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Abstract

In this bachelor’s thesis we will solve the Dirichlet problem with an Lp(T) boundary
function. First, we will focus on the holomorphic version of the Dirichlet problem and
introduce Hardy space theory, from which will follow a sufficient condition on the Fourier
coefficients of the boundary function. Then we will prove the Marcinkiewicz interpolation
theorem. After that we introduce the conjugate function f̃ , which equals the Hilbert
transform of f , and use functional analysis to prove an important duality argument of
the Hilbert transform. Finally, we will give several different proofs for the boundedness of
the map f 7→ f̃ using the Marcinkiewicz interpolation theorem and the duality argument:
the last proof will be done rigorously from scratch, i.e. without relying on (unproved)
arguments from other literature.
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Preface

This project builds on the lecture notes of the course Fourier Analysis given by Alex
Amenta in the third quarter of 2018, an elective course as part of the studies applied
mathematics at the Delft University of Technology. Therefore the reader is expected to
know about basic Fourier analysis. The project will extend towards harmonic analysis, a
huge branch of mathematics.

The Fourier transform on the one-dimensional torus is scaled by 2π, and in different books,
this scaling might be in some definitions, while not in others (e.g. the Poisson kernel),
so an appendix is added with some basic definitions in Fourier analysis to prevent any
ambiguity in these definitions (these will be the same as in An Introduction to Harmonic
Analysis by Katznelson [1]). The appendix will also contain the theorems that are used
throughout this paper and their proofs, which are either not central within Fourier or
harmonic analysis, or have not been proven in the lecture notes. The reader is encouraged
to read the first paragraph of the appendix before reading this paper, since the notation
of some concepts explained in there might be different than usual.

The proofs given in this paper will be rigorous by default. Heuristic proofs will be an-
nounced beforehand and usually these kind of proofs will refer to details in other books,
which are out of scope of this project, so references can be found at the end of this paper
(these heuristic proofs are actually only in Subsection 3.4). Furthermore, the proofs will
be detailed, so the reader doesn’t have to spend a lot of time fact checking logical con-
clusions theirself, filling in huge gaps theirself or just assume parts of a proof to be true.
For the sake of efficiency, we will keep the conclusion compact and get straight to the point.

I would like to thank Dorothee Frey for guiding me in this project, and for the well-written
lecture notes for the course Fourier Analysis. Special thanks to Alex Amenta for being a
ripper of a bloke to have had the lectures from.

“Mathematical analysis is as extensive as nature herself.”

— Joseph Fourier
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Introduction

The Dirichlet problem on the (complex) unit disc D := {z ∈ C : |z| < 1} (whose boundary
∂D may be identified with T: see appendix for details), as one may have seen in the course
Fourier analysis as mentioned before, or in more general domains in PDE courses, is stated
as follows:

Dirichlet problem. Given a function f : ∂D→ C, is there an analytic function u : D→
C such that

(i) u is harmonic in D, i.e. ∆u = 0 in D, where ∆ := ∂2

∂x2
+ ∂2

∂y2
(identifying C with

R2),

(ii) f extends (analytically) to u, i.e. u = f on ∂D and lim
r↑1

u(reit) = f(eit) for each

t ∈ [0, 2π)?

In the case that f is in the space C(T) of 2π-periodic continuous functions, we have seen
in the course Fourier analysis that we can take the convolution of fbd(t) := f(eit) with the
Poisson kernel Pr to obtain the solution

u(reit) =

 1
2π

2π∫
0

fbd(t− τ)Pr(τ) dτ, r < 1,

fbd(t), r = 1,

where u(reit) converges uniformly on T to fbd(t) as r → 1.
For the converse of this problem, we see that we can find f by simply taking the pointwise
limit f(eit) := lim

r↑1
u(reit).

We would like to generalize this idea to other spaces of functions. For example, if
fbd ∈ Lp(T), would we have the same solution, but then with convergence in Lp(T)-
norm? What would happen if we replaced harmonic by holomorphic, which is a stronger
statement and more well-suited for complex-valued functions of a complex variable? In
this project we will thoroughly study the Hardy space Hp, a space which is very suit-
able for analysis of this problem. We will see that a function in Hp can be related to a
boundary function in Lp(T), their respective norms having the same value (Theorem 1.11)
and furthermore that the function is Poisson integral of the boundary function, where the
Fourier coefficients of this boundary function must be equal to zero for n < 0 (Theorem
1.15).

We will also have a rigorous look at the convergence of Fourier series in Lp(T), which will
allow us to find the boundary value of the solution of the Dirichlet problem if we only know
the Fourier coefficients of the boundary function, without having to rely on the interior
domain (the Poisson integral part) of the solution. For 1 < p < ∞ we will see that the
Fourier series of a function in Lp(T) converges in Lp(T), and in that case it converges back
to this function (Theorem 4.4).
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1 Hardy spaces

In this section we will look at the Hardy space Hp and derive some useful properties, in-
cluding one that allows us to identify a function in Hp with a boundary function in Lp(T)
for p ≥ 1. For p = 2, this will be an easy task, but for p 6= 2, we will need to introduce
the Blaschke product in order to use the canonical factorization of functions in Hp for the
bigger proofs.

1.1 Conformal mappings and Jensen’s inequality

For fixed 0 < |ζ| < 1, we define the function

b(z, ζ) :=
ζ̄(ζ − z)
|ζ|(1− zζ̄)

.

As seen in the course Complex Analysis, this is a conformal mapping from D to D, which
means that b is holomorphic and b′ 6= 0 in D. It is also clear that b(ζ, ζ) = 0 and
b(0, ζ) = |ζ|. Furthermore, on |z| = 1 we have |b(z, ζ)| = 1 and for |z| < 1 we have
|b(z, ζ)| < 1, which we have already proved in Section I.1 Exercise 11 in [2]. For ζ = 0
we’ll simply define b(z, 0) := z.
For some 0 < r < 1, let f be a function that is holomorphic on |z| ≤ r with zeros ζ1, . . . , ζk
in |z| ≤ r (zeros with a multiplicity greater than 1 are counted again), and let us define
the function

f1(z) := f(z)

(
k∏

n=1

b

(
z

r
,
ζn
r

))−1
. (1)

Note that with f1 we actually mean the analytic continuation of the same function to the
zeros of f . Now this function is clearly holomorphic, has no zeros and |f1(z)| = |f(z)|
for |z| = r since |b(1, ζ)| = 1. With the help of this function we can now show Jensen’s
inequality.

Lemma 1.1 (Jensen’s inequality). Let 0 < r < 1, and let f be holomorphic in |z| ≤ r for
z ∈ C with zeros as above. If f(0) 6= 0, we have

log|f(0)| ≤ 1

2π

∫ 2π

0
log|f(reit)|dt.

If f has a zero of order s at z = 0, then

log

∣∣∣∣ limz→0

f(z)

zs

∣∣∣∣+ log(rs) ≤ 1

2π

∫ 2π

0
log|f(reit)|dt.

Proof. Since f1 is holomorphic and has no zeros, we have that (the principal branch)
Log(f1(z)) = log|f1(z)|+ iArg (f1(z)) is holomorphic too1 and thus log|f1(z)| is harmonic
as the real part of a holomorphic function. The mean value property (see Theorem 11 in
the appendix) then gives us

log|f1(0)| = 1

2π

∫ 2π

0
log
∣∣f1(reit)∣∣ dt.

1Since f1 is holomorphic, we have that f ′1 and 1
f1

and thus
f ′1
f1

are holomorphic as f1 6= 0, and so its
primitive Log(f1(z)) is holomorphic in the simply connected (closed) domain |z| ≤ r.
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Suppose that f does not vanish on both 0 and |z| = r. Writing out f1 as in Equation (1)

and noting that b
(

0, ζnr

)
= |ζn|

r and
∣∣∣b( reitr , ζnr )∣∣∣ = 1, we obtain

log|f(0)| − log

(
k∏

n=1

|ζn|
r

)
=

1

2π

∫ 2π

0
log
∣∣f(reit)

∣∣ dt,
which is equal to

log|f(0)|+ log

(
k∏

n=1

r

|ζn|

)
=

1

2π

∫ 2π

0
log
∣∣f(reit)

∣∣ dt. (2)

By continuity in r in the above equality, we may substitute r in Equation (2) by r′ (where
|ζn| < r′ < r for each n) and then let r′ approach r and thus we see that it also holds
if f has zeros on |z| = r. Since r ≥ |ζn| for each n, the logarithm yields a non-negative
number, which we can delete, and thus we obtain

log|f(0)| ≤ 1

2π

∫ 2π

0
log
∣∣f(reit)

∣∣ dt.
If f has a zero of order s at z = 0, then we split f1(z) into the product of g(z) := f(z)

zs

and zs
(∏k

n=1 b
(
z
r ,

ζn
r

))−1
. Now f1(0) is the product of the limits for z → 0 of both, and

noting that |z|s
∣∣∣∏k

n=1 b
(
z
r ,

ζn
r

)∣∣∣−1 = rs on |z| = r since b
(
z
r , 0
)

= z
r , we repeat the proof

above to obtain the other inequality.

1.2 Blaschke products

Let p > 0 and f be holomorphic in D. Define hp(f, r) = 1
2π

∫ 2π
0

∣∣f(reit)
∣∣p dt. We will later

use this function to define the Hardy space.
If p ≥ 1, 0 < r, ρ < 1, then we see that

hp(f, rρ) = ‖f(rρeit)‖pLp(T) = ‖f(reit) ∗ Pρ(t)‖pLp(T),

since f(rρeit) = f(reit) ∗ Pρ(t) (see Lemma 8 in the appendix). Now by Minkowski’s
inequality2 we get

‖f(reit) ∗ Pρ(t)‖pLp(T) ≤ ‖Pρ(t)‖
p
L1(T)‖f(reit)‖pLp(T) = hp(f, r),

since ‖Pρ(t)‖L1(T) = 1 as a non-negative summability kernel. So we have hp(f, rρ) ≤
hp(f, r), which means that hp(f, r) is a non-decreasing function in r. In particular, this
holds for p = 2, and with this case we will now prove it for all p > 0.

Lemma 1.2. Let p > 0 and f be holomorphic in D. Then hp(f, r) is a non-decreasing
function in r.

2It’s a special case of Young’s convolution inequality, however, we will give the proof in the appendix
in Lemma 3, since we will use this inequality more than once.
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Proof. Let 0 < r′ < r < 1. First suppose that f has no zeros on |z| ≤ r. Now choose
the principal branch of g(z) = (f(z))

p
2 = exp(p2 Log(f(z))). This function is holomorphic,

since we saw earlier that Log(f(z)) is holomorphic. Now, by the p = 2 case, we have that

1

2π

∫ 2π

0

∣∣f(r′eit)
∣∣p dt =

1

2π

∫ 2π

0

∣∣g(r′eit)
∣∣2 dt

≤ 1

2π

∫ 2π

0

∣∣g(reit)
∣∣2 dt =

1

2π

∫ 2π

0

∣∣f(reit)
∣∣p dt.

Now suppose that f has zeros in |z| < r, but not on |z| = r, then we define f1(z) again
as in Equation (1) with the same r, and note that |f(z)| = |f1(z)| on |z| = r and that

|f(z)| < |f1(z)| in |z| < r, since we had that
∣∣∣b( zr , ζnr )∣∣∣ < 1 in |z| < r. Now we get

hp(f, r
′) < hp(f1, r

′) ≤ hp(f1, r) = hp(f, r)

by the previous case.
Now suppose that f has zeros on |z| = r. As hp(f, r) is a continuous function in r, we can
use the same continuity argument as in the proof of Lemma 1.1.

We will now set up the definition of the Blaschke product.

Proposition 1.3. Let (ζn)∞n=1 be a sequence in C with |ζn| < 1 and
∑∞

n=1(1− |ζn|) <∞.
Then we have that

B(z) :=
∞∏
n=1

b(z, ζn)

is absolutely and uniformly convergent in every closed disc with radius 0 < r < 1.

Proof. Let 0 < r < 1. As shown in Lemma 15 in the appendix, we only need to show
that

∑∞
n=1|1− b(z, ζn)| converges uniformly on |z| ≤ r, since 0 < |b(z, ζn)| < 1 on |z| ≤ r

with z 6= ζn: in the case that z = ζn this infinite product is simply equal to zero. For
0 < |ζn| < 1, we have that 0 < |zζn| < r and so we see that∣∣∣∣1− ζ̄n(ζn − z)

|ζn|(1− zζ̄n)

∣∣∣∣ =

∣∣∣∣ |ζn| − zζ̄n|ζn| − |ζn|2 + zζ̄n
|ζn|(1− zζ̄n)

∣∣∣∣
=

∣∣∣∣(|ζn|+ zζ̄n)(1− |ζn|)
|ζn|(1− zζ̄n)

∣∣∣∣
≤ |ζn|+ |z||ζn|
|ζn|(1− |z||ζn|)

(1− |ζn|)

=
1 + |z|

1− |zζn|
(1− |ζn|)

≤ 1 + r

1− r
(1− |ζn|).

Due to the assumption that
∑∞

n=1(1− |ζn|) <∞, we can conclude that the series will be
uniformly and absolutely convergent by the Weierstraß M-test, and by the same assump-
tion we also know that there are at most finitely many ζn = 0, so the same is true for the
infinite product.

Definition 1.4. The function B(z) as defined above is called the Blaschke product cor-
responding to the sequence (ζn)∞n=1 in D, assuming that (ζn)∞n=1 satisfies the Blaschke
condition

∑∞
n=1(1− |ζn|) <∞.

4



The Blaschke product is holomorphic, by noting that B(z) = exp(
∑∞

n=1 Log(b(z, ζn)))
contains a uniformly convergent sum of holomorphic functions in D wherever b(z, ζn) 6= 0
for all n (again, the infinite product would be equal to zero else). B(z) vanishes only in
the points ζn: all these points have a finite multiplicity, else the Blaschke condition would
not hold. Since |b(z, ζn)| < 1 in D, we also have |B(z)| < 1 in D.

1.3 Hardy spaces

We now have the tools to define the Hardy space Hp and the Nevanlinna class N .

Definition 1.5. Let p > 0. The Hardy space3 Hp is the space of all functions holomorphic
in D such that

‖f‖pHp := sup
0<r<1

hp(f, r) <∞.

The Nevanlinna class N is the space of all functions holomorphic in D such that

‖f‖N := sup
0<r<1

∫ 2π

0
log+|f(reit)| dt <∞,

where log+ is the positive part of the function log, i.e. log+(x) = sup(0, log(x)) for each
x ≥ 0.

By Lemma 1.2 we have that sup
0<r<1

hp(f, r) = lim
r→1

hp(f, r), which makes it a lot easier to cal-

culate ‖f‖Hp . For p ≥ 1, ‖f‖Hp is a norm on Hp. We will later see that a function f ∈ Hp

can be identified with a function fbd ∈ Lp(T). If 0 < p′ < p, then we have Hp ⊆ Hp′ ⊆ N :
the first inclusion follows from Theorem 1.11 later on, the second inclusion is obvious for
p ≥ 1 from the fact that log+ x ≤ xp for x ≥ 0, and so we have ‖f‖N ≤ ‖f‖pHp .

We will now prove a useful equivalence in the Hardy space H2.

Lemma 1.6. Let f(z) be of the form f(z) =
∞∑
n=0

anz
n, then f ∈ H2 if and only if

∞∑
n=0
|an|2 <∞.

Proof. In the lecture notes of the course Fourier Analysis we have seen that the sequence(
1√
2π
ein(·)

)∞
n=−∞

is an orthonormal system in L2(T), and by Lemma 4.28 in [3] we know

that

(2π)2

∥∥∥∥∥
∞∑
n=0

anr
n 1√

2π
eint

∥∥∥∥∥
2

L2(T)

=
∞∑
n=0

|an|2r2n,

by taking the coefficients anr
n with an = 0 for n < 0 and 0 < r < 1, where the left part

has a fixed finite value if and only if the left sum converges in L2(T) if and only if the
right part is finite. Now we note that

h2(f, r) =
1

2π

∫ 2π

0

∣∣∣∣∣
∞∑
n=0

anr
neint

∣∣∣∣∣
2

dt = (2π)2

∥∥∥∥∥
∞∑
n=0

anr
n 1√

2π
eint

∥∥∥∥∥
2

L2(T)

.

3We may also define H∞ as the space of all functions holomorphic in D such that ‖f‖H∞ :=
sup

0<|z|<1

|f(z)| <∞, but we will not use this space. Note that H is for Hardy and N is for Nevanlinna.
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By the monotone convergence theorem4 applied on the function |an|2r2n, which is non-

decreasing in r, we obtain lim
r→1

∞∑
n=0
|an|2r2n =

∞∑
n=0
|an|2 and thus we have

‖f‖2H2 =
∞∑
n=0

|an|2,

from which the desired conclusion follows.

By Corollary 4.32 in [3] we can find a unique fbd ∈ L2(T) with f̂bd = an, and we see that

fbd(t) =
∞∑
n=0

ane
int (in L2(T)). The convolution of fbd(t) with the Poisson kernel Pr(t)

is equal to f(reit), which means that f is the Poisson integral of fbd. Since the Poisson
kernel is a summability kernel, we have for 1 ≤ p < ∞ that the Poisson integral of some
function in Lp(T) converges in the same space to this function by Corollary 4.23 in [3], so
in particular we have that lim

r→1
f(reit) = fbd(t) in L2(T). By Theorem 3.11 (a theorem that

we will see later in a subsection that is independent of this section) we have convergence
almost everywhere, since L2(T) ⊆ L1(T).

