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ABSTRACT A deflection length determines the statistical physics of a tightly bent wormlike chain because 
the undulations of the chain must follow ita “classical” path. The deflection length which is proportional 
to the square of the radius of the classical path and inversely proportional to the persistence length, is 
interpreted to be a critical scale. By comparing it to the usual deflection length for a wormlike chain confined 
by various forces, we can distinguish regimes of weak and strong bending. A scaling analysis is given of various 
problems: DNA packed in tori and phages, worms wound around cylinders, adsorption on spheres, hairpin 
and disclination defects in polymer nematics. 

Introduction 

Stiff chains are strongly bent in a surprising variety of 
systems of considerable practical importance. Double- 
stranded DNA is a case in point. In cells, a DNA molecule 
seldom undulates freely under the influence of thermal 
motion for it is often wrapped around the core particles 
within chr0matin.l In crystals, long DNA may fold2 or 
bend fairly sharply around de fe~ t s .~  In bacteriophages415 
and condensed structures,u DNA presumably forms a 
tightly packed liquid crystal. An important theoretical 
issue is then the following. In dilute solution, a semiflexible 
chain possesses a considerable number of degrees of 
freedom. We wish to know how these are increasingly 
frozen out as we fold the chain. Under strong deforma- 
tions, one expects a tightly bent chain to behave almost 
like a similarly folded elastic rod unperturbed by thermal 
motion. The purpose of this paper is to formulate the 
physics of this regime of tight bending. 

Yamakawa and Stockmayerg were the first to address 
the way degrees of freedom may be lost when a short stiff 
chain is coiled tightly into a circle of radius less than the 
persistence length P. However, precise numerical calcu- 
lations of the statistical mechanics of sharply bent curves 
require mathematical ingenuity.%l2 Many problems in- 
volving interactions are even more complex so a qualitative 
picture should be valuable. Here, I present a scaling theory 
which has the drawback of lacking numerical coefficients. 

The notion is to demarcate regions of weak and strong 
deformations. This can be simply illustrated by the folding 
of a cylindrical pore or tube of diameter d (d << P) con- 
fining a semiflexible chain. If the tube is straight, the 
statistical properties of the worm are determined by the 
deflection length13 X = d2/3P1/3, the typical scale of chain 
collisions with the wall. If we bend the tube only slightly, 
X is not altered, at  least to a first approximation. The 
collisions of the chain against the wall of the pore are not 
modified because the tube is relatively straight on the 
scale of the deflection length. The physics of such a slightly 
curved tube is quite analogous to that of a bent polymer 
nematic in which a chain may be viewed as a sequence of 
deflection segments aligned globally along the curved 
director.14J5 Ultimately, as the tube is bent too tightly, 
this perturbative picture must break down. I shall argue 
that it is possible to define a critical deflection length X, 
which depends on the tube curvature: if X < X,, the tube 
may be considered weakly bent; if X > X,, a new regime 
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Figure 1. Wormlike chain with ends restrained: (a, top) weakly 
tightly bent but undulating close to the classical 

appears and the chain deflection length equals X, instead 
of A. In the latter case, the worm may be said to be tightly 
curved. 

Critical Deflection Length 

Let us bend an initially unconfined worm whose contour 
length L is somewhat smaller than the persistence length 
P. The chain is at first kept in a deformed state by 
constraining the orientations of the tangential vectors at 
the two ends (Figure la). A configuration of the chain is 
describsd by the radius vector i ( s )  or the unit tangent 
vector p ( s )  = ailas defined at  each contour point s (0 I 
s I L). We may split i ( s )  into the classical path and the 
fluctuation from it 

P(s) = Q(S)  + (1) 
0 1993 American Chemical Society 
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;(SI = G c p )  + 6;(s) 

The bending energy of the chain is a minimum when it 
follows the classical path. It is well-known that for 
sr.@defo;mations i.e. _when the bending angles are small 
((1.14(L) - 1.1d(O)l << 1, 161.11 << 11, we may approximate the 
bending energy harm~nical ly .~~ Then, the statistical 
mechanics becomes straightforward (see ref 16 and the 
Appendix). 

