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Abstract. Clinical parameters related to the corneal endothelium can
only be estimated by segmenting endothelial cell images. Specular
microscopy is the current standard technique to image the endothelium,
but its low SNR make the segmentation a complicated task. Recently, we
proposed a method to segment such images by starting with an overseg-
mented image and merging the superpixels that constitute a cell. Here,
we show how our merging method provides better results than optimizing
the segmentation itself. Furthermore, our method can provide accurate
results despite the degree of the initial oversegmentation, resulting into
a precision and recall of 0.91 for the optimal oversegmentation.

Keywords: Specular microscopy · Oversegmentation · Watershed

1 Introduction

The endothelium of the cornea, a monolayer of hexagonal shaped cells on the
posterior corneal surface, plays a key role in keeping an optimal state of corneal
hydration [2]. Human endothelial cell density decreases naturally with increasing
age, and regeneration of endothelial cells has not been observed under normal
circumstances. Instead, endothelial cells grow and migrate to occupy the space
that is freed by the dying cells. Intraocular surgery, trauma, and certain diseases
may accelerate cell loss. If cell density drops below 700 cells/mm2, the resulting
corneal edema may disrupt vision [3]. Accurate quantification of the endothelial
cell morphology is crucial for the assessment of the health status of the cornea.

Non-contact specular microscopy and contact confocal microscopy are com-
monly used in clinical practice to image the endothelium in vivo. Character-
ized by its non-invasive nature and fast acquisition time, non-contact specular
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microscopy provides reliable and reproducible measurements [8]. In comparison,
contact confocal microscopy requires corneal contact and has longer acquisition
time, but it provides higher quality endothelial images in diseased and edema-
tous corneas [5]. Furthermore, ocular microsaccades, respiration, and pulse are
important, limiting factors in the acquisition of good quality images in vivo.

Endothelial cell density (ECD), cell size variation (CV), and hexagonality
(HEX) are the three main parameters to assess the endothelium. Microscope
manufacturers provide built-in software to automatically segment endothelium
images and estimate these parameters. However, many studies have indicated
that current microscope software may provide unreliable estimations, specifically
in the cases with low or high cell density or a high degree of CV [6–8].

In recent years, several cell segmentation techniques for in vivo corneal
endothelium images were proposed. More studies were focused on segmenting
confocal images [10,11] rather than specular [9], probably because of its better
image quality and signal-to-noise ratio (SNR). Hence, there is a need to develop
algorithms that can accurately segment specular microscopy endothelial images.

1.1 Our Aim

We have recently developed an automatic algorithm to segment in vivo specular
microscopy images [12]. Briefly summarized, our method aims to generate an
accurate segmentation by starting with an oversegmented endothelial cell image
and merging those superpixels that together comprise a whole cell (Fig. 1). We
showed how a machine learning approach (based on Support Vector Machines)
can use features related to shape, intensity, size, etc., to identify the superpixels
that constitute a complete cell. During the merging process, all combinations
of two and three neighboring superpixels are evaluated simultaneously, using
a dedicated classifier for the merger of two or three superpixels. The binary
classification is then transformed into a probabilistic output, which allows to
sort the combinations. In a iterative process, the combination with the highest
probability is merged until no more acceptable combinations (p > 0.5) remain.

Although any method that can generate oversegmented endothelial cell
images could be used as a starting point, we chose to adapt Selig et al.’s app-
roach [10] because of its simplicity to generate and adjust oversegmentation.
Selig et al. designed a seeded watershed algorithm in a stochastic manner to
segment in vivo confocal microscopy images, which requires fine-tuning of sev-
eral parameters in order to achieve a satisfactory result. In our approach [12],
parameter tuning was not necessary as we aimed for oversegmentation.

