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Maximum beam of catamaran cross section

' D'enotes v-1

NOTATION

Wave amplitude

Significant amplitude of bending mOmént;og_shear forces. .=

" Beam of demihull

Distance between catamaran centerline and dem1hu11
centerllne

Horizontal force acting on demihulls

Vertical .force acting on demihulls

- Acceleration due to gravity"'

Distance from neutral axis of catamaran crossbeam to the
mean.free surface : :

Wave number (wz/g)
Bending moment on crossbeam
[ 4

Bending moment on crossbeam contrlbuted by mass acceleration
effects

Mass of catamaran cross section (masS/uﬁit length)
Unit normal vector on hull surface, positive into hull

Components of n along the 0y and 0z axes, respectively

Cartesian coordinates; Oy,axis coincides with undisturbed
free surface, Qz axis is positive upward along a line

midway between the hulls
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Vertical force acting on demihulls

- Denotes /TT
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- Wave -amplitude

.Significant aﬁplituae of'bending moment or.shear forces.
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Maximum beam of catamaran cross section
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Horizontal force acting on demihulls

Acceleration due to gravity
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Time
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ABSTRACT

" A two-dimensional model which incorporates the effects
of wave diffraction and body motion has been developed to.
predict the dynamic structural loading on the crossbeam of a
catamaran with zero forward speed in beam seas. Theoretical
and model experimental results are compared for the amplitude
of the bending moment and vertical shear acting at the mid-
point of the crossbeam of the ASR catamaran, a Navy submarine
rescue ship. Correlation of theory with experiment is con-
firmed over the important frequency ranges.

ADMINISTRATIVE INFORMATION

The work described herein was carried out during fiscal year 1973
as part of the Catamaran New Initiatives Program under the sponsorship of
the Naval Ship Systems Command (NAVSHIPS 0342). Funding was provided under’
Subproject SF43.422.411, Task 17204, Work Unit 4-1500-001.

INTRODUCTION

A mathematical model has been developed to predict the dynamic -
structural loading on the crossbeam of a catamaran with zero forward speed
in beam waves. The model is unique in the sense that it includes the
effects not only of the incident beam wave but also of the scattered waves
and body motion. To verify the theoretical model, a comparison was made
with existing experimental data for bendlng moment and vertical shear
force acting at the midpoint of thevcrossbeam of an ASR catamaran model of
a Navy submarine rescue ship.

. The present report outlines the theofe£ica1 approach, defines problem
geometry and sign conventions, describes the theoretical approximations,
and compares predictions for the amplitude of the bending moment and vertical
shear force with experimental data on the ASR catamaran model.l Important
- features of the loading fesponses are discussed including the effect of the

incident and scattered waves and body motion.

1Wahab, R. et al., '"On the Behavior of the ASR Catamaran in Waves,"
Marine Technology, Vol. 8, No. 3, pp. 334-360 (1971).




© THEORY

The mathematical model presented here applies either to conventional
shaped catamarans or to small-waterplane-area twin-hu11.(SWATH) ships. It “
is assumed that the hulls are symmetric about the vertical center plane and
possess sufficient longitudinal symmetfy so that only the sway, heave,. and
roll modes ef'motion are excited by the incident beam waves. With no
pitching or yawing motion, the three-dimensional loading problem has been
simplified to that of finding the motion and loading on an equivalent‘two-
dimensional body. The.equivalent two-dimensional hull has the cross-
sectional form of the midship section of the catamaran in question and is
taken to be uniform over an equivalent length such that the actual displace-
ment of the ship is obtained. This two-dimensionalization is a gross
geométrical approximation especially for'conventional catamarans whose hull
forms deviate significantly from a true two-dimensional shape. Despite
this approximation, the theory appears to provide satisfactory results.