At  strong deformations, the harmonic appr~ximation~~ 
is no longer p~ss ib l e .~J~  Certain chain undulations which 
existed in the harmonic approximation are now frozen out 
(see Figure lb; we now employ the additional constraint 
of the two ends being fixed at a small separation). I propose 
a scaling argument to show how this happens. In Figure 
lb, the deflection 6,1 of the classical path with respect to 
the tangent vector a t  some point so can be approximated 
by 
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It is noted that the radius of curvature R of the path ?,I 
varies only mildly along the entire contcur. If the worm 
were unrestrained and were to start at I . ~ , I ( S O ) ,  we would 
have13 

Here, ( ) denotes an average over all con_figurations. Recall 
that the orientational fluctuation 61.11s) is a Gaussian 
random process for - sol << P when l61.11<< 1. Equations 
2 and 3 allude to a new scale along the contour 

h, = R2/P R € P (4) 

This deflection length is interpreted as follows. For 1s - 
sol C A,, the chain can undulate quite freely close to the 
classical path (the izitial orientation is now allowed to 
deviate a bit from 1.1 (so)). Then, eq 3 is a legitimate 
approximation. Forls - sol > A,, the chain must be 
deflected toward the classical path. In that case, eq 3 is 
no longer compatible, on average, with a typical real 
trajectory i&) + 6 3 s )  since 6,l increases too fast with s. 
I conclude that A, is a relevant scale: the chain undulates 
with a characteristic wavelength X, along the classical path 
i&) (see Figure lb). Undulations of long wavelengths 
are progressively frozen out fast as the loop is tightened. 
Note that X, << R whenever R << P. Also, the deflection 
length tends to P when the radius of curvature does the 
same. This is what one expects: in the weakly bending 
or harmonic appro~imation,4~ undulations of all wave- 
lengths including P are present but it is valid only if R > 
P. Thus, eq 4 crosses over smoothly to the regime of weak 
bending. In general, we have k&) = R2(s)/Pbecause often 
dRlds = O(1). A formal similarity transformation of the 
bending Hamiltonian agrees with these intuitive argu- 
ments (see the Appendix). 

The free energy of a worm bent into a tight, uniform 
curve, is given by 

e!-+- L p  R < P  (5 )  
R2 p 

where k g  is Boltzmann’s constant and Tis the temperature. 
This is derived by noting that: (a) the deflection length 

A, 
Figure 2. Fuzzy wormlike loop; X = R2/P; D = R3/P.  

is the relevant scale for the undulations; (b) if L >> A,, the 
free energy must be extensive, i.e. proportional to L; (c) 
the curvature is a vector so the next higher order term 
must be of relative magnitude XC2/R2. The fiist term in 
eq 5 is simply the pure bending energy of a chain 
unperturbed by thermal motion.43 Hence, the scaling 
prescription is consistent, for this is what we expect in the 
limit of strong deformations. The second term expresses 
the relatively minor explicit influence of the undulationsm4 
For a circular, wormlike loop we have upon deleting a 
large numerical coefficient 

This form agrees with the argument of the exponential 
term42 in eq 45 of Shimada and Yamakawa.lo Because of 
the undulations, such a loop has a “fuzzy” thickness D 
(Figure 2). The orientational fluctuations can be written 
as (e2) = D2/X,2 = X,lP so that 

Under physiological conditions, a 40-nm-wide loop of DNA 
with a persistence length P of 50 nm has a deflection length 
of 8 nm and the thickness of the “thermal” torus or “fuzzy” 
loop is about 5 nm (=D + diameter of the DNA helix). 