In this paper, we show how our method can improve the accuracy of Selig
et al.’s [10] optimal segmentation when applied to in vivo specular microscopy
images. By using precision and recall to evaluate the segmentation, we obtained
the best parameter values for Selig et al.’s method and computed the corre-
sponding segmentation (named “watershed optimized result”). After applying
our merging method [12] to the watershed optimized result, we evaluated the
segmentation results. Furthermore, we generated several oversegmented images
with different degrees of oversegmentation, applied our merging method to all of
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Fig. 1. (a) Input image. (b) Initial oversegmentation. (c) Output of merging process.

them, and evaluated the resulting segmentation, thereby showing the robustness
of our method against various degrees of oversegmentation.

2 Method

2.1 Materials

The dataset contains 30 corneal endothelium images from the central cornea of 30
glaucomatous eyes, acquired in The Rotterdam Eye Hospital with a non-contact
specular microscope (SP-1P, Topcon, Japan) for an ongoing study regarding the
implantation of a Baerveldt glaucoma drainage device. Each image covers an
area of 0.25 mm × 0.55 mm and they were saved as 8-bits grayscale images of
241 × 529 pixels. The dataset shows a large variability in cell morphology, with
a range of 1400–2700 cells/mm2 in ECD, 19%–35% in CV, and 44%–73% in
HEX. The acquisition occurred with informed consent and followed the tenets of
the Declaration of Helsinki. One expert created the gold standard by performing
manual segmentation of the edges using an image manipulation program, GIMP.

2.2 Description of Selig et al.’s Method

Selig et al.’s method [10] employs a seeded stochastic watershed algorithm to
segment endothelial cell images. The seeds are arranged in a hexagonal grid to
mimic the endothelial cells pattern. The grid size is derived by estimating the
most common cell size, which can be computed from the Fourier spectrum of
the image (see Sect. 2.3). The seeded watershed algorithm is repeatedly applied,
m = 100 times (value derived in [1]), to a randomly rotated and translated grid.
Uniformly distributed noise in the range of [0, u] is added to the image at each
iteration, which avoids the occurrence of spurious segmentation lines [1]. The
result of all seeded watershed segmentations are summed together, providing an
image named likelihood map (or PDF), which indicates how often each pixel was
selected as edge. To smooth the result, a Gaussian smoothing filter is applied
to the PDF, whose optimal σPDF is related to the cell size. To adapt σPDF to
the cell size of each image, Selig et al. defined a parameter kσ = σPDF f∗, where
f∗ is the characteristic frequency estimated from the Fourier spectrum of the
image. An H-minima transform is then applied to the PDF, h = khm/σPDF ,
to discard small minima. Finally, the classical watershed is applied to the PDF,
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resulting in the final segmentation. Selig et al. observed that the smoothing was
very sensitive to errors in the estimation of f∗, and so they suggested to re-
estimate f∗ from the PDF. In summary, three parameters are to be tuned in the
algorithm: noise amplitude u, smoothing size kσ, and local minima depth kh.

2.3 Frequency Analysis

The 2D Fourier transform (2D FT) of an endothelial image shows a distinctive
concentric ring due to the fairly regular size and pattern of the cells [4]. The ring’s
radius, called characteristic frequency (f∗), is related to the most common cell
size in the image, l = 1/f∗ [10]. To determine the radius, we compute the 1D
radial magnitude by angular averaging of the magnitude of the 2D FT,

FRM (f) =
1
2π

∫ 2π

0

|F(f, θ)|dθ, (1)

where F(f, θ) is the Fourier transform of the intensity image in polar coordi-
nates. Thus, the ring radius in the 2D FT appears as a peak in the 1D radial
magnitude. Since specular microscopy images have lower SNR, lower contrast,
and lower resolution than confocal images, the ring appears almost impercepti-
ble in the radial magnitude (Fig. 2a, arrow). Selig et al. [10] proposed a method,
named reconstruction by dilation, to enhance the peak (Fig. 2b) and find its
value by fitting a parabola. While the enhancement method works well in specu-
lar microscopy images, the parabola fitting must be applied with caution because
it is prone to generate wrong estimations. Instead, we propose to fit a function
that is comprised of a decaying exponential and a Gaussian,