1.4 Canonical factorization

Proposition 1.7. Let f ∈ N , then its zeros (counted as many times as their multiplicities)
satisfy the Blaschke condition.

Proof. Note that f is holomorphic in D, so f is holomorphic in |z| ≤ r for all 0 < r < 1.
Without loss of generality we assume that f(0) 6= 0 (the proof goes analogously if we
iterate over these s zeros first, using the second Jensen’s inequality of Lemma 1.1). From
Equation (2) in the proof of Lemma 1.1 we obtain

log|f(0)| −
k∑

n=1

log|ζn|+ k log(r) ≤ 1

2π

∫ 2π

0
log
∣∣f(reit)

∣∣ dt,
where we only consider the first k zeros of f and 0 < ζn < r for each 1 ≤ n ≤ k. Note
that we now have an inequality sign, because we took the other zeros out of the left side
of the equality. Now we let r → 1 and see that

log|f(0)| − ‖f‖N ≤
k∑

n=1

log|ζn|.

This inequality holds for all k and so it holds also as k →∞, and so
∞∑
n=1

log|ζn| is bounded

from below and thus converges to some negative real number by the monotone convergence
theorem for sequences of real numbers, which we combine with the observation in the proof

of Lemma 15 to see that the infinite product
∞∏
n=1
|ζn| converges, and by the same lemma

we obtain
∞∑
n=1

(1− |ζn|) <∞.

4This works as explained in Footnote 7, noting that we have convergence almost everywhere, as L2(T) ⊆
L1(T).

6



By Proposition 1.7 and the fact that Hp ⊆ N we may define the Blaschke product B on D
for every f ∈ Hp (corresponding to the sequence of zeros of f), and both functions share
exactly the same zeros. Since this Blaschke product is holomorphic in D, we have that the
analytic continuation of F (z) := f(z)(B(z))−1 (we will just call this F (z)) to the zeros of
f is holomorphic, has no zeros and satisfies |F (z)| = |f(z)||B(z)|−1 > |f(z)| in D.

Definition 1.8. Let f ∈ N . We call f = BF the canonical factorization of f , where B
is the Blaschke product corresponding to the sequence of zeros of f .

We note that a Blaschke product corresponding to the sequence of zeros of f can be found
for every function f in N , since a holomorphic function in D either has no zeros, count-
ably many zeros5, or is the zero function6: in the first case B = 1 (that’s by definition the
product of no elements), and in the last case it makes sense to define B = 0 in D, since
ζ = 0 has a ”multiplicity of infinity”, and so B will ”consist of infinitely many products of
z”, which means that B = 0 in D and we extend this analytically: however, F will not be
defined, but since f = 0 is a trivial case, there is no information to be obtained from this f .

As we may expect, there is a useful relation between f and F .

Theorem 1.9. Let f ∈ Hp for p > 0, and let f = BF be its canonical factorization.
Then we have that F ∈ Hp and ‖F‖Hp = ‖f‖Hp.

Proof. The Blaschke product B is of the form

B(z) = lim
k→∞

zs
k∏

n=1

b(z, ζn)

and so we define Fk(z) := f(z)

(
zs

k∏
n=1

b(z, ζn)

)−1
, which is clearly holomorphic and

converges uniformly to F in every closed disc with radius 0 < r < 1. Also, for each k

we have that

∣∣∣∣zs k∏
n=1

b(z, ζn)

∣∣∣∣ converges uniformly to 1 as |z| → 1 (and so does its −p-th

power), which means that for any ε > 0 we have∣∣∣∣∣∣ 1

2π

∫ 2π

0

∣∣f(reit)
∣∣p dt− 1

2π

∫ 2π

0

∣∣f(reit)
∣∣p ∣∣∣∣∣zs

k∏
n=1

b(z, ζn)

∣∣∣∣∣
−p

dt

∣∣∣∣∣∣
≤ 1

2π

∫ 2π

0

∣∣f(reit)
∣∣p |∣∣∣∣∣zs

k∏
n=1

b(z, ζn)

∣∣∣∣∣
−p

− 1|dt

< ε
1

2π

∫ 2π

0

∣∣f(reit)
∣∣p dt = εhp(f, r)

5Each zero will have finite multiplicity as reasoned underneath Definition 1.4: else the Blaschke condition
would clearly not hold.

6If f ∈ N has uncountably many zeros, then we can find a limit point of these zeros in D, which implies
that f = 0 in D by the identity theorem. The limit point exists in D: suppose there are only countably
many zeros in {z ∈ C : |z| < 1 − 1

n
} for each n ∈ N. Taking the countable union of these infinitely many

n, being equal to D, yields a contradiction with D having uncountably many zeros. Now we can find a
compact subset of D (by taking the closure of some subset of the form as above) which contains infinitely
many zeros and will thus have a limit point within this compact subset.
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for r close enough to 1. Now lim
r→1

hp(f, r) is finite by assumption, so we have that both

terms are equal as r → 1, and thus we get

‖Fk‖pHp = lim
r→1

1

2π

∫ 2π

0

∣∣Fk(reit)∣∣p dt = lim
r→1

1

2π

∫ 2π

0

∣∣f(reit)
∣∣p ∣∣∣∣∣zs

k∏
n=1

b(z, ζn)

∣∣∣∣∣
−p

dt

= lim
r→1

1

2π

∫ 2π

0

∣∣f(reit)
∣∣p dt = ‖f‖pHp ,

which means that lim
k→∞
‖Fk‖pHp = ‖f‖pHp . Now let r < 1. Since Fk converges uniformly to

F on |z| ≤ r, we may swap the limit k →∞ with the integral in the definition of hp(Fk, r),
and hp(Fk, r) is non-decreasing as r → 1 by Lemma 1.2, so we see that

hp(F, r) ≤ lim
k→∞

hp(Fk, r) ≤ lim
k→∞

lim
r→1

hp(Fk, r) = lim
k→∞
‖Fk‖Hp = ‖f‖pHp ,

which gives ‖F‖Hp ≤ ‖f‖Hp when letting r approach 1, and since ‖f‖Hp < ∞, we have
that F ∈ Hp. For the reverse inequality, we simply recall that |F (z)| > |f(z)| in D to
obtain

‖f‖pHp = lim
r→1

1

2π

∫ 2π

0

∣∣f(reit)
∣∣p dt ≤ lim

r→1

1

2π

∫ 2π

0

∣∣F (reit)
∣∣p dt = ‖F‖pHp

and now we can also conclude that ‖F‖Hp = ‖f‖Hp .

This relation is useful in the theory of Hardy spaces, because we may work with non-
vanishing functions, and thus can be raised to any power in order to move to other Hardy
spaces that may be more convenient.

With the theorem we can prove an interestic fact about the continuous extension of the
Blaschke product to the boundary of D.

Corollary 1.10. Let B be a Blaschke product in D, then we have that |B(eit)| = 1 for
almost every t.

Proof. We recall that |B(z)| < 1 and that B is harmonic (by Proposition 10 in the ap-
pendix) in D, so by Lemma 9 in the appendix, we know that B is the Poisson integral
of some bounded function (a function in L∞(T) ⊆ L2(T) ⊆ L1(T)), which means that
Bbd(t) := B(eit) exists as a radial limit (i.e. B(eit) := lim

r→1
B(reit) exists) for almost every

t by Theorem 3.11. Now if we take f = B, we see that F = 1 everywhere in the canon-
ical factorization and since |B(reit)| is non-decreasing in r, we may apply the monotone
convergence theorem7 to obtain

‖f‖2H2 = lim
r→1

1

2π

∫ 2π

0

∣∣B(reit)
∣∣2 dt =

1

2π

∫ 2π

0

∣∣B(eit)
∣∣2 dt = ‖Bbd‖2L2(T) <∞,

so B ∈ H2 and by the previous theorem we have ‖f‖H2 = ‖F‖H2 = 1, and combining

the equalities we obtain 1
2π

∫ 2π
0

∣∣B(eit)
∣∣2 dt = 1, which can only hold if

∣∣B(eit)
∣∣ = 1 almost

everywhere, since
∣∣B(eit)

∣∣ ≤ 1 on D by continuity.

7As the monotone convergence theorem holds for the sequence of continuous functions |B(rne
it)|2 with

limit |B(eit)|2 almost everywhere for all sequences rn → 1 as n → ∞, this simply holds too for the limit
r → 1.

8



1.5 Boundary values of a function in Hp

Now we arrive at an important theorem that gives us information about the boundary
function of functions in Hardy spaces.

Theorem 1.11. Let p > 0 and suppose f ∈ Hp. Then the limit fbd(t) = f(eit) :=
lim
r→1

f(reit) exists for almost all t ∈ T, fbd ∈ Lp(T) and we have

‖f‖Hp = ‖fbd‖Lp(T).

Proof. If p = 2, then the first two statements are indeed true, as we have already discussed
after Lemma 1.6. We recall from the lemma that

‖f‖2H2 =

∞∑
n=0

|an|2,

and by Corollary 4.32 in [3] we also have that

∞∑
n=0

|an|2 =
∞∑

n=−∞
|f̂bd(n)|2 =

1

2π

∫ 2π

0
|fbd(t)|2dt = ‖fbd‖2L2(T)

and so it’s proven for p = 2.
If p > 0, then we consider the canonical factorization f = BF . Define G(z) := (F (z))

p
2 and

note that G ∈ H2, since F ∈ Hp by Theorem 1.9, and subsequently we have that G(eit) :=
lim
r→1

G(reit) exists for almost every t ∈ T by the case p = 2, and thus the same holds for

F (eit) := lim
r→1

F (reit), where
(
F (eit)

) p
2 = G(eit). As B(eit) exists a.e. and |B(eit)| = 1 a.e.

by the previous corollary, we obtain that f(eit) := lim
r→1

f(reit) = lim
r→1

B(reit)F (reit) exists

a.e. and |f(eit)|
p
2 = |G(eit)| a.e. (also after taking squares), from which we may conclude

that

‖f‖pHp = ‖F‖pHp = ‖G‖2H2 =
1

2π

∫ 2π

0
|G(eit)|2dt =

1

2π

∫ 2π

0
|f(eit)|pdt = ‖fbd‖pLp(T),

where the first equality holds due to Theorem 1.9.

Before proving the next theorem, we recall that f ∈ H2 is the Poisson integral of some
function fbd ∈ L2(T) and that this Poisson integral converges to fbd in L2(T), as we stated
after Lemma 1.6. The same is true if we replace 2 by p ≥ 2, since fbd(t) := lim

r→1
f(reit)

exists a.e. and fbd ∈ Lp(T) by the previous theorem, and Lp(T) ⊆ L2(T) for p ≥ 2, so
fbd ∈ L2(T) is the same limit a.e. as stated after the Lemma 1.6, so f is the Poisson
integral of fbd. Convergence of this Poisson integral in Lp(T) is secured by said discussion
after the lemma.

We now want to prove the same for H1, and by the same reasoning as above this will then
follow for Hp with p ≥ 1. But first we prove a theorem that allows us to ”upgrade” to
Hardy spaces of greater p.

Theorem 1.12. Let 0 < p < p′ and suppose that f ∈ Hp. If we have f(eit) ∈ Lp′(T),
then f ∈ Hp′.
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Proof. Let f = BF be the canonical factorization of f , then define G(z) = (F (z))
p
2 . We

have that G ∈ H2, hence G is the Poisson integral of G(eit) ∈ L2(T), but also G(eit) ∈

L
2p′
p (T), using the assumption that f(eit) ∈ Lp′(T) and the fact that |f(eit)|

p
2 = |G(eit)|

a.e. as seen in the proof of the previous theorem. We note that 2p′

p ≥ 2, and so by the

discussion above we have that G(reit) converges to G(eit) in L
2p′
p (T) as a Poisson integral.

Since ∣∣∣∣‖G(reit)‖
L

2p′
p (T)

− ‖G(eit)‖
L

2p′
p (T)

∣∣∣∣ ≤ ‖G(reit)−G(eit)‖
L

2p′
p (T)

→ 0

as r → 1 by the reverse triangle inequality, we obtain

lim
r→1

1

2π

∫ 2π

0
|G(reit)|

2p′
p dt = lim

r→1
‖G(reit)‖

2p′
p

L
2p′
p (T)

= ‖G(eit)‖
2p′
p

L
2p′
p (T)

<∞

and so G ∈ H
2p′
p . This means that F ∈ Hp′ , and repeating last part of the proof of

Theorem 1.9 (restating the theorem by swapping f with F while keeping the canonical
factorization f = BF the same), we conclude that f ∈ Hp′ .

Now we will prove the boundary value case for H1. For this we need the following lemma.

Lemma 1.13. Any function in H1 can be decomposed into a product of two functions in
H2.

Proof. Suppose f ∈ H1 and let f = BF be its canonical factorization. Take f1 := F
1
2 and

f2 := BF
1
2 . Now clearly f1 ∈ H2 and the same is true for f2, since

∣∣B(eit)
∣∣ ≤ 1 on D as

noted in Corollary 1.10.

Theorem 1.14. Let f ∈ H1 and suppose that fbd is its boundary value. Then f is the
Poisson integral of fbd.

Proof. We write f = f1f2 with fj ∈ H2 with j = 1, 2 as in the previous lemma and note
that

f(reit)− f(eit) = f1(re
it)f2(re

it)− f1(eit)f2(reit) + f1(e
it)f2(re

it)− f1(eit)f2(eit).

Using the Cauchy-Schwarz inequality twice in the last line, we obtain

‖f(reit)− f(eit)‖L1(T)

= ‖f2(reit)
(
f1(re

it)− f1(eit)
)

+ f1(e
it)
(
f2(re

it)− f2(eit)
)
‖L1(T)

≤ ‖f2(reit)
(
f1(re

it)− f1(eit)
)
‖L1(T) + ‖f1(eit)

(
f2(re

it)− f2(eit)
)
‖L1(T)

≤ ‖f2(reit)‖L2(T)‖f1(reit)− f1(eit)‖L2(T) + ‖f1(eit)‖L2(T)‖f2(reit)− f2(eit)‖L2(T)

→ 0

as r → 1, since ‖fj(reit)− fj(eit)‖L2(T) → 0 as a Poisson integral. Now let∑∞
n=−∞ f̂bd(n)r|n|eint be the Poisson integral of fbd and write f(z) =

∑∞
n=0 anz

n. This
means that

‖
∞∑

n=−∞
(an − f̂bd(n))r|n|eint‖L1(T) = ‖f(reit)− f(eit)‖L1(T) → 0

as r → 1 with an = 0 for n < 0, and since for each 0 < r < 1 the terms r|n|eint are linearly
independent, we see that this can only hold if an = f̂bd(n) for all n. We can now conclude
that f is the Poisson integral of fbd.
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We arrive at the final theorem of this section, which states the relationship between Hardy
spaces and the Fourier coefficients of the function on the boundary.

Theorem 1.15. Let p ≥ 1. Then we have that f ∈ Hp if and only if f is the Poisson
integral of fbd ∈ Lp(T) with f̂bd(n) = 0 for all n < 0.

Proof. Suppose f ∈ H1, then by the previous theorem, we have indeed that f is the
Poisson integral of fbd with f̂bd(n) = 0 for all n < 0, and fbd ∈ L1(T) by Theorem 1.11. As
explained above Theorem 1.12, we have that the same now holds for f ∈ Hp with p ≥ 1.
Now suppose that f is the Poisson integral of fbd ∈ Lp(T) with f̂bd(n) = 0 for each n < 0,

then f(reit) =
∑∞

n=−∞ f̂bd(n)r|n|eint =
∑∞

n=0 f̂bd(n)(reit)n, so f is holomorphic in D, and
by Minkowski’s inequality we obtain

‖f(reit)‖Lp(T) = ‖(fbd ∗ Pr)(t)‖Lp(T) ≤ ‖Pr(t)‖L1(T)‖fbd(t)‖Lp(T) = ‖fbd(t)‖Lp(T) <∞,

and by the monotone convergence theorem for sequences of real numbers we have that
hp(f, r) = ‖f(reit)‖pLp(T) converges, which means that

lim
r→1

hp(f, r) = lim
r→1
‖f(reit)‖pLp(T) <∞,

and so f ∈ Hp.

Theorem 1.15 gives us a sufficient condition for a boundary function in Lp(T) in the
holomorphic case of the Dirichlet problem: for p ≥ 1, given a function fbd ∈ Lp(T), we

may calculate the Fourier coefficients of fbd, and if we have f̂bd(n) = 0 for each n < 0,
then we can use the same expression as for a continuous boundary function as seen in
the introduction. We may take the Poisson integral of fbd, which is in that case a holo-
morphic function, and the Poisson integral converges back to fbd in Lp(T). Note that if
fbd ∈ C(T) ⊆ L1(T) with the assumption as above, then by the weaker (harmonic) case,
we have uniform convergence on T of the Poisson integral as r → 1. Conversely, if we are
given a function f ∈ Hp for some p ≥ 1, then we can solve the converse of this problem
by letting r → 1, which then converges in Lp(T) to some boundary function fbd ∈ Lp(T).

