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Abstract 

Vehicle manufacturers notice a difference between the tyre behaviour observed in 

road tests with a complete vehicle and the behaviour of the tyre as provided by the 

tyre manufacturers. To improve the tyre characterization and avoid appointing its 

behaviour each time using trial-and-error, Centro Ricerche Fiat requests the 

development of an application that can identify the tyre parameters consistently and 

automatically. 

This thesis describes the process of developing the TyreEstimator, the application 

written for the identification of the tyre parameters. The application is built to 

minimize the difference between the vehicle model data and the experimental data 

using an optimization algorithm. Two vehicle models are implemented to identify 

the tyre parameters. The tyre behaviour is described using the Magic Formula tyre 

model. Due to the sensitivity of the optimization problem, the application is 

constructed to cope with different options for finding the tyre parameters.   

Afterwards an empirical analysis, using the TyreEstimator, is performed. This results 

in an option set for each vehicle model, which approaches the tyre behaviour best.   
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Nomenclature 

General 
ay lateral acceleration 
CF@ cornering stiffness 
CF@1 cornering stiffness at front axle 
CF@2 cornering stiffness at rear axle 
Fy lateral force 
Fy1 lateral force at front axle 
Fy2 lateral force at rear axle 
Fz vertical tyre force 
g gravity constant 
I vehicle inertia 
L vehicle length 
m vehicle mass 
P1 load on front axle 
P2 load on rear axle 
r yaw rate 
R radius of curvature 
u longitudinal velocity at centre of gravity 
u1  longitudinal velocity at front axle 
u2 longitudinal velocity at rear axle 
v lateral velocity at centre of gravity 
v1  lateral velocity at front axle 
v2 lateral velocity at rear axle 
V velocity at centre of gravity 
x,y,z local coordinates 
X,Y,Z global coordinates 
x1 distance between front axle and centre of gravity 
x2 distance between centre of gravity and rear axle 
@ slip angle 
@1 slip angle front axle 
@2 slip angle rear axle 
β side slip angle 
δ1 steer wheel angle 
η understeer coefficient 
θ roll angle 
λ root characteristic equation 
ψ yaw angle 

Related to the Magic Formula 
By lateral stiffness factor 
Cy lateral shape factor 
dfz normalised change in normal load 
Dy lateral peak value 
Ey lateral curvature factor 
Fz0 nominal tyre load 
p coefficients of Magic Formula 
@y slip angle 
γy camber angle 
λ scaling factors of Magic Formula 





Tyre identification from road tests on a complete vehicle 

 1 

Introduction 

This research was carried out upon request of the Centro Ricerche Fiat (CRF). At the 

same time it is my Master thesis for the specialization Engineering Mechanics of the 

Master Precision & Microsystems Engineering at the faculty of Mechanical 

Engineering of the Delft University of Technology, the Netherlands.  

Within CRF the research was executed for the Vehicle Dynamics Group of the 

Vehicle Dynamics and Fuel Economy department. My company-tutor was 

I. Camuffo MSc. and at TU Delft my supervisor was E.J.H. de Vries MSc. The goal of 

this project is to develop a computer application which can be used for calculating 

automatically the tyre parameters corresponding to the vehicle behaviour gathered 

from experimental data.  

Background 

Centro Ricerche Fiat (CRF) was founded in 1976 as the Fiat Group’s major source of 

expertise in innovation, research and development. It is established as a consortium, 

whose shareholders are Fiat Group companies. CRF employs more than 850 

professionals. The head office, within which this research was performed, is located 

in Orbassano near Turin in Italy. The other three offices are also located in Italy in 

Trento, Bari and Foggia. Separately, CRF collaborates with the Centro Studi Sistemi 

di Trasporto (CSST) of Turin and holds a controlling interest in the Plastics and 

Optics Research Centre (CRP).  

The Centro Ricerche Fiat has achieved significant results, as can be deduced from the 

total number of patents held (over 2300, with 600 applications still pending). The 50 

awarded European projects confirm its significant contribution to European research. 

 

Figure 1 Head office of CRF in Orbassano 
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CRF’s objective is to use innovation as a strategic lever and to enhance the results of 

its work. The development and implementation of new content makes it possible to 

produce distinctive and competitive products. The consortium is therefore able to 

play an active role in the technological growth of the different community areas of 

the Fiat Group and its partners.  

Moreover, CRF is active in the sustainable mobility research field. Their activities 

focus on investigating innovative solutions that address all aspects of sustainability 

in transport, among which reducing emissions and noise pollution are significant 

issues. Furthermore, increasing fuel efficiency by reducing vehicle weight, and 

improving its dynamics and aerodynamics is being researched thoroughly. The 

overall aim of CRF is to obtain more ecological, safer and more comfortable vehicles. 

With respect to the latter two, tyre aspects and thus tyre characterization are of vital 

importance. 

Context 

The tyre data supplied by tyre manufacturers is generally not fully representative of 

the behaviour of tyres on the road. This is due to the different testing conditions; 

individual testing of a tyre on a roller bench or a flat track as opposed to tyre testing 

on a complete vehicle on the road. Also the changing conditions due to tyre wear 

and the different test environments influence this process. Therefore vehicle 

manufacturers have to modify the tyre data in order to improve the numerical-

experimental correlation at vehicle level and are able to validate vehicle models with 

data coming from experimental tests.  

The standard approach for the validation of a vehicle model for handling analysis 

consists first in the validation of the suspension models. These models are validated 

using the experimental data from the elasto-kinematic bench tests. For these tests the 

suspensions and their components are excited and the response is measured. 

Afterwards the complete vehicle model is validated against the test data coming 

from road tests. For this validation the model is adjusted by acting upon the 

parameters of the tyre model.  

Until now this last validation has been undertaken by engineers at CRF. They modify 

the tyre model parameters individually and simulate the behaviour of the vehicle 

until it matches the behaviour that emerges from the experimental data. This starts 
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with tuning the parameters that influence the quasi-static lateral behaviour of the 

vehicle, which are induced by manoeuvres with slow dynamics. The verification is 

then extended to the parameters that influence the transient behaviour and those 

influencing the combined behaviour (lateral and longitudinal loads). This trial-and-

error method can take up some days of work and reduces the reliability and 

reproducibility of the validation process. It is clear that this process is time 

consuming, not consistent and not efficient. 

Task 

To improve the characterization of tyres from road tests an application needs to be 

developed that automates the identification of tyre model parameters. The Magic 

Formula tyre model is used to represent the tyre behaviour. This model is available 

in literature and used all over the world for this purpose. The application should be 

capable of taking into account data from experimental manoeuvres and perform 

simulations with different vehicle models (available within CRF), where the input 

data is represented by the tyre parameters. 

Using optimization algorithms, the application has to minimize the difference 

between the data obtained by experimentally performed manoeuvre on the test track 

and the data coming from the simulated manoeuvre using a vehicle model. By 

obtaining the tyre parameters with the same method every time, the process is better 

reproducible and has a higher reliability than the manual process. In addition, the 

employees at CRF need less time to characterize the tyres and can invest their time 

more effectively. The original assignment formulated by CRF (in Italian) can be 

found in Appendix A. 
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Outline

 

Figure 2 Scheme of tyre parameter identification process corresponding to the structure of this thesis 

A schematic representation of the total process for identifying the tyre parameters is 

given in Figure 2. This scheme covers the whole process from the theory and the 

models to the results and conclusions. It is divided in three parts, which correspond 

to the main parts of this thesis. The blocks in each part correspond to the chapters of 

this thesis.  

Seen on a global level, the Part I treats the general theory, the modelling used for the 

application and the data acquisition. In Part II the designed application for the 

optimization routine and related topics are discussed. Part III shows the results that 

the application has produced and contains conclusions and recommendations based 

on the results. 
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Part I consists of four chapters. The chapter 1 is an introduction to the vehicle theory 

and tyre theory. In chapter 2 the vehicle models are introduced. Chapter 3 deals with 

the manoeuvre. The chapter 4 describes how the experimental data is obtained and 

processed. 

Part II also includes four chapters. In chapter 5 the need and working of the 

application is explained. In chapter 6 the parameters on which the optimization is 

based are discussed. Chapter 7 touches upon the optimization procedure itself. Other 

options that concern the optimization procedure are treated in chapter 8. 

In Part III, which consists of two chapters, the results of the optimization using 

different options for the two vehicle models are shown in chapter 9. Chapter 10 

contains a general conclusion of the thesis and a ‘best practice’ is presented for both 

vehicle models. This chapter includes recommendations for further research and for 

the improvement of the application. 
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Part I  General Theory 

“Mathematical tyre models are used to calculate the tyre forces as responses to the wheel 

motion with respect to the road. The model may be a part of a comprehensive vehicle model 

that serves to analyse the dynamic behaviour of the vehicle while running over a road 

surface.” – Hans B. Pacejka 

 

The mathematical tyre model introduced by Pacejka is the Magic Formula tyre model. 

For using the model in an optimization process the understanding of the vehicle 

behaviour using tyre models is essential. 
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1 Vehicle and tyre theory 

The behaviour of a modelled vehicle is based primarily on its tyre model. This makes 

vehicle and tyre models closely related. For the understanding of this thesis both 

modelling principles are discussed. 

A basic analysis, which is performed in this chapter, uses a slowly cornering vehicle 

represented by the simplest available model. This analysis covers the fundamental 

aspects of the vehicle’s motions in a horizontal plane. Besides, it provides the basis 

for the explanation of the vehicle’s handling, responsiveness to the driver input or 

ease of control. The vehicle handling properties are further analysed in accordance 

with the tyre characteristics. 

In section 1.1 a basic introduction is given to vehicles in general and the simple 

modelling of a vehicle is discussed. Section 1.2 provides a basic introduction to tyres 

and the modelling thereof. 

1.1 Introduction to lateral vehicle dynamics 

In subsection 1.1.1 the vehicle-ground interaction and different aspects affecting the 

behaviour of the vehicle are discussed. Thereafter, in subsection 1.1.2, an important 

vehicle model is introduced, the bicycle model. In subsection 1.1.3 the model’s 

important vehicle properties are derived and analyzed, among which the equations 

of motion for steady state cornering. Subsection 1.1.4 treats conclusively the vehicles 

handling behaviour by making use of the equations derived in subsection 1.1.3. 

1.1.1 General vehicle properties 

A simplified explanation of the relation between vehicle, tyre and road is given by: 

the vehicle is supported by the suspensions which connect the tyres, which are 
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supported by the ground, to the vehicle. The tyres transfer the driving power 

through the wheel-ground contact. To control the trajectory of the vehicle they 

provide the required lateral forces. As written in the introduction, the suspensions 

were validated by means of an elasto-kinematic bench test.  

 

Figure 3 Example of lateral force vs. slip angle curve 

Experimental measurements show the lateral force (Fy) development as a function of 

the slip angle (α). An example of this plot is given in Figure 3. The lateral force 

represents the horizontal force at road level, while the slip angle is given by the angle 

between the forward speed and the actual speed of either the wheel or the axle, as 

drawn in Figure 4. For the Fy-α relation the lateral force first builds up linearly with 

the slip angle. Then slowly a maximum lateral force is reached, which for higher slip 

angles then diminishes to a constant lateral force. This is due to the saturation of the 

tyre and explained further in subsection 1.1.4.  

The (linear) slope of the curve is one of the tyre characteristics that determines the 

basic linear handling and stability behaviour of vehicles. The slope is also referred to 

as cornering stiffness (CF$), while the lateral force is also called cornering force. The 

non-linear shape of the side force has a considerable effect on the handling 

characteristics and stability properties of the vehicle at higher lateral accelerations. 

Load dependency, notably the non-linear behaviour relationship of cornering 

stiffness with tyre normal load, has a considerable effect on the handling 

characteristics. This is described in more detail in subsection 1.1.4.  

Aside from the slip angle, the camber angles of the wheels cause a lateral force. This 

angle, pictured in Figure 4, is given by the angle between the symmetry-plane of the 

wheel and the road normal. Generally, the camber angles for four-wheeled vehicles 

are small and for simple analyses in the linear range the forces generated by the 

camber angles are not taken into account. This is explained further in subsection 1.2.3. 
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Figure 4 Slip and camber angle drawn schematically 

1.1.2 Bicycle model 

The steady-state handling analysis adopts a simple single track vehicle model. In this 

bicycle model, the vehicle is considered as one body to which one front and one rear 

wheel are attached. The wheels can be chosen to be steerable or fixed. A constant 

speed, a flat road, and small roll angles are assumed for the model. These 

assumptions restrict the movement to the horizontal plane. The driving forces to 

keep a constant velocity are considered small, to prevent longitudinal slip.  

For high lateral accelerations, above 0.7 g, the contribution of the roll motion of the 

vehicle body in addition to the vertical load change on the wheels of the individual 

axles cannot be disregarded. This can also be deduced from Appendix A. Simple 

adjustments of parameters of the vehicle model cannot compensate for this. 

Therefore effective axle characteristics need to be calculated. This is explained further 

in subsection 2.1.1.  

Figure 5 shows the bicycle model, with a steerable front wheel and a fixed rear wheel. 

The local coordinate system is connected to the centre of gravity. Based on the 

Society of Automotive Engineers (SAE-) coordinates, x points forward, z points in 

the direction of gravity and y is perpendicular to x and z and points to the right.  
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Figure 5 Schematic representation of the bicycle model according to the SAE coordinate system 

Generally three degrees of freedom are needed to describe the vehicles dynamic 

position in the horizontal plane. Degrees of freedom (DOF) are directions or rotations 

in which the vehicle is free to move. For the horizontal plane, the position in x-

direction (x), the position in y-direction (y) and the orientation (ψ) of the vehicle with 

respect to the x-axis are regarded as such. The constant forward velocity makes it 

reasonable to disregard the DOF in x-direction, this way a two DOF vehicle model is 

obtained. 

In the figure, the wheelbase of the vehicle is denoted by L. The distance between 

front axle, recognizable by the subscript 1, and centre of gravity is called x1. The 

distance between the rear axle, recognizable by subscript 2, and the centre of gravity 

is called x2 and has a negative sign. The steer angle is represented by δ1, while β 

represents the sideslip angle given by the difference in angle between forward speed 

and actual speed of the centre of gravity. The symbols $1 and $2, correspond 

respectively to the front and rear slip angles. These angles are given by the 

differences between the direction of the velocity of the wheel and the direction of the 

wheel.  

The velocity vector of the centre of gravity is indicated by V. Velocities and forces at 

the front- and rear axle are separated into a component in x-direction (longitudinal) 



Tyre identification from road tests on a complete vehicle 

 13 

and a component in y-direction (lateral). The longitudinal velocities of the two axles 

are denoted by u1 and u2 while the lateral velocities are denoted by v1 and v2. It is 

assumed that the forward speed remains constant; therefore the x-component of the 

force is neglected. With Fy1 and Fy2 the lateral forces are denoted at the front and rear 

axle, which are perpendicular to the direction of the respective wheel.   

To calculate the steer angle and the sideslip angle from the wheel slip angles 

kinematic terms are introduced, which represents the steer angle and the sideslip 

angle when the slip angles are zero for low speeds. The calculation of the steer angle 

and the sideslip angle is shown in Appendix C. 

