
Towards Explainable Automa-
tion for Air Traffic Control
using Deep Q-learning from
Demonstrations and Reward
Decomposition

M.C. Hermans

Thesis Report

Towards Explainable Automation for
Air Traffic Control using Deep

Q-learning from Demonstrations and
Reward Decomposition

by

M.C. Hermans
to obtain the degree of Master of Science

at the Delft University of Technology,

Student number: 4475038
Project duration: May 11, 2020 – May 18, 2021
Thesis committee: Prof. dr. ir. M. Mulder, TU Delft, Chairman

Dr. ir. E. van Kampen, TU Delft, supervisor
Dr. ir. C. Borst, TU Delft, supervisor
ir. T. Nunes, supervisor
Dr. A. Sharpanskykh, TU Delft, External examiner

An electronic version of this thesis will be available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

First of all, I would like to thank my supervisors Erik-Jan van Kampen, Clark Borst and Tiago Nunes, for their
guidance in conducting this thesis. It has been a pleasure to work closely together with my supervisors and
brainstorm on the various subjects related to this thesis. They have allowed me to explore problems on my
own, which was difficult at times, but has taught me a lot. Their critical attitude towards the project has
certainly contributed to the overall quality of my work.

Deep learning is computationally demanding, Reinforcement Learning even more so. Setting up the software
architecture and building the reinforcement learning agents was a major effort. Since the techniques I wanted
to use were not readily available in any Python library, I had to build the learning agents myself. One of the
goals of this thesis was to increase the explainability of the automation, of which I now fully understand its
relevance. Half-way through the thesis, the scope of the research had to be adjusted as implementation of the
various concepts proved to be challenging.

A word of gratitude goes out to all my friends, who I have met at the faculty or through extra-curricular activ-
ities, who have contributed in making my time at the TU Delft, a fruitful one. Most importantly, I would like
to thank my family for their unconditional support throughout my studies.

“The greatest benefit of machine learning may ultimately be not what the machines learn but what we
learn by teaching them.” - Pedro Domingos

Max Hermans

Delft, April 2021

ii

Contents

Preface ii

List of Figures v

List of Tables viii

Nomenclature ix

1 Introduction 1
1.1 Problem Formulation . 2
1.2 Related Work . 3
1.3 Contribution . 3
1.4 Report Structure . 4

I Scientific Paper 5

II Preliminary Thesis [already graded] 27

2 Air Traffic Control: Control Task Definition and Past Automation Efforts 28
2.1 Introduction to Air Traffic Control . 28
2.2 Future of ATM . 29
2.3 Formalisation of the Conflict Detection & Resolution Task . 29
2.4 Design Considerations of Automation in ATC . 33
2.5 Automation Efforts . 35
2.6 Concluding Remarks . 37

3 Representing the State of an Aircraft Using the Solution Space Diagram 38
3.1 Supervisory Control Support Tools . 38

4 Reinforcement Learning Fundamentals 41
4.1 Finite Markov Decision Processes . 42
4.2 Tabular Solution Methods . 45
4.3 Approximate Solution Methods . 49
4.4 Concluding Remarks . 54

5 Deep Learning: Extracting Information from Visual Imagery 56
5.1 Artificial and Convolutional Neural Networks . 56
5.2 Activation Function . 60
5.3 Example of an ANN for Classification . 60
5.4 Loss Function . 61
5.5 Optimisation . 61
5.6 Regularisation . 63
5.7 Concluding Remarks . 63

6 State-of-the-Art Reinforcement Learning Algorithms 65
6.1 Single Agent vs. Multi-Agent RL (MARL) . 65
6.2 Hierarchical Reinforcement Learning . 66
6.3 State of the Art Deep Reinforcement Learning Algorithms . 69

7 Making AI Explainable with the Solution Space Diagram 77
7.1 Explainable AI . 77
7.2 Visualising Features Exciting Neurons in Neural Networks . 79
7.3 Reinforcement Learning Specific Explanations . 79
7.4 Concluding Remarks . 81

iii

iv CONTENTS

8 Reward Shaping and Performance Evaluation 82
8.1 Aircraft Choice . 82
8.2 Reward Function Design for Manoeuvre Choice . 83
8.3 Performance Evaluation . 84
8.4 Concluding Remarks . 85

9 Preliminary Analysis 86
9.1 Experiment Setup . 86
9.2 Algorithms . 89
9.3 Trade-Off . 98
9.4 Finalising the Network Architecture . 102

III Conclusions and Recommendations 104

10 Conclusions and Recommendations 105
10.1 Addressing the Original Research Questions . 105
10.2 Concluding Remarks . 107
10.3 Future Recommendations . 107

IV Appendices 109

A Training Methodology 110
A.1 Simulation Environment . 110
A.2 State Calculations and the Solution Space Diagram . 110
A.3 Transforming BlueSky . 111
A.4 Training Loop . 112
A.5 Pre-Training Phase DQfD . 113
A.6 Reward Decomposition . 113
A.7 Detailed Implementation of Dueling DQN Algorithm . 114
A.8 Detailed Implementation of DQfD Algorithm . 114
A.9 Detailed implementation of decomposed Dueling DQN algorithm . 115

B Pre-Processing of the SSD and Hyperparameter Selection 117
B.1 Altering SSD . 117
B.2 Action-Space . 118
B.3 Learning to Avoid a Conflict . 118
B.4 Concluding remarks . 122

C Additional Results Case Study 1 123
C.1 Training Curves per Episode . 123

D Additional Results Case Study 2 125
D.1 Resolutions Conflict Angle 90 and 135 Degrees . 125
D.2 Learning Curves Pre-Training Phase . 126
D.3 Learning Curves of Interest Normal Training Phase . 126
D.4 Conclusions Drawn from Additional Results . 127

E Additional Results Case Study 3 & 4 128
E.1 Training Curves Case Study 3 . 128
E.2 Training Curves Case Study 4 . 129

Bibliography 130

Towards Explainable Automation for ATC M.C. Hermans

List of Figures

1.1 Research Questions . 3

2.1 Sketch of an air sector . 29
2.2 Low-altitude chart of an airspace . 30
2.3 Aircraft on the same track and on reciprocal tracks . 31
2.4 Aircraft on crossing tracks . 31
2.5 Four classes of functions which automation can be applied to . 34
2.6 Simulation environments used in previous automation efforts . 36

3.1 Simulation environment with separation monitor . 39
3.2 Step-by-step construction of the SSD . 39

4.1 The agent-environment interaction in a Markov decision process 42
4.2 Backup diagram of the state-value and action-value function . 44
4.3 Overall idea of generalised policy iteration (GPI) . 45
4.4 Backup diagrams of n-step methods . 47
4.5 Dyna . 49
4.6 A visualisation of coarse coding . 51
4.7 Overview of tabular RL solution methods . 54
4.8 Overview of approximate RL solution methods . 54

5.1 Example of an ANN with two hidden layers . 57
5.2 Example of a 2D convolution operation . 58
5.3 Example of a max pooling operation . 59
5.4 Visualisation of a stride operation . 59
5.5 Convolutional Neural Network structure (LeNet5) for character recognition 60
5.6 The ReLU activation function . 60
5.7 Example neural network used throughout this chapter . 60
5.8 Comparison of optimisers on the MNIST data set . 62
5.9 Computational graph of the running example . 63

6.1 Neural network architectures used for automating CD&R in a multi-agent RL setting 66
6.2 Computational graph of the example . 67
6.3 Options framework as opposed to the SMDP and MDP . 68
6.4 Environment with obstacles which an agent must avoid . 69
6.5 Nondeterministic finite-state controller for negotiating obstacles 69
6.6 Visualisation of the DQN algorithm . 70
6.7 Network architecture of a Dueling Deep Q-Network . 71
6.8 Decoupling of obtaining experience and learning used in Ape-X 72
6.9 Overview of h-DQN . 73
6.10 Overview of Meta Learning Shared Hierarchies . 75

7.1 Framework for developing Explainable AI . 78
7.2 Visualisation of the pixel-wise decomposition process . 79
7.3 Pixel-wise decomposition for all classes for a randomly drawn image from the MNIST test set . 79
7.4 Reward Decomposition of a gridworld in which reward can be obtained through treasure, mon-

ster, gold and cliff . 81

9.1 Methodology used for preliminary analysis . 87
9.2 Example of SSD environment on which algorithms are trained . 88

v

vi LIST OF FIGURES

9.3 Example of arrow head being in the FBZ . 88
9.4 SSD image downscaled to 202x201 pixels . 88
9.5 SSD image downscaled to 128x128 pixels . 88
9.6 SSD image downscaled to 64x64 pixels . 88
9.7 SSD image downscaled to 32x32 pixels . 88
9.8 Dueling network architecture used in DQfD . 91
9.9 Computational graph of DQfD . 93
9.10 Average validation rewards received over 50 episodes using the current policy of the DQfD agent 94
9.11 Tuning of the learning rate of the DQfD agent . 94
9.12 Average validation reward retrieved during the first 600 epochs of training 95
9.13 Computational graph of the PPO algorithm . 97
9.14 Average validation rewards received over 50 episodes using the current policy of the PPO agent . 98
9.15 Tuning of the learning rate for the PPO agent . 98
9.16 Average validation rewards received over 50 episodes during training of the PPO agent 98
9.17 Average validation rewards received over 50 episodes during training of the DQfD agent 98
9.18 Boxplots of received reward on 200 episodes for DQfD and PPO agents 99
9.19 Percentage of test scenarios in which the algorithm showed good performance (>8) 99
9.20 Comparison of the number of times the agent selected an action into the FBZ 99
9.21 Validation curve plotted against the number of new experiences acquired by the DQfD agent . . 100
9.22 Validation curve plotted against the number of new experiences acquired by the PPO agent . . . 100
9.23 Average validation rewards received over 50 episodes using the current policy of the PPO agent

plotted against the computation time in seconds . 100
9.24 Average validation rewards received over 50 episodes using the current policy of the PPO agent

plotted against the frames needed for the updates . 100
9.25 Average validation rewards received over 50 episodes using the current policy of the DQfD agent

plotted against the computation time in seconds. 101
9.26 Average validation rewards received over 50 episodes using the current policy of the DQfD agent

plotted against the frames needed for the updates. 101
9.27 Training loss PPO. 101
9.28 Training loss DQfD. 101
9.29 Comparison of network architectures . 103

A.1 Construction of the SSD . 111
A.2 Software architecture used to train the RL agents . 112
A.3 Training loop used for experiments . 113
A.4 Pre-training phase of DQfD agent . 113

B.1 Adjusted SSD to ensure that the RL agent can observe the terminal state 118
B.2 Possible initial coordinates of observed aircraft. Only one observed aircraft is initialised at the

beginning of an episode . 119
B.3 Training curves per episode for the Dueling DQN agent being trained for 30,000 epochs learning

to avoid a conflict: the left figure displays the reward obtained during the training process; the
right curve shows the average loss per episode. 120

B.4 Training curves per episode for the Dueling DQN agent being trained for 30,000 epochs learning
to avoid a conflict. The left figure visualises whether the episode ended in a conflict and the right
figure shows the amount of resolution commands given during an episode. 121

B.5 Training curves per episode for the Dueling DQN agent being trained for 20,000 epochs learning
to avoid a conflict: the left figure displays the accumulated reward during the training process;
the right curve shows the average loss per episode. 122

B.6 Training curves per episode for the Dueling DQN agent being trained for 20,000 epochs learning
to avoid a conflict. The left figure visualises whether the episode ended in a conflict and the right
figure shows the amount of resolution commands given during an episode. 122

C.1 Accumulated reward and number of conflicts encountered during training for case study 1 . . . 123
C.2 Loss and number of number of nonzero actions taken during training for case study 1 124

D.1 Resolution for the conflict at 90 degrees conflict angle . 125

Towards Explainable Automation for ATC M.C. Hermans

LIST OF FIGURES vii

D.2 Resolution for the conflict at 135 degrees conflict angle . 126
D.3 Learning curves pre-training phase DQfD agent in case study 2 . 126
D.4 Ratio of demonstrations used during a batch update . 127

E.1 Accumulated reward and whether or not episode ended in a conflict for case study 3 128
E.2 Total loss and loss related to getting into a loss of separation per epoch during training 129
E.3 Loss related to taking nonzero actions and flight path deviation per epoch during training . . . 129
E.4 Loss and accumulated reward during training for case study 4 . 130
E.5 Conflicts encountered per episode during training for case study 4 130

M.C. Hermans Towards Explainable Automation for ATC

List of Tables

2.1 Summary of high-level principles ATCos adhere to and strategies employed for CD&R 33

3.1 Parameters incorporated in the SSD . 40

8.1 Variables needed for an agent to choose which aircraft should perform an action 83
8.2 Reward function design in papers using RL to automate CD&R for ATC 84

9.1 Setup of the feature extractor used for DQfD . 90
9.2 Head of value and advantage approximator in the Dueling DQN 90
9.3 Value of the hyper parameters used in DQfD which are not tuned for the trade-off 94
9.4 Critic and actor head for PPO algorithm . 96
9.5 Hyperparameters present in PPO . 97
9.6 Neural Network Architectures for DQfD. k indicates the kernel size and s the size of the stride. . 103

B.1 Pre-processing of SSD for different training runs . 120
B.2 Hyperparameters compared for tuning. 121

viii

Nomenclature

List of Abbreviations

ANN Artificial Neural Network

ATC Air Traffic Control

ATCo Air Traffic Controller

ATM Air Traffic Management

ATS Air Traffic Services

CD&R Conflict Detection and Reso-
lution

CNN Convolution Neural Network

DARPA Defense Advanced Research
Projects Agency

DP Dynamic Programming

DQfD Deep Q-Learning from
Demonstrations

DQN Deep Q-Networks

drDuel-DQN Decomposed Dueling
Deep Q-Networks

FANS Future Air Navigation Ser-
vices

GPI General Policy Iteration

ICAO International Civil Aviation
Association

IRL Inverse Reinforcement
Learning

MDP Markov Decision Processes

MLP Multilayer Perceptrons

MVP Multi-Voltage Potential

PPO Proximal Policy Optimisation

PVD Plan View Display

RDX Reward Decomposition

ReLU Rectified Linear Unit

RL Reinforcement Learning

SSD Solution Space Diagram

TD Temporal-Difference

XAI Explainable Artificial Intelli-
gence

XRL Explainable Reinforcement
Learning

List of Symbols

δ Temporal-difference error

ε Exploration rate

γ Discount factor

θ Network weight parameters

dC PA Distance to closest point of
approach

tC PA Time to closest point of ap-
proach

a Action

C Set of reward components

G Return

J Loss/cost function

Q State-Action value function

r Reward

s State

V State-value function

ix

1
Introduction

To cope with future demand, the Air Traffic Management (ATM) system must be more efficient in both oper-
ational as well as economic context (Raja Parasuraman, Molloy, and I. L. Singh 1993). The biggest limitation
for coping with an increased air traffic density is the current Air Traffic Control system. Whereas one might
expect Air Traffic Control (ATC) to be highly automated, the current system still entirely relies on air traffic
controllers (ATCos) to ensure safe separation between aircraft. The workload of ATCos, specifically, has been
identified as a key limiting factor to increase sector capacity (Djokic, Lorenz, and Fricke 2010). The mid-term
view on the solution is to increase the productivity of ATCos by introducing new support tools and separation
modes (European Commission 2009). It is expected that free-flight solutions using trajectory-based opera-
tions will be incorporated in Future Air Navigation Services (FANS), in which air traffic controllers will purely
have a supervisory role. To facilitate this transition, implementing a high degree of automation is crucial to
maintain safety.

The most demanding task of ATCos is Conflict Detection and Resolution (CD&R) (EUROCONTROL 1996).
Therefore, this will be the focus of this research. The goal of the ATCos is to maintain safe and orderly opera-
tions. Currently, only automated systems to assist lower-level cognitive tasks as the visualisation of flight data
and tracks, and collision warning systems have been implemented. To make the transition towards FANS, the
support of ATCos for increased automation is crucial. Acceptance of automation by ATCos is seen as a main
limitation for the introduction of novel automation in ATC (Westin, Borst, and Hilburn 2015). In (Bekier,
Molesworth, and Williamson 2012), it was concluded that ATCos have a ‘tipping point’ at which they are no
longer willing to cooperate with automation. This tipping point was reached in case the decision authority
shifted away from ATCos towards the automation. In an effort to increase the acceptance of automation in
ATC, strategic conformal automation has been investigated as a possible solution (Regtuit et al. 2018; Van
Rooijen 2019). It is, however, questionable whether emulating human strategies is desirable since the au-
tomation is trying to improve on human performance (Westin, Borst, and Hilburn 2015). Furthermore, with
an increase in air traffic complexity and density, implementing current strategies of ATCos for CD&R might
lead to inefficient automation.

In addition to strategic conformal automation, research in the past decade has focused on automating the
CD&R task to make it fully autonomous. Currently, the modified voltage method which has been developed in
(J.M Hoekstra, van Gent, and Ruigrok 2002) achieves the highest performance in maintaining safe separation
(Ribeiro, Joost Ellerbroek, and Jacco Hoekstra 2020). In more recent efforts, reinforcement learning (RL) has
shown promising results in automating the CD&R task (Puca et al. 2014; Brittain and Wei 2018; Brittain and
Wei 2019; Brittain, Yang, and Wei 2020; Pham et al. 2019; Tran et al. 2019). These papers indicate that RL can
successfully be implemented to automate ATC, although it must be noted that the traffic scenarios analysed
remain limited in terms of complexity.