For the harmonic case of the Dirichlet problem we just combine two arguments of which
one we have already used extensively throughout this section: for fbd ∈ Lp(T) (with
p ≥ 1), the Poisson integral of fbd converges back to fbd in Lp(T), as discussed at the end
of Section 1.3, and the Poisson integral is uniformly convergent8 on every closed disc with
center 0 in D. This means that we may swap derivatives and series in the interior of this
disc, so we only need to check that the terms f̂bd(n)r|n|eint are harmonic for each n ∈ Z.
Using the polar coordinates expression of the Laplace operator ∆ we have

∆f̂bd(n)r|n|eint =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂t2

)
f̂bd(n)r|n|eint

= |n|(|n| − 1)f̂bd(n)r|n|−2 + |n|f̂bd(n)r|n|−2 − n2f̂bd(n)r|n|−2

= (n2 − |n|+ |n| − n2)f̂bd(n)r|n|−2

= 0

for |n| 6= 0, 1. For n = 0 it’s trivial, since any derivative of a constant is equal to zero, and
for |n| = 1 the first term evaluates to zero, while the other two terms cancel each other

8Using the fact that |f̂bd(n)| ≤ 1 for all |n| great enough by the Riemann-Lebesgue lemma (Theorem
3.9 in [3]) and the Weierstraß M-test with the geometric series.
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out. So the Poisson integral of f is harmonic in every open disc with center 0 within D,
and thus harmonic in D itself.

We have convergence almost everywhere by Theorem 3.11, and if the function fbd ∈ Lp(T)
has a continuous representative, then this representative has a Poisson integral that con-
verges uniformly as seen in Theorem 6.4 in [3] and in particular everywhere. So the
convergence almost everywhere may be ”completed” whenever the boundary function in
Lp(T) has a continuous representative.

We might not be satisfied yet. Suppose we were only given the Fourier coefficients of
the boundary function fbd ∈ Lp(T) for some p ≥ 1. Is it possible to find or construct
fbd without having to solve the Dirichlet problem (i.e. without constructing the Poisson
integral)? Can we do this directly? Of course, building the Fourier series with these
Fourier coefficients would be an option. This would be a nice result, since we then only
have to take one limit, instead of taking the limit of an infinite series like with the Poisson
integral. But what if the Fourier series doesn’t converge? We would now like to construct
the boundary function fbd while only knowing its Fourier coefficients f̂bd(n) for n ∈ Z by
building the Fourier series of fbd: this can be done by proving that the Fourier series of fbd
converges back to fbd in Lp(T) for 1 < p < ∞. The next three sections will be dedicated
to proving this fact.
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2 Interpolation

In this section we will introduce the weak Lp space, a generalization of the Lp space, which
will be used to state the Marcinkiewicz interpolation theorem. This theorem will be ap-
plied abundantly in Section 3 and Section 4.

2.1 Distribution functions

We recall that Lp(T) spaces are defined using the Lebesgue measure λ (as T corresponds
to a subset of R) while looking back at Proposition 1 in the appendix. We will now define
the distribution function df .

Definition 2.1. The distribution function of a measurable function f : T → C is the
function df : [0,∞)→ [0, 2π] defined by

df (x) := λ({t ∈ T : |f(t)| > x}).

This is a non-increasing function that gives us information about the height of f (not
pointwise). Intuitively, for positive simple functions we just rearrange the blocks under
the function from high to low and then switch the axes, thus measuring their height. See
the example below.

0 a1 a2 a3 a4 a5 2π

α1

α2

α3

t

f(t)

0 α1 α2α3

2π

x

df (x)

Figure 1: The simple function f(t) = α11[a1,a2)(t) + α21[a3,a4)(t) + α31[a4,a5)(t) (given by
the blue line on the left) and its distribution function df (x) (given by the red line on the
right).

Note that df is a measure, since it’s equal to λ
(
|f |−1 ((x,∞])

)
. Observe that df (x) is also

equal to 2π − λ({t ∈ T : |f(t)| ≤ x}) and9
∫ 2π
0 1{|f(t)|>x}(x, t) dλ(t).

The following lemma shows the connection between the Lp(T)-norm and the distribution
function.

Lemma 2.2. Let 0 < p <∞, and suppose that f ∈ Lp(T). Then we have

‖f‖pLp(T) =
p

2π

∫ ∞
0

xp−1df (x) dx.

9Even though it’s an integral that we could scale by 1
2π

, we don’t scale it: the sole purpose of a
distribution function is to measure a (specific) subset of T.
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Proof. Note that

‖f‖pLp(T) =
1

2π

∫ 2π

0
|f(t)|p dλ(t)

=
1

2π

∫ 2π

0

∫ |f(t)|
0

pxp−1 dx dλ(t)

=
1

2π

∫ 2π

0

∫ ∞
0

pxp−11{|f(t)|>x}(x, t) dx dλ(t),

and since this integral is finite, we may swap the integrals due to Fubini’s theorem to
obtain

‖f‖pLp(T) =
1

2π

∫ ∞
0

∫ 2π

0
pxp−11{|f(t)|>x}(x, t) dλ(t) dx

=
p

2π

∫ ∞
0

xp−1
∫ 2π

0
1{|f(t)|>x}(x, t) dλ(t) dx

=
p

2π

∫ ∞
0

xp−1df (x) dx.

2.2 Weak Lp spaces

Let 0 < p <∞, and suppose that f ∈ Lp(T). For any x > 0, we have the estimate10

xpdf (x) =

∫ 2π

0
xp1{|f(t)|>x}(x, t) dλ(t)

≤
∫ 2π

0
|f(t)|p1{|f(t)|>x}(x, t) dλ(t) +

∫ 2π

0
|f(t)|p1{|f(t)|≤x}(x, t) dλ(t)

= 2π‖f‖pLp(T),

which yields the inequality

df (x) ≤
2π‖f‖pLp(T)

xp
.

The concept of Lp(T) spaces can be generalized by replacing the numerator of the fraction
on the right side of this inequality by some constant.

Definition 2.3. For 0 < p <∞, the space weak Lp(T) is defined as the space Lp,∞(T) of
Lebesgue measurable functions f such that there exists C > 0 such that

df (x) ≤
(
C

x

)p
for all x > 0.
For p =∞, we simply define L∞,∞(T) := L∞(T).

10This is Chebyshev’s inequality right here.

14



Two functions in Lp,∞(T) will be considered equal if they are equal almost everywhere, as
taken from its subset Lp(T). For 0 < p < ∞, we can find the tightest upper bound and
define this as the Lp,∞(T)-norm11 of f :

‖f‖Lp,∞(T) := inf

{
C > 0 : df (x) ≤ Cp

xp
for all x > 0

}
Rewriting df (x) ≤ Cp

xp as xdf (x)
1
p ≤ C and noting that the left part is the tightest lower

bound of C exactly when C is the tightest upper bound of the left part, we may write the
Lp,∞(T)-norm in a more explicit way:

‖f‖Lp,∞(T) = sup
x>0

xdf (x)
1
p

It is obvious from the first definition of the Lp,∞(T)-norm that ‖f‖pLp,∞(T) ≤ 2π‖f‖pLp(T),
but this can also quickly be seen from the explicit definition, recalling the estimate in the
beginning of this subsection.
If p =∞, then clearly we take the norm ‖f‖L∞,∞(T) := ‖f‖L∞(T) = ess sup

t∈T
|f(t)| of L∞(T).

Weak Lp(T) spaces are in fact complete spaces, and for p > 1 there exists another func-
tional N : Lp,∞(T)→ R that is in fact a norm, and hence (Lp,∞(T), N) is a Banach space,
as shown in [4]. However, we will only focus on the quasi-norm ‖·‖Lp,∞(T).

For 0 < p <∞ we have that Lp(T) is a strict subset of Lp,∞(T): if we look at the function

f : T → C defined by f(t) = t
− 1
p (the 2π-periodic extension of the same function on

(0, 2π]), we clearly have that f 6∈ Lp(T), but we do have df (x) = λ({t ∈ (0, 2π] : t <
1
xp }) = 1

xp for all x > 0, so f ∈ Lp,∞(T). Another good example that proves this strict

inclusion is the function g(t) = |sin(t)|−
1
p : we have dg(x) = λ({t ∈ T : |sin(t)| < x−p}),

which is clearly equal to 2π for 0 < x < 1, while for x ≥ 1 we observe that |sin(t)| < x−p

is equivalent to t < arcsin(x−p) for 0 ≤ t ≤ π
2 , and thus by symmetry we get12 λ({t ∈

T : |sin(t)| < x−p}) = 4 arcsin(x−p) ≤ 2πx−p. So both cases taken together, we have
dg(x) ≤ 2π

xp for all x > 0. However, g 6∈ Lp(T) due to the estimate g(t) ≥ |f(t)|.

2.3 Marcinkiewicz interpolation theorem

We will now prove the Marcinkiewicz interpolation theorem for sublinear operators Lp(T)→
Lp,∞(T) with 0 < p ≤ ∞. The theorem says that if the operator is bounded for p = p1
and p = p2, then it is also bounded for all p between p1 and p2. But we first recall some
needed concepts and basic definitions13 from functional analysis.

Definition 2.4. Let 0 < p, q <∞ and suppose that T maps Lp(T) to Lq(T):

(i) T is called linear if T (f + g) = T (f) +T (g) and T (λf) = λT (f) for all f, g ∈ Lp(T)
and λ ∈ C;

11This is actually not a norm, but a quasi-norm, i.e. a norm that doesn’t necessarily satisfy the triangle
inequality, but instead satisfies the inequality ‖f + g‖Lp,∞(T) ≤ Cp(‖f‖Lp,∞(T) + ‖f‖Lp,∞(T)) for some
Cp > 0: see [4] for details.

12Recall that 2
π
x ≤ sin(x) for 0 ≤ x ≤ π

2
, so x ≤ sin

(
π
2
x
)

for 0 ≤ x ≤ 1 and thus we see that
arcsin(x) ≤ π

2
x for 0 ≤ x ≤ 1.

13These definitions work for any normed vector space: we are just stating them for Lp(T) and Lq(T),
since we will only use them for these spaces (and their weak version).
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(ii) T is called sublinear if |T (f + g)| ≤ |T (f)| + |T (g)| and |T (λf)| = |λ||T (f)| for all
f, g ∈ Lp(T) and λ ∈ C (all in the pointwise sense on T);

(iii) In the case that T is linear, T is called bounded if there exists C > 0 such that
‖T (f)‖Lp(T) ≤ C‖f‖Lq(T) for all f ∈ Lp(T). In that case we can define the norm
‖T‖Lp→Lq := inf

{
C > 0 : ‖T (f)‖Lp(T) ≤ C‖f‖Lq(T) for all f ∈ Lp(T)

}
(usually we

just write ‖T‖ if the domain and codomain of T have already been specified).

If T is an operator that maps Lp(T) to Lq(T), then T is called an operator of strong type
(p,q). If operator T maps Lp(T) to Lq,∞(T), then T is called an operator of weak type (p,q).

Note that if T is a linear operator mapping measurable functions to measurable functions
that is bounded (on the space of measurable functions, but using the norms as above),
then these two assumptions are enough on the simple functions on T to obtain that T
is bounded in Lp(T), since the simple functions are dense in Lp(T) and thus T can be
uniquely extended to a bounded linear operator on Lp(T).

We will now state and prove the main theorem of this section.

Theorem 2.5 (Marcinkiewicz interpolation theorem). Let 0 < p1 < p2 ≤ ∞. Suppose
that T is a sublinear operator mapping functions in Lp1(T) to measurable funtions and
assume that there exist C1, C2 > 0 such that the following weak type (p1, p1) and weak type
(p2, p2) estimates hold:

‖T (f)‖Lp1,∞(T) ≤ C1‖f‖Lp1 (T) for all f ∈ Lp1(T),

‖T (f)‖Lp2,∞(T) ≤ C2‖f‖Lp2 (T) for all f ∈ Lp2(T).

Then for all p1 < p < p2, there exists C > 0 such that the following strong type (p, p)
estimate holds:

‖T (f)‖Lp(T) ≤ C‖f‖Lp(T)

for all f ∈ Lp(T).

Proof. The idea of the proof is to split f into two cut off functions, the larger one being
in Lp1(T) and the smaller one being in Lp2(T), on which we can apply the sublinearity
property and then estimate them.
We first prove the case p2 < ∞. Fix f ∈ Lp(T) and x > 0. For some δ > 0 that we will
determine later on14, define

f1,x(t) =

 0, |f(t)| ≤ δx,

f(t), |f(t)| > δx

and

f2,x(t) =

 f(t), |f(t)| ≤ δx,

0, |f(t)| > δx.

14A lot of δ > 0 will work, including simply δ = 1, but we go on with this version of the proof, since the
case p2 =∞ will have the structure of this proof anyway, and this way the constants in both cases will be
related, as we will see at the end of the proof. In other words, this proof is more elegant than just directly
taking δ = 1.
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We have p1 − p < 0 and p2 − p > 0, and so observe that

‖f1,x‖p1Lp1 (T) =
1

2π

∫
|f |>δx

|f |p|f |p1−p dλ ≤ 1

2π

∫
|f |>δx

|f |p(δx)p1−p dλ ≤ (δx)p1−p‖f‖pLp(T)

and

‖f2,x‖p2Lp2 (T) =
1

2π

∫
|f |≤δx

|f |p|f |p2−p dλ ≤ 1

2π

∫
|f |≤δx

|f |p(δx)p2−p dλ ≤ (δx)p2−p‖f‖pLp(T),

so f1,x ∈ Lp1(T) and f2,x ∈ Lp2(T) ⊆ Lp1(T). By sublinearity of T we have
|T (f)| ≤ |T (f1,x)|+ |T (f2,x)| and so, if |T (f)(t)| > x, then we must have that
|T (f1,x)(t)| > x

2 or |T (f2,x)(t)| > x
2 , which yields the inclusion

{t ∈ T : |T (f)(t)| > x} ⊆
{
t ∈ T : |T (f1,x)(t)| > x

2

}
∪
{
t ∈ T : |T (f2,x)(t)| > x

2

}
,

which again gives us the inequality

dT (f)(x) ≤ dT (f1,x)
(x

2

)
+ dT (f2,x)

(x
2

)
by subadditivity of λ. Recalling the definition of ‖·‖Lp,∞(T) and using the weak type
assumptions we now get

dT (f)(x) ≤ dT (f1,x)

(x
2

)
+ dT (f2,x)

(x
2

)
≤

(
2

x

)p1
‖T (f1,x)‖p1Lp1,∞(T) +

(
2

x

)p2
‖T (f2,x)‖p2Lp2,∞(T)

≤
(

2C1

x

)p1
‖f1,x‖p1Lp1 (T) +

(
2C2

x

)p2
‖f2,x‖p2Lp2 (T).

We can now directly apply this estimate after using Lemma 2.2:

‖T (f)‖pLp(T) =
p

2π

∫ ∞
0

xp−1dT (f)(x) dx

≤ p

2π

∫ ∞
0

xp−1
(

2C1

x

)p1 1

2π

∫
|f(t)|>δx

|f(t)|p1 dλ(t) dx

+
p

2π

∫ ∞
0

xp−1
(

2C2

x

)p2 1

2π

∫
|f(t)|≤δx

|f(t)|p2 dλ(t) dx

=
p2p1−1Cp11

π
· 1

2π

∫ ∞
0

∫ 2π

0
xp−p1−1|f(t)|p11{|f(t)|/δ>x}(x, t) dλ(t) dx

+
p2p2−1Cp22

π
· 1

2π

∫ ∞
0

∫ 2π

0
xp−p2−1|f(t)|p21{|f(t)|/δ≤x}(x, t) dλ(t) dx

=
p2p1−1Cp11

π
· 1

2π

∫ 2π

0
|f(t)|p1

∫ |f(t)|/δ
0

xp−p1−1 dx dλ(t)

+
p2p2−1Cp22

π
· 1

2π

∫ 2π

0
|f(t)|p2

∫ ∞
|f(t)|/δ

xp−p2−1 dx dλ(t)

=
p2p1−1Cp11
π(p− p1)

· 1

2π

∫ 2π

0
|f(t)|p1

(
|f(t)|
δ

)p−p1
dλ(t)

−p2
p2−1Cp22

π(p− p2)
· 1

2π

∫ 2π

0
|f(t)|p2

(
|f(t)|
δ

)p−p2
dλ(t)

=
p

2π

(
2p1Cp11

(p− p1)δp−p1
+

2p2Cp22 δ
p2−p

(p2 − p)

)
‖f‖pLp(T),
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where we used Fubini’s theorem to swap integrals. We can now choose an appropriate
δ > 0. Since 1

p−p1 ,
1

p2−p > 0, we may want to choose a δ that solves the equation

2p1Cp11
δp−p1

= 2p2Cp22 δ
p2−p,

so we find δ =
(
2p1−p2C

p1
1

C
p2
2

) 1
p2−p1 > 0 and after some simple calculations we can finally see

that

‖T (f)‖Lp(T) ≤ 2

(
p

2π(p− p1)
+

p

2π(p2 − p)

) 1
p

C

1
p−

1
p2

1
p1
− 1
p2

1 C

1
p1
− 1
p

1
p1
− 1
p2

2 ‖f‖Lp(T).

Now suppose that p2 = ∞. Taking the same f1,x and f2,x (with a new undetermined
δ > 0), we again have that f1,x ∈ Lp1(T) and clearly f2,x ∈ L∞(T), since |f2,x| is bounded
everywhere by xδ. We see that ‖T (f2,x)‖L∞(T) ≤ C2‖f2,x‖L∞(T) ≤ C2xδ. Now choosing15

δ = 1
2C2

we have that ‖T (f2,x)‖L∞(T) ≤ x
2 , so λ(

{
t ∈ T : |T (f2,x)(t)| > x

2

}
) = 0, giving us

the simple inequality

dT (f)(x) ≤ dT (f1,x)
(x

2

)
.