I next adduce arguments for regarding X, as a critical 
deflection length. At first, various external forces acting 
on a wormlike chain may balance in such a way that the 
worm is effectively confined within a thin straight tube. 
Suppose the fluctuations of the worm about the tube axis 
may be approximated harmonically, so that the second 
moment ( a i 2 )  = d2 is sufficient to understand ita statistical 
properties (d << P). The deflection length is simply13 

(8) 
As I pointed out in the Introduction, we already know X 
is almost unperturbed when the system is put under stress 
and the tube is bent weakly. In this case, we have X < &. 
Upon an increase in stress, the tube becomes progressively 
more curved- the tube radius of curvature Rt decreases- 
until a line of reasoning similar to the above applies. Hence, 
we may write 6(X,,) = Xc21Rt N 6&,) N b 2 / R  - (6j2)1/2 
= d in view of the classical path coinciding more or less 
with the deformed tube axis as soon as the regime of tight 
bending is entered; eq 4 shows that A, is then equal to the 
deflection length X given by eq 8. When the effective tube 
is bent even more, the deflection length must decrease if 
the path fluctuations are to conform to eq 2 for - sol > 
X. In summary, we have 

D = R 3 / p  (7) 

= d2/3pl/3 

A,, = X if X < A, (9) 
A,, N X, if X 1 A, 
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Figure 3. Bacteriophage filled with DNA. In the outer region 
(I), the hexagonal DNA lattice is deformed slightly. In the core 
(11), DNA is tightly packed. 

and the free energy of the deformed worm is 

When X < &, the chain statistics is governed by thermally 
excited undulations competing with the confining force 
field; when X 1 &, the chain is a bent rod virtually 
unperturbed by neither.43 

The application of eq 9 may be illustrated for DNA 
packed in a bacteriophage4i6 or torus.7 It is assumed that 
the helix is free of kinks. Because of the strong electrostatic 
interactions, the chain undulations in hexagonally packed 
DNA are quite small17J8 (at physiological ionic strengths, 
d N 0.5 nm, X N 2.3 nm). From eqs 4 and 9 we calculate 
a critical radius of curvature R, N 11 nm corresponding 
to X = &. Hence, in the outer region (radius of curvature 
111 nm; origin in the middle of the phage, presumably), 
we may view the DNA lattice as a slightly deformed liquid 
crystal with undulations determined by d or A. In the 
core region (R I 11 nm), the DNA is essentially a bundle 
of tight elastic loops which does not retain the physical 
properties of the surrounding liquid crystal (Figure 3). 
Within the core, the free energy per unit length increases 
dramatically with the curvature, but it is almost constant 
in the outer region. Thus, if such a tightly bent inner 
region exists, it exists at high cost. The exact structure 
of DNA in phages is still debated.s Similar reasoning 
applies to toroidal DNA complexes. One suspects that 
the minimum value R m  of the inner toroidal radius must 
somehow be connected with R,. Indeed, R, is quite close 
to R m  N 9 nm found in recent experiments by Arscott et 
aL7 Evidently, these problems merit a more quantitative 
analysis (see also ref 19). I next survey several more 
consequences of eq 9. 

Chain under Tension Wound around a Cylinder 

First, I discuss the unwound case. A scaling analysis of 
a flexible chain under strong tension was given byPincusm 
who regarded the chain as a sequence of blobs each having 
a size inversely proportional to the tensile force 7. Naive 
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(b) 
Figure 4. (a) Wormlike chain under tension. (b) Strained worm 
wrapped once around a cylinder. 

application to a strongly stretched worm would then give 

f kBT/X (incorrect) (11) 
In effect, the argument would run that the deflection length 
is simply the sole relevant scale and eq 11 is the result of 
dimensional analysis (see Figure 4). But in the Pincus 
analysis20 the blobs are isotropic units whereas the 
deflection blobs or segments experience a torque and 
reorient. Accordingly, the orientational fluctuations are 
bound to be important so a more careful line of reasoning 
is required. 

