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E X E C U T I V E S U M M A R Y

The pressure on healthcare systems is increasing all over the world. With an ageing world
population, the costs for healthcare and the shortages in medical staff are continually in-
creasing. In the Netherlands, out-of-hours general practitioner departments (”huisartsen-
posten”) suffer from this increasing pressure: the departments are crowded and the staff
capacity is too low to adequately handle the amount of patients. This often leads to long
waiting times for patients in need of potentially urgent medical care and to high pressure
work environments for staff. There is no insight into when and why it is crowded, how
high waiting times emerge from this, and how changes can be made in the departments
internally and beyond to reduce this problem.

In this thesis, research is presented that addresses the practical and scientific lack of knowl-
edge of the factors that influence the out-of-hours general practitioner departments and
that identifies how waiting times can be reduced. This is done by answering the following
main research question:

How can waiting times at the telephone triage of out-of-hours general practitioner departments in
the Netherlands be reduced?

A data-driven simulation modelling study is performed to give an informed answer to this
question, which makes use of real-life data of the telephone system of two out-of-hours
departments. The research can be split up into two parts: the system data analysis and
the implementation and use of the simulation model which led to practical recommenda-
tions.

part i: system data analysis
An extensive system data analysis was performed to research factors that have an effect on
demand for healthcare and on the time it takes to help a patient on the phone: the service
times. When these factors are known, scenarios of the demand and the service times can
be identified to simulate reality as closely as possible in the simulation model implemented
in part II of this research. The researched system is the telephone triage system of the out-
of-hours department, which helps patients through the phone when their regular general
practitioner is not on duty, for example during the evenings or the weekends. They can
be seen by a doctor after the call, but that part of the system is not researched in this
thesis. Demand therefore indicates the amount of calls to the department, and service
times indicate the time that a call takes.

From analyzing the telephone data of the out-of-hours departments, different conclusions
on the factors that impact demand and service times were drawn:

• Demand and service times are different between seasons
• During the week, the demand for healthcare is lower than during the weekends
• During Fridays, the demand for healthcare is higher than during the rest of the week
• On Saturday it is more busy than on Sunday
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• The more urgent the medical problem is, the longer the service time is
• Demand can in some cases be different if it is very cold or very hot

By identifying these factors, the real-life data was split up into different groups in which
demand and service times are the same: the scenarios. With the identification of these
scenarios, insights into what factors can lead to situations with high waiting times at out-
of-hours departments were identified.

part ii: simulation model
Next, a discrete event simulation model was implemented that can simulate any day in the
out-of-hours department. This simulation model uses the identified demand and service
times scenarios from the system data analysis to identify the arrival rates of patients at
the department, the necessary service times to help them and the urgency of their medical
problems. With scenarios that come from real life data, reality is simulated as closely as
possible.

First of all, it was validated that the model accurately calculates waiting times of patients on
the phone at out-of-hours departments. It can therefore be used as a means for departments
to foresee how busy it is going to be at the department on a specific day, by choosing the
corresponding scenario and using that in the model. Also, when validating the model it
was found that the regular staff capacity at out-of-hours departments is never enough to
help all patients within the officially required time to do so. Therefore, experiments with
the simulation model were performed to quantitatively test what system changes other
than increased staff capacity can lead to a promising reduction of waiting times at out-of-
hours departments.

part ii: practical recommendations
These promising system changes when it comes to waiting time reduction can be split up
into quick wins that can be easily and quickly implemented by out-of-hours departments
and whose results can be measured directly, and long term interventions that focus more
on behavior change, require more cooperation between stakeholders and whose results
have to be measured over a longer time frame. These results were discussed with three
out-of-hours departments in the Netherlands resulting in practical recommendations to
achieve waiting time reductions.

The quick win interventions are the following:

• Shift patients from peak demand to less busy periods of the day. This can be
implemented by adding extra information to the audio fragments that are played to
patients in the queue about peak hours and when to call back. A shift of 1 patient per
hour in the peak hours of the day to the less busy hours reduces waiting times by at
least 10-20%, which increases to 50% when shifting 4 patients per hour on the busiest
day of the week: Saturday. The simulation model needs to be consulted to find the
optimum amount of patients to shift, as shifting too many patients only moves the
waiting time peak to another part of the day.
• Let work shifts overlap by starting them every one or two hours, based on how

crowded it is. With this flexibility, sudden demand increases that were not foreseen
can be handled with staff capacity at hand. Optimizing the schedule hourly reduces
peak waiting time by at least 10%, which can increase to percentages around 50% on
Saturdays if a shift takes around 4 hours.



• Retrieve personal patient information automatically in the queue in stead of by a
staff member. This reduces the time a call takes, which greatly impacts the waiting
times: a 10% call time reduction reduces the waiting times by more than 50%. The
call times have been increasing over the past years, so it is key to try to reduce them
again or at least avoid an extra increase.

The long term recommendations have a solid basis in literature, where they have a demand
reducing effect in emergency healthcare departments. Demand reduction has quantita-
tively proven to reduce waiting times in out-of-hours departments already by 50% when a
demand reduction of 10% is achieved. Also, the consulted out-of-hours departments recog-
nize the potential effect of these recommendations. Therefore, the implementing these rec-
ommendations has great potential to reduce waiting times over a longer time frame.

• Increase accessibility and understanding of the primary healthcare system. By
working together with regular general practitioners, (”huisartsen”), to coordinate ac-
cessible opening hours and by informing patients on making appointments and when
to use what service, less of the burden lays on out-of-hours departments.
• Implement a small financial (dis)incentive for out-of-hours care. People are found

to choose the regular general practitioner over out-of-hours care if the former is free
and the latter is not.
• Implement separate lines for home care and nursing homes. This reduces the

amount and length of these types of calls in weekends.
• Monitor patients who regularly contact out-of-hours departments. Cooperate with

the regular general practitioners of these patients and plan proactive check-ins to
reduce their use of out-of-hours care.
• Implement working from home for triagists in the near future. This could enable

short and spontaneous shifts that reduce waiting time peaks on busier days like Fri-
day and in the afternoons of the weekend days.
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1 I N T R O D U C T I O N

The pressure on healthcare systems is increasing. In 2050, 22% of the world population
will be older than 60 years old, compared to 12% in 2015 (World Health Organization,
2018). This demographic shift leads to changing employment, retirement and housing, to a
decreasing working share of the population and to increasing costs for healthcare, all while
there already is a shortage in medical personnel (Levit, Smith, Benz, & Ferrell, 2010; Tinker,
2002). Because of this existing shortage, it is important that healthcare departments can
use their resources efficiently while avoiding queues of people in need of medical attention,
dissatisfied patients and personnel and high costs for idle employees. To achieve this, they
need to be able to foresee when and why it will be crowded at healthcare departments
and how internal and external factors lead to long waiting times and a stressful work
environment in different situations.

In the Netherlands, inhabitants have multiple options to choose from when they are in
need of primary medical care. Each citizen has a general practitioner or GP, in Dutch
huisarts, who plays a central role in the Dutch healthcare system. An appointment can
be made to see a GP during office hours on weekdays. A GP can, if necessary, refer a
patient to a hospital to see a medical specialist, or refer them to other types of care. Such
a referral is required to receive specialist care. If someone needs after-hours care, they can
contact out-of-hours general practitioner departments, in Dutch ”huisartsenpost”, which is
a cooperative of GP’s in which each GP has to work a certain amount of hours each year
(Smits, Keizer, Huibers, & Giesen, 2014). In case of emergencies, someone will be referred
to the emergency department, or the phone number 112 can be called (Tikkanen, Osborn,
Mossialos, Djordjevic, & Wharton, 2020).

The out-of-hours departments in the Netherlands experience the problem that it is often
very crowded: the demand for care is high and departments are unable to foresee this de-
mand. Also, it takes time to come to help a patient and this combination leads to waiting
times for patients in need of medical attention. In these departments telephone triage is used:
the process that starts when a patient in need of medical attention calls the department, af-
ter which a triage nurse or doctor picks up and determines the urgency of the call. Advise
on the phone might suffice, if not the patient comes to the department to see a doctor, a
doctor visits the patient or an ambulance can be dispatched. Often, a patient has to wait
in a queue on the phone longer than the designated norms before being able to speak to
a medical professional. This practical problem is supported in literature, where multiple
reasons for the increasingly high demand for out-of-hours care all over Europe are men-
tioned, like ageing, population growth, patient behavior and problems with the availability
and amount of healthcare personnel (L. Huibers, Philips, et al., 2014).

It is therefore necessary to gain insight into the factors that influence the demand for care
and the waiting times at the telephone triage of out-of-hours departments. This under-
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2 introduction

standing might ensure better help and small queues for patients in need of care and lead
to a healthier work environment for the healthcare workforce of the department.

A data-driven simulation modelling approach is used in this research, with data from two
out-of-hours departments in the Netherlands, leading to a model where different demand
and service time scenarios can be simulated to predict a day in the system as it is now,
but also leading to a model which identifies system changes that lead to lower waiting-
times, based on which accurate interventions by the out-of-hours department and beyond
can be identified. It leads to a model-based advise on reducing waiting times within the
telephone triage system in different scenarios for out-of-hours healthcare departments. The
main research question is therefore as follows:

How can waiting times at the telephone triage of out-of-hours general practitioner departments in
the Netherlands be reduced?

The remainder of this thesis entails a literature review on this subject, the research design
with subquestions, the conceptualization of the model, the analysis of the data towards
different demand and service time scenarios, the identification of the distributions used in
the model, the model implementation, and the results, discussion and conclusion.



2 L I T E R AT U R E R E V I E W

In this chapter, existing literature on out-of-hours care is explored to see what is currently
at play within the field and to identify links between research to see whether the practical
problem that out-of-hours departments experience is supported by the existing scientific
literature and in what way a knowledge gap exists. Then, simulation research within the
healthcare system field and beyond is explored to identify main methods and concepts used
for simulation modelling, especially looking at methods that might correctly represent a
telephone triage system. Lastly, important modelling processes and concepts are discussed
based on existing research, which serve as a framework on which the modelling process in
the following chapters is based.

2.1 out-of-hours care

To find the reviewed literature for each section, keywords and search terms were defined
and used to search literature from the scientific databases Scopus and PubMed. For Sco-
pus, the search was within the abstract, keywords and title of the literature. For PubMed,
all fields were searched. The inclusion criterion for a paper was that it should be about
the system of telephone triage in out-of-hours general practitioner care: about reasons and
factors influencing the use of out-of-hours care, about the availability of workforce, about
urgency determination or about the way the system works, is organized and might be
improved. Papers that were medical or specifically about a disease, that were about emer-
gency departments or other hospital departments or that were about self-referrals were
not included. The main papers and subjects within this theme are discussed to see if the
practical problem formulated in Chapter 1 is seen in academic literature, or what other
types of research are conducted on out-of-hours care. The table with all used search terms
is visible in Table 2.1. Note that for Scopus, ”{}” is used for an exact search, while for
PubMed, ”” is used. In the search term, the PubMed version is visible. It can be seen that
only very few results were found when looking for simulation studies in the out-of-hours
field, and none were relevant. The reviewing process towards the included papers for the
out-of-hours part of the review is visualized in a flowchart in Figure 2.1.

Table 2.1: Search terms and corresponding results per database
Search term Found papers PubMed Found papers Scopus Relevant papers
((”out of hours” OR ”out-of-hours” ) AND
( ”care” OR ”GP” OR ”general practice*” OR
”primary care” ) AND Netherlands ) 187 173 37

((”out of hours” OR ”out-of-hours”) AND
( ”care” OR ”GP” OR ”general practice*” OR
”primary care” ) AND ”triage”) 188 229 37

((”out of hours care” OR ”out-of-hours care” OR
”out-of-hours GP” OR ”out-of-hours primary care” OR
”out-of-hours general practice*”) AND ”simulation”) 7 9 0

3
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Figure 2.1: Reviewing process flowchart based on PRISMA

Based on the found literature when using these search terms, several categories that most
of the papers fall in can be identified. These categories are:

• Busyness at out-of-hours departments

• Urgency determination of patients

• Demographic indicators for use of out-of-hours care

• System improvements and policies

• Comparative studies between countries

• Organizational models of out-of-hours care

2.1.1 Busyness at out-of-hours departments

Many of the research on out-of-hours care in the Netherlands emphasizes the existence of
high demand and busyness in healthcare and being able to better manage this demand is a
common used reason why research is performed. Keizer, Senn, Christensen, and Huibers
(2021) mentions that the problem of high demand is especially visible in out-of-hours care
and emergency departments. Because of the experienced busyness due to ageing, the
growth of the population, the behavior of patients and problems with availability and
amount of workforce in out-of-hours care all over Europe, a European Research Network
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was even set up to share knowledge between out-of-hours care departments, called Eu-
rOOHnet (L. Huibers, Philips, et al., 2014). These papers support the experienced practical
problem of high demand, busyness and workforce problems that out-of-hours departments
in the Netherlands have, that was discussed in Chapter 1. On the other hand, not that much
can be found on the length of conversations at the telephone triage of out-of-hours depart-
ments. This length might be a reason for experienced busyness and queues, but up and
till now it is only found that variation between the healthcare employee who takes the
call exists, and between mental health or non-mental health calls (Mohammed, Clements,
Edwards, & Lester, 2012).

2.1.2 Urgency determination

Many other papers look at ways in which the urgency of patients is determined in the
telephone triage process in the department. It is often found that variation exists between
allocated urgency of similar patients, which is most often attributed to differences between
the people calling, like their age and gender (Zwaanswijk, Nielen, Hek, & Verheij, 2015). On
the other hand, in Exalto et al. (2021), it is assessed whether a difference exists between the
allocated urgency, symptoms and call times of men and women with TIA-like symptoms,
and it is concluded that the gender of a person is no direct indication for a triagist to take
specific action. This is supported by Van Der Meer et al. (2019), where similar urgency
allocations were found for men and women who called with chest symptoms. Another
study where differences are analyzed is of Erkelens, Zwart, et al. (2020), where the time
of calling of people with TIA symptoms and with mimic symptoms are analyzed, but
no differences are found. It is interesting to see that when looking at the whole patient
population, differences for similar problems are found, but when looking at more severe
issues such as TIA’s, these differences are not present.

Not only differences in urgency and call characteristics between patient groups are ana-
lyzed, also the accuracy of the allocated urgency that high risk patients receive is often
researched, for example by Erkelens, Rutten, et al. (2020); Wouters, Rutten, et al. (2020)
to see if the telephone triage process accurately allocates urgency to patients with a TIA,
acute coronary syndrome or other life-threatening events. It is found that the Netherlands
Triage System underestimates the urgency of these patients in 27% of the cases. If triag-
ists interfere and overrule the automatic urgency, it reduces to 14% with poor efficiency
of the triage process. This reduction is supported by Wouters, Zwart, et al. (2020), which
states that triagists sometimes feel a misalignment between the computer decision support
systems choice of urgency level for a patient with acute cardiac symptoms and their own
choice of urgency.

Lastly, it is often found that out-of-hours services are not appropriately used. For example,
in Denmark, it was found that one in four of the calls to an out-of-hours department are
not urgent and could have been avoided (Nørøxe, Huibers, Moth, & Vedsted, 2017). In
Germany, it was found that for the most calls, the reason for encounter (RFE) was in fact
not urgent enough to call the out-of-hours department, and people could have waited
until the opening hours of their regular general practitioners (Leutgeb, Engeser, Berger,
Szecsenyi, & Laux, 2017). Reasons for this are mentioned in the next section.
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2.1.3 Demographic indicators for use of out-of-hours care

Reasons why people call the out-of-hours departments and differences in calling behavior
between groups within the population are often analyzed in literature. As the demand
for care is so high, it is often mentioned that it is key to know why certain people call at
all, why they might call often and how it can be reduced to only necessary care. One of
the most researched factors that influences calling behavior is found to be socioeconomic
status of a patient or whether or not someone is a non-western migrant. In Keizer et al.
(2021), it is found that non-western migrants have more contacts with emergency care than
native born people or western migrants. These non-western migrants also tend to call their
general practitioner often. These differences can be partially explained by employment
status, anxiety levels, attitude towards healthcare and the ability of people to access their
own day-time general practitioner. They feel fewer barriers to contact the out-of-hours
services and are more anxious about symptoms, have problems planning a consult with
their own general practitioner, which was already found in Keizer et al. (2017), and are
more often unemployed. The papers mention the need for an increase in awareness and
better access to daytime general practitioners, to help people make the right choice within
the healthcare system. Also, it is recommended that people are educated about the purpose
of the out of hours department and the fact that it is easier to access daytime care services.
Next to these indicators, there are also behavioral aspects that might disturb the process at
out-of-hours care departments. It is found that often, non-western migrants expect action
in the form of a visitation or medication from healthcare services and can be dissatisfied
with only advice trough the phone. This appears to be a general tendency of people calling
the department as well, as people tend to be unhappy when they receive advice on the
phone and are not seen by a doctor (Van Uden, Ament, Hobma, Zwietering, & Crebolder,
2005) and can sometimes even become aggressive (P. Giesen, Mokkink, Hensing, van den
Bosch, & Grol, 2008). To address this, it is important that expectations of people calling the
department are managed and that the emotions of the caller are identified.

As mentioned above, the socioeconomic status (SES) of patients and the sociodemographic
characteristics of a neighborhood are found to be an important indicator for (poor) use
of out-of-hours care (Jansen, Zwaanswijk, Hek, & De Bakker, 2015): the probability of
using out-of-hours care increases for each lower income group Jansen, Hek, Schellevis,
Kunst, and Verheij (2020). It is also a good indicator for underlying health problems as
symptoms differ between socioeconomic groups and for how good a person is at expressing
the need for help (Jansen, Hek, Schellevis, Kunst, & Verheij, 2021; Jansen et al., 2018).
Neighbourhoods were more women live, where the general income level is lower and
where there are many immigrants tend to have a higher demand for out of hours care.
Jansen et al. (2020) recommends further research into how the telephone triage process
can be improved for vulnerable groups with a lower SES. Similar to the paragraph above,
where education on the purpose of out-of-hours care is recommended, in Jansen et al.
(2018) improvement of the use of healthcare services by these groups with a lower SES is
recommended by improving their health literacy.

Next to socioeconomic status or migrant status, an intellectual disability is found to be an
important indicator for how often out-of-hours departments are called: they tend to call
more often and their calls are rated with lower urgency levels than calls of people without
an intellectual disability (Heutmekers et al., 2017). Lastly, it is found that older people who
contact the out-of-hours services tend to be in urgent need of medical care (Smith & Car-
ragher, 2021), tend to have a high call rate that increases with age (Haraldseide, Sortland,
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Hunskaar, & Morken, 2020) and when they also have a consultation at the department it-
self they are more likely to be admitted to a hospital later on or to use home care: not a
direct indicator for an increased use of out-of-hours care, but it is an indicator for the use of
further care. Training of triagists to recognize geriatric problems and identification of these
patients before and after their visit to the department could help these patients (Bloemhoff
et al., 2020).

2.1.4 System improvements and policies

In the past few subsections, different categories of research within the field of out-of-hours
care were discussed. Many of these papers end with some kind of recommendation to
improve or reduce the use of out-of-hours care, to better educate people on what its pur-
pose is, to improve overall health literacy of more fragile groups and to make day-time
general practitioner care more easily accessible and available (Jansen et al., 2018; Keizer et
al., 2017; Keizer, Maassen, Smits, Wensing, & Giesen, 2016; Keizer et al., 2021, 2015; Smits
et al., 2015) Also, identification and support of people with higher risks of health problems
or who tend to contact the out-of-hours services more often, respectively elderly people
(Bloemhoff et al., 2020) and people with intellectual disabilities (Heutmekers et al., 2017),
was recommended.

Next to these recommendations, some papers go deeper into what changes or incentives
can be used to improve the functioning of the out-of-hours care system as a whole. One of
the proposed changes is the use of online advice by patients prior to contacting the out-of-
hours department, to see whether contact with the department is necessary. Often, some
online advice is enough, or a visit to the daytime general practitioner for example the next
day suffices. In M. J. Giesen et al. (2017), it is found that giving this type of online advice
has a high potential to reduce unnecessary use of out of hours services. Other incentives
like giving an overview of the medical costs or a next day appointment with the general
practitioner also had influence on patients decisions for urgent care. Also co-payment for
patients, where now out-of-hours care is free, is an incentive to reduce the use (Keizer et
al., 2016). A step further for the online advice strategy is used in Verzantvoort, Teunis,
Verheij, and Van Der Velden (2018), where the app ”Should I see a doctor?” is tested (’moet
ik naar de dokter?’ in Dutch) to see if it can help guide people to appropriately contact the
out-of-hours department. It is found that it could be valuable for patients and also for the
department, as 65% of people intend to follow the apps advice, and 81% of the urgency
levels given by the app correspond to the urgency level that a triagist would assign to the
patient.

Other proposed changes are more in the direction of the triage system, to make it more
efficient or to make sure urgency is more adequately determined: research which base is
not specifically the high demand for care like in most of the aforementioned papers, but
which base is the need for a high quality triage system. One of the recommendations is
to alter the display of the Netherlands Triage System to have fewer options for diagnosis,
so that questions asked by triagists are less ambiguous and have less possible answers and
will provide more clear answers (Erkelens et al., 2021). This is especially interesting, as in
Section 2.1.3 it was found that people with a lower SES have more trouble expressing the
need for help (Jansen et al., 2021), and this proposed change might make that easier due
to less ambiguity. Another proposed way to adequately determine urgency is proposed in
L. Huibers et al. (2012), where they state that it might be more important for a triagist to rec-
ognize patterns to identify health problems in a call, than to ask all the questions the triage
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system prescribes during a triage. This is in line with what was found in Erkelens, Rut-
ten, et al. (2020), earlier mentioned in Section 2.1.2, where overruling by the triagist of the
automatically allocated urgency by the system ensured a reduction of the underestimation
of urgency from 27% to 14% in patients with coronary problems or other life-threatening
events. This gives the image that leaving room for human interactions and decisions in
relation to the triage system ensures better quality of the triage system.

2.1.5 Comparative studies

Some of the research on out-of-hours care compares the systems between countries, which
are shortly explained in Section 2.1.6. Another interesting comparison that is made is to
see how behavior of patients from different countries can vary. For example, L. Huibers,
Moth, et al. (2014) finds that the Danish have a larger amount of contact with their out-of-
hours services than the Dutch do: in some categories even almost double. In L. Huibers
et al. (2018) it is also found that there are some differences between the behavior of Dutch,
Danish and Swiss people when it comes to seeking out of hours help, especially for parents
with young children. It is however unclear if this is due to personal preferences, cultural
differences or differences within the healthcare system of the countries. Furthermore, it is
found that the scope of diagnoses in out-of-hours care is very similar across many European
countries L. A. Huibers et al. (2011). This is in line with what L. Huibers, Moth, et al. (2014)
recommends: to find out what factors might be connected to contacting the out-of-hours
services.

2.1.6 Organizational models in out-of-hours care worldwide

There is a large variation in organizational models used by countries for out-of-hours care.
The most often used model is the general practitioner cooperative, or the GP cooperative
where many general practitioners work together and take turns to serve their patients dur-
ing night time and out of hours. This is also the model the Netherlands uses (Steeman et
al., 2021). Many other models are seen internationally: there are smaller GP cooperatives
called rota groups, or even out-of-hours centers that are run by only one general practi-
tioner. It is also possible that the emergency department of a hospital takes care of all
out-of-hours services. There are also countries where there are primary care centres and
minor injury centres, where you can visit without appointment.

2.1.7 Conclusion

A main conclusion of the past sections is that the practical problem of a high demand
for care and the waiting times that are experienced by out-of-hours departments in the
Netherlands is also a phenomenon that is often addressed in literature. It is - next to the
need for a high quality triage process and accurate allocation of urgency - the base for a
lot of research into demographic reasons and other indicators for contacting out-of-hours
care. Many recommendations for improvement are made in literature that might lead to
reduction and improvement of the use of out-of-hours departments. It can however also
be seen that no simulation studies have been performed within the out-of-hours literature
to test there recommendations, and therefore no prior research has been performed on the
performance of the telephone triage of the out-of-hours department system with the use
of real data, to be able to implement system changes to reduce waiting times and to see
what has an impact on the hourly and daily demand for care and its service times. This
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also means that some of the recommendations that have been proposed in the reviewed
literature, like for example finding out what the factors are that contribute to contacting
the out-of-hours-department, are carried out in this research.

2.2 simulation modelling in healthcare systems

Next to getting an overview of the research within the out-of-hours field, simulation studies
on (a part of) healthcare systems are consulted, to get an overview of the main methods
used within healthcare systems simulation research. This gives a grounded reason for the
chosen simulation modelling method Discrete Event Simulation, as further discussed in
Chapter 3.

First, research in the field of simulation modelling in healthcare systems was explored, as
visualized in Figure 2.2, to identify the main simulation techniques and its applications.
Research on healthcare systems that involved discrete event simulation was then reviewed.
As no literature was available on simulation of telephone triage and out-of-hours care, some
literature on simulation studies of call centers was reviewed to identify the main issues and
methods in that field.

Figure 2.2: Reviewing process towards knowledge gap

In Table 2.2, all used search terms and the corresponding amount of results per database
are displayed.

Table 2.2: Search terms and corresponding results per database
Search term Found papers PubMed Found papers Scopus
”simulation” AND ”healthcare systems” 177 1175

”general practitioner” AND ”simulation” AND ”staff” 5 27

”emergency department” AND ”simulation” AND ”staff” 182 306

”discrete event simulation” AND ”healthcare” 17 578

”staff allocation” AND ”healthcare” 24 19

”call center” AND ”simulation” 1 328
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2.2.1 Simulation Methods in Healthcare Systems

This subsection dives into simulation techniques used in healthcare systems, to define the
key methodology and to identify which technique is used for what application within the
healthcare system domain. This enables a review of the methods that are often used for
the optimization of resources and which might be used to correctly represent a telephone
triage system.

According to Mielczarek (2016), simulation modelling is recognized as one of the most com-
mon approaches to healthcare management problems, with the main modelling methods
being Monte Carlo Simulation, Agent-Based Modelling, System Dynamics and Discrete
Event Simulation.

Monte Carlo Simulation is often used to determine optimal capacities like for beds (Akker-
man & Knip, 2004), or adequate vaccine supply (Dhamodharan & Proano, 2012), because
of its ability to use historical data and to run thousands of potential scenarios (Mielczarek,
2016). Agent Based Modelling models individual behavior of an ’agent’, and is in the
healthcare domain often used to model disease spread or demand for healthcare (Knight,
Williams, & Reynolds, 2012). System Dynamics is often used when people can be divided
into large groups and the state of the individual patient is not followed. It aims to un-
derstand the the structure of a system and the relation it has with its behavior (Demir,
Gunal, & Southern, 2017). Lastly, multiple healthcare simulation surveys state that Dis-
crete Event Simulation is the most often used technique in healthcare management. It is a
stochastic method, often used when research is looking at arrival times and process times
(Mielczarek, 2016), which are variables that are at play in the telephone triage system at
an out-of-hours department. It is used for improving patient flows, for the management of
beds and for resource scheduling like for example personnel planning. In general it is the
most versatile methodology for modelling healthcare systems (Jun, Jacobson, & Swisher,
1999; Zhang, Grandits, Härenstam, Hauge, & Meijer, 2018), and complete reviews have
been written on its wide application and problem solving abilities within the healthcare
domain (Günal & Pidd, 2010). It can therefore be concluded that Discrete Event Simulation
is a main simulation technique used in literature to optimize resources like beds, rooms
and staff.

2.2.2 Discrete Event Simulation in healthcare systems

According to Jun et al. (1999), healthcare simulation research that uses Discrete Event Sim-
ulation often has an objective that relates to scheduling and patient flow or to sizing and
planning of beds, rooms and staff (workforce planning), or it involves a discussion on fu-
ture research areas. The focus is on reviewing literature on optimizing sizing and planning
of staff and reducing waiting times in healthcare systems.

Research on staff scheduling has been performed in various ways, with great variety in
their definitions of optimization. Ghanes et al. (2015) simulates the ’Length of Stay’ within
the emergency department and the time it takes before a patient sees the first doctor in
emergency rooms, under different percentages of increased staffing budget. They find that
budget increase for personnel has a decreasing effect on the Length of Stay at the emergency
room, where in Zeltyn et al. (2011), budgeting is not mentioned, but it is found that staff
gives better performance when workload is allocated over time in stead of calculated at the
arrival of a patient. These two papers focus on performance indicators that are affected by
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changes in staff policies, but do not conclude how resources should be allocated in various
system situations. This observation matches the review of Salmon, Rachuba, Briscoe, and
Pitt (2018), which states that future research should have a focus on increase in demand,
crisis scenarios and how systems can recover from a fall in performance.

A paper that does address different strategies for the allocation of staff, but does not ad-
dress variability of demand and the cause of it, is Mukherjee (1991). In this paper, the
waiting times of patients were reduced because of good scheduling, while staying in con-
trol over the costs for resources. It can therefore be observed that optimal scheduling
leads to beneficial outcomes for healthcare departments and that some interventions like
increased budgeting positively affect performance, but that there is a need for research that
takes into account the variability of demand and what causes it, to confidently understand
the emergence of waiting times.

2.2.3 Telephone triage simulation

In Section 2.1, it is found that when it comes to telephone triage and out-of-hours care,
no previous simulation modelling studies have been conducted. Systems that technically
work similarly to telephone triage systems are call centers. Research has been performed
for call centers to improve the performance of call centers, customer’s satisfaction and to
reduce costs (Kim, Lee, & Choi, 2005), but these types of costumer service call centers
are hard to compare to telephone triage system within a healthcare system where real
health problems have to be dealt with and lives could be at stake. The performance of a
telephone triage system should therefore be measured differently. The research on out-of-
hours departments and telephone triage has been discussed extensively in Section 2.1, and
generally aims at the safety of telephone triage and the quality of the calls (Montalto, Dunt,
Day, & Kelaher, 2010), the mismatch of evaluation criteria for welfare between patients and
healthcare personnel (Brasseur et al., 2019) or demographic factors that impact the demand
and use of out-of-hours departments (Jansen et al., 2015; Keizer et al., 2021), and does not
quantitatively analyze the performance of the system for different external and internal
variables.

2.3 concepts within discrete event simulation

Within Discrete Event Simulation (DES) research, different concepts, theories and methods
are used. The remainder of this literature review explores these concepts in literature, to
come to a grounded modelling framework which can be used to answer the main research
question and the subquestions. The concepts defined below are used for conceptualization
of the model in Chapter 4 and for implementation of the model in Chapter 6.

