
Improving Existing Optimal Decision Trees Algorithms

by Rede �ning  Their Binarisation Strategy

A.K. Wolska

TU Delft

26 June 2020

AbstractOptimal decision trees are not easily improvable in terms of accuracy. However,

improving the pre-processing of underlying dataset can be the answer to creating more

accurate decision trees. In this paper, multiple methods of binarising datasets are

considered and the resulting decision trees compared. The binarisation is divided into

two stages: discretisation and encoding, with various algorithms considered for both of

the stages. Additionally, processing the data during the decision tree building, referred

to as online processing, instead of beforehand, was considered. It was discovered that

for smaller datasets, unsupervised discretisation was preferred, and extending one-hot

encoding to also consider multiple categories at once as target gave better accuracy

for trees with lower depth. For bigger datasets, online processing has shown to be

bene�cial.

1 Introduction

Decision trees are a very important type of data representation widely used in machine learn-
ing. They assist in solving classi�cation problems, where based on multiple data features,
each data instance is classi�ed into one of two or more classes. Decision trees represent the
conditions for each classi�cation decision of a data instance in a tree-like structure, providing
a concise way of presenting data learned from a dataset in a form that is easy for human
users to understand and reason about. There exist heuristic-based decision trees (that use
heuristics for the tree construction) and optimal decision trees, such as the MurTree[1],
which produce an optimal result based on exhaustive search or its equivalent. Heuristic
trees are often used, as they provide a relatively short runtime and high accuracy, but they
are not necessarily the best possible representations of the data. Optimal decision trees o�er
an increase in accuracy; they minimise the amount of misclassi�ed instances by the use of
exhaustive search. Exhaustive search considers exhaustively many possible options, while
heuristic search only considers limited amount of options that are chosen by the heuristic,
thus optimal decision trees have much greater runtime. It is the biggest downside of the
optimal decision trees, when compared to heuristic decision trees.Optimal decision trees are
the optimal representation based on the dataset provided to the algorithm and therefore
not improvable in terms of accuracy. However, even if the decision tree algorithm is di�cult
or impossible to improve, is there a way to improve the given dataset? This yields the
motivation behind the research question.

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



In many decision trees, each non-leaf node has exactly two children. For such a tree, the
various features in the data should have values in the binary domain. However, for most
datasets it is not the case, and they require pre-processing before they can be used in the
decision tree algorithm. This pre-processing - binarisation of the data - is used not only for
decision trees, but also for other models of classi�cation problems, however this paper will
be focusing only on the use for decision trees.

There are two parts of the binarisation problem. A di�erent approach must be taken for
data in continuous and discrete, ordered units and data in categorical units. For the purpose
of this paper, the binarisation problem has been de�ned as (i) the discretization element,
when data in continuous domain is rede�ned into few ranges representing categorical values,
and (ii) actual binarisation, where data in categorical domain is being encoded in terms of
a binary domain. For clarity, the second stage of the binarisation problem will be referred
to as encoding.

Two di�erent methods of data processing are considered: o�ine and online data pro-
cessing. The former is a standard way for processing data for the decision tree building,
when the data is wholly processed before the tree building algorithm is run, and during
runtime the values of the dataset are not modi�ed. The latter appears when unprocessed
data is inputted to the algorithm, and the discretization and binarisation takes place during
the runtime of the algorithm, when the results are in�uenced by the branch of decision tree
chosen. The terms "o�ine" for the standard data processing and "online" are de�ned for
the purpose of this paper.

Now, the research question can be stated:

Research Question Can we improve existing optimal decision tree algorithms

by improving their discretization strategy, wither online, o�ine, or a combination

of the two?

Three main subqestions can be de�ned:

1. Can o�ine binarisation strategy improve the optimal decision tree algo-
rithm?

• Is there a better o�ine discretization strategy (converting from con-
tinuous domain into categorical domain)?

• Is there a better o�ine binarisation strategy (converting from cate-
gorical domain into binary domain)?

2. Can an online binarisation strategy improve the optimal decision tree al-
gorithm?

• How can binarisation be incorporated into the decision tree algorithm?

• Is the online binarisation strategy better than the o�ine alternatives?