The free energy of the wormlike chain is enhanced by 
the tensile force 

AF = -( (i.(L) - i .(O)).f) 

= -fL JoL(cos e(s) ) ds 

N constant + '1 j L ( e 2 )  (12) 

where B(s) is th_e angle between the force vector and the 
tangent vector p(s). The last equality is valid because the 
tension is strong. The chain is effectively LIX deflection 
segments, each acting in the main like an independent 
unit (Figure 4). Therefore, by equipartition we have 

f x ( e 2 )  kBT (13) 

Now, the inner region of a deflection segment is not 
influenced by the external force, to f i s t  order, which means 
the orientational correlation is the usual Gaussian random 
process16 ((O(s1) - B ( s ~ ) ) ~ )  Is1 - s2llP for SI and s2 on the 
inner contour. Extending this to its outer limit of validity, 
we get 

(e2) lI2((e(o) - e(X)Y) N l i p  (14) 

Finally, eliminating the angle, we obtain 

X2 N kBTP/f < P (15) 

Next, the semiflexible chain is wound only once around 
a cylinder of radius R,1 and then strained by a force j .  If 
the chain's trajectory were to follow the circumference of 
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the cylinder, we would have X, = R,i2/P. Hence, if X >>&, 
the cylinder is effectively needlelike and nothing but a 
topological entanglement constraining the worm to have 
one loop of size (W1I2 = (kBTp/f )1 /2 .  Steadily increasing 
the tension, we reach the limit X = & when the chain can 
be said to envelop the cylinder, touching it about onceevery 
A, (Figure 4). Equation 15 yields for the critical force 
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f, = k ~ T p / R , , 1 ~  (16) 

It increases very fast with decreasing cylinder radius.41 
This calculation may bear on a situation where DNA is 
strained while it wraps around nucleosome particles. 

Adsorption on a Small Sphere 

Maggs et address the adsorption of a wormlike chain 
on a flat surface, both analytically and numerically. The 
attractive potential has a short range. They are able to 
prove that the binding is discontinuous for slightly 
undulating chains (L C P). It is possible to show thata 

hhAW fr' k,T h, < P (17) 

Here, Aw = w - WO, w is the binding energy per unit length 
of chain and wo = O(kBT/P). The deflection length of a 
loop of height h is given by 

= h213P/3 < P (18) 

The adsorbed chain is a wormlike sequence Of L / X h  more 
or less identical loops. 

It is clear that such a string of deflection loops bound 
to a sphere of radius R, is impossible unless Ah I & = 
R,2/P. Accordingly, the new "critical" binding energy w, 
can be expressed by 

(wB - wo)/kBT= Aw$k,T N PIR? R, C P (19) 

provided the range of the potential is much smaller than 
R,. The thickness of the bound layer is 

h fr' ( ~ , T / A w ) ~ / ~ P ' ! ~  

R: Aw, 312 

fr' -(-) Aw 2 Aw, (20) 
p2 Aw 

At the binding transition, it turns out that the wandering 
of a worm on a sphere with R, < l/3p is quite similar to 
that of a worm trapped on a flat surface. On the one hand, 
we have A, C l/&. On the other, the transverse displace- 
ment is 

R, N (L/X,)'f2h N L 1 / 2 R z P 3 / 2  (21) 

and RT < R,/6 for L C 2P. Thus, the trajectory of such 
a chain is very close to a great circle of radius R,. We can 
also safely neglect stability problems of the kind discussed 
by Manning22-24 for relaxed lines on a curved surface. In 
the regime l/3p C R, C P, we have tacitly assumed that the 
chain undulates along a great circle also. The wandering 
implied by eq 21 is somewhat greater, an effect that may 
modify eq 19, but it is outside the scope of this paper. 

At  the binding transition, w = w,, a longer chain ( L  >> 
P) will tend to be wound around the sphere a few times. 
It will be reeled in very fast as w increases (Figure 5) .  The 

Figure 5. Long wormlike chain bound to a small sphere in 
uniformly thick winds. 

minimum radius of curvature Rm is given by 

(22) 

Since loops of the chain adsorbed elsewhere on the sphere 
have a critical deflection length X, > Am, the effectivede- 
flection length is Am for the whole layer. Hence, we find 
for the number of winds n 

E-  -- 
k,T Aw, 
P€ 

E -  

k,T 
It is concluded that a slight increment in the binding energy 
( E  3 w - w,) causes a large number of winds. This 
calculation neglects the excluded-volume interaction be- 
tween adjacent loops. Tranverse wanderings given by eq 
21 are frozen out as the chain is packed onto the sphere. 
But the free energy of interaction is at most of the same 
order of magnitude as the total binding free energy, so eq 
23 remains a reasonable estimate. More importantly, the 
distance between neighboring winds can, of course, never 
be smaller than the chain diameter a itself. Therefore, eq 
23 does break down for hm < a.  