2.3.1 Demand variability and arrival process

A first main characteristic of DES is that it is often used when research incorporates arrival
rates and service times (Mielczarek, 2016). Within simulation research in healthcare sys-
tems, the arrival, waiting and handling times often encompass the arrival of patients at a
healthcare department, the amount of time it takes before they receive medical attention
and the time the treatment or conversation with a healthcare professional lasts.
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The arrival of patients to a healthcare system can be seen as the demand side of the system
to be modelled in a discrete event simulation model. This arrival often follows a Poisson
process, where the inter arrival times follow an exponential distribution and arrivals are
independent of each other (Jahn, Theurl, Siebert, & Pfeiffer, 2010), like for example in e
Oliveira, de Vasconcelos, Almeida, and Pinto (2020) and in Pinto, De Campos, Perpetuo,
and Ribeiro (2015) where it is used in the context of patients arriving to the hospital and
the allocation of hospital beds, or in Keshtkar, Salimifard, and Faghih (2015) where it is
used with the aim to allocate resources effectively in an emergency department.

A first method, out of three, seen in literature to retrieve the inter arrival times and arrival
rates, is directly drawing from the operational data. It can be used as input into a model
directly and no statistical distribution is used within the simulation model to model the
inter arrival times. An example of this approach is seen in (Zhu, Hen, & Teow, 2012),
where ICU bed capacity is estimated using discrete event simulation. To get the inter
arrival times, the actual arrival times from the operational data are used as input for the
discrete event simulation model, as well as the length of stay at the ICU. They note that
a problem with this is that if data is not complete, for example if a patient did not enter
the ICU in the case of this paper, no service times can be drawn from the data. Then, a
distribution still has to be fit on the existing data of other patients.

As stated previously, in Salmon et al. (2018) it was mentioned that future research on staff
scheduling should incorporate increase in demand - so the arrival rate - and the impact
of scenarios on staffing. This statement is supported when looking at recent literature
on simulation optimization research for hospital beds (Keshtkar et al., 2015) and similar
research for improvement of patient experience in emergency departments (Abo-Hamad &
Arisha, 2013), where inter arrival times of patients from various data sources are used but
remain static throughout the simulations and do not take into account possible variability
of demand for care. More and more research stresses the importance of using some sort
of prediction method for predicting arrival rates for different processes. Methods like
statistical testing, distribution fitting and regression as used in (McCarthy et al., 2008) and
mentioned in (Gul & Celik, 2020) are the second often proposed way of retrieving arrival
rates. The last method goes a bit beyond that and proposes artificial neural networks
and other forms of machine learning for the retrieval of arrival rates, like Xu, Wong, and
Chin (2013) where they use an artificial neural network for daily patient arrivals at an
emergency department, in Höpken, Eberle, Fuchs, and Lexhagen (2021) where it is used
to predict tourist arrivals and in Hill and Böse (2017) where it is used to predict truck
arrivals and waiting times. It should be noted that while these papers do use a predictive
or machine learning method to predict arrivals in a system, after prediction the arrival
rates they do not model or simulate that system using discrete event simulation. In fact,
literature reviews have been written on predictive methods for arrivals at, for example, a
hospital emergency department (Gul & Celik, 2020), but many of the papers reviewed do
not use their predictions in a (DES) simulation model, and the ones who do often use static
inter arrival times with no variability.

Based on this knowledge, it can be concluded that inter arrival times are retrieved in various
ways in literature: direct drawings from operational data Zhu et al. (2012), using historical
data for statistical testing and distribution fitting (Pinto et al., 2015), or by developing
predictive models that assess which factors contribute to arrival rates and predict those
rates (Höpken et al., 2021; McCarthy et al., 2008; Xu et al., 2013). The last of these two
methods have the attribute that they can account for variability in demand based on known
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temporal, demographic or climatic factors, which is often used already in papers where
some sort of arrival process in a healthcare system is predicted, like in McCarthy et al.
(2008) that was mentioned before, but also in Hamrock, Paige, Parks, Scheulen, and Levin
(2013) and in Marcilio, Hajat, and Gouveia (2013) where seasonal, daily and temperature
factors are taken into account. It should however be noted that none of these papers use
this variability of demand as input into a discrete event simulation model.

2.3.2 Queuing and server process

Another concept within discrete event simulation often used when healthcare departments
are simulated is the process of queuing for service after arrival, and the server process.
The server process can be seen as the supply side of the system. This server process in
healthcare systems can consist of one or more processes at a healthcare department, such
as triage, registration, screening, observation, or a procedure (Choon, Dali, Beng, & Magda-
lene, 2016). These processes can follow different distributions, like Gamma, Beta, Weibull,
Exponential or Lognormal distributions (Keshtkar et al., 2015), or empirical distributions
derived from historical data are used. In healthcare applications often the exponential dis-
tribution is not applicable, since treatments tend to take some time (Gupta, 2013). These
service times are often derived by the simulation by taking an average, by taking certain
intervals or by type of patient for which service times differ from each other (McCarthy et
al., 2008) or they are simulated by the model and thus not used as input, like in Hossain,
Debusk, Hasan, Jaradat, and Khasawneh (2017), where the service time of patients in a
blood test lab is simulated.

Types of queuing models
Different types of queuing models are used within discrete event simulation models. A
queuing model handles the before-mentioned demand and supply side of a system and
is used in many different areas, such as telephone and communications and logistics (Lin,
Wu, Chen, & Chen, 2019) and has as its most basic form the M/M/1 model - written
in Kendall notation - where arrivals are Poisson distributed (first M), service times are
exponentially distributed (second M) and there is one server (Tiwari, Gupta, & Joshi, 2016),
so in a healthcare application that would mean one doctor, nurse, bed, operation room,
etc. There are many versions of the queuing model, including models where more servers
than one are present, M/M/s, or even more complex models to determine bed allocation
like the M/Ph/c/N model where the N is added to note the maximum capacity of the
system, c are the amount of beds and the service times follow a phase-type distribution
(Gorunescu, McClean, & Millard, 2002). In other models, the arrival rates and service
times are not stationary and vary over time, like for example in Green (2006), where it is
proposed to construct multiple M/M/s models for the different times of the day where
arrival rates or service times are different. Another approach is the M(t)/M(t)/c model,
used in Chen, Govindan, Yang, Choi, and Jiang (2013) for truck arrivals, where arrival
rates and service times vary over time. This approach is interesting for this research, as
many papers state that the demand for healthcare varies over temporal variables (Hamrock
et al., 2013; Marcilio et al., 2013; McCarthy et al., 2008). Another characteristic of a queuing
model is its service protocol when it comes to the queue. This can follow the ’First in First
Out’ principle (FIFO), but could for example also follow the ’Last in First Out’ principle
(LIFO), where some type of priority queuing is implemented (Gupta, 2013).
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2.4 conclusion: scientific contributions

After the literature review, several scientific contributions of the research performed in this
thesis can be identified.

• A simulation study is conducted, using discrete event simulation, where the tele-
phone triage system in an out-of-hours department is represented.

• The demand for care at out-of-hours departments is analyzed, important indicators
that impact demand and scenarios in which demand varies are identified, using data
of two departments in the Netherlands. This is a new addition to the demographic
indicators that are identified in research, as mentioned in Section 2.1.3.

• The indicators that effect the service times within a telephone triage system are iden-
tified. This adds knowledge to the found variation in call lengths between personnel
and between mental-health and non mental-health calls as addressed in (Mohammed
et al., 2012).

• The different demand and service time scenarios based on the real data are incorpo-
rated and combined in a simulation model, to represent reality as well as possible
within the simulated system.

• System changes that reduce waiting times are identified based on which accurate
interventions recommendations can be made.



3 R E S E A R C H D E S I G N

3.1 research approach

The main research question is answered using a modelling approach, as there is a lack of
understanding how different system inputs and internal variables impact the out-of-hours
system and its performance. Using a modelling approach, it can be explored how system
factors impact system outcomes that relate to waiting times and performance on norms,
which reflect patient and employee satisfaction. The modelling approach is data-driven and
uses the real-life data of 2 out-of-hours general practitioner departments in the Netherlands.
The data of the out-of-hours departments was analyzed to identify demand and service
time scenarios, and the patterns within the two data-sets are compared to each other to see
whether out-of-hours departments have similar patterns and trends in their data. With the
implemented model, the system as it currently can be simulated with different demand
and service times scenarios that are derived from the data, in Chapter 5. Experiments were
run using the model and the real-life data in order to find the system changes that lead to
waiting time reductions. This led to the identification of system interventions that could
potentially lead to those system changes.

Specifically, the modelling approach entailed a discrete event simulation modelling ap-
proach. This simulation approach is often used in healthcare systems studies when the
focus is on optimizing allocation of for example beds, patients and personnel (Jun et al.,
1999). It is a stochastic method that is often used when a study looks at arrival-times (Miel-
czarek, 2016), which was used in this study. Its stochasticity can however also be seen as
a limitation and something to be aware of as the research is conducted, as results from the
model are a little different each time the model is run (Caro & Möller, 2016; Caro, Ward,
Deniz, O’Brien, & Ehreth, 2007). This calls for a large number of runs, which takes a long
time specifically when complex simulations are run. This can constrain uncertainty and
sensitivity analysis of the model (Caro & Möller, 2016; Caro, Möller, et al., 2007).

3.2 sub questions

The main research question was answered by answering 4 subquestions. The research fol-
lowed the steps of a modelling approach, with the following steps: problem definition
(executed in Chapters 1 and 2), conceptualization (Chapter 4 and 5), formalization, imple-
mentation, analysis, setup and model use (Chapters 6 and 7). (EFSA PPR Panel, 2014; PBL
Netherlands Environmental Assessment Agency, 2013). The identification of main concepts
of the model and the relations between them, the conceptualization, was conducted in the
first two subquestions below. Based on the conceptualization, the model was formalized
and implemented. The built model was then verified and validated after which it was ex-
tensively used. The results of the model use provided an answer to subquestion 3 and 4.

15
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For each subquestion the required data and its sources, the used research methods to gather
the data and the tools used to analyse the data with are mentioned and discussed.

1. What concepts and performance indicators are needed to accurately model tele-
phone triage at an out-of-hours department?

2. What variables effect the demand and service time behavior of the out-of-hours
telephone triage system?

3. What system changes can reduce waiting times in the out-of-hours telephone triage
system compared to the current situation?

4. What possible interventions can lead to the system changes (identified in subques-
tion 3) of the out-of-hours telephone triage system in which waiting times are
reduced?

3.3 research methods

In this section, for each subquestion the required data and its sources, the used research
methods to gather the data and the tools to analyse the data with are mentioned and dis-
cussed. Each subquestion is related to one or more steps within the modelling approach,
as explained in Section 3.2. This provides a comprehensive flow of the research design. A
visualization of the flow of the research is found in Figure 3.1: the research started with
an analysis of the system itself and its outcomes by data analysis and conceptualization in
subquestions 1 and 2 to be able to implement a model that correctly displays the waiting
times, followed by the identification of system changes that lead to a reduction of waiting
times by means of experimenting, which in its turn led to the search for and identifica-
tion of interventions that might result in these system changes and thus in waiting time
reduction.

Figure 3.1: Research flow

1. What concepts and performance indicators are needed to accurately model tele-
phone triage at an out-of-hours department?
This subquestion covered the conceptualization phase of the modelling approach, to-
gether with subquestion 2. Data from real-world out-of-hours general practitioner
departments is necessary to identify the main concepts and indicators of the system.
This data was provided by two out-of-hours general practitioner departments with
different geographical locations in the Netherlands. The research method was desk
research: next to the use of the provided data, literature on previous studies related to
the field was consulted to validate and possibly extend the choice of concepts within
the model, and to identify possible ways of incorporating data into the model used
in literature. Also, people from out-of-hours departments were consulted to verify
the use of the correct concepts and indicators in the model. The tools used were



3.3 research methods 17

the online literature databases Scopus, PubMed and Google Scholar and the resource
manager Mendeley to keep track of the consulted literature.

2. What variables effect the demand and service time behavior of the out-of-hours
telephone triage system?
The conceptualization of subquestion 1 was needed to adequately analyze the data
from the out-of-hours department and to be able to draw valid conclusions on its
behavior. In this research question it was tested whether the behavior of the system,
especially for demand (patient arrivals) and service time (call duration) is influenced
by temporal or weather factors, to see whether scenarios can be identified in which
the behavior of the system is significantly different from other scenarios. The research
method to identify these scenarios was data analysis on the data of two out-of-hours
departments using the tool Python and within Python the data analysis packages
Pandas, NumPy, SciPy and statsmodels and the visualization packages matplotlib and
seaborn. It was checked whether the found patterns are similar for the two data-sets, to
be able to say something about the to what extent the results that the model generates
can be used by other out-of-hours departments with the same type of system.

3. What system changes can reduce waiting times in the out-of-hours telephone triage
system compared to the current situation?
This subquestion covered the formalization and implementation phase of the discrete
event simulation model of the telephone triage system, performed in Chapter 6. This
was done by implementing the model as described in the conceptualization phase,
in Chapters 4 and 5. The model was implemented with the tool Python using the
simulation package salabim. When the model was implemented, the model validation
and verification were executed to define to what extent it represents the actual system
(Cook & Skinner, 2005). This was done by conducting sensitivity analyses on the
gathered model results and by comparing it to the conceptual model and by using
the identified demand and service time scenarios from subquestions 1 and 2. The
results are also compared to real-world data and to experiences of experts and people
working in the field, found in Section 5.6. Scopus, PubMed and Google Scholar and
non-academic engines are used. With a validated and verified model, it could be
used to make valid predictions of current situation and of what would happen with
certain system changes. Different experiments were run to identify system changes
that lead to a reduction of waiting times at out-of-hours departments.

4. What possible interventions can lead to the system changes (identified in subques-
tion 3) of the out-of-hours telephone triage system in which waiting times are
reduced?
This subquestion builds on the findings of subquestion 3. In subquestion 3, system
changes that lead to a reduction of waiting times in the out-of-hours system were
identified. To accomplish these system changes, interventions needed to be identified
that could push the system as it is now to a changed system that leads to a reduc-
tion of waiting times. In this subquestion, those interventions were identified: some
of them within the decision power of the out-of-hours department but also some of
them out of its decision power. These interventions could lead to changes in internal
system behavior such that the waiting times are reduced, leading to increased norm
performance, a better work environment for triagists and better service for patients.
The interventions were identified based on consultations with people working at the
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out-of-hours department and on literature, using PubMed, Scopus and as a first ex-
ploration means Google Scholar will be used.

3.4 limitations of research methods

It is important to address some of the limitations of the main research methods used. The
limitations of discrete event simulation can be read in Section 3.1. For the desk research
method, a limitation is that it is hard to get a complete and unbiased image of the literature.
To address this, it is important to identify the goal of the literature research and be thorough
in finding main papers and authors within the field. This is accounted for by using multiple
search engines and by combining and scanning all found papers for relevance, as visible
in Figure 2.1 in Chapter 2. For empirical data gathering, a pitfall is personal bias when
creating survey or interview questions. A way to address this is to have others look over
your questions and test them. For data analysis it is important that the source of the data
is verified and validated, to avoid faulty conclusions being drawn from the analysis. For
exploratory modelling, the stochastic discrete event simulation model will be used, so many
runs are needed to avoid conclusions based on a few runs with coincidental results.

3.5 conclusion

In this chapter, the modelling approach that is used in this research was introduced as well
as the reason why it is most suitable for this type of research. Next, the four subquestions
that lead to the answer to the main research question were identified and for each of them
it was explained what data and methods were used to answer them. Lastly, the limitations
of the used research methods were discussed.
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In this Chapter, subquestion 1 is answered. This chapter combined with Chapter 5 forms
the conceptualization phase of the modelling approach towards a discrete event simulation
model on telephone triage implemented in Chapter 6.

4.1 subquestion 1: concepts for modelling telephone triage

In this section, the concepts and research methods necessary for modelling a telephone
triage system are explained. For some of the concepts used, a reference will be made to the
literature review in Chapter 2, where some of the main concepts of discrete event modelling
especially in healthcare systems have been discussed.

4.1.1 Data from out-of-hours departments

The data that is used in this research is from two out-of-hours departments in the Nether-
lands. Their systems work similarly, and all analyses performed on the data of the first
department in Chapter 5 are also performed on the data of the second department in Ap-
pendix A.

4.1.2 Telephone triage processes

The telephone triage process is logged in the available data. Based on this data, together
with a visit to the first out-of-hours department all aspects of the telephone triage pro-
cess were identified. This information leads to the following description of the system
process:

At a telephone triage department, calls come in from people in the surrounding region of
the department. These calls come in at a certain rate per hour. There is medical personnel
present taking the calls. These people are called triagists. The amount of triagists varies
for different shifts and days, where shifts take 8 hours. The time it takes for them to handle
a call, is called the service time. When someone calls the department, they are placed in
a queue if none of the triagists is available. If a caller is at the front of the queue and an
available triagist accepts the call, the caller is removed out of the queue and a conversation
concerning the medical problem is started. A call can be a call to the emergency line, or a
call to the normal line. A call to the emergency line immediately goes to the front of the
queue: they are seen as very urgent calls. Normal calls have to get in line in the back of the
queue. When the conversation starts, the triagist asks questions based on the information
the caller provides and walks through the questions of the Netherlands Triage System.
When this process is finished, the caller gets a certain urgency level allocated, between

19



20 system conceptualization

0 and 5, from most urgent to least urgent. Based on this level and the type of problem,
further action is taken with the patient, outside the scope of the telephone triage system.
Sometimes, no urgency is allocated to a patient in (often) shorter calls. This means that
no (complete) triage was performed on the patient, and these conversations tend to last
shorter than full triage conversations. There are therefore two subprocesses in the system:
a call where no full triage took place, or a full triage call. When a call is finished, the triagist
has 40 seconds to finish all administrative tasks that come with a call. This is a guideline,
a triagist can of course only start answering a phone call when they have finished this task.
It can therefore happen that a triagist takes longer or shorter than 40 seconds for this last
task in the process. A visualization of the telephone triage processes (arrival and service
process) is visible in Figure 4.1.

Figure 4.1: Processes in telephone triage of out-of-hours department

The data that was made available by the departments, is data that logs a phone call and
stores information on the call. Also, data was provided that gives the urgency of a calling
patient. This data was merged and its shape is displayed in Figure 4.2. The columns are in
Dutch as the data comes from a Dutch department. From left to right, the columns stand
for Urgency, the exact time the call was answered by a triagist, the registered time that
the call was answered by a triagist in the second system (often a few seconds later), the
time that the caller started the call, the line the caller called to (normal or emergency), the
waiting time and the service time.

Figure 4.2: Available data combined with patient urgency

To be able to accurately model this system, certain information needs to be available as
input variable or as internal variable. In this list, these necessary variables are mentioned,
along with the necessary methods to be able to retrieve this information.

• Inter arrival times/arrival rates This information needs to be gathered from the his-
torical arrival data. As mentioned in the section 2.3.1, in literature there are three
ways in which arrival rates are deducted from data: direct drawing from the data,
statistical testing and predictive methods (Gul & Celik, 2020; Pinto et al., 2015). To
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be able to model varying arrival rates, it is necessary that analyses are performed
that determine if there are factors that impact this arrival rate. This can be done by
statistical testing and by predictive methods. The former is chosen, because statistical
testing involves analysing the data visually and step-by-step, in stead of using more
of a ’black-box’ model like an Artifical Neural Network (Hill & Böse, 2017; Höpken et
al., 2021). In Chapter 5, these analyses are performed on the data, based on hypothe-
ses from literature and from within the field. By doing this, different scenarios in
which the system performs differently, for example between days, hours and weather
conditions, can be identified and simulated in the simulation model by drawing from
the empirical distribution of the data as mentioned in Chapter 5.

• Service times For service times, the same goes as for arrival rates, and in 5 statistical
testing on service time data can be found. Important to note is that the service times
are different for a call where there is no full triage performed and where there is full
triage performed as these are two different subprocesses.

• Delay time before a call The out-of-hours system is a system in which people oper-
ate. When a triagist is available and a patient is in the queue, the triagist needs to
accept the call. This often does not happen immediately, and therefore a delay before
acceptance of a call should be modelled in the system.

• Handling time after call This time is set at 60 seconds. In the system, it is officially
40 seconds, but during a visit at the department it was identified that many of the
triagists never meet this deadline and need more time. Modelling it at 60 seconds
will create a more accurate system performance.

• Composition of subprocesses over demand For an arriving patient, it should be
known what the probability is that it will not receive full triage and will thus be
assigned to subprocess 1 and what the probability is that the patient will receive full
triage and will thus be assigned to subprocess 2. This probability is derived from the
data in Section 5.5.10.

• Composition of urgency levels over demand Similarly to the subprocesses, informa-
tion needs to be available on the chance that this patient has a certain urgency level.
This urgency level impacts the service time of the patient, as analyzed in the next
Chapter 5. The urgency composition over arriving patients is found in Section 5.5.8.

• Triagist schedule and capacity There is a standard triagist schedule for the out-of-
hours department. The standard schedule is found in Table 6.3 and slightly altered
when validating the waiting times of the simulation model in Section 6.4.2 to accu-
rately display the waiting times, because in the schedule no breaks or other calls and
problems at the department are taken into account which are present in reality and
in the data. This altered schedule is tested and used for verification and validation
of the implemented simulation model in Chapter 6. In Chapter Interventions chap-
ter, experiments are run in which the model deviates from the standard schedule to
efficiently allocate workforce of an out-of-hours department.

• Performance norms for waiting times Certain norms are set by the department for
their performance on average waiting times for patients. These are be discussed in
4.2.2.
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4.1.3 Boundaries to system

The system to modelled in a simulation model encompasses only the telephone triage
system of an out-of-hours department. Whether a person will be visited by a general
practitioner, comes to the hospital or only needs advice on the phone is out of the scope
of this system. Capacity of hospital rooms and of general practitioners is therefore not
considered, healthcare staff means triagists in this case.

4.1.4 Assumptions

Certain assumptions are made about the system, prior to analyzing the system data and
implementing the model. These are the following:

• There are no differences in service times between triagists.
• All triagists need on average 60 seconds of handling time after a call.
• Conversations that last below 60 seconds in the data are not taken into account in the

data analysis and thus later in the model
• Emergency conversations that last below 2 minutes in the data are not taken into

account in the data analysis and thus later in the model
• Only inbound calls are taken into account. Inter-site calls between health profession-

als or to other healthcare departments are left out of the data.

4.2 subquestion 1: indicators to represent performance
of telephone triage system

To measure the performance of the telephone triage system within the simulation model
it is important to identify relevant indicators and implement the model in such a way that
these metrics can be retrieved from it. The most important ones are the waiting times
and the norms, which are set by the to measure the adequacy of the healthcare service. In
Chapter 6, the mentioned visualizations of these indicators as output from the implemented
model are visible.

4.2.1 Waiting times

Waiting time is the most important indicator of performance of the out-of-hours telephone
triage system, on which the main research question is based. The waiting times and the
amount of people in the line are measured in the model to be able to see the impact of
scenario changes or of changes in the system. Also, if waiting times are really high or
really low, it is important to be able to retrieve this from the model to see what causes this.
It should be noted that in an out-of-hours system, the waiting time begins after an audio
fragment is played to the calling patient. In the implemented simulation model in Chapter
6, waiting time measurement starts immediately at the arrival of a patient, so an arrival
indicates that the patient already listened to the audio fragment and entered the queue
after. Waiting time is therefore measured per patient in minutes and the waiting times of
all patients can be visualized, which then displays the average waiting times at all hours
of the day with a 95% confidence interval. This is useful when comparing the impact of
system changes to normal system performance.
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4.2.2 Performance requirements

Next to the waiting times itself, there are three performance requirements, or norms, set
for waiting times by the department:

• In 98% of the cases, a call to the emergency line needs to be answered by a triagist
within 30 seconds.
• In 75% of the cases, a call to the normal line needs to be answered by a triagist within

2 minutes.
• In 98% of the cases, a call to the normal line needs to be answered by a triagist within

10 minutes.

These are hourly measured in the model by calculating the percentage of patients in that
hour were the norm was met. Over a whole simulation of a day, the hourly performance can
then be visualized. Also, the performance on the norms can be visualized over other system
variables such as triagist capacity or new variables that emerge when implementing system
changes. This is useful to compare norm performance over different variable values.

4.2.3 Staff occupancy

The third important indicator is the occupancy of staff. When implementing system changes
with the simulation model, it needs to be measured whether the staff that is scheduled is
efficiently used. This means that occupancy should be high, but not always at 100% as that
indicates that all triagists are handling a call and waiting time is emerging. The occupancy
is measured between 0 and 1 in the simulation model - as a share of the triagists - every
time it changes. It can be visualized over the whole day, thus indicating when occupancy
is high and when low. This is useful when comparing the impact of system changes and
different triagist capacities on triagist occupancy.

4.3 conclusion

In this chapter, the telephone triage system and its processes were explained. Next, the
different concepts and variables that are needed as input and internal variables in the
model were identified, after which the indicators that are needed as output of the model
to measure the performance of the system were identified.

By ending this Chapter, subquestion 1 is answered. In the next chapter, subquestion 2 is
answered by extensively analyzing the system data. When the model is implemented in
Chapter 6, subquestion 3 can be answered in that same chapter, after which the interven-
tions can be identified - subquestion 4 - in Chapter 7.
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As mentioned in the literature review, there are three main ways in research used to predict
or estimate arrival rates in healthcare systems and beyond, used as input into discrete
event simulation models but also used as just as predictive models alone. To identify the
factors that impact arrival rates and service times to be able to use correct scenarios in
the simulation model implemented in Chapter 7, the second method mentioned in the
literature review will be used: statistical testing. The data is tested on more factors than
mostly done in literature: in for example Keshtkar et al. (2015) and in Gul and Celik (2020),
a distribution is fitted on big parts of the data, like weeks, days or hourly intervals. For this
research, more specific temporal, climatic and other variables are taken into account and
the data grouped based on those variables. These groups of data are statistically compared
and, if the difference is significant, split into groups (scenarios) of data for demand or
service time. It could for example be the case that the demand for healthcare is higher
on a very cold day than on a very hot day. An empirical distribution of the demand or
service time data in that scenario is computed and can be used as input in the simulation
model if predictions need to be made for that specific scenario (the reason why an empirical
distribution is chosen can be read in Section 5.9). Analyzing and grouping the data this
way combines the clarity and communicability of visualizing grouped parts of the data on
a variable and basing a statistical test on that, with the complexity of what more predictive
models such as artificial neural networks or regression models can do by integrating more
factors than just weekly and hourly patterns.

This means that in this chapter, different hypotheses based on literature and expertise from
people working as a triagist or general practitioner* and based on what can be visually
hypothesized from plots and graphs, are statistically tested on the historical data from two
out-of-hours healthcare department, one of which can be found in Appendix A. In Sec-
tion 5.6, an interpretation section can be found where the findings of the analyses on the
data are discussed and compared to expert opinions of people working at an out-of-hours
department and to findings from literature, after which all identified scenarios and conclu-
sions on the hypotheses can be found. Also, conclusions can be found on performing the
same data analysis on a second out-of-hours department data-set. Based on the identified
scenarios, an analysis is performed on the distributions of the demand and service time
data to make a decision between theoretical and empirical distributions for sampling in the
model.

*These people shed their light on the found results from the data analysis and gave ideas
for hypotheses to test. They work as a triagist, floor manager, data analyst or general
practitioner.
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5.1 hypotheses

In Table 5.1, hypotheses from literature and from triagists working at an out of hours care
department are displayed. More hypotheses will follow from exploration and visualiza-
tion of the data. In the rest of this chapter, these hypotheses are statistically tested to be
able to group the data into significant groups for input into a discrete event simulation
model.

Table 5.1: Hypotheses from triagists and from literature
Hypothesis Source
Temporal variables have impact on arrival pattern McCarthy et al., 2008, Hamrock et al., 2013, Marcilio et al., 2013

During holidays, the arrival pattern is different McCarthy et al., 2008

In the ’darker’ months, the arrival pattern is different Triagists first department
When it freezes, it is more busy Triagists first department
On days after a holiday, it is more busy McCarthy et al., 2008

The higher someones urgency level, the higher the service time McCarthy et al., 2008

5.2 available data

In Chapter 5, in Figure 4.2 the available data is shown. This data is directly used to analyze
the factors that impact the service time and to test the hypotheses with. For the arrival
rates, so the demand for healthcare, the data is converted to count data to be able to see
the impact of certain factors on hourly arrival rates. An illustration of the count data is
displayed in Figure 5.1.

Figure 5.1: Processes in telephone triage of out-of-hours department

5.3 statistical tests

To test the above-mentioned hypotheses, statistical testing is used to compare different
groups of data. When checking whether there is a statistical difference between groups, of-
ten the ANOVA test - analysis of variance - is used. This test assumes normally distributed
data. In Section 5.9, it can be seen that neither the demand data, which has the form of
count data as visible in Figure 5.1 nor the service time data are normally distributed. Be-
cause this assumption of the ANOVA test is not met, a similar non-parametric test must
be used to compare groups of data for demand and service times in the out-of-hours de-
partment. A good option for this is the Kruskal-Wallis test, which does not assume an
underlying distribution and is used to compare three or more groups. It compares the
ranks of the data points between the groups, rather than comparing the data itself. The
Kruskal-Wallis test can be interpreted for a test of differences between medians in groups,
when observations are identically distributed between a group (Dransfield, 2021) In the rest
of this Chapter, the Kruskal-Wallis test is used to see whether differences occur between
groups, like for example between seasonal patterns for demand and service times. The
posthoc-Dunn test is used to compare the groups pairwise, to see where exactly the dif-
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ferences between the groups occur. All statistical analyses are performed in Python, using
statistical packages scipy, statsmodels and scikit. p values uitleg

5.4 subquestion 2: demand for healthcare

The count data is used to see if differences between groups of data exist. If this difference
exists and it is statistically significant, these data groups are separated and will be used as
separate demand scenarios when later using it as input into the model.

5.4.1 Yearly differences

First of all, it is checked whether the arrival patterns of the past years are the same and
can be aggregated, or are different from each other and some data has to be left out of
the analysis. In Figures 5.2 and 5.3, the arrival patterns for the past 4 years with 95%
confidence interval for the mean amount of patients that calls in that specific hour of the
day are plotted for weekend days and weekdays (opening times from 17:00 (5:00 pm) till
8:00 am), for the normal line and for the emergency line respectively. It is important to note
that for now, weekend days and weekdays are separated, but it will be statistically tested
whether this is an accurate choice in subsection 5.4.3. In the plots, it is visible that there
are some differences between the years, mostly for arrivals around noon. To statistically
test whether these differences between the years are significant, the Kruskal-Wallis test is
used to compare the distributions of the groups for each separate hour of the day. The
hypotheses of this test for yearly differences can be found in Table 5.2.