3. Can a combination of online and o�ine decision strategies improve the
optimal decision tree algorithm?

This paper is constructed as follows: the second section describes the related work an
research in the area of discretization and binarisation of data; the third section covers
preliminary information, including the methodology used in the research. The fourth section

2



talks about own contributions to the research subject, describing the algorithms used to
obtain the results to be compares. The �fth section outlines the conducted experiments.
The sixth section covers Responsible Research. After that, discussion is featured in seventh
section. The last section outlines conclusions and future research to be done in this area.

2 Related work

As mentioned above, the main contribution that is the basis of this research is the MurTree
algorithm[1]. The data processing approach used when testing the MurTree algorithm as-
sumed to �rst convert all non-binary features into categorical features based on the minimal
description length principle (MLPD)[2], and to binarize them afterwards using one-hot en-
coding. The MDLP algorithm uses the heuristic of minimizing enthropy in each interval.
However, the authors of the MurTree algorithm acknowledge that there might be better
ways to prepare the data.

Another discretisation algorithm evaluated in this research is the CAIM discretisation
algorithm[3]. The algorithm uses the heuristic of maximising class-attribute interdepen-
dence, while also possibly resulting in minimum amount of intervals.

Mayoraz and Moreira[4] give an overview of existing data binarisation methods for the
purpose of classi�cation tasks, and propose their own approach. Besides the binarisation
algorithms, there is also research strictly focused on the discretization element. Yang Y.
and others[5] present an collection of methods of discretizing data. Perner and Trautzsch[6]
give another collection of discretization methods.

3 Preliminary information and methodology

3.1 De�ning terminology

Figure 1: Example of a binary decision tree [7]

First, a decision tree will be de-
�ned. The non-leaf nodes of the
tree are called feature nodes, as
they take a feature (also called an
attribute), and based on the value
of that feature, use either their left
or right child for further classi�-
cation of the given data instance.
The leaf nodes are called classi�-
cation nodes, and independently
of the features of given data in-
stance, always classify it to one of
two classes. The depth of the tree
is de�ned as amount of levels with
a feature node. A tree of depth 0
contains only a classi�cation node,
and is de�ned as the classi�cation
node of the given dataset.

As mentioned previously, the
main measure to evaluate achieved

3



trees is accuracy. However, be-
fore it can be de�ned, other terms
must be introduced �rst. A data
instance is a concrete instance in the domain of a given dataset that represents a situation
or object to be classi�ed with the decision tree. For every data instance, there is a class
it belongs to, and the purpose of the decision tree is to correctly decide on that class. If
the decision tree decides to assign the given data instance to a class it does not belong to,
it is a misclassi�cation. A dataset is a collection of data instances in the same domain,
representing a classi�cation problem. A domain of a dataset is de�ned as a certain amount
of attributes, where for each data instance, the given attribute has the same domain.

3.2 Accuracy measurements

Now, accuracy can be de�ned; it is de�ned as the percentage of data instances that is
classi�ed correctly by the given Decision Tree speci�c for that dataset. However, it is not
proper to measure accuracy based on the exact same data instances as the ones used to
create the Decision Tree, as this will not give a correct measure for the whole domain
related to what the data represent, but only a result corresponding for the given speci�c
set of instances that does not generalise well for the whole domain; this situation is called
over�tting. On the opposite side of the spectrum there is under�tting of the model, where
the model is not detailed enough to give accurate results, and by introducing greater details
(which in case of decision trees is usually done by generating trees with a higher depth
parameter). Therefore, for measuring accuracy, a separate validation set must be used[8],
that was not used in the process of building the decision tree. By using the validation set as
an independent measure, it is possible to notice under�tting and over�tting of the model.

The MurTree[1] algorithm as its measure of optimality uses the misclassi�cation count,
which is the absolute amount of misclassi�ed features in the given training dataset. The
MurTree algorithm, instead of doing exhaustive search over the whole search space, takes as
one of the parameters the upper bound for misclassi�cation score, under which the tree is
assumed to be optimal. With this parameter set too high, an under�tted tree could be found
and returned as optimal. However, when this parameter is set too low, either no tree is found,
or the found tree is over�tted. As this parameter is very costly in time to control, it was
decided to initially set the parameter as the dataset's classi�cation node's misclassi�cation
score minus 1. The reason for the subtraction is to avoid premature convergence of the
decision tree to an under�tted result. For every depth starting at 2 up until n, the MurTree
algorithm is run for the maximum possible number of nodes. If tree at any depth yields a
misclassi�cation score lower than the allowed upper bound, the upper bound is set to the
value for the following runs of the MurTree algorithms for higher depths. For benchmarking,
n equal 4 was used.

