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Abstract The energy transition requires significant investments in new power generation, storage, and transmission technology
to achieve emission reduction targets while ensuring a stable supply of electricity. However, the increasingly complex, uncertain
nature of the power system creates challenges for investors and requires advanced research and modeling. An exploratory analysis
is preformed to determine if and how energy system optimization modeling can be used to explore the long-term economic feasibility
of investments in the power sector in light of the energy transition. A modeling framework is developed utilizing energy system
optimization modeling paired with the uncertainty analysis, modeling to generate alternatives, to explore and provide insights into
the profitability of investments in the range of possible near-optimal power system configurations that meet government emission
reduction targets. We apply the modeling framework in a case study of the Dutch power system, focusing on investments in the 2030
time frame. The case study is used as a proof of concept of the developed methodological. The case study finds that the developed
modeling framework can provide insight into the range of near-optimal power system configurations that meet emission reduction
targets and, through an economic analysis, can shed light on the economic feasibility of di�erent technologies. In the particular
case of the Netherlands, the case study finds a wide range of possible future near-optimal energy systems exist to meet emission
reduction targets, but a lack of profitability of investments indicate policy mechanisms or alternative market arrangements are
needed to ensure economic incentives exist for the necessary investments. Further research should include a parametric uncertainty
analysis to provide a complete and comprehensive overview, including all types of uncertainty in the system and to identify the
a�ects di�erent types of uncertainty have on the profitability of investments.

1 Introduction

The European electricity system is rapidly changing.
Over the next couple of decades, electricity demand is
forecast to increase with the electrification of the heat
and mobility sectors, and greenhouse gas emissions are
required to decrease dramatically to meet emission re-
duction targets. The energy transition requires signifi-
cant investments in new power generation, storage, and
transmission technology. However, the increasingly
complex, uncertain nature of the power system creates
challenges for investors. The challenges continue to in-
crease as the energy system transitions to a low carbon
system, transitioning away from conventional sources
to intermi�ent renewable energy sources. This transi-
tion changes the dynamics of the energy market and,
paired with unpredictable government climate change
policies and regulation, can lead to increasingly risky
investment outcomes for generators.

Increasing the penetration of wind and solar power
in the energy system changes the electricity market

dynamics and therefore the resulting electricity prices
and the dispatch of respective generators. Investments
in the power sector are long-term investments that re-
quire investors to analyze long-term future profitability
and risk to make investment decisions. Therefore, un-
derstanding and forecasting future market conditions
is an essential component for investors to make in-
vestments in the system and for policy makers to un-
derstand the regulatory framework and market design
changes that are necessary to meet emission reduction
goals while maintaining a secure and stable power sup-
ply.

Flexible, in-depth, sophisticated modeling tools are
vital to help inform private company investments re-
garding new electricity generation plants, storage units,
and transmission lines in the increasingly complex fu-
ture power system (Conejo et al., 2016; Hilpert et al.,
2018; Pereira et al., 2016). Energy system optimization
models, one type of modeling tool, have become in-
creasingly developed and several open source energy
system optimization models have been deemed sophis-



ticated enough for serious use (Groissböck, 2019).

Typically, energy system optimization models are
used to determine a single cost-optimal energy sys-
tem given a set of constraints. The uncertainty per-
taining to the future and the inability of mathemat-
ical models to accurately represent the complexity of
the energy system cause optimal solutions to have lim-
ited significance and can even mislead decision mak-
ers by providing false precision in the future energy
systems (DeCarolis et al., 2016; Voll et al., 2015). Sub-
optimal solutions may be favorable for reasons out-
side of purely cost, including public acceptance, land-
use conflicts, ease of implementation (Neumann and
Brown, 2019). The real-world energy system transition
has been shown to not follow the cost-optimal solu-
tion but rather, fall within the range of near-optimal
energy systems (Trutnevyte, 2016). To be able to ac-
count for this, an uncertainty technique, modeling-to-
generate alternatives (MGA), has recently been applied
to energy system optimization models ((Neumann and
Brown, 2019; DeCarolis et al., 2016; Price and Keppo,
2017)). MGA explores the decision space to generate
the maximally di�erent near-optimal solutions within
a defined cost slack from the optimal solution. There-
fore, MGA provides a range of near optimal power sys-
tem configurations. As the energy system has been
shown to fall within the range of near optimal solu-
tions, this research explores how energy system opti-
mization modeling paired with MGA can be used by
the investor. The investor in the system needs to un-
derstand the profitability of di�erent investments in the
range of possible future energy system configurations.

In addition, as the power system is determined by
the decisions of electricity generation companies. Reg-
ulators need to monitor and provide policy to ensure
that a stable supply of electricity is provided while
emission reduction targets are met; the economic feasi-
bility of investments is of importance to regulators. By
using energy optimization modeling to explore the eco-
nomic feasibility of investments, the results also con-
tribute and give insights to policy makers to understand
the investment landscape of di�erent alternative future
electricity system configurations.