The equations of motion for the bicycle model, for |ψ|<<1, now read: 

 
1 2 1 1 2 2y y F Fmy F F C Cα αα α= + = +ɺɺ  (1-1) 

 
1 1 2 2 1 1 1 2 2 2y y F FI F x F x x C x Cα αψ α α= + = +ɺɺ  (1-2) 

The slip angles as functions of y and ψ can be found after simplification and using 

linearization and are expressed by: 

 1 1
1 1

1

arctan
v v

u V
α δ δ

 
= + − ≈ + 

 
 (1-3) 

 2 2
2

2

arctan
v v

u V
α

 − −= ≈ 
 

 (1-4) 

The track of the model is zero, because it is a bicycle model. Therefore the 

longitudinal velocity is not affected by the yaw velocity and may be assumed equal 

to V. The lateral speeds at the front and rear axle, on the contrary, are affected by the 

yaw velocity. These are equal to the lateral speed of the centre of gravity plus a 

contribution of the yaw speed times the distance between the respective axle and the 

centre of gravity. Therefore the lateral velocities are described by: 

1 1

2 2

v v x

v v x

v y V

ψ
ψ

ψ

= +
= +

= −

ɺ

ɺ

ɺ

 

Implementing these relations and grouping the terms the equations of motion 

become: 

( ) ( ) ( )1 2 1 1 2 2 1 2 1 1F F F F F F F

y
my C C C x C x C C C

V V
α α α α α α α

ψ ψ δ+ + + + − + =
ɺɺ

ɺɺ  (1-5) 

( ) ( ) ( )2 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 1F F F F F F F

y
I C x C x C x C x C x C x C x

V V
α α α α α α α

ψψ ψ δ+ + − + + + =
ɺ ɺ

ɺɺ  (1-6) 
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For shorter writing it is defined that: 

1 2

1 2

2 2 2
1 2

F F

F F

F F

C C C

Cs C a C b

Cq C a C b

α α

α α

α α

= +
= +

= +

 

Using the notations introduced above, the equations of motion can be written as: 

 
1 1F

y
my C Cs C C

V V α
ψ ψ δ+ + − =
ɺɺ

ɺɺ  (1-7) 

 2
1 1 1F

y
I Cq Cs Cs C x

V V α
ψψ ψ δ+ + − =
ɺ ɺ

ɺɺ  (1-8) 

These relations are associated with a fourth order system, which implies four 

solutions. To solve the equations of motion the determinant is written down, set to 

zero and calculated; 

2

2
2

det 0

C Cs
m C

V V

Cs Cq
I Cs

V V

λ λ λ

λ λ λ

+ −
=

+ −
 

Leading to the characteristic equation: 

 2 2 2 2 2
2 2

2
0

CI Cq m C q C s
mI mCs

V V
λ λ λ + −+ + − = 
 

 (1-9) 

From the characteristic equation it is deduced that two roots are equal to zero. The 

other two solutions are obtained from the argument between brackets. Substituting 

the roots in the standard exponential function, and introducing a polynomial of 

grade n-1 for all n poles at zero leads to the following response: 

1 2

1 2

1 2

1 2

t t

t t

y A Bt C e C e

D Et G e G e

λ λ

λ λψ
= + + +

= + + +
 

The first two terms of the response describe the undisturbed straight movement 

(E=0). These constants don’t provide information on the dynamic behaviour; they are 

only defined by the choice of the coordinate system. Without changing the essence of 

the problem, it is possible to add an arbitrary value to y and ψ. It is therefore 

concluded that only the first derivatives of the position in y-direction and the first 

derivative of the orientation matter. With this knowledge two new variables are now 

introduced: 

v y V

r

ψ
ψ

= −
=
ɺ

ɺ
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The system of equations finally comes to be: 

1.1.3 Linear steady state cornering 

During steady state cornering the velocities observed from the vehicle are constant, 

therefore the time derivatives of equation (1-11) are set to zero. The equations of 

motion can now be described: 

 
1 1F

v r
mVr C Cs C

V V α δ+ + =  (1-12) 

 2
1 1 1F

r v
Cq Cs C x

V V α δ+ =  (1-13) 

Considering that the vehicle drives an arc with a constant radius R (δ≠0), the 

following relation holds: 

V
r

R
=  

The expression for the lateral velocity is deduced from the first equation of motion 

and reads: 

2
1 1FC V mV r

v sr
C C

α δ= − −  

Substituting this result into the second equation of motion and replacing r in the 

same equation yields:  

 ( )
2 2 2

1 1 1F

Cq mV s Cs
C x s

R α δ− − = −  (1-14) 

The track curvature as a function of the steer angle can now be calculated: 

 ( )1 1
2 2 2

1

1/ FC x sR

Cq mV s Cs
α

δ
−

=
− −

 (1-15) 

Inverting the relation to get a function of V2 and using the fact that a + b = L leads to: 

 

( ) ( )
2 2 2 2 2

1

1 1 1 11/ F F

Cq mV s Cs mV s V
L L

R C x s C x s gα α

δ η− −= = − = +
− −

 (1-16) 

The symbol η represents the understeer coefficient, which characterizes the handling 

behaviour of the vehicle. This term is explained further in the next subsection. 

 ( ) 1 1F

v r
m v Vr C Cs C

V V α δ+ + + =ɺ  (1-10) 

 2
1 1 1F

r v
Ir Cq Cs C x

V V α δ+ + =ɺ  (1-11) 
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1.1.4 Handling 

With handling the responsiveness of a vehicle to the driver steer input is denoted. 

This implies that handling is an overall measure of the combination of driver and 

vehicle. The combination of driver and vehicle can be considered either as a closed-

loop or an open-loop system. If the system is considered as closed-loop, the driver 

observes the position and direction and acts on it, pictured in Figure 6. On the 

contrary, if the system is considered as open-loop, the vehicle responds to specific 

steering inputs. This way the vehicle can be characterized separately. The most 

important properties for the handling characterization are understeer and oversteer.  

 

Figure 6 A Ferrari California undergoing a handling test 

These terms describe the way a vehicle follows the turns on the road. The distinction 

of these terms is caused by a difference in front and rear slip angle. When the front 

slip angle exceeds the rear slip angle, the vehicle slides more over its front wheels 

and makes a larger turn than the direction of the front wheels suggest. This 

phenomenon is called understeer. On the contrary, oversteer occurs when the vehicle 

slides more over its rear wheels and a sharper than expected turn is made. The term 

oversteer originates from the sliding of the back wheels, which tend to ‘overtake’ the 

front wheels.  

The previously mentioned understeer coefficient provides a basis to explain the same 

principle using analytical formulas. This coefficient describes the degree of 

understeer for a vehicle, according to the cornering stiffness (CF$) and the front- and 

rear axle loads (P) in the following way: 

1 2

1 2F F

P P

C Cα α

η = −  
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The axle loads at front and rear are calculated using the moment equilibrium. These 

are given by: 

2
1

x
P mg

L

−=  

1
2

x
P mg

L
=  

Assuming a linear and equal relation of cornering stiffness with axle load for both 

axles and constant with respect to the slip angle, then the understeer equals zero 

according to the relation for this coefficient. Such behaviour is referred to as neutral 

behaviour, which means that the vehicle follows the turn the way it should. This 

implies that the steer angle can remain constant while following a path with a 

constant radius for different lateral accelerations.  

Assuming a non-linear and equal relation of cornering stiffness with axle load for 

both axles, as shown in Figure 7, even if still constant with respect to the slip angle, 

the under- or oversteer behaviour is characterized by the load distribution between 

front and rear axle. If the load at the front axle is higher than at the rear axle, the 

front slip angle will be higher during cornering. In that case the ratio of vertical load 

and cornering stiffness for the front axle is higher than for the rear, which leads to a 

positive understeer coefficient. An understeered vehicle has to increase linearly the 

steer angle to maintain a path with constant radius for higher lateral accelerations. 

This is also valid vice versa; if the vertical load on the rear axle is higher, the rear slip 

angle will be higher during cornering, resulting in an oversteered vehicle. To 

maintain the path with a constant radius for higher lateral accelerations the steer 

angle should be linearly decreased. For an oversteered vehicle it is important to 

mention that above a certain critical speed the vehicle becomes directionally unstable. 

Safety reasons therefore induce that all passenger vehicles should have an 

understeered behaviour in the linear range. 
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Figure 7 Plot of non-linear relation between cornering stiffness and vertical load for different tyres 

The cornering stiffness can be assumed constant with the slip angle only for lateral 

accelerations below approximately 0.4 g. Therefore, this assumption is restricted to 

low lateral accelerations. Considering the Fy-$ curve, after the part where the linear 

cornering stiffness is valid, the curve starts to bend away from the initial slope. This 

is indicated as limit handling and is due to the saturation of the tyre. Saturation 

means that the build-up of lateral force for an increasing slip angle becomes less and 

eventually becomes zero or even negative for a further increasing slip angle. If 

saturation takes place at the front or rear axle the vehicle behaves in a more extreme 

way.  

A more realistic situation is obtained by assuming tyres with the same non-linear 

relation between lateral force and slip angle for the front and rear axle and with the 

same non-linear behaviour as a function of the vertical load.  

When higher lateral accelerations are considered, due to the non-linear relationship 

of the lateral force with respect to the vertical load, the effect of vertical load transfer 

from inner tyre to outer tyre becomes important. This implies that generally the slip 

angle of the tyres has to be higher to deliver the amount of lateral force required for 

cornering. 

The under- or oversteer behaviour is, especially for higher lateral accelerations, 

mainly characterized by the vertical load transfer distribution between front and rear 

axle. If the load transfer on the front axle is higher, the front slip angle will be higher 

and the saturation will take place at the front axle. The understeered vehicle has to 

further increase the steer angle to maintain a path with constant radius for higher 

lateral accelerations.  



Tyre identification from road tests on a complete vehicle 

 19 

This is also valid for the opposite circumstance; if the vertical load on the rear axle is 

higher, the rear slip angle will be higher, resulting in an oversteered vehicle. To 

maintain the path with a constant radius for higher lateral accelerations the steer 

angle must be decreased. Safety reasons therefore induce the fact that almost all 

passenger vehicles have an understeered behaviour also for high lateral accelerations.  

It is possible that a vehicle shows an understeered behaviour for the linear part of the 

cornering stiffness, but for limit handling it becomes oversteered. This can happen 

when static load is higher on the front axle but vertical load transfer between inner 

and outer wheel is higher at the rear axle than at the front axle.  

A comparison of two vehicles, one with limit understeer and one with limit oversteer 

is shown in Figure 8. These vehicles have the same linear understeer behaviour. The 

plot displays the steer angles vs. the lateral accelerations of the vehicles driving an 

arc with a constant radius. For high lateral accelerations, the understeered vehicle 

needs to increase its steer angle to follow the constant arc radius, where the 

oversteered vehicle needs to reduce its steer angle.  

 

Figure 8 Plot of steer angle vs. lateral acceleration for limit understeered and oversteered vehicle 

The sideslip curve shows a reversed pattern. The angle for the limit oversteered 

vehicle increases progressively, where the angle of the limit understeered vehicle 

reduces as can be seen in Figure 9. As explained in the previous paragraphs, most 

passenger vehicles are designed to have an understeered behaviour. This is also 

because experience shows that this behaviour can be controlled more intuitively by 

the driver.  
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Figure 9 Plot of sideslip angle vs. lateral acceleration for limit understeered and oversteered vehicle 

1.2 Introduction to lateral tyre dynamics 

Firstly a general tyre description is given in subsection 1.2.1, containing background 

information on its function and properties. In subsection 1.2.2 the tyre coordinate 

system is discussed followed by the development of lateral forces for cornering. 

Moreover, a physical explanation is given of the phenomena that develop the lateral 

forces in subsection 1.2.3. Subsequently, the different possibilities for tyre modelling 

are discussed in subsection 1.2.4. Subsection 1.2.5 focuses on the most important 

model for this thesis, the Magic Formula tyre model. 

1.2.1 General tyre properties 

Tyres are critical for vehicles because of the three basic functions they have. These 

functions are: 

• Supporting the vertical load, while cushioning against road shocks 

• Develop longitudinal forces, for breaking and accelerating  

• Develop lateral forces for cornering  

At the moment, for passenger vehicles, the standard tyre is the radial-ply tyre. These 

tyres, shown in Figure 10, were patented and introduced by Michelin in 1946. The 

higher road comfort, the better handling and the longer tread life compared to the 

previously standard bias-ply tyres, were reason enough to choose these as a standard.  
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Figure 10 Schematic drawing of radial-ply tyre 

A radial-ply tyre is composed of a flexible carcass of high-tensile-strength cords 

connected to steel cable beads that firmly anchor the assembly to the rim. Internal 

pressure allows the tyre to maintain its geometry under loading conditions. The 

radial-ply type of construction makes the sidewall extremely flexible resulting in a 

soft ride. The directional stability is produced by the cable beads, these keep the 

tread flat on the road despite the lateral deflection of the tyre caused by cornering. 

Some important aspects of the tyre that define its behaviour are material, inflation 

pressure, vertical load, size, width, speed and camber angle. These aspects contribute 

all in their own way to the stiffness and the behaviour of the tyre.  

1.2.2 Coordinate system and definitions 

 

Figure 11 Drawing of coordinate system from TNO Delft tyre user manual  

The ISO-coordinate system of the tyre is derived from the Delft tyre user manual. In 

Figure 11 this system is depicted. This system is not consistent with the definition by 

SAE in figure 5, but can be obtained with a 180° rotation about the x-axis. A 
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horizontal road on which the tyre is moving is used as a reference. The origin of the 

coordinate system, the wheel centre, is located in this plane at the cross-section of the 

two vertical symmetry axes. The direction of the wheel heading in the horizontal 

plane is regarded as the x-axis and orthogonal to that is the y-axis pointing to the left. 

The z-axis is orthogonal to the road plane and points upwards from the wheel centre.  

The longitudinal force Fx is the component of the force along the x-axis acting in the 

road plane. Fy is the lateral force component acting along the y-axis in the road plane. 

The normal force in the direction of the z-axis is denoted by Fz and acts normal to the 

road plane.  

1.2.3 Lateral slip 

With slip, the relative motion between the tyre and the road surface on which it 

moves is denoted. Pure slip can occur in longitudinal (direction of the wheel) or 

lateral (orthogonal to the wheels direction) direction. When both longitudinal and 

lateral slip occurs, this is called combined slip. For example when braking during 

cornering the lateral force decreases and the longitudinal force increases. The 

resultant of these two forces is then smaller or equal to the pure horizontal slip force, 

which cannot exceed its maximum value. This value is dictated by the nominal load 

and the friction coefficient. 

The aspects that develop lateral forces are looked at. The lateral forces generated by 

the tyre are necessary to control the direction of the vehicle and determine the 

handling behaviour. The origins of these forces, the slip angles and camber angles as 

stated in subsection 1.1.1, are explained in the next paragraphs.  

To define the wheel slip angle, the assumption is made that free straight forward 

rolling on a flat road at zero sideslip is considered the zero slip condition. The slip 

angle of the wheel defines the lateral slip. As for the axle slip angle of the bicycle 

model, the slip angle is the angle between the heading direction and the travel 

direction of the wheel (x-axis). This angle is considered positive if the travel direction 

of the wheel has a positive component in y-direction. The angle is thus measured 

from the wheel plane to the velocity vector.  

Physically, slip consists of the build-up of (additional) tyre deformation and possible 

sliding in the contact patch. This term describes the portion of a vehicle's tyre that is 

in actual contact with the road surface. The deformations generate lateral forces 
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acting mostly towards the rear of the contact patch. By convention the lateral force is 

taken at the centre of contact and an aligning torque is introduced.  

The aligning torque is represented by a lateral force at a distance (pneumatic trail) 

from the wheel centre that generates the same amount of torque. This lateral force 

provides a limited contribution to the total lateral forces (typically about 1%) and has 

a limited influence on the vehicle’s handling behaviour. Therefore this aspect is not 

considered for this thesis.  

 

Figure 12 Schematic drawing of tyre deformation due to a slip angle 

As stated in subsection 1.1.1, the slope of the curve is known as cornering stiffness. 

The load and inflation pressure are the main variables that influence this property. 

Other factors that have influence on the cornering stiffness are the type of tyre, the 

size and width and the tread design.  

The inflation pressure increases the carcass stiffness but reduces the length of the 

contact patch, so the net influence on cornering stiffness cannot be generalized. It is 

assumed that increasing the inflation pressure results in a higher cornering stiffness 

for passenger vehicles. The pressure mostly influences the lateral force generation at 

high loads. Pressure also has a strong influence on the peak traction level that can be 

achieved under slip angle conditions.  

Cornering forces increase with the vertical load, but not proportionally, due to the 

saturation of the tyre. This leads to, as mentioned in subsection 1.1.4, relatively 

higher lateral forces for low vertical loads than for high vertical loads. The 

understeer gradient is significantly influenced by this property.  
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Figure 13 Schematic representation of camber angle 

The camber angles, pictured in Figure 13, develop lateral forces as well. With camber 

angle the lateral inclination of the tyre is denoted, which is defined between the z-

axis and the wheel plane. Depending on the initial angle and the roll of the body this 

property can cause a bigger contact patch. This means that more lateral forces can be 

developed and the response to steering will be improved. The lateral force produced 

by the altered wheel-ground configuration is referred to as camber thrust. The 

camber is characterized by the initial slope of the curve, called camber stiffness. 

Camber stiffness of radial tyres is typically ten to fifteen times lower than the 

cornering stiffness of a tyre, as stated in the book by Pacejka. Therefore this 

contribution is of less importance.  

For the camber stiffness the most important variables are the tyre type and the tread 

design. Other variables that can influence the camber stiffness are the load and the 

inflation pressure.  

1.2.4 Modelling 

Considering all tyre modelling procedures, these can be divided in four categories. 

The first category describes the tyre by a complex physical model. Great details are 

described in this model and uses computer simulations and finite element models to 

compute the results. 