3.3 K-fold cross-validation

The validation of accuracy measure is set up as follows. After the data is pre-processed,
the data instances are divided into k sets, in such manner that every k-th data instance is
placed in the k-th dataset. This allows each of the created sets to accurately represent the
domain of the data, in case the data instances were sorted in any way. A structured way of
dividing the data instances between sets was used to allow consistency and reproducibility
of the results.

4



After the k datasets are created, the �rst k-1 datasets are used for a k-validation proce-
dure. In this procedure, Each of the k-1 datasets is used once as the test set for a decision
tree built using the rest of the k-1 datasets. The accuracies computed on the test sets are
compared, and the tree with the highest accuracy between them is validated using the last
kth set, that did not participate in the k-validation procedure. This allows to give a mea-
sure how well does the decision tree generalise on unseen data. The described procedure
is applied for trees built with given depth parameter separately, So that over�tting can be
noticed when for a tree with higher depth, a lower validation accuracy can be observed. For
the experiments, the chosen k is 7, giving approximately 14,28% of data instances to the
validation dataset, likewise 14,28% of data instances to each of the test sets, and 71,43%
to each of the data instances to the training sets. The given k was chosen, as it is a good
practice for the test and validation set to contain about 10%-15% of the initial datset.

3.4 Data

The datasets used for benchmarking are provided by the supervisor, which were collected
from open source machine learning repositories[1]. For the use of this research, the subset
of datasets was chosen, were at least part of the data was in continuous domain, as opposed
to datasets already binarised. In case a dataset contained multi-class classi�cation problem,
the dataset was featured multiple times with one-vs-all classi�cation, where in each instance
of the dataset, a di�erent class is set as target. The full list of datasets is as follows: Balance
Scale[9], banknote authentication[9], QSAR biodegradation[9], Pima Indians Diabetes[10],
Car Evaluation[9], Default of Credit Card Clients[9], Ionosphere[9], Iris[9], magic04[10],
Messidor[11], MONK's problems[9], seismic bumps][9], spambase[9] and Wine[9]. In these
datasets, the amount of data instances varies from 123 (3rd MONK dataset) up to 30 000
(Default of Credit Card Clients). The amount of attributes in the datasets varies between
4 and 57 (Spambase).

4 Comparing existing algorithms

There are three stages on which di�erent algorithms will be compared. The �rst stage is
the scope of the tree building algorithm, were various procedures for the latter two stages,
discretisation and binarisation, will be compared. In this section, di�erent algorithms for
each of the stages are described.

4.1 Online and o�ine data processing

As mentioned earlier, the MurTree algorithm requires the data to be provided in binary
format: every value of every attribute, including the target, must be either true or false.
O�ine data processing, or data pre-processing, is the standard procedure when building a
decision tree. It requires the data to be pre-processed before it is used by the tree-building
algorithm. While the MurTree algorithm does not modify the values of the data, during the
runtime it divides the provided dataset into two separate subsets.

Online data processing will require the MurTree algorithm to be modi�ed, such that the
data will be provided in both continuous and binary format. Each time the dataset must
be divided, the new subset will be created based on the continuous format of the data, and
the discretization and binarisation will be recomputed.

5



Combined data processing, where o�ine and online data processing are combined, can
be realised in many ways, but for the scope of this research it was decided to implement
a limited version thereof. In this implementation, the MurTree algorithm will be provided
data in categorical format (post-discretization), instead of continuous. On each division of
the dataset, the binarisation will be recomputed.

4.2 Discretization algorithms

For comparing various discretization algorithms, two specialised algorithms and two addi-
tional naive algorithms were chosen. First, the specialized algorithms will be discussed,
following with the description of the naive algorithms.