The purpose of this study is to conceptually explore
and develop a modeling framework for how the increas-
ingly advanced energy system optimization models can
be utilized by investors in the system. The main con-
tribution is the modeling framework developed in the
study. To the best of our knowledge, this is the first re-
search to utilize energy system optimization modeling,
paired with the uncertainty analysis, MGA to examine
the profitability of investments in the energy system.
The research builds upon published literature studies
that explore the utilization of modeling to generate al-
ternatives for energy system optimization modeling.

The research focuses purely on how modeling to
generate alternatives in energy system optimization
modeling can be used from the perspective of an in-
vestor in the system and therefore, considers the struc-
tural model uncertainties (uncertainty pertaining to the
inability of the model to provide a perfect represen-
tation of the real world). To gain a complete under-
standing of the uncertainties in the system and the af-
fects the uncertainties have on the profitability, a full
parametric uncertainty analysis should be performed
in addition to the structural uncertainty analysis con-
ducted in this study. A parametric uncertainty analysis
(i.e. Monte Carlo simulation, stochastic programming)
could be done over the set of input parameters provided
to the modeling framework. This would require sig-
nificantly more required runs, computation power and
time.

The remainder of the paper is structured as follows.
Section 2 gives background on modeling to generate al-
ternatives and energy system optimization modeling.
Section 3 provides an overview of the developed mod-
eling framework and the mathematical formulation for
each component of the model. Section 4 introduces the
case study that is performed using the developed mod-
eling framework. The results are given and discussed in
Section 5 and the conclusion is in Section 6.

2 Energy system optimization
modeling and modeling to
generate alternatives

By providing in-depth analyses into the optimized fu-
ture structure of the power system, energy system op-
timization models help to ensure the transition to a
low carbon power system, aligned with the climate
targets, is achieved reliably and cost e�ectively (Tash
et al., 2019). Due to the large uncertainty about the fu-
ture, ESOMs should be used to identify pa�erns across
many di�erent model runs to produce insights rather
than singular projections (Decarolis et al., 2017; Neu-
mann and Brown, 2019). When paired with the uncer-
tainty analysis, modeling to generate alternatives, ES-
OMs can provide a range of near-optimal solutions and
the bounded analysis can be used to explore the pos-
sible future scenario space. The range of near-optimal
systems are founded to be able to encapsulate the real-
world energy transition and provide an ”envelope of
predictability” (Trutnevyte, 2016). Therefore, to utilize
energy optimization modeling to help support invest-
ment decision making, we must consider a range of
near-optimal solutions. In addition, as the range of
near-optimal solutions has been shown to encapsulate
the real-world energy transition, the configuration of
the near-optimal solutions can reveal to investors the



necessary investments needed over the coming decades
to align with government targets.

3 Modeling framework
As identified in the introduction, in the rapidly evolv-
ing power sector, in-depth modeling tools are required
to provide insights for investors and policy makers. To
analyze investments in generation and storage tech-
nologies, these modeling tools must consider a multi-
timescale framework, considering both the short-term
and long-term time frames that exist in the power sys-
tem (Abrell et al., 2019). In addition, they must also
consider the range of possible future outcomes and pro-
vide a realistic representation of the real world. As the
range of near-optimal power system solutions can cap-
ture the real world energy transition, these generated
near-optimal power system configurations can be used
to calculate the economic feasibility of investments in
the future power system. Considering these factors, a
modeling framework that utilizes di�erent timescales,
energy optimization modeling, and modeling to gener-
ate alternatives is formulate.

To account for the deviations from a perfect mar-
ket and to represent the resulting variety of possible
future business cases for each generation technologies,
a medium-term, investment ESOM paired with MGA
is developed and used to generate a variety of possible
power system designs for a set of investment periods
over the entire timeframe. To be able to account for the
profitability of di�erent investments over the lifetime
of the technology, the power system must be modeled
over the whole time frame.

For optimization models of economic markets, the
primal variables are the production and consumption
levels and the dual variables are the costs of goods and
services (Freund, 2004). For electricity markets, the pri-
mal variables are the capacity and dispatch of the gen-
erators, storage units, and transmission lines. The dual
variables are the marginal electricity price and the�$2
price. Therefore, the primal variables of the investment
optimization can be used to determine the installed ca-
pacities of generators, storage units, and transmission
lines. The primal variables of the operations optimiza-
tion can determine the dispatch and the dual variables
can be used to find the marginal electricity prices.

The investment medium-term optimizations are
only calculated for each investment stage, where instal-
lation and decommissioning are assumed to only occur
at the start of each investment stage. To be able to sim-
ulate a range of possible power system designs, MGA
is utilized to explore the decision space by minimizing
and maximizing the installed capacities and allowing
the system to be up to 10% more expensive than the
optimal system. Then, the range of possible power sys-

tem designs are used as the basis for a short-term, dis-
patch operations optimization for a variety of weather
and demand years to represent the short-term varia-
tion that occurs in the power system. A two-step op-
timization is performed for each investment period to
address the two main time frames of decision-making
in the energy system, long-term decisions where invest-
ments are made and short-term operational decisions
where dispatch is determined. Two types of optimiza-
tion models are utilized. The full model flow diagram is
shown in Figure 1.

In the next sections each of the modeling tech-
niques utilized in the developed methodology are ex-
plained.