The effectiveness of implementing reinforcement learning, which is a form of artificial intelligence (AI), for
ATC remains questionable since these AI solutions are yet unable to explain decisions. Explainable models
should be made to increase trust and allow users to understand and effectively manage artificially intelligent
partners. To reach this goal, the Defense Advanced Research Projects Agency (DARPA) launched the explain-
able artificial intelligence (XAI) program (Gunning 2017). Models should be able to provide an explanation

1

2 1.1. Problem Formulation

for the decisions it makes in order for the human operator, either the designer or user, to know when the
automation is successful and when it fails. An example is that of a supervised learning algorithm classifying
a cat. Instead of outputting the probability that an image contains a cat, it should provide clues as: ‘it has fur,
whiskers and claws’; it has ears similar to the following images of a cat. Extending this ideology of developing
explainable AI to ATC, the automation should be designed in a way that the human operator understands
why an agent would take certain actions. Since implementing RL in ATC has shown to be promising, the fo-
cus of this research shall be on developing an explainable reinforcement learning agent (XRL) to automate
ATC. Furthermore, by careful design of the reward function, the behaviour of the agent can be steered to be
conform with strategies employed by ATCos.

To support ATCos during the CD&R task, decision support tools have been created, such as the separation
monitor and the Solution Space Diagram (SSD) (Mercado Velasco, Mulder, and van Paassen 2010). These
tools assist ATCos in making decisions. The solution space in the SSD is constructed from all vector com-
mands (heading and altitude) that satisfy constraints of safety, productivity, and efficiency. For an individual
aircraft, it is hypothesised that this display contains all the relevant information to be able to form a deci-
sion on what action to take (Mercado Velasco et al. 2015; Mercado Velasco, Mulder, and van Paassen 2010;
Van Dam et al. 2004). The strength of the SSD is that no matter the complexity or airspace density, the ATCo
is able to see a solution to the detected conflict. One of the limitations of reinforcement learning is that the
state and action space have to remain limited in order to successfully find an optimal policy. Using the SSD
as state- input for a learning agent might be promising as the size of the state remains fixed and, in a sense,
naturally portrays the solution space.

1.1. Problem Formulation
The research objective is to automate ATC by developing an explainable reinforcement learning algorithm
that uses the Solution Space Diagram as input. The SSD is a visual representation of how ATCos solve conflicts
and it provides the learning agent with an overview of the surrounding traffic. The research question is linked
to this objective:

“How can reinforcement learning be applied to the ATC task of conflict detection & resolution by exploiting
features from the Solution Space Diagram and contribute to the explainability of the automation?”

There are six subquestions to this main research question:

1. What traffic scenarios and ATC tasks are relevant to analyse?

2. What type of reinforcement learning agent can be used to automate CD&R for a single
controlled aircraft in a multiple-aircraft traffic scenario by using the SSD as state input?

• What states and actions are used by an ATCo to perform their tasks?

• What information can be extracted from the SSD?

• Which deep RL algorithms are suitable for a two-aircraft traffic scenario?

3. What metrics can be used to evaluate the performance of the automation?

4. How can the RL based automation be implemented in a two-aircraft traffic scenario with
a controlled and observed aircraft?

• What factors should be incorporated in the reward function?

5. What factors can contribute to the explainability?

• What techniques are there available?

• How can strategy be incorporated?

In Figure 1.1, the research questions are shown and it is indicated in what part of the research these will be
answered.

Towards Explainable Automation for ATC M.C. Hermans

1. Introduction 3

1) What traffic scenario
and ATC tasks are

relevant to analyse?

2) What type of reinforcement
learning agent can be used to
automate CD&R for a single

controlled aircraft in a multiple-aircraft
traffic scenario by using the SSD as

state input?

2a) What states and
actions are used by
an ATCo to perform

their tasks?

2c) Which deep RL
algorithms are suitable for

a two-aircraft traffic
scenario?

3) What metrics can be
used to evaluate the
performance of the

automation?

Part I: Literature Study
Part II: Preliminary Analysis
Part III: Final Thesis

5) What factors can contribute to
the explainability?

4) How can the RL based
automation be implemented in a
traffic scenario with a controlled

and observed aircraft?

5a) What
techniques are
there available?

2b) What information can
be extracted from from the

SSD?

4a) What factors should
be incorporated in the

reward function?

5b) How can
strategy be

incorporated?

How can reinforcement learning be applied to the ATC task of CD&R by exploiting
features from the Solution Space Diagram and contribute to the explainability of the

automation?

appx. ch.2

appx. ch.2 appx. ch.3

appx. ch.9

appx. ch.4, ch.5, ch.6

appx. ch.8

appx. ch.8

paper

appx. ch.7 paper

paper

Figure 1.1: Research Questions.

1.2. Related Work
Two areas of research are of interest to this research, namely reinforcement learning to automate ATC and the
development of explainable reinforcement learning. In (Brittain and Wei 2018), a deep double Q-Network
was used for autonomous aircraft sequencing and separation. The agent had a limited action space in which
solely the speed could vary discretely between six different values. The research showed that proper sepa-
ration could be obtained by using this learning algorithm. One of the disadvantages was, however, that the
state space increased in dimensions when more aircraft were added to the state space system. (Brittain and
Wei 2019) and (Brittain, Yang, and Wei 2020) implemented a multi-agent learning algorithm which signifi-
cantly improved the results. The researchers were able to ensure safe operations in more complex scenarios,
although with an action space that was limited to a discrete amount of velocity alterations. Furthermore,
(Pham et al. 2019) and (Tran et al. 2019) both explored the concept of having a controlled and observed air-
craft. In these papers, the route of the controlled aircraft is changed by adding a way point, the ‘trajectory
change point’. In (Tran et al. 2019), the reinforcement learning agent was able to efficiently learn by taking
human demonstrations into account.

Explainable reinforcement learning (XRL) remains a relatively unexplored area of research. (Juozapaitis et
al. 2019) was the first to consider decomposing the reward function to identify why an agent behaves as it
does. Decomposing the reward function as such allows the operator to see why an agent chooses to perform
a certain action, i.e. due to safety, fuel efficiency, or to uphold airline preference in the case of ATC.

Reinforcement learning has proven to be effective for automating CD&R in simplified environments. How-
ever, it has not yet been investigated how using RL can contribute to the explainability of the automation.

1.3. Contribution
In (Van Rooijen 2019), a strategic conformal model was developed by training a supervised model which uses
the SSD as input to increase the understanding of the agent’s actions. Although the model developed was able
to mimic human strategies, it will never improve on the human operator. Through the use of RL, an optimal
policy in terms of maximising a reward function can be achieved. Reinforcement learning has already been
applied to ATC in recent studies with limited state-action spaces. The SSD is said to offer the human operator
with an overview of the solution space for an aircraft and has actually been shown that the use of it especially
increases the fault detection performance (Borst et al. 2017). This work is the first to explore whether a RL
agent benefits from having a support tool to represent its state.

The acceptance of automation, due to trust and transparency issues, is a burden for the implementation of
higher degrees of automation in the current ATC system. Therefore, this work will also focus on the explain-
ability of the automation. In the context of explainable AI, this work is the first to use reinforcement learning
to contribute to the explainability of the automation for ATC.

M.C. Hermans Towards Explainable Automation for ATC

4 1.4. Report Structure

1.4. Report Structure
Part I: This part of the thesis contains the scientific article.

Part II: This part of the thesis holds the preliminary thesis.

Part III: This part of the thesis details appendices to the scientific article of presented in part I.

Towards Explainable Automation for ATC M.C. Hermans

I
Scientific Paper

5

Towards Explainable Automation for Air Traffic
Control Using Deep Q-Learning from

Demonstrations and Reward Decomposition
M.C. Hermans, MSc. Student

Supervisors: dr. ir. E. van Kampen, dr. ir. C. Borst, ir. T. Nunes
Section Control & Simulation, Department Control and Operations, Faculty of Aerospace Engineering,

Delft University of Technology, Delft, The Netherlands

Abstract—The current ATC system is seen as the most
significant limitation to coping with an increased air traffic
density. Transitioning towards an ATC system with a high
degree of automation is essential to cope with future traffic
demand of the airspace. In recent studies, reinforcement learning
has shown promising results automating Conflict Detection and
Resolution (CD&R) in Air Traffic Control. The acceptance
of automation by Air Traffic Controllers (ATCos) remains a
critical limiting factor to its implementation. This work explores
how automation can be developed using Deep Q-Learning
from Demonstrations (DQfD), which aims to be transparent
and conforms with strategies applied by ATCos to increase
acceptance of automation. Reward decomposition (RDX) is
used to monitor the learning and to understand what the
agent has learned. This study focuses on two-aircraft conflicts,
in which the state of the controlled and observed aircraft is
represented by raw pixel data of the Solution Space Diagram.
It was concluded that pre-training on demonstrations speeds up
learning and can increase strategic conformance between the
solutions provided by the RL agent and the demonstrator. Next
to increasing conformance, results also show that DQfD can
improve its policy with respect to the suboptimal demonstrations
used during training. Finally, RDX has allowed the designer to
examine the policy learned by the RL agent in more detail.

Keywords: Air Traffic Control, Solution Space Diagram, Con-
flict Detection & Resolution, strategic conformance, Reinforce-
ment Learning, Deep Q-learning from Demonstrations, Reward
Decomposition, Acceptance of Automation, BlueSky, Decision
Support Systems

I. INTRODUCTION

Today, human Air Traffic Controllers (ATCos) are respons-
ible for maintaining safe and orderly operations within the air
space. Conflict Detection & Resolution (CD&R) is seen as the
most demanding task of ATCos [1]. To perform CD&R, AT-
Cos acquire information from the Plan View Display (PVD).
Apart from lower-level cognitive tasks such as the visualisation
and presentation of traffic data, few tasks of an ATCo are
automated. From the PVD, ATCos need to integrate lower
order aircraft state information, presented on individual flight
labels, to determine what actions can be taken to avoid a
conflict [2]. The CD&R task is complex, especially in high-
density traffic scenarios, since coordination is needed between
different aircraft. Although autonomous methods to assure safe
separation exist, acceptance of automation by ATCos is seen

as a main limitation for the introduction of novel automation
in ATC [3].

In an effort to increase the acceptance of automation in
ATC, strategic conformal automation has been investigated as
a possible solution [4], [5]. In [5], Van Rooijen confirmed the
existence of a strategy heterogeneity between ATCos, which
is a crucial assumption of strategic conformal automation.
Even so, it remains questionable whether emulating human
strategies is desirable as human errors might propagate through
the automation [3]. Alternatively, trust can be increased by
developing automation that is understandable to the individual
[6].

Decentralised automation methods, such as the Modified
Voltage Potential (MVP) method, have shown to be effective
in automating CD&R [7]. A limitation of the MVP method
is that resolutions may oppose the flight direction proposed
by the flight plan, as it solely uses conflict geometry for its
resolution, and therefore is not an optimal solution method
for all traffic scenarios [7]. In pursuit of optimised automation
methods for ATC, more recent efforts explore a data-driven ap-
proach. Reinforcement Learning (RL) has achieved promising
results in automating CD&R [8]–[13]. RL is a computational
approach to learn from interaction, mimicking the way that
biological agents, like humans, learn. The potential of RL is
that it is a way of programming agents based on reward and
punishment without having to specify how the agent needs to
achieve a task [14]. Applying RL for ATC, therefore, poses
the opportunity to learn a policy that can account for a wide
range of air traffic scenarios. Studies into applying RL for
CD&R explore both centralised and decentralised control by
implementing single agent, as researched by Brittain et al. [9],
and multi-agent reinforcement learning techniques [10], [11].

The effectiveness of implementing RL, which is a form
of artificial intelligence (AI), for ATC remains questionable
since these AI solutions are yet unable to explain decisions.
Explainable models should be made to increase trust and
allow users to understand and effectively manage artificially
intelligent partners. For Machine Learning methods, explain-
ability remains a relatively unexplored area of research. In
[15], Juozapaitis et al. developed a RL method with reward
decomposition (RDX) which can be used to expedite the

1

explanation of action selection.
The main contribution of this article is that it focuses on

the development of automation for CD&R using RL, with an
aim to contribute to the explainability of the automation for the
designer. This work proposes the use of Deep Q-learning from
Demonstrations to bridge the gap between strategic conform-
ance and optimal control, and uses Reward Decomposition to
contribute to the explainability of the automation. Furthermore,
it explores how a RL agent can benefit from having the
Solution Space Diagram (SSD) to represent the state of a
conflict pair. Explainability in this research relates to the
mental model a designer has of the automation. Essentially,
explainable models aim to increase the ‘what will it do’
prediction [6]. Experiments performed by Juozapaitis et al.
show that decomposing the reward function into meaningful
components allows the designer to gain significant insights
into the agent’s behaviour, e.g. identifying unwanted behaviour
[15]. In an effort to highlight the individual contributions of the
aforementioned methods, four case studies will be performed.
The first is aimed at researching the capability of a DQfD agent
to perform CD&R in a two-aircraft traffic scenario; the second
case study explores how artificially generated demonstrations
can be utilised to enhance the strategic conformance of the
automation; the third investigates how reward decomposition
can contribute to the transparency of the RL agent; and,
finally, the fourth case study explores how reward shaping
can contribute to the development of strategic conformal
automation.

ATCos identify conflicts pairwise [16]. Therefore, this work
focuses on resolutions in a two-aircraft traffic scenario with a
controlled and observed aircraft. The RL task is formulated as
a continuous control problem, rather than a strategic planning
tool. To represent the state of an aircraft, this work explores
whether a RL agent can benefit from the raw pixel data of the
Solution Space Diagram (SSD). The SSD is an ecological de-
cision support tool which visualises the locomotion constraints
in terms of heading and velocity of the controlled aircraft. By
using the SSD to represent the controlled aircraft’s state, the
dimension of the state space remains constant with varying
aircraft density.

Section II elaborates on this study’s fundamental concepts
and theoretical motivations. Thereafter, section III formulates
the RL problem and explains the setup of the four case
studies. Section IV presents the results of the four case
studies. Subsequently, in section V, a sensitivity analysis is
performed. Section VI discusses the results of the study and
its broader context. Finally, some final remarks on the research
are presented in section VIII.

II. BACKGROUND

A. Conflict Detection & Resolution

CD&R entails preventing violations of minimum separation
standards, of which the horizontal separation standards are 5
nautical miles [17]. An ATCo is presented with the position
of each aircraft in the sector, in terms of longitude and
latitude, on an electronic radar screen. Each aircraft has a

flight label which contains the call sign, heading and speed
of the aircraft. Based on this information, an ATCo has to
detect possible conflicts and resolve these. In general, ATCos
work in one certain sector for the entirety of their professional
life. Therefore, ATCos become specialists in detecting and
resolving potential conflicts just from looking at a radar screen.
To do so, the operators apply various strategies:

1) Detection: Two aircraft are in conflict if a vertical or
horizontal loss of separation will occur in the near future [16].
Whenever the vertical separation standards are not maintained,
an ATCo checks whether the horizontal separation standards
are met [18]. An ATCo approaches the detection task by
identifying potential conflicts pair-wise [18]. ATCos estimate
the Closest Point of Approach (CPA) to see whether two
aircraft are in conflict. This is the case when the distance of
closest approach (dCPA) is smaller than 5 nm. Other factors
defining a conflict are the time to the closest point of approach
[16], tCPA, the conflict angle [19] and speed difference [20].

ATCos predict future conflicts with a prediction time vary-
ing between 5 and 10 minutes [16]. Studies on how a human
detects conflicts show that the conflict angle, speed difference
and air traffic density are negatively correlated with the
accuracy of conflict prediction [20]–[22]. Furthermore, Xu
and Rantanen [23] showed that ATCos tend to judge potential
aircraft at smaller spatial distance but with equal tCPA more
urgent. This phenomenon is referred to as the “distance-over-
speed bias".

2) Resolution: To resolve a conflict, ATCos can instruct
pilots to perform an altitude, heading or velocity change. An
altitude change is preferred since it is a “non-radar" manoeuvre
which does not require constant monitoring [18]. If an altitude
change is not possible, a heading change is preferred instead
of a speed change as speed changes are mentally challenging
to represent for controllers [21] and have less visual impact
[18]. Furthermore, ATCos avoid resorting to speed changes
for en-route ATC as the narrow flight envelope of airliners
limits the velocity window at cruise altitude. In line with this
hierarchy, the main influences on the expected utility of the
controller’s decision are [24]:
• Expediency: manoeuvres that resolve a conflict faster are

preferred over time-consuming ones.
• Preservation of airspace: the least disruptive manoeuvres

to the overall traffic flow are preferred.
• Visualisation: manoeuvres that resolve the conflict with

more visual impact are preferred.
Furthermore, ATCos try to minimise the amount of requests

to the pilot [25]. Next to the strategies shared between ATCos,
ATCos apply personal strategies to resolve conflicts. The
resolutions vary due to the conflict geometry, and depend on
the safety factor and the tCPA at which ATCos tend to solve
conflicts. These strategies can, therefore, be identified from
the parameters defining a conflict by examining resolutions as
provided by ATCos.

For the CD&R task, both global and pairwise resolution
methods have been developed. Global resolution methods may
be more robust as it considers the entire traffic scenario at

2

once, but also more complex [26]. In [27], Van der Hoff has
taken a multi-agent RL approach for the control task of ATC.
Results showed that due to a lack of global coordination,
this model is unable to resolve complex traffic scenarios.
Moreover, the study into CD&R shows that ATCos detect
and solve conflicts pairwise. This research will, therefore, take
a pairwise approach and focus on two-aircraft conflicts with
a controlled and an observed aircraft. In real-life, an ATCo
first determines which pair of aircraft is in conflict. Then,
the operator solves the conflict using shared and personalised
strategies. This final stage will be the focus area of this work,
as shown in Figure 1.

detect
conflicts pair-

wise

ATCO

determine
which aircraft
to manoeuvre

Select
manouevre

focus research

strategy

Figure 1. Control task of an ATCo.