4.2.1 MDLP and CAIM discretization

The two specialised algorithms are MDLP[2] and CAIM[3]. Both algorithms work by di-
viding the data in continuous domain into few categories that are de�ned by certain ranges
based on values of the continuous domain. The MDLP discretization works by the use of
heuristic of minimizing entropy between multiple classes that are de�ned as intervals of the
values of a continuous-valued feature. The CAIM discretization uses the heuristic of max-
imising class-attribute interdependence, while also possibly resulting in minimum amount
of intervals. While both heuristics sound similar, there is a fundamental di�erence between
them. MDLP discretization's entropy measure takes into account how homogenous a range
is, while CAIM's interdependence considers a only how much the class labels are correlated
with each interval.

4.2.2 Interval discretization methods

The two naive algorithms are de�ned as follows; mean-based interval discretisation and
median-based interval discretisation. Both algorithms take in as parameter the amount
of categories it should produce per attribute. Mean-based interval discretisation takes the
lowest and highest values in the attribute, and de�nes the prede�ned amount of output
intervals based of equal ranges of the values of the attribute. Therefore, the ranges may
greatly di�er in amount of data instances assigned to them. Meanwhile, median-based
interval discretisation de�nes the ranges by sorting the values of the attribute in a ascending
order and ensuring every range has equal, or close to equal, amount of data instances
asssigned. This property of proportions of data instances between ranges of course only
holds for the given dataset, and a di�erent dataset from the same domain was chosen, the
values might have been di�erent. Both algorithms are de�ned as naive, as they both do not
take into account the target value, therefore being unsupervised classi�cation; but also they
do not really take into account the features of the attribute domain to de�ne the amount of
output intervals.

4.3 Binarisation algorithms

For binarisation element, two algorithms were chosen: One-hot encoding and its proposed
extension, hereby called Multi-hot encoding.

6



4.3.1 One-hot encoding

One-hot encoding proceeds as follows: in case of an attribute with 2 categories, it de�nes
one of them as target, and the other one as a non-target category. In case of an attribute
with n categories, it creates n new attributes, in each of which one category of the original
column is de�ned as target, and the rest is de�ned as non-target. The original attribute is
then discarded, and the resulting n attributes are added to the set of binarized attributes.

One-hot encoding was chosen, as it is the easiest way to preserve information, after
the compressing done by discretisation algorithms. However, the one-hot encoding has the
disadvantage that typically, the target value has a much smaller amount of data instances
in it, compared to a non-target value. This is particularly inconvenient for the tree building,
as the decision boundary created with such attributes has very unbalanced amount of data
instances between each left and right child, which in�uences the granularity of the decisions
and might simultaneously lead to under�tting in the left subtree and over�tting in the right
subtree. Therefore, the extension multi-hot encoding was proposed.

4.3.2 Multi-hot encoding

The extension Multi-hot encoding is de�ned as follows: for attributes with m ranges, where
m >= 4, additionally to one-hot encoding results, there also are created attributes where
more than one of the ranges of the original attribute is de�ned as the target value. Initially,
all possible combinations of ranges in output attributes were considered, however after some
sample experiments on datasets, it was discovered that if an attribute created by multi-
encoding was used in the tree algorithm over a one-hot encoding attribute, the ranges
assigned as target values in the given multi-encoding column were always adjacent to each
other.

As the initial setup was very time-costly due to the exponentially rising amount of
attributes, which in�uences the runtime of the MurTree algorithm, the Multi-hot encoding
is was rede�ned. First, the maximum amount of ranges that can be de�ned as target value
in an output attribute, is m − 2, as m − 1 would be complimentary to one-hot encoding
results. Secondly, for each amount of ranges that are set to target value in the output
column, where that amount is de�ned as 2 ≥ k ≥ m − 2, there is exactly m − k output
columns. For each of this output columns, k adjacent ranges are de�ned as target values.
However, the k ranges that include the m-th column, is not included, as it would also be
complimentary to a column were (m − k) ranges that include the 1st column are set as
target.

5 Experiments

In this section, the algorithms described in Section 4 will be compared using the methods
and measures described in Section 3. The experiments and results for a chosen dataset
will be discussed �rst, to give an overview of capabilities of di�erent algorithms. Later,
the results of benchmarking on the whole subset of continuous datasets are provided and
discussed in order to determine whether there exist a better o�ine binarization strategy
(Subquestion 1) and if online binarization strategy can improve the decision tree algorithm
(Subquestion 2). Finally, possibilities of combining online and o�ine binarization strategies
will be discussed (Subquestion 3).