3.1 Investment optimization

The investment optimization model developed is a my-
opic partial-equilibrium cost minimization model, in-
vestors do not have perfect foresight, and therefore the
market modeled deviates from a perfect competitive
energy market. The modeled market is assumed to be
competitive and follow marginal-cost pricing. The de-
mand is modeled as being elastic, the demand changes
in response to changes in the price. The demand is mod-
eled to be elastic to provide a more accurate represen-
tation of the real electricity market. The investment
optimization is formulated as a welfare maximization
optimization, with the object to optimize the total eco-
nomic societal welfare.

The optimization is run for one representative year
with hourly time steps to represent the variety of
weather and demand conditions that exist throughout
the year. The detailed objective function is shown in
1 below. The objective function and constraints are
adapted from (Neumann and Brown, 2019).

min f(d,K,H,F,k,h) = max
d,K,H,F,k,h
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The objective function maximizes the utility of the
consumer*=,C at each node = for each time C multiplied
by demand at the respective node at time C , 3=,C sub-
tracted by the total system costs.The total system costs
consist of the generator capacities  =,6 at each node =
for each generator technology 6 multiplied by their an-
nualized capital cost 2=,6, the storage capacities �=,B at
each node= for each storage technology B multiplied by
their annualized capital cost 2=,B , transmission capacity



Figure 1: Modeling framework.

�; for each line ; multiplied by their annualized capi-
tal cost 2; , dispatch of each generator technology :=,6,C
at node = multiplied by their operating costs >=,6 and
the time step weight FC , and dispatch of each storage
technology ℎ−/+=,B,C at node = multiplied by their operat-
ing costs>=,B and the time step weightFC . Each time pe-
riod is given a weighting,FC . The weightings are chosen
such that the sum of the weights over the chosen time
steps C equal 8,760, representing a full year of operation.
The optimization function minimizes total system cost
per year. For simplicity, start-up and shut-down costs
of generators is not included in the objective function.

Only capital cost of generation, storage, and trans-
mission capacities installed in the period being opti-
mized are included in the objective function. Previously
installed capacities are considered sunk cost and there-
fore, their capital cost is not included in the objective
function.

Solving the investment optimization gives the opti-
mal power system configuration. In addition, the ob-
jective function gives the optimal system cost, which is
then used in the MGA optimization, described in the
next section.

3.2 Modeling to generate alternatives
(MGA) optimization

The MGA analysis is used to determine the range of
near-optimal solutions. The MGA methodology used
in this research is modeled a�er (Neumann and Brown,
2019). The optimal system cost determined in the in-
vestment optimization is used to define a new con-
straint. The optimal solution value (5 ∗) plus an accept-
able relative cost increase (n) is then used to constrain
the original feasible space as a new constraint in the
optimization problems to explore the near-optimal fea-
sible space.

min f(K,H,F,k,h) ≤ (1 + n) ∗ 5 ∗ (2)

The new objective function becomes the minimization
or maximization of the sums of subsets of generation,
storage and transmission capacity expansion subject to
the new allowable cost increase constraint.

min (x) or max (x) (3)

Where x, the decision variable, is the subset of gen-
eration, storage, or transmission capacity. The set of
new optimization problems are solved to determine the
range of near optimal solutions. The resulting power
system configurations generated by the investment op-



timization and MGA optimization are input into the op-
erations optimization and are run for a range of weather
and demand years. The next section details the opera-
tions optimization.

3.3 Operations optimization
Similar to the investment optimization, the operations
optimization is modeled as a welfare maximization
problem. For short-term equilibrium in the operations
optimization, the objective function only maximizes
over the short-term costs, which is the di�erence be-
tween the consumer utility and the producer operation
costs. The capital costs (fixed costs) are excluded and
the objective function is:

max
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The objective function maximizes the utility of the
consumer*=,C at each node = for each time C multiplied
by demand at the respective node at time C , 3=,C sub-
tracted by the system operating costs. The system op-
erating costs are described in detail in the investment
optimization section.

The electricity prices in the operations optimiza-
tion are the shadow price, optimal dual variable, of the
nodal energy balance. The nodal energy balance is a
constraint given to the optimization problem. For each
point in time the demand each node n must be satis-
fied by the energy generated by the generators at node
n, the discharge of storage units at point n, or the flow
from the transmission line to node n. This gives the
nodal balance constraint detailed below.∑
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The shadow price of the nodal energy balance gives
_=,C , the marginal price at each bus for each period of
time modeled. All other detailed constraints for all of
the optimization problems are given in Appendix A.

Investment model
Given the electricity prices and the generator and

storage unit dispatch determined in the operations op-
timization of all generated alternative power systems,
the NPV is calculated for each technology. Net present

value (NPV) is a basic financial calculation to assess the
value of a project. The NPV is the sum of the discounted
cash flows, costs and revenues, with a certain interest
rate, r, over the assumed lifespan of the asset (Petitet,
2017).

Net present value (NPV) (Brown, 2020):
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If the NPV is positive, the investment is econom-
ically profitable and indicates that the investment is
worthwhile. Whereas, a negative NPV indicates that
the project should be rejected (Petitet, 2017).