The second type of modelling for describing tyre characteristics makes use of a 

simplified physical model. An example is the brush-model. This model uses 

relatively simple mathematical formulas, while including a lot of important matters 

for its dynamics. A representation of this model is given in Figure 14. 
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Figure 14 Schematic drawing of brush-model 

The similarity approach is the third category, which is based on the use of some basic 

tyre characteristics typically obtained from measurements. By rescaling, distorting 

and multiplications new relationships are obtained to describe the conditions. The 

quick calculations made by this model are an advantage for the use in vehicle 

simulations. 

The last category treats the tyres using a purely empirical approach. For this method 

the experimental data is fitted with complex mathematical formulas, because simple 

polynomial fits are not capable to represent reliably the tyre behaviour over the 

complete range of slip angles. A well known example of this method is the Magic 

Formula tyre model, used throughout this thesis. In the next section this model is 

described in more detail. 

1.2.5 Magic Formula tyre model 

The Magic Formula, or Delft tyre model, is widely used to calculate steady-state 

force and moment characteristics for the use in vehicle dynamics studies. The 

development of this empirical model started in the 1980’s. In a cooperative effort 

between the TU Delft and Volvo, various versions (Bakker et al 1987, 1989, Pacejka et 

al. 1993) as a solution for this problem were produced. In these models the combined 

slip situation (longitudinal and lateral slip) was still modelled physically. This 

changed when Michelin introduced a purely empirical model (cf. Bayle et al. 1993). 
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Further developments were made by DVR, a joint venture of TU-Delft and TNO. The 

new version incorporates a method for the computation of the aligning torque by 

accommodating a relatively simple physically based combined slip extension. 

Data on which the Magic Formula is based can either come from individual tyre 

measurements or from complete vehicle tests. Tyre manufacturers base their 

estimations of the tyre coefficients on individual tyre tests. For CRF it is more 

important how the tyres respond during a complete vehicle test and what tyre 

behaviour is shown during the tests.  

In this thesis the lateral forces Fy at the front and rear axle are considered. This is a 

function of vertical force, slip angle camber angle and longitudinal slip. The last 

property is not taken into account, because the manoeuvre considered is performed 

at constant speed and does not induce longitudinal slip. The same holds for the 

camber angles, as their contribution to the cornering stiffness as mentioned in 

subsection 1.2.3. is low. Moreover, the camber angles of a four-wheeled vehicle are 

small. For high lateral accelerations this contribution could be more significant, but 

on the basis of full-vehicle tests this behaviour can hardly be discriminated.  

Disregarding the camber angle and longitudinal slip implies that the part of the tyre 

behaviour, which is dependent on the camber angle and brake slip, can not be 

changed by altering the parameters therefore meant. Possibly, the vehicle behaviour 

caused by these aspects can be compensated by altering other parameters in the 

model. This is acceptable considering their small influences on the vehicle behaviour 

and if the tyre behaviour matches the experimental data over the whole spectrum.  

The Magic Formula defines a curve starting in the origin, which reaches slowly a 

maximum and then tends to a horizontal asymptote. The formula for the lateral force 

Fy is defined as: 

 ( ) ( )( ){ }, sin arctan arctany z y y y y y y y y y yF F D C B E B Bα α α α = − −
 

 (1-17) 

$y =  Lateral slip angle 

By = Lateral stiffness factor 

Cy = Lateral shape factor 

Dy = Lateral peak value 

Ey = Lateral curvature factor 

The same relation holds for the front and rear axle curve. For identical front and rear 

tyres one could expect the axle characteristics to be identical. However, these can 
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differ considerably because of suspension kinematics and load transfer while 

cornering. An illustration of the curve generated by the Magic Formula is given in by 

showing the lateral force as a function of the slip angle for a given vertical load 

profile. 

 

Figure 15 Representation of Magic Formula model 

To fit the experimental data with the curve produced by the Magic Formula it might 

be necessary to shift the diagram horizontally or vertically to make sure the line 

passes through the origin. The most likely cause of this shift is camber. This effect is 

not accounted for throughout this thesis and is not considered. 

The variables mentioned in the formula are calculated using combinations of 

coefficients and scaling factors. Considering this aspect, two different ways are 

considered for resolving the problem of fitting the Magic Formula to the 

experimental data; either by changing the coefficients or by changing the scaling 

factors. The scaling factors are originally thought to compensate for deviating curves. 

The advantage of changing the coefficients instead of the scaling factors is that the 

components of the Magic Formula can be changed in a more detailed way. Their 

influence on the shape of the curve is discussed in chapter 6. 

The total number of parameters (more than 30) used in the Magic Formula makes it 

difficult and not effective to change all parameters individually for the identification. 
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If all parameters are considered the optimization is more vulnerable for finding local 

minima, this is explained further in chapter 5. The response can also be indifferent to 

certain parameter changes as for the parameters related to the camber angles. 

Parameters that describe force responses which are not excited by the manoeuvre, for 

example parameters describing the longitudinal slip, are not to be considered as well. 

Therefore the most important coefficients are selected to be used for the optimization 

process. This is explained in more detail in the subsections 2.1.2 and 2.2.2. 
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2 Models 

In order to compare the experimental data with the data from the simulated vehicle, 

two vehicle models were made available by CRF. Both models were written and 

operate in the Matlab/Simulink environment. To finally fit the experimental data the 

vehicle model is optimized by changing tyre parameters. The models are called by 

their number of degrees of freedom to protect the official names. 

The first model, explained in section 2.1, concerns a simple bicycle model with a 

rolling coefficient implemented. The advantages of this vehicle model are its 

simplicity, which gives good insight in the problem, and the quick iterations. It was 

mainly used to realize the optimization program.  

The second model, discussed in section 2.2, is a complete vehicle simulation model 

developed by CRF. This model was primarily used to find the best optimization 

model options of the application. An advantage of this model is the more realistic 

behaviour of the vehicle, leading to more reliable tyre parameters.  

2.1 Two-DOF Model 

This vehicle model was developed by CRF and used to make quick estimations of 

vehicle behaviour. The idea of the model for the use in the application was to 

calculate a good starting point for a second optimization, with a more complex 

vehicle model, to save time during the optimization process. This advantage arises 

from the fact that the simple model takes between two and three seconds per 

simulation, where the complex model requires 30 to 40 seconds. The speed of the 

calculations for this model made it also suitable for the build-up of the application. 

The vehicle model is based on the bicycle model, explained in the subsection 1.1.2, 
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which is considered as two degree of freedom system. In this model the roll of the 

vehicle is accounted, and the load transfer is accounted by calculating the effective 

axle characteristics.  

2.1.1 Vehicle model 

The underlying thought for this model is to calculate a stationary equilibrium for a 

gradually increasing lateral acceleration. When these outcomes are lined up a range 

of (stationary) lateral accelerations is obtained. For the equilibrium a slip angle is 

found that, according to the vertical load on the tyres, generates a lateral force that 

provides the lateral acceleration of the vehicle. The lateral acceleration starts at zero 

and a new equilibrium is calculated for every 0.01 g. This evolves until a lateral 

acceleration of two g is reached or no feasible equilibrium position can be found. The 

procedure stops at its maximum slip angle, therefore the curve has no decay. 

 

Figure 16 Two-DOF vehicle model scheme  

The simple vehicle model is divided in five sub-routines, pictured in Figure 16. These 

are explained shortly below: 

• In the first sub-routine the model data of the vehicle is implemented, like 

mass, wheel base, mass partitioning, steering ratio, suspension stiffness etc. 

• The second sub-routine calculates the roll stiffness of the tyres and 

suspensions. Hence the total linear stiffness of the suspension system and the 

vertical translations of the tyres and the suspensions are worked out.  

• A calculation of the vertical load (Fz) for every tyre is made in the third sub-

routine for every value of ay, which uses among other vehicle data the roll 

stiffness calculated in the previous sub-routine.  

The vertical tyre load consists of a static contribution and a quasi-static 

contribution. The static contribution is calculated using moment equilibrium, 

this way the total vertical load is divided between front and rear axle. The 

individual static tyre load is obtained by dividing the load on the axle of the 

respective tyre by two. 

The quasi-static contribution to the vertical tyre force, different for each 

lateral acceleration, is due to the lateral cornering forces acting at road level 
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and thus creating a moment about the centre of gravity. To counteract this 

moment a couple of vertical forces act at a relative distance of the track width. 

These effective axle cornering characteristics also represent effects that result 

from suspension and steering system design factors such as steering 

compliance and roll steer. In Figure 17 the rolling axis and the centre of 

gravity is represented showing the different rolling heights at the front.  

 

Figure 17 Schematical overview of rolling axis 

• Next, in the fourth sub-routine, the required lateral force (Fy) is calculated for 

the front and rear axle. The lateral force is delivered by the tyres. This lateral 

force produced by the tyres is calculated using a simplified form of the Magic 

Formula described in subsection 2.1.2. With the given parameters for the 

Magic Formula the slip angle is calculated that develops the required lateral 

force. By dividing the lateral force by the slip angle the approximated linear 

axle stiffness is worked out for both axles. 

• Finally in the fifth sub-routine the total slip stiffness is computed. The rest of 

the code contains calculations of the other contributions to the total slip. 

Besides the steer angle and sideslip angle are worked out using the formulas 

from the Appendix C. 

2.1.2 Simple Tyre Model 

The tyre model used for this vehicle is based on the Magic Formula. The parameters 

used in this version are simplified with respect to the original formula. In the next 

paragraphs these simplifications are explained. In the formulas p refers to a 

parameter, while λ refers to a scaling constant. 

Recalling the Magic Formula for the lateral force from the previous chapter:  

 ( ) ( )( ){ }, sin arctan arctany z y y y y y y y y y yF F D C B E B Bα α α α = − −
 

 (2-1) 
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The shape factor Cy is described by: 

 
y Cy CyC p λ=  (2-2) 

Considering the function for Cy, two parameters can be varied (pCy and λCy). These 

changes will have the same linear effect on Cy. 

 

The Magic Formula defines the peak height Dy of the graph with the formula:  

( ) ( )( )2
1 2 3, 1y z y y Dy Dy z Dy y y zD F p p df p Fµγ µ γ λ= + −  

The relation for dfz is: 
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Considering the function for Dy three parameters are chosen to be variable (pDy1, pDy2 

and λµy). The other terms in the formula are related to the camber angles of the 

vehicle, which are not considered. Therefore the terms pDy3 and γy are set to zero. This 

results in the new expression for Dy: 

 ( ) ( )1 2y z y Dy Dy z y zD F p p df Fµµ λ= +  (2-3) 

In this case it can be seen that with pDy1 and pDy2 the individual contributing terms 

can be changed, while λµy only changes the total value. 

 

Ey according to the Magic Formula defines the curvature factor with: 

( ) ( ) ( ){ } ( )1 2 3 4, 1 sgn                    1y z y Ey Ey z Ey Ey y y EyE F p p df p pγ γ α λ= + − + ≤  

The same relation for dfz holds as before. As for the function for Dy of the Magic 

Formula only three parameters are chosen to be variable (pEy1, pEy2 and λEy). The other 

parameters (pEy3, pEy4 and γy) are set to zero. The Ey contribution can not have a value 

higher than one. If this may happen a restriction is built in the model that will change 

the Ey parameter to one. The expression for Ey now reads: 

 ( ) ( )1 2y z Ey Ey z EyE F p p df λ= +                         ( )1≤  (2-4) 

 

Ky, used to calculate stiffness factor By, is according to Magic Formula defined by: 
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Again the camber angle is not considered, thus pKy3 equals zero. The scaling factors 

and coefficients which are chosen to be variable are λKy, pKy1 and pKy2. Scaling factor 

λFz0, which allows the tyres to be scaled according to their rated loads, is not 

considered for it has a complex influence on the curve. The relation for Ky for this 

model is: 

 ( ) 1 0
2 0

sin 2arctan z
y z Ky z Ky

Ky z

F
K F p F

p F
λ

   =   
    

 (2-5) 

 

To calculate the stiffness factor By is calculated by: 

 ( ) y
y z

y y

K
B F

C D
=

 

(2-6) 

2.2 Fourteen-DOF Model 

This vehicle model is entirely written and developed by CRF, and is distributed 

inside the Fiat Group. The model is more complex then the Two-DOF vehicle model, 

especially because of the higher number of degrees of freedom. This explains the 

higher computation time per simulation. The aim with this model is to calculate 

accurately the tyre parameters that reproduce the behaviour of the experimental 

vehicle. 

The fourteen degrees of freedom of this model are linked to real DOF of the vehicle 

and its components. Six are given by the body, three translations and three rotations. 

Four other DOF are given by the four suspension deflections and the last four are 

given by the individual wheel speeds.  

2.2.1 Vehicle Model 

On the grounds that the model is meant for internal use, not much can be disclosed 

about this model. However it can be reported that the model consists of various 

modules that can be changed to represent the vehicle behaviour. The modules are 

not structural, but look-up table based. By changing the data in the tables the chassis, 

the front and rear suspension, the powertrain, the steering system or the tyres can be 

adapted. Moreover, a driver model is available which simulates the behaviour of 

different drivers.  
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The test manoeuvres performed in experimental tests by CRF are made available in 

the model as well as a tool to extract data from the model simulation. The output of 

this tool is consistent with the extracted data from the experimental manoeuvres. The 

model is used to simulate the vehicle’s behaviour and to optimize vehicle handling 

as well as ride comfort. 

2.2.2 Complete Tyre Model 

The tyre model used by this vehicle model to simulate the vehicles behaviour is 

based on the complete Magic Formula. The difference between this model and the 

tyre model from the Two-DOF vehicle model is that all the parameters of the model 

are considered, but most of them are kept constant. These parameters come from the 

tyre manufacturer and should describe properly the behaviour of the tyre. Like in the 

simple tyre model the vertical and horizontal offset is not considered. For 

consistency reasons, the same parameters as mentioned for the Two-DOF model are 

chosen to be variable. The procedure to identify the behaviour of the tyre 

corresponding to the experimental data for both models is then similar and can be 

easily compared.  

Recalling the formula for the lateral force, which was represented by the Magic 

Formula, was denoted in the previous chapter by:  

 ( ) ( )( ){ }, sin arctan arctany z y y y y y y y y y yF F D C B E B Bα α α α = − −
 

 (2-7) 

The shape factor Cy is described according to: 

 
y Cy CyC p λ=  (2-8) 

Considering the function for Cy, two parameters can be varied (pCy and λCy), but these 

changes will have the same linear effect on Cy. 

 

According to the Magic Formula the peak height of the graph is defined by Dy. 

Originally this relation is given by: 

 ( ) ( )( )2
1 2 3, 1y z y y Dy Dy z Dy y y zD F p p df p Fµγ µ γ λ= + −  (2-9) 

Considering the function for Dy of the Magic Formula three parameters can be varied 

(pDy1, pDy2 and λµy). The other parameters and scaling constants are not variable. 

Therefore their influence in this case remains present, but using the other parameters 

to base the optimization on the result is equally valuable. 
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Ey according to the Magic Formula defines the curvature factor with:  

 ( ) ( ) ( ){ } ( )1 2 3 4, 1 sgn       1y z y Ey Ey z Ey Ey y y EyE F p p df p pγ γ α λ= + − + ≤  (2-10) 

In this equation of the Magic Formula only three parameters are varied (pEy1, pEy2 and 

λEy). The rest of the values are held constant. This makes the change of the influence 

of the camber angle zero.  

 

Ky, used to calculate stiffness factor By, is according to Magic Formula defined by: 
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Because the camber angle is still not considered pKy3 is constant. The scaling factors 

and coefficients on which the fitting is based are λKy, pKy1 and pKy2. The λFz0  is 

disregarded like in subsection 2.1.2. This leads to the following relation for stiffness 

factor By: 
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3 Manoeuvre 

A vehicle manoeuvre is a planned movement of the vehicle, dictated by location 

and/or time. Manoeuvres are operated to characterize vehicle handling aspects. In 

section 3.1 of this chapter an introduction is given to the different manoeuvres used 

for experimental tests. Section 3.2 deals with the manoeuvres ‘performed’ by the 

simulation models, which approach the experimental tests.   

3.1 Introduction to vehicle manoeuvres 

The most important standard steering manoeuvres are discussed in this section. 

These manoeuvres are useful to characterize the behaviour of the vehicle and tyres, 

and have all their own purpose, with its advantages and disadvantages. Manoeuvres 

are divided in two categories; stationary and transitory manoeuvres. Stationary 

manoeuvres adopt slowly applied variations, while transitory manoeuvres adopt 

quickly applied variations. Examples of the manoeuvres of the two categories are 

given in the subsections 3.1.1 and 3.1.2. All are ISO-standard procedures. More 

information can be found by reading the manuals of the manoeuvres.  