Just as in the previous case, this implies

dT (f)(x) ≤
(

2C1

x

)p1
‖f1,x‖p1Lp1 (T)

and repeating the last chain of inequalities in the previous case with only the integral of
p1 and δ = 1

2C2
, we have

‖T (f)‖pLp(T) ≤
p2p1−1Cp11
π(p− p1)

· 1

2π

∫ 2π

0
|f(t)|p1

(
|f(t)|
δ

)p−p1
dλ(t)

=
p2p1Cp11 (2C2)

p−p1

2π(p− p1)
‖f‖pLp(T),

yielding

‖T (f)‖Lp(T) ≤ 2

(
p

2π(p− p1)

) 1
p

C
p1
p

1 C
1− p1

p

2 ‖f‖Lp(T).

We see that this indeed agrees with the previous case after letting p2 →∞.

If p approaches p1 <∞ or p2 <∞, then we see that C approaches infinity. Of course this
is because we only assumed a weak type estimate for p1 and p2. Note that this theorem
holds for the stronger assumption by replacing weak type estimate by strong type (since
we have that ‖f‖pLp,∞(T) ≤ 2π‖f‖pLp(T) for 0 < p <∞).

15Note how this agrees with the δ of the previous case after letting p2 →∞.
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3 Boundedness of the conjugate function

In this section we will introduce the conjugate function and the maximal function of
Hardy–Littlewood. We will look at some properties of these functions, in particular by
applying the Marcinkiewicz interpolation theorem on the last one. Furthermore, we will
discuss how one could prove the boundedness of the mapping f 7→ f̃ in Lp(T) for p > 1
with the help of these functions. In Section 4 we will give a rigorous proof for this using
a different method.

3.1 Conjugate series

We recall the trigonometric series

S(t) :=
∞∑

n=−∞
cne

int

from Fourier Analysis, defined as the limit of the partial sums

SN (t) :=

N∑
n=−N

cne
int.

with cn ∈ C. For now we ignore any form of convergence. We define the signum function
sgn : R→ R by

sgn(x) :=


−1, x < 0,
0, x = 0,
1, x > 0.

Definition 3.1. The conjugate series of the trigonometric series S(t) =
∑∞

n=−∞ cne
int is

the series

S̃(t) :=

∞∑
n=−∞

−i sgn(n)cne
int.

In particular, the Fourier series S[f ](t) =
∑∞

n=−∞ f̂(n)eint of a function f ∈ L1(T) has

a conjugate series S̃[f ](t) :=
∑∞

n=−∞−i sgn(n)f̂(n)eint. The question is whether there

exists a function g ∈ L1(T) such that g has Fourier series S̃[f ]. Obviously, we must then
have ĝ(n) = −i sgn(n)f̂(n).

We see that S̃[f ] is the conjugate series not only to the Fourier series of f , but also to

that of f + C for any constant C ∈ C, since we have ̂(f + C)(n) = f̂(n) + Ĉ(n) = f̂(n)

for n 6= 0 and −i sgn(0)f̂(0) = 0 = −i sgn(0) ̂(f + C)(0). If f is an odd function or more
generally, if we take f := h −

∫ 2π
0 h(t) dt for some h ∈ L1(T), then we have f̂(0) = 0, so

we see that

˜̃S[f ](t) :=

∞∑
n=−∞

(−i sgn(n))2f̂(n)eint =

∞∑
n=−∞

−f̂(n)eint = −S[f ](t),

which means that there is a bijection between Fourier series and conjugate series (of func-
tions up to a constant) and since f ∈ L1(T) has a unique Fourier series due to the identity
theorem (Theorem 4.20) in [3], f will have at most one function g ∈ L1(T) with Fourier
series S̃[f ] and vice versa (all up to a constant).
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3.2 Conjugate functions

Let fbd ∈ L1(T) and 0 ≤ r < 1. We recall that we defined its extension f to D by

f(reit) =
∑∞

n=−∞ r
|n|f̂bd(n)eint as a Poisson integral. As inspired by the definition of the

conjugate series in the previous subsection, we may define

f̃(reit) :=
∞∑

n=−∞
−i sgn(n)f̂bd(n)r|n|eint.

for 0 ≤ r < 1. We rewrite this series as a convolution:

f̃(reit) =
∞∑

n=−∞
−i sgn(n)

1

2π

2π∫
0

fbd(τ)e−inτ dτ r|n|eint

=
1

2π

2π∫
0

fbd(τ)

( ∞∑
n=−∞

−i sgn(n)r|n|ein(t−τ)

)
dτ

= (fbd ∗Qr)(t),

where we swapped series and integral due to uniform convergence in a closed (and thus
compact) disc with radius greater than r contained within D, and defined Qr(t) :=∑∞

n=−∞−i sgn(n)r|n|eint. Now we rewrite Qr(t), using uniform convergence to split the
series and using the geometric series:

Qr(t) = −i
∞∑
n=1

(reit)n + i
∞∑
n=1

(re−it)n

= −i
∞∑
n=0

(reit)n + i

∞∑
n=0

(re−it)n

=
−i

1− reit
+

i

1− re−it

=
i(1− reit)− i(1− re−it)

(1− reit)(1− re−it)

=
−ir(eit − e−it)

1− r(eit + e−it) + r2

=
2r sin(t)

1− 2r cos(t) + r2
.

Looking at Definition 6 in the appendix, we rewrite the holomorphic function 1+z
1−z in D:

1 + reit

1− reit
=

1 + reit

1− reit
· 1− re−it

1− re−it

=
1 + r(eit − e−it)− r2

1− r(eit + e−it) + r2

=
1− r2

1− 2r cos(t) + r2
+ i

2r sin(t)

1− 2r cos(t) + r2

= Pr(t) + iQr(t)

and thus we see that the integral kernel Qr is the harmonic conjugate16 of the Poisson
kernel Pr. That’s where the term conjugate series comes from. Now we will define the

16Recall that the Poisson kernel is harmonic, as we proved at the end of Section 1, but now taking all
Fourier coefficients equal to 1.
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conjugate function, but first we need to prove the existence.

Proposition 3.2. Suppose fbd ∈ L1(T) and let f̃(reit) = (fbd ∗ Qr)(t) as above for 0 ≤
r < 1. Then we have that lim

r→1
f̃(reit) exists for almost every t ∈ T.

Proof. Without loss of generality17, we assume fbd is real-valued and non-negative. In
Lemma 6.3 in [3] we saw that Pr(t) is non-negative, so f will be non-negative as a convo-
lution of two non-negative functions. Similarly, Qr is real-valued, so f̃ will be real-valued
as a convolution of two real-valued functions. We note that by uniform convergence we
have

(f + if̃)(reit) =
∞∑

n=−∞
f̂bd(n)r|n|eint −

∞∑
n=−∞

sgn(n)f̂bd(n)r|n|eint

=

∞∑
n=−∞

(1− sgn(n))f̂bd(n)r|n|eint

= −f̂bd(0) + 2
∞∑
n=0

f̂bd(n)(reit)n,

so f+if̃ is holomorphic in D. We define F (z) = exp(−f(z)−if̃(z)), which is a holomorphic
function as a composition of two holomorphic functions and thus harmonic. Since f is
non-negative and f̃ is real-valued, we have |F (z)| = |exp(−f(z))| ≤ 1 in D, so F is
harmonic and bounded in D. By Lemma 9 in the appendix we conclude that F (reit) is the
Poisson integral of some function Fbd ∈ L∞(T) ⊆ L1(T), and by Theorem 3.11 we have
convergence almost everywhere (meaning Fbd(t) = lim

r→1
F (reit) a.e.). Since f is integrable,

we have that |fbd(t)| < ∞ almost everywhere, so lim
r→1
|F (reit)| = lim

r→1
|exp(−f(reit))| 6= 0

almost everywhere. At every t ∈ T where Fbd(t) exists and is non-zero, we see that Fbd(t) =
lim
r→1

exp(−f(reit) − if̃(reit)) = exp(− lim
r→1

f(reit)) exp(−i lim
r→1

f̃(reit)), so lim
r→1

f̃(reit) must

exist, since Fbd(t) has a fixed argument. We conclude that lim
r→1

f̃(reit) exists for almost

every t ∈ T.

Let p ≥ 1. Looking back at the theory of Section 1, and specifically the proof of Theorem
1.15, for fbd ∈ Lp(T) we have by Minkowski’s inequality the estimate

‖(f + if̃)(reit)‖Lp(T) = ‖(fbd ∗ (Pr + iQr))(t)‖Lp(T)
≤ ‖(Pr + iQr)(t)‖L1(T)‖fbd(t)‖Lp(T) <∞,

since Pr + iQr ∈ C(T) ⊆ L1(T) as 1+z
1−z is holomorphic in D, and by the monotone conver-

gence theorem for sequences of real numbers we now obtain that hp(f, r) = ‖f(reit)‖pLp(T)
converges as r → 1, which gives us that

lim
r→1

hp(f + if̃ , r) = lim
r→1
‖(f + if̃)(reit)‖pLp(T) <∞,

and so f + if̃ ∈ Hp due to being holomorphic as we proved in Proposition 3.2. For
f ∈ Lp(T) we have already seen that we can solve the harmonic case of the Dirichlet

17We have fbd = f1 − f2 + if3 + if4 with fj ∈ L1(T) real-valued and non-negative, and we know that
convolution with the integral kernel Qr is linear, so if the functions lim

r→1
(fj ∗Qr)(t) exist a.e., then so does

lim
r→1

f̃(reit).
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problem, but by adding the harmonic conjugate of Pr (as an imaginary part) to the
Poisson kernel, we can change f such that it solves the stronger version of the Dirichlet
problem, the holomorphic case.

Definition 3.3. Let fbd ∈ L1(T). We define the conjugate function of fbd by f̃bd(t) :=
lim
r→1

f̃(reit), where f is the Poisson integral of fbd.

When we work only with the function and its conjugate, so if we don’t consider its Poisson
integral, we may write f̃ as the conjugate function of f ∈ L1(T). If the series conjugate to
the Fourier series of a function f ∈ L1(T) is the Fourier series of some function g ∈ L1(T),
then we clearly have that the Poisson integral of g is f̃(reit).

For f ∈ C∞(T) (the space of infinitely differentiable functions/smooth functions), we recall
from Corollary 3.12 in [3] that f̂(n) = O

(
1
nk

)
for any k ∈ N (so in particular for k = 2),

so by Corollary 4.18 in [3] we have that the Fourier series SN (f) converges uniformly to
f in T. By uniform convergence of the conjugate function we observe that

f̃(t) = lim
r→1

∞∑
n=−∞

−i sgn(n)f̂(n)r|n|eint

=

∞∑
n=−∞

lim
r→1
−i sgn(n)f̂(n)r|n|eint

=

∞∑
n=−∞

−i sgn(n)f̂(n)eint,

so
ˆ̃
f(n) = −i sgn(n)f̂(n) and thus we have S[f̃ ] = S̃[f ]. This answers ”the question” in

Subsection 3.1, at least for the subspace C∞(T) of L1(T). Due to uniform convergence,
we may also split the series into two separate series. Using uniform convergence to swap
series and derivative and using that f̂(n) = O

(
1

nk+2

)
, we get

dk

dtk
f̃(t) =

∞∑
n=−∞

−i sgn(n)f̂(n)
dk

dtk
eint

=
∞∑

n=−∞
−i sgn(n)f̂(n)(in)keint

=
∞∑

n=−∞
n6=0

O
(

1

n2

)
eint

and by the triangle inequality this will be finite. This can be done analogously on the
same series with (possibly infinitely many) fewer terms. We put these findings into the
following proposition.

Proposition 3.4. For f ∈ C∞(T), we can write f as

f(t) =

∞∑
n=−∞

f̂(n)eint

and the conjugate function of f as

f̃(t) =

∞∑
n=−∞

−i sgn(n)f̂(n)eint.
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We define the Riesz projections P+ and P− by

P+[f ](t) =
∞∑
n=1

f̂(n)eint,

P−[f ](t) =
−1∑

n=−∞
f̂(n)eint,

and we have f = f̂(0) + P+[f ] + P−[f ] and f̃ = −iP+[f ] + iP−[f ]. Furthermore, we have
f̃ , P+[f ], P−[f ] ∈ C∞(T).

It is clear that the map f 7→ f̃ is linear in C∞(T) due to linearity of Fourier coefficients
and uniform convergence. Boundedness18 of this map in Lp(T) (considered as a map
Lp(T)→ Lp(T)) is a key part in showing that the Fourier series of f converges back to f
in Lp(T) for 1 < p <∞. In the following subsections, we will work towards the bounded-
ness of this map.

3.3 Maximal functions

We will now define the Hardy–Littlewood maximal function, or just maximal function,
which is the the greatest average value of a function taken on all intervals with a specific
point as center.

Definition 3.5. Let fbd ∈ L1(T). We define the maximal function of f by

Mf (t) := sup
0<h<π

∣∣∣∣ 1

2h

∫ t+h

t−h
f(τ) dτ

∣∣∣∣ .
Note that Mf : T→ [0,∞] is a well-defined function. Next, we will prove that Mf ∈ L1,∞.
For this we will need the Vitali covering lemma, stated for the space T. If I = (x−ε, x+ε) is
an interval19 in T and n ∈ N a natural number, then we define nI := (x−nε, x+nε) as the
interval n times larger than I with the same center. Note that |nI| = min{2π, n|I|} ≤ n|I|.

0 2π

I1

1
2 |I1|

0 2π

4I1

Figure 2: Intervals in T. The red interval is the interval I1 that will be enlarged by factor
4 in order to cover all other intervals. The blue interval is the open interval 3

2 times as
large as I1 lying right next to I1 on the left. The purple intervals intersect I1 and are at
most 4

3 times as large as I1.

18Note that we only need to show this boundedness for smooth functions, since bounded linear operators
extend to Lp(T) due to continuity of this operator and density of C∞(T) in Lp(T): density is explained in
Footnote 32.

19With interval we mean a non-degenerate interval, i.e. ε > 0. These intervals may be (half-)open or
closed.
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Lemma 3.6 (Vitali covering lemma). Let F be a family of intervals in T. Then F has a
countable subfamily (In)∞n=1 of disjoint intervals such that

⋃
I∈F

I ⊆
∞⋃
n=1

4In.

Subsequently, we have ∣∣∣∣∣
∞⋃
n=1

In

∣∣∣∣∣ ≥ 1

4

∣∣∣∣∣⋃
I∈F

I

∣∣∣∣∣ .
Proof. Define a1 := supI∈F |I|. By the definition of supremum we can choose some interval
I1 ∈ F such that |I1| > 3

4a1. Now define F2 as the subfamily20 of intervals in F that don’t
intersect I1. Define a2 := supI∈F2

|I| and choose some interval I2 ∈ F2 such that |I2| > 3
4a2.

By induction we will have the intervals I1, . . . , Ik, and we can define the subfamily Fk+1

of intervals in Fk that don’t intersect I1, . . . , Ik. We define ak+1 := supI∈Fk+1
|I| and again

we can choose some interval Ik+1 ∈ Fk+1 such that |Ik+1| > 3
4ak+1. Assuming that this

never stops (else we were already done), we note that an → 0 as n→∞ (else the whole of
T would already be covered after finitely many steps), and since the intervals have positive
length (in the Lebesgue measure), we see that

⋂∞
n=1Fn = ∅. Let I ∈ F and let k be the

first natural number such that I 6∈ Fk+1, then I ∩ Ik 6= ∅ and |Ik| > 3
4ak ≥

3
4 |I| by the

definition of supremum, so by the same argument as in Footnote 20 we have that I ⊆ 4Ik.
This means that for any interval I ∈ F we have I ⊆

⋃∞
n=1 4In, and so we obtain the

inclusion
⋃
I∈F I ⊆

⋃∞
n=1 4In.

For the last part, we note that∣∣∣∣∣⋃
I∈F

I

∣∣∣∣∣ ≤
∣∣∣∣∣
∞⋃
n=1

4In

∣∣∣∣∣ ≤
∞∑
n=1

|4In| ≤ 4

∞∑
n=1

|In| = 4

∣∣∣∣∣
∞⋃
n=1

In

∣∣∣∣∣
by σ-subadditivity and then σ-additivity due to the disjointness of (In)∞n=1 (intuitively, if
we enlarge

⋃∞
n=1 In by factor 4, it might happen that an interval intersects with new parts

of enlarged intervals, but this will not be measured, in contrary to the right side of the
inequality), so we obtain the inequality∣∣∣∣∣

∞⋃
n=1

In

∣∣∣∣∣ ≥ 1

4

∣∣∣∣∣⋃
I∈F

I

∣∣∣∣∣
and the lemma is proved.

Now we can use the lemma to prove that Mf is a function in weak L1(T) whenever f is
integrable.

Theorem 3.7. Suppose that f ∈ L1(T), then we have Mf ∈ L1,∞(T).