Figure 5.2: Comparison of hourly arrivals between years - normal line

Figure 5.3: Comparison of hourly arrivals between years - emergency line

Important to note is that for the statistical test, the data of 2020 and 2021 have been ag-
gregated, because the data of 2021 is not complete yet and covers only a few months.
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Table 5.2: Hypotheses for Kruskal-Wallis test for comparing arrival patterns between years for nor-
mal and emergency line

Hypothesis
H0: No differences in distributions between years for hourly arrivals
H1: Differences in distributions between years for hourly arrivals

Therefore, three groups are compared: 2018, 2019, and 2020/2021 together. The results of
the Kruskal-Wallis test can be found in Table 5.3. It displays the hours of the day in which
differences exist between the years, so where the p-values are below 0.05, and the specific
group(s) that are different from the rest.

Table 5.3: Results of Kruskal-Wallis test for comparing arrival patterns between years
Arrival line Significantly different hours Different group
Normal line - weekend 1, 3, 7, 8, 9, 10, 16, 18, 20, 21 2019

Normal line - weekday 1, 4, 17-23 2019

Emergency line - weekend 4, 23 2018/2019

Emergency line - weekday - -

It can be seen that 2019 is statistically different for some hours for the normal arrival
pattern in the weekend and on weekdays, which is a notion that the plots support. For the
emergency line, only during the weekend two hours are slightly different, respectively for
2019 in hour 4 and for 2018 in hour 23. For the sake of the completeness of the data, and
because it can be expected that some natural variation exists between years, all years are
taken into account for further data analysis.

5.4.2 Seasonal differences

In Figures 5.4 and 5.5, similar to the yearly patterns, the arrival patterns are displayed
for the four different seasons of a year. The 95% confidence intervals are displayed in the
plots as well. In the plots, it is visible that some differences exist for some hours of the day
between seasons. Again, it is tested whether differences between the seasons are significant,
using the Kruskal-Wallis test. The hypotheses can be found in Table 5.4

Figure 5.4: Comparison of hourly arrivals between seasons - normal line

The results of the test can be found in Table 5.5. It can be seen that for the normal arrival
line, Spring and Winter tend to sometimes have a different pattern than the other seasons.
For winter, this only happens for one hour (hour 20 during weekdays), which is why it is
chosen to still aggregate winter with summer and autumn for both weekend and weekdays.
Spring is different in all other displayed hours, and is therefore taken as a separate arrival
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Figure 5.5: Comparison of hourly arrivals between seasons - emergency line

Table 5.4: Hypotheses for Kruskal-Wallis test for comparing arrival patterns between seasons for
normal and emergency line
Hypothesis
H0: No differences in distributions between seasons for hourly arrivals
H1: Differences in distributions between seasons for hourly arrivals

pattern. For the emergency line, no differences are seen and therefore all seasons are
aggregated.

The found differences are statistically significant, but appear small in the plots. It is cho-
sen to still take these small differences into account as different groups for input into the
queueing model, as a difference of a few callers in an hour might lead to big increases in
waiting times and the performance of the KPI.

Table 5.5: Results of Kruskal-Wallis test for comparing arrival patterns between seasons
Arrival line Significantly different hours Different group
Normal line - weekend 8, 19, 20, 21 Spring
Normal line - weekdays 19, 20, 21 Spring/Winter
Emergency line - weekend - -
Emergency line - weekdays - -

5.4.3 Weekend days versus weekdays

It can be seen that the patterns of the weekends are by definition different from weekday
patterns. The opening hours are different, and it can be seen in Figure 5.6 that for the
weekend days, the arrivals increase a lot more rapidly in the mornings than they do for
weekdays. This could be due to the regular general practitioners opening at 8 during
weekdays, for which people might wait, while in weekends no such options exists and
people have to wait till Monday to see their regular general practitioner. Such a pattern can
also be seen for emergency arrivals in Figure 5.7, where in the mornings, starting from 5,
the arrivals increase more rapidly in the weekends than during weekdays.

Because of these visual differences and because their different opening hours, weekend
days and weekdays are seen as different groups for input into the queuing model. In
Section 5.6, an expert and literature interpretation is given on this conclusion.
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Figure 5.6: Comparison of hourly arrivals between weekdays and weekend days - normal line

Figure 5.7: Comparison of hourly arrivals between weekdays and weekend days - emergency line

5.4.4 Weekend days, holidays and days after holidays

The daily arrival patterns for weekend days, holidays and days after holidays are displayed
in Figures 5.8 and 5.9. The figures both consist of three plots, respectively displaying
the difference between arrivals on a Saturday and on a Sunday, the difference between
a weekend day and a holiday and the difference between a day after a holiday and a
weekend day. Again, it is tested whether statistical differences exist between the plotted
arrival patterns. The hypotheses for the Kruskal-Wallis test to hourly compare the amount
of arrivals are displayed in Table 5.6.

Table 5.6: Hypotheses for Kruskal-Wallis test for comparing arrival patterns between weekend days,
holidays and days after holidays for normal and emergency line

Hypothesis
H0: No differences in distributions between weekend days, between weekend days and
holidays and between weekend days and days after holidays for hourly arrivals
H1: Differences in distributions between weekend days, between weekend days and
holidays and between weekend days and days after holidays for hourly arrivals

The results of the test can be found in Table 5.7. For the normal arrival line, the test is
conducted for the data group that consists of the seasons Summer, Autumn and Winter
together and for Spring separately as is also visual in the plots and is based on the results
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Figure 5.8: Comparison of hourly arrivals between weekend days and (day after) holidays - normal
line

of previous testing, which concluded that Spring is different from the three other seasons
in the normal arrival line. For Summer, Autumn and Winter it can be concluded that
differences exist between Saturdays and Sundays, as is clearly visible in the first plot of
Figure 5.8. The differences between weekend days and holidays and days after holidays
are not significantly different from a Saturday or a Sunday, and they can thus be aggregated.
For Spring, again, Saturday and Sundays are different. Different from the other seasons, in
Spring a holiday and a day after a holiday can only be aggregated with Saturdays, and not
also with Sundays. In Section 5.6, an expert and literature interpretation is given on this
conclusion.

For the emergency line, all seasons are aggregated, so only one group has to be tested for
differences between weekend days, holidays and days after holidays. It is found that only
in three hours of the day statistically significant differences occur. Days after holiday are
only slightly different from holidays on hour 12, and Saturdays and Sundays slightly differ
on hour 6 and hour 15. As these are minor differences and to be able to aggregate more
data, it is assumed that these hours are the same over the groups, and thus weekends days,
holidays and days after holidays are aggregated for the emergency line.
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Figure 5.9: Comparison of hourly arrivals between weekend days and (day after) holidays - emer-
gency line

Table 5.7: Results of Kruskal-Wallis test for comparing arrival patterns between weekend days, hol-
idays and days after holidays

Arrival line Significantly different hours Different group
Normal line - weekend -
Summer/Autumn/Winter 5, 7-23 Saturday/Sunday
Normal line - weekend - Spring 4, 7-13 Saturday/Sunday/Holiday
Emergency line - weekend 6, 12, 15 Day after holiday/Saturday/Sunday

5.4.5 Differences between weekdays

In Figures 5.10 and 5.11, the arrival patterns during weekdays and days after holidays that
are on a weekday are visualized for the normal arrival line for the two seasonal groups
(Summer, Winter, Autumn together and Spring separate), and for the emergency line. It is
again statistically tested whether there are differences between the groups, in this case the
weekdays. From the plots, one might hypothesize that Fridays tend to be different from
the other days. The hypotheses for the Kruskal-Wallis test can be found in Table 5.8.

The results of the test are visible in Table 5.9. It is visible that for the normal line in
both season groups only Fridays are significantly different from the other days. This is
also visible in the plots in Figure 5.10, where Friday clearly has a higher trend. This
might be due to the weekend coming up in which general practitioners are not opened
for another two days and people do not want to walk around with their symptoms all
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Figure 5.10: Comparison of hourly arrivals weekdays - normal line two season groups

Figure 5.11: Comparison of hourly arrivals weekdays - emergency line

Table 5.8: Hypotheses for Kruskal-Wallis test for comparing arrival patterns between weekdays for
normal and emergency line

Hypothesis
H0: No differences in distributions between weekdays for hourly arrivals
H1: Differences in distributions between weekdays for hourly arrivals

weekend. Another reason could be that some general practitioners close earlier on Friday,
which leads to more people calling when the out-of-hours departments open. A more
elaborate expert and literature interpretation can be found in Section 5.6.

For the emergency line, all days are aggregated for all hours, no differences are signifi-
cant.

Table 5.9: Results of Kruskal-Wallis test for comparing arrival patterns between weekdays

Arrival line Significantly different hours Different group
Normal line - week -
Summer/Autumn/Winter 17-23 Friday
Normal line - week - Spring 3, 19-23 Friday
Emergency line - week - -

Up and till now, the following groups of data have been found to have significantly dif-
ferent arrival patterns. These groups will be used as demand scenarios in the discrete
event simulation model, after the next subsection where it is tested whether there are also
significant differences between temperature categories:
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Table 5.10: Identified demand scenarios until now

Line Weekpart Season Day

Normal line Weekend Summer/Autumn/Winter Saturday
Normal line Weekend Summer/Autumn/Winter Sunday
Normal line Weekend Summer/Autumn/Winter (Days after) holidays
Normal line Weekend Spring Saturday
Normal line Weekend Spring Sunday
Normal line Weekend Spring (Days after) holidays
Normal line Week Summer/Autumn/Winter Friday
Normal line Week Summer/Autumn/Winter All other weekdays
Normal line Week Spring Friday
Normal line Week Spring All other weekdays
Emergency line Weekend All groups All days
Emergency line Week All groups All days

5.4.6 Differences between temperature categories

As visible in the hypotheses table, Table 5.1, some hypotheses mention temperature as a
factor that influences arrivals to medical departments and specifically to an out-of-hours
department. In Figures 5.12, 5.13 and 5.14, for all the different groups that have been found
up and till now and that are listed just above this section, the pattern is divided into three
temperature categories. Then, for each plot, it is checked whether there are statistically
significant differences between the arrival patterns for different temperature categories,
using the Kruskal-Wallis test. The hypotheses for this test can be found in Table 5.11.

Table 5.11: Hypotheses for Kruskal-Wallis test for comparing arrival patterns between temperature
categories for normal and emergency line

Hypothesis
H0: No differences in distributions between temperature categories for hourly arrivals
H1: Differences in distributions between temperature categories for hourly arrivals

For the normal line groups, sometimes a significant difference is found for one or two spe-
cific hours of the days between temperature categories. If the difference is only significant
for one hour, the data is still aggregated over all temperature categories. For some of the
groups, more than one hour was statistically different between the groups, as visible in
Table 5.12. This is the case for the Summer/Autumn/Winter group on Sundays and on
(days after) holidays, where the Cold category has to be taken separately from the Average
and the Hot category and on all weekdays but Fridays, w here the Hot category has to be
taken separately from the Average and Cold category.

For the emergency line, no differences are found between temperature categories for the
weekends and for weekdays. In the plots, some peaks are visible, especially for hotter
days. However, since this happens not very often compared to colder and average tem-
perature days and the data points are very spread out, the difference is not found to be
significant.
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Figure 5.12: Comparison of hourly arrivals between weather types - normal line weekend data
groups

Figure 5.13: Comparison of hourly arrivals between weather types - normal line week data groups

5.5 subquestion 2: service times

Similarly to the arrival patterns, the service times of the telephone triage are analyzed to
see if temporal, temperature and urgency factors have an impact on service times within
the system. If they do, it is important to incorporate this into the simulation model.
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Figure 5.14: Comparison of hourly arrivals between weather types - emergency weekend and week
data

Table 5.12: Results of Kruskal-Wallis test for comparing arrival patterns between temperature cate-
gories

Arrival line Significantly different hours Different group
Normal line - weekend -
Summer/Autumn/Winter - Saturday 14 Cold
Normal line - weekend -
Summer/Autumn/Winter - Sunday 6, 8, 18 Cold
Normal line - weekend -
Summer/Autumn/Winter - (Days after) holidays 6, 8, 14, 23 Cold
Normal line - weekend -
Spring - Saturday - -
Normal line - weekend -
Spring - Sunday 1 Cold
Normal line - weekend -
Spring - (Days after) holidays 18 Cold
Normal line - week - Summer/Autumn/Winter - Fridays - -
Normal line - week - Summer/Autumn/Winter - All other days 18, 21 Cold/Hot
Normal line - week - Spring - Fridays - -
Normal line - week - Spring - All other days - -
Emergency line - weekend - -
Emergency line - week - -

5.5.1 Yearly differences

Before testing for yearly differences in service times in the data, it is checked whether
service times in the normal line are different from service times in the emergency line to
see whether or not these lines should have separate service times in the simulation model.
The patterns are visible in Figure 5.15. It is found that for almost all hours of the day
and for every year, the service times are statistically different between the normal and
the emergency arrival line. This makes sense, as the nature of a call is very different for
the emergency line than for the normal line. Afterwards, it is tested whether there are
differences in the service times between the years. This is done because in Figure 5.16,
a clear trend upwards is visible for the service times over the past few years. For the
simulation model to be valid, the most up to date service times have to be used. The
hypotheses for the test can be found in Table 5.13.

Table 5.13: Hypotheses for Kruskal-Wallis test for comparing service times between years for both
lines
Hypothesis
H0: No differences in distributions between years for service times
H1: Differences in distributions between years for service times
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Figure 5.15: Comparison of service time between years

Figure 5.16: Average service times per month, 2018 - 2021

Important to note is that for the statistical test, the data of 2020 and 2021 have been ag-
gregated, because the data of 2021 is not complete yet and covers only a few months.
Therefore, three groups are compared: 2018, 2019, and 2020/2021 together. The results of
the Kruskal-Wallis test can be found in Table 5.14. It displays the hours of the day in which
differences exist between the years, so where the p-values are below 0.05, and the specific
group(s) that are different from the rest.

From the test, it can be concluded that only 2020 and 2021 should be taken into account for
the normal and emergency line for service times, as these are significantly higher than the
service times of the years before. An expert interpretation on the increase in service times
over the years can be found in Section 5.6.

Table 5.14: Results of Kruskal-Wallis test for comparing service times between years
Arrival line Different group
Normal line 2020/2021

Emergency line 2020/2021

5.5.2 Weekend days versus weekdays

It is also tested whether there are differences between weekend days and weekdays when
it comes to service times. In Figures 5.17 and 5.18. The hypotheses can be seen in Table
5.15.
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Figure 5.17: Comparison of service time between week and weekend normal line

Figure 5.18: Comparison of service time between week and weekend emergency line

Table 5.15: Hypotheses for Kruskal-Wallis test for comparing service times between week and week-
end for both lines

Hypothesis
H0: No differences in distributions between week and weekend for service times
H1: Differences in distributions between week and weekend for service times

For the normal line, only a difference can be seen in hour 7 of the day, where service
times are lower during the week. This is presumably due to the out-of-department almost
closing, and people might be referred to their own general practitioners that open at 8. The
choice is made to not make a distinction between week and weekend based on this specific
hour, as hour 7 during the week is not where the peak demand in care is visible (see Figure
5.10 for example, where the demand at 7 is either really low for weekdays, or around 10 in
weekends)

For the emergency line, in the hours 0, 4 and 17 some differences are visible in service
times between weekend and week. Again, it is chosen to not make a distinction between
week and weekend as the differences are minor and often, in the emergency line, a few
outliers might lead to this difference.

5.5.3 Seasonal differences

in Figure 5.19, the service times are displayed for the four different seasons of the year
for both the arrival lines. It is clearly visible that there are some differences between the
seasons and the service times, possibly due to different types of calls that are associated
with the season and need more or less handling times. Also, it can be seen that service times
differ over the course of the day. To verify whether these visible differences are statistically
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significant, the Kruskal-Wallis test is again performed. The hypotheses are displayed in
Table 5.16.

Figure 5.19: Comparison of service time between seasons

Table 5.16: Hypotheses for Kruskal-Wallis test for comparing service times between seasons for
both lines
Hypothesis
H0: No differences in distributions between seasons for service times
H1: Differences in distributions between seasons for service times

In Table 5.17, the results of the Kruskal-Test are displayed. For the normal line, almost for
all hours there are differences in service times between the seasons. It can be concluded
that all seasons have to be taken separately in the simulation model when it comes to
service times. For the emergency line, all seasons are similar. For an interpretation on this
conclusion, see Section 5.6.

Table 5.17: Results of Kruskal-Wallis test for comparing service times between seasons
Arrival line Different group
Normal line All seasons
Emergency line -

5.5.4 Holidays and days after holidays

It is tested whether service times are higher or lower on (days after) holidays compared to
normal days. In Figure 5.20, for three of the four seasons for the normal line (there are no
holidays in Summer) and for the emergency line the different service times are plotted for
(days after) holidays compared to regular days. It is tested whether these service times are
significantly different from each other. The hypotheses can be found in Table 5.18.

Table 5.18: Hypotheses for Kruskal-Wallis test for comparing service times between (days after)
holidays and regular days for both lines

Hypothesis
H0: No differences in distributions between (days after) holidays and regular days for service times
H1: Differences in distributions between (days after) holidays and regular days for service times

The results of the Kruskal-Wallis test can be found in Table 5.19. For the normal arrival
line in Spring, for some of the regular opening hours differences are visible: on days
after holidays, conversations tend to take longer than on regular days and on holidays.
Days after holidays are therefore taken separately for the normal arrival line in Spring.
In Summer, there are no holidays, so no differences can be checked for. In Autumn, no
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Figure 5.20: Comparison of service time between (days after) holidays and regular days

differences come out of the Kruskal-Wallis test, whereas in Winter and in the emergency
line, some differences came out, but these are mostly due to some outlier values on holidays,
of which there are not that much and which thus easily manipulate average service times.
Therefore, only for Spring as distinction is made between Days after Holidays and other
days. For the emergency line,

Table 5.19: Results of Kruskal-Wallis test for comparing service times between (days after) holidays
and regular days

Arrival line Different group
Normal line - Spring Days after holidays
Normal line - Summer -
Normal line - Autumn -
Normal line - Winter (Days after) holidays
Emergency line - all seasons (Days after) holidays

5.5.5 Differences between days

Next, the differences between days are checked. In Figures 5.21 and 5.22 it can be seen that
no clear pattern can be deduced from the plots, and no specific hypotheses on days that
might be different from others when it comes to service times can be made. It is chosen not
to statistically check for differences between days, as the variance is high for service times
and outliers can happen on any day and presumably have more to do with the urgency
level of a patient, than they do with the specific day.

5.5.6 Differences between temperature categories

For all significantly different groups up and till now, the Kruskal-Wallis test is performed
to see whether there are significant differences between temperature categories Cold, Av-
erage and Hot, similar to the test performed for the arrival patterns. It is found that for
the emergency line and for the normal arrival line during Spring, two hours have some dif-
ferences between the temperature groups, with p-values close to 0.05 but just below. It is
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Figure 5.21: Comparison of service time between days

Figure 5.22: Comparison of service time between days

therefore chosen to make no distinction between temperature categories for all groups for
service time as again, differences are presumably occurring because of the urgency levels
of the calling patients.

5.5.7 Effect of urgency levels

As mentioned a few times in previous sections, the reason why service times might be
different between groups of data could be different urgency distributions across the calls.
It is checked whether service times are different over different urgency levels. In Figure
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5.23, a boxplot with the average service times per urgency level is displayed over the whole
dataset. The boxplot shows that the average service times decrease when urgency level
decreases (0 is highest, 5 is lowest).

Figure 5.23: Boxplot of service times per urgency level

To confirm that there are differences in service times between urgency levels, the Kruskal-
Wallis test is performed on all significantly different data groups for service times. The
results are visible in Table 5.20. It can be seen that for most groups, there is a split between
the higher and the lower urgency levels. For practical reasons, it is chosen to group the
urgency levels for all groups as follows: 0, 1 and 2 form a group, 3 is separate and 4 and 5

are form a group. For the days after holidays group in Spring, no distinction is made.

It is therefore important to know what the urgency of an arriving patient will be, to be able
to assign a correct corresponding service time. This is addressed in the next subsection by
identifying the probability of an urgency level for a patient over the course of the day. It
can also be concluded that because the service times are different per urgency level, the
reason why a group is statistically different when it comes to service time (like the seasons)
could be due to a high proportion of patients with a specific urgency level. More on this
can be read in Section 5.6 when interpreting the found differences between the seasons
when it comes to service times.

Table 5.20: Results of Kruskal-Wallis test for comparing service times between urgency levels
Arrival line Different group
Normal line - Spring 0+1+2, 3, 4+5

Normal line - Spring - Days after holidays -
Normal line - Summer 0+1+2, 3, 4+5

Normal line - Autumn 0+1+2+3, 4+5

Normal line - Winter 0+1+2, 3, 4+5

Emergency line - all seasons 0+1+2, 3+4+5

5.5.8 Urgency probabilities over the day

In Figure 5.24, of one of the identified demand scenarios the urgency probabilities over
the day are displayed. It can be seen that the probability of an urgency level for a patient
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varies throughout the day. From midnight, so hour 0, it can be seen that the share of higher
urgency levels 1, 2 and 3 increases, and the share of lower urgency levels 4 and 5 decreases.
At night, the probability that an arriving patient has a high urgency is higher than during
the day. In Section 5.6, a literature interpretation of the varying urgency probabilities
over the day is given. For all identified scenario’s and hours within each scenario, this
probability distribution is identified and saved to be used in the model.

Figure 5.24: Probability per urgency level - Friday in Spring

5.5.9 Aggregate hours for service time

For all identified service time scenarios, it is checked if certain hours of the day can be
aggregated when it comes to service time. This would decrease the amount of groups of
data and would create interval groups of hours in which the service time can be assumed
to be distributed the same. All hours are compared when it comes to service time and
compared using the Kruskal-Wallis test. It is found that for a part of the scenario’s there
are differences between the hours when it comes to service time, and for a part there is no
difference between the hours. It is chosen to use the same time interval for each service
time scenario for consistent implementation in the model. The three groups of hours that
are grouped together for service time are:

1. Hours 7, 8, 9, 10, 11

2. Hours 17, 18, 19, 20, 21, 22

3. All other hours, so 23 - 6 and 12 - 16

An interpretation of these findings can be found in the next section.

5.5.10 Subprocesses: triage or no triage

As mentioned in Chapter 4, a difference exists between the service times of people that
receive full triage on the phone and people that do not receive full triage on the phone. It
is important to make this distinction in the data, as they are different types of calls and
have a different effect on the performance of the system. The distinction between the two
subprocesses can be made by two consecutive steps. The first step is to select all the calls
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that are below 6 minutes in duration, as according to the first department that is the time
that a full triage tends to take. Most likely, in the calls that take less than 6 minutes, no full
triage was performed. In the next step, from this group of calls below 6 minutes, all calls
that have an urgency level are filtered out. These calls did not take 6 minutes, but when
they do have an allocated urgency there was still full triage performed. The calls that are
left are all calls below 6 minutes that do not have an urgency level allocated. These calls are
the calls that belong to subprocess 1 - no full triage. All the other calls belong to subprocess
2 - full triage. A visualization of the distinction between subprocess 1 and 2 is visible in
Figure 5.25.

Figure 5.25: Division service time scenario into subprocesses 1 and 2

For each hour of each identified service time scenario (without urgency) the share of pa-
tients that goes to each subprocess is calculated. In the model, when a patient arrives, it
gets an allocated subprocess according to this share. If it goes into subprocess 1, it gets
no urgency level. If it goes into subprocess 2, it gets an urgency level. When the patient
reaches the triagist, a servicetime is sampled that matches the subprocess, and for subpro-
cess 2 a servicetime is sampled that also matches the urgency of the patient. In Figure 5.26

it can be seen that the service times for subprocess 1 are significantly lower than the service
times for subprocess 2.

Figure 5.26: Comparison service times subprocess 1 and subprocess 2
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5.6 expert and literature interpretation

Based on the analysis of the demand and the service time from the historical data, several
patterns and differences stand out. For these interesting conclusions from the analysis,
experts working at the first out-of-hours department were consulted. Also, most of the
conclusions are discussed in the light of the literature review and of new literature that
shines light on similar conclusions in healthcare systems. Sometimes no experts were
consulted because conclusions were drawn directly from data the triagists entered. Also,
for service times, sometimes a statistical interpretation of a conclusion is given.

First, the conclusions from the demand data are discussed, then from the service time
data.

5.6.1 Demand patterns

Week versus weekend day
In Section 5.4.3, it is found that weekdays and weekend days have different arrival patterns.
On the one hand because of the different opening hours, 24 hours in the weekends and only
on out-of-office hours during the week, but also because of higher peaks in the weekend.
In the weekend, in the mornings the amount of calls increases rapidly, whereas during the
weekends this does not happen. Also, during the evenings, a little more calls are expected
in the weekends.

Expert interpretation
These findings were discussed with people working at the first department. The reason
for a rapid increase in calls during the weekend has three reasons: firstly, in the weekends
there are morning rounds in nursing homes in which often medical problems are identified.
As the general practitioners are not open in the weekends, the out-of-hours department is
called. The second reason is the fact that during the week, people wait for their general
practitioner to open at 8 AM. In the weekends, the general practitioners will not open at
all, so people call earlier in the morning. The last reason is the fact that as the general prac-
titioners will not open again until Monday, the barrier for people to call is lower because if
they don’t call, they might have to deal with their symptoms all weekend.

Literature interpretation
In literature, as reviewed in Chapter 2, an often mentioned reason for people to call the
out-of-hours department is a lack of accessibility to the general practitioner (Keizer et al.,
2021). The fact that it is more busy earlier on the day in the weekends supports this claim:
the general practitioner cannot be contacted, so people more easily choose to call the out-
of-hours department. The claim can also be turned around: during the week, it is less
busy in the morning, because the general practitioner is reachable from 8 AM. This stops
people from calling earlier. It can be concluded that the found differences between week
and weekend days in the data are supported by experts and by literature findings.

Saturday versus Sunday and holidays
In Section 5.4.4, it is found that Saturdays are more busy than Sundays. The differences oc-
cur from approximately 8 in the morning, and stay present until night time. Also, holidays
and days after holidays tend to have a slightly different arrival pattern, in such a way that
they cannot be generalized with just a Saturday or a Sunday.
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Expert interpretation
Again, these findings were discussed with people working at the department. According
to them, the higher demand on Saturdays compared to Sundays is due to, similar to the
difference between weekdays and weekend days, the fact that the general practitioner will
not open again till Monday. If a health problem occurs on Sunday, more people will wait
until Monday morning to call their general practitioner in stead of calling the out-of-hours
department. On Saturdays, calling the general practitioner is at least a day and a night away,
so more people will call the out-of-hours department with their problem. Another reason is
the sports competition of multiple sports that happens mostly on Saturdays, which results
in injuries that the out-of-hours department is often called for.

Literature interpretation
The same base in literature can be found for the difference between Saturdays and Sundays
as for the difference between weekend days and weekdays, as previously discussed. The
accessibility of the general practitioner is the main reason why people tend to call the out-
of-hours department more on Saturdays than on Sundays, where they have to wait less time
for the general practitioner to be reachable again. The conclusion that holidays and days
after holidays are slightly different than normal weekend days is also found in McCarthy
et al. (2008), on which the hypothesis was based that holidays and days after holidays are
different from a normal day.

Friday versus other weekdays
In Section 5.4.5, it is found that Fridays are more busy than the other weekdays. This trend
continues over the course of the evening, and in the night the difference disappears.

Expert interpretation
The increase in demand on Fridays is a known phenomenon for the triagists at the depart-
ment. They mention that a reason for this is that on Fridays some of the general practi-
tioners close earlier in the afternoon, which leads to people waiting for the out-of-hours
department to open at 5 PM. This creates an immediate peak compared to the other week-
days. Similar to the previously discussed findings, on Fridays people know that the general
practitioner won’t open again until Monday, so the barrier to just call is lower than on a
weekday, where you can contact your general practitioner the next morning again.

Literature interpretation
In literature, analyses have been performed on the factors that impact demand in health-
care systems such as emergency rooms or other hospital departments. These analyses
come to the conclusion that in an emergency room, the peak in demand is found early
in the week and highest on Mondays, and low in the weekends (McCarthy et al., 2008;
Walker, Van Woerden, Kiparoglou, & Yang, 2016). This is contrary to what is found to
be the trend in this out-of-hours department. This difference can be attributed to the def-
inition of an emergency department versus an out-of-hours department: an out-of-hours
department can be seen as an ’emergency general practitioner’ which can direct a patient
to the emergency room when necessary, whereas an emergency department only handles
highly urgent patients that would most likely not call their general practitioner first for
their type of problem. At the beginning of the week, people with the types of health is-
sues that an out-of-hours department would handle can call their general practitioners and
maybe even make an appointment for the same week and a peak in demand on Monday
would therefore not be logical behavior of the system.
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Weather influence
It was found that for some of the demand scenarios, the weather has an impact, whereas
for some it doesn’t. It can be seen when looking at Table 5.21 that on days that are found
to be busier than others, there is no difference in demand patterns between temperature
groups. On the days that are less busy, for example Sundays or all days of the week except
for Friday, the temperature does have an effect.

Expert interpretation
When looking at the hypotheses in Table 5.1, it can be seen that the triagists expect a
different arrival pattern during the darker months and that they feel like it is more busy
when it is freezing outside. The found demand scenarios confirm their experiences when it
comes to cold weather in the Winter as it is found that a cold day behaves slightly different
from a normal day. It is not necessarily busier, but the variance in the demand is a lot
higher on colder days (see Figures 5.13 and 5.12), which leads to the perception that these
days are busier because some of them definitely are, and it is likely that they are easily
remembered because the weather was so specific. What they also mention, is that it is
rather the types of issues that people call with are varying over temperature categories
than the demand.

Literature interpretation
In McCarthy et al. (2008), no impact of temperature is found on the arrivals at an emergency
department at an emergency department, whereas in He, Hou, Toloo, Patrick, and Gerald
(2011) it is found that more extreme seasonal influences, such as a heat wave, can have an
impact on emergency department arrivals. This corresponds to the conclusion from the
data analysis that a very hot or cold day can have a different arrival pattern than a regular
day. Again, it should be noted that these findings from literature are not done in an out-of-
hours department, and that therefore the differences in the conclusions can be attributed
to the difference in the use and goal of the department.