3.1.1 Stationary manoeuvres 

• Slow ramp steer (ISO-4138) 

Steering manoeuvre in which the steer angle of the vehicle is increased slowly 

with a maximum of 60 deg/s up to 180 degrees. This can be done either at 

constant speed or constant throttle in simulation. Generally the experiments 

are performed with constant throttle, because when performed at constant 

speed also longitudinal slip is introduced. For constant throttle this effect can 
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be neglected. By means of this manoeuvre the whole range of lateral 

accelerations can be explored, from 0 to the limit of lateral acceleration.  

• Steering pad (ISO-4138) 

This manoeuvre prescribes the radius of a circle the vehicle has to follow. 

During the manoeuvre the speed is increased gradually and the driver is 

required to change the steer angle to pursue the circular path. The amplitude 

of the steering wheel deflection depends on the behaviour of the vehicle. 

 

The manoeuvres considered above, if performed on the same vehicle, can yield 

relatively big differences in the results. These influences may be caused by the 

different approaches to the manoeuvres and the heavy wear on the tyres. 

3.1.2 Transitory manoeuvres 

• Step steer (ISO-7401) 

This procedure is similar to the slow ramp steer. Only now the increase of the 

steer angle will be much faster, about 250 degrees/s up to a certain steer 

angle. Then the steer angle is held constant and the vehicle is stabilized. By 

increasing the maximum steer angle higher lateral accelerations are explored 

up to the point where the vehicle can not be stabilized anymore.  

• Frequency response/Sweep (ISO-7401) 

At a constant speed, above 10 m/s, a sine movement with constant amplitude 

is assigned to the steering wheel with a slowly increasing frequency. The 

lateral accelerations caused by the sweep are measured, so that the maximum 

cannot exceed a certain value, for example 0.7 g. During the sweep the 

frequency is increased from 0 to 4 Hz. The data is analysed in the frequency 

domain. 
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3.2 Manoeuvre model 

The manoeuvre performed to obtain the experimental data is a slow ramp steer 

manoeuvre. Due to the very slow transition of this manoeuvre it is considered as a 

steady state manoeuvre. This implies that the transient behaviour is not excited 

during this manoeuvre.   

The reason for performing this steady state manoeuvre is the fact that the dynamic 

behaviour of the vehicle can not be simulated using the Two-DOF model. As 

explained in section 2.1, based on the gradually increasing lateral acceleration, the 

Two-DOF vehicle model calculates a stationary equilibrium. A range of stationary 

lateral equilibriums is then produced, excluding the possibility to convene the 

dynamic behaviour.  

The Fourteen-DOF, which does consider the dynamic behaviour, simulates the slow 

ramp steer manoeuvre like in the experimental test. By using this manoeuvre the 

transient behaviour modelled in the vehicle model is not excited. Therefore the 

results from the two models and the experimental data are equivalent.  

Moreover the necessity to perform a steady state manoeuvre is given by the Magic 

Formula tyre model. The parameters under consideration affect the quasi static tyre 

behaviour. To excite this behaviour, and be able to discriminate the parameters that 

induce this behaviour, the (stationary) slow ramp steer is the appropriate manoeuvre.  

 

Figure 18 Bird’s eye view of the CRF test track near Balocco, Italy 
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4 Measurements 

The measurements coming from the experiments with a complete vehicle were 

already available at CRF. These tests were performed at the CRF test track near 

Balocco, Italy. In Figure 18 a bird’s eye view of the test track is shown. 

For the thoroughness of this thesis, an outline of the signal acquisition procedure 

performed by CRF is given in section 4.1. In section 4.2 the elaboration of the signals 

to obtain the data are presented. 

4.1 Signal acquisition 

The signal acquisition is explained for the slow ramp steer manoeuvre. The goal of 

the slow ramp steer manoeuvre is the characterization of vehicle behaviour up to the 

limit in quasi-steady state condition. At CRF the measured signals and filters used 

for all manoeuvres comply with ISO DIS 15037, in which the general conditions of 

the test methods for passenger car vehicle dynamic are described. During the test the 

following variables are measured: 

• Steering wheel angle 

• Steering wheel torque 

• Lateral acceleration 

• Yaw rate 

• Roll rate 

• Sideslip angle 

• Vehicle speed 

• Longitudinal acceleration 
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Figure 19 Photo of a gyrometric box that measures lateral acceleration and speed attached to a vehicle 

The process of acquisition consists of at least three runs, to obtain reliable data. The 

manoeuvres are performed according to the described procedure.  

4.2 Elaboration 

After the experiments have been completed the acquired signal must be elaborated, 

to extract useable data. This procedure implies resampling of the data at the standard 

frequency, and filtering and scaling of the data. If there is some offset in the 

measurements this is then eliminated.  

The gyrometric box is not placed at the centre of gravity of the vehicle. In order to 

calculate the lateral acceleration of the centre of gravity from the measured lateral 

acceleration, compensations for different factors have to be applied. In Figure 20 this 

procedure is shown schematically. First the contribution induced by the vehicle roll 

is eliminated. This compensation of the g-component is deducted from ay, with: 

 
, siny y measa a g θ= − ⋅  (4-1) 

Then the position compensation is applied for the offset in z-direction. The 

compensation in z-direction is necessary to account for the acceleration caused by the 

roll acceleration at the gyrometric box. This compensation in z-direction is given by: 

 
,y y measa a dz θ= + ⋅ ɺɺ  (4-2) 

Next the compensation of the y-direction is required to account for the roll speed at 

the gyrometric box. This compensation in y-direction is given by: 

 2
,y y measa a dy θ= + ⋅ ɺ  (4-3) 
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Figure 20 Representation of lateral acceleration compensation due to sensor position 

Then using a linear bicycle model with non-linear cornering stiffness characteristics 

is identified from the measured data. The graph in which the results are synthesised 

shows different plots and parameters. The most important ones are: 

• Slip angle and gradient at front axle and rear axle using the formula’s from 

Appendix C 

• Lateral forces, by multiplying the lateral acceleration with the load on the 

respective axle and therewith the cornering stiffness at front axle and rear  

• Steering wheel angle and gradient vs. lateral acceleration, calculated at 

reference speed (100 km/h) and nominal radius 

• Sideslip angle and gradient vs. lateral acceleration, calculated at reference 

speed (100 km/h) and nominal radius 

The resulting number of data points for front and rear axle is the same.  
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Part II  Optimization process 

 “Optimization is the determination of values for design variables, which minimize (maximize) 

the objective function, while satisfying the constraints” - P.Y. Papalambros  

 

Design variables are the parameters of the optimization that are allowed to change 

and influence the objective function. The constraints define the domain of the design 

variables. For this problem, a simplified description is: “Minimize the difference 

between the experimental data and the model data by changing parameters of the 

Magic Formula”. 
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5 TyreEstimator 

To identify the tyre parameters, given in the subsections 2.1.2 and 2.2.2, an 

optimization has to be performed that minimizes the difference between model and 

experimental data. To execute this optimization a computer application is developed, 

named TyreEstimator, which operates in the Matlab/Simulink environment. This 

application is built to perform the optimization according to the chosen options and 

shows the results. 

Section 5.1 is an introduction to the application. In section 5.2 the need for the 

different options of the application is discussed. Section 5.3 shows how the computer 

application works and is operated. 

5.1 Introduction 

The goal of the application is thus to minimize the difference between measured and 

modelled data using an optimization routine. To get comparable data to base the 

application on, the vehicle models perform a manoeuvre consistent with the 

experimentally performed manoeuvre. The specifications of this manoeuvre are 

featured in section 3.2. The vehicle models used for this optimization are described in 

subsection 2.1.1 and 2.2.1 of this thesis. The different parts of the vehicle, such as 

body and suspensions, were validated for the use in simulation models by CRF. 

These validations and their procedures are beyond the scope of this thesis, 

meanwhile the data from the validations is assumed to be correct. Though inaccurate 

validations may lead to inconsistencies between the experimental model and the 

simulation models, it is very plausible that these are caused by the tyre model.  

The Magic Formula tyre model, described in subsection 1.2.5 of this thesis, is used to 

model the tyre responses. For the Two-DOF model a simplified form of the Magic 

Formula is used. The vertical loads applied to the tyres are resulting from the vehicle 

model. 
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5.2 Options 

Optimization has the purpose to find the global minimum of a function, by defining 

this function as the difference between measured and modelled data this is a good 

method to identify the tyre parameters of the Magic Formula. A drawback of using 

optimization is that while searching the global minimum the possibility exists that a 

local minimum is found. A local minimum is a point, which locally may be 

considered as a minimum, but observing the whole domain does not necessarily 

need to correspond to a global minimum, as pictured in Figure 21. This can be 

visualized by the algorithm standing on a mountain and wanting to find the deepest 

valley. If it comes across a small valley, it may not be able to ‘see’ the deep valley 

anymore. Therefore it will converge to the local minimum within the small valley 

instead of trying to find the global minimum.  

 

Figure 21 Schematic explanation of local and global minima 

Some aspects that influence the finding of local minima are: 

• Algorithms: Various algorithms exist to compute the best result for an 

optimization procedure. Algorithms differ from each other in approach and 

speed. Because of boundary conditions and the objective function not all can 

be applied for every case. Although the global optimum should be found by 

all applicable algorithms, the algorithm could get stuck in a local minimum.   

• Objective function: The function that has to be minimized is called objective- 

or cost function. The function establishes a relation between the experimental 

and the model data. Altering this relation, for example by giving more or less 

importance to certain parts of the data, changes the outcome of the 

optimization routine.  
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• Starting point: To influence the outcome of the optimization, and to avoid 

finding a local minimum, the starting point can be changed. Beginning the 

optimization close to the ‘deepest valley’ improves the results significantly 

and avoids finding local minima. Generally, the starting point is given by the 

parameters given by the tyre manufacturers. A better starting point is 

difficult to find without going into detail. 

• Averaging: This is the name for the clustering of points of the dataset, by 

calculating their mean values. By reducing the number of points that have to 

be evaluated, less weight is given to the outliers and local minima caused by 

the outliers may be avoided.   

To find the global minimum, application options are included to deal with these 

issues. The individual options are discussed in the chapters 7 and 8. In the next 

subsection the application itself is discussed.  

5.3 Application  

The TyreEstimator application is developed in the Matlab environment and is able to 

identify the parameters corresponding to a vehicle behaviour using an optimization 

procedure. When the application is started the window from Figure 22 appears. This 

Graphic User Interface (GUI) allows the user to plot figures and to select different 

optimization options.  

 

Figure 22 TyreEstimator opening window 
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At the start of the application only the ‘Plot’- and ‘Exit’-button are enabled. By 

clicking the ‘Plot’-button a dialog box appears which permits the user to choose the 

starting parameters or use the standard starting parameters. The chosen parameters 

are then used for a simulation with the vehicle model. The results are then shown in 

the GUI as can be seen in Figure 23.  

 

Figure 23 TyreEstimator window after plotting initial conditions 

In the left part of the GUI the front and rear axle characteristics are plotted, while in 

the right part the steer wheel angle and the side slip angle as a function of the lateral 

acceleration are plotted. The initial mean error and the initial parameters are now 

shown as well in the GUI. 

By clicking ‘Start optimization’ the optimization is started using the options from the 

GUI and the initial parameters from the plot. The working and motivations for the 

options are discussed in the chapters 6, 7 and 8. The optimization is stopped when 

the optimizer finds a minimum or by pressing the ‘Stop optimization’-button at any 

time during the optimization. The latter command implies that a final simulation 

with the vehicle model using the last parameter set is performed. Otherwise the 

application is programmed to show the results at the end of the optimization cycle in 

the GUI of the TyreEstimator. These results are shown in the same graphs as the 

initial plots, like in Figure 24. 
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Figure 24 TyreEstimator window showing complete optimization 

The final mean error is shown as well as the final parameters. Next a new 

optimization with new options can be started using parameters that resulted from 

the previous optimization, standard initial parameters or customized parameters. 

More information on the programming steps behind the application and a more 

theoretical explanation on how to use the application are given in Appendix D. 
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6 Parameters 

The parameters, subdivided in coefficients and scaling factors, which are considered 

for this optimization are mentioned earlier in the subsections 2.1.2 and 2.2.2. The 

effects of these parameters on the objective curves will be considered in more detail 

in this section. The effects of the two sets of design variables are considered 

separately because of their mutual influence. 

Scaling factors were created with the purpose to fit different experimental data 

without altering the coefficients. This may be ideal to fit the experimental data, 

although changing individual parameters could change the curve more accurately.  

To get some feeling with the coefficients and the scaling factors all the parameters 

were changed individually and the effects on the model were analyzed. The initial 

parameters are taken from a tyre model supplied by CRF. The simulations were 

performed with the Two-DOF vehicle model because of the simplicity and the speed. 

In the section 6.1 and 6.2 the results of the analysis are described. Section 6.3 

concentrates on a special case; the parameters concerning Ey. Conclusively in section 

6.4 an evaluation of the issues involving parameters is given.  

6.1 Coefficients 

To evaluate the influence of each coefficient, higher and lower values with respect to 

the initial coefficient have been arbitrarily chosen. These values are located within 

the common variable range of the respective coefficients, with an equal positive and 

negative deviation the difference in value from the initial coefficient is approximately 

the same. The complete results show the different ways in which the parameters tend 

to affect the objective curve. These, together with the used values, can be found in 

Appendix E. In the results dataset 1 is obtained using the lowest value, dataset 2 

using the initial value and dataset 3 by means of the highest value. A summary of the 

results is given by: 



6   Parameters 

 54

• The Cy component determines together with the Ey component the shape of 

the curve. Especially the amount of decay after the peak is reached is 

determined by pCy, although this is not visible for the simulations with the 

Two-DOF vehicle model. The change in shape also alters the horizontal and 

vertical position of the peak. When pCy is increased the peak shifts 

horizontally to the left. This is shown in Figure 25,  
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Figure 25 Influence of pCy on front axle curve 

• The Dy component defines the peak value as well as the maximum slip angle, 

as can be deduced from the Magic Formula. Although in the formula pDy2 is 

related to the load, the overall effect for this configuration of parameters is 

approximately the same for pDy1 and pDy2.  

• Together with Cy, the Ey parameter defines the shape of the curve. In 

particular the shape of the peak is given by Ey. Under given values of Dy and 

Ky it allows adjustments of the location of the maximum. For a lower pEy1 

coefficient the peak is reached rapidly and afterwards the curve may even 

descend a bit, while for higher values the peak is reached slowly and the 

curve will not descend. The pEy2 coefficient is designed to have an influence 

related to the load. In Figure 26 it is shown that this effect is negligible. 
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Figure 26 Influence of pEy2 on front and rear axle curve 

• The Ky component defines the stiffness factor of the curves. This is the initial 

angle of the graph with respect to the horizontal axis. Increasing pKy1, a 

greater initial angle and thus a higher stiffness is obtained. The other 

coefficient, pKy2, influences the graph in the opposite way; as pKy2 is increased, 

the stiffness decreases. 

6.2 Scaling factors 

The same analysis is performed for the scaling factors. For the analysis the scaling 

factors are increased and decreased by one third. All the results, which can be found 

in Appendix E, show the different ways in which the scaling factors tend to affect the 

objective curves. The conclusions that can be drawn from this analysis are: 

• The λCy scaling factor shows the same influence on the Cy component as the 

pCy coefficient. This is obvious because of their linear relationship in the Magic 

Formula.  

• The λµy scaling factor affects the Dy component linearly. It affects the vertical 

position of the peak as well as the maximum slip angle. In Figure 27 these 

effects on the front and rear axle curve are visible.  
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Figure 27 Influence of λµy on front and rear axle curve 

• λEy, has no big influence on the curve. It may come true that changing this 

parameter is not proficient for the fitting of the experimental data. The 

usefulness of this parameter is further discussed in section 6.3. 

• When the λKy scaling factor is changed the lateral stiffness factor is changed. 

This happens in the same way as for the pKy1 coefficient.  
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Figure 28 Influence of λKy on rear axle curve 
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6.3 Consideration of E 

The TyreEstimator application, which is written for the optimization process, 

contains the option whether to consider the parameters related to the lateral 

curvature factor (Ey), to keep them constant or to set them to zero. The parameters 

related to Ey influence the shape of the peak of the curve for a given condition. If the 

maximum lateral force can not be built up during the experimental tests, no 

saturation of the tyres will take place. The maximum lateral force is therefore not 

reached and the parameters that relate to Ey will not be reliable. To be able to handle 

this type of experimental data this option is added to the application. 

6.4 Evaluation of parameters 

From the analysis on coefficients and scaling factors it can be presumed that both 

parameter sets are suitable to be used in the optimization process, for they should 

both be able to fit the data correctly. The sets of parameters modify the curve in 

approximately the same way. The advantage of the scaling factors is that only four 

parameters are considered, which causes the optimization to operate quicker. 