B. Solution Space Diagram

In [28], Van Dam et al. researched the solution space of an
aircraft from a pilot’s perspective to increase situational aware-
ness. The solution space visualises the locomotion constraints
in terms of heading and velocity of the aircraft. Hermes et
al. [29] used this approach to develop an ecological decision
support tool for ATCos, called the solution space diagram.
In Figure 2, the step-by-step construction of the SSD is
visualised. First, all relative velocity vectors that lead to a
loss of separation are calculated to define the Forbidden Beam
Zone (FBZ) per observed aircraft. The FBZ is, then, displaced
by the velocity of the observed aircraft to define the no-go zone
for the controlled aircraft. The velocity vector of the controlled
aircraft should be outside of this no-go zone to avoid a loss
of separation. In a final step, the solution area is limited by
Vmin and Vmax of the controlled aircraft. In this research,
the colour of the FBZs is defined by the tCPA, which can
be calculated for a conflict pair using Equation 1 [30]. In this
equation, p0A and p0B , and vA and vB are the current position
coordinates and velocity vectors of the controlled and observed
aircraft. The FBZ of the observed aircraft has a red colour for
a tCPA < 60s, an orange colour for a 60 < tCPA < 120s
and a grey colour for a tCPA > 120s. An example of the final
SSD used in this research is shown in Figure 4.

tCPA = − (p0A − p0B) · (vA − vB)

||(vA − vB)||2
(1)

All relevant parameters to perform CD&R are contained in
the SSD and their representations are listed in Table I and
visualised in Figure 2.

Whether or not the FBZ of an observed aircraft is included
in the SSD is dependent on the look-ahead time of the
detection algorithm, and the absolute distance between the

Vmin

solution space

Exit Waypoint

fly behind
 aircraft B

Vmax

Exit Waypoint

VB

VAVA

protected zoneStep 1 Step 2

d CP
A

=
0

fly in front
 of aircraft B

VB VB

VB

Exit Bearing

Figure 2. Step-by-step construction of the SSD for an upcoming conflict
with a single observed aircraft. In this figure, A and B are the controlled and
observed aircraft respectively.

Table I
PARAMETERS INCORPORATED IN THE SSD. ADAPTED FROM [5].

Parameter Feature in the SSD

Velocity Length of the velocity vector.

Velocity envelope Inner and outer circle on the SSD.

Exit waypoint Strikingly blue coloured heading vector.

Heading Direction of the velocity vector.
Conflict in terms of
heading and speed FBZ.

Distance observed aircraft Width of FBZ.

tCPA

(1) Colour coding.
(2) Combination of tail FBZ,
green velocity vector and width FBZ.

dCPA
Reflected by relative velocity vector in the
FBZ.

Conflict angle Inclination of the FBZ.

Traffic Density Amount of FBZs represented in the SSD.

Velocity observed aircraft Position tail FBZ.

Traffic Complexity
With a higher complexity, the FBZs
of individual observed aircraft overlap
less and solution space becomes smaller.

Objects
Represented as a FBZ covering entire
range of velocities in a certain direction..

observed and the controlled aircraft. As ATCos have a look-
ahead time of between 5 and 10 minutes [16], the look-
ahead time of the detection algorithm is set at 10 minutes.
Furthermore, the minimal absolute distance at which a conflict
can be detected is set at 65 nautical miles.

C. Reinforcement Learning

The model-free RL problem consists of three main ele-
ments: a policy, a reward signal and a value function. The
policy, π(a|s), is a mapping from the state to the action. The
agent thus uses the policy to decide what action to take in a
particular state. The performance of an action is measured by
the reward signal and the state value function, vπ(s), indicates
the expected cumulative sum of future rewards under the
current policy π. Next to the state-value function, a state-
action-value function, Qπ(s, a), which relies on both the state

3

and the action can be learned. At every timestep, the agent
chooses an action, at ∈ A(s), based on the state , st ∈ S.
It receives a reward signal, rt ∈ R, as a consequence of the
previous interaction with the environment. The goal of the
agent is to maximise the reward it accumulates over time,
which is referred to as the return. This is shown in Equation 2,
in which γ is the discount factor. The discount factor weighs
the importance of immediate and future rewards.

Gt =

∞∑
t=0

γtrt (2)

D. Deep Q-Networks

For this research it is chosen to implement a value-based
RL method, in which actions are selected based on the learned
values, as this would make the algorithm suitable for reward
decomposition [15]. A deep RL algorithm, in which the
value function is approximated by a deep neural network,
is implemented. The pixel data of the SSD will be used to
represent the state of the controlled aircraft. Each pixel in an
image is a feature to the neural network. For image data, it
is common to use a Convolutional Neural Network (CNN).
This is because CNNs can effectively reduce the number of
parameters, compared to an artificial neural network (ANN),
without losing the quality of the model [31]. Furthermore,
CNNs are not spatially dependent. This allows the network to
learn certain features, such as the FBZ in the SSD, regardless
of the position of the feature in the image [31]. For these
reasons, a CNN will be used to represent the value function.

Deep Q-Networks (DQN) [32] is an online value-based
approximate solution method which was the first to show
that policies could be learned from high-dimensional sensory
inputs using end-to-end learning. Such an approximator for the
value function is essential to learning and generalising to large
state spaces. The downside of the DQN algorithm compared to
the tabular Q-learning algorithm, in which the representation
of the Q-function is exact, is that convergence is no longer
guaranteed [33]. In DQN, the loss function at each iteration is
composed of the temporal difference (TD) error, as shown in
Equation 3. In this equation, θ′, represent the network weights
of the target network, D represents the replay buffer and s′

represents the next state.

Li(θi) = E(s,a,r,s′)∼U(D)[

learned value︷ ︸︸ ︷
(r + γmax

a′
Q(s′, a′; θ′i)−

Q(s, a; θi))
2]

(3)

The two concepts of a target network and experience
replay buffer are both related to removing correlation between
data samples used for updates, and prove to be critical for
convergence. The agent interacts with the environment and
saves the experience to a replay buffer. More formally put,
the agent’s experiences are stored at each time step t in the
data set Dt = e1, ..., et, in which et = (st, at, rt, st+1). The
Q-learning training updates are performed on randomly drawn
samples, (s, a, r, s′) ∼ U(D). To avoid chasing a moving

target, a separate target network, which is updated every τ
steps, is used. During each update of the target network, the
target network copies the weights of the current policy.

E. Dueling Deep Q-Networks

In this work, a Dueling DQN algorithm shall be used to
represent the value function. Wang et al. [34] showed that
Dueling DQN achieves a better performance than DQN on
most RL problems. The only difference between DQN and
Dueling DQN is that the approximation of the state-action
value function is decomposed in an advantage and state-value
stream, which is shown in Equation 4.

Q(s, a) = A(s, a) + V (s) (4)

The advantage function is defined as the advantage of a
particular action in a state against all other possible actions.
During every update step, the weights of the network are
updated by back-propagating the loss between the learned
value and the value approximation. The size of these steps
is dependent on the optimiser used. In this research, the Adam
optimiser [35] will be used as this optimiser achieves the best
performance for most RL algorithms and is easy to configure
[36]. The Adam optimiser maintains an adaptive learning rate
per network parameter.

F. Learning from Demonstrations

Most RL algorithms are data inefficient which in general is
not a problem for RL tasks for which an accurate simulation
environment is present. However, for real-world applications,
an accurate simulation environment is often not available.
To speed up learning, Hester et al. [37] presented a method
in which the RL agent can learn as much as possible from
demonstration data before exposing the RL agent to the task
at hand. This demonstration data can be acquired from a
human performing the RL task at hand, or by another form
of automation that is capable of performing the task. The
algorithm employs a pre-training phase which aims to learn
a policy that imitates the demonstration data with a value
function satisfying the Bellman equation so that it can be used
for TD updates during the normal training phase.

The loss function is composed of four components: 1-step
double Q-learning loss, an n-step double Q-learning loss (n-
step loss), a supervised large margin classification loss (Expert
loss), and a L2 regularisation loss on the network weights and
biases. It is shown in Equation 5, in which λ1 and λ2 are the
n-step return and supervised loss weight, whose values are
taken from the original paper [37]. The n-step and Expert loss
only apply on samples from the demonstrations data set. The
n-step loss aims to propagate the trajectory of the demonstrator
to all earlier states. Essentially, the n-step loss component
ensures that the estimation of the current state is not only
affected by the estimation of the next state, but also by the
estimation of the next n-states [37]. It is implemented with
a forward view, just as in [38]. The Expert loss is critical
for the pre-training phase and is used for the classification of
demonstrator’s actions, whilst Q-learning is used to ensure that

4

the Bellman equation is met. Lastly, L2 regularisation is added
to prevent overfitting on the often limited demonstrations data
set.

L(Q) = LDQN (Q) + λ1Ln−step(Q) + λ2LE(Q)

+ λ3LL2(Q)
(5)

The Expert loss is shown in Equation 6. In this equation, aE
is the action of the demonstrator and l(aE , a) is the margin
function that is 0 when the action is of the demonstrator, and
a positive value otherwise. This margin function ensures that
the values of all the other actions are at least a value lower
than that of the demonstrator.

LE = max
a∈A

[Q(s, a) + l(aE , a)]−Q(s, aE) (6)

To ensure that the RL agent can still benefit from demonstra-
tions during the normal training phase, these samples cannot
be removed from the experience replay. Furthermore, they
have a higher probability of being selected as sample. This
is explained in more detail in subsection II-G. The pseudo-
code of the algorithm is shown in Algorithm 1.

One of the challenges in RL concerns the exploration-
exploitation trade-off. Agents seek to learn action values
conditional on subsequent optimal behaviour, but also need
to behave non-optimally to explore all actions and possibly
find the optimal solution [39]. In this research, an ε-greedy
approach is taken. This means that the RL agent has a
probability of ε to select an exploratory action (random action).
This ε-greedy approach has also been used in original paper
on DQfD [37].

G. Prioritised Experience Replay

Schaul et al. [40] improved DQN and Dueling DQN in
terms of performance and sped up the learning on the Atari
2600 games by adding prioritised replay instead of uniform
experience replay. When using uniform experience replay, the
agent randomly samples a batch from the replay buffer. The
basic idea of prioritised replay is to draw important samples
more often instead of randomly drawing samples. During
optimisation, the algorithms try to minimise the temporal-
difference (TD) error. The basic idea of prioritised sweeping
is to increase the replay probability for samples in the set of
experiences which have a high expected learning progress, as
measured by the magnitude of the TD error. The TD error for
Dueling DQN is given in Equation 7.

δi =

learned value︷ ︸︸ ︷
r + γmax

a′
Q(s′, a′; θ′i)−Q(s, a; θi) (7)

In DQfD, prioritised replay is used to balance the amount of
demonstration data and new experiences contained in a mini-
batch during training. The probability of selecting a sample,
P(i), is determined by how surprising or expected a sample is,
following the TD-error [37], which is shown in Equation 8. In
this equation, α determines how much prioritisation is used, k
is the mini-batch size and pi is the priority. Setting α to zero

Algorithm 1. The pseudo-code of Deep Q-Learning from Demonstrations
(DQfD) [37]. The behaviour policy πεQθ is ε-greedy with respect to Qθ .

Require: Dreplay: initialised with demonstration data set;
θ: weights for initial behaviour network (random); θ′:
weights for target network (random); τ : frequency at
which to update target net; k: number of pre-training
gradient updates; α: learning rate; Ntraining epochs: number
of epochs for training

1: for steps t ∈ {1, 2, ...k} {pre-training phase} do
2: Sample a mini-batch of n transitions from Dreplay with

prioritisation
3: Calculate loss L(Q) using target network
4: Perform a gradient descent step to update θ
5: if t mod τ = 0 then
6: θ′ ←− θ {update target network}
7: end if
8: s←− s′
9: end for

10: for steps t ∈ {1, 2, ..., Ntraining epochs} {normal training
phase} do

11: Sample action from behaviour policy a ∼ πεQθ
12: Play action a and observe (s′, r)
13: Store (s, a, r, s′) into Dreplay, overwriting oldest self-

generated transition if over capacity occurs
14: Sample a mini-batch of n transitions from Dreplay with

prioritisation
15: Calculate loss L(Q) using target network
16: Perform a gradient descent step to update θ (Adam

optimiser)
17: if t mod τ = 0 then
18: θ′ ←− θ {update target network}
19: end if
20: s←− s′
21: end for

corresponds with the uniform case. In the paper [37], in which
DQfD is first described, Hester et al. implement proportional
priority as shown in Equation 9. In this equation, εa is small
positive constant to ensure all transitions are sampled with
some probability. An additional demonstration priority bonus,
εd, is added to pi of the demonstration data to increase the
frequency at which they are selected.

P (i)1 =
pαi∑
k p

α
k

(8)

pi =

{
|δi|+ εa + εd, for sample from demonstrator
|δi|+ εa, else

(9)

To account for the change in data-distribution caused by the
prioritisation, updates to the network are weighted by sampling
weights, wi = (1

N ·
1

P (i))β [37]. In this equation, N is the
size of the replay buffer and β determines the amount of

1For the implementation, the ‘sum-tree’ data structure approach is used as
detailed in [40]

5

importance sampling, with β = 0 for no importance sampling.
In this research, β is annealed from 0.6 to 1.0, meaning up
to complete importance sampling, over the course of entire
training period. The value of 0.6 for β0 was taken from the
original paper on DQfD [37].

H. Reward Decomposition

Many RL tasks have a reward function that can naturally
be decomposed into meaningful components. In value-based
solution methods, the RL agent takes the action that maximises
the expected value function, the Q-function. The agent learns
how to maximise the reward function, but the learned Q-
function fails to provide any insight into how each component
of the reward function contributes to the learned value. In [15],
the Juozapaitis et al. show how utilising decomposed rewards
can give insight into trade-offs between different reward com-
ponents. Translating this concept to the ATC task, its reward
function can naturally be decomposed into rewards related to
avoiding a loss of separation, taking the minimum amount of
actions and minimising deviation from the flight path. When
considering the ATC task in a more complex setting, rewards
on sector disruptiveness and safety margin could also be
included. A well-trained agent would then be able to provide
an explanation to the user to show which part of the reward
function contributes most to taking a certain action. Not only
does this have the potential to increase the explainability of
the automation for the user, it can assist designers to spot
anomalies in the automation. In the original paper on reward
decomposition [15], Juozapaitis et al. provide a proof that
DQN should be suited for reward decomposition in case the
algorithm is run under the standard conditions for almost
sure (a.s.) convergence2. In this research, DQfD and Dueling
DQN is implemented, which uses a Dueling state-advantage
convolutional network. As this does not violate the standard
conditions for a.s. convergence, reward decomposition can be
implemented according to the DQN implementation shown
below:

L(θc) =

k∑
i=1

(yc,i −Qc(si, ai; θc))2 (10)

yc,i =

{
rc, for terminal s′i
rc + γQc(s

′
i, a

+
i ; θ′c), for non-terminal s′i

(11)

a+
i = argmax

a′

∑
c∈C

Qc(s
′
i, a
′; θ′c) (12)

In these equations, C is the set of reward components. Each
value of the current network is thus updated based on the
current greedy action of the complete target network. Except
for a different update method, decomposed Dueling DQN
(drDuel-DQN) operates exactly the same as regular Dueling
DQN.

2Specifically, we must update each state-action pair in-finitely often, and the
learning rates αt(s, a) must satisfy

∑
t αt(s, a) = ∞ and

∑
t α

2
t (s, a) <

∞

III. METHODOLOGY

This section elaborates on the methodology used to develop
automation for ATC that aims at being strategically conformal
with ATCos and explainable for both the designer as well as
the operator. First, subsection III-A formulates the RL task
for 2D CD&R with a single controlled aircraft. Then, the
experiment setup for case study 1, case study 2, case study
3 and case study 4 are elaborated on in subsection III-C,
subsection III-D, subsection III-E and subsection III-F.

A. Problem Formulation of the RL Task

Reinforcement learning has been shown to be effective in
simplified learning environments. This research focuses on en-
route ATC in air traffic sectors. Specifically, this research only
considers two-aircraft conflicts.

1) Objective: The objectives of the case studies performed
in this research are to avoid a loss of separation (LOS) and
minimise the flight path using a resolution strategy compliant
with that of an ATCo. This entails that the action space should
represent one that is also available to an ATCo.

2) Simulation Environment: For this research, BlueSky
[41], which is a high-fidelity ATC simulation environment,
is used. Whereas BlueSky allows for high-fidelity ATC simu-
lations including uncertainties, it is chosen to exclude these in
this research and essentially use it as a deterministic simulation
environment. In these simulations, OpenAP [42] was used as
performance model.

3) Assumptions: As ATCos solve conflicts pairwise, it has
been decided to simplify the ATC task that entails controlling
all aircraft in a sector to controlling a single aircraft, the
controlled aircraft. Furthermore, the simulation environment
is constructed such that it updates once every 10 seconds
as ATCos will in general not provide multiple resolution
commands within this time window. The main reason for this
being that radar updates are provided once every 10 seconds
[17]. The aircraft type used in the case studies is the B737,
of which the performance is modelled using the OpenAP [42]
performance model. Only one aircraft type was considered to
simplify the CD&R task without losing too much realism.