Urgency distribution
In Section 5.5.8, in Figure 5.24, it can be seen that the distribution of urgency over the
patients varies throughout the day. At night, the probability that an arriving patient has a
high urgency is higher than during the day.

Literature interpretation
In McCarthy et al. (2008); Welch, Jones, and Allen (2007), it is found that the acuity (ur-
gency) of patients varies over the day. During the night, a larger proportion of the pa-
tients treated at the emergency department has a high urgency compared to afternoon and
evenings. This is in line with the conclusion drawn from the data analysis.

5.6.2 Service time patterns

Yearly differences
In Section 5.5.1 in Figure 5.15, it can be seen that since 2018, the average service times have
been increasing, in such a way that the past to years have been very different from the years
2018 and 2019.

Expert interpretation
A yearly increase of the service time of a phone call is not a self-evident trend. The depart-
ment mentions multiple reasons why this increase could have happened. The first one is
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that the focus of the conversations has been on help through the phone, sometimes with
video, to avoid real life visits at the department. This is in fact an increase in performance
of the system as a whole, but a decrease of only the telephone triage system as service
times have been increasing because of this focus. The next reason is that service times are
different per triagist. New triagists tend to have a longer service time, so the increase could
partly be due to a larger share of new triagists in the past years. Lastly, more criteria are
added by the year to the triage process which increases service times.

Literature interpretation
The differences in service times between healthcare employees, one of the reasons for an
increased service time mentioned by the department because new triagists tend to have
longer service times, is a difference that is also mentioned in literature. Another interest-
ing notion is that the average service time in 2021 - around 8 minutes - meets the 7.78

minutes on average that is found in literature for an out-of-hours department in England
(Mohammed et al., 2012).

Urgency level
In Section 5.5.7, it can be seen that differences exist in service times between urgency level.
The higher urgency levels 1,2 and 3 can be grouped when it comes to service times and
the lower urgency levels 4 and 5 can also be grouped. The urgency levels can be grouped
similarly for all service time scenarios.

Expert interpretation
For people from the department, it is a recognizable conclusion that the service times are
different across urgency levels. They mention that more urgent calls, like when a resuscita-
tion has to be guided through the phone or when a psychiatric patient calls, tend to take
longer. This is different from someone who needs brief advise on a small problem.

Literature interpretation
Similar to the department, who mention that psychiatric patients need longer service times
than other types of patients, Mohammed et al. (2012) mentions a difference between the
length of a mental health or a non-mental health call. The found differences from the data
in service times between urgency levels are therefore explained in the same way by on the
one hand the department, and on the other hand the literature.

Seasonal differences
When it comes to service times, all seasons are taken as a separate scenario from the data.
As opposed to demand, it does not seem self-evident that service times differ across sea-
sons. An explanation might be found in the urgency probabilities between the seasons,
because higher urgency patients take more time to be helped on the phone (see Section
5.5.7.

Statistical interpretation
When looking at the urgency probabilities within the demand scenarios, it can be seen
that a slight difference exists between the Spring scenarios and the scenarios with the other
three seasons combined. The share of Urgency 1 and Urgency 2 patients is higher in Spring
in the peak hours of the day, when the peak in service times is also visible in Figure 5.19.
This could partly explain why service times might be different across seasons.
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Literature interpretation
In literature, no previous research has been performed on temporal influences on service
times in out-of-hours care or other types of healthcare systems. Papers that do address tem-
poral influences look at its effect on length of stay at a department or demand and thereby
focus more on the underlying problem of a patient that could be due to the season.

5.7 identified scenarios

After interpreting the subconclusions of the data analysis, it can be concluded that temporal
and temperature variables, subprocesses and urgency levels have an effect on demand for
out-of-hours care and on the service times within. For demand for care, the significant
groups are listed in Table 5.21. For the service times of a call, the significant groups are
listed in Table 5.22.

Table 5.21: Identified demand scenarios

Line Weekpart Season Day Weather

Normal line Weekend Summer/Autumn/Winter Saturday All temperature categories
Normal line Weekend Summer/Autumn/Winter Sunday Cold
Normal line Weekend Summer/Autumn/Winter Sunday Average/Hot
Normal line Weekend Summer/Autumn/Winter (Days after) holidays Cold
Normal line Weekend Summer/Autumn/Winter (Days after) holidays Average/Hot
Normal line Weekend Spring Saturday All temperature categories
Normal line Weekend Spring Sunday All temperature categories
Normal line Weekend Spring (Days after) holidays All temperature categories
Normal line Week Summer/Autumn/Winter Friday All temperature categories
Normal line Week Summer/Autumn/Winter All other weekdays Cold
Normal line Week Summer/Autumn/Winter All other weekdays Average/Hot
Normal line Week Spring Friday All temperature categories
Normal line Week Spring All other weekdays All temperature categories
Emergency line Weekend All groups All days All temperature categories
Emergency line Week All groups All days All temperature categories

Table 5.22: Identified service time scenarios

Line Season Urgency

Normal line Spring Urgency 0, 1, 2

Normal line Spring Urgency 3

Normal line Spring Urgency 4, 5

Normal line Spring - Days after holidays All urgency levels
Normal line Summer Urgency 0, 1, 2

Normal line Summer Urgency 3

Normal line Summer Urgency 4, 5

Normal line Autumn Urgency 0, 1, 2

Normal line Autumn Urgency 3

Normal line Autumn Urgency 4, 5

Normal line Winter Urgency 0, 1, 2

Normal line Winter Urgency 3

Normal line Winter Urgency 4, 5

Emergency line All seasons Urgency 0, 1, 2

Emergency line All seasons Urgency 3

Emergency line All seasons Urgency 4, 5

In Appendix A, the same data analysis and scenario identification as performed in this
Chapter is performed for the second available data-set from a second out-of-hours depart-
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ment. It is visible that many of the patterns that are visible for the data of the first depart-
ment are similar to the patterns in the second department data: demand profiles have a
similar shape and are only scaled a bit differently due to a different amount of patients
that the second department serves, and it can be seen that many of the interesting results
as discussed in Section 5.6 are also visible for the second department, such as the differ-
ence between weekends and weekdays, the difference between Saturdays and Sundays, the
difference between Fridays and other weekdays, and the difference between mornings dur-
ing the week and mornings during the weekend. The notion that the patterns in the data
are similar is an indication that interventions that might in the end lead to waiting times
reductions - which are identified in Chapter 7 - have a good chance of having that same
effect other departments.

5.8 conclusion system data analysis

When predicting and modelling demand and service times in out-of-hours healthcare, one
should definitely consider temporal, temperature and urgency factors. Demand and service
times do not only vary over hours of the day, but also over days in the week, seasons in the
year and over the years. Also, for the systematically busier days, temperature variations
do not seem to make much of an impact while they do for the less busy days. Lastly,
urgency levels impact the time it takes to help a calling patient. Looking back at the
hypotheses made in Table 5.23, it can be concluded that all hypotheses on temporal and
temperature variables are true for some parts of the data. The hypothesis that states that
service times will be higher with higher urgency levels is also true. Many of the notions
seen in literature for different types of healthcare systems and notions made by the triagists
can be confirmed.

Table 5.23: Hypotheses from triagists and from literature
Hypothesis Source Conclusion

Temporal variables have an impact on arrival pattern Hamrock et al. (2013); Marcilio et al. (2013); McCarthy et al. (2008) Confirmed
During holidays, the arrival pattern is different McCarthy et al. (2008) (Partly) confirmed
In the ’darker’ months, the arrival pattern is different Triagists first department (Partly) confirmed
When it freezes, it is more busy Triagists first department (Partly) confirmed
On days after a holiday, it is more busy McCarthy et al. (2008) (Partly) confirmed
The higher someones urgency level, the higher the service time McCarthy et al. (2008); Mohammed et al. (2012) Confirmed

5.9 data distributions and data sampling

To be able to use the identified scenarios, it is necessary to use the distributions of the
data from these scenarios to draw samples from within the simulation for each calling
patient.

For this purpose, a theoretical distribution can be used or the empirical distribution of
the data can be computed. In literature, certain theoretical distributions are proposed for
different processes. For arrival processes, often a Poisson process is assumed where the
inter arrival times follow an exponential distribution (Tiwari et al., 2016). For service time
processes in systems like a call center, often a good fit to a lognormal distribution is found
(Gualandi & Toscani, 2018). In this chapter, it is tested whether these notions from literature
fit the data of the out-of-hours department and a decision is made between a fitted theoret-
ical distribution or the empirical distribution of the data. Doing this accurately results in a
model that can be verified and validated after implementation in Chapter 6.
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To have a good image of what data we are dealing with, multiple goodness of fit tests are
compared and used. When testing if a sample comes from a certain theoretical distribution,
there are three common procedures to follow (Razali & Wah. Y.B., 2011), from which the
first and the last are used in this chapter:

• Graphical methods such as histograms, boxplots and QQ-plots
• Numerical methods such as skewness and kurtosis indices
• Formal tests such as the Shapiro-Wilk test for normality, the Kolmogorov-Smirnov

test, the Anderson-Darling test and the chi-square test for discrete distributions.

Firstly, graphical methods are used to assess which distribution visually fits best. To thor-
oughly do this, it should be done hourly for each of the significantly different groups of
data. Next, some statistical goodness-of-fit tests are performed and its results and limita-
tions are discussed.

5.9.1 Distribution Inter Arrival Times and Arrival Rate

Hourly plots and visualizations were made to visually assess if the data fits a theoretical
distribution as proposed by literature accurately. To give an image of the distribution of
all the data, on which later distribution fittings were based, the histogram and a histogram
where multiple distributions are fitted for inter arrival times are visible in Figures 5.27 and
5.28.

Figure 5.27: Distribution fitting on all data inter
arrival times

Figure 5.28: Distribution fitting on all data inter
arrival times

graphical inspection In the plots, it can be seen that visually, an exponential distribu-
tion fits the data rather well compared to the other distributions, which suits the definition
of a Poisson process (Tiwari et al., 2016). Based on these plots, probability plots were com-
puted hourly for all data groups. As the data used for analysis of the groups is hourly
arrival count data, in stead of the exponential distribution - which would be suited for
inter arrival times - the Poisson distribution is used for fitting. As there are 15 significant
demand groups of which 6 are weekday arrival patterns, this means that 10*24 + 6*15 = 330

plots were computed to see whether any of them visually deviates from a Poisson distri-
bution. Two probability plots are displayed in Figures 5.29 and 5.30: the first one shows a
good fit with many samples, the second one also shows a good fit, but there were not that
many data points available. This can be the case for example at night, when sometimes
nobody arrives. It can also be seen that because the data is discrete as it is count data, the
points lay exactly on the lines of the plot. In this case, a probability plot is used because of
this discreteness: in Python it is not possible to fit discrete distributions with a statistical
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package which is necessary for the QQ-plot. The probability plot accepts parameter input
for lambda for a Poisson distribution, which is possible with the means of the available
data. The only difference with the QQ-plot is that the scaling is based on the theoretical
distribution, rather than on the data for the QQ-plot.

Figure 5.29: Probability plot with good fit Figure 5.30: Probability plot with good fit -
small sample

chi-square goodness-of-fit test Because the count data is a discrete variable, the
chi-square goodness-of-fit test is used to see whether the sample data follows a specified
distribution (null hypothesis), and to see whether the conclusions drawn from the graph-
ical inspection can also be drawn based on a statistical test. The normalized observed
frequencies of the count data are compared to expected frequencies of a Poisson distribu-
tion, using the probability mass function, with as lambda the mean of the data sample. The
test is, similar to the plot, performed for all hours of the different demand scenario groups.
For all hours in all scenarios, the p-value is higher than 0.05, which indicates that it is likely
that the sample data follows a Poisson distribution.

kolmogorov-smirnov and anderson-darling test To ensure that the arrival pro-
cess really follows a Poisson process, it is also tested whether all separate hours of the data
follow an exponential distribution. It is found that for 95% of the hours in the data, the in-
ter arrival times follows an exponential distribution according to the Kolmogorov-Smirnov
test, and even more, around 98% according to the Anderson-Darling test.

conclusion Based on the visual inspection of the probability plots and the histograms
and based on the chi-square goodness-of-fit test, it can be concluded that all hours within
all demand scenarios follow a Poisson distribution rather well over the whole range of the
data. When running tests on the inter arrival times of all hours in the data, it can be con-
cluded that based on these tests, 95 to 98% of the hours follow an exponential distribution.
Based on these statistical tests, the arrival process of patients can be seen as a Poisson pro-
cess as seen often in literature for similar systems and processes. In the simulation model,
implemented in the next chapter, it is chosen to use empirical distributions derived from
the data for inter arrival times, in stead of the fitted exponential distribution. This is to
account for outlying values in the data that are not captured when fitting distributions,
which in this system have a large impact on performance metrics.

5.9.2 Distribution Service Times

To give an image of the distribution of the whole data, on which later distribution fittings
were based, the histogram and QQ-plot for service times are visible in Figures 5.31, 5.33
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and 5.32. Important to note is that for the distribution fitting to be accurate, all service times
have been decreased by one minute, as that was the threshold for a call to be included in
the data. For the emergency data, this threshold amount was 2 minutes, as many calls
lasted just a bit more than one minute which indicates that these were not real emergency
calls, but were stopped after a bit more than a minute to be referred to the normal line. By
doing this, the data starts at zero which will increase the fits of the distributions that often
start at 0. If it chosen to use the theoretical distributions in the simulation model, this will
be accounted for. If empirical distributions are used, there is no need for decreasing values
for a better fit.

Figure 5.31: Histogram of service times all data Figure 5.32: Distribution fitting on all data ser-
vice times

Figure 5.33: QQ-plot service times all data for lognormal distribution

graphical inspection In the plots, it can be seen that visually, a lognormal distribu-
tion fits the data rather well compared to the other distributions, which is in line with what
is often found in literature when the distribution of service times in call center systems is
analyzed (Gualandi & Toscani, 2018). However, in the tails, some outliers are visible on
the upper side of the 45-degree line, which means that the fitted distribution will sample
lower values for these outliers. These histograms and QQ-plots were computed hourly for
all data groups to see whether the outliers in the tail would also be present there and in the
same way for the lognormal distribution. As there are 16 significant service time groups,
this means that 2*16*24 = 768 plots were computed to see whether any of them visually
deviates from a lognormal distribution. 3 interesting QQ-plots from these 288 histograms
and QQ-plots in total are displayed in Figures 5.34, 5.35 and 5.36. The first displays a QQ-
plot where there are outliers that the fitted distribution will underestimate, the second one
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has a good fit in the tails, and the third has outliers in the tails that the fitted distribution
will overestimate.

Figure 5.34: QQ-plot underestimating tails Figure 5.35: QQ-plot with good fit in tails

Figure 5.36: QQ-plot overestimating tails

root mean square error To see whether these outlier tails form a problem, the RMSE,
root mean squared error, is computed for the fitted distribution compared to the data for
all hours in the 6 service time groups. The Root Mean Square Error is a good metric for
the goodness-of-fit of a hypothetical distribution to a data sample, as it computes the root
of squared errors between the sample and the fitted distribution, that gets bigger when
the tails of the distribution perform poorly and there are large outliers. The range of the
RMSE for servicetime can be seen in Figure 5.37, where it is visible that most of the RMSEs
are between 0 and 1, which indicates good performance, and few are above. For some
hours in the data, there is some discrepancy between the fitted lognormal distribution
and the sample, which is mostly due to one or two very big outliers when looking at the
QQ-plots.

kolmogorov-smirnov and anderson-darling test Another test performed to as-
sess the goodness-of-fit of the lognormal distribution for servicetimes is the Anderson-
Darling and the Kolmogorov-Smirnov test. Both tests check whether a sample follows a
theoretical distribution (null hypothesis). The Anderson-Darling test is a modification of
the Kolmogorov-Smirnov test, and weighs the tails more than the KS-test, which tends to
be more sensitive in the center of a distribution. As in some of the QQ-plots, there seem to
be some problems with the tails, the Anderson-Darling test is a good choice to account for
this. It should be noted that when the sample size is small, the Kolmogorov-Smirnov test
tends to have less power - the ability of a test to find a difference between a sample and a
theoretical distribution if there is one - than the Anderson-Darling test (Razali & Wah. Y.B.,
2011). If the sample size is large, a statistical test like the two used here is better capable
of finding differences and can reject the null hypothesis even though the distributions are
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Figure 5.37: Root mean square errors when fitting lognormal distribution

very similar. In this case, the sample sizes vary from 1600 to 11000, in which range Razali
and Wah. Y.B. (2011) reports no differences in power between the tests.

When running both of the tests on all the hours within the data groups for the service
times, only in two hours a p-value below 0.05 is found, and only for the Anderson-Darling
test. This means that for only two of the 16*24 = 384 hours a difference is found. It can be
concluded that according to these tests, the lognormal distribution is a good choice for all
data groups.

subprocesses in triage system As mentioned in Section 5.5.10, the system consists
of two subprocesses when it comes to a phone call. The first subprocess is a phone call
where no full triage is performed and a patient thus gets no allocated urgency. The second
subprocess is where the full triage is performed and a patient gets an allocated urgency.
The division in the data between these subprocesses is based on information from the first
department that an average full triage conversation takes at least 6 minutes and based on
the absence of an urgency level for a part of the calls. Because of this division, a fitted
theoretical distribution on all the data would not accurately display what actually happens
in the system. The use of empirical distributions of the two parts of the divided data in
each hour of each service time scenario is therefore the most accurate way to follow the
data and leave no information out.

conclusion Overall, the lognormal distribution is the best fitting theoretical distribu-
tion on the data of the out-of-hours department. The RMSE’s computed for servicetimes
do not often increase a value of 1 and are mostly related to a few outliers, which on the
one hand shows that the lognormal distribution is the best fitting theoretical distribution,
but also that it comes with problems in the tails. Also, statistical tests are used that come
to the conclusion that the lognormal distribution fits the data well. This should however be
approached with some caution as sometimes they do not account for important problems
in distribution fitting, such as problems in the tails.

All in all, the notion from literature that service times in call center systems follow a log-
normal distribution can be confirmed, as besides the tails, it is the best fitting theoretical
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distribution on this data. However, because of problems in the tails and because the ser-
vice time data actually consists of two different processes: no full triage or full triage, it
is chosen to compute the empirical distributions of the different service time scenarios for
the simulation model as implemented in Chapter 6.

5.9.3 Monte Carlo Sampling

The empirical distributions are used to sample from in the simulation model, conceptual-
ized in Chapter 4 and implemented in Chapter 7. The model will be run multiple times to
account for the stochasticity of the distributions and to account for extreme demand and
servicetime scenarios, to be able to foresee what the impact on the system will be in these
cases. In Figure 5.38, a potential Friday arrival pattern is visualized by sampling 25 times
from the empirical distributions for each hour. This corresponds to running the model 25

times. The 95% confidence intervals are included and it is visible that most of the samples
fall within this interval. When running the model, these plots are also made for waiting
times, amount of patients in the queue, service times, urgency distributions for both arrival
lines.

Figure 5.38: Hypothetical Friday 25 samples from hourly Poisson distribution

5.10 conclusion

In this chapter, the different demand and service time scenarios where identified by sys-
tematically analyzing the data on different temporal, weather and urgency factors. It was
found that these factors all have an effect on demand or service times to some extent and if
a factor had a significant effect, a separate scenario for that specific factor value was created
by grouping the data, for example on seasons, days of the week or on weather conditions.
Next, it was concluded from statistically analyzing the distributions of the data that even
though theoretical distributions could be fit on the data, reality would be better simulated
in the model if empirical distributions are used. This is therefore used in the rest of the
research.
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By ending this Chapter, subquestion 2 is answered. When the model is implemented in
Chapter 6, subquestion 3 can be answered in that same chapter, after which the interven-
tions can be identified - subquestion 4 - in Chapter 7.





6 M O D E L I M P L E M E N TAT I O N A N D
E X P E R I M E N T S

Based on the conceptualization, the analysis of the system data and the analysis of the
distributions of the data, the model is implemented with the use of the programming
language Python: an open source language used for many means and also a great tool for
simulation modeling. This chapter describes the used tool and package for the simulation,
it describes the flow of the model, the inputs, processes and outputs, and it describes the
validation and verification of the model. Many of the discrete event simulation concepts
used when for example discussing the model flow in this chapter have been discussed in
Chapter 2 in Section 2.3. This chapter also experiments with various system changes to see
its effects on system performance: waiting times, norm performance but also idle time of
personnel. This concludes the chapter with an answer to subquestion 3, giving room to
answer subquestion 4 in Chapter 7.

6.1 discrete event simulation in python

When implementing a discrete event simulation model in Python, one can choose between
different packages, all with their own advantages. The most known one is SimPy, but many
process interaction methods that are necessary for discrete event simulation models, like
activation and deactivation or holding of components or concepts such as queues, monitors
and states are not available in SimPy. A package that does include these concepts and was
developed to complement the missing pieces of SimPy is the salabim package (van der
Ham, 2018). The model is therefore implemented with use of the salabim discrete event
simulation package, combined with other statistical and data packages NumPy, SciPy and
pandas and visualization packages matplotlib and seaborn.

6.2 model flow

In Figure 6.1, the model is visualized. The grey boxes display inputs into the model. The
orange squares display a process, the orange ovals display the start and the end of the simu-
lation and the white-orange diamond shaped figures are decisions within the system.

At the start of a simulation run, certain inputs have to be supplied to the model. These
inputs are the amount of times the model should run, the amount of triagists (servers)
in the model, whether it is a weekend or week run and the scenario in which the model
should run. When the model starts, it immediately starts generating patients with a certain
inter arrival time. The patients are components in the simulation model. The inter arrival
time is deduced from the empirical arrival rate distribution for the scenario and the hour
that the model runs in. There are two types of generators: an emergency patient generator
and a normal patient generator with different arrival rates. When a patient is generated, it
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is checked whether or not this patient will receive full triage on the phone, or if the patient
will just be serviced for a short while without going through the whole triage process. This
decision is based on historical data which gives the model an empirical distribution over
the two subprocesses. If the patient receives full triage, it will also be allocated an urgency
level and it will enter the queue. If the patient does not receive full triage, it will not be
allocated an urgency level but it will also enter the queue. If the patient is an emergency
patient, the patient will enter the front of the queue since these patients have priority (”Last
in First Out” principle, LIFO). If a patient is in front of the queue, it will be the first to be
serviced by a triagist when it becomes available. A triagist is modelled as a resource in
the simulation model, with a certain capacity, which corresponds to the amount of triagists
working at that moment. The patient leaves the queue and is serviced with a certain service
time. This service time is sampled from the empirical distribution of service times for that
specific scenario, hour and urgency level. If the time horizon of the model is reached, the
simulation stops.

6.2.1 Model inputs

In Figure 6.1 it can be seen that the model has a few inputs at the start of the simulation.
These inputs are listed in Table 6.1. The demand and service time scenarios have to be typed
in by the user of the model. Note that the amount of scenarios in the Table deviates from the
amount of scenarios found in Chapter 5, because the emergency scenario is automatically
selected based on the choice of demand scenario and the choice of weekend or week. The
emergency scenarios are therefore not present to choose from.

The model simulates a day in the out-of-hours department in the chosen scenario. If week-
end is set to False as input, the model will run for 15 hours, starting at 5PM when the
out-of-hours department opens and ending at 8AM when it closes. If weekend is set to
True, the model will run for 24 hours. The run will then start at midnight.

Table 6.1: Input values out-of-hours simulation model

Input Possible values

Number of runs >0

Number of triagists >0

Weekend? True or False
Demand scenario 1 of 13 scenarios
Service time scenario 1 of 5 scenarios

The rest of the inputs are empirical cumulative distribution functions that are used to
sample from during the simulation. These inputs are listed in Table 6.2 and correspond to
the grey boxes in Figure 6.1. It should be noted that all listed distributions have 2 versions:
a normal patient version and an emergency patient version. The model has non-stationary
inter arrival time distributions that vary hourly within the chosen scenario. The same goes
for service time, which only does not vary hourly, but within three groups of hours in
which the service times are the same, as identified in Section 5.5.9.

Shifts
In the real out-of-hours system, there are standard triagist shift schedules for weekdays
Monday to Thursday and a separate schedule for Friday, Saturday and Sunday. In Table
6.3, these shifts are visible. These standard schedules are used for validation of the model.
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Figure 6.1: Flowchart of DES model implemented in Python

Table 6.2: Input distributions out-of-hours simulation model

Empirical distribution

Inter arrival time patients
Distribution patients over subprocess 1 and 2

Distribution patients subprocess 2 over urgency levels
Service time of patients from subprocess 1

Service time of patients from subprocess 2, different distribution per urgency level

More on these shifts and the way they are modelled can be found in the waiting time
validation of the model, in Section 6.4.2.
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Table 6.3: Triagist schedule out-of-hours department

Shift Triagists

Weekday 17-18: 4

18-18:30: 3

18:30-21: 4

21-22:30: 3

22:30-8: 2

Friday 17-18: 4

18-18:30: 3

18:30-21: 4

21-22:30: 3

22:30-8: 2

Saturday Day: 6.5
Evening: 3,5
Night: 2

Sunday Day: 5

Evening: 3,5
Night: 2

6.2.2 Model outputs base model

A model run has 10 outputs. These outputs can be used for analysis and for visualization.
The visualizations can be directly created in the same file as the simulation file to inspect
what has happened in the model run. A list of the outputs is found in Table 6.4. With these
outputs the entire performance of the system can be analyzed by looking at the utilization
of triagists, waiting times, norms, demand and service times.

Table 6.4: Outputs from running simulation model out-of-hours department
Output name Output format Contents

Availability of triagists List For each run, the availability of triagists at discrete time steps
Occupancy of triagists List For each run, the occupancy of triagists at discrete time steps
Capacity of triagists List For each run, the capacity of triagists at discrete time steps
Length of stay in the queue List For each run, the length of stay in the queue of patients

at discrete time steps
Patient results Dataframe ID, Urgency, Arrival minute, Arrival hour, Waiting time, Service time,

End time of call, Total time in system, runID, performance norms 1&2

Emergency patient results Dataframe ID, Urgency, Arrival minute, Arrival hour, Waiting time, Service time,
End time of call, Total time in system, runID, performance norm 3

Demand profile Dataframe Hour of the day with run ID, total arrival count in that hour,
Emergency demand profile Dataframe Hour of the day with run ID, total arrival count in that hour,
Performance on regular norms Dataframe Performance on norm 1 in % for each hour in each run,

Performance on norm 2 in % for each hour in each run
Performance on emergency norm Dataframe Performance on norm 3 in % for each hour in each run

In Figures 6.2, 6.3, 6.4 and 6.5 some of the visualizations that display performance from
100 normal model runs of the Saturday Winter scenario are displayed to show what types
of outcomes the model can generate. All Figures have a 95% confidence interval displayed.
Figure 6.2 visualizes the waiting times over the day compared to the 2 minute norm that
has to be met in 75% of the calls, Figure 6.3 displays the occupancy of triagists over the
day, and Figures 6.4 and 6.5 visualize the performance on norms 1 and 2 each hour, in this
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case indicating that the normal amount of triagists does not give good performance on the
norms, especially during the peaks

Figure 6.2: Waiting time over the day base
model

Figure 6.3: Triagist occupancy over the day base
model

Figure 6.4: Performance on norm 1 base model Figure 6.5: Performance on norm 2 base model

6.2.3 Warm-up time

In discrete event simulation, often a warm-up time is used to get the system in a state
that is considered ’normal’. When the warm-up time is over, the simulation starts data
collection at a point where normal conditions apply. For the out-of-hours department, a
warm-up time is not necessary for weekdays as the state that the system is in when the
simulation starts, without patients and no queue, reflects the state that the real system is
in when the out-of-hours department opens at 5PM in the afternoon: empty. For weekend
days and holidays however, a warm-up time from the last hours of the previous day might
be necessary to get the system in the state that it was in when the previous day ended, so
for example from Friday to Saturday or from Saturday to Sunday. A comparison is made
between a simulation with a warm-up time from the last three hours of the previous day
and a simulation without a warm-up time with two triagists during the night, the standard
occupation in the base model. In Figure 6.6 the result of simulating with warm up time
is visible when it comes to the waiting time of patients, and in Figure 6.7 it is visible for
a simulation without warm-up time. When comparing the two figures, it can be seen that
they are very similar and that the first hours of the day are the same. This means that
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adding the previous hours of the day before to the simulation as warm-up time does not
have an effect on the performance of the system. This is due to the peaks in demand taking
place mostly during the daytime and not at night: the queue tends to be empty at night. It
is therefore concluded that a warm-up time is not necessary in the out-of-hours telephone
triage system: it will increase run times but will not add value to the results.

Figure 6.6: Waiting time over a weekend day
with warm up time

Figure 6.7: Waiting time over a weekend day no
warm up time

6.3 model verification

In the model verification, it is checked if the implementation of the model is according
to the conceptualization of the model, as described in Chapter 4 and complemented with
conclusions and scenarios from the data analysis as described in Chapter 5. By walking
through the model, its components and processes, it can be checked for bugs and errors
and it can be checked whether the conceptual model is adhered to (Sargent, 2011).

6.3.1 Model component verification

Patient & Emergency patient generator
First of all, the patient generator and the emergency patient generator are verified. These
components create the patients throughout the simulation. After each patient, they ’hold’
for a sampled amount of time: the inter arrival time. From Chapter 4 and 5, it became clear
that the demand for care at an out-of-hours department varies within different scenarios,
but also varies hourly within the different scenarios. This is implemented in the model by
hourly changing the empirical distribution for demand during the simulation, based on
the running scenario. To verify that this notion is correctly implemented into the model,
the demand profile is visualized for the normal patient generator and for the emergency
patient generator, respectively in Figures 6.8 and 6.9. It can be seen that the demand pattern
varies over the day and therefore the notion that demand is different per hour and sampled
from a different distribution is verified.