Nevertheless, by acting only on the scaling factors, the cornering stiffness variation 

with the vertical load can not be altered (pKy2).  

Because both design variables are presumably able to fit the experimental data an 

option is built in. The application then uses the chosen parameter set to perform the 

optimization. When the choice is made to optimize the coefficients the scaling factors 

will remain constant and vice versa.  

Furthermore, the pEy2 coefficient will no longer be considered because of its small 

influence on the vehicle model results. Also, because tyre saturation isn’t necessarily 

reached during experimental testing, an option for evaluating the parameters related 

to Ey is implemented in the application.  
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7 Optimization 

Optimization is a tool to obtain the best results from a calculation. This calculation is 

based on how the difference between experiment and model is defined and how this 

difference can be minimized.  

The optimization process is based on two crucial elements, which are important for 

every optimization. These elements are: The objective function and the algorithm. 

The sections 7.1and 7.2 treat these elements subsequently. 

7.1 Objective function  

The input for the TyreEstimator application is called the objective function or cost 

function. The application minimizes the optimization problem that may be described 

analytically by the simple function: 

 ( ) ( )0 0 0 0
1

, , , ,
n

yi y zi i
i

f p F F F pλ α λ
=

= −∑  (7-1) 

With i representing every point of the experimental data and n representing the total 

number of data points. Fyi is the lateral force coming from the experimental data, 

while Fy stands for the lateral force calculated using a vehicle model. The lateral force 

of the simulation model depends on four variables. Among these $i refers to the slip 

angle for every point of the experimental data and ziF is the vertical tyre force, which 

is directly related to the lateral acceleration. For the Two-DOF model the calculation 

of ziF is shown in subsection 2.1.1. This formula is validated using more detailed 

(multibody) models and with the experimental data, as was the ziF of the Fourteen-

DOF model. The other two variables in the function are the design variables; p0 and 

λ0. They represent respectively the coefficients and the scaling factors of the Magic 

Formula on which this optimization is based. Resulting from Chapter 2, these are 

defined as:  
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In order to calculate the differences between the lateral forces of the experimental 

data and the model, the values of the lateral forces of the model at the slip angles of 

the experimental data are evaluated. This process is shown in Figure 29 and is 

executed by means of linear interpolation and extrapolation. The considered errors in 

lateral force for the summation in the objective function are taken in the slip angle 

domain. If the errors were considered in the lateral force domain, due to the decay of 

the curve, a lateral force could correspond to two slip angle values. This is not 

desirable.  

 

Figure 29 Graphic representation of error calculation 

The errors on both axles are summed, though the lateral forces on both axles are 

different. Considerations made on this topic are written in section 8.3. The 

measurement data is randomly distributed over the front- and rear slip angle 

domain. Writing out the error using the Magic Formula, the calculation of Fy 

becomes:  
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The previously described objective function (7-1) is used to explain the principle. In 

this objective function simply the sum of the errors is calculated. It is not explicitly 

necessary to use this function. Another, more complicated function could be to 

divide the absolute errors by the respective interpolated lateral forces of the errors. 

By taking the mean value thereof, a ratio is obtained which enables the comparison 

of values from different optimizations in a proper way. The objective function is then 

given by: 

 ( ) ( )0 0

0 0
1

, , ,1
,

n
yi y zi i

i y

F F F p
f p

n F

α λ
λ

=

−
= ∑  (7-3) 

Another option, if a part of the curve does not match the experimental data, is the 

possibility to take that part more into consideration. Applying a weight function, by 

multiplying the errors with a triangular weight profile that starts at 0.5 and ends at 

1.5 in the slip angle domain, changes the contributions of the errors to the total sum. 

This function gives more importance to the high slip angles, where the correlation is 

generally worse. The errors at small slip angles will then contribute less to the total 

error then the errors at high slip angles. One of the problems of adding weight to a 

function is that there is no longer a uniform method to compare the results. The 

formula with weight function used is written as: 

 ( ) ( ) ( )
( )

min
0 0 0 0

1 max min

, , , , 0.5
n

i
yi y zi i

i

f p F F F p
α α

λ α λ
α α=

 −
= − +  − 
∑  (7-4) 

Other weight functions could also be applied to this problem, though this weight 

function is easy to implement and the most logical in this situation.  

7.2 Algorithm 

For the solving of optimization problems an algorithm is needed. An algorithm is an 

effective method for solving a problem using a finite sequence of instructions. The 

optimization algorithm starts at an initial state and, through well-defined 

instructions which determine new states, it comes to a final state. Optimization 

algorithms are available in the Matlab environment. The limited amount of time to 

customize an optimization algorithm especially for this problem and the proven 

efficiency of the available algorithms is reason for using these.  

From the non-linear terms in the objective function it can be deduced that this 

problem concerns non-linear optimization programming. Two optimization routines 
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are available in Matlab which can be implemented in the TyreEstimator for solving 

this type of problem; the fminsearch routine and the lsqnonlin routine. The working 

of these two methods is explained in subsection 7.2.1 and 7.2.2. 

7.2.1 Fminsearch  

The fminsearch algorithm is a zero order method, meaning that it doesn’t use 

gradient information to calculate the next state. Generally this algorithm is used for 

unconstrained non-linear optimization problems. It can handle several variables and 

starts at an initial given estimate. This method is very robust, but requires generally 

more steps to find an optimum compared to other methods.  

This algorithm incorporates the downhill simplex method or Nelder-Mead method. 

The routine starts with the virtual construction of a simplex, a polytope with N + 1 

vertices, in N dimensions. For example a triangle in the 2D design space or a 

tetrahedron in the 3D space. N is related to the size of the parameter set of the design 

variable (p0 or λ0). The method starts with generating N + 1 points from the initial 

parameters. Extrapolating the behaviour at each test point, Nelder-Mead generates a 

new test point. One of the test points is replaced by the new test point and so the 

technique progresses. The simplex can also be expanded, contracted or reflected to 

find a new position. The process is being repeated until the largest diagonal of the 

simplex is smaller than a chosen value and thus a (local) minimum is found. 

7.2.2 Lsqnonlin 

The lsqnonlin algorithm, which stands for least square non-linear algorithm, is a 

pseudo-second order method. Normally a second order method works with function 

evaluations and gradient information and the Hessian matrix. This algorithm 

estimates the Hessian matrix instead of calculating it and is therefore described as a 

pseudo-second order method. The routine is generally used for solving non-linear 

least-squares problems, including non-linear data-fitting problems. Besides, it can 

handle under-determined problems, where the number of equations is less then the 

number of variables. Combined with the robustness and speed of this method it is 

suitable for the optimization routine that has to be carried out for this project.  

This algorithm uses the Levenberg-Marquardt method. In contrary to the fminsearch 

algorithm it accounts for the error between the experimental data and the vehicle 
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model using a square. The objective function remains the same but the algorithm 

squares the individual contribution of the error, so the function can be written as: 

 ( ) ( )( )2

0 0 0 0
1

/ , , ,
n

yi y zi i
i

S p F F F pλ α λ
=

= −∑  (7-5) 

The root of the outcome divided by n, leads to the RMS value. This value gives a 

statistical measure of the amplitude, which would be ideal for the comparison of 

different objective functions. However due to the different objective functions this 

value can not be used throughout the entire thesis. 

For every iteration the design variable, p0 or λ0 depending on the chosen options in 

the application, is replaced by a new estimate. If the case of p0 is analyzed, this new 

estimate is represented by p0 + δ. This δ is determined, by approximating the 

function, using a linearization this becomes: 

( ) ( )0 0,i if p f x p Jδ δ+ ≈ +  

Where the gradient of the function f with respect to the design variable is given by: 
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When the gradient of S with respect to δ is zero, a (local) minimum is found. 

Differentiating S using the first order approximation ( )0f p δ+  and setting the 

result to zero leads to the following relation: 

( ) ( )0
T TJ J J y f pδ = −     

This is a set of non-linear equations which can be solved for δ. If a damping term is 

introduced into this equation, this becomes: 

( ) ( )0
T TJ J I J y f pλ δ+ = −    

λ represents the non-negative damping term and I is the identity matrix. The 

damping term is adjusted for each iteration.  

( )( ) ( )0
T T TJ J diag J J J y f pλ δ+ = −    
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8 Considerations 

Apart from the standard components of an optimization process, each optimization 

has its own specific needs and particularities that influence the outcome of the 

optimization. Several options, which are special for this optimization procedure, to 

improve the quality of the optimization are programmed in TyreEstimator 

application. 

In section 8.1 the starting point is considered. Section 8.2 concerns the averaging of 

the experimental data, while in section 8.3 the number of datasets for the 

optimization is discussed.  

8.1 Starting point  

The starting point can be changed at the beginning of the application. Therefore after 

clicking the ‘Plot’- or ‘Start optimization’-button the choice to customize the data 

must be made. In a new dialog box the default starting parameters are shown. These 

can be altered individually. By clicking ‘OK’ the chosen procedure is started using 

the implemented values. Otherwise the default initial conditions will be taken, which 

are given in Appendix D. The (new) starting parameters are shown in the GUI of the 

TyreEstimator contemporaneously with the initial error. 

The starting point can be an important factor in the calculation of the tyre parameters. 

Different initial values can cause the algorithms to find a local minimum, while both 

algorithms are sensitive to this phenomenon. Using other initial parameters the 

finding of local minima can be prevented. In the application the initial parameters 

and the final parameters of the optimization are shown. 

8.2 Averaging 

With averaging, a way for the experimental data to be clustered to fewer points is 

denoted. The program divides the number of experimental data points by ten and 
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the mean value of these points is calculated. From this operation ten new points are 

obtained in which all the experimental data is contained. The error between the 

model data and the ‘new’ experimental data is now the objective function. For the 

fminsearch algorithm, in which the objective function is given by the sum of the 

errors, the averaging before or the averaging in the error function will not change the 

result. However, depending on the interpolation and the objective function this may 

lead to different results.   

This way the potential influence of outliers is adaptable. The data is more consistent; 

especially when many outliers are present this method provides a good alternative. 

Less required calculations and thus the higher speed also favour the use of this 

principle.  

8.3 Number of parameter sets 

The option for different parameter sets is implemented in the TyreEstimator 

application to make it possible to cope with differing front- and rear-axle 

experimental data. When this option is selected, the optimization is first based only 

on the front axle. An ‘optimum’ set of parameters is calculated as well as an error on 

the front axle. Next the same procedure is completed for the rear axle.  

The choice can be used to see if there are relevant differences between the behaviour 

of the front and rear tyres and to see which parameters differ most between the two 

axles. Another possibility is when different front wheels and rear wheels are 

mounted on the vehicle and the behaviour has to be evaluated individually.  

This option makes it also possible to cope with non-saturated tyres. For example, if 

the rear axle does not reach saturation, the first optimization could be based on the 

rear axle not using parameters concerning Ey. Next a complete optimization can be 

done, with the rear axle parameters as a basis.  
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Part III Results and conclusion 

“Methods and techniques that have consistently shown results superior than those achieved 

with other means, and which are used as benchmarks to strive for. There is, however, no 

practice that is best for everyone or in every situation, and no best practice remains best for 

very long as people keep on finding better ways of doing things.” – Business dictionary.com  

 

The multiplicity of influences on the Fy-@ curve makes it difficult to define a unique 

configuration for the TyreEstimator application to find good parameters for the 

Magic Formula that correspond to the experimental data. Therefore in this thesis a 

‘best practice’ is shown for the data provided by the CRF. 
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9 Results 

The results of the optimizations for identifying the tyre parameters are described in 

this chapter. The performed optimizations are based on one set of experimental data. 

The identification of the tyre parameters is only valid for the part shown in the 

graphs. Beyond the experimental data, no reliable information can be given over the 

tyre behaviour using the results from the optimization. 

It is possible that for a different dataset other options of the application show better 

results. The TyreEstimator is written with that in mind. The options built in the 

application have the purpose to be able to best match this set of experimental data. 

To find these options a ‘best practice’ method is used. The application options should 

finally be verified through optimizations using data sets of different vehicles with 

respective simulation models to check its quality. 

In section 9.1 the results of the Two-DOF model are discussed, while in 9.2 these are 

discussed for the Fourteen-DOF model. 

9.1 Two-DOF model 

Recapitulating, the Two-DOF vehicle model is a simple and easy model that can 

make quick iterations. It is based on the theory of a bicycle model, where the effect of 

the rolling of the vehicle is compensated using the effective axle characteristics. The 

model calculates an equilibrium for every lateral acceleration. Its tyre model is based 

on the Magic Formula, but only six coefficients and four scaling factors are taken into 

account. A more extensive description is found in section 2.1. The purpose of this 

model was to help develop the application and to make a good and quick estimation 

of the parameters, which can be refined by making use of the Fourteen-DOF model.  

In subsection 9.1.1 the standard optimization is discussed, additionally some general 

observations that occurred during simulation are noted. Subsection 9.1.2 treats the 

issues that concern the parameters, while subsection 9.1.3 treats the issues that 
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concern the optimization options. In subsection 9.1.4 the other options built in the 

application to improve the results of the simulations are discussed. The results are 

found in the Appendix F. 

9.1.1 General comments  

The graphs of Figure 30 show the initial conditions together with the optimized 

result using the standard conditions for the optimization with this vehicle simulation 

model. To make a proper comparison between the standard optimization and the 

manipulated optimizations only one aspect is considered per comparison. This way 

the improvement or deterioration can be considered well.  

These standard conditions to which the errors are related for the Two-DOF model 

are:  

• Objective function given by equation (7-3), where the errors are divided by 

their respective lateral forces (referred to as scaled error function) 

• Fminsearch algorithm  

• Optimization on coefficients  

• Optimization on Ey 

• Handtuned initial parameters 

• No averaging  

• Extrapolation  

• One dataset 
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Figure 30 Two-DOF Results of standard optimization and initial condition 

The quality of the optimization is based on the visual interpretation of the graphs 

and on a calculated error. This error takes the mean of all (front and rear) absolute 

differences between the experimental and the interpolated modelled data. By 

dividing each difference by its respective interpolated modelled data this can be 

expressed as a percentage.  

In Figure 30 the upper left graph shows the lateral forces and slip angles at the front 

axle, while the upper left shows the same properties for the rear axle. This can also be 

deduced from the fact that lateral forces occur at the front axle. The lower graphs 

show from left to right two other important properties of the vehicle; the steer wheel 

angle vs. the lateral acceleration and the side slip angle vs. the lateral acceleration.   

A similarity is noted between the Fy-$ front and rear curves and respectively the steer 

wheel angle and side slip angle curve. These are related by the equations presented 

in Appendix C. In (C-5) the relation for the steer wheel angle is given by: 

 1 2 1

L

R
δ α α=− + +  
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The relation (C-8) gives the relation between side slip angle and rear axle slip angle, 

which reads:  

2
2

x

R
β α= −  

Fy and ay for front and rear axle are also directly related by the formulas: 

1 1

2 2

y y

y y

F a m

F a m

=

=
 

Therefore if one of the curves matches the experimental data, the other curve should 

match the data as well. Figure 30 corresponds to this theory. 

9.1.2 Parameters 

To find the best parameter set first the comparison is made between a standard 

optimization using coefficients and one using scaling factors. From Figure 31 it 

appears that the differences between these two results are minimal, although the 

calculated error is about 15 % higher for the scaling factors. The optimization 

performed on the scaling factors is about five times quicker than when performed on 

the coefficients. This is due to the fewer parameters that have to be optimized.  
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Figure 31 Two-DOF results of comparison between coefficients and scaling factors 

The second comparison tests whether the parameters that compose Ey improve the 

results of the optimization. The outcome improves when pEy1 is kept constant (pEy2 is 

already kept constant) and even when set to zero (also pEy2 is set to zero to eliminate 

the effect of Ey). The mean error diminishes with almost 1.5 % for both options. A 

visual improvement is shown especially for the result on the front axle, which can be 

seen in Figure 32. It centres the experimental data much better at the beginning of the 

curve. The difference between the two curves produces by the simulation with 



Tyre identification from road tests on a complete vehicle 

 73 

constant pEy1 and pEy2 and the simulation with pEy1 and pEy2 taken as zero is minimal. 

Only the peak, considered in the Two-DOF model as the final simulation is located 

earlier for the constant Ey component. 
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Figure 32 Two-DOF result of comparison of consideration of Ey component for front axle 

9.1.3 Optimization 

The objective function is evaluated using the objective functions (7-1), (7-3) and (7-4) 

mentioned in section 7.1. In Figure 33 the results of these optimizations are shown. 