4) State Representation: In an effort to increase the gener-
alisation of the automation, the SSD will be used to represent
the state of the conflict pair. The advantage of using the SSD
is that the size of the state space does not increase with
an increase of the number of aircraft in the sector. More
specifically, most of the information is contained in the upper
half of the SSD [5], in which the current speed vector is
directed upwards. An ATCo is unlikely to command an aircraft
to perform a heading change of more than 90 degrees. In [5],
Van Rooijen supports this hypothesis by having successfully
trained a supervised model to perform CD&R using only
the upper half of the SSD. An analysis comparing the full
SSD and upper half of the SSD to represent the state of the
controlled aircraft showed that using the upper half of the
SSD increased the data-efficiency of the RL algorithm, without
suffering any performance loss. The data-efficiency achieved
by limiting the size of the state space outweighs the additional

6

SSDt-1 Crop to upper half[202x202x3 px] Downsample[101x202x3 px] Greyscale[64x128x3 px] [64x128x1 px] Normalize
{0,255} {0,255} {0,255} {0,1} {-1,1}

[64x128x1 px]

SSDt
[202x202x3 px] Downsample[101x202x3 px] Greyscale[64x128x3 px] [64x128x1 px] Normalize

{0,255} {0,255} {0,255} {0,1} {-1,1}
[64x128x1 px]

stack st

state pre-processing

Crop to upper half

[64x128x2 px]
{-1,1}

Figure 3. Pre-processing of the state at time-step t in the simulation. The values between the square brackets represent the dimensions of the image whilst
the values between curly brackets represent the range of values of a single pixel.

information provided on the lower half of the SSD. On its
own, the SSD does not contain enough information for an
ATCo to select the most optimal conflict resolution strategy
[43]. This is because some features, such as the tCPA and
dCPA, are difficult to extract from a single SSD for a human
operator as they are disguised in the shape of the FBZ. In
deep RL, it is common to stack multiple consecutive frames to
incorporate motion information [44]. To ensure information on
the motion of the FBZs is present in the state of the RL agent,
two consecutive SSDs are stacked in this research, which is
visualised in Figure 4. By stacking the images, the optical flow
of the features in the image is contained in the state. Stacking
two images does, however, double the size of the state-space.

Figure 4. State of the RL agent is represented by stacking two SSDs, of
which only the upper half is used.

The SSD contains multiple colours. A single RGB SSD
has three feature maps, one for each colour. To reduce the
state-space, the SSD image is converted to greyscale, reducing
the state-space from two SSDs containing three feature maps
to a single feature map per SSD. In general, deep RL does
not require the input data to be normalised. However, neural
networks work better with normalised data [45]. Therefore,
it is chosen to normalise the value of each pixel in the SSD
image using the mean and standard deviation calculated after
having acquired 10,000 samples. These samples are acquired
by using the MVP method to resolve conflicts for traffic
scenarios encountered in the first test case. Acquiring samples
with random exploration would lead to encountering many
SSDs without any FBZ in it. This can result in a large mis-
match between the data distribution of the memory buffer from
which data statistics are determined and the data encountered
during interaction. The full pre-processing sequence is shown
in Figure 3.

5) Action Space Definition: This research considers the en-
route airspace. In this part of the airspace, the flight envelope
of the aircarft limits the possible airspeed to a small velocity
window. Moreover, since resolving a conflict with a heading
change has more visual impact than altering the velocity,

ATCos do not often command a velocity change [24]. One
of the goals of this research is to design automation that is
conformal to how ATCos solve conflicts. The action space of
the RL agent should conform to the ATCo solution space. The
resolution commands that ATCos give are in steps of 5 degrees
and span between -30 and +30 degrees. Additionally, ATCos
can command the controlled aircraft to continue its route to the
exit waypoint [46]. Incorporating all these commands in the
action space of the agent results in an action space size of 14.
One of the major challenges in the field of machine learning is
the curse of dimensionality. Adding a dimension exponentially
increases the amount of possible solutions [14]. With this
consideration in mind, it is decided to limit the action space to
6 output classes, as shown in Equation 13. In the action space,
∆DCT is the Direct To exit waypoint command. Reducing the
action space will not affect the ability of the RL agent to solve
conflicts compared to the larger action space. Commanding a
B737, which is used in this research, to perform a heading
change of 30 degrees takes three simulation steps (30 seconds)
to complete at cruise altitude. With a limited action space
the RL agent can also achieve a 30 degrees heading change
by taking three consecutive actions of + 10 degrees. The RL
agent can thus achieve the same heading deviation in the same
amount of simulation steps.

ARL agent(s) = {−10,−5, 0, 5, 10,∆DCT}[◦] (13)

6) Reward Function: Following the objective of this re-
search, the agent should be able to avoid a loss of separation
and reach the target waypoint with a minimum flight path
deviation. En-route ATCos provide an aircraft with a minimal
amount of resolution commands [25] and instruct the pilot
to resume navigation towards the target waypoint once the
conflict has clearly been solved. To incorporate this, a sub-goal
for the reinforcement learning agent is to minimise the amount
of actions taken. These goals each make up a component from
the reward function, as shown in Equation 14.

rtotal(t) = rLOS(t) + raction(t) + rflight path(t) (14)

The component of the reward function related to minimising
the flight path can be designed using either continuous reward
or by providing it at the end of the episode as a function of
the flight path distance. In this research, it is chosen to use a
continuous approach as literature shows that the agent is able
to learn in a more data-efficient manner when a continuous
reward is used. The agent retrieves a reward of + 1 for the
flight path if its current heading, ψt, is aligned with the

7

target waypoint and is negatively rewarded for any deviation
from this target heading. The value of the different reward
components are listed below:
• rLOS(t) = -100 if loss of separation else 0.
• raction(t) = -5 for all actions except ∆DCT and 0 degrees.
• rflight path(t) = 1− ‖ψt−∆TH‖

50

7) Terminal State: As Dueling DQN is suited for episodic
tasks, the learning environment should have clear initial and
terminal states. Since the state of the controlled aircraft is
not dependent on its geographical location, but on the conflict
geometries, the aircraft is initialised at the same coordinates
at the start of each episode. If the agent learns to avoid a
conflict and reach the target waypoint, it can do so from any
geographical location. The terminal state is reached in one of
the following cases:
• Loss of separation between controlled and observed air-

craft.
• controlled aircraft reaches target waypoint within 5.4 nm.
• The simulation runs out of time (tsim > 1200s) without

seeing any of the aforementioned terminal states.
The last terminal state is included to speed up the learning
process since the agent would be exploring states that are not
interesting for conflict resolution.

8) Neural Network Value Function Approximation: The
network architecture used in this research is a Dueling DQN
architecture [34]. The dueling network has two heads, one for
estimating the state value and one for estimating the action
advantage, which share the same feature learning module. The
feature learning module is composed of the same convolutional
neural network as used in the original paper describing DQN
[32]. It has three convolutional layers and is described per
layer in Table II.

Table II
SETUP OF THE FEATURE EXTRACTOR USED FOR DQFD. THE FIRST AND

SECOND CONVOLUTIONAL LAYER HAVE A STRIDE OF 4 AND 2.

Layer # Type of Layer Input Size # Feature Maps Kernel Size Output Size

1 CONV(s4) [64x128x2] 32 8x8 [15, 31, 32]

3 ReLU [15, 31, 32] 32 - [15, 31, 32]

4 CONV(s2) [15, 31, 32] 64 4x4 [5, 14, 64]

6 ReLU [5, 14, 64] 64 - [5, 14, 64]

7 CONV(s1) [5, 14, 64] 64 3x3 [4, 12, 64]

9 ReLU [4, 12, 64] 64 - [4, 12, 64]

10 Flatten [4, 12, 64] - - 3072

The feature learning module is extended with a stream for
the value and advantage function. The details of these layers
can be found in Table III. As one can see, both the value stream
and advantage stream are composed of a fully-connected layer
with 512 units. Remember that the input of the network is
a stack of two images, having a dimension of 64x128x2
pixels. Due to the different convolutions applied to the image,
the dimensions are altered. This causes the feature learning
module to have an output size of 3072. This is the input
size of the two streams. For drDuel-DQN, the network shares
the feature learning model. For each reward component, the

network is extended with a stream for the value and advantage
function related to that particular reward component.

Table III
HEAD OF VALUE AND ADVANTAGE APPROXIMATOR OF THE DUELING

DQN AGENT.

Type Input Size Output Size

value stream layer #1 Linear 3072 512

value stream head Linear 512 1

advantage stream layer #1 Linear 3072 512

advantage head Linear 512 # actions (6)

To enable the network to update on batches of experiences,
a dimension is added to the input.

9) Collecting Demonstrations: In order to incorporate
strategies into the automation, these must first of all be
identified. Regtuit et al. [4] used k-means clustering to identify
strategies in terms of parameters describing the conflict from
data acquired during experiments in which a human ATCo re-
solves conflicts. Even though Regtuit [4] showed how strategy
can be incorporated from human-in-the-loop experiments, this
research will not use human demonstrations. Instead, the MVP
method will be used to generate demonstrations. Whereas
ATCos can be inconsistent, the MVP is consistent in how it
solves a conflict.

MVP Resolution
(controlled aircraft only)

if controlled aircraft in conflict

a = 0◦

if MVP resolution is 0◦ heading change

step

Round resolution to nearest heading
change in action space

else

el
se

if MVP resolution is to resume navigation

Dexpert
et = {s, a, s', rt}

a є {-10, -5, 0,+5, +10}[◦]

a = ΔDCT

Figure 5. MVP method applied to collect demonstrations.

Throughout the first two case studies, ‘imperfect’ demon-
strations will be presented to the RL agent. Instead of the
MVP method being able to take a step of 10 degrees at each
simulation step, it is restricted to taking steps of 5 degrees.
This is done to stress the added value of RL, instead of having
an agent that relies heavily on the pre-trained model.

B. Hyperparameters and Training Loop

In general, large sizes of the memory replay buffer, up
to 10M experiences, are implemented in deep RL as this
stabilises the learning [47]. For simpler environments, such
as the MountainCar Game, capacities ranging between 20,000
and 100,000 already suffice [48]. Since the agent will not

8

encounter a wide range of different conflicts, it is chosen to
use a replay buffer with a size of 50,000 for all experiments.
Whenever the capacity of the replay buffer is reached, samples
will be removed in the order that these were added to the
replay buffer. As in [37], it is ensured that demonstrations
are kept in the replay buffer. A hyperparameter selection
showed that Dueling DQN for this environment shows the
best performance for an initial learning rate of 0.00001 for
the Adam optimizer and a batch size of 128. To ensure that
the demonstrator’s action was always a margin higher than
the others, it was chosen to use a l(aE , a) of 15. Other
hyperparameters used during training are listed in Table IV, in
which cminimum represents the minimum amount of samples
needed in the replay buffer to start updating the network. For
other hyperparameters, the values used in the original paper
about DQfD are implemented.

Table IV
HYPERPARAMETERS.

Hyperparameter Value

εstart 1.0

εend 0.05

εdecay 5,000

n 128

α 0,00001

τ 100

γ 0.99

cminimum 10,000

l(aE , a) 15

Contrary to the algorithm shown in Algorithm 1, the
network update frequency is lowered from once for every
step in the environment to once every four steps. The RL
agent thus collects four experiences before updating. It speeds
up learning, as network updates are computationally more
expensive than forward passes, and ensures that the experience
replay buffer more closely represents the state distribution of
the current policy which prevents the network from overfitting
[49]. Furthermore, to avoid overfitting on experiences seen
early on in the training, the experience replay memory has
been filled with 10,000 randomly collected experiences prior
to the learning phase. These are also the first to be removed
if the replay buffer has reached its capacity. For the DQfD
agent, the demonstrations make up a part of this initialised
replay buffer.

C. Case Study 1: Increasing Data Efficiency & Performance

In the first case study, it is researched how a RL agent
can learn to perform CD&R in a two-aircraft traffic scenario.
Furthermore, the ability of the agent to speed up the learning
by utilising demonstrations is investigated. Two RL agents are
trained in the same traffic scenario to research the effect of

demonstrations: a Dueling DQN agent and a DQfD agent with
a pre-train period of 30,000 epochs.

Most en-route conflicts are crossing path conflicts. The RL
agent will be trained to perform CD&R for a traffic scenario
with crossing path conflict angles. The different conflict initi-
ations that the RL agent will encounter are summarised below:
• Conflict angles: {45, 55, ..., 90, ..., 125, 135} [◦]
• tcpa: 400 [s]
• dcpa: 0 [nm]
• CAScontrolled a/c: 230 [kts]
• CASobserved a/c: 250 [kts]
• Type of aircraft: B737

From the possible initial states of the observed aircraft it can
be noticed that the agent can encounter 11 different types
of conflict. The experiment setup is visualised in Figure 6.
It is chosen to keep the amount of conflicts the controlled
aircraft can encounter limited as Deep RL is data inefficient
and training for a wide range of conflicts would require
an extensive training time to find a convergent policy. At
the start of each episode, an observed aircraft is randomly
initiated at one of the conflict angles. With a large amount of
episodes, this ensures that the agent will encounter all conflicts
approximately the same amount of times. All conflicts are
initiated at a dCPA of 0 nm as this is the most difficult conflict
to solve. For this scenario, the velocity vector of the controlled
aircraft is exactly in the middle of the FBZ. This ensures
that the RL agent will not simply optimise towards taking
the minimum amount of actions to get out of the no-go zone,
but optimises towards minimising the flight path distance. In
a sensitivity analysis, a RL agent will be trained in a learning
environment with more diverse conflicts.

Figure 6. Experiment setup for case study 1. This figure shows the possible
positions of the observed aircraft at the various conflict angles.

For this experiment, demonstrations are collected for only a

9

few of the conflicts that can occur. These are for the conflicts
at conflicts angles: 45, 75, 90, 105, 135 degrees. This amounts
to a total of 654 demonstrations in the demonstration replay
buffer. In this learning environment, both a Dueling DQN and
DQfD agent will be trained. The training phase of both agents
are compared to see whether the agent is able to speed up the
learning by utilising demonstrations.

To validate the performance of the learned policies, both
agents will first be tested for a set of traffic scenarios it
has been trained with. The reward obtained for these conflict
scenarios will be compared as this is a direct measure for
the performance of the agent. To research how the resolution
method generalises, two experiments are performed. First of
all, the trained policy of the DQfD agent is tested in traffic
scenarios that it has not encountered during the training phase.
The details of these conflicts are summarised below:
• Head-on conflicts: {145, 165, ..., 195, 215} [◦]
• Crossing path: {225, 245, ..., 295, 315} [◦]
• Velocities observed aircraft: {222, 230, 250} [kts]
Secondly, the trained policy will be tested for 1000 episodes

in an environment in which an observed aircraft is initialised at
a semi-random conflict angle, velocity and tCPA. The ranges
used are detailed below:
• Conflict angles: [45 − 135] [◦]
• Velocity: [230 − 250] [kts]
• tCPA: [200 − 400] [kts]

The values of the test set are chosen to ensure the aircraft
encounters conflicts that resemble traffic scenarios from the
training set (faster observed aircraft, crossing path angles). The
success rate will be defined as the amount of episodes in which
the RL agent reaches the exit waypoint without encountering
a LOS.

D. Case Study 2: Incorporating Strategy with Demonstrations
In order to research how this automation can be used to

incorporate strategy from ATCos, an experiment is set up
in which a RL agent has to cope with a limited amount of
conflicts. Only a limited amount of conflicts are used for
this case study as training a RL agent is time consuming.
Demonstrations are provided for the conflict angles: 45, 90,
135 degrees at an unbiased conflict. This amounts to a total of
458 demonstrations. A pre-training phase of 30,000 epochs
was used to ensure a well-performing policy prior to the
normal learning phase.

In this experiment setup, imperfect demonstrations are col-
lected and used to pre-train the DQfD agent. This is done to
research whether the agent improves on the demonstrations
it has learned from. The MVP method is activated after
150 seconds to incorporate a strategy on the timing of the
resolution and is restricted to taking steps of either +5 or -5
degrees. The trajectory of the demonstration for the conflict
scenario of 45 degrees, provided by the adjusted MVP method,
is shown in Figure 7.

An exploration rate of 0.01 is used to ensure the agent
can explore the state-space along the trajectory of the pre-
trained model and thereby also improve the demonstration.

4.0 4.2 4.4 4.6 4.8
Longitude [dd]

51.8

52.0

52.2

52.4

52.6

52.8

La
tti

tu
de

 [d
d]

DCT[°]

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420
450

dCPA= 5.2 nm

-5[°]
-5[°]
-5[°]
-5[°]
-5[°]
-5[°]

DCT[°]

180
240

300
360

420

dCPA= 5.2 nmcontrolled aircraft
observed aircraft
original route
dCPA

Figure 7. Imperfect demonstration used to pre-train the DQfD agent. The
longitude and lattitude are shown in decimal degrees (dd).

Since the DQfD agent will start exploring from the policy
that it has learned during the pre-training phase, a qualitative
analysis on the conformity between the RL agent and the
human demonstrator will be performed for the conflict angle
at which the pre-trained model is most conformal with the
demonstrations.