Patient
Next, the patient and the emergency patient component itself are verified. From these
components it is most important that they accurately get their attributes allocated for data
collection. Also, they should go trough the processes in a correct and chronological order:
they need to arrive, get a subprocess allocated, if applicable an urgency level, then they
need to enter the queue and if they are in front of the queue they need to be serviced. Only
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Figure 6.8: Demand profile normal patient gen-
erator for verification

Figure 6.9: Demand profile emergency patient
generator for verification

after all that has happened, they should leave the system. If this is not the case, the outputs
of the model are incorrect and results cannot be used by out-of-hours departments. In the
conceptualization the different input variables that should be available in the model are
listed. From these inputs, the following are associated with a patient: arrival time, service
time, subprocess, urgency level and performance on the waiting time norm. Next to these,
the waiting time and the time that a call stopped are stored. The model is run within the
Saturday scenario, and both the data of a normal and of an emergency patient are inspected
to verify the values of all the patient data and to verify the chronological order.

Figure 6.10: Normal patient data from simula-
tion model

Figure 6.11: Emergency patient data from simu-
lation model

In Figures 6.10 and 6.11, the data associated with one normal patient and one emergency
patient from a model run are displayed. Based on these figures, it can be concluded that a
patient goes through the model chronologically and that the simulation model accurately
displays patient data: the start of the call is for both patients before the end of the call. The
time in system is the difference between these two values, and the service time has to be
lower or equal to the time in the system. The waiting time and the service time may should
be equal to the time in the system minus 1, as the handling time that the triagist needs for
the patient after the call (1 minute) is included in the time in the system. Next, it is checked
whether the Norm variables work as they should: they are 1 or True if the norm is met,
and 0 or False if the norm is not met. For the normal patient, it can be seen that Norm1

is indeed met: the waiting time was below 10 minutes, and that Norm2 is indeed not met:
the waiting time was above 2 minutes. For the emergency patient, it can be concluded that
Norm3 is indeed met: the waiting time was below 30 seconds.
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To also verify that every patient is serviced by a triagist, it is checked whether there are pa-
tients with a service time of zero. This is neither the case for normal patients or emergency
patients.

Lastly, as visualized in Figure 4.1 in Chapter 4, emergency patients have priority in the
queue and are placed in front when they arrive. To verify whether this is correctly im-
plemented in the model, the trace of the queue is followed to see what happens to an
emergency patient when calling the out-of-hours department in the model. In Figure 6.12

the trace at the time of arrival of an emergency patient is displayed, and it can be seen that
even though many other patients were already in the queue and the capacity of the triagists
is only 4, the emergency patient is immediately serviced (it claims 1 of the 4 triagists).

Figure 6.12: Trace at arrival of an emergency patient

It can be verified that the patient and emergency patient component behave as indicated in
the conceptualization and data analysis chapter.

Triagist
The triagists in the simulated model are modelled as a resource with a certain capacity. As
can be seen in the conceptualization and in Table 6.3, the capacity of the triagists varies
throughout the day because of the different shifts that have to be scheduled. It has to be
verified that the capacity also varies throughout the day in the simulation model. If this
is not the case, no efficient allocation of triagists can take place with the model, which is
one of the main reasons of creating the model in the first place. In Figure 6.13, the capacity
throughout the day for a Weekday can be seen. It is visible that the capacity deviates
throughout the day, according to the way it is inputted into the model. It can therefore be
verified that the amount of triagists varies throughout the day.

6.3.2 General verification

Subprocesses and urgency verification
In the model, certain attributes are given to the patients. It is found in the Patient verifica-
tion that the order and the values of these patients are valid, but it should also be verified
whether indeed the patients are split up in two different subprocesses correctly by the
model and whether the empirical distributions sample in the right way. It should also be
verified whether a patient that is assigned to the second subprocess gets an urgency level
allocated between 0 and 5. If this is not verified, the service times in the model are not
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Figure 6.13: Triagist capacity over the course of a simulation

accurate as they depend on subprocess and urgency level. In Figure 6.14, the histogram
that counts the amount of patients for each urgency level is displayed. It can be seen that
of each urgency level patients are present and that there are also patients in the system
that did not receive an urgency level: these were the patients that were assigned to the first
subprocess where they do not get full triage. The distribution over the urgency levels is
also similar to the empirical distribution that it is drawn from: many patients have urgency
levels 3, 4 and 5, and very few people have urgency level 0 and 1. Only around 10% of
the patients gets no urgency, which matches the empirical distributions (see Figure 6.31 in
the validation, where the low points at 0.1 represent the share of patients in subprocess 1).

Figure 6.14: Amount of patients per urgency level over 1 simulation run

Service time verification
Similar to the subprocess and urgency levels, a service time is allocated to a patient. This
service time is different per subprocess and urgency level. In the paragraph above it was
verified that the patients correctly get subprocesses and urgency levels assigned, with the
right probabilities. It should next be verified that for each of these groups, a different
service time distribution is used to sample from and that the service times are thus not
the same for each group. In Figure 6.15 it can be seen that the service times are slightly
different per urgency level, which corresponds to what was found in Chapter 5, and that
the service time for a patient without urgency so without full triage is a lot lower. It can
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be concluded that service times are accurately assigned to their corresponding subprocess
and urgency level and sampled from different distributions.

Figure 6.15: Service times of patients per urgency level over 1 simulation run

6.4 model validation

When validating a model, it is checked whether the results of the model come close to the
observed results from reality, taking into account the intended use of the model. To achieve
this, multiple validation methods are used (Sargent, 2011). First, a sensitivity analysis is
conducted to verify if changes in input and internal parameters result in plausible model
outputs. Second, results of running the simulation model are compared to historical data
from the out-of-hours department that the model inputs are derived from. Third, it is tested
whether the extreme values of the input variables have plausible effects on the outcomes
of the model. Lastly, it is checked whether the literature and expert interpretation of the
data and the system in Chapter 5 are valid for the simulation model as well. It should be
noted that for the validation the following two scenarios are chosen to run in the simulation
model: the Saturday scenario in Autumn, Summer or Winter for a weekend day, and the
Friday scenario in the same seasons for a weekday.

6.4.1 Sensitivity analysis

The first validation technique is sensitivity analysis. For the simulation model, the input
and internal variables that are not directly derived from the data are varied across a certain
range and it is checked whether the outputs of the model are plausible with the changed
input or internal variable. Also, by running a sensitivity analysis, the most sensitive vari-
ables to the model outputs are identified for which it is highly important that their values
are accurate. The input and internal variables that are changed and the range within which
they are changed and run in the Saturday scenario can be found in Table 6.5. The sensi-
tivity analysis is conducted by running the model itself various times, but also by running
it using the Exploratory Modelling Workbench. This is a Python package that allows for
open exploration and optimization with a model (Kwakkel, 2017). The package creates
experiments with different combinations of uncertain values (the handling time) and pol-
icy values (the capacity of triagists) and runs many of them to explore the behavior of the
model. For the sensitivity analysis, 1000 experiments were run.
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In Figure 6.16, the results of the sensitivity analysis with the model itself can be seen with
95% confidence intervals, displaying the average and maximum lengths of stay in the queue
for different day and evening triagist capacities. It can be seen that the system outputs are
very sensitive to the amount of triagists during the day and during the night, and that the
relationship is not linear. Often, adding one extra triagist (for example from 3 to 4 during
the day) gives way more waiting time reduction than increasing from 4 to 5. It can therefore
be concluded that a trade-off exists between capacity of triagists and length of stay in the
queue: the higher the capacity of triagists, the lower the length of stay in the queue.

Table 6.5: Varied variables and its range in sensitivity analysis

Variable Range

Amount of triagists day 3 - 6 (steps of 1)
Amount of triagists evening 1 - 4 (steps of 1)
Amount of triagists night 1 - 3 (steps of 1)

Figure 6.16: Results sensitivity analysis triagists day

In Figures 6.17 and 6.18, the results of the sensitivity analysis using the Exploratory Mod-
elling Workbench are displayed. In Figure 6.17 the relationship between waiting times and
triagist occupancy are displayed. It can be seen that similar to the trade-off seen in the
previous Figures, also a trade-off exists between waiting times and occupancy of triagists,
which is not linear: occupancy very quickly increases to 1 once the waiting times start
increasing. This indicates that there is not much room for manoeuvring between meeting
the norms and keeping waiting times low and large waiting times where the norms are not
met.

The metrics that are visible in Figure 6.18 are occ avg, the average triagist occupancy, los avg
and los max, the average and maximum length of stay in the queue (waiting times in
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minutes). The capacities cap day, cap evening and cap night stand for respectively the day,
evening and night capacity of triagists. The Figure displays the importance of variables
in the model. It can be seen in Figure 6.18 that the same conclusions can be drawn from
running the model with the EMA-workbench as when running the model itself multiple
times with different day and evening capacities: the model outcomes for waiting times are
really sensitive to the amount of triagists during the day and also the evening. Also, this
figure indicates that the model outcomes are not sensitive to night triagist capacity. This
makes sense, as there are often very few patients during the night and increasing capacity
will not give better performance.

The results of the sensitivity analysis emphasize the notion that the allocation of work-
force, the triagists, is very important within out-of-hours care, especially during the day.
A balance should be found between capacity of triagists and the length of stay within the
queue. More on capacity optimization and on other system changes that might help reduce
waiting times can be read in Section 6.6.

Figure 6.17: Sensitivity analysis with EMA workbench - paired plots between outcomes

Figure 6.18: Sensitivity analysis with EMA workbench - identification important variables
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6.4.2 Historical data validation

To test whether the model accurately simulates the telephone triage system in an out-of-
hours department, historical data from different processes within the system is compared
to the simulated processes from the model to validate whether the behavior of the model
is similar to the behavior in reality.

Normal demand profile validation
The demand profile of patients over a day of a specific scenario simulated by the model is
compared to the real demand profile from historical data of the system.

In Figures 6.19 you can see the demand profile of a Saturday in Autumn, Winter or Summer,
obtained by running the simulation model 50 times, compared to the observed demand
profile for a weekend day from the data that consists of approximately 100 days of this type.
The 95% confidence intervals are displayed in the figures to account for the stochasticity
and variability of the model: patient arrivals are not always the same. Visually, it can
be seen that the patterns are very similar and the confidence intervals mostly overlap.
To mathematically validate the similarity, the correlation between the observed and the
simulated means of the data points is displayed in Figure 6.22. If all points lie perfectly
on the red line, the simulated data and the observed data are exactly the same and have
a correlation of 1. The R-squared value when using a simple regression model where the
observed values are the predictor values and the simulated values are the response values
is 0.998, which indicates that the observed means can represent a large portion of the
variance in the simulated means and thus that the simulated demand accurately represents
the system (and the other way around). Note that in this Figure only the means per hour
are displayed, while in reality there are many data points associated with each hour which
leads to a confidence interval around the mean. These are visible in the left Figure.

Figure 6.19: Simulated vs. Observed demand
profile Weekend day

Figure 6.20: Correlation observed vs. simulated
demand profile weekend

The same is done for weekdays, visible in Figures 6.21 and 6.22 for a Friday in Autumn,
Winter or Summer. The department opens at 5PM, and the model runs until 8AM Saturday
because it treats Friday as a weekday. The whole of Saturday can be simulated by running
a weekend scenario, as just done in the weekend validation of the demand profile right
above. The model is again run 50 times, and the observed pattern consists of It can be seen
that again, the patterns are very similar. To mathematically verify this, again the R-squared
value of the observed values versus the simulated values is computed and found to be
0.997. Again, this indicates that a large portion of the variance in the simulated means is
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explained by the observed means and it can be deduced from the Figure that the correlation
between the two samples is nearly 1.

Figure 6.21: Simulated vs. Observed demand
profile Weekday

Figure 6.22: Correlation observed vs. simulated
demand profile Weekday

It can be concluded that the simulation model accurately simulates normal patient ar-
rivals.

Emergency demand profile validation
For the emergency demand profiles the same type of validation is executed. In Figure
6.23 a comparison between the observed and simulated emergency arrivals on a Saturday
in Autumn, Winter or Summer is displayed. It can be seen that the variability in the
emergency patients seems high, but on a small scale. An outlying amount of patients
arriving has a large effect on the graph and its variability. When looking at Figure 6.24

it can be seen that the correlation is positive, but has a high variance. The R-squared is
0.645, which indicates that the correlation is not perfect and the variance of the simulated
values cannot be represented completely by the observed values. It is chosen to accept this
because of the small scale in which the emergency arrivals fluctuate and because of the
stochasticity of the model.

Figure 6.23: Simulated vs. Observed demand
profile Weekend emergency pa-
tients

Figure 6.24: Correlation observed vs. sim-
ulated demand profile Weekend
emergency patients

For the weekday emergency demand profiles, on a Friday in Autumn, Winter or Summer,
again the observed data is compared to the simulated data. Similar conclusions can be
drawn from Figures 6.25 and 6.26, although the variance is less high for the weekdays than
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for the weekends, supported visually since the data points are closer to the red line and
by the R-squared value of 0.851 which is significantly higher than the R-squared value of
0.654 for the emergency line in the weekends.

Figure 6.25: Simulated vs. Observed demand
profile Weekday emergency pa-
tients

Figure 6.26: Correlation observed vs. sim-
ulated demand profile Weekday
emergency patients

It can be concluded that the simulation model accurately simulates emergency patient ar-
rivals when accepting the fact that outlying values can cause great variability in the overall
demand profile. This is something that is useful in a simulation model, since it should also
account for more extreme cases of multiple emergency arrivals in an hour.

Service time validation
The same is done for service times of the normal arrival line, visible in Figures 6.27 and
6.28 for the Winter scenario for urgency levels 0, 1 and 2. The model is again run 50 times.
It can be seen that again, the patterns are very similar. For the second Figure, only three
points are visible, because for the service times 3 hourly groups were identified in Section
5.5.9 and these were thus aggregated when checking how well the model simulates service
times. From these hour groups, the means are computed for the observed and simulated
data and compared to each other in the correlation plot. It can be seen that the data points
are close to the red line. The R-squared value is found to be 0.956, again a high value that
indicates good explanation of the simulated data by the observed data.

Figure 6.27: Simulated vs. Observed service
times

Figure 6.28: Correlation observed vs. simulated
service times per hourgroup
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For the emergency line, the observed and simulated service times of patients are compared
in Figure 6.29. It can be seen that, similarly to the demand profiles of the emergency line,
the variability is high because of the low amount of patients arriving to the emergency line
and the effect that an outlier can have on the pattern. In Figure 6.30, it can be seen for the
three hourly groups of service times that they are close to the red line: the difference is
very low on the scale. The R-squared value is 0.923, indicating a high correlation between
the two samples.

Figure 6.29: Simulated vs. Observed service
times emergency patients

Figure 6.30: Correlation observed vs. simulated
service times per hourgroup emer-
gency patients

It can be concluded that the service times are accurately simulated by the model. Again,
for the emergency line, higher variability can be seen due the lower amount of emergency
patients arriving, which accurately displays the uncertain situation in reality.

Subprocesses validation
Arriving patients are divided into two subprocesses, no full triage and a full triage conver-
sation. This division is based on the data, as explained in Section 5.5.10. This distribution
differs per hour in which the patient arrives, aggregated to three groups as service time is
the same within these three groups. To validate whether the model divides the patients
into the two subprocesses similar to the real division from the data, the correlation between
the simulated and observed data was displayed in Figure 6.31. There are 6 datapoints: for
each of the two subprocesses there are three hour groups. They are again all below 1 as
they represent a probability of getting a certain subprocess assigned. It can be seen that the
observed probability of being assigned to a certain subprocess is very similar to the sim-
ulated probability, both for the lower probabilities (the no full triage subprocess) and the
higher probabilities (the full triage subprocess in which most patients end). The R-squared
value supports this with a value of 0.999.

Urgency distribution validation
For the distribution of urgency levels over the patients that receive full triage, also a com-
parison between the observed distribution and the simulated distribution is made. The
data from a Saturday in Autumn, Winter or Summer is used. In Figure 6.32 the correlation
between the observed and simulated distribution is displayed. The numbers are below 1,
as they stand for the probability that a patient will get a certain urgency. The R-squared
value of a simple linear regression gives an R-squared value of 0.94, an indication of a good
fit and a high correlation can be deduced from the Figure.
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Figure 6.31: Correlation observed. vs. simulated subprocess distribution

Figure 6.32: Correlation observed. vs. simulated urgency distribution

Waiting times validation
In Figures 6.33 and 6.34, the observed and simulated waiting times of a Cold weekday are

displayed. In these Figures, the standard deviation is plotted in stead of the confidence
interval to show the spread of waiting times especially in the observed data, as there are so
many values that the confidence intervals are really narrow, and a statistically significant
difference will always be found between some simulation runs and all the recorded data.
All values of the simulated waiting times lay close to the means of the observed waiting
times. The same is visible for the observed and simulated waiting times of a Saturday,
visible in Figures 6.35 and 6.36.

It should be noted that to come to this validation the model was first run with the standard
schedule of triagists as visible in Table 6.3. When running the model with this schedule, it
was found that it is too optimistic to assume that the scheduled triagists are always available
and taking phone calls non-stop, immediately when a patient enters the queue. Modelling
the model that way results in way better system performance than the data indicates. This
deviation in historical performance data from the performance that one would expect with
the scheduled triagists when running the model can be due to breaks of triagists, longer
handling times than the average, dealing with other types of calls and problems in the
department, not immediately picking up the phone when a triagist is available and a caller
is in the queue and might be related to other factors that come with the fact that the system
is a system in which humans operate. A waiting time of exactly zero, which the simulation
model reaches often when capacity is high enough, is in reality almost never reached.
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Figure 6.33: Observed waiting times cold week-
day (Mon-Thur)

Figure 6.34: Simulated waiting times cold week-
day (Mon-Thur)

Figure 6.35: Observed waiting times weekend
(Saturday)

Figure 6.36: Simulated waiting times weekend
(Saturday)

To account for these factors, many combinations of handling times, triagist capacities and
delays before picking up the phone have been tested. It is found that when reducing the
scheduled capacity by 1 during the week, using a delay before picking up the phone of
half a minute and using a handling time after a call of 1 minute, the system operates as
indicated in the data and as is visible in the displayed figures. The same is done for the
weekends: the constantly available triagist capacity is reduced by 2 during the day, so it is
4 or 5 depending on the run, and the evening capacity is reduced by 1, sampled between 2

and 3. The night capacity stays 2 for the weekends and weekdays.

6.4.3 Extreme conditions validation

The model is tested for extreme conditions. The first case that is tested is when there are
no triagists available during the simulation, to see whether indeed no patients are serviced
and the queue only becomes longer. When running this situation in the model, none of
the patient or emergency patient outputs are filled as that happens after being serviced by
a - here non-existent - triagist. The total length of stay in the triagist queue is also non-
existent, since there is no capacity of triagists. The second case is when there are no patient
arrivals, to see whether indeed no patients enter the queue and are serviced by the triagists.
When running this situation, no patient enters the queue as the length of stay monitor of
the triagists queue is completely empty. Also, the capacity of the triagists is always at its
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fullest. It can be concluded that these extreme conditions have the expected outcomes in
the simulation model.

6.4.4 Face validation

Face validation is the validation of the model by people with knowledge about the system.
The behavior of the system and conclusions from analyzing its data are interpreted by
literature and by people working within the out-of-hours field in Section 5.6, and since the
model accurately displays the historical data, these interpretations are valid for the model
outcomes.

6.4.5 Second department validation

In Appendix A, the observed waiting times from the data-set of the second out-of-hours
department are compared to the simulated waiting times within an identified scenario. It
can be concluded that the model also accurately simulates waiting times for another data-
set. This indicates that the model has a general use for out-of-hours departments with
telephone triage systems like the one that these two departments have and that change
of data and input scenarios does not change the accuracy of the model as the model was
not built around the data, but around the concepts of the system as identified in Chapter
4.

6.5 conclusion

With the demand and service times scenarios defined, the empirical distributions for all
input and internal variables identified and the model implemented, verified and validated,
the model can serve a practical day-to-day use for out-of-hours departments by foreseeing
the performance of the system as it is now when it comes to waiting times, people in the
queue, handling and service times and performance on the set norms. In the following sec-
tions, the model is used for the identification of input changes or internal system changes
that lead to the reduction of waiting times. The promising system changes are used for the
exploration and identification of system interventions - subquestion 4 - in Chapter 7.

6.6 results: system experiments for waiting time reduc-
tion

In this Section, subquestion 3 is answered: different system changes are experimented
with to see their effect primarily on the performance of the out-of-hours telephone triage
system when it comes to waiting time and therefore norm performance, but also on idle
time of triagists and thus patient and employee satisfaction and efficient use of resources,
visualized as the second box in Figure 6.37. In Table 6.6, the attempted system changes
in this chapter are listed, with the internal system property that is changed. All these
experiments had as a primary goal to reduce the waiting times compared to normal model
performance. For each of the experiments, a statistical analysis is run to see whether
waiting time performance is actually different for system changes compared to the normal
waiting time performance without any changes (visible in for example 6.36). In every
subsection, one of these system changes is experimented with for the Saturday scenario
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and it is explained more thoroughly how exactly the system is changed for this experiment
in the simulation model. For three other scenarios all experiments are also run, this is
visible in Appendix B.

To reach those system changes that prove promising for waiting time reduction in this
section, potential system interventions are identified and discussed in Chapter 7. All com-
binations of values within the variable ranges are run between 10 to 100 times to account
for the stochasticity of the model. All attempted internal model changes and additions
were programmed in Python and run using the model, in some cases in combination with
the Exploratory Modelling Workbench (Kwakkel, 2017).

Figure 6.37: Intervention strategies

Table 6.6: Attempted system changes to achieve waiting time reduction

Name of section Varied or added input or internal variable

Shift lengths and capacity optimization Amount of triagists and length of shift in hours (2 variants)
Decrease in low urgency calls Low and no urgency patient demand decreased by different percentages
Change in general demand Empirical demand time distributions increased/decreased

by certain percentage
Demand shifting Peak demand shifted to less busy moment by certain amount of patients
Change in service times Empirical service time distributions increased/decreased

by certain percentage

6.6.1 Shift lengths and capacity optimization

One of the system variables that can be changed to potentially reduce waiting times is
the scheduling of triagists and the duration of their work shift. The main question here
is whether allocation of the triagists based on the real time performance of the system,
constrained by a certain amount of hours that triagists have to work - helps in the reduction
of the waiting times at the department. This optimization is tested for different lengths
of working shifts to come to a grounded conclusion on the trade-off between working
shift length, triagist capacity and system performance. It should be noted that the way
the optimization is performed and the thresholds that are chosen greatly influences the
results of these optimization runs. Changing the thresholds to increase capacity slightly
can change the outcomes of the optimization. The results of the optimization variants,
explained below, should therefore be taken into account with that notion.

The optimization has two variants:

1. Increases and decreases in the capacity of triagists can only take place after at least
the shift length.

2. Increases of the capacity can take place every hour, decreases can only take place after
a triagist has worked the shift length.
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This approach was chosen because one can imagine that it might be possible to add an extra
triagist hourly, but once a shift is started it is also finished and not stopped early.

The optimization works as follows: the amount of triagists has a minimum value of 1 and
a maximum of 7 (in the week version visible in Appendix B this amount is 4 as it is less
busy during weekdays). The shift length varies from 1 hour to 8 hours. In the real system,
a shift now takes 4 to 8 hours. These conditions are the same for variants 1 and 2. For
variant 1, the capacity of triagists can only be increased or decreased after a certain amount
of hours have passed since the start of the previous shift, the shift length. For variant 2, this
constraint only applies to the reduction of the capacity of triagists, increases are possible
every hour if any of the norms are almost not met in the past hour in the simulation. If
this is the case and the optimization allows for capacity changes based on the shift length,
the capacity is always at least increased by 1, plus the amount of people in the waiting line
divided by the amount of patients the present triagists can approximately help in an hour,
which is assumed to be 5 per hour. This is an assumption based on the amount of high
urgency calls triagists can service in an hour, in reality they might help a bit more people
in an hour (see Figure 5.26 for average service times of people with an allocated urgency).
This means that if there are 25 people waiting and there are 5 triagists, 1 + 25/(5*5) = 2

triagists are added to the capacity with a maximum of 7. A reduction of the capacity takes
place when the shift length allows for it and when the occupancy of the triagists is lower
than 0.8 on average in the past hour in the simulation.

There are different scenarios in the model. The capacity and shift length optimization
are tested on several scenarios as they behave differently as concluded in Chapter 5 and
confirmed by expert and literature interpretation in Section 5.6. The busy Saturday scenario
is displayed in this chapter, a busy weekday and less busy days are also simulated with
shift optimization: these are displayed in Appendix B.

variant 1 Busy weekend scenario - Saturday
In Figures 6.38 and 6.39 the capacity and the occupancy over the day can be seen when
optimizing capacity under different work shift lengths. It can be seen in the left figure that
the shorter the work shift, the more the system shifts between triagist capacities because it
is allowed to shift more often when a shift length is short. It is also visible that the shorter
shift lengths tend to increase capacity to the maximum earlier in the day than the longer
shift lengths. This is supported by the occupancy graph, which shows that the occupancy
changes more for the lower shift lengths than for the higher shift lengths, because they can
increase and reduce their triagist capacity more often according to occupancy. Because the
longer shift lengths shift to maximum capacity later, their occupancy stays at the maximum
of 1 for a longer time because it was not possible yet to increase capacity at the time when
it was already necessary and therefore it takes more time to handle the peak demand and
the queues.

In Figures 6.40 and 6.41 it can be seen that the shorter the shift length, the lower the length
of stay in the queue is. It can therefore be concluded that if it is possible to shift the
capacity of the triagists earlier, the model tends to do that early at the start of the peak
which leads to prevention of a really high peak: shift lengths 1 to 3 hours do not reach
the really high waiting times that are reached by shift lengths 4 to 8 hours. If it is only
possible to shift 1 or 2 times in the day, it is harder to accurately let the capacity follow
the behavior of the system which leads to often too little or too much capacity. It can also
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Figure 6.38: Capacity of triagists over the day
with different shift lengths - Opti-
mization variant 1

Figure 6.39: Occupancy of triagists over the day
with different shift lengths - Opti-
mization variant 1

be seen that the performance on the norms rapidly decreases after the shift length goes
beyond 3 hours.

Figure 6.40: Length of stay in the queue over
the day with different shift lengths -
Optimization variant 1

Figure 6.41: Norm performance over different
shift lengths - Optimization variant
1

For variant 1, it can be concluded that it only yields satisfactory performance on the norms
and the waiting times when a shift length of 1 or 3 hours is adapted. When comparing the
performance of these three shift lengths to the performance of the system now, as visualized
in Figures 6.42 and 6.43, it can be seen that shift lengths of 1 and 3 hours perform better
in some hours than the current situation, but for 3 hours it sometimes performs slightly
worse. Over the whole day, it can however be seen that the peaks in the late afternoon
are flattened, reducing pressure on triagists and increasing norm performance. The 2 hour
shift is performing worse: this is due to the way the optimization is programmed: the
model can probably respond better after 3 hours than after 2 hours in this scenario, leading
to lower waiting times when the shift length is set at 3 hours.

statistical testing To statistically verify this notion, the Kruskal-Wallis and posthoc-
Dunn test were performed (explained in Section 5.3) to see if the waiting times for the shift
lengths are statistically different from the normal performance. Visually, this seems to be
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Figure 6.42: Length of stay in the queue regular
Saturday real system

Figure 6.43: Length of stay in the queue for shift
lengths 1, 2 or 3

the case for almost all shift lengths as they perform way worse, except for shift lengths
1 and 3 that perform similar or better especially after the first peak, as the waiting times
with shift length 1 never increase 5, where in the normal model performance they increase
to 8. When running the Kruskal-Wallis test, it is found that all hours starting from 5

in the morning to hour 21 in the evening are statistically different with a p-value below
0.05. When comparing the normal model performance with the performance when shift
lengths are 1 hour pairwise with the posthoc-Dunn test, it is also found that the same
hours between those two groups are statistically different with a p-value below 0.05. Up
and till hour 14 this is visible in Figures 6.42 and 6.43, as the peaks come at a slightly
different moment of the day. After hour 14, it indicates that a shift length of 1 statistically
significantly performs better than normal model performance. These statistical tests are
also performed for the other scenarios, briefly summarized in Appendix B.

conclusion It can be concluded that a shift length of only 1 hour has a statistically
significant reducing effect of around 50% on waiting times compared to normal model
performance in the afternoons in the weekends, which also goes for the second data-set.
For Fridays, the performance of a shift length of 1 is better for the whole of Friday. During
weekdays however, the performance of a low shift length is statistically the same or a bit
worse than the normal schedule. This can be explained by the way the optimization works,
and the fact that during weekdays it is already not that busy and optimizing therefore does
not have the intended effect. If waiting times are not that long, an optimization can be seen
as redundant. More on possibilities to implement such a short shift length on busy days
this can be read in Chapter 7 and 8.

variant 2 The same analysis has been performed when running the second variant of
the shift length and capacity optimization in the model, where only reduction of capacity
is constraint after the shift length. Again, it was performed for 4 scenarios, 3 of which are
visible in Appendix B.

Busy weekend scenario - Saturday
In Figures 6.44 and 6.45, the capacity and the occupancy over the day can be seen when
optimizing capacity under different work shift lengths for variant 2. It can be seen that the
triagist capacity lays very close to each other for all shift lengths when increases can take
place every hour for all shift lengths: this makes sense as this is not constrained between
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shift lengths. Again, the maximum of 7 is often reached very early, but capacity reduction
also takes place a lot earlier as more shifts end every hour when it is possible to start shifts
every hour. This is supported by the occupancy graph where only for a short while an
occupancy of 1 is reached for all shift lengths.

Figure 6.44: Waiting time over a weekend day
with warm up time

Figure 6.45: Waiting time over a weekend day
no warm up time

In Figures 6.46 and 6.47 it can be seen that the performance on the waiting times increases
greatly compared to Variant 1, where waiting times of 200 are reached. The shift lengths
are not that different anymore when it comes to waiting times. It can be seen in the right
figure that in variant 2 shift length does not have the big effect on the norm performance
that it has for variant 1.