Given that the NPV is calculated using a discount
rate, the order of cash flow is significant; making ear-
lier profits more desirable. To account for this and the
randomness of weather and demand data for each oper-
ation year, bootstrapping, a statistical technique using
random sampling with replacement, is performed over
the operation optimization results. The set of dispatch
and electricity price results from the operations opti-
mization are randomly selected 1000 times and used to
calculate 1000 di�erent NPVs for each full model run.
This provides a range of possible NPV outcomes.

4 Case study
Using the development modeling framework, a case
study is performed on the Netherlands.

4.1 Experimental setup
The case study considers a two-node, electricity only
market. Following the methods described in Section
2, a multi-stage, medium-term optimization is per-
formed, where each investment period is optimized in-
dependently. Following the investment optimization,
an MGA analysis is performed on each of the invest-
ment periods. For each of the optimal and MGA al-
ternative power system configurations, 10 operations
optimizations are performed. The model only consid-
ers the Netherlands and Germany in a two node sys-
tem. A spatial resolution of two nodes was chosen as
this allows for the simplest model while still being able
to model all system components, including transmis-
sion. This allows for the case study to reveal how the
developed modeling framework can be applied and to
allow for a clearer understanding of the e�ect system



components have on the overall model results. Ger-
many was chosen as the second node, as it is the coun-
try the Netherlands shares the largest interconnection
capacity with. The generation technologies modeled
are solar, onshore wind, o�shore wind, CCGT, OCGT,
coal, lignite, biomass, and nuclear. The storage tech-
nologies included in the model are ba�eries and hydro-
gen storage. Minimum generation capacities in 2030
are assumed to be current installed capacities in each
respective country (based on 2020 installed capacities).
The time frame of the model is from 2030-2060, with
investment years 2030, 2040, and 2050 (installation and
decommissioning of capacities are assumed to only oc-
cur in these years). It is assumed that the demand and
installed capacity remain constant throughout each 10
year investment segment (2030-2039, 2040-2049, 2050-
2059). The decommissioning of generation capacity
is assumed to follow governmental decommissioning
plans or plant lifetimes. The maximum VREs capacities
are bounded by the potential renewable energy capac-
ities for each respective country. Demand is modeled
to follow historical data, scaled to represent increas-
ing demand over time. The demand factor is consistent
across each 10-year investment period and increases by
15% per ten-year period. It is assumed that installed
capacity remains constant throughout each 10 year in-
vestment segment (2030-2039, 2040-2049, 2050-2059). A
greenhouse gas emissions constraint is included in the
model to follow governmental�$24@ reduction targets.

4.2 Data and inputs

All model parameters can be found in Appendix B.

5 Results & Discussion

5.1 Optimal results

In the first phase of the problem, the long-term invest-
ment optimization is performed to generate the opti-
mal solution of installed capacities for 2030, 2040, and
2050. Figure 2 shows the optimal installed capacities
for 2030, 2040, and 2050 in the Netherlands. In the 2050
time frame, o�shore wind dominates the system with
onshore wind and solar providing the remainder of nec-
essary generation capacity. O�shore wind experiences
a significant increase between 2040 and 2050, dominat-
ing the power system in the 2050 time frame. This large
increase in o�shore wind is due to the fact that on-
shore wind reaches its maximum capacity potential in
the Netherlands in 2040 and wind capacity factors are
more favorable in the Netherlands compared to Ger-
many. Therefore, to provide for the increase in demand
and the power production losses from the decommis-
sioning of gas plants, o�shore wind is maximized in the

Netherlands in 2050. The optimal transmission capac-
ity between the Netherlands and Germany is 33 GW,
approximately 8 times the currently installed transmis-
sion between the Netherlands and Germany of 4.5 GW.
In the zero emission scenario in 2050, the increased
transmission capacity and the storage in the system
help to smooth out the intermi�ency of the VREs. This
is critical given that the only generation technologies in
the system in 2050 are wind and solar.

Figure 2: Bar chart comparing the total capacities the
Netherlands for the optimal solution in 2030, 2040, and
2050.

Figure 3 shows the total installed capacities for the
Netherlands for each MGA alternative and the optimal
case for 2030, 2040, and 2050. As can be seen in the
figure, there is a large amount of variation in the near-
optimal solutions, particularly in the 2040 time frame.
In 2040, o�shore wind experiences the largest range of
possible installed capacities, some alternatives have no
o�shore wind where as the o�shore wind maximization
scenario maximizes the possible installed capacity. By
2050, the majority of alternatives reach the maximum
capacity potential for solar and wind. In 2050, o�shore
wind dominates the the Netherlands energy mix. These
results suggest that there are many alternative transi-
tion pathways for the Netherlands but the alternatives
converge in order to reach full decarbonization in 2050,
with much less variability of alternative solutions in the
long-run. In most alternatives in 2040 and all alterna-
tives in 2050, onshore wind is maximized.

For each of the 51 power systems shown in Figure 3,
10 di�erent optimization optimizations are performed
for the ten various demand and weather years. The op-
eration optimization determines the optimal dispatch
of each technology to satisfy the demand at the least
cost. The optimization gives the generation of each
technology at each hour and determines the LMP for
each node at each hour. As described in Section 3.3, the
LMP is the shadow price of the nodal energy balance
constraint. Figure 4 shows a sample week of dispatch
and electricity prices for the Netherlands and Germany
from the model for the year 2030.