E. Case Study 3: Increasing Transparency for the Designer
and User

To increase the transparency of the RL agent, Reward De-
composition (RDX) is implemented. According to Juozapaitis
et al, who developed RDX, RDX can be used to spot anomalies
in the automation and to expedite the explanation of action
selection [15]. In this case study, a drDuel-DQN will be trained
with three reward components. These are the components
related to a LOS (SH - Short Term Conflict), taking ‘nonzero’
actions (NA) and the deviation from the target heading (TH).
The model architecture is shown in Figure 8. In case study
1, it is chosen to use a high terminal tsim to minimise its
effect on the policy to which the RL agent converges. In
this case study, the terminal tsim is lowered to increase the
amount of conflicts encountered per time unit. This is done to
speed up the learning. The conflict is defined by the following
characteristics:
• Conflict angles: {45, 90, 135} [◦]
• tcpa: 250 [s]
• dcpa: 0 [nm]
• CAScontrolled aircraft: 230 [kts]
• CASobserved aircraft: 250 [kts]
• Type of aircraft: B737
• tsimfinal : 600 [s]
To the best knowledge of the authors of this paper, this is

the first implementation of RDX for a complex RL task. The

10

feature extractor

QLOS (s,a)

QNA (s,a)

QTH (s,a)

st
+

Qtotal (s,a)

Figure 8. Model structure of the drDuel-DQN implemented.

results of this case study will focus on the ability of the agent
to learn a well-performing policy. Furthermore, the added
value of RDX will qualitatively be analysed by examining the
RDX at various moments in time during conflict resolution.

F. Case Study 4: Incorporating Strategy Through Reward
Shaping

In RL, the policy is shaped by the reward function. The
goal of a RL agent is to learn a policy that maximise the
reward it accumulates over the course of an episode. One of
the personal strategies ATCos apply is related to the conflict
geometry of the resolution [46]. Putting this research into a
broader perspective in which the SSD representation is used
in a multi-agent setting or in a hierarchical RL algorithm, one
can tune the reward function to incorporate strategies. In this
experiment setup, a drDuel-DQN agent will be trained to be
conformal to a certain conflict geometry preference (CGP),
expressed as either preferring to steer the controlled aircraft
in front or behind the observed aircraft. In Figure 9, the various
strategies an ATCo can apply to solve a right angle conflict
are shown. Although steering the controlled aircraft in front of
the observed aircraft, as shown in Figure 9(c), requires extra
miles, it is a viable resolution strategy of an ATCo [46].

Figure 9. Conflict solution alternatives to a right angle conflict [46].

A component related to the CGP is added to the reward
function as shown in Equation 15.

r(t) = rconflict(t) + raction(t) + rFlight Path(t) + rCGP(t) (15)

It is decided to positively reward the agent for resolving the
conflict in conformance with the CGP. A positive or negative
reward will be given once the conflict has been solved, when

the aircraft have passed each other. This reward is given if
the distance between the controlled, aircraft A, and observed
aircraft, aircraft B, increases for the first time, as shown in
Equation 16.

rCGP(t) =


+40, If |dA,B(t)| > |dA,B(t− 1)|

and CG = CGP

0, else
(16)

Whether or not the conflict geometry is met can be de-
termined by considering the initialisation of the conflict and
by considering the dCPA components in terms of longitude
and latitude. The earlier case studies consider crossing path
conflicts between 45 and 135 degrees in which the agent
optimises for minimising the flight path. The observed aircrafts
all have a higher initial CAS, meaning that the most efficient
resolution would be to steer the controlled aircraft behind
the observed aircraft. To show that certain strategies can be
incorporated by shaping the reward function, a drDuel-DQN
agent will be trained to avoid a conflict at a conflict angle of
90 degrees with the CGP set at steering the controlled aircraft
in front of the observed aircraft.

IV. RESULTS

A. Case Study 1 - Dueling DQN in Two-Aircraft Conflict

The results of this case study are focused on the ability
of the RL agent to avoid a conflict for conflict scenarios it
has been trained for and for those it hasn’t. The RL agent was
trained for 50,000 epochs, which amounts to 3024 episodes for
the Duel-DQN agent and 2901 episodes for the DQfD agent.
The difference in the amount of episodes is related to the
variable episode length. The exploration rate has been lowered
to 0.01 during the last 10,000 epochs of training for both RL
agents to enhance the convergence of the training algorithm.
During training, the Dueling DQN and DQfD agent acquired
200,000 frames and used 6.4 million experiences to update
the network weights. The training phase of the Dueling DQN
agent took 27 hours on a NVIDIA Tesla K80 GPU, whereas
the DQfD agent took 32 hours.

In Figure 10, one can see the accumulated reward of the
Duel-DQN and DQfD agent. It is important to note that
the DQfD agent was first pre-trained for 30,000 epochs and
afterwards trained for another 50,000 epochs. It can be seen
that the pre-training phase of only 30,000 epochs on a limited
data-set increased the data efficiency of the algorithm as the
performance of the pre-trained agent is significantly higher
during the first 750 episodes. Both agents did see a lot of
new experiences during training as the exploration rate was
kept relatively high at 0.05. This means the agent took an
exploratory action once every 20 steps. The DQfD agent
slightly outperforms the Duel-DQN agent by the time training
is stopped.

The reward obtained, when testing the trained policies of
the DQfD, Dueling DQN and the purely pre-trained model
for conflicts it had encountered during the training phase, is

11

0 500 1000 1500 2000 2500 3000
Episode

200

150

100

50

0

50

Ac
cu

m
ul

at
ed

 re
w

ar
d

DQfD
Duel-DQN

Figure 10. Accumulated reward obtained for the Dueling DQN and DQfD
agent.

shown in Figure 11. For all conflict angles, both agents are
able to avoid a conflict and reach the target waypoint. It can
be seen that the DQfD agent outperforms the Dueling DQN
agent for all conflict angles. Furthermore, one can see that the
DQfD agent significantly improves its performance when it
starts to acquire new experiences, after the pre-train phase.
In Figure 12, the flight path distance per conflict angle is
shown. One can see that the DQfD agent has learned a better
performing policy, both in terms of accumulated reward and
flight path, compared to the Dueling DQN agent. The negative
correlation between the flight path distance and the reward
confirms that the deviation from the target heading can indeed
be used in the reward function to penalise for extra flight path
distance. The trajectory of the controlled and observed aircraft
at a conflict of 135 degrees is shown in Figure 13. The two
agents have learned different policies to solve conflicts. This
can mostly be explained by the fact that the DQfD agent takes
an exploratory step once every 20 seconds, starting from a
policy it has learned by pre-training on a demonstrations data
set. The Dueling DQN agent, on the other hand, took many
exploratory steps during the first 5000 epochs.

45 75 90 105 135
Conflict angle [deg]

20

30

40

50

60

70

Ac
cu

m
ul

at
ed

 re
w

ar
d

[-]

DQfD Duel-DQN PT model

Figure 11. Comparison of the accumulated reward per conflict angle obtained
in the testing environment using DQfD and Dueling DQN.

The trained policies were tested for all the possible conflict

45 75 90 105 135
Conflict angle [deg]

90

95

100

105

110

115

120

Fl
ig

ht
 p

at
h

di
st

an
ce

 [n
m

]

DQfD Duel-DQN PT model

Figure 12. Flight path distance of the resolutions as provided by the DQfD,
Dueling DQN and purely pre-trained model.

4.4 4.6 4.8 5.0 5.2 5.4
Longitude [dd]

51.8

52.0

52.2

52.4

52.6

52.8

53.0

La
tti

tu
de

 [d
d]

DCT[°]

dCPA, DQfD= 6.2 nm

-10[°]-10[°]
-10[°]

DCT[°]

dCPA, DQfD= 6.2 nm

DCT[°]

dCPA, Duel-DQN= 6.0 nm

-10[°]-10[°]

DCT[°]

dCPA, Duel-DQN= 6.0 nm

controlled aircraft, DQfD
observed aircraft
original route
dCPA

controlled aircraft, Duel-DQN

Figure 13. Flight path of controlled aircraft controlled by the DQfD and
Dueling DQN model.

scenarios from the training set. For both policies, zero LOS
were encountered and all aircraft were able to reach the Exit
Waypoint.

The testing results of the DQfD agent for conflicts not in
the training set are shown in Figure 14 in terms of flight
path distance flown before reaching the exit waypoint. During
the testing phase, the controlled aircraft did not reach the
target waypoint twice, both at the boundary of the testing
scenarios. A LOS occured at a conflict angle of 305 degrees,
at a Calibrated Airspeed (CAS) of the observed aircraft of 250
kts. Furthermore, it did not reach the target waypoint within
the given episode termination time (20 min) at a conflict angle
of 45 degrees and speed of the observed aircraft of 222 kts.
For all other conflicts the controlled aircraft reached the Exit
Waypoint without a LOS. One can see that the RL agent solves
conflicts it was trained for more efficiently in terms of flight
path distance. This is because the agent has learned to steer
behind the observed aircraft since it encountered only faster
observed aircrafts during the learning phase. This ‘steering

12

behind’ strategy causes the RL agent to struggle how to
efficiently resolve a conflict at a conflict angle of 45 degrees
with a slower observed aircraft, and at a conflict angle of 305
degrees with a faster observed aircraft.

45 65 85 105 125 145 165 185 205 225 245 265 285 305
Conflict angle [deg]

98

99

100

101

102

103

104

105

106

107

Fl
ig

ht
 p

at
h

[n
m

]

CASintruder= 222 [kts] CASintruder= 230 [kts] CASintruder= 250 [kts]

Figure 14. Flight path distance of the controlled aircraft during testing for
various velocities and conflict angles of the observed aircraft (intruder). The
grey area indicates the range of conflicts the RL agent has been trained for;
the red bars indicate that a LOS occured; the striped bars indicate that the
controlled aircraft did not reach the exit waypoint within time constraints
(1200s).

When the model was put to the test for 1,000 episodes with
semi-randomly initialised conflicts, it showed a success rate
of 100 %. This highlights the robustness of the model for
conflicts that share characteristics with the traffic scenarios
encountered in the training set.

B. Case Study 2 - Incorporating Strategy with Demonstrations
In case study two, the DQfD agent has been pre-trained for

30,000 and trained for another 40,000 epochs. Experiments
showed that after 30,000 pre-train steps, the model has learned
a strategically conformal policy for a conflict at a conflict angle
of 45 degrees. For the conflict angles of 90 and 135 degrees,
the model is able to avoid a conflict, but it is not yet conform
with the demonstrator. Therefore, it is chosen to consider the
traffic scenario with a conflict at 45 degrees conflict angle to
analyse the degree of conformance between the policy learned
by the DQfD agent and the demonstrator.

In Figure 15 and Figure 16, the resolution manoeuvres
provided by the demonstrator, pre-trained model (PT) and
DQfD agent are visualised in terms of the conflict angle and
dCPA between the observed aircraft and the controlled aircraft.
In this figure, the relation between the time to the closest point
of approach and the simulation time, tCPA-tSIM , has been
fixed at the initialisation of the conflict. This is done since the
tCPA actually can increases up to infinity during the conflict
resolution. It can be noticed that all agents take a set of actions
to avoid a conflict at a similar tCPA (4:20, 4:00, 3:50 [min]),
of which the action selection is shown in Equation 17.

AS1 =


[−5◦,−5◦,−5◦,−5◦,−5◦,−5◦], demonstrator
[−5◦,−5◦,−5◦,−5◦,−5◦,−5◦] PT
[−10◦,−10◦,−5◦], DQfD

(17)
The purely pre-trained RL agent mimics the demonstrator
accurately in terms of timing and action selection. The total

reward obtained by the DQfD agent for this episode is 60.5,
whereas the demonstrator obtained a reward of 47.8 and the
pre-trained model obtained a reward of 44.8. This difference
is mostly due to the amount of nonzero actions taken by the
demonstrator and the resolution which is slightly less efficient
in terms of flight path flown.

98765432101234567
tCPA [min]

30

40

50

60

70

C
A

[d
eg

]

Action Set 1

DTC
demonstration
pre-trained model
DQfD

Figure 15. Comparison of conflict resolution by demonstrator, the DQfD agent
after pre-training and the DQfD agent trained for another 40,000 epochs after
pre-training in terms of conflict angle (CA).

98765432101234567
tCPA [min]

0

1

2

3

4

5

d C
PA

 [n
m

]

demonstration
DQfD
pre-trained model

Figure 16. Comparison of conflict resolution by demonstrator, the DQfD agent
after pre-training and the DQfD agent trained for another 40,000 epochs after
pre-training in terms of dCPA.

Whereas the demonstration data contained multiple actions
of -5 degrees, the RL agent has learned to take steps of
-10 degrees instead. The RL agent has actually learned to
improve upon the demonstrations. The combination between
the low exploration rate of 0.01 and a high resolution action
space has restricted the agent to explore totally different
trajectories. Moreover, the expert loss component forces the
RL agent to follow demonstrations as much as possible. The
agent seems to maximise the reward it can accumulate by

13

exploiting information it retrieves from exploratory actions
along the policy of the pre-trained model.

C. Case Study 3 - Added Value of Decomposed Rewards

For a convergent deep RL algorithm, the loss decreases
steadily over time. As this is the first research known to
combine Duel-DQN and reward decomposition, it is of interest
to see whether it can actually converge to a well-performing
policy. In Figure 17, the loss during the training phase is
visualised. As expected, the loss decreases over time and
the algorithm seems to converge to a (sub-)optimal policy.
The absolute values of the loss function are often difficult to
interpret since the designer is not aware which experiences
from the memory replay are used during an optimisation
step. When the optimiser updates on sparsely encountered
experiences, the loss is likely to be higher. To gain more insight
into whether the agent learns what is expected to learn, the
individual loss components of the decomposed rewards can be
considered. The loss components related to getting into a LOS
and taking nonzero actions decreased steadily during epoch
updates. However, the loss component related to following the
target heading, shown in Figure 18, shows unstable behaviour.
This highlights how RDX can be utilised to gain more detailed
insights into how the RL agent is actually learning. Although
the loss seems to be relatively unstable, the RL agent has still
learned a policy which is able to avoid conflicts and direct the
aircraft to the exit waypoint.

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Epoch (x 103)

0

100

200

300

400

500

600

700

800

Lo
ss

drDuel-DQN

Figure 17. Loss of drDuel-DQN during the training period. The dark line
represents the weighted average of the loss.

In Figure 19, one can see the trajectory of the controlled
aircraft controlled by the policy learned using a drDuel-DQN
for a conflict initiated at a tCPA of 250 seconds and a conflict
angle of 45 degrees. To avoid a conflict, the agent takes
four consecutive actions of -10 degrees and then awaits the
resolution of the conflict before continuing its track towards
the exit waypoint.

In Figure 20, one can see the decomposed reward values
for each action in the action space at a simulation time of

10.0 20.0 30.0 40.0 50.0 60.0
Epoch (x 103)

0

5

10

15

20

25

30

Ta
rg

et
 L

os
s

drDuel-DQN

Figure 18. Loss related to following the target heading (‘TH’).

Figure 19. Trajectory of controlled and observed aircraft for a conflict at
45 degrees using the trained policy from Dueling DQN agent with reward
decomposition.

10 seconds. Although the loss related to the ‘TH’ component
seems relatively fluctuant, the agent seems to have learned the
value component related to the deviation of the target heading.
As expected, the actions ‘0 degree heading change’ and ‘DCT’
have the highest expected reward since the deviation from the
target heading will then remain zero. The reward component
for the actions steering behind the observed aircraft (-10,
-5 degrees) have a higher value for this component than the
actions steering the aircraft in front of the observed aircraft.
This is also what is expected as the latter results in a larger path
deviation than the former. This same relationship can be found
when looking at the value component for nonzero actions
(NA). Steering the controlled aircraft in front of the observed

14

aircraft would require more actions to avoid the conflict than
steering the controlled aircraft behind, which is reflected in the
RDX. The most negative value related to a short term conflict
(SC) is for the action ‘-5 degrees’. This would steer the aircraft
into the conflict and require more time to avoid the conflict.
Therefore, the agent has learned that taking this action most
likely results in a conflict.

Figure 20. Reward decomposition for the components related to getting into
a short term conflict (SC), taking nonzero actions (NA) and following the
target heading (TH) at tsim of 10 seconds.

Figure 21. Reward decomposition for the components related to getting into
a short term conflict (SC), taking nonzero actions (NA) and following the
target heading (TH) at tsim of 40 seconds.

One can see that for all the actions, the agent has learned
that the expected return for a short term conflict is negative.
In Figure 21, the RDX at tsim = 40 seconds is visualised.
What this figure shows is that the agent expects a positive
return for the short term conflict. As the agent only acquires
negative values for this reward component, this is not what is
expected to occur for any state. This seems to be caused by an
anomaly in the learning. In [15], Juozapaitis et al. identified

a similar anomaly when training a decomposed RL agent
in an environment with a relatively limited state and action
space. Juozapaitis et al. explored why and concluded that the
use of the Adam optimiser, due to its adaptive learning rate,
can initially learn small positive values for actions leading to
negative rewards. These errors propagate through the entire
learning process as these values are used as target values
during updates.

D. Case Study 4 - Using Reward Shaping to Mimic Strategy

In the final case study, the RL agent was trained to avoid
a conflict and steer in front of the observed aircraft. The RL
agent was trained for 30,000 epochs. The RL agent was trained
for less epochs as the agent was only trained for a single traffic
scenario. In Figure 23, the trajectory of the controlled aircraft
controlled by the learned policy is shown. Whereas in case
study 1 the agent has learned to steer behind the observed
aircraft to minimise the flight path, it now steers in front of
the observed aircraft. The RDX at a tsim of 10 seconds, for

Figure 22. Reward decomposition for the components related to getting into
a short term conflict (SC), taking nonzero actions (NA), following the target
heading (TH) and being strategically conformal with the conflict geometry
preference (CGP) for tsim = 10 seconds in the flight path shown in Figure 23.

the resolution shown in Figure 23, is visualised in Figure 22.
Similar to the results presented in subsection IV-C, the value
function related to the short term conflict has an unexpected
positive value. However, the other components do assist in
understanding the reasoning of the agent. The actions to steer
the controlled aircraft behind the observed aircraft (-10, -5)
have a slightly higher value for the reward component related
to the flight path, ‘TH’. The value related to being conformal
with the conflict geometry preference, ‘CGP’, is higher for the
actions related to steering the aircraft in front of the observed
aircraft. This shows that by shaping the reward function, the
strategy can be incorporated in the automation. From the RDX,
it becomes apparent that the value related to the CGP is much
higher than that related to the flight path. In this experiment,
a value of 40 was chosen to force strategic conformance. To
trade-off conformance and flight path efficiency, one can use

15

the RDX to tune the reward component related to strategic
conformance.