Proof. Let f ∈ L1(T) and choose any x > 0. For each t ∈ T with Mf (t) > x, we can find

some 0 < h < π such that
∣∣∣ 1
2h

∫ t+h
t−h f(τ) dτ

∣∣∣ > x by the definition of supremum, where we

20If this subfamily is empty, then we already have
⋃
α∈A Iα ⊆ 4I1: other intervals can at most be 4

3
times

larger than I1, since |I1| > 3
4

supI∈F |I|, and they intersect I1, so they must lie within 4I1, as 4I1 would
still contain an open interval 3

2
times as large as I1 lying right next to I1. See figure 2. This argument will

hold for the union of the intervals I1, . . . , Ik for any k ∈ N in the proof.
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write It := [t− h, t+ h] in order to rewrite the inequality as
∣∣∣ 1
|It|
∫
It
f(τ) dτ

∣∣∣ > x. In other

words, we cover the set S := {t ∈ T : Mf (t) > x} by a family of intervals (It)t∈S satisfying∫
It
|f(τ)| dτ ≥

∣∣∣∫It f(τ) dτ
∣∣∣ > x|It| for each t ∈ S. By the Vitali covering lemma we can

find a countable subfamily (Itn)∞n=1 of disjoint intervals such that |
⋃∞
n=1 Itn | ≥

1
4

∣∣⋃
t∈S It

∣∣,
so we obtain the estimate

λ({t ∈ T : Mf (t) > x}) ≤

∣∣∣∣∣⋃
t∈S

It

∣∣∣∣∣ ≤ 4

∣∣∣∣∣
∞⋃
n=1

Itn

∣∣∣∣∣ = 4
∞∑
n=1

|Itn |

≤ 4

x

∞∑
n=1

∫
Itn

|f(τ)| dτ =
4

x

∫
∞⋃
n=1

Itn

|f(τ)| dτ

≤ 4

x

∫
T
|f(τ)| dτ =

4‖f‖L1(T)

x
,

and thus we have that Mf ∈ L1,∞(T).

The proof of this theorem actually says that the map f 7→ Mf is of weak type (1, 1) and
satisfies the estimate ‖Mf‖L1,∞(T) ≤ 4‖f‖L1(T) for all f ∈ L1(T). In fact, if f ∈ Lp(T) for
1 < p ≤ ∞, then we even have Mf ∈ Lp(T), as we will show in the following theorem.

Theorem 3.8. Let 1 < p ≤ ∞. Then there exists C > 0 such that the strong (p, p)
estimate ‖Mf‖Lp(T) ≤ C‖f‖Lp(T) holds for all f ∈ Lp(T). In particular, we have Mf ∈
Lp(T).

Proof. We will first prove this for p = ∞. Then we can combine this with the previous
theorem and apply the Marcinkiewicz interpolation theorem.
Let f ∈ Lp(T). We easily obtain the estimate

‖Mf‖L∞(T) = ess sup
t∈T

sup
0<h<π

∣∣∣∣ 1

2h

∫ t+h

t−h
f(τ) dτ

∣∣∣∣
≤ ess sup

t∈T
sup

0<h<π

1

2h

∫ t+h

t−h
|f(τ)| dτ

≤ ess sup
t∈T

sup
0<h<π

1

2h

∫ t+h

t−h
ess sup
s∈T

|f(s)| dτ

= ess sup
t∈T

sup
0<h<π

‖f‖L∞(T)

= ‖f‖L∞(T),

so for p =∞ we have C = 1. Now let f, g ∈ L1(T): we note that for each t ∈ T, we have

|Mf+g(t)| = sup
0<h<π

∣∣∣∣ 1

2h

∫ t+h

t−h
f(τ) + g(τ) dτ

∣∣∣∣
= sup

0<h<π

∣∣∣∣ 1

2h

∫ t+h

t−h
f(τ) dτ +

1

2h

∫ t+h

t−h
g(τ) dτ

∣∣∣∣
≤ sup

0<h<π

(∣∣∣∣ 1

2h

∫ t+h

t−h
f(τ) dτ

∣∣∣∣+

∣∣∣∣ 1

2h

∫ t+h

t−h
g(τ) dτ

∣∣∣∣)
≤ sup

0<h<π

∣∣∣∣ 1

2h

∫ t+h

t−h
f(τ) dτ

∣∣∣∣+ sup
0<h<π

∣∣∣∣ 1

2h

∫ t+h

t−h
g(τ) dτ

∣∣∣∣
= |Mf (t)|+ |Mg(t)|,
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so the map f 7→ Mf is sublinear. Furthermore, this map satisfies the conditions of the
Marcinkiewicz interpolation theorem, where p1 = 1, p2 = ∞, C1 = 4 and C2 = 1, and
thus the statement follows for 1 < p <∞.

With Theorem 3.7 we can also prove that both the Fejér kernel and the Poisson kernel
convolved with an integrable function f converge almost everywhere to f : this second fact
has been used frequently throughout Section 1 and the first fact will be used in Section 4.

Definition 3.9. Let (kn)∞n=0 be a summability kernel. We say that (kn)∞n=0 is radially
bounded if there exists a sequence of 2π-periodic functions (Ψn)∞n=0 such that for all n ≥ 0
we have

(i) |kn| ≤ Ψn (so we call (Ψn)∞n=0 a dominating sequence),

(ii) Ψn is even on [−π, π] and non-increasing on [0, π],

(iii) ‖Ψn‖L1(T) ≤ C for some C > 0 independent of n.

Lemma 3.10. Let f ∈ L1(T). If Ψ ∈ C(T) is even and non-negative on [−π, π] and
non-increasing on [0, π], then we have that (f ∗Ψ)(t) ≤ ‖Ψ‖L1(T)M|f |(t) for all t ∈ T.

Proof. We first note that M|f |(t) = sup0<h<π

∫
T

1
2h1(−h,h)(t − τ)|f(τ)| dτ . From the

course Real Analysis we recall that non-increasing functions that are bounded can be
uniformly approximated by step functions, which are simple functions on T. This means
that we may uniformly approximate Ψ from below by linear combinations of the form
Ln =

∑n
k=1

ak
2hk

1(−hk,hk) with each 0 ≤ hk ≤ π and ak ≥ 0. We now note that∑n
k=1 ak = ‖Ln‖L1(T) ≤ ‖Ψ‖L1(T), since Ln approximates (non-negative) Ψ from below,

so we get the estimate∫
T
Ln(t− τ)|f(τ)| dτ =

n∑
k=1

ak

∫
T

1

2hk
1(−hk,hk)(t− τ)|f(τ)| dτ

≤
n∑
k=1

akM|f |(t)

≤ ‖Ψ‖L1(T)M|f |(t),

and by uniform convergence we may swap limit and integral to obtain

(f ∗Ψ)(t) ≤ (Ψ ∗ |f |)(t) = lim
n→∞

∫
T
Ln(t− τ)|f(τ)| dτ ≤ ‖Ψ‖L1(T)M|f |(t),

where the first inequality holds since Ψ is non-negative.

Theorem 3.11. Let f ∈ L1(T) and suppose that (kn)∞n=0 is a radially bounded summability
kernel with a dominating sequence (Ψn)∞n=0 consisting of functions in C(T). Then we have
that f ∗ kn → f almost everywhere as n→∞.

Proof. Let f ∈ L1(T) and choose any δ > 0. Now let ε > 0. Since C(T) is dense21 in
L1(T), we can find g ∈ C(T) such that ‖f − g‖L1(T) < ε. Note that g ∗ kn → g uniformly

21Think of trigonometric polynomials: see Footnote 32.
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as n → ∞ by Corollary 4.23 in [3]. Implicitly adding and substracting lim
n→∞

g ∗ kn, we

obtain22

|{t ∈ T : lim sup
n→∞

(f ∗ kn)(t)− lim inf
n→∞

(f ∗ kn)(t) > δ}|

= |{t ∈ T : lim sup
n→∞

((f − g) ∗ kn)(t)− lim inf
n→∞

((f − g) ∗ kn)(t) > δ}|.

Lemma 3.10 (or rather the last line and its reasoning in the proof) now gives us the
inequality |((f−g)∗kn)(t)| ≤ (|f−g|∗|kn|)(t) ≤ (|f−g|∗Ψn)(t) ≤ ‖Ψn‖L1(T)M|f−g|(t) and
thus lim sup

n→∞
((f−g)∗kn)(t) ≤ lim sup

n→∞
‖Ψn‖L1(T)M|f−g|(t) ≤ CM|f−g|(t) with C the uniform

bound of (Ψn)∞n=0 (similarly we have − lim inf
n→∞

((f−g)∗kn)(t) = lim sup
n→∞

−((f−g)∗kn)(t) ≤

CM|f−g|(t)), so we get

|{t ∈ T : lim sup
n→∞

((f − g) ∗ kn)(t)− lim inf
n→∞

((f − g) ∗ kn)(t) > δ}|

≤ |{t ∈ T : CM|f−g|(t) >
δ

2
}|

= |{t ∈ T : M|f−g|(t) >
δ

2C
}|,

where we reasoned similarly as in the proof of the Marcinkiewicz interpolation theorem.
Theorem 3.7 now yields

|{t ∈ T : M|f−g|(t) >
δ

2C
}| =

8C‖|f − g|‖L1(T)

δ
=

8C‖f − g‖L1(T)

δ
<

8C

δ
ε.

By approximation with g this will hold for all ε > 0, so |{t ∈ T : lim sup
n→∞

(f ∗ kn)(t) −

lim inf
n→∞

(f ∗kn)(t) > δ}| = 0, which again implies that lim sup
n→∞

(f ∗kn)(t) = lim inf
n→∞

(f ∗kn)(t)

for almost every t ∈ T. In other words, lim
n→∞

f ∗ kn exists almost everywhere, and since

f ∗kn → f in L1(T) as n→∞ (so convergence almost everywhere to f for a subsequence),
we must have that lim

n→∞
f ∗ kn = f almost everywhere.

In particular, this holds for the Fejér kernel and the Poisson kernel.

For the Fejér kernel (Fn)∞n=1, we recall from [3] that we can write Fn(t) =
sin2( 1

2
nt)

2πn sin2( 1
2
t)

(its continuous extension to 0). Note that Fn(t) ≤ 1
2πn sin2( 1

2
t)
≤ 1

2πn( 1
π
t)2

= π
2nt2

on

(−π, π] and that |Fn(t)| ≤
∣∣∣ 1n∑n−1

k=0 Dk

∣∣∣ =
∣∣∣ 1n∑n−1

k=0

∑k
m=−k e

imt
∣∣∣ ≤ 1

n

∑n−1
k=0

∑k
m=−k 1 =

1
n

∑n−1
k=0(2k + 1) = 1

n

(
2n(n−1)2 + n

)
= n, so we can choose Ψn = min{n, π

2nt2
} (actually

the 2π-periodic extension of this function on (−π, π]) as candidate for the dominating
function. These bounds intersect in

√
π

2n2 , so by symmetry we obtain∫
T

Ψn(t) dt = 2

∫ √ π
2n2

0
ndt+ 2

∫ π

√
π

2n2

π

2nt2
dt =

√
2π − 1

n
+
√

2π = 2
√

2π − 1

n
.

We see that C = 2
√

2π, so (Ψn)∞n=1 is indeed a (continuous) dominating sequence and
therefore (Fn)∞n=1 is radially bounded and thus the theorem applies.

22We use the inequalities lim sup
n→∞

an + lim inf
n→∞

bn ≤ lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn and

lim inf
n→∞

an + lim inf
n→∞

bn ≤ lim inf
n→∞

(an + bn) ≤ lim inf
n→∞

an + lim sup
n→∞

bn to obtain the equalities lim sup
n→∞

an +

lim
n→∞

bn = lim sup
n→∞

(an + bn) and lim inf
n→∞

an + lim
n→∞

bn = lim inf
n→∞

(an + bn) in the case that lim
n→∞

bn exists.
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For the Poisson kernel (Pr)0≤r<1, we simply note that Pr is itself a continuous dominating
function.

3.4 Hilbert transforms and duality

In this subsection we will not prove everything, but rather discuss the results of the theo-
rems. As mentioned at the end of Subsection 3.2, the goal here is to give several different
arguments that f 7→ f̃ is bounded as a map from Lp(T) to Lp(T) for p > 1, which will
yield the convergence of the Fourier series in Lp(T) as we will prove in Section 4.

We recall the definition of the principal value of an integral from [3] and restate it for the
space T.

Definition 3.12. Let f : T → C be integrable on T \ (−ε, ε) for each ε > 0. We define
the principal value of

∫
T f(t) dt by

p. v.

∫
T
f(t) dt := lim

ε↓0

∫ 2π−ε

ε
f(t) dt.

We note that cot( t2) := 1
tan( t

2
)

is continuous and thus integrable on the compact set

Tε := T \ (−ε, ε) for every ε > 0. In particular it’s bounded and thus in L∞(Tε), so
by Minkowski’s inequality the convolution with some f ∈ L1(T) is also in L∞(Tε) and
therefore in L1(Tε). Also in the space T we have a Hilbert transform, as we will see in the
following proposition.

Proposition 3.13. Let f ∈ L1(T). Then the principal value of 1
2π

∫
T f(t − τ) cot

(
τ
2

)
dτ

exists almost everywhere. Furthermore, we have that

f̃(t) = p. v.
1

2π

∫
T
f(t− τ) cot

(τ
2

)
dτ

for almost every t ∈ T.
We call H[f ](t) := p. v. 1

2π

∫
T f(t− τ) cot

(
τ
2

)
dτ the Hilbert transform on T.

Proof. A proof can be found in Section III.2.7 of [1].

Before showing boundedness of the map f 7→ f̃ (or the Hilbert transform H), we will
prove a relationship between this bound and the bound of its adjoint. For this we need
some more functional analysis.

Lemma 3.14. Let 1 ≤ p <∞. For every functional F : Lp(T)→ C there exists a unique
g ∈ Lp′(T) such that

F (f) =
1

2π

∫
T
f(t)g(t) dt

for all f ∈ Lp(T), where 1
p + 1

p′ = 1. Furthermore, we have that ‖F‖ = ‖g‖Lp′ (T). In

other words, Lp(T)′ (the dual space of Lp(T)) and Lp
′
(T) are isometrically isomorphic:

Lp(T)′ ∼= Lp
′
(T).

Proof. This is proved as a theorem23 in Appendix B of [5].

23We stated the result in a different way, but it’s essentially the same: for example, the complex conjugate
of a function is unique to the function, so the statement with a complex conjugate works too. This way
suits the style of this project.
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For L∞(T) this is not true: if it were, then we would have that L∞(T)′ ∼= L1(T), which
implies that L∞(T)′ separable due to isometry, but this implies24 that L∞(T) is separable,
which is contradictory with the fact that L∞(T) is not separable.

Let f ∈ Lp(T) and g ∈ Lp′(T) with 1
p + 1

p′ = 1. Then by Hölder’s inequality, we have∣∣∣∣ 1

2π

∫
T
f(t)g(t) dt

∣∣∣∣ ≤ 1

2π

∫
T
|f(t)g(t)| dt

≤ 1

2π

(∫
T
|f(t)|p dt

) 1
p
(∫

T
|g(t)|p′ dt

) 1
p′

= ‖f‖Lp(T)‖g‖Lp′ (T),

which means that we may define the bilinear map 〈·, ·〉 : Lp(T)× Lp′(T)→ C by

〈f, g〉 :=
1

2π

∫
T
f(t)g(t) dt.

Note how this agrees with the inner product for p = 2. From now on, for 1 ≤ p ≤ ∞, p′

denotes the Hölder conjugate of p (the element in [1,∞] satisfying 1
p + 1

p′ = 1).

Definition 3.15. Let 1 ≤ p, q < ∞. For T : Lp(T) → Lq(T) a bounded linear operator,
we define the adjoint operator of T by the map T ∗ : Lq

′
(T)→ Lp

′
(T) that satisfies

〈T (f), g〉 = 〈f, T ∗(g)〉

for all f ∈ Lp(T) and g ∈ Lq′(T).

An equivalent25 equality in the definition is

〈T ∗(g), f〉 = 〈f, T ∗(g)〉 = 〈T (f), g〉 = 〈g, T (f)〉.

Lemma 3.16. Let 1 ≤ p, q <∞ and T : Lp(T)→ Lq(T) a bounded linear operator. Then
its adjoint operator T ∗ is unique, bounded linear and ‖T ∗‖ = ‖T‖.

Proof. Suppose T ∗1 and T ∗2 are adjoint operators of T , then for all f ∈ Lp(T) and g ∈ Lq′(T)
we have

〈f, T ∗1 (g)− T ∗2 (g)〉 = 〈f, T ∗1 (g)〉 − 〈f, T ∗2 (g)〉 = 〈T (f), g〉 − 〈T (f), g〉 = 0,

so we must have T ∗1 − T ∗2 = 0, or T ∗1 = T ∗2 . This proves uniqueness. Analogously, we have
that

〈f, T ∗(g + h)− T ∗(g)− T ∗(h)〉 = 0,

for all f ∈ Lp(T) and g, h ∈ Lq′(T) and this proves linearity. By the Hahn-Banach theo-
rem26 we have that ‖T (f)‖Lq(T) = sup{|F (T (f))| : F ∈ Lq(T)′, ‖F‖ = 1}. By lemma 3.14

this translates to ‖T (f)‖Lq(T) = sup{|〈T (f), g〉| : g ∈ Lq′(T), ‖g‖Lq′ (T) = 1}. By the equiv-

alent equality for Definition 3.15 we obtain similarly that ‖T ∗(g)‖Lp′ (T) = sup{|〈T ∗(g), f〉| :

24If X ′, the dual space of a real or complex normed space X, is separable, then X is separable. See
Theorem 5.24 in [6] for the proof.