Figure 6.46: Waiting time over a weekend day
with warm up time

Figure 6.47: Waiting time over a weekend day
no warm up time

For variant 2, it can be concluded that satisfactory results are achieved for most of the shift
lengths when it is possible to increase capacity every hour, but it is only possible to decrease
capacity after a triagist has worked the full shift. When comparing the performance of the
length of stay in the queue to the situation now, which was already displayed in Figure
6.42, it can be seen that some of the shift lengths achieve better results than the current
system. Similar to variant 1, it can also be seen that to achieve this, 7 triagists are needed.
However, the amount of time that 7 triagists are necessary tends to be lower in variant 2

than in variant 1, indicating that the system responds better to increases in demand.
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statistical testing To statistically verify that some shift lengths in this variant per-
form better, the Kruskal-Wallis and posthoc-Dunn test were performed (explained in Sec-
tion 5.3) to see if the waiting times for the shift lengths are statistically different from the
normal performance. Visually, for almost all shift lengths a reduction in waiting times
seems to take place, either in the first or second peak or in both. Also, the confidence
intervals of almost all shifts partly overlap, indicating that they are statistically the same.
When running the Kruskal-Wallis test, it is found that when comparing all shift lengths
and the normal performance at the same time, all hours starting from 8 in the morning
to hour 21 or 22 in the evening are statistically different from each other with a p-value
below 0.05. When comparing the normal model performance with the performance of all
shift lengths pairwise with the posthoc-Dunn test, it is also found that the same hours
between those two groups are statistically different with a p-value below 0.05. This can be
confirmed visually: the first peak in the normal performance is moved to a slightly earlier
point in the day and has approximately the same height or slightly higher than normal
performance for all shift lengths, indicating not that much of a difference in total waiting
times. However, the second peak of the day is lower, indicating a statistically significant
waiting time reduction for most shift lengths. This is beneficial compared to variant 1, as
longer shift lengths are possible for triagists, which is easier to implement. These statistical
tests are also performed for the other scenarios, briefly summarized in Appendix B. More
on possibilities to implement optimized start moments of shifts can be read in Chapter 7

and 8.

conclusion It can be concluded that with this type of optimization, it is beneficial
for the system to increase triagist capacity every hour for the busy Friday and Saturday
scenarios, where higher shift lengths are possible. This could be interesting for the out-
of-hours department, as shifts of 4 or 8 hours might then still be possible. A strategy has
to be defined on the best shift length that triagists are comfortable with and that leads
to acceptable performance, and on the best way to have triagists on standby for a certain
amount of hours. The less busy scenarios like a normal weekday have approximately the
same performance when optimizing, therefore for these days it is not necessary. More on
the implementation of this system change can be read in Chapter 7 and 8.

6.6.2 Decrease in low urgency calls

A next possibility for the reduction of waiting times is the reduction of low urgency calls.
Patient calls with subprocess 1, no full triage, or with urgency level 5 in subprocess 2

are reduced from the total demand by a certain percentage: from 0% reduction to 50%
reduction. The idea for this change in demand comes from the notion from (Verzantvoort
et al., 2018) that 65% people using the ”Moet ik naar de dokter?” app would follow the
advise of the app, thus reducing the amount of low urgency calls, as some people don’t call
the department anymore with their problem when the app indicates that it is not necessary.
Testing this in the simulation model can give quantitative evidence for implementing such
an intervention to reduce waiting times. Again, this change of the system was run for 4

scenarios, 3 of which are displayed in Appendix B.

In Figures 6.48 and 6.49, the amount of low urgency calls (U5) and no urgency calls (sub-
process 1) handled by the triagists in a normal model situation are compared to the amount
handled by triagist when a certain percentage of the low urgency calls is reduced. In the
first Figure, the low urgency call reduction is high, therefore the amount of low or no ur-
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gency patients helped by triagists is a lot lower. In the second Figure, the reduction is low,
and the amount of patients helped by triagists is almost similar to the total amount of low
or no urgency patients.

Figure 6.48: Total patients with low and no ur-
gency level compared to serviced
patients by triagists - high reduc-
tion

Figure 6.49: Total patients with low and no ur-
gency level compared to serviced
patients by triagists - low reduction

In Figure 6.50, it can be seen that the higher the low urgency call reduction, the lower the
lengths of stay in the queue are: waiting times are reduced by at least 20% starting from
a low urgency call reduction of just over 10%. This is due to the decrease in low urgency
patients that have to be serviced by triagists. This indicates a positive effect on the norm
performance and on the length of stay in the queue before being serviced compared to the
normal system performance.

statistical testing To statistically verify this notion, the Kruskal-Wallis and posthoc-
Dunn test were performed (explained in Section 5.3) to see if the waiting times for the
different low urgency call reductions are statistically different from the normal performance
when there is no reduction. Visually, this seems to be the case especially in peak hours,
as the confidence intervals mostly do not overlap with the normal performance. When
running the Kruskal-Wallis test, it is found that for all hours where waiting times are not
0, so hours 9 up and till 23 excluding hour 14 and 15, the performance of the reductions
can be seen as statistically different from the normal performance as the Kruskal-Wallis
p-value is below 0.05 for all these hours, and comparing the normal performance with the
10% reduction pairwise with the posthoc-Dunn test also gives p-values below 0.05 for hours
9 till 22 again excluding 14, 15 and also 10. When looking at the figure, this indicates that
for hours 16 up and till 22, a small reduction of 10% already yields a statistically significant
reduction of waiting times of 20%. These statistical tests are also performed for the other
scenarios, briefly summarized in Appendix B.

conclusion It can be concluded that a 10% reduction of low urgency calls statistically
significantly reduces waiting times in the weekend days in the second peak of the day from
hour 16 till 22 by at least 20%. In Appendix B, the results of decreasing low urgency de-
mand in other scenarios are displayed. In these scenarios, similar effects as in the Saturday
and Sunday scenario can be seen: in the Friday scenario, a small reduction even leads to
more than 20% waiting time reduction. For weekdays, a larger reduction of 20% is neces-
sary to have a significant effect due to the fact that it is less busy on those days. When
implementing a low urgency call reduction with the data and scenarios of the second data-
set as analyzed in Appendix A, a 20% reduction is found to be necessary for a waiting time
reduction especially in the afternoons. This indicates that low urgency call reduction has
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Figure 6.50: Waiting time with different levels of low urgency call reduction

similar results over scenarios and has a similar effect on another out-of-hours department
with the same type of system.

6.6.3 Change in general demand

Next to only reducing low urgency demand, it is interesting to see what an overall reduc-
tion or increase in demand does to the waiting times in the system. If a small reduction
leads to less needed triagist capacity and better norm performance, it is interesting to look
at interventions which could lead to demand reduction. In Figures 6.51 and 6.52, the effect
of certain fractions of increase and decrease in demand (value increase) on the waiting time
in minutes and on the demand are displayed. It can be seen that when the demand is
decreased, the waiting times and the demand go below the waiting times of the normal
system (where value increase is 0), and it can thus be seen that a decrease of demand leads
to better system performance: already a small decrease of 10% leads to a waiting time
reduction of over 50%. It can also be seen that only small amounts of extra demand lead
to way worse performance of the system, in such a way that the simulation stops running
because of the length of the queue, which never solves over the course of the day.

Figure 6.51: Waiting time with different levels of
demand increases and reductions

Figure 6.52: Demand with different levels of de-
mand increases and reductions
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statistical testing To statistically verify this notion, the Kruskal-Wallis and posthoc-
Dunn test were performed (explained in Section 5.3) to see if the waiting times for the
different demand reductions are statistically different from the normal performance when
there is no reduction. Visually, this seems to be the case especially in peak hours, as
the confidence intervals do not overlap with the normal performance. When running the
Kruskal-Wallis test, it is found that for all hours where waiting times are not 0, so hours 0

up and till 20, the performance of the reductions can be seen as statistically different from
the normal performance as the Kruskal-Wallis p-value is below 0.05 for all these hours,
and comparing the normal performance pairwise with the 10% reduction variant with the
posthoc-Dunn test also gives p-values below 0.05 for hours 8 up and till 22: indicating that
in the peak waiting times the reduction is statistically significant. These statistical tests are
also performed for the other scenarios, briefly summarized in Appendix B.

conclusion It can be concluded that small increases or reductions in demand have a
statistically significant disruptive or very positive effect on the system. Increases can lead to
multiple hours of waiting time which is absolutely unacceptable in a healthcare system, but
on the other hand, a small demand reduction could lead to the flattening of waiting time
peaks and should therefore be aimed for with the use of an intervention: small decreases
of 10% lead to a reduction of at least 50% of waiting times for most hours of the day in all
scenarios.

6.6.4 Demand shifting

It might well be the case that a reduction of demand is hard to realize with an intervention,
while it might be possible for triagists to shift (low urgency) demand to another time of the
day, especially on weekend days when the department is open all day. This is implemented
in the model by taking a few callers, varied from 0 to 5, from each hour in peak demand
and moving those to a time of day where there is less demand but which is close to the
time the patient called in the first place. For a Saturday, this peak demand is between 9

and 11 AM (this can be seen in for example Figure 6.52) and the callers are moved to the
demand between 13 and 15 PM, when it is less busy. In Figures 6.53 and 6.54 the effect of
demand shifting can be seen for various amounts of shifted patients. It is clearly visible
that the waiting time peak when no shifting takes place, so when shift is 0, is higher than
when patient shifts take place and the peak moves to the indicated time between 13 and 15

PM. A shift of 1 patient can already reduce waiting times by 20%.

statistical testing To statistically verify this notion, the Kruskal-Wallis and posthoc-
Dunn test were performed (explained in Section 5.3) to see if the waiting times for the
different demand shifting amounts are statistically different from the normal performance
when there is no demand shifting. Visually, this seems to be partly the case especially in
peak hours, as for some of the shifts the confidence intervals do not overlap with the normal
performance without shifting (shift = 0 in the Figure). When running the Kruskal-Wallis
test, it is found that for the hours where you can also visually verify that the confidence
intervals don’t always overlap, so hours 7 up and till 21, excluding 16 where waiting times
are the same for all demand shifts, the performance of demand shifting can be seen as
statistically different from the normal performance as the Kruskal-Wallis p-value is below
0.05 for all these hours. Comparing the normal performance pairwise with the variant
where 1 patient is shifted per hour in peak demand with the posthoc-Dunn test gives p-
values below 0.05 for hours 10, 11 and 12 and hours 18, 20 and 21 indicating that in the
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Figure 6.53: Waiting time with different levels of
demand increases and reductions

Figure 6.54: Service times with different lev-
els of demand increases and reduc-
tions

peak waiting times shifting 1 patient per hour to less busy periods is statistically significant.
This result is also visible in the Figure, where you see that in those hours, the orange line
is below the blue line and the confidence intervals don’t overlap. Doing this pairwise
comparison for all other shifts yields similar results for the earlier hours, but does in some
cases not have the same results for the later hours, for example for shifts of 2 or 3 patients.
It is therefore important that when implementing demand shifts, the simulation model
is used to see what amount of shifting will work best in that specific scenario and to be
confident that a waiting time reduction will take place. These statistical tests are also
performed for the other scenarios, briefly summarized in Appendix B.

conclusion It is very promising to see that it can be statistically proven that a small
amount of patient shifting can lead to a waiting time reduction of already 20%. This is
beneficial for norm performance, but also for the workload on triagists. In Appendix B,
demand shifting is tested for other scenarios and for a scenario of the other data-set. It is
concluded that for the busy Saturdays for both departments, demand shifting has the most
promise to reduce waiting times by at least 10-20%, possibly increasing to at least 50% for
higher amounts of shifted patients. For the weekdays, a waiting time reduction can be seen
when shifting a patient (up to 50% for weekdays, around 10% for Fridays), but its effect is
less than for weekend days. This could be due to the fact that demand is not that low in
the hours that the patients are shifted to, but shifting to a later moment leads to shifting
patients to the night, something that is not desirable. It should be noted that demand
shifting is very sensitive and when implementing it with an intervention, the simulation
model needs to be used to see beforehand what amount of shifting will work best in that
specific scenario and to be confident that a waiting time reduction will take place: there can
be a difference already between shifting 1 or 2 patients. Moving too many patients might
only lead to another time of the day where the waiting time peak takes place, in stead of
flattening the peaks and spreading workload.

6.6.5 Change in service times

Lastly, it is analyzed whether changing service times have a beneficial effect on system
performance to see whether interventions leading to this reduction have to be identified. In
Figures 6.55 and 6.56 it can be seen that increases of the service time lead to very disruptive
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effects on the waiting time in the system, similar to what happens when demand increases
in Section 6.6.3. Reductions in service time lead to better performance than the system now:
a reduction of 10% already leads to a waiting time reduction of 50%. It is also interesting to
see that the variation of service times is higher during the night than during the day in the
right figure. This is due to the higher share of high urgency levels calling at night, whose
conversations tend to take longer. Also, no pressure to finish a conversation lays on the
triagists shoulders as there are almost never waiting times during the night.

Figure 6.55: Waiting time with different levels
of service time increases and reduc-
tions

Figure 6.56: Service times with different levels
of service time increases and reduc-
tions

statistical testing To statistically verify the notion that a small service time reduc-
tion already gives a big waiting time reduction, the Kruskal-Wallis and posthoc-Dunn test
were performed (explained in Section 5.3) to see if the waiting times for the different ser-
vice time reductions are statistically different from the normal performance when there is
no reduction. Visually, this seems to be the case especially in peak hours, as the confi-
dence intervals almost do not overlap with the normal performance. When running the
Kruskal-Wallis test, it is found that for all hours where waiting times are not 0, so hours 7

up and till 22, the performance of the reductions can be seen as statistically different from
the normal performance as the Kruskal-Wallis p-value is below 0.05 for all these hours.
When comparing the normal performance pairwise with the 10% reduction variant with
the posthoc-Dunn test also gives p-values below 0.05 for hours 8 up and till 22: indicating
that a small service time reduction is already significantly different from the normal model
performance. These statistical tests are also performed for the other scenarios, briefly sum-
marized in Appendix B.

conclusion It can be concluded that an increase of service times should be avoided as it
disrupts the waiting time performance of the system. This is a very important implication,
as service times have been increasing the past years (see Figures 5.15 and 5.16 for this
increase) which is now quantitative proof for the increased pressure that triagists feel. Also,
it makes the increases that are tested here possible scenarios for the future and something
that should definitely be avoided. On the other hand, only a small decrease of 10% leads to
a reduction of at least 50% of waiting times for most hours of the day in all scenarios.
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6.6.6 Overall conclusion

Overall, it can be concluded that some of the system changes, after testing for statistically
significant differences from normal model performance, prove promising for model perfor-
mance:

• For the shift and capacity optimization option, it was found that shift lengths of 1

hour prove promising in variant 1 especially in weekends and on Friday, reducing
waiting times with up to 50% in the weekend afternoons and a reduction of the
second peak on Friday of also up to 50%. The longer shift lengths prove promising
for variant 2 for the busy Fridays and Saturdays, giving a waiting time reduction of
10% that can increase to around 50% in the Saturday scenario when a shift takes over
4 hours.

• For low urgency call reduction, it was found that it proves promising for demand and
waiting time reduction: a low urgency reduction of 10% on a Saturday or Sunday
already gives a 20% reduction of waiting times in the afternoon peak, which can
increase to a 30% reduction when low urgency calls are also reduced by 30%. For
Fridays, the waiting time reduction is even bigger, around 50%, with a low urgency
reduction of 10%. For weekdays and for the second department, an increase of 20%
is necessary for statistically significant waiting time reductions of around 20%. In
conclusion, a 10 or 20% reduction has a significant effect in all scenarios.

• For the demand and service time change options, it was found that small increases
in demand and service time have disruptive effects on the system and need to be
avoided, but similarly, small decreases of 10% lead to a reduction of at least 50% of
waiting times for most hours of the day in all scenarios.

• For the demand shifting option, it was found that shifting already 1 patient from peak
demand on Saturdays for both departments can lead to a waiting time reduction of at
least 10-20%, possibly increasing to at least 50% for higher amounts of shifted patients.
For the weekdays, a waiting time reduction can be seen when shifting a patient (up
to 50% for weekdays, around 10% for Fridays), but its effect is less than for weekend
days. It should be noted that using the simulation model is very important when
implementing an intervention that leads to demand shifting, as waiting times are
very sensitive to it and shifting too many patients only leads to shifting in stead of
reduction of waiting time peaks.

With the identification of these options, subquestion 3 is answered. In Chapter 7, it was ex-
plored which (qualitative) interventions could lead to these changes and conditions within
the system.





7 R E S U LT S : S Y S T E M I N T E R V E N T I O N S

In this chapter, the last phase of the research is addressed. In Figure 7.1, it is visible
that in subquestion 3 (answered in Chapter 6) system changes that lead to waiting time
reductions are identified. This leaves the question what has to happen within the out-
of-hours department’s power - or out of its power - to reach those system changes: the
interventions. They are identified and discussed in this chapter based on consultations
with three out-of-hours departments in the Netherlands, one of which this research was
not performed for. Also, interventions are identified by looking at the identified system
improvements and policies in the literature review and by looking at new literature. Figure
7.1 is extended to display all interventions and system changes at the end of this chapter,
in Figure 7.3.

Figure 7.1: Intervention strategies

7.1 subquestion 3: desired system changes

Below, the system changes that were found to reduce waiting times, identified in Section
6.6, are listed. In the next section, the possible interventions which could lead to those
system changes are identified and discussed.

1. Shift and capacity optimization option: low shift lengths for variant 1

2. Shift and capacity optimization option: all shift lengths for variant 2

3. Low urgency demand reduction
4. Demand and service time change: prevention of increases, incentives for decrease
5. Demand shifting: shift small amounts of patients from peak demand to less busy

period

7.2 subquestion 4: possible interventions

System interventions that might lead to these desired conditions or system changes are
identified in this Section. First, interventions that could potentially lead to the identified
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system changes that reduce waiting times are discussed for each of those conditions. Next,
a visualization of how all interventions interplay with the desired system changes and
waiting time reductions is displayed. It should be noted that the simulation model can
only test and quantify the results of internal system changes, as done in Section 6.6 and that
the real effect on the out-of-hours system can only be tested after implementation by the
departments. Next, the decision arena in which the out-of-hours system operates is defined,
as well as other stakeholders which influence the performance of the out-of-hours system.
The identified interventions are placed within this decision arena to get an overview on
what is within the power of the department itself and what isn’t. A short conclusion is
given on the two types of identified interventions and how out-of-hours departments can
use them.

In Table 7.1, an overview of the interventions discussed in this section and the source that
they come from is given. This can be from literature, from expert consultations or is a
contribution made during this research, inspired by literature in other research areas or by
knowledge of the system itself.

Table 7.1: Sources of interventions
Intervention Source

Financial (dis)incentive Literature (Anantharaman, 2008; M. J. Giesen et al., 2017; Keizer et al., 2016)
Increased overall health literacy Literature (Anantharaman, 2008; Van den Heede & Van de Voorde, 2016)

Case management

Literature/Expert consultations
(Heutmekers et al., 2017; Van den Heede & Van de Voorde, 2016)
(Jansen et al., 2018; Keizer et al., 2017)

Increased general practitioner accessibility Literature/Expert consultations (Keizer et al., 2017, 2021)
Flexible schedule policy Literature/contribution from this research (Boyle, Beniuk, Higginson, & Atkinson, 2012)
Retrieval of patient information in the queue Expert consultations
Extra audio fragment in peak demand Expert consultations
Possibility for triagists to work from home Expert consultations
Separate telephone lines for nursing homes and home care Expert consultations

7.2.1 Shift and capacity optimization variant 1

It was found that when optimizing triagist capacity in variant 1, so where triagists can only
be changed after a certain shift length (visible in Section 6.6, waiting times are reduced
when triagists can change shifts every 1 to 3 hours for almost all scenarios. Waiting times
increase when the shifts take longer than that, as the optimization cannot increase capacity
often enough to handle changes in waiting times and norm performance anymore.

Intervention: flexible schedule policy or working from home
An intervention is therefore needed which implements a new shift policy with shifts of 1,
2 or 3 hours and which uses the simulation model with the optimization settings to create
the schedules. It is questionable whether an intervention like this would be accepted by
out-of-hours departments, as it is not at all beneficial for employees to work such short
shifts and to have irregular schedules: similar scheduling models have been proposed in
emergency departments, where they often trigger resistance because of the personal lives
of staff, reducing employee satisfaction (Boyle et al., 2012). When speaking to the three
out-of-hours departments, it was discussed that they are interested to enable working from
home as a triagist somewhere in the future. This could be an interesting way to implement
shorter shift lengths that takes away some of the objections triagists might have against
them, such as travel time.



7.2 subquestion 4: possible interventions 93

7.2.2 Shift and capacity optimization variant 2

For variant 2, where capacity can be increased hourly but reduction can only take place
once a shift has ended, it was found that for any shift length the performance of the system
increases and that it is similar over all shift lengths. To implement variant 2, shift lengths
of 4 to 8 hours can be kept, similar to the system now. A new shift policy has to be
implemented within the system to accommodate the possibility to hourly increase triagist
capacity and create schedules accordingly. The willingness of triagists to start at different
times of the day than they are used to has to be identified, and schedules have to be made
accordingly with the use of the simulation model. It might however be easier to implement
than variant 1 as triagists know that they will work a shift with a length that they are used
to and working from home is not yet possible at the out-of-hours departments. Also, it has
to be checked financially whether it is possible to use optimized triagist capacities over the
whole range of the day, especially when the waiting times have shrunk and the optimized
capacity is not needed anymore.

7.2.3 Low urgency demand reduction

It was found that reducing low urgency demand can greatly reduce the waiting times and
the amount of low or no urgency patients serviced by triagists. To achieve low urgency
demand reduction, at first an app or website like ”Moet ik naar de dokter?” (”Should I see a
doctor?”) comes to mind. However, when speaking to the three out-of-hours departments,
it became clear that they feel like it keeps the amount of low urgency calls the same if
not higher, due to the website and app being so conservative and still sending almost
all patients to the out-of-hours department. Even though in (Verzantvoort et al., 2018) it
was found that 65% of people who tried the website or app would consider following the
advise of the app or website, and in M. J. Giesen et al. (2017) it was found that online
advise has a high potential to reduce unnecessary use of out of hours services, if they are
too conservative the demand will not decrease. The solution seems to make these apps
less conservative, but this is a risky choice when talking about medical cases and peoples
lives and can raise ethical concerns. The observation on the effectivity of this website for
demand reduction that the out-of-hours departments make and how it might be improved
for the better has to be verified with further research.

Intervention: financial (dis)incentives
Another intervention to reach low urgency demand reduction is the implementation of fi-
nancial (dis)incentives for the use of healthcare services. In Anantharaman (2008) it was
found that financial incentives can have an impact on the non-urgent use of emergency
department care if it costs patients more than going to a primary health service. In the
Netherlands, they are both free, so a small disincentive could potentially lead to a reduc-
tion in use of out-of-hours care. In the literature review, in M. J. Giesen et al. (2017) it
was found that presenting a cost-overview before making use of the department is an in-
centive for less use of the out-of-hours system, and in Keizer et al. (2016) it was found
that co-payment, letting people pay a certain part of the costs for using the out-of-hours
department is also an incentive to reduce the use of out-of-hours care. Financial incentives
are implemented relatively easy, without the need for internal system changes. However,
increasing the costs for healthcare is not up to out-of-hours departments alone. To imple-
ment financial incentives, cooperation is required with other healthcare institutions and
insurance companies.
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7.2.4 Demand and service time changes

It was found that increases in demand and service times are disruptive for the system,
while reductions can lead to flattening of the waiting times peaks and better performance
on norms. In literature, some interventions on healthcare systems are identified that led
to reduction of demand for healthcare. Potentially interesting ones to out-of-hours depart-
ments are discussed here.

Intervention 1: Financial (dis)incentives
The first intervention for demand reduction is, similar to low urgency demand reduction,
financial (dis)incentives as described right above.

Intervention 2: Case-management
A second intervention is active case-management. In emergency departments, it is esti-
mated that 1-5% of patients comes to the department often (Van den Heede & Van de
Voorde, 2016), and active identification and case-management of those people can have
positive effects on the use of emergency department care when thoroughly and continually
performed. In the literature review in Heutmekers et al. (2017), it was also found that their
are certain groups, for example with intellectual disabilities, who call out-of-hours depart-
ments more often with low urgency calls. Case-management for these types of patients is
therefore beneficial for the system. The consulted out-of-hours departments also indicate
that this is something they do on a small scale as they do have data on how often a patient
calls and that can therefore be done on a larger scale, for example in collaboration with the
regular general practitioner of the patient. This can result in better healthcare service to
the patient and to a reduction of their use of the out-of-hours department.

Intervention 3: Increase of overall health literacy
Another intervention identified in literature, but focused on the reduction of emergency
care use, is large scale public health education campaigns, which in Singapore led to a
decrease in non urgent emergency department use from 57% to 18% in a time frame of
12 years (Anantharaman, 2008). Similarly, in Van den Heede and Van de Voorde (2016), it
was found that large scale education on health literacy and the use of healthcare facilities
could potentially have a large effect on emergency department use. In the literature review
of this thesis, similar education recommendations were identified. It was recommended to
better educate people on the purpose of out-of-hours care and to improve overall health
literacy of fragile groups (Jansen et al., 2018; Keizer et al., 2017). This intervention requires
cooperation between healthcare institutions and governmental organizations depending
on the scale of the campaign. A smaller campaign held by out-of-hours departments and
the general practitioners could be a start, but it should be considered that in Van den
Heede and Van de Voorde (2016) it is stated that educational interventions help better
when among other interventions: it was found that one-time educative measures such as a
booklet did not help in the reduction of the use of an emergency department. This could
indicate that one-time measures might also not be of great use for the reduction of the use
of out-of-hours care, but combinations with other interventions such as case-management
to educate targeted people or by creating a large scale educational healthcare campaign
like in Anantharaman (2008) could potentially help reduce demand.

Intervention 4: Separate telephone lines for nursing homes and home care
Another possibility to reduce service times is to implement a separate telephone line for
nursing homes and home care. The consulted departments indicate that they do not have a
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clear image of what percentage of the calls are of this kind, but they know that it accounts
for quite a portion of the calls when it is already busy. In cooperation with nursing homes
and home care, a separate staff member specialized in this type of care and with knowledge
of the patient population can then be assigned to handle these types of calls in a certain
time frame of the day, possibly reducing the amount of time it takes to handle them.

Intervention 5: Increased accessibility of regular general practitioners
A last intervention that could reduce demand for out-of-hours care and which is often men-
tioned in literature is increasing the accessibility of regular general practitioners (Keizer et
al., 2017, 2021). This is an intervention that is mostly up to the general practitioner de-
partment, but where the consulted out-of-hours departments feel like they can also play
a cooperating role. People with a lower socioeconomic status often have problems with
contacting their own general practitioner and find it easier to contact the out-of-hours ser-
vice. General practitioners have to make sure that they are easily accessible for patients,
for example by having broad opening times for the scheduling of an appointment in stead
of the two hours a day that it is for some departments, leading to people waiting to call
the out-of-hours department all day. Also, new patients should be contacted to give them
an introduction on how the regular general practitioner department can be accessed. This
intervention can be initiated by the out-of-hours departments with a few of the general
practices they serve, to see if it affects the amount of patients of those practices that call the
out-of-hours department.

Intervention 6: Retrieval of patient information in the queue
Interventions to reduce service times are not often found in literature, but are among the
most important system changes to achieve: the past few years, service times in the analyzed
out-of-hours department has been increasing, which was quantitatively found to have a
disruptive effect on the waiting times (see Section 6.6. One of the interventions that could
possibly lead to service time reduction is the registration of patient information while
they are in the queue to reduce administrative tasks during and after a call. One of the
three consulted out-of-hours departments is planning to implement registration of patient
information in the queue soon, by asking for peoples social security number, as people
often do not have it ready yet when calling. This takes much time from a triagist during
a call. Another thing that could be interesting is to start measuring which of the calls
were video calls, as these often take more time and also often prevent a real visit to the
department, which was not researched in this thesis.

7.2.5 Demand shifting

It was found that shifting a few patients from peak demand to a less busy period a few
hours later reduces the peak waiting times and creates more stable demand and therefore
workload for the triagists over the course of the day.

Intervention: extra audio fragment in peak demand
An intervention to achieve demand shifting is the addition of an extra audio fragment in
peak demand to the fragment that is played in the queue, informing patients that they
are calling in peak hours of the day and that they should call back later when demand is
lower if it can wait. The systems are already in place, and adding audio fragments based
on demand conditions are, according to the consulted out-of-hours departments, definitely
possible in the current systems. The departments however indicate that it is key that the
patients call back themselves, so that this task does not also lay on the shoulders of the
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triagists, as that resulted in stressful situations in the past. Also, boundaries have to be
set for the use of demand shifting: a minimum amount of people have to be in the queue,
triagist capacity at the time of the day that the demand is shifted to should be taken into
account and it should not be busy at the time of the day where the demand is shifted to.
The simulation model can be used to foresee what different amounts of shifted patients
will do to waiting times.

7.2.6 Decision arena

In Figure 7.2, the inner ring shows the interventions which can be implemented by the
out-of-hours department itself. The two outer rings show interventions that can be imple-
mented by general practitioner departments and by the government. Some interventions
overlap between stakeholders, indicating the involvement of all these stakeholders.

Figure 7.2: Decision arena: Influential decision layers on out of hours care with useful interventions

7.3 conclusion

Overall, it can be concluded that different kinds of interventions are possible to reach the
system changes that were identified in Section 6.6, visible in 7.2. In 7.3, the flow of impact
from interventions, identified in this chapter, towards the system changes that in their turn
reduce waiting times is visualized. It should be noted that self triaging with a website
or app is not included in this figure as the out-of-hours departments indicated that it is
unclear whether it leads to low urgency demand reduction and therefore to waiting time
reduction as intended.

The identified system interventions are divided into three categories: quick win interven-
tions that out-of-hours departments can implement themselves and whose effectivity can
be measured almost directly, long term interventions often focused more on the behavioral
change of people for which cooperation with other stakeholders is necessary and mea-
surements need to take place over a longer period of time, and interventions that are not
practically implementable based on a consultation with three out-of-hours departments.
In Table 7.2 all system changes with the corresponding interventions and its category are
found.
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By ending this Chapter, subquestion 4 is answered which concludes the research. Next,
the discussion and conclusion are found, in which the implications from this research
are discussed, the main research question is answered and recommendations for further
research are made.

Figure 7.3: Effect of interventions on system changes and waiting time reduction

Table 7.2: System changes and interventions that can make them happen
System change Intervention Category

Reduction of shift lengths Flexible schedule policy Not practically implementable
Reduction of shift lengths Possibility for triagists to work from home Long term intervention
Optimized start times of shifts Flexible schedule policy Quick win
Optimized start times of shifts Possibility for triagists to work from home Long term intervention
Shifting of demand Extra audio fragment in peak demand Quick win
Reduction of (low urgency) demand Financial (dis)incentive Long term intervention

Increased accessibility and knowledge of primary
healthcare system

Long term intervention

Monitoring of frequent users of out-of-hours care Long term intervention
Separate telephone lines for nursing homes and home care Long term intervention
Use of website or app for self-triaging Not practically implementable

(too conservative)
Service time reduction Personal patient information retrieval in queue Quick win

The practical implications of these interventions can be found in Section 8.2.2.