4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6
Longitude [dd]

51.8

52.0

52.2

52.4

52.6

52.8

53.0

53.2

53.4

La
tti

tu
de

 [d
d]

DCT[°]

0
30

60
90

120
150

180
210

240
270

300
330

360
390

420
450

480
510

540
570

dCPA= 5.6 nm

10[°]10[°]

DCT[°]

60

120

180

240

300

360

420

480

540

dCPA= 5.6 nmcontrolled aircraft
observed aircraft
original route
dCPA

Figure 23. Flight path resolution provided by DQfD agent trained to steer in
front of the observed aircraft.

V. SENSITIVITY ANALYSIS

The case studies showed that the RL agent was able to
resolve conflicts efficiently in terms of flight path distance for
‘similar’ conflicts. During the research, it was noticed that the
loss became volatile when training the RL agent in a learning
environment with diverse conflicts, e.g. conflicts at which the
observed aircraft could have either a higher or lower velocity
than the controlled aircraft. Therefore, the sensitivity analysis
is focused on examining the stability of the Dueling DQN
agent. To evaluate the stability, the performance of the Dueling
DQN agent during training is evaluated.

A. Effect of Action Space Resolution

In the case studies, conflicts are encountered in which one
set of resolution commands, {-10, -5}[deg] or {+5, +10}[deg],
is preferred over the other. This behaviour was found to be
optimal w.r.t. the conflicts encountered during training (CA:
[45−→135 deg], CASobserved aircraft: 250 kts). To research the
capability of the RL agent to learn a policy that is applicable
to a wide range of conflicts, a RL agent is trained to avoid a
conflict and steer in front of an aircraft for observed aircraft
initiated at crossing path conflict angles coming from both the
left and the right of the controlled aircraft. The optimal policy
would learn how to consistently steer the controlled aircraft in
front of the observed aircraft, and not prefer a set of solution
over the other. The conflict angles the RL agent will be trained
for are listed below:

Conflict angles : {80, 90, 100, 260, 270, 280}[deg] (18)

After running an experiment, it was noticed that the loss of
the RL agent was unstable in the limit. The RL agent struggled
to find a policy in which it could actually learn to avoid a
conflict and be conform with the conflict geometry preference
(steer in front). It was hypothesised that the high resolution
action space (HAS), shown in Equation 13, can cause this
behaviour since exploratory actions do not significantly affect
the trajectory, especially if an exploratory action is taken once
every 20 steps (ε = 0.05). To research whether the HAS
destabilises the learning in a setting with a large variety of
conflicts, a RL agent was trained for the same conflicts, but
with a wider action space, thus of lower resolution (LAS). The
action space used in this experiment is shown in Equation 19.
Both RL agents were trained for 75,000 epochs.

ARL agentlow reso
(s) = {−30,−15, 0, 15, 30,∆TH}[◦] (19)

The accumulated reward during training is visualised in
Figure 24. One can see that the agent with the LAS learns to
avoid conflicts faster. Furthermore, the rewards accumulated
are less volatile for the agent with the LAS.

0 1000 2000 3000 4000 5000 6000
Episode

200

150

100

50

0

50

100

Ac
cu

m
ul

at
ed

 re
w

ar
d

Low Reso AS
High Reso AS

Figure 24. Accumulated reward of the RL agent trained with a high and low
resolution action space.

The average loss per episode is shown in Figure 25. The
loss of the RL agent with the LAS space converges whereas
the RL agent with the HAS space remains unstable.

The conflict geometry of the resolution provided by the
RL agent during training with HAS and LAS are shown in
Figure 26 and Figure 27. One can see that the LAS RL agent
resolves more conflicts, and does so conform with the CGP,
compared to the HAS RL agent.

In most RL problems, the action space is chosen based
on intuition [50]. In this research the narrow action space
was selected to enable ATCo conformal resolutions, but the
effect of using a narrow action space was initially not deemed
relevant. This analysis stresses the importance of tuning the
action space.

16

0 1000 2000 3000 4000 5000 6000
Episode

0

20

40

60

80

100

120

140

Lo
ss

Low Reso AS
High Reso AS

Figure 25. Loss during training of the lower and higher resolution action
space.

0-1.0 1-2.0 2-3.0 3-4.0 4-5.0 5-5.344
Episode range (x103)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 [%

]

in front
conflict
behind

Figure 26. Conflict geometry during episode high resolution action space.

VI. DISCUSSION

The discussion will address five different subjects: subsec-
tion VI-A on the method’s applicability in the current ATM
system, subsection VI-B on the added value of demonstrations,
subsection VI-C on strategy replication, subsection VI-D on
explainability and, finally, subsection VI-E on the SSD as state
representation for an artificial agent.

A. Applicability in ATM System

ATCos perform CD&R by identifying potential conflicts
pairwise and solving these sequentially. Results in this research
support the hypothesis that a RL agent can perform CD&R
for two-aircraft conflicts by having the SSD to represent the
state of the conflict pair. Although the RL agent in the first
case study was trained to avoid a LOS and reach the exit
waypoint for a limited number of different conflicts, it is able
to generalise its policy to unseen traffic scenarios.

In realistic air traffic sectors, solving one conflict can
disrupt the air sector and lead to multiple other conflicts. This
effect has been disregarded in the two-aircraft traffic scenario.
ATCos become experts on performing CD&R in a specific
air traffic sector. When training a RL agent to solely solve
conflicts in one specific air traffic sector, the authors believe

0-1.0 1-2.0 2-3.0 3-4.0 4-5.0 5-6.0 6-6.825
Episode range (x103)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 [%

]

in front
conflict
behind

Figure 27. Conflict geometry during episode low resolution action space.

that the RL agent can also learn how to minimise sector
disruption. A metric to measure sector disruptiveness is called
the Domino Effect Parameter (DEP) [51]. Further research
should investigate how this parameter can be incorporated in
the reward function.

In particular traffic scenarios, an ATCo can prefer to provide
both aircraft in a conflict with a resolution command. Espe-
cially for conflicts in which commanding a single aircraft to
perform a manoeuvre would lead to a large path deviation or
sector disruption, combined manoeuvres are the preferred solu-
tion. Transitioning to Future Air Navigation Services (FANS)
in which the air sectors will be more crowded, it is expected
that these type of manoeuvres are critical to ensure safe and
efficient air traffic operations. With the current implementation
of the automation, these type of conflict resolutions are not
incorporated. A possible solution is to expand the action space
of the RL algorithm to incorporate actions commanding both
aircraft at the same time. For a successful implementation,
the SSD of the observed aircraft must also be incorporated in
the state representation for the RL agent. This enables the RL
agent to learn in a Markov Decision Process, the underlying
state of which is fully visible.

The scope of this research did not include the selection of
which aircraft should perform a resolution manoeuvre. This
part of the CD&R process can be seen as a centralised coordin-
ation mechanism. In sectors with an increased traffic density,
this part of CD&R will become more difficult. The entire ATC
control task can be approached from a decentralised as well as
a centralised point of view. In a decentralised setting, multi-
agent RL, in which the state of each aircraft is represented
by the SSD, can be an interesting area of research. It is,
however, believed that a centralised mechanism allows the
ATCos to monitor the automation, since resolution actions are
taken sequentially. To research whether the automation can
be implemented in a realistic air traffic sector, an additional
artificial agent should be trained to perform aircraft selection.

Finally, to apply this method in the current ATM system,
altitude changes cannot be disregarded. Since altitude changes
are the preferred resolution action [18], a separate RL agent
can be trained to initiate an altitude change if deemed ne-
cessary. If an altitude change is not possible, the separately
trained RL agent for 2D CD&R can resolve the conflict.

17

B. Added Value of Demonstrations

The results show that pre-training on demonstrations can
significantly speed up learning. Especially in environments
in which rewards are sparse, pre-training on demonstrations
provides a viable alternative to the extensive exploration phase
that is often required. For case study 1, only 654 demonstra-
tions were used to pre-train the DQfD agent.

Apart from data-efficiency advantages, demonstrations en-
able the RL agent to converge to a better performing policy,
after having trained for the same number of epochs, compared
to a RL agent without pre-training. In case study 1, both agents
were trained with the same hyperparameters. Results show that
the DQfD agent achieves a more optimal policy with regard
to minimising the flight path and the number of resolution
commands. This relates to the fact that the RL agent can
take exploratory steps from an already well-performing policy.
The Dueling DQN agent optimises starting from randomly
acquired data points and optimises towards a sub-optimal
policy. In theory, the Dueling DQN agent should be able
to learn a similar performing policy, but this would require
an extensive exploration period. By implementing DQfD as
was done in this research, with an increased probability for
sampling demonstrations (just as in the original paper on
DQfD), the agent will continuously learn from the demon-
strations and shape its policy towards these. As this might not
be desired in particular learning environments, demonstrations
could be removed after a while in favour of having more novel
experiences in the replay buffer.

Disadvantages of DQfD are that it adds additional hyper-
parameters to tune and requires expert demonstrations to be
effective, as the algorithm is sensitive to noisy demonstrations
[37], [52]. In this research, consistent demonstrations were
acquired using an altered MVP method. One of the issues
raised in researches into strategically conformal automation
for ATCos is that ATCos are inconsistent in the strategies
they employ over time [46]. It, therefore, remains questionable
whether human generated demonstrations can benefit the RL
agent using DQfD. To solve for this issue, Gao et al. and
Jing et al. have, respectively, developed Normalised Actor-
Critic (NAC) and Reinforcement Learning from Demonstra-
tions (RLfD) which have both shown to be robust to subop-
timal demonstrations [52]. Future research focused on human
demonstrations is encouraged to explore implementing either
NAC or RLfD.

C. Strategy Replication

Results show that demonstrations can be utilised to increase
the strategic conformance between a human operator and the
automation. Important parameters for the degree to which the
automation is strategically conformal to the demonstrator are
the number of demonstrations present in the replay memory,
the pre-training phase, the exploration rate and the sampling
probability of demonstrations. This research shows that stra-
tegic conformity can be increased through DQfD for traffic
scenarios in which the pre-trained model is conform with
the demonstrations and exploration is kept at a minimum.

Whereas supervised learning can learn such a model in a
limited amount of epochs, as shown by Van Rooijen [5], DQfD
needs an extensive pre-training period as it also has to satisfy
the Bellman Equation. Due to limited computational resources,
it was not realistic to pre-train a DQfD agent to be conform
the demonstrations for a large variety of conflicts. The action
space in this research is narrow, which restricts the agent to
see totally different trajectories. This, in combination with the
low exploration rate used, can be the reason why the final
policy of the DQfD agent shows strategic conformance with
the demonstrator.

Finally, DQfD enables the RL agent to improve on the
demonstrations it has been trained with, but from this research
alone it cannot be concluded how the degree of conform-
ance and optimisation can be balanced. Future research into
utilising demonstrations to develop conformal automation is
encouraged to focus on how the conformance between the pre-
trained model and the demonstrations can be increased, and
how to trade-off conformance and optimal control by tuning
the hyperparameters of this algorithm.

In addition to using demonstrations to increase strategic
conformance between an ATCo and the automation, reward
shaping can be utilised. Results in this paper show how conflict
geometry preference can be forced as resolution strategy of
the automation. A next step to explore the potential of reward
shaping is to link a performance measure, such as the devi-
ation from the flight path, directly to strategic conformance.
Being strategically conformal is desired in conflicts where the
deviation from the flight path, as a result of following a certain
strategy, is minimal. Future research is encouraged to explore
how the reward function can be shaped to trade-off strategic
conformance and optimal control.

D. Explainability

Explainability in this research has been focused on in-
creasing the ‘what will it do’ prediction and improving the
transparency of the RL algorithm. Results show that reward de-
composition can increase the transparency of the RL algorithm
for the designer as it enabled the authors of this paper to spot
an anomaly in the learning and enabled real-time evaluation of
the decision process of an agent. It is unknown to the authors
how the identified anomaly would have been spotted without
reward decomposition.

The reward function in this research contained three com-
ponents, four in case of the conflict geometry preference
incorporation. From the decomposed rewards, it could be seen
that the value component related to ‘nonzero action’ in general
had a higher magnitude than the reward component related
to the flight path. This shows that the agent has optimised
towards a policy in which it prefers to minimise the number
of resolution actions over the flight path efficiency. For RL
applications in which the reward function is composed of many
components, the RDX can provide insights as to what the agent
has learned to value, in terms of decomposed rewards, in any
situation. This information can be used for the designer to
tune the reward function and verify the functioning of the RL

18

agent. Especially for RL applications which implement direct
and discounted rewards (rewards given at multiple timesteps),
this information can be insightful.

In this research, finding the correct hyperparameters to
decrease the loss has shown to be challenging. Although the
agent is able to find reasonably well-performing policies, the
loss remains volatile. This research shows that RDX can be
used to analyse the performance of the RL agent in more
detail. The authors encourage research to focus on how RDX
can be utilised to link some performance measure to individual
reward components. In [53], Clements et al. have developed a
method to estimate risk and uncertainty based on the variance
over the learned network weights (θ). Using this method on
weight parameters related to the decomposed weight paramet-
ers can provide the designer with useful information about
the certainty of a model w.r.t. the components in the reward
function.

Finally, a first step to expedite action selection of a RL
agent, trained for CD&R, has been taken in this research.
The hierarchy between the decomposed values can assist in
constructing an understanding of why an agent prefers a
particular action over others. In RL applications that require
complex reward functions, Minimal Sufficient Explanations
(MSX) can be constructed from the RDX to indicate critical
positive and negative reasons, respectively, for the preference
of an action over another one [15]. This work did not research
to what extend RDX can assist in improving the mental model
a user has of the automation. The loss remained volatile, due
to which the decomposed value functions do not accurately
represent the true value. If these value approximations become
more accurate, it is believed that these value functions can
directly be linked to parameters interpretable for ATCos.
The reward component related to minimising the flight path
distance could then be linked to additional flight path flown.
This allows an explanation interface in which not values, but
human interpretable parameters back-up action selection.

E. SSD State Representation

1) Pre-Processing SSD: In this study, two stacked SSDs
were used to represent the state of the conflict pair. Results in
this research show that the SSD contains all the information
required for an artificial agent to learn a CD&R policy that
minimises the flight path. In the SSD, the no-go zone contains
the sets of heading and speed combinations of the controlled
aircraft that lead to a LOS. It was chosen to enable the RL
agent to take actions into the no-go zone as briefly steering
into a conflict can increase the efficiency of the resolution in
terms of flight path. The RL agent did indeed steer into the
conflict as the first action taken to avoid a conflict was not at
the start of the episode (tsim < 50 seconds) but at a later stage.
This implies that the agent is capable of extracting information
on the tCPA from the translation, the width and the colouring
of the FBZs. The agent has identified the FBZ as feature in
the SSD as it generalises well to unseen traffic scenarios.

One of the issues encountered in this research was that the
RL agent did not seem to be able to learn a well-performing

policy for conflict scenarios in which the observed aircraft
could either have a larger or lower velocity than the controlled
aircraft. An analysis to compare representing the state of the
RL agent by either the full SSD or the upper half of the SSD
showed that using the upper half of the SSD increased the
data-efficiency, without losing performance. The limitation of
this analysis might have been that the traffic scenarios were
not diverse enough. Revisiting features contained in the SSD,
as shown in Figure 2, one can see that the velocity of the
observed aircraft is contained in the relative position of the tail
of the FBZ w.r.t. the centre of the SSD. With the current state
representation, the FBZ related to the observed aircraft is only
shown for the velocities within the flight envelope. Information
on the velocity of the observed aircraft is, therefore, lost if the
velocity of the observed aircraft is lower or equal to Vmin of
the controlled aircraft. This information is also lost whenever
the tail of the FBZ is not present in the upper half of the
SSD, with the speed vector pointing upwards, but contained
in the lower half. It is hypothesised that this loss of information
causes the RL agent to struggle how to learn a well-performing
policy for diverse conflicts. Future research should focus on
the effect of pre-processing the SSD image to benefit a RL
agent.

2) Improving the State Representation: In all case studies,
the RL agent was solely trained to avoid conflicts for two-
aircraft traffic scenarios. A practical limitation of the SSD
for human operators is that in complex traffic scenarios with
multiple observed aircraft, the SSD becomes too crowded
which reduces the solution space to a limited number of speed
and heading combinations. The FBZs of different observed
aircraft overlap which causes information on the approaching
conflict to be lost. This same negative correlation between
the utility of the SSD for ATCos and an overly crowded
SSD holds for artificial agents. The parameter affecting the
number of FBZs visible in a SSD is the look-ahead time.
A possible solution is to include an algorithm, which can
be deterministic, which prioritises the upcoming conflicts.
Another solution to this problem can possibly be found in
more advanced representations of the SSD. Using the theory
presented by Velasco et al. [54], one can calculate the time-to-
loss of separation per velocity vector in the FBZ and use this
to colour the SSD per pixel. This colour coding, of which the
construction is visualised in Figure 28, provides more detailed
information for the RL agent on whether it can briefly steer
into an upcoming conflict whilst FBZs overlap.