Figure 1 shows the midship cross section of a conventional shaped
catamaran.‘ A coordinate system 0y is fixed at the vertical centerline of
the section and the mean water surface. A plane sinusoidal wave with ampli-
tude A is progre551ng in the positive y-direction. The beam B , draft T,
and separation distance b of the hulls are shown in Figure 1. The height
of the neutral axis of the CrOSSbeam above the mean water surface is indi-
cated by ho' The vector n 1s the unit surface normal on the submerged
and +n

portion of the hulls with components +n along the +y and +z axes, .

respectively. Positive sway Ez_and heaie 53 ar: small displacements of the
ship from the equilibrium position in the positive y- and z-directions,
respectively, and pOsitive roll 54 is the angular displacement from the
equilibrium in a counterclockw1se direction.

The conventions for the bendlng moment, shear, and tension forces
acting at the midpoint of the crossbeam are indicated in Figure 2.

The bending moment is the moment.which tends to roll the hulls rela-
tive to each other or, equiValently, to sag or hog the crossbeam. Positive
bending moment is defined as the moment which tends to roll the right hull
in a counterclockwise direction or the left hull in a clockwise direction.
' Vertical shear and horizontal tension are the forces which respec-

tively tend to heave and sway the hulls relative to each other. Positive

2



vertical shear is defined as the force which tends to heave the right hu11
upward or the left hull downward. Positive hor1zonta1 ten51on 1s defined N
as the force which tends to sway the r1ght hu11 to the r1ght or the 1eft |
hull to the left. V

As the incident beam wave propagates past the body, a pressure dlS-
tr1butlon is established over the hulls wh1ch tends to exc1te motlon in
sway, heave, and roll and to produce structural load1ng at polnts on the
section. As motion is excited, add1tlona1 loads are generated due to the
motlon itself. If it is assumed that the hydrodynamlc pressure d15tr1bu- |
tion, wave exciting forces, resu1t1ng motlon, and loads are all 11near in’
amplitude and frequency with respect to the incident sinusoidal wave, a
linear ana1y51s in the frequency domain can be pursued to determ1ne the
amplitude and phase of the motion and load quant1t1es.

In general the structural loadlng may be resolved into the follow1ng
contributing effects:

1. Incident wave - When the body is restrained from moving,'this
component of the structural loads arises from the pressure distribution of
the undisturbed incident wave over the submerged portion of the body sur-
face. The assumption that the presence of'the-body does not distort the
incident wave is commonly called the Froude-Krylov hypothesis.

2. Diffraction - This component accounts for the scattering of the
incident wave by the presence of the body. When summed with the incident
wave effect, the two contributions provide the loading on a body section
which is restrained from moving.

3. Motion - As mentioned previously, when the body executes motion,
additional loads are generated due to the motion itself. These are a result
of mass acceleration, buoyant restoring, and hydrodynamlc (added mass and

wavemaking damping) effects.

Y

LOADING FORMULATION

) A standard approach to determine the_structural loading on the
crossbeam of the catamaran would be to cut the structure at the point

where the loads are to be determined and to consider all of the forces and




. o

moments (both inértial and?hydrodynamic) acting on the free end as in
Figure 2. 2 The values obtained for the loads must be identical regardless
of whether the portion of the body to the rlght or the left of the cut is
taken to be the free end. 'Hence-another approach for evaluating the ‘load-
ing is a‘pplitable3 in which the loads contributed on both portions of the -
body are added with a sign consistent with the conventions defined in
Figure 2 and the result is then d1v1ded by two. ' ' )

This approach allows mass acceleratlon and pressure quantltles to be
evaluated for the whole bgdy section. TIf the loads are evaluated at the
midpoint of the crossbeam,‘the coﬁputation‘can be simplified by utilizing.
the symmetrlc and antlsymmetrlc nature of the mass accelération effects and
pressure distribution with’ respect to y 0. .

‘The dynamrc load;ng at the midpoint of the crossbeam (y = 0, z = ho)
is given by ‘the mass acceleration effects minus the appropriate integral
of the hydrodynamic pressure over the submerged body surface.