25Both here and in the definition, note that each 〈·, ·〉 has a different input: notation-wise this is easier.
26The fact that ‖x‖ = sup{|F (x)| : F ∈ X ′, ‖F‖ = 1} for any x ∈ X with X a real or complex normed

space is a consequence of the Hahn-Banach theorem. See Corollary 5.22 in [6] for the proof.
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f ∈ Lp(T), ‖f‖Lp(T) = 1}. Using the definition of the adjoint operator, Hölder’s inequality
and the boundedness of T , we see that

‖T ∗(g)‖Lp′ (T) = sup
‖f‖Lp(T)=1

|〈T ∗(g), f〉|

= sup
‖f‖Lp(T)=1

|〈g, T (f)〉|

≤ sup
‖f‖Lp(T)=1

‖g‖Lq′ (T)‖T (f)‖Lq(T)

≤ sup
‖f‖Lp(T)=1

‖T‖‖f‖Lp(T)‖g‖Lq′ (T)

= ‖T‖‖g‖Lq′ (T),

and so ‖T ∗‖ ≤ ‖T‖, which implies that T ∗ is indeed bounded. Analogously, we obtain the
inequality ‖T‖ ≤ ‖T ∗‖, and we conclude ‖T ∗‖ = ‖T‖.

Note once again how the case p = 2 agrees with the adjoint in a Hilbert space.

Lemma 3.17. Let 1 ≤ p, q <∞. Suppose that bounded linear operator T : Lp(T)→ Lq(T)
is an integral operator with kernel K(t, s). Then its adjoint operator is an integral operator
with kernel K∗(t, s) := K(s, t). In particular, the adjoint operator of H is −H.

Proof. Let f ∈ Lp(T) and g ∈ Lq
′
(T). We write T [f ](s) =

∫
TK(t, s)f(s) ds. Applying

Fubini once, we obtain

〈T [f ](t), g(t)〉 =
1

2π

∫
T

∫
T
K(t, s)f(s) ds g(t) dt

=
1

2π

∫
T
f(s)

∫
T
K(t, s)g(t) dt ds

=
1

2π

∫
T
f(s)

∫
T
K(t, s)g(t) dt ds

= 〈f(s),

∫
T
K(t, s)g(t) dt〉

= 〈f(s),

∫
T
K∗(s, t)g(t) dt〉,

so indeed T ∗[g](t) =
∫
TK

∗(t, s)g(s) ds with K∗(t, s) = K(s, t).

Now observe that ifK(t, τ) = cot
(
t−τ
2

)
, thenK∗(t, τ) = K(τ, t) = cot

(
τ−t
2

)
= − cot

(
t−τ
2

)
.

Recalling the commutativity of the convolution operator, we have that

1

2π

∫
Tε
g(τ) cot

(
τ − t

2

)
dτ = − 1

2π

∫
Tε
g(τ) cot

(
t− τ

2

)
dτ

= − 1

2π

∫
Tε
g(t− τ) cot

(τ
2

)
dτ

holds27 for every ε > 0 and g ∈ Lp
′
(T), and we see that the same must hold for the

principal value as a limit, so H∗ = −H.

27This is actually just an integral over T of two 2π-periodic functions that are equal to zero on (−ε, ε),
so the commutative property does indeed hold.
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Combining the last two lemmas, we obtain a very interesting result: if we know that
H : Lp(T) → Lp(T) is bounded with norm ‖H‖Lp→Lp for some 1 ≤ p < ∞, then its
adjoint H∗ : Lp

′
(T)→ Lp

′
(T) is bounded (with the same norm), but then so is H = −H∗

as a map Lp
′
(T) → Lp

′
(T). This means that boundedness of H for all p ∈ (1, 2) implies

boundedness of H for all p ∈ (2,∞) and vice versa. We will refer to this as ”the duality
argument”.

We can also prove more directly that the adjoint operator of f 7→ f̃ is f 7→ −f̃ .

Lemma 3.18. Let 1 ≤ p, q <∞. Suppose that bounded linear operator T : Lp(T)→ Lq(T)
is a Fourier multiplier operator with Fourier multiplier28 m(n). Then its adjoint operator
is a Fourier multiplier operator with Fourier multiplier m∗(n) := m(n). In particular, the
adjoint operator of f 7→ f̃ is f 7→ −f̃ .

Proof. We write T [f ](s) =
∑∞

n=−∞m(n)f̂(n)eint. By density29 of C∞(T) in Lp(T) and

Lq
′
(T) and Proposition 3.4 we may suppose that f ∈ C∞(T) and g ∈ C∞(T). By uniform

convergence of the series we may swap series and integral, so we see that

〈T [f ](t), g(t)〉 =
1

2π

∫
T

∞∑
n=−∞

m(n)f̂(n)eint
∞∑

k=−∞
ĝ(k)e−ikt dt

=

∞∑
n=−∞

∞∑
k=−∞

m(n)f̂(n)ĝ(k)
1

2π

∫
T
ei(n−k)t dt

=
∞∑

n=−∞
m(n)f̂(n)ĝ(n)

=

∞∑
n=−∞

f̂(n)m(n)ĝ(n)

=
∞∑

n=−∞

∞∑
k=−∞

f̂(n)m(k)ĝ(k)
1

2π

∫
T
ei(n−k)t dt

=
1

2π

∫
T

∞∑
n=−∞

f̂(n)eint
∞∑

k=−∞
m(k)ĝ(k)e−ikt dt

= 〈f(t),

∞∑
k=−∞

m(k)ĝ(k)eikt〉

so indeed T ∗[g](t) =
∑∞

k=−∞m
∗(n)ĝ(n)eint with m∗(n) = m(n).

Now we simply observe that the Fourier multiplier of the map f 7→ f̃ is m(n) = −i sgn(n),
so m∗(n) = i sgn(n) = −m(n). This implies that the adjoint operator of f 7→ f̃ is f 7→ −f̃
and by density this holds for f ∈ Lp(T).

Replacing Lemma 3.17 by Lemma 3.18 in the discussion above, we have that the duality
argument still holds, but this time without needing the Hilbert transform.

Now we look at the boundedness of the map f 7→ f̃ for p = 2.

28On T this a function m : Z→ C.
29We extend the bounded bilinear operator 〈T (·), ·〉 by density in the first argument and then in the

second argument.
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Lemma 3.19. f 7→ f̃ is bounded as a mapping L2(T)→ L2(T).

Proof. We use the Lemma 4.28 from [3] (as we did in the proof of Lemma 1.6 from Section
1: the equality is better known as the Plancherel theorem). Let f ∈ L2(T). Recall from
the last lemma that the Fourier multiplier of the map f 7→ f̃ is m(n) = −i sgn(n). We
obtain

‖f̃‖L2(T) = 2π‖
∞∑

n=−∞
m(n)f̂(n)

1√
2π
eint‖L2(T) =

√√√√ ∞∑
n=−∞

|m(n)f̂(n)|2

≤

√√√√ ∞∑
n=−∞

|f̂(n)|2 = 2π‖
∞∑

n=−∞
f̂(n)

1√
2π
eint‖L2(T) = ‖f‖L2(T),

or written shortly (noting that ‖m‖`∞(Z) = 1),

‖f̃‖L2(T) = ‖mf̂‖`2(Z) ≤ ‖‖m‖`∞(Z)f̂‖`2(Z) = ‖m‖`∞‖f̂‖`2(Z) = ‖f‖L2(T).

Theorem 3.20. f 7→ f̃ is bounded as a mapping Lp(T)→ Lp(T) for any 1 < p <∞.

Proof. Since we will prove this rigorously (in another way) in the next section, we will
present the next fact without proving it (however, the proof can be found in [7] as proof
of Kolmogorov’s theorem in Section V.C.1): there exists C > 0 such that ‖f̃‖L1,∞(T) ≤
C‖f‖L1(T). Applying the Marcinkiewicz interpolation theorem on this fact and Lemma
3.19, we obtain boundedness for 1 < p < 2. By the duality argument this now holds for
1 < p <∞.

Boundedness of f 7→ f̃ can also be proved using the maximal function. The theorem in
Section VIII.C.4 of [7] (the T version, which still holds as noted in the remark below the
theorem) shows that the maximal Hilbert transform

f̌(t) := sup
0<ε<π

∣∣∣∣ 1

2π

∫ 2π−ε

ε
f(t− τ) cot

(τ
2

)
dτ

∣∣∣∣
is bounded as a mapping Lp(T)→ Lp(T) for 1 < p <∞, one of the main ingredients in the
proof being the boundedness of Mf for 1 < p < ∞. Then we note that |H[f ](t)| ≤ f̌(t),
so |H[f ](t)|p ≤ |f̌(t)|p for p > 1, and due to monotonicity of the integral over T we obtain
‖Hf‖pLp(T) ≤ ‖f̌‖

p
Lp(T), which implies that H is bounded.
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4 Convergence of Fourier Series

In this section the main question is for which 1 ≤ p ≤ ∞ we have that the Fourier series
of a function in Lp(T) converges back to that function: we will prove that this is only true
for 1 < p <∞. For this we will need the boundedness of f 7→ f̃ , which we will prove in a
different way, this time not shifting the burden of proof to other literature.

4.1 Equivalent formulations of convergence of Fourier series

We will prove that boundedness of the map f 7→ f̃ is equivalent to the convergence of
Fourier series in Lp(T) for 1 ≤ p < ∞, where the case p = 1 allows us to easily disprove
that every Fourier series converges in L1(T). Note how the case p = ∞ is excluded: this
is no problem, because we can directly disprove convergence of Fourier series in L∞(T).
First we need the following lemma before we prove the equivalence.

Lemma 4.1. Let 1 ≤ p <∞ and let (an)∞n=−∞ be a sequence in `∞(Z). For each R ∈ Z≥0,
let (an(R))∞n=1 be some sequence30 in c00 such that lim

R→∞
an(R) = an. For f ∈ Lp(T), we

define TR[f ](t) :=
∑∞

n=−∞ an(R)f̂(n)eint by the Fourier multiplier operator corresponding
to f with Fourier multiplier (an(R))∞n=1. Then for all f ∈ Lp(T), we have that TR[f ]
converges in Lp(T) as R→∞ if and only if there exists K > 0 such that

sup
R≥0
‖TR‖Lp→Lp ≤ K. (3)

In particular, the limit of TR[f ] is a bounded operator Lp(T)→ Lp(T).

Proof. Suppose that TR[f ] converges in Lp(T) as R → ∞, let’s say to Tf ∈ Lp(T), then
taking ε = ‖Tf‖Lp(T) we can find some N > 0 such that |‖TR[f ]‖Lp(T) − ‖Tf‖Lp(T)| ≤
‖TR[f ] − Tf‖Lp(T) < ‖Tf‖Lp(T) for all R > N , so ‖TR[f ]‖Lp(T) ≤ 2‖Tf‖Lp(T), and noting
that each TR[f ] is a finite sum for R ≤ N , we choose Cf as the maximum of 2‖Tf‖Lp(T)
and ‖TR[f ]‖Lp(T) for R ≤ N , so ‖TR[f ]‖Lp(T) ≤ Cf for some constant Cf > 0. Now the
uniform boundedness principle31 tells us that supR≥0‖TR‖Lp→Lp ≤ K for some K > 0.

Conversely, assume that Inequality (3) holds. We define T [h](t) :=
∑∞

n=−∞ anĥ(n)eint

by the Fourier multiplier operator corresponding to h ∈ C∞(T) with Fourier multiplier
(an)∞n=1. Then for h ∈ C∞(T) we obtain the estimate

‖T [h]‖Lp(T) = ‖ lim
R→∞

TR[h]‖Lp(T) ≤ lim inf
R→∞

‖TR[h]‖Lp(T)
≤ sup

R≥0
‖TR‖Lp→Lp‖h‖Lp(T) ≤ K‖h‖Lp(T).

by Proposition 3.4 and Fatou’s lemma. By density of C∞(T) in Lp(T) we can extend T
to a bounded linear operator T̃ on Lp(T). Now we claim that for each f ∈ Lp(T) we have
that TR[f ] converges to T̃ [f ] in Lp(T) as R →∞. So let f ∈ Lp(T) and ε > 0. Since the
trigonometric polynomials are dense32 in Lp(T), we can find a trigonometric polynomial

30Recall from the course Real Analysis (extending the definition from `∞(N) to `∞(Z)) that c00 ⊆ `∞(Z)
is the space of compactly supported sequences, in other words we can find some N > 0 such that an = 0
for all |n| > N .

31As seen in the course Linear Analysis: see theorem 4.52 in [6].
32In the course Fourier Analysis we have seen that the trigonometric polynomials are dense in Lp(T),

since we know that σn[f ] → f as n → ∞ in Lp(T) by Corollary 4.23 in [3]. This is the part that would
fail for p =∞.
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P (let’s say with degree d) such that ‖f − P‖Lp(T) < ε. Since P ∈ C∞(T), we also have

that T̃ [P ] = T [P ], so

‖TR[P ]− T̃ [P ]‖Lp(T) ≤ ‖TR[P ]− T̃ [P ]‖L∞(T)

= ‖
d∑

n=−d
(an(R)− an)P̂ (n)eint‖L∞(T)

≤
d∑

n=−d
‖(an(R)− an)P̂ (n)eint‖L∞(T)

=
d∑

n=−d
|(an(R)− an)||P̂ (n)| < ε

for all R > N, d for some N > 0, because lim
R→∞

an(R) = an. This yields

‖TR[f ]− T̃ [f ]‖Lp(T) ≤ ‖TR[f ]− TR[P ]‖Lp(T) + ‖TR[P ]− T̃ [P ]‖Lp(T)
+ ‖T̃ [P ]− T̃ [f ]‖Lp(T)

< ‖TR[f − P ]‖Lp(T) + ε+ ‖T̃ [P − f ]‖Lp(T)
≤ K‖f − P‖Lp(T) + ε+K‖P − f‖Lp(T)
< (1 + 2K)ε

for all R > N and thus the claim is proven.

Corollary 4.2. Let 1 ≤ p < ∞. Then we have that SN [f ] → f as N → ∞ in Lp(T) for
all f ∈ Lp(T) if and only if sup

N≥0
‖SN‖Lp→Lp <∞.

Proof. We simply take an(N) :=

{
1, |n| ≤ N,
0, else

to obtain TN := SN . We also note that

if SN [f ] converges in Lp(T), then it must converge to f : recalling Theorem 3.11, σN [f ](t)
converges to σ[f ](t) = f(t) for almost all t ∈ T as N → ∞, and for these t we have that
lim
N→∞

SN [f ](t) = σ[f ](t) by Lemma 4.7 in [3], so SN [f ](t) converges to f(t) for almost all

t ∈ T as N →∞, and thus SN [f ] must converge to f in Lp(T) as N →∞.

Using Corollary 4.2 we can disprove convergence of the Fourier series in L1(T) very easily
without having to give an explicit counterexample. We note that DN ∈ L1(T) for each
N ∈ Z≥0 as a continuous function, so lim

M→∞
‖DN ∗FM‖L1(T) = ‖DN‖L1(T) by Corollary 4.23

in [3] and the reverse triangle inequality. We also have ‖FM ∗DN‖L1(T) = ‖SN [FM ]‖L1(T) ≤
‖SN‖Lp→Lp‖FM‖L1(T) = ‖SN‖Lp→Lp since ‖FM‖L1(T) = 1 as a non-negative summability
kernel. We obtain the estimate

‖SN‖Lp→Lp ≥ lim
M→∞

‖DN ∗ FM‖L1(T) = ‖DN‖L1(T),

and from Lemma 5.1 in [3] we know that sup
N≥0
‖DN‖L1(T) = ∞, so we can now see that

sup
N≥0
‖SN‖Lp→Lp = ∞, and thus there are functions in L1(T) whose Fourier series don’t

converge (at all, because it either converges to f or diverges as noted in the proof of
Corollary 4.2).
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For the case p =∞, we pick the 2π-periodic extension (which we will also denote as f) of

the function f(t) :=

{
−2, t ∈ [0, π),
2, t ∈ [π, 2π).

Since DN is real-valued for each N ∈ Z≥0, we

have that the continuous function SN [f ](t) = (f ∗DN )(t) is real-valued as a convolution
of two real-valued functions. If SN [f ](t) were to converge to f in L∞(T), then we would
have convergence almost everywhere, so we can pick t1, t2 ∈ T such that S[f ](t1) = −2 and
S[f ](t2) = 2, so we can find a fixed N ∈ Z≥0 such that Sn[f ](t1) ≤ −1 and Sn[f ](t2) ≥ 1
for all n ≥ N . For each n ≥ N we can find two points a and b between t1 and t2 such
that Sn[f ](a) = −1 and Sn[f ](b) = 1 by the intermediate value theorem (we can choose
the a and b that are closest to each other by continuity). Again by continuity, the closed
interval with endpoints a and b has a positive Lebesgue measure, and each point in this
interval gives −1 ≤ Sn[f ] ≤ 1, so ‖Sn[f ]− f‖L∞(T) ≥ 1 for each n ≥ N , which contradicts
convergence in L∞(T). This argument also works for the last statement in Footnote 32.

Now we can prove the equivalence between convergence of Fourier series in Lp(T) and
boundedness of the map f 7→ f̃ .