The optimizations with an objective function different from the standard one result 

in an error of 5 to 10%. It can be concluded from the graphs that the optimization 

without scaling tends less to optimize on the high slip angles. In that case all 

differences contribute in the same way to the objective function. Considering that for 

low lateral forces the data is less scattered, this leads to more attention from the 

optimizer to the first part of the graph.  
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Figure 33 Two-DOF results of comparison between objective functions 

During the simulations it turned out that for this system the lsqnonlin-algorithm did 

not work. When the lsqnonlin-algorithm was used, the following error message 

appeared: “Ill-conditioned matrix”. This is the case when small changes in the 
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coefficients of the solution have drastic effects on the results. Iterating the solutions 

to a small residual is then a tricky operation. Numerical round-off can also cause 

trouble if a matrix is ill-conditioned. 

9.1.4 Considerations 

When the original coefficient from the tyre manufacturer is used as different starting 

point, it is not possible to find the same or better results than with the original initial 

conditions. Although the experimental data for the front axle is matched better for 

low slip angles, for higher slip angles the difference between the experimental data 

and the simulation is clearly present. The effects on the rear axle are even worse, 

noticeable in Figure 34, leading to a total error that is 25% higher with respect to the 

standard optimization. The different behaviour is due to a local minimum found 

using the coefficients from the tyre manufacturer. If the starting curve is located 

closer to the objective curve the chance to find local minima is smaller. 
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Figure 34 Two-DOF result of comparison between different initial conditions for rear axle 

Looking at the results using the averaging option in the TyreEstimator application, 

the difference for the rear axle is negligible. When considering the averaged points, 

the curve produced by the standard optimization lies closer to the averaged points. 

This is deduced from Figure 35 and confirmed by the calculated error. The averaging 

option does not improve the results of the optimization in this case. The difference 

between the averaged curve and the curve produced by the standard optimization is 

explained by the fact that the averaging is performed before the interpolation and the 

objective function.  
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Figure 35 Two-DOF results of comparison using averaged datapoints 

The last option of the application that is considered is whether or not to use different 

parameter sets to discriminate the tyre parameters. The results are reproduced in 

Figure 36. The errors found using two parameter sets are smaller than for the 

standard optimization. Therefore the optimization procedure has to be performed 

two times. It is questionable if this is worth it. When the two resulting parameter sets 

are compared the largest difference is viewed for the pEy1. It can therefore be 

assumed that the tyres are alike but because saturation is only reached for the front 

axle the Ey parameter can only be found using the front axle curve. 
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Figure 36 Two-DOF results of comparison for different datasets on front and rear axle 

9.2 Fourteen-DOF model 

The Fourteen-DOF vehicle model is a complex vehicle model developed by CRF. The 

model performs a dynamic simulation by using look-up table based models of 

vehicle components to simulate a certain vehicle. One of these component models is 

the tyre model; represented by the Magic Formula. In this model all parameters are 

used, however only six coefficients and four scaling factors are used for the 
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optimization. For a more extensive description of the model it is advisable to read 

section 2.2. The purpose of this model was to refine the results from the Two-DOF 

model and get the coefficients that correspond best to the experimental data.  

In subsection 9.2.1 the standard optimization is described and a comparison between 

the two and the fourteen DOF model is made. The topic concerning the parameters is 

treated in subsection 9.2.2. The options related to the optimization procedure are 

treated in subsection 9.2.3. Finally, in subsection 9.2.4, all other options involved in 

the application are commented. The results can be found in Appendix G. 

9.2.1 General comments 

The initial conditions for the optimization with this vehicle model are slightly 

different with respect to the Two-DOF vehicle model. Only the starting parameters 

and the optimization algorithm are changed to improve the basic quality of the 

results. The standard conditions for optimization, shown in Figure 37, with the 

Fourteen-DOF model are now given by:  

• Objective function given by equation (7-3), where the errors are divided by 

their respective lateral forces (referred to as scaled error function) 

• Lsqnonlin algorithm  

• Optimization on coefficients  

• Optimization on Ey 

• Original initial parameters 

• No averaging  

• Extrapolation  

• One dataset 

For this model the quality of the results is based on the visual aspect of the 

optimizations as well as on the results. The third aspect is based on the optimization 

time, because this aspect plays an important role for this vehicle model. 
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Figure 37 Fourteen-DOF results of comparison between coefficients and scaling factors 

Also for this vehicle model the relationship between the Fy-α curves and the steer 

wheel angle and side slip angle curves is noted from Figure 37. 

The pEy2 coefficient was initially considered for this model, therefore the complete 

results in the Appendix show also pEy2. Along the way the limited influence of pEy2 

was noted, but due to the limited amount of time to use this model it was not 

possible to generate the results without considering pEy2. The small influence of pEy2 

on the simulations, though the results can still be considered reliable. 

The complex vehicle model did not show the same results with the same parameters 

of the simple vehicle model. This is shown in Figure 38, where the results of the 

standard optimization with the Fourteen-DOF model is plotted using the Two-DOF 

model and compared with the results of the optimization with the Two-DOF model. 

The difference is due to the Magic Formula tyre parameters used as input of the two 

models. For the simple model these are only the ones that were described earlier, 

while the complex model makes use of all other parameters of the Magic Formula as 

well. Although the other parameters for the Fourteen-DOF model are kept constant 

during the optimization they influence the tyre behaviour noticeably.  
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Figure 38 Comparison of results of optimization Two-DOF model and Fourteen-DOF model  

9.2.2 Parameters 

The optimization of the coefficients is compared with the optimization of the scaling 

factors in Figure 37. The optimization of the coefficients shows the best results, 

although the mean error difference is only 0.5%. For the front axle it can be seen that 

the peak is reached nicely using this optimization. The optimization time doesn’t 

differ much, although one optimization uses six parameters and the other 

optimization uses four. 

Setting the Ey component to zero is not an option for this model, because of the many 

parameters involved with Ey. The optimization where pEy1 and pEy2 are kept constant 

shows in this case no difference compared to the standard optimization, as can be 

deduced from Figure 39. The error is very similar, moreover the optimization time is 

longer. 
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Figure 39 Fourteen-DOF model results of comparison of consideration of Ey 

9.2.3 Optimization 

In Figure 40 it is visible that the differences for the objective functions options are 

minimal. From the results can be derived that the option with scaling matches the 

experimental data best, notwithstanding that the other optimizations give good 

results as well. The optimization time with the error function multiplied by the 

respective slip angle is 1.5 times longer than the optimization time of the other two 

that are almost equal. 
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Figure 40 Fourteen-DOF model results of comparison between different objective functions 

The optimization using the fminsearch-algorithm is more than two times quicker 

than the lsqnonlin-algorithm. This speed counteracts the quality of the optimization. 

Since the lsqnonlin-algorithm considers the first order gradient, the chance of finding 

local minima is considerably reduced. This can be seen particularly well for the 

fminsearch optimization results on the rear axle characteristics. In Figure 41 the first 

part of the model is too high with respect to the experimental data. The peak of the 



9   Results 

 80

front axle of the fminsearch optimization is located beyond the maximum slip angle, 

which is also undesirable.  
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Figure 41 Fourteen-DOF model results of comparison between the two algorithms 

9.2.4 Considerations  

Altering the starting point can prevent the algorithm from getting stuck in a local 

minimum. The resulting coefficients of the two optimizations differ from each other 

but are of the same order. Visually the result is about the same (Figure 42).  
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Figure 42 Fourteen-DOF model results of comparison between different initial conditions 

The result on the front axle of the optimization using averaged datapoints compared 

with the results of the optimization using the normal datapoints is shown in Figure 

43. The averaged results are slightly better. The optimization time is about the same 

as are the resulting coefficients.   
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Figure 43 Fourteen-DOF model results of comparison using averaged datapoints for front axle 

For this case the optimization is first performed considering the front axle and then a 

new optimization is performed considering the rear axle. The results are presented in 

Figure 44. When these results are combined a ‘perfect’ match is obtained for front 

and rear axle curves, although the Cy, the Dy and the Ey components have different 

parameter sets. Not reaching saturation at the rear axle is an unsatisfactory 

explanation for the difference between these components. Reflecting that the same 

tyres were used, probably these showed different behaviour due to other causes, like 

wear or temperature differences.  
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Figure 44 Fourteen-DOF model results of comparison for different datasets on front and rear axle 
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10 Conclusions and recommendations 

The goal was to create an application that identifies automatically the tyre 

parameters from tests on a complete vehicle. Meanwhile, computation of the selected 

parameters to identify is a complex problem. The different dependencies of the 

parameters on components, methods and initial conditions complicate finding one 

optimal set of options that solves the problem. To make it possible to deal with the 

different properties an application was created to find the best results. This way the 

options that result in the best fit can be adapted for any data set and for any purpose.  

Using the TyreEstimator application, optimizations were performed employing the 

two vehicle models discussed in this thesis. The models vary from each other not 

only in approach and complexity, but also the tyre model used is different. Although 

both make use of the Magic Formula, the implementation is different. This leads to 

different results in terms of parameters. In terms of visual results these are similar.   

In the consideration of the results the option with two parameter sets is not taken 

into account. All tyres have been assumed to be equal, so the behaviour at the front 

and rear axle should be alike. This is not in accordance with the results and therefore 

this option is not acknowledged.  

The conclusions for the two vehicle models are given in section 10.1 and 10.2. Finally 

some recommendations are given in section 10.3.  

10.1 Two-DOF model 

The vehicle model with two degrees of freedom has the advantage to perform cheap 

optimizations because of the simplicity of this model. The drawback consists in the 

poor applicability of these results and the low accuracy, due to the small amount of 

parameters involved.  

All in all the ‘best practice’ for the Two-DOF vehicle model is given by the 

optimization that uses the scaling factors and does not consider the Ey components.  
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10.2 Fourteen-DOF model 

The vehicle model with fourteen degrees of freedom has the advantage to 

discriminate the parameters with much more accuracy than the simple model. A 

shortcoming for the higher accuracy is the larger computation time.  

The ‘best practice’ for the Fourteen-DOF model is the standard optimization, 

optimizing on coefficients and considering the Ey components. Overall the options 

used in this optimization with the complex vehicle model are preferable when the 

time factor is not crucial, because of the accuracy and the fact that the results describe 

the tyre behaviour using the complete Magic Formula tyre model. 

10.3 Recommendations 

It has been shown that with the use of the TyreEstimator application it is possible to 

calculate parameters of the Magic Formula that match the experimental data. 

Although the application works, more research is required to improve and expand 

the working field of the application. This research has to look into the following 

issues:  

• Local minima: The two algorithms used for this thesis regularly find local 

minima. To avoid this problem another optimization algorithm should be 

implemented. The Monte Carlo method should be more suitable. This 

method relies on random sampling to compute its results. It is favourable 

especially when deterministic algorithms can not find exact results. However 

this algorithm is more expensive than the used algorithms 

• Parameters to optimize: By reducing the design space and thus the number of 

dimensions of the solution space, the possibility to find local minima is also 

reduced. It has been showed that this could be done for the pEy2 coefficient, 

this leads to the conclusion that this could be extended to other insensitive 

parameters as well.  

On the other hand the fact that the optimization is done only on six 

coefficients or four scaling factors reduces the possibility for the optimization 

to compensate for certain phenomena that occur during the manoeuvres. To 

manage that, the camber angle equations should be introduced in the loop of 

the optimization. It implies more parameters for the optimization, which 

could cause more uncertainties and inaccuracies, but if done well the 
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reliability of the parameters improves significantly. Finding the right balance 

between useful ‘old’ parameters and ‘new’ parameters to implement is 

therefore an important issue. 

• Computation time of Fourteen-DOF model: The 14-DOF model is preferred 

for finding the parameters that match the experimental data. This model has 

the disadvantage that the optimization takes a lot of time. By reducing this 

optimization time significantly the identification would be even more useful. 

This could be done by simplifying this vehicle model or try to implement the 

complete Magic Formula tyre model in the Two-DOF model.  

Furthermore, TNO showed interest in this thesis and would like to read it. This 

implies that the TyreEstimator application could be a good basis for further 

development of the identification of the Magic Formula tyre coefficients.  
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Appendix 

A. Original assignment formulated by CRF 

(This text has been summarized in English in the ‘Introduction’ of this thesis)  

Identificazione dati pneumatico da prove strada su veicolo completo 
Non si tratta di sviluppare modelli di pneumatico ma di sviluppare e mettere a punto una 
procedura che permetta di identificare in modo automatico i dati di input di modelli 
pneumatico già presenti in letteratura (in particolare i coefficienti principali del modello di 
Pacejka, comunemente utilizzato per simulazioni di dinamica longitudinale /llaterare). La 
procedura dovrà prevedere l'utilizzo di prove sperimentali in pista su veicoli strumentati e di 
modelli di veicolo (disponibili in CRF, non da sviluppare) in cui l'unica incognita a livello di 
dati di input sia rappresentata dai dati del pneumatico. Come punto di partenza si 
utilizzerebbero i dati di pneumatico che sono forniti dai costruttori di pneumatici e che 
generalmente necessitano di un tuning per riprodurre il comportamento del veicolo in curva 
e/o in frenata/accelerata. 
Si considerano modelli veicolo comprendenti i seguenti sottosistemi: cassa, sistema 
di sterzo, sospensioni anteriori e posteriori, ruote e pneumatici anteriori e posteriori. 
L’approccio normalmente seguito nella validazione di un modello veicolo per analisi 
handling consiste anzitutto nel validare i modelli delle sospensioni rispetto a dati 
sperimentali ottenuti da prove elasto-cinematiche al banco: si effettua una 
correlazione numerico-sperimentale considerando le curve caratteristiche che 
descrivono la posizione della ruota rispetto alla cassa sotto l’azione degli input che 
arrivano dal terreno attraverso il pneumatico (forza verticale, longitudinale, laterale e 
momento autoallineante). 
Una volta validati i modelli delle sospensioni, si procede con la validazione del 
modello di veicolo completo rispetto a prove sperimentali in pista, prove in cui si 
misurano i segnali fondamentali per la valutazione della dinamica laterale: steering 
wheel angle, lateral acceleration, yaw rate, sideslip angle, vehicle speed, roll angle. 
Validare il modello di veicolo significa effettuare una messa a punto del modello 
agendo principalmente sui dati di input del modello di pneumatico. Noi utilizziamo 
generalmente la formulazione Pac2002 del modello interpolativo di Pacejka quindi i 
dati di input sono i coefficienti della Magic Formula di Pacejka. Per quanto riguarda i 
dati pneumatico di partenza, generalmente ci troviamo in uno dei due casi seguenti:  

1. Il costruttore dei pneumatici montati sul veicolo fornisce i coefficienti 
di Pacejka ottenuti a partire da prove sperimentali sui pneumatici: 
generalmente questi coefficienti non sono pienamente rappresentativi 
del comportamento del pneumatico su strada per cui devono essere 
modificati in modo tale da migliorare la correlazione numerico-
sperimentale a livello dei segnali indicati sopra. 

2. I coefficienti relativi ai pneumatici montati sul veicolo non sono 
disponibili: in questo caso partiamo dai coefficienti di un pneumatico 
simile a nostra disposizione e poi seguiamo un approccio analogo a 
quello precedente. 

Normalmente la modifica dei coefficienti si effettua “a mano” seguendo il flusso 
descritto sotto: 
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• Si inizia a verificare ed eventualmente modificare i coefficienti che descrivono 
il comportamento del pneumatico in condizioni quasi-stazionarie e che 
influiscono sul comportamento stazionario lineare e non lineare del veicolo: 
in questa prima fase si considerano sia in simulazione sia dal punto di vista 
sperimentale manovre a dinamica lenta con livelli di accelerazione laterale via 
via cresenti. 

• Si estende poi la verifica e l’eventuale tuning ai coefficienti che descrivono il 
comportamento transitorio del pneumatico e che influiscono solo sul 
comportamento transitorio del veicolo. 

• Infine se necessario si può estendere la verifica / validazione al 
comportamento in combinato ossia alla presenza contemporanea di carichi 
longitudinali e laterali significativi (condizione che si ha per esempio in una 
frenata in curva). 