7



5.1 Analysis for a chosen dataset

The dataset chosen for this analysis is the banknote authentication dataset[9]. It contains
1372 data instances and 4 attributes (excluding the target class), thus making it a small
dataset, useful for building deeper trees, that otherwise would be very time-costly.

Figure 2: One hot encoding validation accu-
racies

First, based on Fig. 2, results of vari-
ous discretization algorithms combined with
one-hot encoding binarisation will be dis-
cussed. While the control discretization
method, MDLP (Section 4.2.1), gives rea-
sonably high results and converges to a re-
sult without over�tting, better results are
obtained by other algorithms. Mean-based
interval and median-based interval results
(Section 4.2.2) were obtained as follows: the
results were run for various values of the in-
put parameter (number of intervals per fea-
ture) p, where 2 ≤ p ≤ 8. The details of
this discretisation can be seen in Fig. 4.

For each depth, the result with the pa-
rameter value giving the highest validation
accuracy was chosen. The mean-based dis-
cretization does not reach under�tting and
with a tree of depth 5, provides the high-
est accuracy observed. Median-based dis-
cretization reaches the best accuracy for depth of 3, and above that depth shows signs
of over�tting (while still giving better results than the control discretization). CAIM dis-
cretization shows a convergence to of accuracy since the lowest depth, thus providing stable
results, which might allow better accuracy for very shallow trees. However, it is a disadvan-
tage when using the MurTree algorithm for decision trees of higher depth, when considering
o�ine data processing.

Figure 3: Multi-hot encoding validation accu-
racies

For Multi-hot encoding, in Fig. 3 the al-
gorithms over�t for depth 5, when the val-
idation accuracy is visibly lower than for
depth 4. It is certain that the over�tting
occurs, as in Section 3.2 it was explained
that for the training set the misclassi�ca-
tion for deeper trees can only lower, but not
rise. Therefore, the train set accuracy for
depth 4 and depth 5 must have been the
same, but the validation accuracy is much
lower. However, the best results for depth
4 match those for depth 5 of one-hot encod-
ing, even exceeding them in case of MDLP
and median-based discretization strategies.
It is apparent that even for depth 2, the
results of aggregating more ranges in one
attribute give a considerable increase in ac-
curacy. This outcome appears due to multi-

8



hot encoding allowing more balanced divisions of data.

Figure 4: Mean-based discretisation results for di�erent sizes of the input parameter

In Fig. 4, greater details about the di�erences between one-hot encoding and multi-hot
encoding are visible. As explained in section 4.3.2, the results for bucket size 2 and 3 (when
each attribute is divided into 2 or 3 ranges, respectively) are exactly the same for both
types of bianrization. Again, much better results are observed for depth 2. With multi-hot
encoding, there are bene�ts for using higher amount of intervals (buckets), with lower depths
of the algorithm.

It is also visible that accuracy is not strictly increasing with the amount of buckets
present: for one-hot encoding, the best results are observed for bucket size 4 and 5, while for
multi-hot encoding, also bucket size 8 and 7 yield high accuracy. This can be explained by the
fact that the interval-based algorithms, both mean-based and median-based, do not actually
intend to �nd the "best" intervals for decision tree building, as they are unsupervised.
However, some of the divisions into ranges manage to be close enough to a range or parameter
that seems to be useful for decision tree building. The division into 4 and into 5 ranges per
feature both manage to come close to the optimal ranges for at least some of the initial
attributes. This also explains the success of division into 8 buckets with multi-hot encoding,
when the results for multi-hot encoding with that discretization are less impressive. With
one-hot encoding, the granularity of the ranges is too big, making the post-discretization
categories too narrow for providing useful information. However, when some of the categories
are merged together as with multi-hot encoding, it gives space for improvement.

With this explanation it becomes apparent that there is no single "best" parameter input
for every dataset, as for di�erent datasets, di�erent divisions of the attributes into ranges
will yield results close to the best ranges of that dataset. For a dataset, it might even yield
better results to have a di�erent amount of ranges for each attribute. A way to mitigate
this would be to use a higher input parameter for interval-based discretization and use it
with multi-hot encoding. To avoid division into sets of drastically di�erent sizes, that could
easily result in over�tting, multi-hot encoding could be modi�ed so that per each output
attribute, at least a m ranges are de�ned as target value. With current version of multi-hot
encoding, m can be equal to 1.