8 D I S C U S S I O N

This chapter covers different reflections on the performed research. The data analysis,
the identified scenarios, the modelling approach, the simulation model and its results
are reflected on by discussing (model) assumptions and limitations as well as the trans-
ferability of the results. Also, the practical and literature implications of the results are
discussed.

8.1 critical research assumptions & limitations

When performing modelling research, assumptions are made throughout the whole pro-
cess, sometimes leading to model limitations. In this Section, the assumptions and limi-
tations of the results of the system data analysis as conducted in Chapter 5 and those of
the model as implemented and used in Chapters 6 and beyond are discussed and reflected
on.

8.1.1 System data analysis

During analysis of the system data where different demand and service time scenarios
were identified, several assumptions were made. Many of these assumptions resonate
throughout the rest of the research, as almost all of the model input and internal variables
are derived from data.

Assumption 1 A first assumption is that the telephone triage system of an out-of-hours
department only receives calls from patients, where in reality also a portion of the calls
is within the department itself, to or from other healthcare departments such as nursing
homes or home care or for example to ambulances or visiting general practitioners.

Limitation 1 This means that it can be the case that a triagist in reality is not available to take
patient calls as it has to take a call from for example a nursing home, while in the system
that might appear to be the case.

Assumption 2 The second assumption is that calls that lasted shorter than 1 minute for the
normal arrival line and shorter than 2 minutes for the emergency arrival line were excluded
from the data. These calls account for quite a bit of demand but can often not be seen as a
real call: many entries had no waiting times and no service times, indicating that a patient
was actually never there. It could however be the case that some of the real system demand
and waiting time data is lost because of this assumption, impacting the identified demand
and service time scenarios.

99
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Assumption 3 The third assumption was made when merging the data of two systems from
the out-of-hours department. One is the system in which the calls are logged, the other
one is the system in which the characteristics of the call are logged among which is the
urgency level. This was done to give each logged call an urgency level for further analysis.
However, it was found that not all calls have an indicated urgency level. This could be
due to the fact that a caller simply did not get an allocated urgency, for example when no
full triage was performed. It could also be due to missing data or human mistakes when
entering data and there is no way to distinguish between the two. It is therefore assumed
that all calls in the data where the urgency level is missing are ’no triage’ calls, unless they
have service times higher than 6 minutes: this is the number indicated by the department
that it takes at least to perform a triage and it is therefore used as the border between no
triage and full triage calls.

Assumption 4 The fourth assumption is directly derived from the third assumption: the
triage process is divided into two subprocesses: process 1 where no full triage takes place,
and process 2 were full triage takes place. Of the data, all calls below 6 minutes that do not
have an urgency level are seen as no triage calls, and all calls that do have an urgency level
OR are above 6 minutes in duration are seen as full triage calls. This assumption could lead
to the allocation of some patients to another subprocess in the simulation model than they
would have been allocated to in reality because they don’t meet the restrictions set by these
assumptions. This can lead to a lot lower or higher service times for these patients.

Assumption 5 The fifth and last assumption made in the system data analysis is that some-
times groups of data are aggregated when for one or two hours of the day the statistical test
indicates differences. This is done because often these hours are during the night where
demand is low and no waiting times emerge. Also, the groups of data that this happens for
tend to be small, with only a few calls in them and the amount of scenarios would increase
rapidly if a new scenario was created for each deviating hour of a small subgroup of data.
This assumption can have led to slight simplifications of scenarios that could have been
divided on one or two hours on for example weather conditions.

8.1.2 Model

During implementation, verification and validation of the model, several critical assump-
tions were made, some of them originating in the assumptions made in the system data
analysis. Several resulting limitations are identified.

Stochasticity
Limitation One of the most important limitations of the model is that it is a stochastic model,
indicating that results from the model run tend to be a little different each time it is run.
This called for a large number of runs, which takes a long time specifically when complex
simulations are run. When using the model to draw conclusions from, many runs need to
be performed to come to a valid confidence interval of the result metrics.

Variable availability of triagists
Assumption A first critical assumption in the model partly comes from the fact that only
inbound patient calls are present in the data. Because of this absence, it is assumed in the
model that triagists only handle patient calls, where in reality they take more types of calls,
they speak to each other and the present general practitioner, have breaks and might have
to help somewhere else in the department. To account for this variability, a 30 seconds
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delay for each patient before they can be serviced is assumed in the model to account for
some of the variability in the availability of triagists. Various time frames were tested for
this number, and 30 seconds gave model performance that was most similar to historical
data performance. This was compared by looking at the performance during the nights,
where there is always enough capacity but still patients sometimes have to wait for some
time. When validating the model, it was however still found that when running the model
for the standard amount of scheduled triagists at the department, it performs way better
than the actual system does. A reduction of the triagists by around 30% in the model had
to be implemented compared to the original capacity to reach the historical performance
of the system.

Limitation It can therefore be concluded that triagists are, understandably, not available at
full capacity for the whole duration of a simulation. This is a limitation when running the
model and it should be taken into account when reading system results on triagist capac-
ity. It is important to be cautious about these human aspects of the system which cannot
be derived from data. Also, when using this simulation model for other out-of-hours de-
partments, the efficiency of their triagists has to be validated beforehand and cannot be
assumed to be the same as for the two out-of-hours departments in this research.

Urgency allocation
Assumption The second critical assumption in the model is that patients get a subprocess
and an urgency level allocated before they are serviced by a triagist. In reality, the triage
process itself is designed to result in an urgency level and the necessary steps to take.
However, as it was concluded in the system data analysis that urgency levels have an
impact on service times, it is necessary for the simulation model to know beforehand what
kind of service time it has to allocate to a patient. If the urgency level is high, these service
times tend to be higher than if the urgency level is low.

Experimenting with system changes
Assumption When experimenting with the model, system changes that led to waiting time
reductions where found, based on which interesting interventions could be identified later
in the research. While experimenting with the optimization of shift lengths and capacity,
specific assumptions were made on when capacity changes should take place.

Limitation It is important to realize that the results from running these experiments can be
different if the conditions for capacity changes are changed and set to different constraints.
It could be the case that changing the optimization settings create much better or worse
outcomes.

Quantitative model
Limitation A last limitation (but also strength) of the model is that it is an entirely quan-
titative model. It cannot be known whether qualitative interventions such as campaigns
will really have a demand reducing effect that leads to waiting time reductions: the model
can only prove whether those demand reducing effects lead to good system outcomes for
the out-hours-department, direct effects from qualitative interventions cannot be measured
with this model. The identified interventions that are more focused on the behavior of
people within the healthcare system therefore have to be implemented in real life, perhaps
first on a small scale, to see whether the desired system changes to reduce waiting times
are really reached.
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8.2 implications of results

In this Section, the value of the results is discussed in light of the transferability of the
results. Next, the implications for practical business use of the results and the implications
of the results for literature are discussed.

8.2.1 Transferability of results

The system data analysis and the identification of system changes that lead to a reduction
of waiting times and better performance on norms is performed for two out-of-hours de-
partments. It was concluded that many of the demand and service time patterns are similar
for the two departments: they follow the same trends and have roughly the same shape:
demand peaks often happen in the late morning for weekend days and in the early evening
for weekdays. The results of the research have also been presented to a third out-of-hours
department, whose data was not used for this research. Many of the factors that were
found to impact demand and service times in the two researched data-sets are recognized
by this department as well. Additionally, because many of the model conditions that lead
to the reduction of waiting times as identified in Section 6.6 also have a beneficial effect
when running them with scenarios and data from the second data-set, it can be concluded
that if scenarios and distributions based on data of an out-of-hours department are known,
the model and its results can be transferred to an out-of-hours department with a similar
telephone triage system.

8.2.2 Practical implications

In this section, the business value of the research and its results for out-of-hours depart-
ments is presented, in which feedback on the feasibility of the results from three out-of-
hours departments in the Netherlands is taken into account, collected after oral presenta-
tions of the results to those departments. The possible interventions that lead to statistically
significant lower waiting times in out-of-hours departments without having to keep increas-
ing triagist capacity are divided into three categories: quick win interventions, long term
interventions and interventions that are practically hard to implement for out-of-hours de-
partments or might not have the intended effect on waiting times. The first two categories
refer to the difference in the length of the implementation paths as they require different
amounts of work from the out-of-hours departments itself and other healthcare stakehold-
ers.

short term interventions: quick win
The following short term interventions are recommended to start with to reduce waiting
times at out-of-hours departments. For each solution, the implementation path is discussed
and when applicable specific numbers that should be considered when implementing are
mentioned.

• Regular use of the simulation model. To implement this, the departments indicate
that the model and its outcomes need to become connected to their dashboard ap-
plications or that someone at the department gets instructions for direct use of the
model itself. Besides this, the department needs to re-identify demand and service
time scenarios yearly in order to keep the scenarios that the model uses up to date.
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Using the model like this enables departments to predict system performance with
the resources at hand.
• Make it possible to let shifts overlap by letting them start every hour of every two

hours, based on how crowded it is, in stead of the standard times every 4-8 hours
that the shifts start now. This is especially efficient on the busier days like Fridays
and Saturdays. The departments indicate that this is something that is doable in
the schedule: the only thing changing for triagists is the fact that the start times of
their shifts change, in fact, one of the departments already has many start times for
shifts and this yields better response to waiting times and demand. This intervention
results in a reduction of peak waiting times by at least 10%, which can increase to
percentages around 50% on Saturdays if a shift takes around 4 hours.
• Shift a few patients from peak demand to less busy periods of the day, especially

on the most busy day of the week: Saturday. A shift of 1 patient per hour in the
weekend from peak demand in the morning to the afternoon already greatly reduces
waiting times. The departments are eager to implement this because the technology
at hand allows them to easily persuade people to call back later: audio fragments are
played to patients waiting in the queue, and when demand is high the department
can play an extra audio fragment indicating that it is very busy right now and that
if the problem is less urgent it is better to call back at certain hours of the day in
which it tends to be less busy. The impact of this solution can be directly measured.
The departments should carefully choose the hours of the day in which they want
to ’move’ patients because moving too many patients to another part of the day only
moves the peak and does not flatten it. The model can be used to simulate how
waiting times are impacted by different hours and amounts of shifted patients. The
departments however indicate that it is key that the patients call back themselves, so
that this task does not also lay on the shoulders of the triagists, as that resulted in
stressful situations in the past. This intervention results in a waiting time reduction
of at least 10-20% on the busy Saturdays when 1 patient per hour is shifted from peak
demand hours to lower demand hours, possibly increasing to at least 50% for higher
amounts of shifted patients. For the weekdays, a waiting time reduction can be seen
when shifting a patient (up to 50% for weekdays, around 10% for Fridays), but its
effect is less than for weekend days. This could be due to the fact that demand is not
that low in the hours that the patients are shifted to on weekdays, but shifting to a
later moment leads to shifting patients to the night, something that is not desirable.
• Reduce service times by retrieving personal information in the queue. In this research,

it is found that small reductions in service times lead to big waiting time reductions,
but small increases lead to a big increase in waiting times as well. As service times
have been increasing over the years, it is key to try to reduce them again or at least
avoid an extra increase. This can be achieved when personal information is auto-
matically asked for and retrieved in the queue, in stead of by the triagists. This is a
solution that is also quite easily implementable by the departments as the technology
exists. Already one of the departments that the results were presented to is starting
a pilot by asking social security numbers in the queue, because this number often
takes much time of a triagist as many people do not have it ready when calling the
department. It can be easily measured if this intervention results in a service time
reduction by comparing service time data before and after implementation. An ad-
dition to the telephone data that tells your whether or not a call was a video call
makes this comparison even more complete. If already a small service time reduction
is reached, waiting times are reduced: it was found that a 10% service time reduction
can reduce waiting times by at least 50% for most hours of the day in all scenarios.
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long term interventions
Lastly, there are a few interventions possible for out-of-hours departments that might not
have direct effects, but have proven to have demand reducing effects over time in other
healthcare systems like emergency departments, and demand reduction quantitatively
proves to reduce waiting times and increase norm performance in this research: it was
found that a 10% demand reduction can reduce waiting times by at least 50% for most
hours of the day in all scenarios. These long term solutions require more preparation and
cooperation between stakeholders and are recommended to start implementing after the
quick win solutions.

• Implement separate lines for home care and nursing homes that cause busyness espe-
cially in weekends. The departments indicate that they do not have a clear image of
what percentage of the calls are of this kind, but they know that it accounts for quite
a portion of the calls when it is already busy. In cooperation with nursing homes and
home care, a separate staff member specialized in this type of care and with knowl-
edge of the patient population can then be assigned to handle these types of calls in
a certain time frame of the day.
• Increase the accessibility and understanding of regular general practitioners. This

is a solution to reduce waiting times that the out-of-hours department agree with
strongly, as well as literature on out-of-hours departments. Implementing this so-
lution is however seen as not that easy and straight-forward as there are so many
regular general practitioners and they all have different opening hours and rules. To
make it an easily accessible solution, the department can start with a small amount
of general practitioners (1-5) that they cooperate with. This means coordinating the
opening hours of the general practitioner department in such a way that people do
not miss that window and are forced to turn to out-of-hours care, but it also means
targeting all patients with this information and a guide on how to make appoint-
ments and which healthcare department to call when. As it was found that educative
measures often do not have the intended effect on health literacy of patients if they
are stand-alone, this intervention has a bigger chance of working as it combines an at-
tempt to improve accessibility with education on the healthcare system. The effect of
this solution can be measured by comparing the frequency that the patients of these
general practitioner departments contact the out-of-hours department before and af-
ter these measures are implemented. If it proves to have a reducing effect on patients
calling the out-of-hours department, and an increasing effect on people calling their
own general practitioner, the solution can be extended to more general practitioners
that the out-of-hours department serves.
• Monitor patients who regularly contact out-of-hours departments. Some patients

have quite a big record of calling the departments, of which data is available. Out-
of-hours departments can cooperate with the regular general practitioners of these
patients to monitor and check in with those patients regularly to reduce their use of
the out-of-hours departments.
• Implement a small financial (dis)incentive for out-of-hours care. People tend to

choose the cheaper option, and are found to choose their regular general practitioner
over out-of-hours care if the former is free and the latter is not.
• Implement working from home for triagists in the near future. This could enable

short and spontaneous shifts that reduce waiting time peaks on busier days like Fri-
day and in the afternoons of the weekend days.
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not practically implementable
Some of the identified system changes leading to a reduction in waiting times were found
to be hard to implement or likely do not have the intended effect on waiting times, after
consultation with three out-of-hours departments:

• Implementation of shift lengths of 1 or 2 hours on the busier weekend days or Fridays
as long as working from home is not possible in the current infrastructure of out-of-
hours departments. Very short shift lengths are hard to sell to triagists according
to the departments themselves, as also indicated in Boyle et al. (2012). It creates
irregular work schedules and salaries and travel times only for short shifts. This will
not improve work environments for triagists contrary to what this research intends
to do.
• Use of a website or app for self-triaging of patients before contacting the out-of-hours

department, similar to ”Moet ik naar de dokter” already implemented in the Nether-
lands (Verzantvoort et al., 2018): a website where people can check whether or not
they should call the out-of-hours department for their problem. The departments
indicate that due to the conservatism of this website, they fell like it leads almost all
people to the department anyways to avoid taking risks, while in reality many of them
do not need to call the department. The intended effect of the website will in that
case not be achieved. This notion made by the departments needs to be researched,
mentioned in Section 9.5.

8.2.3 Literature implications

In this section, the implications of the results in light of the literature review are discussed.
Some of the research results add value to the literature on out-of-hours care or on (health-
care) simulation research, and it is discussed whether findings are contradicting or corre-
sponding to the literature.

The first implication for literature is the identification of the service time and demand
scenarios for out-of-hours care. It was found that (temporal) factors such as year, season,
weekpart, weekday, patient urgency holidays and days after holidays have an effect on de-
mand and service times in an out-of-hours department, following the results of Hamrock et
al. (2013); Marcilio et al. (2013); McCarthy et al. (2008) where it was found that these factors
have an impact on the demand for emergency departments. However, the applicability of
these factors on service times, besides the urgency levels, was not yet identified in research,
as well as the applicability of these factors at all on out-of-hours departments. Next to this
implication, it was found that weather factors also influence demand and service times at
out-of-hours departments.

The second implication for literature is the notion that a simulation model is built that uses
identified scenarios and empirical distributions derived from these scenarios as input. The
notion that varying demand and service times are identified is not that unique, many pa-
pers within different sectors use complicated models and data analysis to find contributing
factors for arrival rates (Hill & Böse, 2017; Xu et al., 2013), but directly using the outcomes
of those analyses as input into a simulation model is not seen before for a healthcare sys-
tem. Often in simulation models of healthcare systems, no extensive prior data analysis
is executed or no data is available at all, leading to average values of arrival rates and ser-
vice times being used that do not take into account variability of demand for healthcare
(Abo-Hamad & Arisha, 2013; Keshtkar et al., 2015). The out-of-hours model built in this



106 discussion

research is therefore closer to reality than these types of simulation models and can be
seen as an interesting addition to healthcare system simulation research as it is completely
data-driven.

A third implication for literature is the use of system recommendations made in out-of-
hours literature as basis for experiments in the model. In the literature, many recommen-
dations are made to reduce demand for care at these departments, like financial incentives
Keizer et al. (2016), using an app Verzantvoort et al. (2018) or using education campaigns
to improve health literacy (Jansen et al., 2018; Keizer et al., 2016). From these recommen-
dations from literature, financial incentives and education campaigns are in this research
proposed as possible means to reach demand reduction. It remains unknown what the
potential effects on demand of these interventions are in an out-of-hours department, but
in Anantharaman (2008); Van den Heede and Van de Voorde (2016) it was found that these
interventions have demand reducing effects on emergency departments, and as the simu-
lation model quantitatively proved that small demand reductions lead to very significant
waiting time reductions this interventions prove very promising. Another recommenda-
tion from literature, the use of an app or website such as ’Moet ik naar de dokter?’ in
Verzantvoort et al. (2018) was considered for the reduction of low urgency calls, which
proves promising to reduce waiting times. However, when consulting three out-of-hours
departments, they mention that the website is very conservative and that it sends a large
part of patients to the out-of-hours department anyway and therefore does not appear to
reduce demand. Therefore, the results of the pilot app and website in the paper might be
true, but should be complemented with the fact that these apps and websites are conser-
vative because it is medical problems that they deal with, and therefore might not help
in demand reduction which was the intended effect. This empirical notion of the out-
of-hours departments is therefore an interesting subject for further research, discussed in
Section 9.5.

Lastly, it was found in literature reviews that discuss interventions with the goal to reduce
waiting times in emergency departments, that the use of a telephone triage system or
improvement of the out-of-hours care availability can lead to a reduction of the waiting
times and high demand at emergency departments (Van den Heede & Van de Voorde, 2016).
It is very interesting to see that the telephone triage at an out-of-hours care department
itself has been used as an intervention to reduce waiting times at the emergency department,
but which in reality deals with waiting times itself and needs its own separate interventions
to reduce this. Furthermore, (Van den Heede & Van de Voorde, 2016) also mentions that
proof that telephone triage systems can reduce the use of emergency departments is lacking
and in Huntley et al. (2013) it is found that increasing the accessibility of out-of-hours
services does not reduce the use of emergency departments. This implies that the notion
in literature that telephone triage and out-of-hours care can reduce the use of emergency
departments is outdated and will only put more demand on the already overcrowded out-
of-hours systems.

8.3 conclusion

In this chapter, the main assumptions and limitations of the research were discussed. The
found limitations mainly focus on the fact that some of the data in the model might be
simplified due to aggregation of some scenarios and due to the model only including
incoming patient calls that are longer than 1 or 2 minutes respectively for the normal line
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and for the emergency line. Also, no other types of calls in the out-of-hours department are
included into the model. When drawing conclusions from the research, it is important to be
aware of these assumptions and limitations as they might have effects on the implications
especially for practical use. In this research, it is already found that waiting times need
to be reduced only when taking into account patient calls, and therefore the implications
would definitely count if demand was even higher with other types of calls. Next, the
quick win, long term and not practically implementable interventions were discussed in
the practical section, after consultation with three out-of-hours departments. Lastly, the
scientific implications of the research were discussed, mainly focusing on the system data
analysis and its identification of data-driven scenarios that are used in combination with
a simulation model in healthcare system research, and on quantitative proof that can be
added to the recommendations for out-of-hours care that are already made in literature.





9 C O N C L U S I O N

In this final chapter, the conclusions of the research are presented by answering the main
research question and the research subquestions. Next, the scientific societal contribution
are presented, after which recommendations for further research are made.

9.1 main research question

First, the main research question as defined in Chapter 1 is answered, which was as fol-
lows:

How can waiting times at the telephone triage of out-of-hours general practitioner departments in
the Netherlands be reduced?

This question addressed the practical and scientific lack of knowledge into how the tele-
phone triage at an out-of-hours department is affected by external and internal factors and
how interventions could address the problem of high demand and high waiting times that
is experienced in theory and in practice. The main research question is answered by identi-
fying the factors that influence variables within the out-of-hours system, after which ways
of reducing waiting times are identified.

In out-of-hours departments in the Netherlands, high demand for care and waiting times
that are longer than the designated norms is experienced, leading to undesirable side-
effects such as high pressure on staff and inadequate medical response to patients in po-
tential need of urgent medical attention. These waiting times are partly caused by external
factors that impact the demand for healthcare and the length of service times within the
system, which were identified in this thesis by extensive data analysis of the system. These
external factors were found to be temporal factors such as the season, whether it is a holi-
day or not, the day of the week or the hour of the day, weather factors and the urgency of
a patient. The identification of these factors led to multiple scenarios grouped on these fac-
tors in which demand and service times are different. Waiting times are however not only
caused by demand and service times, but also by other internal system factors such as triag-
ist capacity and scheduling, handling times after calls and the efficiency of triagists at the
department. Identifying how the demand and service time scenarios interplay with inter-
nal system variables reveals how waiting times can emerge in the out-of-hours department.
Identification of this interplay can be achieved with a simulation model, which in its turn
can be used to answer the research question by finding out the main ways in which waiting
times can be reduced. To come to this answer, the out-of-hours department was modelled
in a discrete event simulation model using real-life data from two telephone triage systems.
The use of the model for the current situation in the system revealed that the amount of
standard triagists that the department uses is in many scenarios not enough to meet the
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waiting time norms and therefore that other interventions to reduce waiting times within
the system are necessary. These interventions were identified by experimenting with sys-
tem changes in the model and all lead to a reduction of waiting times in the simulated
out-of-hours departments. To identify the feasibility of the interventions, they were dis-
cussed with three out-of-hours departments and divided in three: quick win interventions,
that can be easily and quickly implemented by out-of-hours departments and whose results
can be measured directly, long term interventions that focus more on behavior change, re-
quire more cooperation between stakeholders and whose results have to be measured over
a longer time frame and lastly the interventions that the departments indicate will likely
not result in a waiting time reduction or are practically hard to implement.

Quick win interventions

1. A shift of peak demand to less busy periods of the day. This can be implemented
by adding extra information to the audio fragments that are played to patients in the
queue about peak hours and when to call back. A shift of 1 patient per hour in the
peak hours of the busiest day of the week, a Saturday, to the less busy hours reduces
waiting times by at least 10-20%. This increases to 50% when shifting 4 patients per
hour. For the weekdays, a slightly lower waiting time reduction can be seen when
shifting 1 patient: up to 50% for weekdays, around 10% for Fridays. The simulation
model needs to be consulted to find the optimum amount of patients to shift, as
shifting too many patients only moves the waiting time peak to another part of the
day.

2. More overlap in triagist shifts by starting them every hour or every few hours, based
on how crowded it is, especially on the busy Fridays and Saturdays. With this flex-
ibility, sudden demand increases that were not foreseen can be handled with staff
capacity at hand. Optimizing the schedule hourly on these days reduces peak wait-
ing time of at least 10% which can increase to percentages around 50% on Saturdays
if a shift takes around 4 hours.

3. Automatic retrieval of personal patient information in the queue in stead of by a
triagist. This reduces the time a call takes, which greatly impacts the waiting times:
a 10% call time reduction reduces the waiting times by at least 50% in most hours of
the day in all scenarios. The call times have been increasing over the past years, so it
is key to try to reduce them again or at least avoid an extra increase.

Long term interventions

4. An increase of accessibility and understanding of the primary healthcare system. By
working together with regular general practitioners (”huisartsen”) to coordinate acces-
sible opening hours and by informing patients on making appointments and when
to use what service, less of the burden lays on out-of-hours departments. Combining
accessibility increase with education on the healthcare system will have a better im-
pact, as stand-alone educative measures often prove less effective for better general
use of healthcare systems than intended.

5. Implementation of a small financial (dis)incentive for out-of-hours care. People are
found to choose the regular general practitioner over out-of-hours care if the former
is free and the latter is not.

6. Implementation of separate telephone lines for home care and nursing homes to re-
duce the amount and length of these types of calls in weekends.
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7. Monitoring of patients who regularly contact out-of-hours departments. Cooperate
with the regular general practitioners of these patients and plan frequent check-ins to
reduce their use of out-of-hours care.

8. Implementation of working from home for triagists in the near future. This could
enable short and spontaneous shifts that reduce waiting time peaks on busier days
like Friday and in the afternoons of the weekend days.

The interventions that the departments found to be practically hard to implement or that
they found to be unlikely to reduce waiting times are self-triaging by means of a website or
app and implementing very short shift lengths of 1 hour within the current infrastructure
where working from home is not possible.

If out-of-hours departments actively use the simulation model and keep demand and ser-
vice time scenarios up to date to track how waiting times are emerging, combined with the
implementation of the quick win interventions and by starting with the long term interven-
tions, waiting times can be reduced. This leads to much better work conditions for triagists
where long queues and high pressure are not the norm anymore and to better service to
patients that might be in need of urgent medical care.

9.2 research subquestions

The research subquestions are answered in this section. They go deeper into partial conclu-
sions after answering the main research question. The subquestions followed the modelling
cycle: from conceptualization of the model and its processes in the first two subquestions
towards model formalization, implementation and model use in the next two subques-
tions.

1. What concepts and performance indicators are needed to accurately model telephone
triage at an out-of-hours department?
In the literature review it was concluded that a discrete event simulation modelling ap-
proach is a good choice for accurately modelling a telephone triage system. This subques-
tion addressed the need for understanding of the system before being able to accurately
implement a model that displays the system. The following important system concepts,
data and performance indicators were identified to be necessary for a good model im-
plementation. Some of them are (stochastic) internal variables of the system and were
quantified in the data-analysis of subquestion 2. Others have fixed values or are assumed
to be fixed in the state of the out-of-hours system as it is now.

variable concepts

• Inter arrival times between calling patients and emergency patients
• Service times of patients
• Composition of the subprocesses over demand for healthcare
• Composition of urgency levels over demand for healthcare

fixed concepts

• Delays before a call
• Handling times after a call
• Triagist schedule and capacity
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• Threshold for performance norms for waiting times

These identified concepts were based on the necessary components of a discrete event
simulation model as identified in Chapter 2, combined with concepts that are measured
in the real life data of out-of-hours departments. The performance indicators that were
identified based on these concepts are the waiting times itself, the performance on the
norms and the occupancy of triagists.

2. What variables effect the demand and service time behavior of the out-of-hours tele-
phone triage system?
The identified variable concepts in subquestion 1 , the first list displayed just above, were
derived from real life data from the telephone triage of out-of-hours departments. Because
of the availability of this data, it was possible to analyze the impact of temporal, weather
and urgency factors on system performance and to compare the demand and service times
between data grouped on those factors. This led to the identification of the factors that have
an impact on demand for care and on the service times within the system, from which sce-
narios could be derived to be used as input into the model to account for the variability
of demand and service times. The identified factors that impact healthcare demand and
service times at out-of-hours departments were:

• Season
• Weekend or weekday
• Day of the week
• Hour of the day
• Temperature
• Holidays and days after holidays
• Only for service times: subprocess
• Only for service times: urgency levels

Each of these factors prove to have an effect on demand and service-times in one or more
of the identified scenarios, for both of the data-sets of out-of-hours departments that were
analyzed. It can be concluded that the behavior of the system can be explained by tempo-
ral, weather, subprocess and urgency factors and that simulation models of out-of-hours
systems should take this variability into account and avoid aggregation over these fac-
tors as the resulting system performance might not be corresponding to real life perfor-
mance.

3. What system changes can reduce waiting times in the out-of-hours telephone triage
system compared to the current situation?
Various experiments were run with the implemented simulation model to identify which
system changes can lead to a reduction of waiting times and therefore better performance
on the waiting time norms, a better work environment for triagists and better service
to patients. For all system changes, it was tested whether the waiting times statistically
significantly decrease compared to normal system performance to come to valid conclu-
sions.

Firstly, it can be concluded that optimization of triagist capacity under different shift
lengths has a reducing effect on waiting times when it is possible to have shift lengths
of one hour on the busier days of the week, such as weekends and Fridays, or when it
is possible to start triagist shifts hourly in stead of just a few times a day especially on
Fridays and Saturdays. The former can reduce afternoon waiting time peaks on Fridays
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and weekend days by 50%, the latter can reduce total waiting times over the day by at least
10%, which can increase to percentages around 50% on Saturdays if a shift takes around 4

hours.

Secondly, it was found that a reduction of low or no urgency calls can reduce the amount
of calls that have to be handled by triagists and therefore reduce waiting times within the
system. A low urgency call reduction of 10% or 20% already yields at least a 20% reduction
of waiting times in all scenarios, climbing up to a reduction of at least 30% when the low
urgency call reduction is also 30%

Thirdly, it was found that small increases in demand or service times have a disruptive
effect on the system that the out-of-hours departments would not be able to handle, as
waiting times increase to over a few hours when this happens. However, small reductions
of demand and service times also yield beneficial results: a decrease of 10% leads to a
reduction of at least 50% of waiting times for most hours of the day in all scenarios.

Lastly, it was found that shifting a few patients from peak demand of the busiest day of
the week, a Saturday, towards a less busy period of the day already reduces waiting time
peaks when only a very few amount of patients per hour are shifted: a shift of 1 patient
reduces waiting times by at least 10-20%. This increases to at least 50% for higher amounts
of shifted patients. For the weekdays, a slightly lower waiting time reduction can be seen
when shifting 1 patient: up to 50% for weekdays, around 10% for Fridays. This lower effect
could be due to the fact that demand is not that low in the hours that the patients are
shifted to, but shifting to a later moment leads to shifting patients to the night, something
that is not desirable.