The electricity prices at each hour are determined
through marginal-cost pricing (see Section 2.1.1). As



Figure 3: Bar chart comparing the built out capacities in the Netherlands for each alternative generated using MGA for
2030, 2040, and 2050.

Figure 4: The top two graphs are stacked dispatch
curves for all generation for a week in August from the
2030 model results. The bo�om two graphs are the cor-
responding LMP curves over the same week in August.
The graphs on the le� are for the Netherlands and on
the right are for Germany.

can be seen from the graphs, at times when only VRE
supplies all of the demand, the electricity price is close
to 0 €/MWh, as the marginal price of VRE is close to
0 €/MWh. The graphs show the variation of electricity
due to the variation of which generator is the marginal
generator at each hour. It is important to note that con-
ventional generators marginal price includes the �$2

price. The peak electricity price around hour 5420 is a
result of coal being the marginal generator and due to
the high emission from coal generation, the�$2 causes
coal to have a high marginal price.

For each operations optimizations, a year set of dis-
patch and marginal electricity prices for the Nether-
lands and Germany are generated. In Figure 5 his-
tograms of the hourly electricity prices for each invest-
ment period are given. The electricity prices are heavily
segmented around certain prices. In reality, electricity
prices are more distributed and experience more varia-
tion. In the model, each generator type is modeled as
one large generator rather than each individual gener-
ators that have their own distinctive marginal price, as
is the case in reality. This deviation from reality causes
the electricity prices to be less distributed.

The hourly electricity prices and dispatch of each
respective technology are used to calculate the yearly
revenue per technology. The resulting NPVs for the
Netherlands are shown in Figure 6. The NPVs are for
capacity installed in 2030 and then run over the course
of the next 30 years. The histogram provides the fre-
quency of the NPVs For each installed technology. The
color of the bars reveal the NPVs for each alternative
optimization, the optimal and all MGA alternatives.

The majority of the NPVs for the generation tech-
nologies are clustered around 0, leading to no clearly
favorable investments. Based on these results, invest-
ments in the Dutch power system in the 2030 time



Figure 5: Histogram of all the LMP for all runs for each
investment time period. Electricity prices greater than
200 EUR/MWh are all in the last bin. Shows distribu-
tion of electricity prices and how they di�er between
the di�erent investment stages (2030-2039, 2040-2049,
and 2050-2059).

frame appear to have high risk. Storage technology has
the least favorable business case, with negative NPVs
for all alternatives.

Figure 7 visualizes the same data as Figure 6 as box-
plots. This alternative graphical representation allows
for the a�ect di�erent MGA alternatives have on each
technologies respective NPVs to be seen more clearly.
The box plots show that the case of transmission maxi-
mization, leads to relatively higher NPVs for the gener-
ation technologies, particularly CCGT, OCGT, O�wind.
In addition, the MGA alternatives that maximize a tech-
nology result in the among the lowest NPV for the
respective technology. This suggests that when more
than the optimal amount of a technology is built, the
technology cannibalizes its own revenue. For the case
of solar and onshore wind, additional flexibility options
in the system, such as increased storage or transmission
capacity, lead to higher NPVs. The increased flexibil-
ity that storage and transmission provide to the energy
system help to mitigate the cannibalization e�ects that
VRE face (Prol et al., 2020). The ability for storage tech-
nologies to arbitrage, purchase electricity and charge
when electricity prices are low and discharge and sell
electricity when price are high help to stabilize the elec-
tricity price and therefore damped the cannibalization
e�ects experienced by VREs. If the transmission capac-
ity is maximized within 10% of the cost optimal solu-
tion, the investment environment across all generation
technologies is favorable. Large distributions within an

alternative indicates that the weather and demand year
has a relatively larger e�ect on the revenue for the given
technology.

6 Further research
Further research should explore the demand elastic-
ity. As (Decarolis et al., 2017) identifies that these fac-
tors can significantly influence the results and there-
fore the high uncertainty regarding these factors must
be taken into consideration. Considering variations in
the demand elasticity factors is outside the scope of
this study but should be taken into consideration in fu-
ture research to determine the e�ect these factors have
on model results. Various historic demand data can be
used to help do so. Adjusting these factors would help
to make the electricity price more accurately represent
real world electricity prices and therefore provide more
accurate NPV forecasts. In addition, complexity should
be added to the overall model used in the case study
or an already developed energy system optimization
model should be adapted to the modeling framework.
A large geographic area should be modeled to account
for the overall a�ects of transmission. Finally, a para-
metric uncertainty analysis should be performed on the
entire model to be able to provide robust decision mak-
ing support to investors and policy makers. Incorpo-
rating a parametric uncertainty analysis would require
significantly more computation power and therefore,
techniques to reduce the necessary computation time
should be researched.

7 Conclusion
The research explores how energy system optimization
modeling can be used to help make investment deci-
sions in the evolving power system. The main insights
of the study are two fold.