There is another complication for very long chains. The 
transition described by eq 19 may have to be amended 
because of the adsorption of large loops of sizes much 
greater than the persistence length. Also, several spheres 
may be strung along the chain as in a pearl necklace. This 
is the case for histone octamers bound to linker DNA in 
chromatin, though the cores are not spheres but rather 
more like flat cylinders of the same height and radius of 
about 5 nm. Unbinding of the DNA is known to occur at 
fairly high ionic strengths.25 As pointed out above, on a 
small sphere transverse undulations are almost negligible 
so that eqs 19 and 20 should be useful in understanding 
the winding of DNA around the circumference of a core 
particle. In fact, the slight transverse wandering is 
compatible with the helical winding of DNA. 
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Figure 6. Hairpin in a nematic. The loop between S and Q 
defines a central region where the chain is bent tightly. At S and 
Q the radius of curvature R, = P/a1Iz. 

Hairpins in Polymer Nematics 
Clear evidence for the existence of chain hairpins in a 

thermotropic polymer nematic has been found only 
recently.% First introduced independently by de Gennes27 
and Khokhlov and Semenov,26 the mathematical theory 
of hairpin formation has progressed rapidly.11ym4 In 
apolymer nematic, undulations are governed by the 
deflection length35 

An = P/a  (24) 

where the large parameter a = 21 ( 02) is a measure of the 
orientational order with respect to the director. Using 
eqs 4, 9, and 24, we can formulate a critical radius of 
curvature for a test chain deformed within the nematic 

R, N (AnP)'t2 P/alt2 (25) 

Thus, a hairpin can be visualized as in Figure 6. There 
is an inner curve which is bent tightly and whose maximum 
dimension must be R,. The two tails extending into the 
bulk basically have the statistical properties of a chain 
undulating along the director without folding. 

However, the hairpin does not approximate a semicircle 
of radius R, since it is sharpened by the nematic torque 
exerted by the nematic fluid of chains surrounding the 
defect. If the deflection length An is a relevant scale in the 
full H a m i l t 0 n i a n , ~ ~ - ~ ~ ~ ~ 2 ~ ~  the inner region shown in Figure 
6 must contain a tight semicircle of radius An which 
dominates in a calculation of the bending energy (E N 

a k ~ T )  of a hairpin. The undulations within the semicircle 
have a deflection length (Figure 6) 

A, N A,2/P = Pla2 (26) 

Such a minute scale also arises in a different scaling context 
discussed by Williams and Halperin.= 

-'/2 Wedge Disclination 
Another instance of a tightly elastic nonuniformity arises 

in a straight -l/2 wedge disclination in a polymer nematic. 
For this director field shown in Figure 7, the critical radius 
of curvature R, is again given by eq 25. Geometricalar- 
guments prove that the size of the inner region is at most 

W N (2.3-l/' - 1)R, 

N 0 . 1 5 P / ~ u ~ / ~  
N 0.15p2/3a't34-1/3 (27) 

where a is the chain diameter. The last equality is valid 
for lyotropics= (volume fraction 4 << 1). Equation 27 is 
conjectural, for the precise nature of the core region is not 
clear (tightly bent chains, biaxial or almost isotropic order, 
aggregating chain ends,36 etc). 

Figure 7. -l/z wedge disclination in a polymer nematic. 