Bending Moment:

'f M =--%~MI - R!L Pﬁnsy + 1, (h -e z)] sgn(y) dl | | (le)_

‘

, Horlzontal Tension:
v,=Ltvy -1 J' pn,sgn(y) dl

2 =7V Z Rl gnty | . (@b)
- Vertical Shear: -

v =% % f pgsn() A Qo)
R+L S ‘

_ 2P_ien, P. C. and C. M. Lee, "Motion and Resistance of a Low-Waterplane-
Area Catamaran,' 9th Symposium on Naval Hydromechanics, Paris, France (1962).

‘ 30gi1vie, T. F., "On the Computation of Wave-Induced Bending and Torsion
Moment," Journal of Ship Research, Vol. 15, No. 3, pp.217-220 (1971).
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Here MI’ VZI’ and V are the mass acceleration effects of the full'body

section, R+L denotes 1ntegrat10n over the’ submerged portlon of the rlght

and left hulls, sgn(y) denotes the sign of y which is p051t1ve on the r1ght i
hull and negative on the left hull, and p is the hydrodynamlc pressure.

In the above equations, pressure is mu1t1p11ed by appropriate surface T i
normals--or surface normal moment arm in the case of bending moment--to

provide loads consistent with the'definitions of Figure 2 for the right and

left hulls. S | .

Since the catamaran is symmerric with respect toy =0, n, and,ns_‘
are respectively symmetric and antisymmetric with respect to y = 0, and it
is.clear that if the pressure is some arbitrary distribution over the right.
and left hull surfaces, only the symmetric part of the.pressure distribution
with respect to y = 0 can contribute to the bending moment and horizontal '
| tension and only the antisymmetric part can contribute to the vertical
shear. o _ _

Although .the two approaches are completely equivalent, when mass
acceleration effects are considered on the half body, all modes of motion
must appear formally in the load equations. However, when summed over both
halves of the body section, it is clear that some modes of motion cannot
contribute to bending or shear, and these may be immediately neglected. For
example, heaving of the ship section results in a vertical inertiéi force on
each hull which is symmetric with respect to y = 0; as indicated by Figure.
2, this force configuration can contribute only to the bending moment. Roll
motion generates a vertical inertial force on each hull which is antisym-
metric about y = 0 and can contribute only to vertical sheer. Sway motion
generates a symmetric horizontal force which cannot eontribute to either
bending or tensiou.

In order to evaluate the loadlng from Equatlons (1), it remains to
determine the hydrodynamic pressure acting on the body hulls and the
resulting motion. As mentioned previously, the pressure has components due
to the incident and diffracted waves and motion; these include added mass,

wavemaking damping, and buoyant restoring effects. The pressure is

A B bbbl o e e e o e e . L e —— e @Mﬁ



determined. from potential-flow theory,z’4 and the sway, heavé, and roll
motion may be obtained from the solution of the coupled equafions of
motions,'2 where pifch and yaw motion are taken to be zero and all hydro-
dynamic, mass, and restoring coefficients aie evaluated in a two-dimensional
sense. = ' . . |
The hydrodynamic pressure is giveh in terms of the velocity potential

by the linearized form of the Bernoulli equation plus buoyanéy terms:

-0 3% - PR(Ey + ¥ED

P

Since a time harmonic disturbance has been assumed, the velocity
potential ¢an be written as -
' : -iwt
¢(y,z,t) = Re [¢(y,z)e "]
where ¢ is a time-independent potential, which generally has real and

imaginary parts. The pressure is then written as
\
. i

s - O -iwt
p = Re [ipwd - pg(Es° + yE,)]e "
The time-independent potential ¢ can be further resolved into.the following

components:

which respectively represent the fluid disturbance due to the incident
waves, the diffracted waves, and the motions of the body. The potentials -
¢I-and ¢D,genera11y have even and odd components with respect to y = 0
which may be denoted by
_ .0 E _ 0 E
op =0y * ¢y and op = ¢ * &y

v

4Lee, C. M. et al., "Added Mass and Damping Coefficients of Heavinngwin
Cylinders in a Free Surface,'" NSRDC Report 3695 (1971).

¢ .