Theorem 4.3. Let 1 ≤ p < ∞. Then we have that SN [f ] → f as N → ∞ in Lp(T) for
all f ∈ Lp(T) if and only if there exists Cp > 0 such that ‖f̃‖Lp(T) ≤ Cp‖f‖Lp(T) for all
f ∈ C∞(T).

Proof. First we note that for f ∈ C∞ we have P+[f ] = 1
2(f + if̃) − 1

2 f̂(0) and P−[f ] =

f − P+[f ]− f̂(0), so ‖P+[f ]‖Lp(T) ≤ ‖f‖Lp(T) + 1
2‖f̃‖Lp(T) and ‖f̃‖Lp(T) ≤ ‖P+[f ]‖Lp(T) +

‖P−[f ]‖Lp(T) ≤ 2(‖P+[f ]‖Lp(T)+‖f‖Lp(T)) by the triangle inequality33. So Lp(T) bounded-

ness on C∞ of f 7→ f̃ is equivalent to that of f 7→ P+[f ]. By density this will automatically
also hold on Lp(T).
We define S′N [f ] :=

∑2N
n=0 f̂(n)eint and then also note that

N∑
n=−N

f̂(n)eint = e−iNt
2N∑
n=0

f̂(n−N)eint = e−iNt
2N∑
n=0

̂(
eiN(·)f(·)

)
(n)eint, (4)

so ‖
∑N

n=−N f̂(n)eint‖Lp(T) = ‖
∑2N

n=0
̂(

eiN(·)f(·)
)
(n)eint‖Lp(T). This means that

‖SN [f ]‖Lp(T) ≤ C‖f‖Lp(T) for all f ∈ Lp(T) if and only if

‖S′N [f ]‖Lp(T) ≤ C‖e−iN(·)f(·)‖Lp(T) = C‖f‖Lp(T) for all34 f ∈ Lp(T). Thus SN and S′N
share the same Lp(T) bound, which implies that sup

N≥0
‖SN‖Lp→Lp <∞ and

sup
N≥0
‖S′N‖Lp→Lp <∞ are equivalent.

Now we start with the main part of the proof. Suppose that SN [f ]→ f as N →∞ in Lp(T)
for all f ∈ Lp(T). By Corollary 4.2 and the equivalence above we obtain sup

N≥0
‖S′N‖Lp→Lp <

∞. Applying Lemma 4.1 to the sequence an(N) :=

{
1, 0 ≤ n ≤ 2N,
0, else,

we see that

T̃ [f ] = P+[f ] + f̂(0) is a bounded operator and by the triangle inequality P+ is bounded
(on Lp(T), so in particular on C∞(T)). Now this holds too for f 7→ f̃ .
Conversely, suppose that there exists Cp > 0 such that ‖f̃‖Lp(T) ≤ Cp‖f‖Lp(T) for all
f ∈ C∞(T). As noted above we have that P+ is bounded and by density we extend this

33Using the estimate ‖f̂(0)‖Lp(T) = |f̂(0)| ≤ ‖f‖L1(T) ≤ ‖f‖Lp(T).
34Actually for all e−iN(·)f(·) ∈ Lp(T), but the statements are equivalent by a simple bijection in the

space Lp(T) between the functions e−iN(·)f(·) and f .
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to Lp(T). For f ∈ C∞ we have

S′N [f ](t) =

∞∑
n=0

f̂(n)eint −
∞∑

n=2N+1

f̂(n)eint

=
∞∑
n=0

f̂(n)eint − ei2Nt
∞∑
n=1

f̂(n+ 2N)eint

=

∞∑
n=0

f̂(n)eint − ei2Nt
∞∑
n=1

̂(
e−2iN(·)f(·)

)
(n)eint

= P+[f ](t)− ei2NtP+

[
e−2iN(·)f(·)

]
(t) + f̂(0),

so just as we reasoned for Equation (4), we obtain that the operators
ei2NtP+

[
e−2iN(·)f(·)

]
(t) and P+[f ](t) have the same bound ‖P+‖Lp→Lp . We then have

‖S′N [f ]‖Lp(T) ≤ ‖P+[f ]‖Lp(T) + ‖ei2NtP+

[
e−2iN(·)f(·)

]
(t)‖Lp(T) + ‖f‖Lp(T)

≤ (2‖P+‖Lp→Lp + 1)‖f‖Lp(T)

independently of N ≥ 0 for all f ∈ C∞(T), so we can extend it to Lp(T) by density and we
get sup

N≥0
‖S′N [f ]‖Lp(T) ≤ (2‖P+‖Lp→Lp + 1)‖f‖Lp(T) for each f ∈ Lp(T), and thus we have

sup
N≥0
‖SN‖Lp→Lp <∞. By Corollary 4.2 the convergence in Lp(T) of SN [f ] to f follows.

4.2 Boundedness of f 7→ f̃

We will end this section with a ”proper” proof of the boundedness of f 7→ f̃ for 1 < p <∞.

Theorem 4.4. Let 1 < p <∞. Then there exists Cp > 0 such that

‖f̃‖Lp(T) ≤ Cp‖f‖Lp(T)

for all f ∈ Lp(T).
Subsequently, we have that the Fourier series of f ∈ Lp(T) converges back to f in Lp(T).

Proof. This slick proof by S. Bochner uses the density of the trigonometric polynomials35

in Lp(T).
Let f(t) =

∑N
n=−N cne

int be a trigonometric polynomial (of degree N), then we can clearly
rewrite this as

f(t) =

(
N∑

n=−N

cn + c−n
2

eint

)
+ i

(
N∑

n=−N

cn − c−n
2i

eint

)
=: P (t) + iQ(t),

and recalling the first exercise of the course Fourier Analysis, we have that

an :=
cn + c−n

2
+
c−n + cn

2
=

(c−n + c−n) + (cn + cn)

2
∈ R

35As argued in Footnote 32.
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and

bn := i

(
cn + c−n

2
− c−n + cn

2

)
=
i(c−n − c−n) + i(cn − cn)

2
∈ R

for all n, so P is real-valued. Analogously we can check that the same holds for the right
sum within the square brackets, so Q is real-valued too. So we can temporarily suppose
that f is real-valued. Also we will assume for now that f̂(0) = 0. Since f is real, we

have f̂(−n) = f̂(n), and then using Proposition 3.4, noting that f̂(n) = 0 for |n| > N , we
obtain the equality

f̃(t) = −i
N∑
n=1

f̂(n)eint + i

N∑
n=1

f̂(−n)e−int

= −i
N∑
n=1

f̂(n)eint + i

N∑
n=1

f̂(n)eint

= −i
N∑
n=1

f̂(n)eint +

(
−i

N∑
n=1

f̂(n)eint

)

= 2 Re

(
−i

N∑
n=1

f̂(n)eint

)
,

so f̃ is real-valued as well. As we can see, (f + if̃)(t) = 2
∑N

n=1 f̂(n)eint contains only

positive frequencies, since f̂(n) = 0. This implies that we have∫
T
(f(t) + if̃(t))2k dt = 0

for all k ∈ N, since the integrand also has only positive frequencies. Now fix k ∈ N. The
binomial theorem with the fact that f and f̃ are real-valued then gives us

0 =
2k∑
m=0

(
2k

m

)
i2k−m

∫
T
f(t)mf̃(t)2k−m dt

=
k−1∑
m=0

(
2k

2m+ 1

)
i2(k−m)−1

∫
T
f(t)2m+1f̃(t)2(k−m)−1 dt

+

k∑
m=0

(
2k

2m

)
i2(k−m)

∫
T
f(t)2mf̃(t)2(k−m) dt

= − i
k−1∑
m=0

(
2k

2m+ 1

)
(−1)k−m

∫
T
f(t)2m+1f̃(t)2(k−m)−1 dt

+
k∑

m=0

(
2k

2m

)
(−1)k−m

∫
T
f(t)2mf̃(t)2(k−m) dt,

which implies that the real part is equal to zero, and multiplying this by 1
2π , we get

0 =
k∑

m=0

(
2k

2m

)
(−1)k−m

2π

∫
T
f(t)2mf̃(t)2(k−m) dt

=
1

2π

∫
T
f̃(t)2k dt+

k∑
m=1

(
2k

2m

)
(−1)k−m

2π

∫
T
f(t)2mf̃(t)2(k−m) dt.
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Putting the sum on the other side of the equality and noting that both sides are non-
negative, we can start estimating36:

‖f̃‖2kL2k(T) =

∣∣∣∣∣−
k∑

m=1

(
2k

2m

)
(−1)k−m

2π

∫
T
f(t)2mf̃(t)2(k−m) dt

∣∣∣∣∣
≤

k∑
m=1

(
2k

2m

)
1

2π

∫
T

∣∣∣f(t)2mf̃(t)2(k−m)
∣∣∣ dt

≤
k−1∑
m=1

(
2k

2m

)(
1

2π

∫
T

(
f(t)2m

) 2k
2m dt

) 2m
2k
(

1

2π

∫
T

(
f̃(t)2(k−m)

) 2k
2(k−m)

dt

) 2(k−m)
2k

+
1

2π

∫
T
f(t)2k dt

=
k∑

m=1

(
2k

2m

)
‖f‖2mL2k(T)‖f̃‖

2(k−m)

L2k(T) ,

where we used Hölder’s inequality multiple times with conjugate exponents 2k
2m and 2k

2(k−m)

for m = 1, . . . , k − 1. We divide the inequality by ‖f‖2k
L2k(T) and write R :=

‖f̃‖
L2k(T)

‖f‖
L2k(T)

, so

we can write the inequality more nicely as

R2k ≤
k∑

m=1

(
2k

2m

)
R2(k−m). (5)

Since the left side has the greatest exponent, it would dominate as R→∞, which means
that we can find some C2k > 0 such that Inequality (5) does not hold for all R > C2k. In
other words, if R > 0 satisfies Inequality (5), then we must have that R ≤ C2k. Since this
happens for each real-valued trigonometric polynomial f with f̂(0) = 0 as we just proved,
we get

‖f̃‖Lp(T) ≤ Cp‖f‖Lp(T)

for these described f as p = 2k.
Now we remove the assumption f̂(0) = 0, and see that g := f − f̂(0) is a trigonometric
polynomial as described in the previous case. We also observe that g̃ = f̃ as argued in
Subsection 3.1, so

‖f̃‖Lp(T) = ‖g̃‖Lp(T) ≤ Cp‖g‖Lp(T) ≤ 2Cp‖f‖Lp(T)

for p = 2k by the triangle inequality and Footnote 33.
Now removing the assumption that f is real-valued, we may write f = P + iQ with P and
Q two real-valued trigonometric polynomials as we just showed. By linearity of f 7→ f̃
and again the triangle inequality37 we now have

‖f̃‖Lp(T) = ‖P̃ + iQ̃‖Lp(T) ≤ ‖P̃‖Lp(T) + ‖Q̃‖Lp(T)
≤ 2Cp‖P‖Lp(T) + 2Cp‖Q‖Lp(T) ≤ 4Cp‖f‖Lp(T)

36Clearly the absolute value within the integral is unnecessary, but this is to show how we estimated
and makes us recognize Hölder’s inequality.

37Also using that |P |, |Q| ≤ |P + iQ| = |f | since P and Q are real-valued, so |P |p, |Q|p ≤ |f |p as p > 1
and due to monotonicity of the integral over T we obtain ‖P‖pLp(T), ‖Q‖

p
Lp(T) ≤ ‖f‖

p
Lp(T).
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for p = 2k. By density of the trigonometric polynomials in Lp(T) we now have that
‖f̃‖Lp(T) ≤ Cp‖f‖Lp(T) for all f ∈ Lp(T), where p = 2k. We have this for all k ∈ N, so by
the Marcinkiewicz interpolation theorem the boundedness also holds for p in any interval
(2k, 2k + 2) with k ∈ N. Therefore the boundedness holds for each p ≥ 2, and by the
duality argument this now also holds for 1 < p < 2. By Theorem 4.3 we have that the
Fourier series of f ∈ Lp(T) converges back to f in Lp(T) for 1 < p <∞.
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Conclusion

We have seen that in all discussed cases the Dirichlet problem can be solved by taking the
Poisson integral of the given boundary function:

u(reit) =

 1
2π

2π∫
0

fbd(t− τ)Pr(τ) dτ, r < 1,

fbd(t), r = 1.

Therefore we only need to consider the boundary function fbd that is given in the Dirichlet
problem to see if we can solve the problem. We will now, in a very distilled and succinct
style, discuss the different cases of the Dirichlet problem, the different spaces of the bound-
ary function, and the type of convergence of the Poisson integral to the boundary function.

Harmonic Dirichlet problem

If fbd ∈ C(T), then we have uniform convergence on T of u(reit) to fbd(t) as r → 1. Let
1 ≤ p < ∞, then in the more general setting that fbd ∈ Lp(T), we have convergence in
Lp(T) of u(reit) to fbd(t) as r → 1.

Holomorphic Dirichlet problem

If fbd ∈ C(T), then we have uniform convergence on T of u(reit) to fbd(t) as r → 1 just
like in the harmonic case. Let 1 ≤ p < ∞, then for fbd ∈ Lp(T) we have the following

sufficient condition on the Fourier coefficients of fbd: f̂bd(n) = 0 for all n < 0.
Consequently, if we only have fbd ∈ Lp(T), then we actually do have that u(reit) :=
(fbd ∗ (Pr + iQr)) (t) = (f + if̃)(reit) solves the holomorphic case.

Convergence of Fourier series

We have seen that for 1 < p < ∞, the Fourier series of each fbd ∈ Lp(T) converges back
to fbd in Lp(T). This is not true for p = 1 and p =∞.
Subsequently, for 1 < p <∞ we may reconstruct fbd in the Lp(T) sense if we only know its
Fourier coefficients, which may be more efficient than using convergence twice by means
of its Poisson integral. For p = 1 we will have to solve the Dirichlet problem first before
reconstructing the boundary function fbd.
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Appendix

As mentioned in the preface, we will use the definitions in the style of [1]. For example
the one-dimensional torus T will be coming forth from [0, 2π) instead of (0, 1] (or (−π, π],
although it wouldn’t make any difference for functions on T). A function f : ∂D→ C will
be identified with the equivalence class of boundary functions fbd : T→ C with represen-
tative f(eit) on [0, 2π). We denote the Lebesgue measure by λ (we will use |·| when we
explicitly measure intervals), while the notation of the Lebesgue integral will usually be∫
f(t)dt :=

∫
f(x)dλ(x) whenever it’s convenient (for example when the Lebesgue measure

isn’t mentioned). When zeros of a function are explicitly given, then the zeros are given
again if their multiplicities are greater than 1. We denote the set of natural numbers by
N := {1, 2, 3, . . .}. The first few propositions and definitions are some facts from basic
Fourier analysis while clearing up notation and 2π-scaling ambiguities. In general, defini-
tions with an integral will be scaled by 1

2π .

Fourier analysis

Proposition 1. For 1 ≤ p <∞, the normed space (Lp(T), ‖·‖Lp(T)) of p-integrable func-

tions on T with norm ‖f‖Lp(T) :=

(
1
2π

∫
T
|f(t)|pdt

) 1
p

is a Banach space.

Definition 2. If f, g ∈ L1(T), then we define their convolution by

(f ∗ g)(t) :=
1

2π

∫ 2π

0
f(t− τ)g(τ) dτ,

which is also a function in L1(T) and we have ‖f ∗ g‖L1(T) ≤ ‖f‖L1(T)‖g‖L1(T). Note that
∗ is a commutative operator.

The following lemma generalizes this inequality to have one of the two functions in Lp(T).

Lemma 3 (Minkowski’s inequality). For 1 ≤ p ≤ ∞, let f ∈ L1(T) and g ∈ Lp(T), then
f ∗ g ∈ Lp(T), and we have the inequality

‖f ∗ g‖Lp(T) ≤ ‖f‖L1(T)‖g‖Lp(T).

Proof. Let 1 ≤ p <∞. By Hölder’s inequality, we get∫
T
|f(t− τ)g(τ)|dτ ≤

(∫
T
|f(t− τ)|

p
p |g(τ)|pdτ

) 1
p
(∫

T
|f(t− τ)|

p′
p′ dτ

) 1
p′

= (2π(|f | ∗ |g|p)(t))
1
p
(
2π‖f‖L1(T)

) 1
p′

= 2π ((|f | ∗ |g|p)(t))
1
p ‖f‖

1
p′

L1(T),
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where 1
p + 1

p′ = 1, and so

1

2π

∫
T

∣∣∣∣ 1

2π

∫
T
f(t− τ)g(τ)dτ

∣∣∣∣p dt ≤ 1

2π

∫
T

(
1

2π

∫
T
|f(t− τ)g(τ)|dτ

)p
dt

≤ 1

2π

∫
T

(
((|f | ∗ |g|p)(t))

1
p ‖f‖

1
p′

L1(T)

)p
dt

= ‖f‖
p
p′

L1(T)
1

2π

∫
T
(|f | ∗ |g|p)(t)dt

= ‖f‖
p
p′

L1(T)‖|f | ∗ |g|
p‖L1(T)

≤ ‖f‖
p
p′

L1(T)‖f‖L1(T)‖|g|p‖L1(T)

= ‖f‖
p
p′+

p
p

L1(T)‖g‖
p
Lp(T)

= ‖f‖p
L1(T)‖g‖

p
Lp(T).