VII. STABILISING TRAINING IN DEEP RL

Deep RL algorithms are notoriously unstable during training
[55], [56]. In this research, training a RL agent until it showed
convergent behaviour was challenging. The sensitivity analysis
performed in this research has shown that the width of the
action space significantly impacts the ability of the RL agent
to find a convergent policy. However, this is not the only
aspect of the RL problem that influences the stability of the
algorithm. In [47], Fedus et al. stress the importance of scaling
the replay memory buffer size according to how sensitive the

19

Exit Waypoint

fly behind
 aircraft B

Protected Zone

tLOS>60 s

60≥tLOS≥120 s

tLOS<60 sfly in front
 of aircraft B

Exit Waypoint

fly behind
 aircraft B

Protected Zone

tLOS>60 s

60≥tLOS≥120 s

tLOS<60 sfly in front
 of aircraft B

Figure 28. Features in the SSD with colour coding dependent on tLOS .

network is to catastrophic forgetting. In this research, the RL
agent consistently learned to avoid a conflict for a certain
period of time, but then started to encounter conflicts again. As
experiences of getting into a conflict are sparse, the size of the
experience replay may be responsible for this behaviour. There
remain significant gaps in the community’s understanding
of fundamental principles on which deep RL methods rely.
Therefore, future research is encouraged to research and map
the effects of hyperparameters on the stability of deep RL
algorithms in detail.

VIII. CONCLUSIONS

This work explores how deep reinforcement learning can be
applied to Air Traffic Control with an aim to contribute to the
explainability of the automation. Specifically, Deep Q-learning
from Demonstrations with a Dueling Network architecture and
Dueling DQN with decomposed rewards are used to train
two different RL agents to perform 2D CD&R. The solution
space diagram is used to represent the state of a conflict
pair for 2D conflict detection and resolution. Achieved model
performance shows that both deep RL agents can learn all
relevant features to resolve a conflict, effectively in terms of
flight path minimisation, from the SSD. The Deep RL agents
identify the no-go areas in the SSD, in terms of velocity and
heading, enabling it to generalise to unseen traffic scenarios.

Pre-training on artificially generated demonstrations speeds
up the learning. In this research, suboptimal demonstrations
are used to pre-train the RL agent. Results show that the RL
agent can improve on the demonstrations it has been trained
with. Nonetheless, by visual inspection of the learned strategy,
this research shows demonstrations can be utilised to increase
strategic conformance as the RL agent starts to optimise from
a semi-supervised pre-trained model.

Reward decomposition is combined with a Dueling DQN
agent to contribute to the explainability of the RL agent for the
designer. The CD&R task can naturally be decomposed into

meaningful components related to minimising the flight path
distance and avoiding a conflict. Learning decomposed values
enables unique insights into what the RL agent has actually
learned. This provides the opportunity to shape the reward
function in detail and identify strange behaviour of the RL
agent, highlighting the potential of reward decomposition to
contribute to the explainability of the automation for designers.

REFERENCES

[1] EUROCONTROL, “Model for Task and Job Descriptions of Air Traffic
Controllers. European Air Traffic Control Harmonisation and Integration
Programme.” ECAC, Tech. Rep., 1996.

[2] B. Beernink, C. Borst, J. Ellerbroek, R. Van Paassen,
M. Mulder, B. Beernink, and V. Paassen, “Toward an Integrated
Ecological Plan View Display for Air Traffic Controllers,” in
International Symposium on Aviation Psychology, 2015, pp. 55–
60. [Online]. Available: https://corescholar.libraries.wright.edu/isap_
2015https://corescholar.libraries.wright.edu/isap_2015/98

[3] C. Westin, C. Borst, and B. Hilburn, “Strategic Conformance: Over-
coming Acceptance Issues of Decision Aiding Automation?” IEEE
Transactions on Human-Machine Systems, vol. 46, no. 1, pp. 41–52,
2 2015.

[4] R. M. Regtuit, C. Borst, E. J. van Kampen, and M. M. van Paassen,
“Building strategic conformal automation for air traffic control using
machine learning,” in AIAA Information Systems-AIAA Infotech at
Aerospace, 2018, no. 209989. American Institute of Aeronautics and
Astronautics Inc, AIAA, 2018.

[5] S. J. Van Rooijen, “Personalized Automation for Air Traffc Control using
Convolutional Neural Networks,” Master’s thesis, Technical University
of Delft, 2019. [Online]. Available: http://repository.tudelft.nl/.

[6] D. Gunning, “Explainable Artificial Intelligence (XAI),” Tech.
Rep., 2017. [Online]. Available: https://www.cc.gatech.edu/~alanwags/
DLAI2016/(Gunning)%20IJCAI-16%20DLAI%20WS.pdf

[7] M. Ribeiro, J. Ellerbroek, and J. Hoekstra, “Review of conflict resolution
methods for manned and unmanned aviation,” Aerospace, vol. 7, no. 6,
6 2020.

[8] R. Puca, E. J. Van Kampen, C. Borst, M. Tielrooij, and Q. P. Chu,
“Experience-based AI methods for ATC decision-making support,” Mas-
ter’s thesis, Delft University of Technology, 2014.

[9] M. Brittain and P. Wei, “Autonomous Aircraft Sequencing and Separa-
tion with Hierarchical Deep Reinforcement Learning,” ICRAT, 2018.

[10] Marc Brittain and Peng Wei, “Autonomous Air Traffic Controller:
A Deep Multi-Agent Reinforcement Learning Approach,” CoRR, vol.
abs/1905.01303, 2019. [Online]. Available: http://arxiv.org/abs/1905.
01303

[11] M. Brittain, X. Yang, and P. Wei, “A Deep Multi-Agent Reinforcement
Learning Approach to Autonomous Separation Assurance,” 3 2020.
[Online]. Available: http://arxiv.org/abs/2003.08353

[12] D. T. Pham, N. P. Tran, S. K. Goh, S. Alam, and V. Duong, “Rein-
forcement learning for two-aircraft conflict resolution in the presence
of uncertainty,” in RIVF 2019 - Proceedings: 2019 IEEE-RIVF Inter-
national Conference on Computing and Communication Technologies.
Institute of Electrical and Electronics Engineers Inc., 5 2019.

[13] N. P. Tran, D. T. Pham, S. K. Goh, S. Alam, and V. Duong, “An
intelligent interactive conflict solver incorporating air traffic controllers’
preferences using reinforcement learning,” in Integrated Communica-
tions, Navigation and Surveillance Conference, ICNS, vol. 2019-April.
Institute of Electrical and Electronics Engineers Inc., 4 2019.

[14] L. Pack Kaelbling, M. L. Littman, A. W. Moore, and S. Hall, “Reinforce-
ment Learning: A Survey,” Journal of Artificial Intelligence Research,
vol. 4, pp. 237–285, 1996.

[15] Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, and F. Doshi-Velez,
“Explainable Reinforcement Learning via Reward Decomposition.” In-
ternational Joint Conference on Artificial Intelligence, 2019.

[16] B. Kirwan and M. Flynn, “Investigating Air Traffic Controller Conflict
Resolution Strategies,” EUROCONTROL, Tech. Rep., 2002.

[17] International Civil Aviation Association, Doc 4444: Procedures for Air
Traffic Management, 16th ed., 2016. [Online]. Available: www.icao.int.

[18] E. M. Rantanen and A. Nunes, “Hierarchical Conflict Detection in Air
Traffic Control,” International Journal of Aviation Psychology, vol. 15,
no. 4, pp. 339–362, 2005.

20

https://corescholar.libraries.wright.edu/isap_2015https://corescholar.libraries.wright.edu/isap_2015/98
https://corescholar.libraries.wright.edu/isap_2015https://corescholar.libraries.wright.edu/isap_2015/98
http://repository.tudelft.nl/.
https://www.cc.gatech.edu/~alanwags/DLAI2016/(Gunning)%20IJCAI-16%20DLAI%20WS.pdf
https://www.cc.gatech.edu/~alanwags/DLAI2016/(Gunning)%20IJCAI-16%20DLAI%20WS.pdf
http://arxiv.org/abs/1905.01303
http://arxiv.org/abs/1905.01303
http://arxiv.org/abs/2003.08353
www.icao.int.

[19] A. Bisseret, “Application of signal detection theory to decision making
in supervisory control: The effect of the operator’s experience,”
Ergonomics, vol. 24, no. 2, pp. 81–94, 2 1981. [Online]. Available:
https://www.tandfonline.com/doi/full/10.1080/00140138108924833

[20] D. J. Law, J. W. Pellegrino, S. R. Mitchell, S. C. Fischer, T. P.
McDonald, and E. B. Hunt, “Perceptual and cognitive factors
governing performance in comparative arrival-time judgments.” Journal
of Experimental Psychology: Human Perception and Performance,
vol. 19, no. 6, pp. 1183–1199, 1993. [Online]. Available: http:
//doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.19.6.1183

[21] A. BISSERET, “Analysis of Mental Processes Involved in Air
Traffic Control,” Ergonomics, vol. 14, no. 5, pp. 565–570, 9
1971. [Online]. Available: https://www.tandfonline.com/doi/full/10.
1080/00140137108931276

[22] U. Metzger and R. Parasuraman, “Effects of automated conflict cuing
and traffic density on air traffic controller performance and visual
attention in a datalink environment,” International Journal of Aviation
Psychology, vol. 16, no. 4, pp. 343–362, 2006.

[23] X. Xu and E. M. Rantanen, “Effects of air traffic geometry on pilots’
conflict detection with cockpit display of traffic information,” Human
Factors, vol. 49, no. 3, pp. 358–375, 6 2007.

[24] C. D. Wickens, J. Hellenberg, and X. Xu, “Pilot Maneuver Choice
and Workload in Free Flight,” Human Factors: The Journal of the
Human Factors and Ergonomics Society, vol. 44, no. 2, pp. 171–188,
6 2002. [Online]. Available: http://journals.sagepub.com/doi/10.1518/
0018720024497943

[25] T. L. Seamster, R. E. Redding, J. R. annon, J. M. Ryder, and J. A.
Purcell, “Cognitive Task Analysis of Expertise in Air Traffic Control,”
The International Journal of Aviation Psychology, vol. 3, no. 4, pp.
257–283, 1993.

[26] J. K. Kuchar and L. C. Yang, “A Review of Conflict Detection
and Resolution Modeling Methods,” IEEE Transactions on Intelligent
Transportation Systems, vol. 1, no. 4, pp. 179–189, 2000.

[27] D. van der Hoff, “A Multi-Agent Reinforcement Learning Approach
to Air Traffic Control,” Master’s thesis, Technical University of Delft,
2020. [Online]. Available: http://repository.tudelft.nl/

[28] S. B. Van Dam, M. Mulder, and M. M. van Paassen, “Ecological
interface design of a tactical airborne separation assistance tool,” IEEE
Transactions on Systems, Man, and Cybernetics Part A:Systems and
Humans, vol. 38, no. 6, pp. 1221–1233, 2008.

[29] P. Hermes, M. Mulder, M. M. van Paassen, J. H. L. Boering,
and H. Huisman, “Solution-Space-Based Complexity Analysis of
the Difficulty of Aircraft Merging Tasks,” Journal of Aircraft,
vol. 46, no. 6, pp. 1995–2015, 11 2009. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/1.42886

[30] Y. Huo, D. Delahaye, and Y. Wang, “Sensitivity Analysis of Closest
Point of Approach,” in ICRAT 2018, 8th International Conference for
Research in Air Transportation, Barcelone, Spain, Jun. 2018. [Online].
Available: https://hal-enac.archives-ouvertes.fr/hal-01823194

[31] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a
convolutional neural network,” in 2017 International Conference on
Engineering and Technology (ICET). IEEE, 8 2017.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2 2015.

[33] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in 4th International Conference on Learning Representations,
ICLR 2016 - Conference Track Proceedings, 9 2016.

[34] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and
N. de Freitas, “Dueling Network Architectures for Deep Reinforcement
Learning,” 11 2016. [Online]. Available: http://arxiv.org/abs/1511.06581

[35] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
3rd International Conference for Learning Representations, 12 2014.
[Online]. Available: http://arxiv.org/abs/1412.6980

[36] S. Ruder, “An overview of gradient descent optimization algorithms,”
9 2017. [Online]. Available: http://arxiv.org/abs/1609.04747

[37] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul,
B. Piot, D. Horgan, J. Quan, A. Sendonaris, G. Dulac-Arnold,
I. Osband, J. Agapiou, J. Z. Leibo, and A. Gruslys, “Deep

Q-learning from Demonstrations,” 4 2017. [Online]. Available:
http://arxiv.org/abs/1704.03732

[38] V. Mnih, A. Puigdomènech Badia, M. Mirza, A. Graves, T. Harley, T. P.
Lillicrap, D. Silver, and K. Kavukcuoglu, “Asynchronous Methods for
Deep Reinforcement Learning,” International Conference on Machine
Learning (ICML), 2016.

[39] R. S. Sutton and A. G. Barto, Reinforcement learning : an introduction,
second edition ed. Cambridge: The MIT Press, 2018.

[40] T. Schaul, J. Quan, I. Antonoglou, D. Silver, and G. Deepmind,
“PRIORITIZED EXPERIENCE REPLAY.” International Conference
on Learning Representations (ICLR), 2016.

[41] J. Hoekstra and J. Ellerbroek, “BlueSky ATC Simulator Project: An
Open Data and Open Source Approach,” in 7th International Conference
for Research in Air Transportation (ICRAT). ICRAT, 2016.

[42] J. Sun, J. Ellerbroek, J. Hoekstra, and J. M. Hoekstra, “OpenAP: An
open-source aircraft performance model for air transportation studies and
simulationstransportation studies and simulations,” Aerospace, vol. 7,
no. 8, 2020.

[43] G. Mercado Velasco, M. Mulder, and M. van Paassen, “Air traffic
controller decision-making support using the solution space diagram,”
in Proceedings of the 11th IFAC/IFIP/IFORS/IEA Symposium on
Design, Analysis and Evaluation of Human-Machine Systems (IFAC-
HMS 2010), W. Chul Yoon, Ed. IFAC, 2010, pp. 1–6, the 11th
IFAC/IFIP/IFORS/IEA Symposium on Design, Analysis and Evaluation
of Human-Machine Systems (IFAC-HMS 2010) ; Conference date: 31-
08-2010 Through 03-09-2010.

[44] A. Amiranashvili, A. Dosovitskiy, V. Koltun, and T. Brox, “Motion
perception in reinforcement learning with dynamic objects,” 1 2019.
[Online]. Available: http://arxiv.org/abs/1901.03162

[45] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” 2 2015.
[Online]. Available: http://arxiv.org/abs/1502.03167

[46] C. Westin, “Strategic Conformance Exploring Acceptance of Individual-
Sensitive Automation for Air Traffic Control,” Ph.D. dissertation,
Technical University of Delft, 2017. [Online]. Available: https:
//doi.org/10.4233/uuid:49c6fe9d-2d29-420a-91a2-a97e2049e15e

[47] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle,
M. Rowland, and W. Dabney, “Revisiting fundamentals of experience
replay,” in Proceedings of the 37th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, H. D. III
and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul 2020, pp. 3061–3071.
[Online]. Available: http://proceedings.mlr.press/v119/fedus20a.html

[48] R. Liu and J. Zou, “The effects of memory replay in reinforcement
learning,” in 2018 56th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), 2018, pp. 478–485.

[49] M. Roderick, J. MacGlashan, and S. Tellex, “Implementing the Deep Q-
Network,” 11 2017. [Online]. Available: http://arxiv.org/abs/1711.07478

[50] A. Kanervisto, C. Scheller, and V. Hautamäki, “Action Space Shaping in
Deep Reinforcement Learning,” IEEE Conference on Games 2020, pp.
479–486, 4 2020. [Online]. Available: http://arxiv.org/abs/2004.00980

[51] J. Krozel, M. Peters, K. D. Bilimoria, C. Lee, and J. S. Mitchell, “System
Performance Characteristics of Centralized and Decentralized Air Traffic
Separation Strategies,” Air Traffic Control Quarterly, vol. 9, no. 4, pp.
311–332, 10 2001.

[52] Y. Gao, H. Xu, J. Lin, F. Yu, S. Levine, and T. Darrell, “Reinforcement
Learning from Imperfect Demonstrations,” 2 2018. [Online]. Available:
http://arxiv.org/abs/1802.05313

[53] W. R. Clements, B. Van Delft, B.-M. Robaglia, R. B. Slaoui, and
S. Toth, “Estimating Risk and Uncertainty in Deep Reinforcement
Learning,” 5 2019. [Online]. Available: http://arxiv.org/abs/1905.09638

[54] G. A. Mercado Velasco, C. Borst, J. Ellerbroek, M. M. Van Paassen,
and M. Mulder, “The Use of Intent Information in Conflict Detection
and Resolution Models Based on Dynamic Velocity Obstacles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 4, pp.
2297–2302, 8 2015.

[55] E. Nikishin, P. Izmailov, B. Athiwaratkun, D. Podoprikhin, T. Garipov,
P. Shvechikov, D. Vetrov, and A. G. Wilson, “Improving Stability in
Deep Reinforcement Learning with Weight Averaging,” 2018.