4. What possible interventions can lead to the system changes (identified in subquestion
3) of the out-of-hours telephone triage system in which waiting times are reduced?
The identified interventions that can potentially lead to the system changes that were iden-
tified in subquestion 3 and that lead to a reduction of waiting times can be divided into
three categories: quick win interventions that out-of-hours departments can implement
themselves and whose effectivity can be measured almost directly, long term interventions
often focused more on the behavioral change of people for which cooperation with other
stakeholders is necessary and measurements need to take place over a longer period of
time, and interventions that are not practically implementable or are not likely to have a
reducing effect on waiting times based on a consultation with three out-of-hours depart-
ments.

In Table 9.1, all system changes that lead to a waiting time reduction, identified in sub-
question 3, are displayed with the interventions that could lead to this system change. The
category of intervention is also displayed.

A more elaborate explanation of these interventions can be read in Section 8.2.2.

9.3 scientific contribution

The performed research contributes to science in various ways, the first of which is the
most straightforward one: no simulation research has been performed yet in the out-of-
hours care field and this research filled that gap by creating a discrete event simulation
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Table 9.1: System changes and interventions that can make them happen
System change Intervention Category

Reduction of shift lengths Flexible schedule policy Not practically implementable
Reduction of shift lengths Possibility for triagists to work from home Long term intervention
Optimized start times of shifts Flexible schedule policy Quick win
Optimized start times of shifts Possibility for triagists to work from home Long term intervention
Shifting of demand Extra audio fragment in peak demand Quick win
Reduction of (low urgency) demand Financial (dis)incentive Long term intervention

Increased accessibility and knowledge of primary
healthcare system

Long term intervention

Monitoring of frequent users of out-of-hours care Long term intervention
Separate telephone lines for nursing homes and home care Long term intervention
Use of website or app for self-triaging Not practically implementable

(too conservative)
Service time reduction Personal patient information retrieval in queue Quick win

model that can be used to find out how waiting times can be reduced in these healthcare
systems. Different sub-parts of the research can be seen as contributions to literature, some
in the direction of simulation research and some in the direction of healthcare and out-of-
hours care research.

The first scientific contribution to out-of-hours care research is that the research concludes
that temporal factors such as seasonality, part of the week, day of the week and hour
of the day have an impact on demand for healthcare at out-of-hours departments and
on the service-times within the departments, based on data analysis and on the interpre-
tation of this analysis by people working in the field. In literature, the effect of these
factors was found for emergency departments and other types of healthcare systems, but
was not yet found for out-of-hours departments. Next to temporal and urgency factors,
it was also found that the temperature of a day impacts the demand and service times
within an out-of-hours department. Where in out-of-hours literature the demand for care
at these departments is only researched in terms of demographic indicators that explain
the use of the departments by certain groups of people, this research adds these external
weather, urgency and temporal factors to the demographic indicators, leading to a more
broad scientific insight into the use and inner processes of telephone triage at out-of-hours
departments.

A next scientific contribution is the data-driven variability of demand and service times that
was identified and then used as input and internal variables of a discrete event simulation
model. This combination is new in healthcare system simulation literature, where this
variability has not been taken into account before, as often no historical data on system
performance is available, or simply averages of arrival and service times are taken, reducing
the practical use of the model for daily predictions, for capacity optimization or for other
system interventions such as demand shifting (Abo-Hamad & Arisha, 2013; Keshtkar et al.,
2015).

A last scientific contribution is the use of system recommendations made in out-of-hours
literature as basis for experiments in the model. This was done especially for the low
urgency demand reduction experiments, for which the idea was derived from Verzantvoort
et al. (2018) where the website and app ”Moet ik naar de dokter” was implemented for self-
triaging of patients before contacting the out-of-hours department to reduce the amount
of calls. If 65% of the people using this website or app accept its advise, as mentioned
in the paper, very promising results when it comes to the reduction of low or no urgency
calls in the system are possible. However, when consulting three out-of-hours departments,
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they mention that the website is very conservative and that it sends a large part of patients
to the out-of-hours department anyway and therefore does not appear to reduce demand.
Therefore, the results of the pilot app and website in the paper might be true, but should
be complemented with the fact that these apps and websites are conservative because it is
medical problems that they deal with, and therefore might not help in demand reduction
which was the intended effect. This empirical notion of the out-of-hours departments is
therefore an interesting subject for further research, discussed in Section 9.5.

Next, the use of financial incentives and educational campaigns was mentioned in Jansen
et al. (2018); Keizer et al. (2016) as a potential means to reduce demand, and has proven
to have a reducing effect on demand in other healthcare systems Anantharaman (2008).
Combining this with the fact that very small demand reductions in the simulation model
lead to great performance improvement on the norms and on waiting times gives a very
firm updated recommendation for financial incentives and education that is now also based
in quantitative simulation research.

A more extensive literature implication section is found in Section 8.2.3.

9.4 societal contribution

The societal and practical contribution of this research is twofold: one the one hand, it
is based on the conclusions from the system data analysis where factors that impact de-
mand and service times within the system are identified, and on the other hand it is based
in the recommendations for interventions that can be made, categorized in quick win in-
terventions, long term interventions and not practically implementable interventions or
interventions that the departments indicate do not have a decreasing effect on waiting
times.

The first societal contribution is therefore the system data analysis. This gives the depart-
ment insights into what factors have to be taken into account when scheduling triagists or
when predicting demand and service times. With the results of this analysis, they know
what seasons, holidays or specific days of the week tend to have higher waiting times than
other days. Even without any system changes, the knowledge that a very busy day is
coming beforehand can give them time to respond and make a schedule accordingly.

The second societal contribution are the recommendations for interventions, as listed in
the answer of the main research question and in Section 8.2.2. The implementation of the
quick win interventions can already reduce waiting times on a short term, and combining
them with some of the long term interventions will lead to much better work conditions
for triagists where long queues and high pressure are not the norm anymore and to better
service to patients that might be in need of urgent medical care.

These contributions are of a practical nature for out-of-hours departments, but when the
interventions are implemented they can lead to an improvement of the functioning of the
primary healthcare system as a whole, by spreading out patients accurately over the health-
care facilities that they should go to with their problem. This is not only beneficial for the
departments and its staff, but also leads to better service to patients and better knowledge
of patients on how to manoeuvre within the healthcare system.
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A more extensive elaboration on the practical implications of this research can be read in
Section 8.2.2.

9.5 recommendations for future research

The simulation model in this research covers the telephone triage system within an out-
of-hours department. The simulation model provided insights in to what system changes
might be desirable to reduce waiting times at these types of departments. However, the
model does not cover calls between healthcare departments that the triagists also have to
take and it does not cover the part of the out-of-hours department that comes after the
call with a triagist is finished. A main recommendation for further research would be to
extend the model with other types of calls than patient calls and with the part of the system
that comes after the telephone triage. The simulation model would then be extended with
the appointment system for people who have to be seen by a doctor at the department,
who have to be visited at their homes by a doctor or for whom an ambulance has to be
dispatched and also with waiting times at the department and doctor and room capacity at
the department. This would give a more complete image of what the effects are of system
changes for waiting times all over the system.

Another recommendation that extends the current research is to analyze whether the type
of medical problem of a patient has an influence on demand and service times is a recom-
mendation for further research. Now, the urgency level of a patient is taken into account,
but it might be interesting to see what types of problems occur on different days of the
week and times of the day and how they effect demand and service times. This can be
performed if a data-set that includes the specific medical category that a problem falls into
per call is made available. This can then be connected to the data analysis on demand and
service times in this research.

Next to this main recommendation, some other recommendations for further research can
be made. One of those recommendations is to perform research on the preferences of the
public when it comes to out-of-hours and primary care to identify what drives their choices
for using primary healthcare services. A good method to approach this would be a stated-
choice-experiment, where people can make a choice between two ways of contacting the
primary services where certain factors are altered: for example the time of reaching out
to the service, the type of complaint you have, the amount of time you have to wait or
a financial incentive. This can lead to identification of why and how people use primary
care services, and could lead to the identification of trade-offs between for example waiting
times and money or the severity of the problems and waiting times or money to be able
to adequately implement financial incentives and education and healthcare campaigns that
were recommended in this research.

A next recommendation is based on the notion from the three consulted out-of-hours de-
partments that the ”Should I see a doctor?” or ”Moet ik naar de dokter?” website and app
is very conservative and that it sends a large part of patients to the out-of-hours department
anyway and therefore does not appear to reduce demand. The real impact of the website
and app has to be researched in such a way that it is clear what percentage of people that
call the department after having used the website or app had an urgency level that was
actually low and did not need to call the department. This can be done by asking patients
on the phone if they first used the website or app before calling. This can later be connected
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to their final urgency level, to see the differences in urgency levels between the group of
people that didn’t use the website or app and the people who did. If the urgency levels of
people who used the website or app are significantly lower, the notion that a large group
of patients with low urgency levels is still directed to the out-of-hours department by the
website or app is true. This can serve as a reason to either stop the website or app, or to
make it more conservative if that is medically possible.

A next recommendation involves research that explores the use of the data-driven simu-
lation model for other types of healthcare systems and its corresponding data. It is inter-
esting to find out if it can be slightly altered to also be used in for example hospitals or
emergency departments, which are also often modelled using a discrete event simulation
approach, and whether experiments can be run with system changes that lead to good
performance within other types of healthcare systems.
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Zhang, C., Grandits, T., Härenstam, K. P., Hauge, J. B., & Meijer, S. (2018). A systematic
literature review of simulation models for non-technical skill training in healthcare
logistics. Advances in Simulation, 3(1). doi: 10.1186/s41077-018-0072-7

Zhu, Z., Hen, B. H., & Teow, K. L. (2012). Estimating ICU bed capacity using discrete event
simulation. International Journal of Health Care Quality Assurance, 25(2), 134–144. doi:
10.1108/09526861211198290

Zwaanswijk, M., Nielen, M. M., Hek, K., & Verheij, R. A. (2015). Factors associated with
variation in urgency of primary out-of-hours contacts in the Netherlands: A cross-
sectional study. BMJ Open, 5(10). doi: 10.1136/BMJOPEN-2015-008421

http://dx.doi.org/10.1136/openhrt-2020-001376
http://dx.doi.org/10.1111/jocn.15168
http://dx.doi.org/10.1016/j.dss.2012.12.019
http://dx.doi.org/10.1145/2000494.2000497
http://dx.doi.org/10.1186/s41077-018-0072-7
http://dx.doi.org/10.1108/09526861211198290
http://dx.doi.org/10.1136/BMJOPEN-2015-008421




A A N A LY S I S O F S E C O N D DATA S E T

In this appendix, a summary of the analysis of a second data-set from an out-of-hours
department is reported. This department is located in another region than the first data-
set, analyzed in Chapter 5. The analysis was performed to see whether the found demand
and service time patterns are similar for the two out-of-hours departments.

a.1 system data analysis

First, the different demand scenarios were identified by grouping the data on temporal
and weather factors. Afterwards, the same was performed for service time scenarios. The
Kruskal-Wallis test was used, similar to the analysis in Chapter 5, to test whether groups
can be aggregated or not. First, the figures that were created when analyzing the data are
displayed. The end results of the analysis can be seen in the scenarios in Tables A.1 and
A.2.

a.1.1 Demand

First, the demand scenarios were identified by performing the Kruskal-Wallis test on the
data that was grouped on years, seasons, week or weekday, specific day of the week, holiday
and day after holiday and weather. The results of plotting those different groups are visible
in Figures A.1 up and till A.7. The identified demand scenarios based on these plots and
statistical testing between the groups can be found in Table A.1.

Figure A.1: Comparison of hourly arrivals between years

a.1.2 Service times

Next, the demand scenarios were identified by performing the Kruskal-Wallis test on the
data that was grouped on years, seasons, week or weekday, specific day of the week, hol-
iday, day after holiday, weather and urgency level. The results of plotting those different
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128 analysis of second dataset

Figure A.2: Comparison of hourly arrivals between seasons

Figure A.3: Comparison of hourly arrivals between weekend and weekdays

groups are visible in Figures A.8 up and till A.12. The identified service time scenar-
ios based on these plots and statistical testing between the groups can be found in Table
A.2.

It can be concluded that, next to great similarities in patterns for demand and service times,
many of the factors that influence behavior in the first data-set, also influence behavior of
demand and service times in the second data-set.

a.2 aggregate hours for service time

For the first data-set, it was found in 5 that the following hours can be aggregated:

1. Hours 7, 8, 9, 10, 11

2. Hours 17, 18, 19, 20, 21, 22

3. All other hours, so 23 - 6 and 12 - 16

The same analysis for the second data-set gives similar results for a few of the scenarios.
For most of the scenarios, all hours can be aggregated. For simplicity, when running the
model with the second data-set, the same aggregate hour groups are used as for the first
data-set.
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Figure A.4: Comparison of hourly arrivals between weekend days and holidays

Figure A.5: Comparison of hourly arrivals between weekdays

a.3 identified scenarios

In Tables A.1 and A.2, the identified demand and service time scenarios from performing
the system data analysis on the second department data are displayed. The scenarios
can all be subdivided into urgency levels 1 and 2 together, and urgency levels 3, 4 and 5

together.
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Figure A.6: Comparison of hourly arrivals between weather categories weekend days

a.4 waiting time validation

The standard triagist schedule is visible in Table A.3. In Figures A.13 and A.14 it can be
seen that the model simulates the waiting times correctly (again, standard deviations are
displayed as confidence intervals are almost none existent because of the great amount
of data) with a slight alteration of the schedule: sometimes when it is busy, some of the
capacity of triagists that is actually not on the phone is used or some triagists might be
doing something else. This is indicated in the tables. In the mornings, In the night, similar
to the first data-set, 2 triagists are needed.



a.4 waiting time validation 131

Figure A.7: Comparison of hourly arrivals between weather categories weekdays

Figure A.8: Comparison of service times between years

Figure A.9: Comparison of service times between seasons
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Figure A.10: Comparison of service times between weekend and weekdays

Figure A.11: Comparison of service times between weekend days and holidays

Figure A.12: Comparison of service times between weekdays
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Table A.1: Identified demand scenarios second department

Line Weekpart Season Day Weather

Normal Weekend Spring/Summer Saturday All
Normal Weekend Spring/Summer Sunday All
Normal Weekend Spring/Summer (Days after) holidays All
Normal Weekend Autumn Saturday Cold or Average
Normal Weekend Autumn Sunday All
Normal Weekend Autumn (Days after) holidays All
Normal Weekend Winter Saturday Cold or Average
Normal Weekend Winter Sunday Cold or Average
Normal Weekend Winter (Days after) holidays Cold or Average
Normal Week Spring/Summer Friday Average or Hot
Normal Week Spring/Summr All other weekdays, DAH Cold, Average or Hot
Normal Week Autumn Friday All
Normal Week Autumn All other weekdays, DAH Cold or Average
Normal Week Winter Friday All
Normal Week Winter All other weekdays, DAH Cold or Average
Emergency Weekend All seasons All days All
Emergency Week All seasons All days All

Table A.2: Identified service time scenarios second department

Line Weekpart Season Day Weather

Normal Weekend Spring All Average or Hot
Normal Weekend Summer Saturday Average or Hot
Normal Weekend Summers Sunday Average or Hot
Normal Weekend Autumn Saturday Cold or Average
Normal Weekend Autumn Sunday and DAH All
Normal Weekend Autumn Holiday All
Normal Weekend Winter All Cold or Average
Normal Week Spring All Cold, Average or Hot
Normal Week Summer All Average or Hot
Normal Week Autumn All Cold or Average
Normal Week Winter All Cold or Average
Emergency All All All All



134 analysis of second dataset

Table A.3: Standard triagist schedule second department

Day Shift Phone capacity

Weekday 17-18: 3 3

18-21: 6 4

21-23: 5 3

23-0: 3 1

Friday 17-18: 5 5

18-19: 5 3

19-21: 6 4

21-23: 5 3

23-0: 2 0

Saturday 7-8: 2 2

8-9: 5 3

9-14: 9 7

14-15: 7 5 (in model, one triagist less is used here)
15-16: 7 5

16-17: 5 3 (in model, two triagists more are used here)
17-20: 6 4 (in model, one triagist more is used here)
20-21: 7 5

21-22: 6 4

22-23: 5 3

23-0: 2 0

Sunday 7-8: 2 2

8-9: 5 3

9-12: 8 6

12-14: 9 7

14-15: 7 5

15-16: 7 5

16-17: 6 4

17-19: 7 5

19-20: 6 4

20-21: 7 5

21-22: 6 4

22-23: 5 3

23-0: 4 2

Night Always 2 2

Figure A.13: Waiting time observed on a Satur-
day second department

Figure A.14: Waiting time simulated on a Satur-
day second department



B M O D E L C O N D I T I O N S F O R P E R F O R M A N C E
I M P R O V E M E N T - A D D I T I O N S

In this Appendix, the results of running the different explored model conditions for per-
formance improvement in Chapter 6 in other scenarios are displayed. Each of the different
options is tested on a busy week scenario, a Friday, a less busy week scenario: all other
days and on a less busy weekend day: a Sunday. The options for model performance im-
provement are also tested on a second data-set from another out-of-hours department, to
establish whether interesting system changes also work for out-of-hours departments in
general. For all tested system changes on the scenarios, a statistical test (Kruskal-Wallis
and posthoc-Dunn, see Section 5.3) is performed to see whether it reduces waiting times
compared to normal system performance. The results of these tests are briefly mentioned
for each scenario.

b.1 variant 1

In this section, the results of using shift length and capacity optimization in other scenar-
ios are displayed, from which in general similar conclusions can be drawn: for variant 1,
lower shift lengths lead to better model performance on waiting times and norms than
longer shift length, for example visible in Figures B.3 and B.4. For variant 2, the model
performance is much more consistent throughout shift lengths for most of the scenarios,
similar to when its run in the Saturday scenario, visible in for example Figure B.16 where
the variant is run for the second department.

b.1.1 Friday scenario

In Figures B.1 and B.2, the results of running the first variant of shift and capacity optimiza-
tion on a Friday are displayed. When statistically testing whether short shift lengths have
a significant reducing impact on waiting times compared to normal model performance,
it was found that for all hours of the day, a shift length of 1 hour reduces waiting times
compared to normal model performance.

b.1.2 Sunday scenario

In Figures B.3 and B.4, the results of running the first variant of shift and capacity optimiza-
tion on a Sunday are displayed. When statistically testing whether short shift lengths have
a significant reducing impact on waiting times compared to normal model performance, it
was found that a shift length of 1 hour reduces waiting times in the afternoon compared to
normal model performance.
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Figure B.1: Length of stay in queue for different
shift lengths - Friday

Figure B.2: Norm performance for different shift
lengths - Friday

Figure B.3: Length of stay in queue for different
shift lengths - Sunday

Figure B.4: Norm performance for different shift
lengths - Sunday
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b.1.3 Weekday scenario

In Figures B.5 and B.6, the results of running the first variant of shift and capacity optimiza-
tion on a weekday are displayed. When statistically testing whether short shift lengths have
a significant reducing impact on waiting times compared to normal model performance,
it was found that for all hours of the day, a shift length of 1 hour performs the same or
slightly worse in the first hours of the day. This can be explained by the way the optimiza-
tion works, and the fact that during weekdays it is already not that busy and optimizing
therefore does not have the intended effect.

Figure B.5: Length of stay in queue for different
shift lengths - Weekday

Figure B.6: Norm performance for different shift
lengths - Weekday

b.1.4 Second data-set scenario

In Figures B.7 and B.8, the results of running the first variant of shift and capacity opti-
mization on a Saturday for the second department are displayed. When statistically testing
whether short shift lengths have a significant reducing impact on waiting times compared
to normal model performance, it was found that a shift length of 1 hour reduces waiting
times to zero for almost all hours of the day, except around 10 o’clock, where the peak stays
roughly the same.

Figure B.7: Length of stay in queue for different
shift lengths - second department
Saturday

Figure B.8: Norm performance for different shift
lengths - second department Satur-
day
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b.2 variant 2

The same has been done for variant 2.

b.2.1 Friday scenario

In Figures B.9 and B.10, the results of running the second variant of shift and capacity opti-
mization on a Friday are displayed. When statistically testing whether the shift lengths have
a significant reducing impact on waiting times compared to normal model performance,
it was found that all shift lengths perform differently to normal model performance for
hours 17 till 7, which are all hours that the department is open. For most shift lengths
except 2 and 3 hours, the waiting times of the optimization are better than normal model
performance.

Figure B.9: Length of stay in queue for different
shift lengths - Friday

Figure B.10: Norm performance for different
shift lengths - Friday

b.2.2 Sunday scenario

In Figures B.11 and B.12, the results of running the second variant of shift and capacity op-
timization on a Sunday are displayed. When statistically testing whether the shift lengths
have a significant reducing impact on waiting times compared to normal model perfor-
mance, it was found that all shift lengths perform differently to normal model performance
for hours 0 up and till 22 with sometimes an exception in the mornings when waiting times
are 0. The first peak of the day is often slightly higher than normal model performance,
but the second peak of the day is reduced: total waiting time stays approximately the same
even though the performance hourly is statistically different. It should however also be
noted here that the way the optimization is run greatly impacts performance of the waiting
times. Other thresholds for increasing capacity could yield very different results.

b.2.3 Weekday scenario

In Figures B.13 and B.14, the results of running the second variant of shift and capacity
optimization on a Weekday are displayed. When statistically testing whether the shift
lengths have a significant reducing impact on waiting times compared to normal model
performance, it was found that all shift lengths perform differently to normal model per-
formance for almost all hours. As the waiting times during the week are not that high, a
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Figure B.11: Length of stay in queue for differ-
ent shift lengths - Sunday

Figure B.12: Norm performance for different
shift lengths - Sunday

reduction compared to normal performance is not achieved for weekdays with this type of
optimization.

Figure B.13: Length of stay in queue for differ-
ent shift lengths - Weekday

Figure B.14: Norm performance for different
shift lengths - Weekday

second data-set scenario
In Figures B.15 and B.16, the results of running the second variant of shift and capacity
optimization on a Saturday for the second department are displayed. When statistically
testing whether the shift lengths have a significant reducing impact on waiting times com-
pared to normal model performance, it was found that all shift lengths perform differently
to normal model performance for hours 8 up and till 22. The one peak of the day is often
slightly higher than normal model performance, but all other waiting time throughout the
day is reduced.

b.3 decrease in low urgency calls

In this section, the results of decreasing low urgency calls in other scenarios than the
busy Saturday scenario in the main text are displayed. In these scenarios, low urgency
call reduction has similar effects as in the Saturday scenario displayed in Chapter 6. For
example when looking at Figure B.17 it can be seen that low urgency call reductions can
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Figure B.15: Length of stay in queue for differ-
ent shift lengths - second depart-
ment Saturday

Figure B.16: Norm performance for different
shift lengths - second department
Saturday

reduce waiting times already starting at a reduction of 10%. Also, when implementing
this reduction with the data and scenarios of the second data-set as analyzed in Appendix
A, similar outcomes can be seen and similar conclusions can be drawn, visible in Figure
B.20. This indicates that a low urgency call reduction works in all scenarios and in other
out-of-hours departments with similar systems.

b.3.1 Friday scenario

In Figure B.17, the results of implementing different levels of low urgency call reduction on
a Friday are displayed. When statistically testing whether a 10% reduction has a statistically
significant reducing impact on waiting times compared to normal model performance, it
was found that for 17 up and till 21 excluding 18 where you can see that the peak is
almost similar, the reduction performs significantly better on waiting times than the normal
waiting times. These are the peak hours of the evening and it can therefore be concluded
that a small reduction has a big reducing effect already of around 50% in total.

Figure B.17: Waiting time with different levels of low urgency call reduction - Friday
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b.3.2 Sunday scenario

In Figure B.18, the results of implementing different levels of low urgency call reduction
on a Sunday are displayed. It can be concluded that a 10% reduction of low urgency calls
statistically significantly reduces waiting times on a Sunday in the second peak of the day
from hour 16 till 22 by at least 20%.

Figure B.18: Waiting time with different levels of low urgency call reduction - Sunday

weekday scenario
In Figure B.19, the results of implementing different levels of low urgency call reduction
on a Weekday are displayed. When statistically testing whether a 20% reduction (the 10%
does not have a big impact here, waiting times are already small in this scenario) has
a statistically significant reducing impact on waiting times compared to normal model
performance, it was found that for 19, 20 and 22 the low urgency demand reduction gives
a waiting time reduction compared to normal model performance. It can be concluded that
for weekdays where it is less busy, at least a 20% reduction is necessary for waiting time
reduction.

Figure B.19: Waiting time with different levels of low urgency call reduction - Weekday

second department scenario
In Figure B.20, the results of implementing different levels of low urgency call reduction on
a Weekday are displayed. When statistically testing whether any of the reductions lead to
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a statistically significant waiting time reduction, a 20% reduction is found to be significant
for a waiting time reduction of 20% in the afternoons.

Figure B.20: Waiting time with different levels of low urgency call reduction - second department

b.3.3 Changes in demand

The effect of demand increases and reductions in other scenarios was also tested. It can
be concluded that demand increases and reductions yields beneficial outcomes on waiting
time and demand for all scenarios. All statistical tests yield at least a statistically significant
waiting time reduction of 40%, often 50%, already when a demand decrease of 10% takes
place.

friday scenario
In Figures B.21 and B.22, the results of different values of demand reduction on a Friday
are displayed.

Figure B.21: Waiting time with different levels
of demand increases and reduc-
tions - Friday

Figure B.22: Demand with different levels of de-
mand increases and reductions -
Friday

sunday scenario
In Figures B.23 and B.24, the results of different values of demand reduction on a Sunday
are displayed.
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Figure B.23: Waiting time with different levels
of demand increases and reduc-
tions - Sunday

Figure B.24: Demand with different levels of de-
mand increases and reductions -
Sunday

weekday scenario
In Figures B.25 and B.26, the results of different values of demand reduction on a Weekday
are displayed.

Figure B.25: Waiting time with different levels
of demand increases and reduc-
tions - Weekday

Figure B.26: Demand with different levels of de-
mand increases and reductions -
Weekday

second department scenario
In Figures B.27 and B.28, the results of different values of demand reduction on a Saturday
for the second department are displayed.

b.3.4 Demand shifting

When using demand shifting in a weekday scenario, demand from hours 17, 18 and 19PM
is shifted to 20, 21 and 22PM: these are hours in which people might accept a call at a later
moment and are also the most crowded hours of a workday. It is concluded that also for the
less busy scenarios, demand shifting can help to reduce waiting times and workload.

friday scenario
In Figures B.29 and B.30, the results of different values of demand shifting on a Friday are
displayed. When statistically testing whether any of the demand shifts lead to a statistically
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Figure B.27: Waiting time with different levels
of demand increases and reduc-
tions - second department Saturday

Figure B.28: Demand with different levels of de-
mand increases and reductions -
second department Saturday

significant waiting time reduction, a shift of 1 patient on Fridays significantly helps to (very)
slightly reduce waiting times especially around hour 18 and 19, but as on weekdays the
shift can only be a few hours later as otherwise the calls are shifted to the night, the impact
of shifting is not that big.

Figure B.29: Length of stay in queue with differ-
ent amount of demand shifting Fri-
day

Figure B.30: Demand with different amount of
demand shifting Friday

sunday scenario
In Figures B.31 and B.32, the results of different values of demand shifting on a Sunday are
displayed. When statistically testing whether any of the demand shifts lead to a statistically
significant waiting time reduction, a shift of 1 patient on Sundays significantly helps to
slightly reduce waiting times, but as the waiting times are already not that high, shifting a
patient does in general not have a big impact.

weekday scenario
In Figures B.33 and B.34, the results of different values of demand shifting on a Weekday are
displayed. When statistically testing whether any of the demand shifts lead to a statistically
significant waiting time reduction, a shift of 1 patient on Weekdays significantly helps to
slightly reduce waiting times especially around hour 18 and 19, but as on weekdays the
shift can only be a few hours later as otherwise the calls are shifted to the night, the impact
of shifting is not that big. It is however bigger than on a Friday, this could be related to the
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Figure B.31: Length of stay in queue with dif-
ferent amount of demand shifting
Sunday

Figure B.32: Demand with different amount of
demand shifting Sunday

fact that it is less busy on weekdays, so a larger proportion of demand is shifted away with
a shift of 1 compared to Friday.

Figure B.33: Length of stay in queue with dif-
ferent amount of demand shifting
Weekday

Figure B.34: Demand with different amount of
demand shifting Sunday

second department scenario
In Figures B.35 and B.36, the results of different values of demand shifting on a Saturday
for the second department are displayed. When statistically testing whether any of the
demand shifts lead to a statistically significant waiting time reduction, it is found that a
shift of 1 or 2 significantly helps to slightly reduce waiting times by around 10-30% over
the day, visible in the figure when comparing the blue with the orange and the green
line.

b.3.5 Changes in service times

Lastly, the effects of service time reduction and increases within other model scenarios were
tested. It can be concluded that increasing and decreasing service times yield the same
outcomes for different scenarios: disruptive effects for increases, but beneficial effects for
decreases. All statistical tests yield at least a statistically significant waiting time reduction
of 40%, often 50%, already when a service time decrease of 10% takes place.
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Figure B.35: Length of stay in queue with differ-
ent amount of demand shifting sec-
ond department Saturday

Figure B.36: Demand with different amount of
demand shifting second depart-
ment Saturday

friday scenario
In Figures B.37 and B.38, the results of different values of service times changes on a Friday
are displayed.

Figure B.37: Waiting time with different levels
of demand increases and reduc-
tions - Friday

Figure B.38: Demand with different levels of de-
mand increases and reductions -
Friday

sunday scenario
In Figures B.39 and B.40, the results of different values of service times changes on a Sunday
are displayed.

weekday scenario
In Figures B.41 and B.42, the results of different values of service times changes on a
Weekday are displayed.

second department scenario
In Figures B.43 and B.44, the results of different values of service times changes on a
Saturday for the second department are displayed.
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Figure B.39: Waiting time with different levels
of demand increases and reduc-
tions - Sunday

Figure B.40: Demand with different levels of de-
mand increases and reductions -
Sunday

Figure B.41: Waiting time with different levels
of demand increases and reduc-
tions - Weekday

Figure B.42: Demand with different levels of de-
mand increases and reductions -
Weekday

Figure B.43: Waiting time with different levels
of demand increases and reduc-
tions - second department Saturday

Figure B.44: Demand with different levels of de-
mand increases and reductions -
second department Saturday
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