First, the study uncovers how energy system opti-
mization modeling can be used to help make invest-
ment decisions in the evolving electricity system given
emission reduction targets. The modeling framework
outlined in this study provides a method for how in-
vestors in the electricity system can use the increas-
ingly more advanced and developed energy system op-
timization models to contribute to investment deci-
sion making. Pairing an ESOM with the MGA uncer-
tainty analysis provides a wide range of possible fu-
ture electricity system configurations. In addition, the
consideration of the short-term e�ects on the opera-
tion of the electricity market while considering long-
term decisions helps understand how the long-term in-
vestment decisions will fair in the electricity market.
The case study finds that there are a wide range of



Figure 6: Histogram of NPV for technologies built in 2030 with bootstrapping 1,000 possible combination of NPVs within
each 10-year investment period.

near-optimal electricity system configurations that al-
low emission reduction targets to be achieved, but that
the lack of economic incentives in the alternatives indi-
cate that regulatory intervention or electricity market
reform might be necessary to ensure the necessary in-
vestments occur to maintain a stable supply of electric-
ity while reaching climate targets.

Secondly, the study reveals how economic feasible
the range of cost near-optimal solutions generated by
ESOMs are from the perspective of an investor. Typi-
cally, energy system optimization modeling is used to
determine the cost optimal or near optimal power sys-
tems. These models tend to neglect the economic fea-
sibility of the cost optimal or near optimal solutions
from the perspective of the investor, an important com-
ponent given that in free liberalized, competitive mar-
ket, the installed capacity is determined by investors.
Therefore, the modeling framework developed in this
study can be used from the perspective of regulators to
gain insights into how the investment landscape looks
for di�erent near-optimal solutions.
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A Constraints for optimization
problems

The following constraints are for all optimization prob-
lems used in the modeling framework.

A.0.1 Generation constraints

To solve the optimization function, the objective func-
tion is subjected to several constraints. The dispatch
of generators :=,6,C are constrained by the generator ca-
pacity  =,6 and the minimum and maximum time vari-
able availability of the generator, :̃=,6,C and :̄=,6,C respec-
tively. The time variable availability of the generator is
given per unit of installed capacity,  =,6. The minimum
time variable availability :̃=,6,C of the generator signi-
fies the lower bound of the installed capacity that must
be in operation for the given time. The maximum time



variable availability :̄=,6,C of the generator signifies the
upper bound of the installed capacity that can be in op-
eration for the given time.

:̃=,6,C ≤ :=,6,C ≤ :̄=,6 =,6 ∀=,6, C (7)

Conventional generators (coal, gas, and nuclear) are as-
sumed to be fully flexible - :̃=,6,C is 0 and :̄=,6,C is 1.
Therefore, for conventional generators, 7 becomes:

0 ≤ :=,6,C ≤  =,6 ∀=,6, C (8)

For VREs, 7 becomes:

0 ≤ :=,6,C ≤ :̄=,6,C =,6 ∀=,6, C (9)

where :̄=,6,C is the weather dependent power availability
of the VRE.

A.1 Storage constraints
Similar to dispatch constraint for generators given in 7,
the charging and discharging of storage units ℎ−=,B,C is
constrained by the storage power capacity �=,B :

0 ≤ ℎ+=,B,C ≤ �+=,B ∀=, B, C (10)

0 ≤ ℎ−=,B,C ≤ �−=,B ∀=, B, C (11)

In addition, the state of charge of the storage unit
B>2=,B,C is constrained by the nominal power, �=,B mul-
tiplied by the number of hours that are required to fill
the storage unit to the maximum state of charge, A=,B .

0 ≤ B>2=,B,C ≤ �=,B ∗ A=,B ∀=, B, C (12)

The state of charge B>2=,B,C has to be consistent from
one time step to the next and therefore,

B>2=,B,C = B>2=,B,C−1 + [+=,Bℎ+=,B,C −
1
[−=,B

ℎ−=,B,C ∀=, B, C

(13)
The state of charge must equal the state of charge at
the previous time step B>2=,B,C−1 plus the amount of
power charged to the ba�er (the e�iciency of charg-
ing [+=,B multiplied by the power charged ℎ+=,B,C ) minus
the amount of power discharge from the ba�ery (the
amount of power discharged ℎ−=,B,C divided by the e�i-
ciency of discharging [−=,B .

For simplification, it is assumed that the storage
units have no standing losses (self-discharging leakage
rate).

A.2 Transmission constraints
The flow in all transmission lines 5=,C are constrained by
their capacities �; .

|5=,C | ≤ �; ∀ ;, C (14)

The installed capacity of transmission are optimized
within bounds of minimum and maximum installable
potential values, �<8=

;
and �<0G

;
, respectively.

A.3 Nodal energy balance
or each point in time the demand at each node n must
be exactly satisfied by the energy generated by the gen-
erators at node n :=,6,C , the discharge of storage units
at node n ℎ−=,B,C , minus the charging of storage units at
node n ℎ+=,B,C , and the flow from the transmission lines
to node n, 5;,C . This gives the nodal balance constraint
detailed below.∑
6

:=,6,C +
∑
B

(ℎ−=,B,C − ℎ+=,B,C ) +
∑
;

(U;,=,C 5;,C ) = 3=,C ↔ _=,C ∀=, C

(15)
U;,=,C : −1 8 5 ; BC0ACB 0C =, ; F8Cℎ3A0FB ?>F4A 5 A>< 8

U;,=,C : 1 8 5 ; BC0ACB 0C =, ; BD??;84B ?>F4A 5 A>< 8

The shadow price of the nodal energy balance gives
_=,C , the marginal price at each bus for each period of
time modeled.