g(f ; a, b, c, μ, σ) = a exp(−bf) +
1√

2πσ2
exp

(−(f − μ)2

2σ2

)
+ c, (2)

where g is the model, f is the spatial frequency, a and b are the scale parameters
of the exponential, μ and σ are the mean and standard deviation of the Gaussian
respectively, and c is the offset. A non-linear least-squares solver was used to find
the parameters. The characteristic frequency is then estimated as the position
of the Gaussian (μ). As suggested by Selig et al. [10], the estimation of f∗ can
be improved if the model is fitted to the Fourier transform of the PDF (Fig. 2c).

2.4 Generating Oversegmentation

Oversegmentation can easily be induced by creating a denser grid of seeds in
Selig et al.’s method [10]. Given the total image area AI , the expected number
of cells in the image is nseeds = NAIf

∗2, with N = 1 for the watershed optimized
segmentation. In our merging method, we used a value N = 3, which is equivalent
to a three times higher cell density. In this paper, we generate nine oversegmented
images by taking the integer values N = 1, 2, ..., 9.

Two scenarios to create oversegmentation were considered. If f∗ is reesti-
mated in the PDF after oversegmentation was applied, the frequency spectrum
will show the components of the smaller superpixels in the PDF (Fig. 2d). Then,
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Fig. 2. The radial magnitude of the FT after angular averaging at different stages of
preprocessing in order to estimate f∗. (a) No preprocessing; f∗ is almost indiscernible
(arrow). (b) After reconstruction by dilation in the FT of the image (fitting gives
a f∗ = 0.0527). (c) After reconstruction by dilation in the FT of the PDF (fitting
indicates a f∗ = 0.0541). (d) After reconstruction by dilation in the FT of the PDF
where an oversegmentation with N = 8 was applied (fitting provides a f∗ = 0.0880).

the fitting function will provide an f∗ balanced between the average cell size
and the smaller superpixels in the PDF. This simply creates a higher degree of
oversegmentation with more irregular sizes of superpixels. Alternatively, we can
avoid re-estimation (or to re-estimate it using N = 1). Nonetheless, both cases
were evaluated here, named oversg. 1 for the former (re-estimation of f∗ in the
PDF) and oversg. 2 for the latter. The degree of oversegmentation in both cases
is indicated in Table 1.

2.5 Evaluating the Segmentation

In order to evaluate the segmentation, we computed two values from the seg-
mented images, the total number of superpixels (ntotal) and the number of
cells correctly segmented (ncorr), as well as one value from the gold standard,
the number of real cells (nreal). We considered a cell is correctly segmented
based on the following rule: given the area of a cell in the segmentation AS ,
the area of a cell in the gold standard AG, and the intersection of those two
areas AI = AS ∩ AG, the cell in the segmentation is correctly segmented if
AI > 0.75 × max(AS , AG). That margin was added to allow small deviations in
the cell boundary locations and was selected after visual analysis.

The precision p = ncorr/ntotal and the recall r = ncorr/nreal were computed
and combined into the F -measure, F = 2pr/(p + r). Although both, over- and
under-segmented cells affect both metrics, precision decreases more acutely with
oversegmentation and recall decreases more strongly with undersegmentation.
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Table 1. Estimated precision and recall for different degrees of oversegmentation (N).
The percentage indicates the number of superpixels in the initial oversegmented images
relative to N = 1. Watershed optimized result (WOR) is added for comparison purposes.