The results for both naive discretization algorithms in Figures 2-4 must be discussed.
After inspecting the decision trees giving highest validation accuracy, it was discovered that
on highest levels of the decision trees, features which divide the dataset into two subsets of
roughly the same size, with roughly the same percent of target data instances in each, are

9



promoted by the MurTree algorithm. Mean-based discretisation shows to be superior over
median-based discretisation, especially for higher depths.

A reason for this could be that it allows the di�erent intervals to have di�erent amount
of instances per each value, thus making features dividng the dataset in equal halves more
likely to be present. These kind of features, instead of trying to �nd a measure to minimize
entropy of each interval, provides a division that allows to use two di�erent sets of rules for
each of the datasets after divison. This puts into question whether specialised discretisation
algorithms are useful for the MurTree algorithm? It must be stated that results obtained on
one dataset are not generalisable; therefore, rejecting specialised algorithms at this step is not
possible. Further, there is no evidence that any of the naive algorithms gives similar results
for other datasets, so they cannot be proposed as a reasonable alternative yet. Another
proposed reason of this state of being is that the specialised discretisation methods already
give over�tting for such a small dataset. This might suggest that online data processing
must stop at some depth of the tree, to avoid over�tting of the algorithms.

5.2 Benchmarking

In this section, results regarding comparison of the datasets listed in Section 3.4 will be
discussed. To accurately display di�erences between di�erent binarisation methods, box
plots were used. In each box, the red line represents the median over all the datasets.
The box represents two middle quartiles of the data and the whiskers represent the outer
quartiles. The single dots represent outliers.

To compare results between various strategies in greater details, additional plots were
used; the chance in accuracy was plotted against 3 properties of the dataset: amount of
features, amount of data instances, and disproportion between target and non-target classes.
The last measure is de�ned as follows:| n1

n1+n0
−0.5|, where n0 is the amount of data instances

in the non-target class and n1 is equivalent measure for the target class. Therefore, for this
measure, for value 0.0, target and non-target class have the same amount of data instances,
and for value 0.4, one class is ten times bigger than the other. Each dot represents a di�erent
dataset. Of those three values, amount of data instances is plotted in logarithmic scale for
greater readability od the plot. Additionally, linear regression was plotted to mark a trend
in the �ndings, if it exists.

Figure 5: Comparison of best validation accuracies over the datasets listed in section 3.4

The input parameter for interval-based discretisation used was set to values between and

10



including 2 and 5.In case a decision tree building algorithm could not produce a decision
tree with given misclassi�cation score, it was excluded from the results.

5.2.1 O�ine data processing

For o�ine data processing, the results were run up to depth 4 of the decision tree.

Figure 6: Comparison of control strategy versus MDLP with
multi-hot encoding

In Fig. 5, for each
binarisation strategy the
highest occurring accu-
racy was chosen. In
case of interval-based dis-
cretization methods, the
highest occurring accu-
racy was chosen regard-
less of input parameter,
as the best parameter
to use depends on the
dataset itself. For each of
the discretization strategy, it combined to one-hot encoding is displayed next to the combi-
nation with multi-hot encoding.

Figure 7: Comparison of control strategy versus CAIM with one-
hot encoding

As such, it is visi-
ble that while the re-
sults for each type of
encoding are very simi-
lar, they indeed do di�er.
For every discretization
method besides CAIM,
the results for multi-hot
encoding are at least as
good as, or visibly bet-
ter, than for one-hot en-
coding. The di�erence in

CAIM discretization can be explained as with multi-hot encoding, the training sets were
much more prone to over�tting, so the best results were never reached.

Figure 8: Comparison of control strategy versus median-based
with multi-hot encoding

For the specialised
discretization algorithms,
MDLP with one-hot en-
coding is preferred over
MDLP with multi-hot
encoding; as seen in Fig.
6, in most cases one-hot
encoding is at least as
good as the control strat-
egy. The biggest change
is observed for data with
low amount of features
and smaller datasets.

The control strategy also seems comparable to CAIM with one-hot encoding, however

11



from the comparison with Fig. 7 it is visible that for a lot of datasets the results are
signi�cantly worse, and the increase marginal. Therefore, it is not preferred over MDLP
discretisation.