A.3.1 Emission constraint

An emissions limit ��%�$2 can be imposed on the sys-
tem as a global constraint. The emissions can be con-
strained by calculating the sum of emissions for each
generator over the course of the year modelled. The
emissions per generator are calculated using the car-
bon intensities of the fuel used in the generator 46 and
the e�iciency of the generator [=,6:∑

=,6,C

FC
1
[=,6

46:=,6,C ≤ ��%�$2 ↔ `�$2 (16)

`�$2 is the shadow price of the CO2 emissions and
therefore, identifies the CO2 price that is necessary to
reach the carbon emission limit specified in the con-
straint.

A.3.2 Generator capacity constraints

The installed capacity of generators are optimized
within bounds of minimum and maximum installable
potential values  <8==,6 and  <0G=,6 , respectively.

 <8==,6 ≤  =,6 ≤  <0G=,6 ∀=,6 (17)

The capacity bounds are determined by ex-
isting/previously installed capacities, governmental
phase-out decommissioning plans, or maximum renew-
able installation potential. For the first optimization
period, 2030, currently existing installed capacities are
used to define the minimum bounds  <8==,6 , �<8==,B , and
�<8=
;

. For the consecutive optimization periods, the
minimum capacities are the optimal capacity from the
previous optimization period. The maximum capacities
for the conventional generators are determined from
governmental decommissioning plans and the maxi-
mum capacities for VREs are the maximum renewable
installation potentials, given in Table 2.



A.3.3 Storage unit capacity constraints

The installed capacity storage units are optimized
within bounds of minimum and maximum installable
potential values, �<8==,B and �<0G=,B , respectively.

�<8==,B ≤ �=,B ≤ �<0G=,B ∀=, B (18)

For the first investment optimization period, 2030,
the minimum bounds are the currently installed ba�ery
or hydrogen storage. The maximum bound is infinity.
For the consecutive optimization periods, the minimum
bound is the optimal storage unit capacity from the pre-
vious optimization period and the maximum bound re-
mains infinity.

A.3.4 Transmission capacity constraints

The installed capacity of transmission are optimized
within bounds of minimum and maximum installable
potential values.

�<8=
;
≤ �; ≤ �<0G;

∀; (19)

For the first investment optimization period, 2030, the
minimum transmission capacity bound is the currently
installed transmission. The maximum bound is infinity.
For the consecutive optimization periods, the minimum
bound is the optimal storage unit capacity from the pre-
vious optimization period and the maximum bound re-
mains infinity.

B Data



Table 1: Greenhouse gas emissions from electricity generation for the Netherlands and Germany for 2015, 2020, 2030,
2040, 2050 (United Nations, 2020; Federal Ministry for the Environment and Safety, 2020; CBS, 2019; Umweltbundesamt,
2020).

Year Greenhouse gas emissions (")�$2)
Germany Netherlands Total

1990 366 39.6 406
2010 313 52.0 365
2015 304 53.3 357
2020 200 29.8 230
2030 139 14.1 153
2040 69.5 7.05 76.6
2050 0 0 0
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Table 2: Potential renewable energy capacities for Germany and the Netherlands used in model (Brown et al., 2018)
Potential Renewable Capacity per Country (MW)
Solar Onshore wind O�shore wind

Netherlands 46,300 44,100 151,000
Germany 360,000 452,000 90,400
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Table 3: Techno-economic data used in model
Year

2030 2040 2050 Source

Lifetime (years)
Coal 40 40 40 (IEA, 2020)

CCGT 30 30 30 (IEA, 2020)
OCGT 30 30 30 (IEA, 2020)

Nuclear 45 45 45 (Schröder et al., 2013)
Onshore wind 30 30 30 (DEA, Danish Energy Agency (DEA)
O�shore wind 30 30 30 (DEA, Danish Energy Agency (DEA)

Solar 25 25 25 (IEA, 2020)
Ba�ery 15 15 15 (Cole and Frazier, 2019)

Ba�ery inverter 15 15 15 (Budischak et al., 2013)
Fuel cell 20 20 20 (Budischak et al., 2013)

Electrolysis 25 27 28 (Smolinka et al., 2018)
Transmission (HVAC overhead) 40 40 40 (Zappa et al., 2019)

Investment (EUR/kWel)
Coal 1400 1400 1400 (Schröder et al., 2013)

CCGT 820 820 820 (Schröder et al., 2013)
OCGT 410 410 410 (Schröder et al., 2013)

Nuclear 6450 6450 6450 (Schröder et al., 2013)
Onshore wind 1040 980 960 (DEA, Danish Energy Agency (DEA)
O�shore wind 1570 1450 1420 (DEA, Danish Energy Agency (DEA)