L’intero flusso viene appunto effettuato “a mano” ovvero chi valida il modello 
modifica per tentativi i coefficienti del modello pneumatico basandosi 
sull’esperienza, sulla conoscenza del modello di pneumatico e sulla conoscenza 
teorica della dinamica laterale del veicolo. 
L’obiettivo del lavoro è quello di rendere il più possibile automatico e robusto questo 
processo di validazione modellistica. 
Sempre partendo da una buona conoscenza del modello di pneumatico e dei 
fondamenti di dinamica laterale del veicolo, bisogna arrivare a definire una 
procedura che consenta di effettuare in modo automatico la messa a punto del 
pneumatico, utilizzando opportunamente degli algoritmi di ottimizzazione. Sarà 
parte del lavoro il valutare quale sia il modo migliore di fare ciò: ad esempio se sia 
meglio mantenere una flusso “in cascata”, che parte con lo stazionario per poi 
affrontare il transitorio a stazionario definito, oppure mettere a punto tutti i 
coefficienti assieme. 
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B. Parameter sensitivity analysis of vehicle model 

This sensitivity analysis consists of analyzing the responses of the simulation of a full 
vehicle model on parameter changes. The Fourteen-DOF simulation model and the 
application that was used for this sensitivity analysis were provided by CRF. In the 
simulation a basic manoeuvre is performed in almost steady-state conditions while 
in every simulation different parameters are varied. For example, the height and 
place (front/back) of the centre of gravity, the stiffness of the suspensions and the 
pneumatic parameters are varied. Several responses are considered, among which; 
the understeer gradient, the sideslip gradient, the roll angle gradient and the load 
transfer. The terms considered in this analysis are explained in chapter 1. 
 
First the standard vehicle is simulated. The manoeuvre considered in this simulation 
is the slow ramp steer. During this manoeuvre the longitudinal speed remains 
constant (100 km/h) and the steer angle will be increased slowly with 10 degrees/s 
up to 180 degrees. The slow dynamics are reason enough to consider this as a steady 
state manoeuvre. In the next performed simulation one parameter is changed with 
regard to the standard vehicle. 
 
Table 1 on the next page shows the results of this analysis. The changed parameters 
are listed in the left column of the table together with their variation. On the upper 
row the response parameters of the vehicle are denoted. In the rest of the table the 
plus, equal and minus signs show the variation of the individual parameter with 
respect to the value obtained with the basic vehicle. If the original parameter was 
negative a plus indicates that the value increased in negative direction. 
For the understeer and the sideslip a distinction is made. This distinction consists in 
a gradient for the lateral accelerations below 0.4 g and a numerical value at 0.7 g. 
This is due to the linearity of the first part and the non-linearity of the last part. The 
non-linear behaviour of the tyre can cause different results for these parameters. 
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Understeer 
gradient 
Kδvol 
(linear 
part) 

Sideslip 
gradient 
Kβ 
(linear 
part) 

Roll 
angle 
gradient 
Kθ 

Angle  
δvol @ 
0.7g 
(non-
linear) 

Angleβ 
@ 0.7g 
(non-
linear) 

Total 
load 
transfer 

Load 
transfer 
on front 
axle 

Load 
transfer 
on rear 
axle 

10% raise 
height 
centre of 
mass (Hcg) 

= = + + = + = = 

10% raise 
nominal 
load on 
front wheels 

+ =/- = + - = = = 

10% raise 
nominal 
load on rear 
wheels  

- =/+ = - + = = = 

50% raise of 
anti-
symmetric 
stiffness 
front  

= = - + - = + - 

50% raise of 
anti-
symmetric 
stiffness rear  

= = - - + = - + 

20% raise 
cornering 
stiffness of 
front tyres 

- = = - = = = = 

20% raise 
cornering 
stiffness of 
rear tyres 

+ - = =/+ - = = = 

10% raise of 
peak value 
of front tyres 

-/= = = - = = = = 

10% raise of 
peak value 
of rear tyres 

= -/= = =/+ - = = = 

50% raise of 
camber 
stiffness 
front  

= = = - = = = = 

50% raise of 
camber 
stiffness rear  

= =/- = =/+ - = = = 

Table 1 Results of sensitivity analysis 
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Table 1 shows that the parameter variations to the vehicle only influence a few 
properties at the time. When there are two signs in the table the first one gives the 
found value by the analysis while the second shows the theoretical variation. This is 
explained in the next lines together with the most important influences on the vehicle. 
 

• The height of the centre of mass contributes specifically to the roll coefficient 
and the total load transfer. When cornering with a higher centre of mass the 
moment about the x-axis of the ground will increase, so more load is 
transferred to the outer side and thus to the tyres. Therefore the tyres have ‘to 
work harder’, and the saturation point of the tyres is reached earlier then with 
the basic vehicle. In other words, the load on the front outer wheel is higher 
and, because of the non-linear behaviour of the tyre, the total force to keep 
the vehicle in line can not be recuperated by the front inner wheel, so sliding 
over the front wheels takes place. This causes an increase of understeer in the 
non-linear part of the δvol graph.  

• The higher mass distribution at the front of the vehicle causes obviously more 
load on the front tyres. This results in a higher understeer gradient and 
higher non-linear values of δvol. Due to the different mass distribution the 
preloading condition of the front and rear suspension springs will be altered 
as well. The roll-centre height and the spring response due to the non-linear 
behaviour in an extreme case can therefore be influenced. By adjusting the 
preloading condition these effects can be compensated as well. Also the roll 
gradient is dependent on these characteristics of the vehicle. In theory the 
sideslip gradient decreases due to the lower vertical load at the rear axle. If 
the sensibility of the rear tyre is low for the variation of vertical load this 
effect can not be observed. The reduction of the sideslip angle is more visible 
in the non-linear range.  

• In contrary to the higher mass distribution at the front of the vehicle, the 
higher mass distribution on the back shows a lower understeer gradient and 
theoretical a higher sideslip gradient. In the non-linear part lower values of 
steer wheel angle as well as higher values of sideslip are obtained. The reason 
for that is exactly opposite to the previous configuration. The other 
parameters remain the same, like in the previous analysis.  

• When the increase of the front anti-symmetric suspension stiffness is 
considered the rolling gradient goes down because more force has to be 
applied to let the vehicle roll especially over de front. The increase of the load 
on the front wheels can be explained with the fact that more force is given 
through because of the stiffer front suspension. This then causes the 
numerical value of the sideslip to decrease and the numerical value of the  
understeer coefficient to increase. For the increase of the back anti-symmetric 
suspension stiffness, the opposite reasoning applies.  

• The cornering stiffness of the tyres doesn’t change the vehicle’s body 
configuration. So the load transfer and the rolling gradient won’t change. For 
the linear part the tyres slide less because of the higher cornering stiffness, 
diminishing the understeer for a higher front cornering stiffness and 
increasing understeer for a higher rear cornering stiffness. The changes in 
cornering stiffness influences also the sideslip gradient, but due to the 
formulation which includes only the cornering stiffness of the rear tyres, this 
is only seen with the increase of the cornering stiffness of the rear tyres. In the 
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non-linear part of the graphs there is a lower understeer gradient for the 
higher cornering stiffness of the front tyres and a lower sideslip angle for the 
higher cornering stiffness of the back tyres. This shows that the linear trend is 
confirmed. The higher non-linear understeer for the increase of the rear 
cornering stiffness should also be visible but again this is not seen. 

• An increase of the peak value of the cornering stiffness for the front tyres only 
influences δvol, especially in the non-linear range. Because of this higher 
peak value the saturation of the tyres will happen later than normal and the 
sliding over the front wheels will be less. The change of peak value of the rear 
tyres results in a diminishing β in the non-linear range, again because 
saturation of the tyres happens at a later time then in the original model. Also 
a higher δvol is expected but is not perceptible.  

• The change in camber stiffness has only little influence on the vehicle. When 
the camber of the front suspension is increased the understeer in the non-
linear part will be lowered. The wheel is more straight up than the vehicle 
itself, therefore the grip will be better and the cornering stiffness increased. 
The higher camber stiffness of the rear suspension diminishes the non-linear 
sideslip angle. The change of camber stiffness is in total quite small and the 
expected change in understeer for the change of rear stiffness is not seen.  
This phenomenon is mainly dependent on the type of suspension used for the 
vehicle and the vehicle geometry. 
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C. Calculation of δ and β  

 

With the use of the figure above it can be determined that: 
 ( )2 1 1cos sin cos sinL R Rβ α β δ α= + −  (C-1) 

To simplify this relation, the trigonometry is linearized by assuming that cos β≈ 1 
and sin $ = $, which is true for small sideslip angles, the formula becomes: 

 ( )1 1 1L R Rα δ α= + −  (C-2) 

Grouping the $-terms results in: 
 ( )2 1 1L R Rα α δ= − +  (C-3) 

From this it can be concluded that: 

 
2 1 1

L

R
α α δ= − +  (C-4) 

With this δ1 can be defined as: 

 
1 2 1

L

R
δ α α=− + +  (C-5) 

For which the following relation holds for R:  
2

y

V
R

a
=  

Where ay, defined as lateral acceleration, is the component of the acceleration in the 
horizontal direction in the picture. The linearized trigonometry can also be applied to 
calculate the sideslip angle of the model. Below the different steps of this process are 
shown: 

 
2 2cos sin cos sinx R Rβ α β β= +  (C-6) 

 Where again the linearizations cos β≈ 1 and sin $ = $ hold, therefore: 
 

2 2x R Rα β= +  (C-7) 

The relation for β can now be described: 

 2
2

x

R
β α= −  (C-8) 

The definition of R is the same as in the previous calculation. 
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D. Matlab program 

Description of the program TyreEstimator2, that calculates automatically the 
parameters according to the options selected in the program. 
The original initial parameters are: 
pcy  =  1.318409;    % Shape factor Cfy for lateral forces 
pdy1  =  1.307495;   % Lateral friction Muy 
pdy2  =  0.335312;   % Variation of friction Muy with load 
pey1  =  1.1549;     % Lateral curvature Efy at Fznom 
pky1  =  -23.0708979; % Maximum value of stiffness Kfy/Fznom 
pky2  =  1.664681;   % Load at which Kfy reaches maximum value 
LCY     = 1;         % Scale factor of Fy shape factor 
LMUY    = 1;         % Scale factor of Fy peak friction coefficient 
LEY     = 1;         % Scale factor of Fy curvature factor 
LKY     = 1;         % Scale factor of Fy cornering stiffness 
 
The handtuned initial parameters are: 
pcy  = 1.6;          % Shape factor Cfy for lateral forces 
pdy1  =  1.3;       % Lateral friction Muy 
pdy2  =  -0.1;       % Variation of friction Muy with load 
pey1  =  1.15;       % Lateral curvature Efy at Fznom 
pky1  =  -21.8;      % Maximum value of stiffness Kfy/Fznom 
pky2  =  1.35;       % Load at which Kfy reaches maximum value 
LCY     = 1;         % Scale factor of Fy shape factor            
LMUY    = 1;        % Scale factor of Fy peak friction coefficient            
LEY     = 1;         % Scale factor of Fy curvature factor            
LKY     = 1;         % Scale factor of Fy cornering stiffness            
 
Next; Run TyreEstimator2.m 

• Initializes the user interface with 4 figures, 11 checkboxes and 5 pushbuttons 

• Sets pushbutton2, pushbutton3 and pushbutton4 off 

• Set in Workspace Base, continueOptimization to 0 and exitOptimization to 0 
and update structure 

 
Options 
Optimization method 
Checkbox 1: fminsearch (default) 
Checkbox 2: lsqnonlin 
 
Consideration of parameter E 
Checkbox 3: Yes (default) 
Checkbox 4: Yes, but keep it constant  
Checkbox 5: No  
 
Number of datasets to use 
Checkbox 6: One (default) 
Checkbox 7: Two, one for front and one for rear  
 
Optimization parameters 
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Checkbox 8: Consider coefficients (default) 
Checkbox 9: Consider scaling factors 
 
Implement decimation 
Checkbox 10: Yes 
Checkbox 11: No (default)  
 
Use extrapolation 
Checkbox 12: Yes (default) 
Checkbox 13: No  
 
 
Actions 
Pushbutton 1: Plot 

• ClearFigures; Clears all figures and textboxes and disables pushbutton2, 
pushbutton3 and pushbutton4 

• Choice of dataset; Original or Customized 

• Set in Workspace Base, continueoptimization to 0  

• GetHandles; Gets handles from checkboxes 

• InitializationOptimizationforGUI; Run simulation for initial data  
� SetOptions;Set initial options 
� Starting_Pacejka; Get initial (original or customized) tyre 

coefficients and scaling factors 
� Choice_Dataset; Original or customized initial coefficients 
� Slow_Ramp_Steer_Manoeuvre; Perform simulation of 

manoeuvre 

♦ Initialize counter 
♦ Set speed 
♦ Change lateral acceleration for every iteration 
♦ Vehicle_model; Provided by CRF 

o Vehicle_data; Input of basic vehicle parameters 
o rollio; Calculation of stiffness and displacements of 

suspensions as well as roll stiffness 
o trasferimento_di_carico; Load transfer is 

calculated, vertical force on every tyre 
o careffaxle; Calculate front and rear slip angles that 

correspond to the necessary Fy 
□ Get values for Pacejka_Equation 
□ Pacejka_Equation_F; Calculates slip angle 

that provides the necessary lateral force for 
the front axle using simplified Magic 
Formula, if errors occur these will be 
displayed 

□ Pacejka_Equation_R; Calculates slip angle 
that provides the necessary lateral force for 
the rear axle using Magic simplified Magic 
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Formula, if errors occur these will be 
displayed 

o rigidezza_complessiva; Total slip angle for front 
and rear axle, steering wheel angle and sideslip 
angle are calculated 

� Data_Experimental_Simulation; Load data from experimental 
file 

♦ Get Experimental data 

♦ Sort on AlfaF 
♦ If decimate option is on; Decimate; Reduces Data points 

o Divide in parts and sum values of the parts 
together 

o Calculate values for all the parts 

♦ CheckError; Calculates initial error 
• PlotInitial; Plot results from simulation with experimental data, 

complete figures 

• CheckError; Calculates initial error(s) 

• DisplayText; Displays initial error(s) and initial parameters and saves 
them for optimization 

• Sets pushbutton2 and pushbutton4 on 

• Update handles structure 
 
Pushbutton 2: Start optimization 

• Check if a new optimization must start or one has to be continued 

• If a new optimization has to start, with which dataset? Original or 
Customized 

• Unable pushbutton2 and able pushbutton3 

• Set in Workspace Base, stopOptimization to 0 

• GetHandles; Gets handles from checkboxes 

• ModulatedOptimizationforGUI; Run simulation for initial data 
� SetOptions; Set initial options 
� Starting_Pacejka_Optimization; Get initial (saved, original or 

costumized) tyre coefficients and scaling factors 
� Choice_Dataset; Original or customized initial coefficients 
� Slow_Ramp_Steer_Manoeuvre; Perform simulation of 

manoeuvre 

♦ Initialize counter 
♦ Set speed 
♦ Change lateral acceleration for every iteration 
♦ Vehicle_model; Provided by CRF 

o Vehicle_data; Input of basic vehicle parameters 
o rollio; Calculation of stiffness and displacements of 

suspensions as well as roll stiffness 
o trasferimento_di_carico; Load transfer is 

calculated, vertical force on every tyre 
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o careffaxle; Calculate front and rear slip angles that 
correspond to the necessary Fy 

□ Get values for Pacejka_Equation 
□ Pacejka_Equation_F; Calculates slip angle 

that provides the necessary lateral force for 
the front axle using simplified Magic 
Formula, if errors occur these will be 
displayed 

□ Pacejka_Equation_R; Calculates slip angle 
that provides the necessary lateral force for 
the rear axle using Magic simplified Magic 
Formula, if errors occur these will be 
displayed 

o rigidezza_complessiva; Total slip angle for front 
and rear axle, steering wheel angle and sideslip 
angle are calculated 

� Data_Experimental_Simulation; Load data from experimental 
file 

♦ Get Experimental data 

♦ Sort on AlfaF 
♦ If decimate option is on; Decimate; Reduces Data points 

o Divide in parts and sum values of the parts 
together 

o Calculate values for all the parts 
� If the optimization is continued;  

♦ PlotInitial; Plot results from simulation with experimental 
data, complete figures 

♦ CheckError; Calculates initial error(s) 
♦ DisplayText; Displays initial error(s) and initial 

parameters and saves them for optimization 
� Optimization_SQRforGUI; Run optimization 

♦ PrepareForOptimization; Set variables and constants for 
optimization 

♦ Set optimization options 

♦ Run optimization with fminsearch or lsqnonlin on the 
basis of errorfunc6b 

o GetParameters; Prepare parameters for 
optimization 

o Run Slow_Ramp_Steer_Manoeuvre; Simulation 
manoeuvre as described above 

o If no decimation takes place don’t consider 
experimental values higher than the highest slip 
angle from the simulation 

o Interpolate values from simulation to compare 
with experimental data 
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o Calculate errors 
� Show_resultsforGUI; Plot results in GUI figures 

♦ SetParameters; Prepare optimized parameters for 
simulation manoeuvre 

♦ Clear old values 
♦ Run Slow_Ramp_Steer_Manoeuvre; Simulation 

manoeuvre as described above with optimized 
parameters 

♦ If no decimation takes place don’t consider experimental 
values higher than the highest slip angle from the 
simulation 