The incident wave potential is given by

¢ = - igA eKz + iKy
I w

the acceleration due to gravity

where g =
A = wave amplitude _
w and K = the angular frequency and wave number

The motion potential ¢M is given by

a0 o 0 -
P T 02b * 0shs t 0%y
Here ¢2 is the potential for forced ostillations in sway; fdr_a body
symmetric about the centerline, it is an odd function with respect to

y =0. ¢, is the potential associated with heave and is even, and. ¢, is

the potential associated with roll motion and is odd. Eg, Eg,-and Ez are
the complex amplitudes of motion in sway, heave, and roll. The potentials '
¢D and ¢i (1=2, 3, 4) are calculated by the method of source

distribution.>’*

Substitution of thé aBove velocity'potentiéls into Equation (2) and
subsequent substitution of Equation (2) into (1) provide expre551ons for
the loading at the m1dp01nt of the crossbeam. '

Bending Moment:

M= Re - [ 7 wnyEg - dup j (67 + op + 08D [yng + (b - z)n,]d1

R \
+ pgsbsg] et | | | - (3a)
Horizontal Tension:
_ . E _ E 0 -iwt -
V2 = Re [- iwp .[ (¢I + ¢D + ¢353)n2d1] e B , ,(Sb)
R .




Vertical Shear:

w

,1 2 =0 . 0 0
vy = Re [~ 3 uPuFEg - i ‘[ (07 + p *+ 0,59 + 6,E0)n,d1
.. s R " - .

+ pghbgg | eIt - TS N

where m ='mass of the full body cross section

y-coordinate of the center of mass of the right demihull

demihull beam

o w <|
I

-distance between the centerllne of the two hulls and the demihull
centerllne ’

In summary, Equations (3) for the loading at the midpoint of the
cross-deck show that the incident and diffracted waves contribute to all
load quantities. .However, heave motion affects only the bending moment and
horizontal tension, and sway and roll motion affect only the vertical
shear. _ _

Once the loading at the midpoint of the crossbeam is known, these
results may be used to determine the loads. at any other point Ye along the
neutral axis of the crossbeam. In particular, if it is assumed that-the
crossbeam is massless, the vertical shear and horizontal tension forces

remain unchanged along the crossbeam, and the bending moment is given by

M(yg) = M(0) - y V;(0) , e
where M(O)”and VS(O) afe the bending moment and vertical shear at the
midpoint. If the érossbeam is not taken to be massless, the appropriate
mass inertia effect of the beam section between the midspan and Yo must be

subtracted from the results of Equations (3a), (3c), and (4)

RESULTS AND DISCUSSION

Regular wave results were computed for, bending moment and vertical
shear force based on the theoretical model just described. They were then
compared to corresponding experimental data for the ASR catamaran model

5061. In addition the statistical bending moment and vertical shear were




computed as a function of significant wave height-by using the regular
wave loading transfer functions together with a specified wave energy
spectrum. '
Pertinent geometric information for the ASR catamaran is given in
Table 1. Exper1menta1 results were obtained from ASR model tests performed
by Wahab et al. for a hull separation distance of 1.41.* [4/;ﬁ“¥ ?
Figure 3 indicates the predicted and experimental amplitudes of the
bending moment and vertical shear at the midpoint of the crossbeam together
with heave motion and roll motion for the ASR as a function of the ratio
of the wavelength to overall beam (A/Bm). The amp11tude of the bending
moment has been nondimensionalized by the total ship displacement times
the wave amplitude (AZA)’ the vertical shear force by the total ship
displacement times the wave amplitude divided by the ship length (AZA/L),
the heave motion by the wave amplitude, and roll motion by the wave slope
(KA = 2nA/X). - As mentioned previously, three-dimensional theoretical
results were obtained by multiplying the two-dimensional results for the
midship section by an eqﬁivelent ship length. The use of ship diSpieeement
and length in the nondimensionalization of the bending moment and vertical
shear force is not intended to represent any particularly predominant °
functional relationship of the loading quantities. Two ships with the same
displacement and length but different geometrlcal shapes could have 51gn1f- :
icantly different loading amplitudes. ' '
It is seen from Figures 3a and 3b that theoretieai and experimental-
loading results were in relatively good agreement for both shape and magni-
tude. It is known that the appareht frequency shift of the bending and
shear response peaks is due to the two-dimensional approximation. There
was some discrepancy in the motion results at the longer wavelengths
(Figures 3c and 3d). This effect and the sharply peaked nature of the
'theoretical heave and roll responses are also attributed to the two-

dimensional approximation.