Solar 650 510 460 (Schröder et al., 2013)
Ba�ery 200 170 150 (Cole and Frazier, 2019)

Ba�ery inverter 380 310 280 (Cole and Frazier, 2019)
Fuel cell 340 310 290 (Budischak et al., 2013)

Electrolysis 600 540 490 (Smolinka et al., 2018)
Transmission (HVAC overhead) 1000 1000 1000 (Hagspiel et al., 2014)

Fixed operating & maintenance (FOM) (%/year)
Coal 1.9 1.9 1.9 (Schröder et al., 2013)

CCGT 2.5 2.5 2.5 (Schröder et al., 2013)
OCGT 3.8 3.8 3.8 (Schröder et al., 2013)

Onshore wind 1.2 1.2 1.2 (DEA, Danish Energy Agency (DEA)
O�shore wind 1.9 1.8 1.8 (DEA, Danish Energy Agency (DEA)

Solar 2.0 2.0 2.0 (Ioannis Tsiropoulos et al., 2018)
Ba�ery inverter 3 3 3 (Cole and Frazier, 2019)

Fuel cell 3 3 3 (Budischak et al., 2013; Steward, 2009)
Electrolysis 3.3 3.6 3.9 (Smolinka et al., 2018)

Transmission (HVAC overhead) 2 2 2 (Hagspiel et al., 2014)

Variable operating & maintenance (VOM) (EUR/MWel)
Coal 6.0 6.0 6.0 (Schröder et al., 2013)

CCGT 4.0 4.0 4.0 (Schröder et al., 2013)
OCGT 3.0 3.0 3.0 (Schröder et al., 2013)

Nuclear 8.0 8.0 8.0 (Schröder et al., 2013)
Onshore wind 1.4 1.2 1.2 (DEA, Danish Energy Agency (DEA)
O�shore wind 2.7 2.5 2.4 (DEA, Danish Energy Agency (DEA)

Solar 0.01 0.01 0.01 (Ioannis Tsiropoulos et al., 2018)

E�iciency (%)
Coal 0.46 0.47 0.47 (Schröder et al., 2013)

CCGT 0.5 0.5 0.5 (Schröder et al., 2013)
OCGT 0.39 0.40 0.40 (Schröder et al., 2013)

Nuclear 0.34 0.34 0.34 (Schröder et al., 2013)
Ba�ery inverter 0.81 0.81 0.81 (Budischak et al., 2013)

Fuel cell 0.58 0.62 0.62 (Budischak et al., 2013; Steward, 2009)
Electrolysis 0.65 0.66 0.69 (Smolinka et al., 2018)
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Table 4: Fuel price, carbon intensity, and value of loss load forecasts for 2030, 2040, and 2050 in Europe.
Year

2030 2040 2050 Source

Fuel price (EUR/",ℎCℎ)
Coal 10.35 10.60 10.85 (International Energy Agency, 2018)
Gas 24.33 26.70 29.08 (International Energy Agency, 2018)

Nuclear fuel (uranium) 3.02 3.02 3.02 (Schröder et al., 2013)

Carbon intensity (t�$2/",ℎCℎ)
Coal 0.51 0.51 0.51 (Skone et al., 2016)
Gas 0.31 0.31 0.31 (Skone et al., 2016)

Value of loss load (EUR/MWh)
VOLL 5,000 5,000 5,000 Brown2018a
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Table 5: Historical installed generator capacities in the Netherlands and Germany for 2010, 2015, and 2020.
Year

2010 2015 2020 Source

Netherlands (NL)
Hard coal 2943 7270 4662 (Gotzens et al., 2019)

Lignite 0 0 0 (Gotzens et al., 2019)
CCGT 12271 13582 13582 (Gotzens et al., 2019)
OCGT 3991 3991 3991 (Gotzens et al., 2019)

Nuclear 492 492 492 (Gotzens et al., 2019; ENTSO-E, 2020)
Biomass 1205 400 490 (Rijksoverheid, 2010; ENTSO-E, 2020)

Onshore wind 2009 2646 3973 (Rijksoverheid, 2010; ENTSO-E, 2020)
O�shore wind 228 228 1709 (Rijksoverheid, 2010; ENTSO-E, 2020)

Solar 88 1000 5710 (Rijksoverheid, 2010; ENTSO-E, 2020)

Germany (DE)
Hard coal 28390 28650 22630 (Gotzens et al., 2019; Fraunhofer ISE, 2020)

Lignite 21340 21420 20860 (Gotzens et al., 2019; Fraunhofer ISE, 2020)
CCGT 18121 18121 17256 (Gotzens et al., 2019)
OCGT 7801 7588 6628 (Gotzens et al., 2019)

Nuclear 20500 10800 8110 (Gotzens et al., 2019; Fraunhofer ISE, 2020)
Biomass 6130 7170 8240 (Fraunhofer ISE, 2020)

Onshore wind 26820 41300 54640 (Fraunhofer ISE, 2020)
O�shore wind 80 3280 7740 (IRENA, 2013; ENTSO-E, 2020; Fraunhofer ISE, 2020)

Solar 18000 39220 53580 (Fraunhofer ISE, 2020)
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