An analogous breakdown of the nematic order should 
also occur for a suspension of rigid rods. When the director 
is strongly curved, the rods can no longer align along it, 
within the bounds of the orientation distribution which 
is sharply packed. The critical radius is 

R, N La-'/2 (28) 
W N 0.15RC N 0.15a/4 (29) 

Equation 29 is in qualitative agreement with the size of 
the core detected in Monte Carlo simulations of the -l/2 
disclination in rod n e m a t i c ~ . ~ ~  

Concluding Remarks 
The simple scheme proposed in eqs 4,9, and 10 is useful 

for several reasons. It is now feasible to derive scaling 
expressions for phenomena involving semiflexible chains 
that are tightly curved. Up to a point, it becomes possible 
to understand the physics of complicated WKB analy- 
seso112138 which are not reducible to harmonic approxi- 
m a t i o n ~ . ~ ~  Finally, scaling analyses may provide a basis 
for devising efficient matching procedures in the numerical 
work itself. 

Appendix 

given by 
The bending Hamiltonian of the wormlike chain45 is 

H[i.(s)] = '/$JLds (d2F/ds2)2 (AI) 

and the partititn functio? under suitable restraints at  the 
two ends (e.g. p(0) and p ( L )  fixed) is 

z = JD[;OI e-+BT (A21 

This functional integral is con~ t ra ined~~  by the condition 
p 2 ( s )  = 1. If we split F(s) into the classical path i&) and 
.the fluctuation 6F(s) from it, eq A1 separates into two terms 

H = H[i,,(s)l + H[Gi.(s)l (A31 
The harmonic appro~imat ion~~ results inJhe regime of 
weak bending when the curvature vector p(s )  = d2rdds2 
of the classical path is small in ma_gnitu$e.l6 Then, p(s) 
can be replaced by the small angle O(sl= e&) ,+ 6&s) with 
respect to the fixed tangential vector p(O), i.e. p(s) N (O(s), 
11, so the partition function reduces to a standard Gaussian 
functional integral without restrictions.45 

= Zc,SD[6fi(s)]  e-H[d(8)1'kBT (A4) 

For tight curves, the evaluation of functional integrals of 
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the kind in eq A2 is very d i f f i ~ u l t . ~ O * ~ ~ ? ~ ~  Nonetheless, a 
similarity transformationm of eq A3 is straightforward. I 
introduce the following primed variables of order unity: 
p(s)  = R-' s E AS', L E AL' and bi. E AW. 
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This Hamiltonian is only scale invariant if we choose A = 
A, (eq 4) and A D (eq 71, 

Accordingly, for a long chain we have 

F/k,T N L' = L/X, 
because the free energy must be extensive. 
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may compare eq 6 with the argument of the exponential in eq 
45. 

(43) This is quite analogous to what happens in the semiclassical 
limit of quantum mechanics: the classical path is independent 
of the de Broglie wavelength. 

(44) This term may be viewed as the slight increase in free energy 
upon bending each deflection segment (more or less) into a 
circular section of radius R. 

(45) In spite of being quadratic, the bending Hamiltonian oteq A1 
may be termed anharmonic in view of the constraint p2(s)  = 
pr2(s) + py2(s) + pz2(s) = 1. In general, anharmonic terms appear 
on rewriting eq A1 in terms of the truly independent variables 

and py( s ) .  In the weakly bending approximation, the 
anharmonic terms may be disregarded 80 I call it the "harmonic 
approximation" in this paper. Note that a (constrained) 
quadratic Hamiltonian is often termed harmonic in the theo- 
retical physics literature. 

(46) Maggs et al.21 point out that, for a discrete worm confined 
between two walls and adsorbed on one of them, hlB isa function 
g depending on the scaling variable x = B2/3P1/sA-1[exp(AwJ 
~ B T  - eXp(Aw/k~T)] where Aw, = O(k~!l ' )  is a critical binding 
energy at  the discontinuous transition to a completely collapsed 
state, A is the size of a monomer, and B is the distance between 
the walls. Equation 17 is derived by assuming g(x)  is a power 
law within a certain regime before the collapse (wg < w < wc), 
where h is independent of B. 
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