*The ratio of the distance between the inner hull faces at the water11ne
to the demihull beam.




It is of some interest to examine the separate effects‘of-the
incident and diffracted wave and body motionvdn:the loading quantities.

The bending moment and vertical shear are plotted in Figure 4 to show the
effects of the various components. The broken line curves represent the
loading due to the undisturbed 1nc1dent wave (Froude- Krylov effect). The
dotted curves present the sum of the effects contributed by the undisturbed
1nc1dent wave and the diffracted wave and represent the restrained body '
loading. The solid line curves 1nd1cate the addition of motion effects to
the restrained body case and are simply replots of Figures 3a and 3b.

It was mentioned in the previous section that at the m1dp01nt of
the crossbeam, the only motion contribution to the bending moment would
arise from ‘heave and that both sway and roll should contribute to the |
vertical shear force This trend is not part1cu1ar1y apparent from the o
experimental data for the ASR since the heave and roll resonances occurred
at approximately the same frequency (Figures 3c and 3d). This point, how=
ever, has been verified for a MODCAT hull form, where the roll and heave
resonances are widely separated in frequency. The experimental data indi-
cated that a 1arge roll resonance at low frequency had absolutely no
effect on the bending momént at the midpoint of the crossbeam.

Under the assumption that -the loading quantities are linearly
superposable, the significant amplitudes of the bending moment and vertical
shear may be obtainedvby '

, 1/2
As =2 J [r()]1°5(w) dv
: o ‘

where R(w) = response amplitude 0perator of either bending moment or verti-
cal shear as shown in nondimensional form in Figures 3a and 3b
S(w) = appropriate wave energy spectrum
w = angular frequency of the incident beam waves

Figures 5 and 6 respectively present the significant amplitudes of
the bending moment and vertical shear force for the ASR as a function of
significant wave héight. The solid curves indicate the dimensional values

of the significant bending moment and vertical. shear obtained when a

10




Pierson-Moskowitz sea spectrum is used. The cross marks show the signif-

icant amplitudes obtained for 307 Station India sea spectra.5

CONCLUSIONS

1. The two-dimensional theoretical model developed to predict the
dynamic structural loadiné on the crossbeam of a catamaran with zero forward
speed in beam waves provides results which are in good agreement with experi-
ment for the amplitude of the bénding moment and vertical shear force at the
midpoint -of the crossbeam. )

2. Resolution of the theoretical results into components due to the
incidentlwave, diffracted wave, and motion effects shows that all ‘three
have a very significant effect on the loading responses. Inclusion of wave
diffraction and motion effects in this analysis is necessary to obtain good
correlation with experimental results.
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Figure 1 - Catamaran Geometry and Sign Conventions

Figure 2c - Horizontal Tension

Figure 2 - Catamaran Loading Conventions
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TABLE 1 - ASR DIMENSIONS

NSRDC Model Number

5061

Beam (Each_Huli) 24.0
at the Waterline, feet

~ Draft (Station 10), feet 18.0
Length at the 2100
Waterline, feet -
Displacement of Each Hull, 1386
long tons ~ {S.wW.)
Hull Spacing, feet 38.0
Longitudinal Center of 105.6
Gravity Aft of FP,
feet
Longitudinal Radius of 0.233L
Gyration, feet
Block Coefficient 0.55
Scale Ratio 16.89
Diameter, feet -
Vertical Height of 23.0

. Neutral Axis from
Mean Waterline,
feet
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