Now if p =∞, then, by translation invariance of the essential supremum on T, we simply
have

ess sup
t∈T

∣∣∣∣ 1

2π

∫
T
g(t− τ)f(τ)dτ

∣∣∣∣ ≤ ess sup
t∈T

1

2π

∫
T
|g(t− τ)||f(τ)|dτ

≤ ess sup
t∈T

1

2π

∫
T
|f(τ)| ess sup

s∈T
|g(s− τ)|dτ

= ess sup
s∈T

|g(s)| 1

2π

∫
T
|f(τ)|dτ

= ‖f‖L1(T)‖g‖L∞(T).

Definition 4. The sequence of functions (Dn)∞n=0, where Dn :=
∑n

k=−n e
ikt, is called

the Dirichlet kernel. For 1 ≤ p ≤ ∞, if f ∈ Lp(T), then we define the Fourier series
S[f ](t) :=

∑∞
n=−∞ f̂(n)eint by the limit of the partial sums SN [f ](t) := (f ∗ DN )(t) =∑N

n=−N f̂(n)eint, where f̂(n) := 1
2π

∫
T
f(t)e−intdt is the n-th Fourier coefficient of f .

Definition 5. The sequence of functions (Fn)∞n=1, where Fn := 1
n

∑n−1
k=0 Dk, is called the

Fejér kernel. For 1 ≤ p ≤ ∞, if f ∈ Lp(T), then we define the Cesàro sum σ[f ](t) of the
Fourier series by the limit of the Cesàro means σN [f ](t) := (f ∗FN )(t) = 1

N

∑N−1
n=0 Sn[f ](t)

of the Fourier series.

Definition 6. The family of functions (Pr)0≤r<1, where Pr(t) :=
∑∞

n=−∞ r
|n|eint =

1−r2
1−2r cos(t)+r2 = Re

(
1+reit

1−reit

)
, is called the Poisson kernel. For 1 ≤ p ≤ ∞, if f ∈ Lp(T),

then we call (f ∗ Pr)(t) =
∑∞

n=−∞ f̂(n)r|n|eint the Poisson integral of f .

Definition 7. A sequence of 2π-periodic continuous functions (kn)∞n=0 is a summability
kernel (or Dirac kernel) if

(i) 1
2π

∫
T
kn(t) dt = 1,

(ii) ‖kn‖L1(T) ≤ C for some C > 0 independent of n,
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(iii) lim
n→∞

2π−δ∫
δ

|kn(t)|dt = 0 for each 0 < δ < π.

It is a well-known fact that the Fejér kernel and the Poisson kernel are non-negative, even,
continuous summability kernels. Furthermore, the Poisson kernel is strictly decreasing on
[0, π]. Details for these facts can be found in [3].

Lemma 8. Suppose f is holomorphic in D and let 0 < r, ρ < 1. Then we have that

f(rρeit) = f(reit) ∗ Pρ(t).

Proof. Write f(z) =
∞∑
n=0

anz
n, then we have that both f and P are uniformly convergent

on the closed disc with radius r, and so we may swap series and integrals:

f(reit) ∗ Pρ(t) =
1

2π

∫ 2π

0

∞∑
n=0

anr
neinτ

∞∑
m=−∞

ρ|m|eim(t−τ) dτ

=

∞∑
n=0

∞∑
m=−∞

anr
nρ|m|eimt

1

2π

∫ 2π

0
ei(n−m)τ dτ

=
∞∑
n=0

anr
nρ|n|eint

= f(rρeit).

If f is a harmonic function, then f = Re(g) for some holomorphic function g, since D is
simply connected. Now we see that

Re
(
g(reit)

)
∗ Pρ(t) + i Im

(
g(reit)

)
∗ Pρ(t)

=
1

2π

∫ 2π

0
Re
(
g(rei(t−τ))

)
Pρ(τ) dτ +

1

2π

∫ 2π

0
i Im

(
g(rei(t−τ))

)
Pρ(τ) dτ

=
1

2π

∫ 2π

0
g(rei(t−τ))Pρ(τ) dτ

= g(reit) ∗ Pρ(t)
= g(rρeit)

= Re
(
g(rρeit)

)
+ i Im

(
g(rρeit)

)
.

We recall that Pρ is a real-valued function, and so we must have that f(reit) ∗ Pρ(t) =
f(rρeit). We conclude that Lemma 8 also holds for harmonic functions in D.

Lemma 9. Every function that is harmonic and bounded in D is the Poisson integral of
some bounded function on T.

Proof. Let F be harmonic and bounded in D (i.e. ‖F‖∞ < ∞) and define fn(eit) :=
F (rne

it) with rn ↑ 1 as n→∞. We note that (fn)∞n=1 is a bounded sequence of functions38

in L∞(T). As T is separable, L1(T) is separable, and so the closed unit ball in L∞(T),
the dual space of L1(T), is sequentially compact in the weak-∗ topology by the sequential

38Each function fn is in L∞(T), since ‖fn‖L∞(T) ≤ ‖fn‖∞ ≤ ‖F‖∞ <∞, where the second norm is the
supremum norm for continuous functions on T and the third the supremum norm for continuous functions
on D.
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version of the Banach-Alaoglu theorem. After scaling the unit ball to the corresponding
bound of (fn)∞n=1, this implies39 that there exists a subsequence (fnk)∞k=1 that converges
in the weak-∗ topology to some function Fbd(t), i.e. for each x ∈ L1(T), we have that∫
T fnk(t)x(t) dt →

∫
T Fbd(t)x(t) dt as k → ∞ with Fbd ∈ L∞(T) (a bounded function

on T). Now let reit ∈ D. We note that Pr ∈ L1(T) (the same obviously holds for the
translated variants) and so we see that40

1

2π

∫ 2π

0
Pr(t− τ)Fbd(τ) dτ = lim

k→∞

1

2π

∫ 2π

0
Pr(t− τ)fnk(eiτ ) dτ

= lim
k→∞

1

2π

∫ 2π

0
Pr(t− τ)F (rnke

iτ ) dτ

= lim
k→∞

F (rnkre
it)

= F (reit),

where the third equality holds due to Lemma 8 and the last equality holds due to continuity
of F in D, as it is a harmonic function.

Complex analysis

Proposition 10. Let D ⊆ C be a domain. Then every holomorphic function D → C is
harmonic.

Proof. Suppose f : D → C is holomorphic. Write f(x + iy) = u(x, y) + iv(x, y) with u
and v real functions. Then by the Cauchy-Riemann equations, we see that

∆f =
∂

∂x

∂u

∂x
+ i

∂

∂x

∂v

∂x
+

∂

∂y

∂u

∂y
+ i

∂

∂y

∂v

∂y

=
∂

∂x

∂v

∂y
− i ∂

∂x

∂u

∂y
− ∂

∂y

∂v

∂x
+ i

∂

∂y

∂u

∂x

=
∂

∂x

∂v

∂y
− i ∂

∂x

∂u

∂y
− ∂

∂x

∂v

∂y
+ i

∂

∂x

∂u

∂y
= 0

in D, where the third equality holds due to smoothness of u and v. So f is indeed
harmonic.

Theorem 11. Let D ⊆ C be a simply connected domain. Then for harmonic functions
D → C, the mean value property holds, i.e. we have

f(z) =
1

2π

∫ 2π

0
f(z + reit)dt (6)

for f : D → C harmonic, where z and z + reit (for all t ∈ [0, 2π)) are in D.

Proof. Suppose f : D → C is harmonic. Write f(x+ iy) = u(x, y) + iv(x, y) with u and v
real functions. As we can see in the proof of Proposition 10, both u and v are harmonic
in D, which means that both u and v are the real parts of holomorphic functions in D.

39This is all out of scope of this project: see Chapter 5 Theorem 3.1 in [5] for the details of the proof.
40Existence of this convolution is due to Lemma 3.
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We consider u, which is the real part of some holomorphic function g, where vg is the
harmonic conjugate of u. Let a ∈ D and r > 0 such that γ(t) := a + reit lies in D. By
Cauchy’s integral formula we have

g(a) =
1

2πi

∫
γ

g(z)

z − a
dz

=
1

2πi

∫ 2π

0

g(a+ reit)

reit
ireit dt

=
1

2π

∫ 2π

0
g(a+ reit) dt

=
1

2π

∫ 2π

0
u(a+ reit) dt+ i

1

2π

∫ 2π

0
vg(a+ reit) dt,

but we also have g(a) = u(a) + ivg(a), and since both u and vg are real-valued functions,

we must have that u(a) = 1
2π

∫ 2π
0 u(a+ reit) dt.

Analogously we get v(a) = 1
2π

∫ 2π
0 v(a+ reit) dt, and so we have that

f(a) = u(a) + iv(a)

=
1

2π

∫ 2π

0
u(a+ reit) dt+ i

1

2π

∫ 2π

0
v(a+ reit) dt

=
1

2π

∫ 2π

0
f(a+ reit) dt.

In this theorem, we actually proved the harmonic property first for holomorphic func-
tions. If we were to prove the theorem in another way, for example using Green’s theorem,
we would still see that Theorem 11 holds for holomorphic functions in particular due to
Proposition 10.

Infinite products

Definition 12. Let (pn)∞n=1 be a sequence in C. We say that the infinite product

∞∏
n=1

pn

converges if the limit of partial products
N∏
n=1

pn exists and is non-zero.

The assumption of being non-zero is justified by its use in Lemma 13 and Lemma 15. We
note that if the elements of the sequence are non-negative real numbers, then the infinite
product is equal to the absolute value of itself, while for series we only have an estimate.

Recall that for a convergent series
∞∑
n=1

an we must have that lim
n→∞

an = 0: we have a similar

statement for infinite products.

Lemma 13. If the infinite product
∞∏
n=1

pn converges, then we have

lim
n→∞

pn = 1.
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Proof. Let’s say the infinite product converges to p, then we simply observe that

pn =

n∏
m=1

pm

n−1∏
m=1

pm

→ p

p
= 1

as n→∞.

Now we state a consequence of the comparison test, which we will use in the last lemma.

Lemma 14 (Limit comparison test). Let
∞∑
n=1

an and
∞∑
n=1

bn be two series with an ≥ 0 and

b > 0 for all n ∈ N. If

lim
n→∞

an
bn

= c

for some 0 < c <∞, then
∞∑
n=1

an converges if and only if
∞∑
n=1

bn converges.

Proof. For each ε > 0 we can find N ∈ N such that for all n ≥ N we have
∣∣∣anbn − c∣∣∣ < ε, or

in other words, (c − ε)bn < an < (c + ε)bn. Choosing ε = c
2 , we obtain c

2bn < an <
3c
2 bn.

Noting that
∞∑
n=1

c
2bn = c

2

∞∑
n=1

bn, we have that if
∞∑
n=1

an converges, then c
2

∞∑
n=1

bn converges

by the comparison test, and thus
∞∑
n=1

bn converges. If
∞∑
n=1

bn converges, then similarly we

have that 2
3c

∞∑
n=1

an converges by the comparison test, and thus
∞∑
n=1

an converges.

Lemma 15. Let (pn)∞n=1 be a sequence in C, where 0 < |pn| < 1. Then we have that

∞∏
n=1

pn is convergent if
∞∑
n=1

|1− pn| is convergent.

If the same sequence (pn)∞n=1 is in R, then a stronger statement holds:

∞∏
n=1

pn is convergent if and only if

∞∑
n=1

|1− pn| is convergent.

Proof. We will first prove the stronger statement, so we suppose that (pn)∞n=1 a real
sequence. Since lim

n→∞
pn = 1 by Lemma 13 (this also holds if we assume that the series

converges), we only have to consider the case that the sequence only has positive elements,
as the first (finitely many) terms don’t influence convergence.
We observe that

∏∞
n=1 pn converges if and only if

∑∞
n=1 log(pn) converges (to some negative

real number, since 0 < pn < 1) due to the continuity of log.
We see that

lim
n→∞

− log(pn)

1− pn
= lim

n→∞

log(pn)

pn − 1
= 1,

since we have that

lim
x→1

log(x)

x− 1
= lim

y→0

log(y + 1)

y
= lim

y→0

y +O
(
y2
)

y
= 1 + lim

y→0
O (y) = 1,
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so by the limit comparison test we obtain that −
∑∞

n=1 log(pn) converges if and only if∑∞
n=1 1 − pn converges: the first is equivalent to the convergence of

∑∞
n=1 log(pn). So

indeed
∏∞
n=1 pn converges if and only if

∑∞
n=1 1− pn does.

Now we prove the (weaker) statement for (pn)∞n=1 a complex sequence. We write pn =
xn+ iyn with xn, yn ∈ R. We have that the infinite product

∏∞
n=1 pn converges if and only

if
∑∞

n=1 Log(pn) =
∑∞

n=1 log|pn| + i
∑∞

n=1 Arg(pn) converges, by the continuity41 of Log.
By linear independence of real and imaginary part, the last series converges if and only if
both

∑∞
n=1 log|pn| and

∑∞
n=1 Arg(pn) converge.

1

i

pn

xn

iyn
xn

yn

p1 p2

pn+1

pn+2

pn+3Arg(pn)

|pn|

Re

Im

Figure 3: pn = xn + iyn in the complex unit disc as part of the sequence (pn)∞n=1.

We note that yn = |pn| sin(Arg(pn)), so |yn| = |pn||sin(Arg(pn))| = |pn| sin(|Arg(pn)|).
Again, in both parts of the statement of the lemma we have that pn → 1 as n→∞, which
implies that xn → 1, so again we only have to consider the case that xn is positive as argued
in the real case. This also means that lim

n→∞
|yn|

|Arg(pn)| = lim
n→∞

|pn| lim
n→∞

sin(|Arg(pn)|)
|Arg(pn)| = 1, since

lim
n→∞

Arg(pn) = 0 as lim
n→∞

pn = 1, so by the limit comparison test we have that
∑∞

n=1|yn|
converges if and only if

∑∞
n=1|Arg(pn)| converges. Now that we have proved the details,

we can prove the main statement.
Suppose

∑∞
n=1|1 − pn| is convergent. We have |yn| ≤ |1 − xn − iyn| = |1 − pn| and from

the reverse triangly inequality we obtain 1− |pn| ≤ |1− pn|, so by the comparison test we
have that

∑∞
n=1|yn| and

∑∞
n=1 1 − |pn| converge, the first implying that

∑∞
n=1|Arg(pn)|

converges, and then so does
∑∞

n=1 Arg(pn) due to absolute convergence. The second series
agrees with the conditions of the real case, so we have that

∑∞
n=1 log |pn| converges. As

noted at the beginning of the complex case, we now have that
∏∞
n=1 pn converges.

If pn = 0 for finitely many n, then we see that Lemma 15 still holds (if we consider an
infinite product that is equal to zero due to finitely many zero-valued elements also con-
vergent). Similarly, the second statement still holds if (pn)∞n=1 is real except for a finite
number of elements.

41Continuity in complex numbers with their (principal) argument in (−π, π). In the next lines we will
see that we may assume xn > 0.

47



We can show that the stronger statement does not necessarily hold in the complex case.
We need that the series of both the argument and the logarithm of the modulus converge.

This happens for pn = e
1
n2 exp

(
i (−1)

n

n

)
, since we have42

∑∞
n=1

1
n2 = π2

6 and
∑∞

n=1
(−1)n
n =

− log(2), and so we have that
∏∞
n=1 pn converges. Note that pn = e

1
n2 cos

(
(−1)n
n

)
+

ie
1
n2 sin

(
(−1)n
n

)
, so yn = e

1
n2 sin

(
(−1)n
n

)
= (−1)ne

1
n2 sin

(
1
n

)
, and recalling the estimate

|yn| ≤ |1− pn|, we see that43

|1− pn| ≥ e
1
n2 sin

(
1

n

)
≥ sin

(
1

n

)
≥ 2

π
· 1

n
,

and recognizing the harmonic series on the right, we have that
∑∞

n=1|1− pn| diverges by
the comparison test.

42Or we note that the first converges as a p-series with p = 2 and the second converges by the alternating
series test.

43Here we also use the estimate 2
π
x ≤ sin(x) for |x| ≤ π

2
, since

∣∣ 1
n

∣∣ ≤ 1 < π
2

for n ∈ N.

48



References

[1] Y. Katznelson, An introduction to harmonic analysis. Cambridge University Press,
2004.

[2] E. Freitag and R. Busam, Complex analysis. Springer Science & Business Media, 2006.

[3] D. Frey and A. Amenta, “Lecture notes: Fourier analysis.” Delft University of Tech-
nology, February 2018.

[4] L. Grafakos, Classical Fourier Analysis (Graduate Texts in Mathematics). Springer
New York, 2008.

[5] J. B. Conway, A course in functional analysis, vol. 96. Springer Science & Business
Media, 2013.

[6] B. P. Rynne and M. A. Youngson, Linear functional analysis. Springer Science &
Business Media, 2000.

[7] P. Koosis, Introduction to Hp spaces, vol. 115. Cambridge University Press, 1998.

49


	Abstract
	Preface
	Contents
	Introduction
	Hardy spaces
	Conformal mappings and Jensen's inequality
	Blaschke products
	Hardy spaces
	Canonical factorization
	Boundary values of a function in Hp

	Interpolation
	Distribution functions
	Weak Lp spaces
	Marcinkiewicz interpolation theorem

	Boundedness of the conjugate function
	Conjugate series
	Conjugate functions
	Maximal functions
	Hilbert transforms and duality

	Convergence of Fourier Series
	Equivalent formulations of convergence of Fourier series
	Boundedness of f

	Conclusion
	Appendix
	References