N WOR 1 2 3 4 5 6 7 8 9

Oversg. 1 (%) - 1 1.12 1.24 1.42 1.70 2.04 2.21 2.45 2.68

Precision 0.83 0.89 0.91 0.91 0.91 0.90 0.89 0.88 0.88 0.86

Recall 0.85 0.86 0.90 0.91 0.91 0.91 0.92 0.92 0.92 0.90

Oversg. 2 (%) - 1 1.10 1.20 1.28 1.35 1.39 1.42 1.44 1.47

Precision 0.83 0.89 0.91 0.91 0.89 0.89 0.88 0.86 0.85 0.85

Recall 0.85 0.86 0.90 0.90 0.89 0.89 0.88 0.86 0.85 0.85

3 Results and Discussion

3.1 Watershed Optimized Result

Selig et al.’s algorithm was applied to all images in the dataset for all values of
u between 0 and 50 in steps of 10, values of kσ between 0.10 and 0.25 in steps of
0.01, and values of kh between 0.000 and 0.010 in steps of 0.001. The F -measure
was computed for each image. In a leave-one-out approach, the parameters for
image i were estimated as the ones that yielded the largest average F when
computed for all images in the dataset excluding i. For all images, the optimal
parameters were the same: ui = 20, kσ,i = 0.20, and kh,i = 0.

When evaluated the segmentation without merging, the mean and standard
deviation of the precision and recall with the optimal parameters were p =
0.83 ± 0.07 and r = 0.85 ± 0.06, yielding F = 0.84 ± 0.07. This suggested that
over- as well as under-segmentation were present.

3.2 Solving the Oversegmentation

Based on the optimal parameters obtained in Sect. 3.1, nine oversegmented
images (per image in the dataset) were generated for each type of oversegmenta-
tion (as described in Sect. 2.4) after which the merging method [12] was applied
to all of them without retraining. The evaluation of the resulting segmenta-
tions shows that the watershed optimized result can be directly improved by
just applying our merging method (WOR vs. N = 1, in Table 1). In a visual
evaluation (Fig. 3b, f), it is clear that the watershed optimized result generates
under- (red arrows) and over-segmentation (magenta edges). Whereas the lat-
ter is mostly solved by the merging method (large increase in precision from
WOR to N = 1 in Table 1), the former cannot be easily fixed as the number of
possible splits grows exponentially with the number of edge pixels per underseg-
mented superpixel. It is then crucial for our merging method to start with an
oversegmented image where no undersegmentation occurs.
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Fig. 3. Two representative examples: oversg. 2 in (a–d), and oversg. 1 in (e–h). (a, e)
Gold standard segmentation in blue, superimposed over the intensity image. (b, c, d,
f, g, h) Resulting segmentation in black, and edges removed during merging process in
magenta, for an oversegmentation of N = 1 in (b, f), N = 3 in (c, g), and N = 9 in (d,
h). Note that watershed optimized result is (b, f) with all edges (black and magenta).
Red arrows indicate undersegmentation. Blue arrows indicate inaccurate segmentation.
(Color figure online)

The optimal degree of oversegmentation occurs at N = 3 for both types of
oversegmentation (Foversg.1 = 0.910, and Foversg.2 = 0.906). All true edges seem
to be detected at that point, and the degree of oversegmentation is not excessive.
For higher values of N , it would be expected that more (presumably unneces-
sary) initial oversegmentation would only increase the chances of more errors.
Interestingly, this hardly happens for the cases in oversg. 1. The reason lies in
the inaccurate segmentation of some edges due to a limitation of the stochas-
tic watershed: when a strong false edge is detected close to a real edge (blue
arrows in Fig. 3f), the latter cannot be detected unless we force a large amount
of oversegmentation (Fig. 3h). Whereas such a degree of oversegmentation would
suggest a higher error probability, the merging method can satisfactorily over-
come this problem. Nonetheless, this evaluation suggests that the best setup is
using oversg. 1 with N = 3, as it is more robust.
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In summary, we have shown how a segmentation method based on merging
superpixels can improve the accuracy of another segmentation method specifi-
cally designed to solve confocal images. Furthermore, we have proven how such a
merging method is strongly robust against the degree of initial oversegmentation
without requiring any retraining.
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