When inspecting the naive algorithms, median-based discretization gives higher accuracy
(based on median) which much higher stability (looking at the lower half of the box). Overall,
out of all o�ine binarisation-strategy, median-based discretization combined with multi-hot
encoding gives the highest average accuracy, based on median and lower boundary of the
box, with outliers being comparable with all other datasets. When inspecting Fig. 8, it
is visible that only a few results, particulary those with a higher amount of feature, have
marginally lower accuracy than the control strategy. This can be explained as for datasets
with higher amount of features, the same parameter value for all features is less likely to
give valuable results.

In conclusion for o�ine processing, the most promising strategy was the naive strategy for
median-based interval discretization compared with one-hot encoding. However, the success
of this strategy depends on the used parameter for amount of intervals. For the same reason,
this strategy is less successful for bigger datasets, where the domains of di�erent features
might require di�erent values of the parameter for a better use to the decision tree building
algorithm.Since CAIM discretization compared with multi-hot encoding gives visibly worse
results, it was decided to exclude it from further experiments and comparisons.

5.2.2 Online data processing

For online data processing, naive discretization algorithms were run for depths 2, 3 and 4.
For specialized algorithms, it was discovered that running them for depth 4 often resulted in
the algorithm not being able to �nd any division into ranges whatsoever in the lower parts
of the tree and creating attributes were each value was in range (−Inf, Inf). This resulted
in much lower accuracy for depth 4. Therefore, it was decided to examine specialised online
algorithms only for depth 2 and 3.

Figure 9: Comparison of best online accuracies

In Fig. 9, the results of online discretization were compared with control o�ine discretiza-
tion (MDLP combined with one-hot encoding) and best o�ine discretization (median-based
combined with multi-hot encoding). For specialized algorithms, the median is visibly lower
than control value, and the lower quartiles are much more spread downwards, thus making
o�ine method worse for specialized algorithms.

12



This is the opposite of what was expected; it was presumed that discretizing using smaller
datasets, after the division at the root of the tree, would provide a split that would make it
easier to �nd meaningful splits, as the data not included into that branch of the tree would
not introduce any error or division that would be not meaningful in the given branch of
the tree. This assumption, however, was incorrect; trying to apply specialized discretization
methods to smaller datasets resulted in the algorithms over�tting and not �nding meaningful
information.

Figure 10: Comparison of median-based o�ine strategy with
multi-hot encoding versus mean-based with multi-hot encoding

When comparing the
naive algorithms executed
online with the two of-
�ine algorithms, it is
visible that they have
median accuracy a bit
higher than the control
strategy, but lower than
the best found strategy.
The top edge of the boxes
is higher, thus it seems
that in some cases, online
strategies are more successful for naive discretization strategies; however, the lower whiskers
is also longer for the online methods, thus making them less stable.

Figure 11: Comparison of median-based o�ine strategy with
multi-hot encoding versus median-based with multi-hot encoding

In Fig. 10, com-
parison was made be-
tween "best" established
o�ine strategy and on-
line mean-based multi-
hot strategy, as it had
the highest median from
all online strategies. In
this �gure, it is visible
that while a lot of the
datasets can achieve a
slightly higher accuracy,

the increase is minimal, and much lower results can occur.

Figure 12: Comparison of control strategy versus median-based
with multi-hot encoding

However, in Fig. 11,
it is visible that sub-
stantial increase over the
o�line strategy is still
possible. While it gives
no certainty and no sta-
bility in the results, it
is still worth investigat-
ing. The most surpris-
ing is the increase of ac-
curacy for datasets with
bigger amount of data in-
stances, which did not occur for any other strategies. It is possible that dividing bigger
datasets into smaller parts does not lead to over�tting so quick, so an increase in accuracy

13



can be observed. In Fig. 12, it is also visible that compared to the control strategy, higher
accuracy is more likely to occur than in Fig. 8.

6 Responsible Research

To ensure the reproducability of the research, the setup used has been described in section
3. The MurTree algorithm, that is the base of all implementation, was taken from source.
To ensure that the implementation is correct, a test was run on a pre-agreed dataset, and
the results were compared with the rest of the research group; as the built tree was identical
between the implementations, it gave the assurance that all of the implementations are
correct.