♦ PlotFinal; Plot results in GUI figures and complete figures 

♦ Display of final error and parameters 

♦ Recapitulate and save coefficients 
• Unable pushbutton3 and able pushbutton2 

• Set in Workspace Base, stopOptimization to 1 and 
continueOptimization to 1 

• Update handles structure 
 

Pushbutton 3: Stop optimization 

• Set in Workspace Base, continueOptimization to 1 and stopOptimization to 1  

• myoutput; Makes sure to stop optimization at current iteration and proceeds 
to Show_resultsforGUI (see previous pushbutton) 

• Unable pushbutton3 and able pushbutton2 

• Update handles structure 
 
Pushbutton 4: Clear figures 

• ClearFigures; Clears all figures and textboxes and disables pushbutton2, 
pushbutton3 and pushbutton4 

• Update handles structure 
 
Pushbutton 5: Cancel 

• Set in Workspace Base, stopOptimization to 1 and exitOptimization to 1 and 
update structure to stop current optimization if necessary 

• Update handles structure 

• Close TyreEstimator2 
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E. Results influence coefficients and scaling factors 

Experimentation on front and rear axle curves with following initial parameters:    
pcy   =  1.4137 `   LFZ0   =  1 
pdy1   =  1.3229    LCY    =  1        
pdy2   =  -0.3976    LMUY  =  1                    
pey1   =  0.9991    LEY    =  1                    
pey2  =  1.5771    LKY    =  1                   
pky1   =  -15.2575 
pky2   =  0.7569 
            

E-1 Coefficients 

pCy = [1.0 1.4137 1.8] 
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pDy1= [0.8 1.3229 1.8] 
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pDy2= [-0.8 -0.3976 0] 
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pEy1= [-1 0.9991 3] 

0 5 10 15
0

5000

10000

Slip angle(deg)

La
te

ra
l f

or
ce

(N
)

Axle forces with varying slip angles

 

 

0 1 2 3 4 5 6 7
0

2000

4000

6000

Slip angle(deg)

La
te

ra
l f

or
ce

(N
)

Axle forces with varying slip angles

Dataset 1

Dataset 2
Dataset 3

Experimental data

 

pEy2= [0 1.5771 3] 
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pKy1 = [-20 -15.2575 -10] 
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pKy2= [0.5 0.7569 1] 

0 5 10 15
0

5000

10000

Slip angle(deg)

La
te

ra
l f

or
ce

(N
)

Axle forces with varying slip angles

 

 

0 1 2 3 4 5 6 7
0

2000

4000

6000

Slip angle(deg)

La
te

ra
l f

or
ce

(N
)

Axle forces with varying slip angles

Dataset 1

Dataset 2
Dataset 3

Experimental data

 



Tyre identification from road tests on a complete vehicle 

 105 

E-2 Scaling factors 

λCy = [0.667 1.0 1.5] 
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λµy = [0.667 1.0 1.5] 
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λEy = [0.667 1.0 1.5] 
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λKy = [0.667 1.0 1.5] 
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F. Results optimizations Two-DOF model 

Simulation 1.1, Standard optimization with fminsearch 
 

Algorithm Fminsearch 

Target Coefficients 

Decimation No 

Parameter E Considered 

Nr. Of sets One 

Duration 317.0251 s 

Result 0.0802 

Coefficients pCy pDy1 pDy2 pEy1 pKy1 pKy2 

Initial 1.6000    1.3000   -0.1000    1.1500  -21.8000    1.3500 

Optimized 2.0068    0.9944 -0.0952 1.3423  -16.5179 1.2484 

Scaling factors λCy λµy λEy λKy  

 1.0000    1.0000    1.0000    1.0000  
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Simulation 1.2.1 Optimization with fminsearch on scaling factors 
 

Algorithm fminsearch 

Target Scaling factors 

Decimation No 

Parameter E Considered 

Nr. Of sets One 

Duration 60.2663 s 

Result 0.0920 

Coefficients pCy pDy1 pDy2 pEy1 pKy1 pKy2 

Constant 1.6000    1.3000   -0.1000    1.1500  -21.8000    1.3500 

Scaling factors λCy λµy λEy λKy  

Initial 1.0000    1.0000    1.0000    1.0000  

Optimized 1.1679    0.7537 1.2583 0.7638  
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Simulation 1.2.2, Optimization with fminsearch with constant E 
 

Algorithm fminsearch 

Target Coefficients 

Decimation No 

Parameter E Constant 

Nr. Of sets One 

Duration 276.7710 s 

Result 0.0675 

Coefficients pCy pDy1 pDy2 pEy1 pKy1 pKy2 

Initial 1.6000    1.3000   -0.1000    1.1500  -21.8000    1.3500 

Optimized 2.5314 1.2142   -0.0928    1.1500  -15.2837    0.7069 

Scaling factors λCy λµy λEy λKy  

Constant 1.0000    1.0000    1.0000    1.0000  

    
Simulation 1.2.3, Optimization with fminsearch with no E 
 

Algorithm fminsearch 

Target Coefficients 

Decimation No 

Parameter E Not considered 

Nr. Of sets One 

Duration 98.7711 s 

Result 0.0680 

Coefficients pCy pDy1 pDy2 pEy1 pKy1 pKy2 

Initial 1.6000    1.3000   -0.1000    1.1500  -21.8000    1.3500 

Optimized 1.9816    1.0745   -0.1541         0 -14.9326    0.8707 

Scaling factors λCy λµy λEy λKy  

Constant 1.0000    1.0000    1.0000    1.0000  

0 5 10 15
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Slip angle(deg)

La
te

ra
l f

or
ce

(N
)

Axle forces with varying slip angles

 

 

0 1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

Slip angle(deg)

La
te

ra
l f

or
ce

(N
)

Axle forces with varying slip angles

 

 

Experimental data

Standard optimization
Optimization with constant Ey contribution

Optimization with zero Ey contribution

Experimental data

Standard optimization
Optimization with constant Ey contribution

Optimization with zero Ey contribution

 



Appendix F 

 110 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

Lateral acceleration(g)

S
te

er
in

g 
w

he
el

 a
ng

le
(d

eg
)

Steering wheel angle against lateral acceleration

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

-4

-3

-2

-1

0

1

Lateral acceleration(g)

S
id

e 
sl

ip
 a

ng
le

(d
eg

)

Side slip angle against lateral acceleration

 

 

Experimental data

Standard optimization
Optimization with constant Ey contribution

Optimization with zero Ey contribution

Experimental data

Standard optimization
Optimization with constant Ey contribution

Optimization with zero Ey contribution

 

Simulation 1.3.1, Optimization with fminsearch with no scaling 
 

Algorithm fminsearch 

Target Coefficients 

Decimation No 

Parameter E Constant 

Nr. Of sets One 

Duration 330.5717 s 

Result 0.0811 

Coefficients pCy pDy1 pDy2 pEy1 pKy1 pKy2 

Initial 1.6000    1.3000   -0.1000    1.1500  -21.8000    1.3500 

Optimized 2.2784    0.9433   -0.0488    1.3825  -16.1832    1.0652 

Scaling factors λCy λµy λEy λKy  

Constant 1.0000    1.0000    1.0000    1.0000  

    
Simulation 1.3.2, Optimization with fminsearch with no scaling but mult. Alpha 
 

Algorithm fminsearch 

Target Coefficients 

Decimation No 

Parameter E Not considered 

Nr. Of sets One 

Duration 500.5702 s 

Result 0.0876 

Coefficients pCy pDy1 pDy2 pEy1 pKy1 pKy2 

Initial 1.6000    1.3000   -0.1000    1.1500  -21.8000    1.3500 

Optimized 1.8741    1.0111   -0.1094    1.0644  -16.7029    1.4523 

Scaling factors λCy λµy λEy λKy  

Constant 1.0000    1.0000    1.0000    1.0000  
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Simulation 1.4.1, Optimization with fminsearch on initial tyre conditions 
 

Algorithm Fminsearch 

Target Coefficients 

Decimation No 

Parameter E Considered 

Nr. Of sets One 

Duration 168.3750 s 

Result 0.101 

Coefficients pCy pDy1 pDy2 pEy1 pKy1 pKy2 

Initial 1.3184 1.3075 0.3353    1.1549    -23.0709 1.6647 

Optimized 0.9726    1.8692 0.4121    1.7491    -16.3826 0.6251 

Scaling factors λCy λµy λEy λKy  

 1.0000    1.0000    1.0000    0.8500  
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Simulation 1.4.2, Optimization with averaging 
 

Algorithm Fminsearch 

Target Coefficients 

Decimation Yes 

Parameter E Considered 

Nr. Of sets One 

Duration 125.6834 s 

Result 0.0569/0.0939 

Coefficients pCy pDy1 pDy2 pEy1 pKy1 pKy2 

Initial 1.6000    1.3000   -0.1000    1.1500  -21.8000    1.3500 

Optimized 1.5299 1.0122   -0.1231    1.2063  -18.6963    1.6174 

Scaling factors λCy λµy λEy λKy  

 1.0000    1.0000    1.0000    1.0000  
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Simulation 1.4.3, Optimization on front and rear axle 
 

Algorithm Fminsearch 

Target Coefficients 

Decimation Yes 

Parameter E Considered 

Nr. Of sets One 

Duration 385.2789 s/147.9028 s 

Result 0.036885/0.092361/0.068 

Coefficients front pCy pDy1 pDy2 pEy1 pKy1 pKy2 

Initial front 1.6000    1.3000   -0.1000    1.1500  -21.8000    1.3500 

Optimized front 1.4481    1.0266   -0.1237    0.5658  -17.6390    2.1520 

Coefficients rear pCy pDy1 pDy2 pEy1 pKy1 pKy2 

Initial rear 1.6000    1.3000   -0.1000    1.1500  -21.8000    1.3500 

Optimized rear 1.1858 1.2815   -0.1436    1.3437  -17.1933    1.0707 

Scaling factors λCy λµy λEy λKy  

 1.0000    1.0000    1.0000    1.0000  
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G. Results optimizations Fourteen-DOF model 

Simulation 2.1, Standard optimization with lsqnonlin 

Algorithm Lsqnonlin 

Target Coefficients 

Decimation No 

Parameter E Considered 

Nr. Of sets One 

Duration 2.2194e+004 s 

Result 0.0514 

Coefficients pCy pDy1 pDy2 pEy1 pEy2 pKy1 pKy2 

Initial 1.3184 1.3075 0.3353    1.1549    0.9802   -23.0709 1.6647 

Optimized 1.4233        1.2708    -0.2304    1.0190    0.9956   -23.1263     1.2740 

Scaling factors pKy2 λCy λµy λEy λKy 

Constant 1.0000    1.0000    1.0000    1.0000    0.8500 

 

Simulation 2.2.1, Optimization with lsqnonlin on scaling factors 

Algorithm Lsqnonlin 

Target Scaling factors 

Decimation No 

Parameter E Not considered 

Nr. Of sets One 

Duration 2.1771e+004 s 

Result 0.0582 

Coefficients pCy pDy1 pDy2 pEy1 pEy2 pKy1 pKy2 

Constant 1.3184 1.3075 0.3353    1.1549    0.9802   -23.0709 1.6647 

Scaling factors λFz0/pK

y2 
λCy λµy λEy λKy 

Initial 1.0000     1.0000    1.0000    1.0000    0.8500 

Optimized 1.0833 1.3141    0.7609    1.0029    0.9292 
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Simulation 2.2.2, Optimization with lsqnonlin with constant E 
 

Algorithm Lsqnonlin 

Target Coefficients 

Decimation No 

Parameter E Not considered 

Nr. Of sets One 

Duration 4.6349e+003 s 

Results 0.0521 

Coefficients pCy pDy1 pDy2 pEy1 pEy2 pKy1 pKy2 

Initial 1.3184 1.3075 0.3353    1.1549    0.9802   -23.0709 1.6647 

Optimized 1.5028    1.2247    -0.1626    1.1549    0.9802   -23.1243     1.2577 

Scaling factors pKy2 λCy λµy λEy λKy 

Constant 1.0000    1.0000    1.0000    1.0000    0.8500 
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 Simulation 2.3.1, Optimization with scaled error function 
 

Algorithm Lsqnonlin 

Target Coefficients 

Decimation No 

Parameter E Not considered 

Nr. Of sets One 

Duration 2.0921e+004 s 

Result 0.0531 

Coefficients pCy pDy1 pDy2 pEy1 pEy2 pKy1 pKy2 

Initial 1.3184 1.3075 0.3353    1.1549    0.9802   -23.0709 1.6647 

Optimized 1.5851    1.2474    -0.3044    0.9955    1.0587   -23.1237     1.4696 

Scaling factors pKy2 λCy λµy λEy λKy 

Constant 1.0000    1.0000    1.0000    1.0000    0.8500 

 
Simulation 2.3.2, Optimization with error function multiplied by slip angles 
 

Algorithm Lsqnonlin 

Target Coefficients 

Decimation No 

Parameter E Not considered 

Nr. Of sets One 

Duration 3.3448e+004 s 
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Result 0.0524 

Coefficients pCy pDy1 pDy2 pEy1 pEy2 pKy1 pKy2 

Initial 1.3184 1.3075 0.3353    1.1549     0.9802   -23.0709 1.6647 

Optimized 1.5536    1.2430    -0.2553    0.9979     1.0592   -23.1178     1.2888 

Scaling factors pKy2 λCy λµy λEy λKy 

Constant 1.0000    1.0000    1.0000    1.0000     0.8500 
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Simulation 2.3.3, Optimization with fminsearch 
 

Algorithm Fminsearch 

Target Coefficients 

Decimation No 

Parameter E Considered 

Nr. Of sets One 

Duration 9.8230e+003 s 

Result 0.0723 

Coefficients pCy pDy1 pDy2 pEy1 pEy2 pKy1 pKy2 

Initial 1.3184 1.3075 0.3353     1.1549     0.9802   -23.0709 1.6647 

Optimized 1.3422    1.1672     0.3219     1.3086     1.2178   -25.8676 0.9226 

Scaling factors pKy2 λCy λµy λEy λKy 

 1.0000    1.0000     1.0000     1.0000     0.8500 
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Simulation 2.4.1, Optimization with lsqnonlin handtuned initial conditions 
 

Algorithm Lsqnonlin 

Target Coefficients 

Decimation No 

Parameter E Considered 

Nr. Of sets One 

Duration 5.7126e+004 s 

Result 0.0530 

Coefficients pCy pDy1 pDy2 pEy1 pEy2 pKy1 pKy2 

Initial 1.6  1.3075 -0.1     1.1549    0.9802   -21.8     1.35 

Optimized 1.7980     1.2623    -0.3129    0.8687    0.8658   -21.8415     1.1458 

Scaling factors pKy2 λCy λµy λEy λKy 

Constant 1.0000     1.0000    1.0000    1.0000    0.8500 
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Simulation 2.4.2, Optimization with decimation 
 

Algorithm Lsqnonlin 

Target Coefficients 

Decimation Yes 

Parameter E Considered 

Nr. Of sets One 

Duration 1.6492e+004 s 

Result 0.0575 

Coefficients pCy pDy1 pDy2 pEy1 pEy2 pKy1 pKy2 

Initial 1.3184 1.3075 0.3353    1.1549    0.9802   -23.0709 1.6647 

Optimized 1.4925    1.2738    -0.1981    1.0553    1.0331   -22.9850     1.4025 

Scaling factors pKy2 λCy λµy λEy λKy 

Constant 1.0000    1.0000    1.0000    1.0000    0.8500 
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Simulation 2.4.3, Optimization with different datasets 
 

Algorithm Lsqnonlin 

Target Coefficients 

Decimation Yes 

Parameter E Considered 

Nr. Of sets One 

Duration 2.4721e+004 s/3.3512e+004 

Result 0.0234/0.0776/0.0444 

Coef. front pCy pDy1 pDy2 pEy1 pEy2 pKy1 pKy2 

Initial 1.3184 1.3075 0.3353    1.1549    0.9802   -23.0709 1.6647 

Optimized 2.0496    1.3009    -0.4748    0.8187    1.1353   -23.2097     1.4243 

Coef. rear pCy pDy1 pDy2 pEy1 pEy2 pKy1 pKy2 

Initial 1.3184 1.3075 0.3353    1.1549    0.9802   -23.0709 1.6647 

Optimized 1.2379    1.1920    0.2117    1.1417    0.9900   -23.0874     1.4901 

Scaling factors pKy2 λCy λµy λEy λKy 

Constant 1.0000    1.0000    1.0000    1.0000    0.8500 
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