algorithm. Unfortunately, the accuracy did not improve as we expected, but
was actually a bit worse. One advantage of using multiple frequencies though, was
the increased robustness. Over time, the estimated position was more consistent than
when using a single channel.

From these experiments we concluded that localization algorithms that use signal
strength as a direct distance metric are not feasible for our target application. Addi-
tionally, these methods rely on setting up a proper propagation model, which is quite
difficult for an indoor environment.

During the literature review we dismissed the technique of fingerprinting for being
too labor intensive and not robust enough. Since multiple frequencies can improve the
robustness, we had a second look at fingerprinting to see how it performs in practice.
We evaluated two different estimation methods: the deterministic k-nearest neighbor
search and the probabilistic probability maps. Since we used multiple frequencies, we
devised two approaches in storing the fingerprint database. One approach where per
position the RSSI values are averaged over all channels, resulting in a relative small
database, comparable to using a single channel. The other approach was to consider
the channels separately, resulting in relative large database. The general consensus
in fingerprint systems is that the more signal characterizes available, the better the
performance. We therefore expected that the large database would perform better.

With experiments in an office setting we discovered that using a single channel
for fingerprinting already met the requirements of the target application, if the right
channel is chosen. Using multiple frequency, however, does improve the accuracy
considerably. In addition, it provided a better robustness. One noticeable result was
that the small database performed better than the large database in terms of accuracy.
The extra channel information did only slightly improve the robustness for tempo-
ral disturbances. In terms of latency, averaging over more than 30 samples did not
improve the accuracy much anymore. Recording 30 samples takes around 940 mil-
liseconds and the position calculations are in the order of milliseconds. The whole
localization process therefore can be done within 1 second, which is clearly below
the 3 seconds that was required for the target application. The mean error was 2.19
meters, which is below the required 3 meters.

Although constructing the fingerprint database is a labor intensive process, it can
be simplified by applying ‘kriging’. Kriging is a geospatial interpolation technique
that is mainly used in the mining industry. Some initial research in this direction
has been done by Li et al. [19], showing some very promising results. Kriging can
significantly reduce the number of samples needed and increase the accuracy.

7.2 Future Work

During the writing of this thesis, there were several directions which could not be
explored due to time constraints. Despite all the hardware dependencies, RIPS is
still an interesting technique. A direction for future work could be to get a radio with
Doppler support. For example, a radio with two antennas, or by connecting two radios
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to a node. While Doppler limits the localization algorithm to moving objects, this is
not a problem for localization in a mobile scenario. Some work in this direction has
already been done by Sallai et al. [25].

A completely different approach, which can also be achieved by using a radio
with two antennas, is beamforming. Beamforming is a signal processing technique
where the directionality of a signal is changed by transmitting two radio waves with
different phase and amplitude. With this approach a radio signal can be electronically
steered in a certain direction, without using mechanically rotation directional antennas
or sectored antennas. This opens up a whole new range of localization algorithms. A
localization algorithm such as SeRLoc [18], which uses sectored antennas, can be
used on standard hardware.

A subject that is not touched in this thesis, but comes to mind when one talks
about navigating people is privacy. In the current setup, all the beacons are send to
a central computer that estimates the position of the mobile node. This could be un-
desirable when navigating people. There are some localization algorithms that take
privacy in consideration, like for example Cricket [28], but often privacy is not con-
sidered. A solution to this problem is that each node computes its position based on
the infrastructure.
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