In the codebase for this research, all the methods used to obtain the results are doc-
umented. The codebase is versioned using git. While it is currently only in the private
repository hosted on gitlab, there is possiblity to release the codebase on github, thus giving
full access to the details of implementation and rescinding any doubts regarding reproduca-
bility.

A general issue that must be talked upon is possible application of the �ndings. The
MurTree algorithm builds the optimal decision tree based on the data provided. If bias
was to occur in the data, the decision tree based upon that data will propagate this bias.
Therefore, the bias in the data must be treated independently by excluding certain features
or ensuring the dataset is representative of the domain space, before applying any of the
data processing described in the algorithm.

7 Conclusions and future work

When analysing o�ine strategies, the most promising strategy was the naive strategy for
median-based interval discretization compared with one-hot encoding. However, the success
of this strategy depends on the used parameter for amount of intervals. For the same reason,
this strategy is less successful for bigger datasets, where the domains of di�erent features
might require di�erent values of the parameter for a better use to the decision tree building
algorithm. Therefore, for the future work, testing this strategy both for higher values of
input parameter, and testing a version where parameter value varies between columns could
be taken out. Additionally, more work could be put into analysing what exactly made
certain division more successful than measures such as in specialised algorithms MDLP and
CAIM.

Regarding online strategies, they proved to be less successful for specialised algorithms,
as they quickly reach the point where the amount of data instances is too small and the
algorithms cannot �nd any useful information in them. It did however �nd an increase of
accuracy for both naive algorithms.

In the �nal conclusions, it is apparent that multi-hot encoding in most cases, bar some
datasets with lowest amount of features and lowest amount of data, gives results at least
as good as one-hot encoding. The biggest increase in accuracy was observed for datasets
with small amount of data instances combined with low amount of features. For these kind
of datasets, the most conservative way of increasing accuracy is to collect more data, as
training decision trees with higher depth would lead to over�tting instead of increase in
accuracy. After the �ndings of this paper, it is encouraged to try various methods of data
processing for those kind of datasets, as the runtime for such datasets is negligible, and some

14



data processing strategies can yield better results, but never with 100% certainty. Therefore,
trying some of those strategies could be a good alternative to the standard methods used.

References

[1] Emir Demirovi¢, Anna Lukina, Emmanuel Hebrard, Je�rey Chan, James Bailey,
Christopher Leckie, Kotagiri Ramamohanarao, and Peter J. Stuckey. Murtree: Optimal
classi�cation trees via dynamic programming and search. CoRR, abs/2007.12652, 2020.

[2] Usama M Fayyad and Keki B Irani. Multi-interval discretization of continuous-valued
attributes for classication learning. In IJCAI., pages 1022�1029, 1993.

[3] �.A. Kurgan and K.J. Cios. Caim discretization algorithm. IEEE Transactions on

Knowledge and Data Engineering, 16(2):145�153, 2004.

[4] Eddy Mayoraz and Miguel Moreira. Combinatorial approach for data binarization. In
Jan M. �ytkow and Jan Rauch, editors, Principles of Data Mining and Knowledge

Discovery, pages 442�447, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[5] Ying Yang, Geo�rey I. Webb, and Xindong Wu. Discretization Methods, pages 101�116.
Springer US, Boston, MA, 2010.

[6] Petra Perner and Sascha Trautzsch. Multi-interval discretization methods for decision
tree learning. In Adnan Amin, Dov Dori, Pavel Pudil, and Herbert Freeman, editors,
Advances in Pattern Recognition, pages 475�482, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

[7] Wikipedia user Gilgoldm. Decision tree showing survival of passengers on the titanic,
2020.

[8] Jason Brownlee. What is the di�erence between test and validation datasets?, 2017.

[9] Dheeru Dua and Casey Gra�. UCI machine learning repository, 2017.

[10] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive
graph analytics and visualization. In AAAI, 20135.

[11] Etienne Decencière, Xiwei Zhang, Guy Cazuguel, Bruno Lay, Béatrice Cochener, Car-
oline Trone, Philippe Gain, Richard Ordonez, Pascale Massin, Ali Erginay, Béatrice
Charton, and Jean-Claude Klein. Feedback on a publicly distributed database: the
messidor database. Image Analysis & Stereology, 33(3):231�234, August 2014.

15