[56] V. Nguyen, S. Schulze, and M. A. Osborne, “Bayesian Optimization
for Iterative Learning,” 9 2019. [Online]. Available: http://arxiv.org/abs/
1909.09593

21

https://www.tandfonline.com/doi/full/10.1080/00140138108924833
http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.19.6.1183
http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.19.6.1183
https://www.tandfonline.com/doi/full/10.1080/00140137108931276
https://www.tandfonline.com/doi/full/10.1080/00140137108931276
http://journals.sagepub.com/doi/10.1518/0018720024497943
http://journals.sagepub.com/doi/10.1518/0018720024497943
http://repository.tudelft.nl/
https://arc.aiaa.org/doi/10.2514/1.42886
https://hal-enac.archives-ouvertes.fr/hal-01823194
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1704.03732
http://arxiv.org/abs/1901.03162
http://arxiv.org/abs/1502.03167
https://doi.org/10.4233/uuid:49c6fe9d-2d29-420a-91a2-a97e2049e15e
https://doi.org/10.4233/uuid:49c6fe9d-2d29-420a-91a2-a97e2049e15e
http://proceedings.mlr.press/v119/fedus20a.html
http://arxiv.org/abs/1711.07478
http://arxiv.org/abs/2004.00980
http://arxiv.org/abs/1802.05313
http://arxiv.org/abs/1905.09638
http://arxiv.org/abs/1909.09593
http://arxiv.org/abs/1909.09593

2
Air Traffic Control: Control Task Definition

and Past Automation Efforts

The purpose of this chapter is to get a thorough understanding of ATC and investigate what traffic scenario’s
and specific tasks of an ATCo are relevant to analyse. First, the fundamental components of ATC will be
elaborated upon in section 2.1. Then, section 2.2 elaborates on the future of ATM to get an indication of what
transition the automation developed in this research must facilitate. Having identified Conflict Detection &
Resolution as main task of an ATCo, the task is formalised in section 2.3. In this section, the strategies an
ATCo applies for conflict detection and resolution are explained. Next to developing autonomous forms of
automation, researchers are developing supervisory control support tools for ATCos. These are presented in
section 3.1. Finally, a survey into the design considerations for automated ATC and past automation efforts is
presented in section 2.4 and section 2.5.

At the end of this chapter, a clear view on how to formalise the task at hand is presented and the relevant
traffic scenarios are identified. In the thesis, a RL agent will be trained to analyse these traffic scenarios.

2.1. Introduction to Air Traffic Control
Air Traffic Management (ATM) is responsible for the integrated management of air traffic and airspace (Asso-
ciation 2016). ATM comprises of three main services: Air Traffic Services (ATS), Air Traffic Flow Management
(ATFM) and Airspace Mangement (ASM). From these services, ATS has the purpose of ensuring safe and or-
derly traffic flow. Within ATS, ATC is responsible for maintaining safe and orderly operations. Today, ATCos
are in full control of maintaining safe and orderly operations. Apart from lower level cognitive tasks such as
visualisation of flight data and tracks, few tasks of an ATCo are automated (C. D. Wickens, Mavor, and R. Para-
suraman 1998). ATC is still relying on radar and the use of radio to communicate with the pilots. However, due
to recent advances in achieving a digital datalink through the use of ADS-B, ATC interaction is transitioning
to digital.

For ATCos, conflict detection and resolution (CD&R) are considered the most important tasks according to
(Bekier, Molesworth, and Williamson 2012). Therefore, this task will be the focus of this research. CD&R
entails preventing violations of minimum separation standards and it will be discussed in more detail in the
next section. The Airspace is divided into four different control zones: a circular area around an airport called
the control zone (CTR), controlled by the Aerodrome Control (TWR); the terminal control area (TMA), which
is controlled by the approach control (APP); the control area (CTA), controlled by the Area Control Center
(ACC); finally the upper control area (UTA), which is controlled by organisations which function across Flight
Information Regions (FIRs) e.g. Eurocontrol. The APP is most concerned with incoming and departing flights
between the CTR and the CTA and the TWR is concerned with the control of aircraft on the ground. The ACC
is responsible for flights which are en-route and will be the focus of this research, due to its limited constraints
in terms of deviation paths for aircraft.

28

2. Air Traffic Control: Control Task Definition and Past Automation Efforts 29

2.2. Future of ATM
The ATM system as it is in place today shows a few significant shortcomings which are addressed in the Fu-
ture Air Navigation System (FANS). Foremost, the en-route system consist of a mixture of direct and organised
tracks, and fixed airways. An increasing amount of air traffic without significant changes to the way air trans-
port is currently managed will result in more delays, costing the airlines money (Gurtner et al. 2017). Also, the
current airways force aircraft to take indirect routes, increasing the CO2 emissions of aviation industry.

SESAR (Single European Sky) and NextGen (Next Generation Air Transportation System) are the European
and American variant of the FANS. Both programmes include Trajectory Based Operations, which essentially
enable free-flight and therefore direct routing. The role of controllers would shift from actively controlling
aircraft to "management by exception" (Dekker and Woods 1999; C. D. Wickens, Mavor, and R. Parasuraman
1998). One of the goals of these programs is to significantly increase the capacity of the ATM system. However,
the controller workload remains to be the single greatest functional limitation on the capacity of the ATM
system. The key factor contributing to the controller workload is the traffic complexity, even more so than air
traffic density (Hilburn 2004). Removing the current day structure of air traffic control shall therefore highly
increase the workload, and therefore the performance, of ATCos. Currently CD&R is still the full responsibility
of ATCos, but FANS will incorporate shared CD&R between ATCos, pilots and automated algorithms (Esa M.
Rantanen and C. D. Wickens 2012). To facilitate the transition to FANS and to increase air traffic capacity on
the short run, implementing high degree automation in future ATC is crucial to maintain safety.

2.3. Formalisation of the Conflict Detection & Resolution Task
In order to perform the CD&R, ATCos use radar to analyse the situation and radio to communicate their
commands. The information available to the ATCos of every aircraft is listed below:

• Flight number

• Position: longitude and latitude

• Heading: direction of aircraft (true North = 0◦ \ 360◦)

• Speed

In general, an ATCo works in one certain sector for the entirety of their professional life. Therefore, ATCos
become specialists in detecting and resolving potential conflicts just from looking at a radar screen. A sector
is composed of beacons, such as a Very High Frequency (VHF) omnidirectional range(VOR) and distance
measuring equipment (DME), and waypoints. A waypoint is a fixed point of reference which is set within
the range of a beacon and can be used by aircraft equiped with Area Navigation (RNAV) to avoid having to
fly directly over beacons. The beacons are connected through airways which at high altitudes are about 14
km wide. A sketch showing how aircraft can navigate is shown in Figure 2.1. In high altitude routing (HAR)
zones, pilots are able to fly user-preferred routes if it also is a non-restrictive routing (NRR) zone, although,
between specific fixes (intro into and exit of HAR airspace) (Nolan 2010). In Figure 2.2, an official chart of a
low-altitude sector is shown in which one can see that beacons are connected by airways.

Figure 2.1: Sketch of how an aircraft can either fly an indirect route by following airways going over beacons or set waypoints to fly a
more direct route if allowed. (Nolan 2010)

M.C. Hermans Towards Explainable Automation for ATC

30 2.3. Formalisation of the Conflict Detection & Resolution Task

Figure 2.2: Low-altitude chart of an airspace. One can see that it is composed of beacons and airways connecting them. (Nolan 2010)

In order to fully understand the CD&R tasks, both the conflicts detection and resolution strategies ATCos
currently apply to solve conflicts have to be elaborated on. In subsection 2.3.1 and subsection 2.3.2, the
conflict detection and resolution tasks are analysed.

2.3.1. Conflict Detection
To maintain safe operations, the International Civil Aviation Association (ICAO) has dictated the following
minimum separation standards(Association 2016):

• Vertical separation:

– 2000 ft above FL410.
– 1000 or 2000 ft between FL290 - FL410, subject to regional air navigation.
– 1000 ft below FL290.

• Horizontal separation: minimum of 5 nm.

Two aircraft are said to be in conflict in case a vertical or horizontal loss of separation occurs. (Kirwan and
Flynn 2002) conducted a study into the strategies of ATCos, in which it was shown that ATCos try to predict
future conflicts with a prediction time varying between 5 and 10 minutes.

Three types of conflict that occur in longitudinal separation can be distinguished (Association 2016):

• Same track: both aircraft have the same direction tracks and intersecting tracks or portions thereof, the
angular difference of which is less than 45 degrees or more than 315 degrees, and whose protected air
spaces overlap. This is shown in Figure 2.3a.

• Reciprocal tracks: both aircraft have opposite direction tracks and intersecting tracks or portions thereof.
The angular difference of which is more than 135 and less than 225 degrees, and whose protected air
spaces overlap. This is shown in Figure 2.3b.

• Crossing tracks: intersecting tracks or portions thereof other than those specified above. This is shown
in Figure 2.4.

ATCos apply different strategies to each of these scenario, this will be explained in more detail in subsec-
tion 2.3.2.

To see whether the two aircraft are to be in conflict with each other, ATCos try to estimate the Closest Point of
Approach (CPA). Altitude is in all cases checked first by the ATCo, and in case the vertical separation standards
are met, a non-conflict decision is made (Esa M Rantanen and Nunes 2005). When vertical separation stan-
dards are not met, an ATCo tries to estimate whether a pair of aircraft would be in conflict with each other.
(BISSERET 1971) showed that ATCos were more cautious, and therefore more likely to predict two aircraft
would be in conflict, in case the angle of conflict increases.

Conflict Angle = Headinga/c1
−Headinga/c2

(2.1)

Towards Explainable Automation for ATC M.C. Hermans

2. Air Traffic Control: Control Task Definition and Past Automation Efforts 31

This suggests the accuracy in identifying potential conflicts of ATCos deteriorates with increasing conflict
angle. A study performed by (X. Xu and Esa M. Rantanen 2007) showed that ATCos tend to judge potential
conflicts more urgent in case the conflict is between two aircraft being at a small spatial distance. Potential
conflicts between aircraft at larger spatial distance with an equal or smaller tC PA , due to an increased air-
speed, are perceived as less urgent. This phenomenon is called the "distance-over-speed bias". Moreover,
(Law et al. 1993) showed that ATCos have more trouble judging which aircraft would arrive first at a potential
conflict point. The research results summarised above indicate that an increase in conflict angle and speed
difference are negatively correlated with the accuracy of ATCos in judging potential conflicts. Next to these
particular conflict situations, air traffic density negatively influences the performance of ATCos to detect po-
tential conflicts significantly (Metzger and Raja Parasuraman 2006).

(a) Aicraft on same track.(Association 2016) (b) Aircraft on reciprocal tracks.(Association 2016)

Figure 2.3: Aircraft on the same track and on reciprocal tracks.

Figure 2.4: Aircraft on crossing tracks (Association 2016).

Important measures for ATCos, which will also be of interest for the artificial agent are the distance and time
to the CPA. The distance and time to CPA can be calculated using Equation 2.2 and Equation 2.3 (Huo, Dela-
haye, and Y. Wang 2018). In this equation, v is the velocity vector and p the initial position of either aircraft i
or j .

dC PA(pi , p j , vi , v j) = |tC PA · (v j − vi)+p j −pi |
=

√
(tC PA ·∆Vx +∆X)2 + (tC PA ·∆Vy +∆Y)2

(2.2)

M.C. Hermans Towards Explainable Automation for ATC

32 2.3. Formalisation of the Conflict Detection & Resolution Task

tC PA(pi , p j , vi , v j) = −(p j −pi) · (v j − vi)

|v j − vi |2

= −∆X∆Vx −∆Y ∆Vy

(∆Vx)2 + (∆Vy)2

(2.3)

2.3.2. Conflict Resolution

To resolve potential conflicts, ATCos can instruct pilots to perform three types of manoeuvres:

• Altitude change

• Heading change

• Speed change

In conflict resolution, ATCos employ a set of procedures to handle possible conflict scenarios. To favor one
manoeuvre over another, (Esa M. Rantanen and C. D. Wickens 2012) refer to the work of (C. D. Wickens,
Hellenberg, and X. Xu 2002) and defines the factors influencing the expected utility of the controller’s decision.
The three main influences are:

• Expediency: manoeuvres that resolve a conflict faster are preferred over time-consuming ones.

• Preservation of airspace: least disruptive manoeuvres to the overall traffic flow are preferred.

• Visualisation: manoeuvres that more clearly resolve the conflict are preferred.

An example adhering to these principles is that ATCos prefer vertical manoeuvres exploiting gravity over
climbing since the manoeuvre is less time consuming. (Esa M Rantanen and Nunes 2005) showed that the
control mechanisms preferred by ATCos are first of all a change in altitude, secondly a heading change and
lastly a speed change. Rantanen and Nunes argue that an altitude change is preferred since it is a "non-radar"
manoeuvre, and therefore does not need constant monitoring. Speed changes, however, are difficult to men-
tally represent for the controller and are therefore less often implemented by ATCos (BISSERET 1971; Helbing
1997). This is in-line with the visualisation influence mentioned by (Esa M. Rantanen and C. D. Wickens
2012). With regard to the three types of conflict, which are shown in Figure 2.3a, Figure 2.3b and Figure 2.4.
(Kirwan and Flynn 2002) identified resolution strategies ATCos employ:

• Same track: align faster aircraft first with its exit point, also referred to as the Change Over Point (COPx).

• Reciprocal track: no strong heuristic for what action to take. However, this type of conflict is always
solved first.

• Crossing track: strong heuristic to put slower a/c behind the faster one.

The aforementioned strategies are summarised in Table 2.1. These will be considered when designing the
reward function for the artificial agent.

Towards Explainable Automation for ATC M.C. Hermans

2. Air Traffic Control: Control Task Definition and Past Automation Efforts 33

Table 2.1: Summary of high-level principles ATCos adhere to and strategies employed for CD&R.(Kirwan and Flynn 2002;
Esa M Rantanen and Nunes 2005; Esa M. Rantanen and C. D. Wickens 2012; Fothergill and Neal 2008; Van Meeuwen et al. 2014; Kallus,

Van Damme, and Dittmann 1999; Seamster et al. 1993)

Category Principle Description

High-level Principles Safety Highest priority
Anticipate that things can deteriorate
Always have a fail-safe plan B

workload management Keep it simple
Look for the one key action that resolves the problem
Minimise # aircraft to move
Identify the conflicts pairwise
Reduce complexity
Prefer resolutions which require less co-ordination

Efficiency Penalise the one that needs something
Inconvenience least people
Minimise penalty for a/c
Change in line with a/c intentions

Conflict Detection Attention Focus visual attention on crossing points and sector borders
Adopt a look-ahead time between 5 and 10 minutes

Strategy 1. Compare aircraft altitudes
2. If same altitude, compare flight directions
3. If same altitude and direction, compare speeds

Contextual factors Determine urgency and priority by estimation of relative speeds
and distances
In low workload conditions, wait and see before taking actions
In high workload conditions, act immediately after detection a potential conflict

Conflict Resolution Attention First solve conflicts pairwise and later check for consequences on other aircraft
Select resolution with least amount of monitoring
Select resolution that requires least amount of sector disruption

Strategy 1. Prefer level changes; Try to keep a/c at the same levels
2. Vector aircraft; lock a/c on headings when using vectors
3. Speed solutions last since at cruising altitude speed envelope is small

Contextual factors Turn slower a/c behind (minimise extra distance flown)
Better to put a/c behind than trying to go through the middle
If vectoring, vector both aircraft
Solve the head-on first
Turn faster one direct to route so leaves sector before slower one on same route

2.4. Design Considerations of Automation in ATC
For the transition to a high degree of automation in future ATC, the support of ATCos is important. Without
the support of ATCos, the gains of automated systems may not be fully realised. This section briefly surveys
previous studies into the acceptance of any form of automation by ATCos.

(Bekier, Molesworth, and Williamson 2012) investigated the existence of a ‘tipping point’ at which ATCos were
not longer willing to accept or cooperate with the automation. The research showed that the tipping point of
most ATCos, especially the more experienced ones, was reached in case the level of automation shifted the
decision-power away from the controller. For an ATCo to accept automation, a high level of trust must be
established that at whatever level the automation is implemented, the job is performed successfully.

One of the aspects likely influencing the willingness to accept a shift in decision power is accountability
(Bekier, Molesworth, and Williamson 2012). Since air traffic controllers have been charged with criminal
offences in the past, it is understandable that ATCos are concerned about a shift in authority whilst being
accountable. (Bekier, Molesworth, and Williamson 2012) showed that ATCos were more willing to accept a
higher degree of automation to support efficiency of scheduling rather than in safety-related tasks, strength-
ening this suspect.

Important for ATCos is thus the degree to which certain tasks are automatised. (R. Parasuraman, Sheridan,
and C. Wickens 2000) introduced the four classes of functions to which automation can be applied to, equiv-
alent to the four-stage model of human information processing. These are:

M.C. Hermans Towards Explainable Automation for ATC

34 2.4. Design Considerations of Automation in ATC

• Information acquisition

• Information analysis

• Decision selection

• Action implementation

High High High

Low Low Low Low

System B

System A

Information
 Acquisition

Information
 Analysis

Decision
Selection

Action
 Implementation

High

degree of autom
ation

Figure 2.5: Four classes of functions which automation can be applied to. (R. Parasuraman, Sheridan, and C. Wickens 2000)

Within these four broad categories, the degree of automation can vary across a continuum from low to high
(R. Parasuraman, Sheridan, and C. Wickens 2000), as shown in Figure 2.5. This framework can be used as
guide to determine what types and levels of automation are considered important for a particular system. The
variance in the degree of automation across the four classes of functions namely impacts the performance of
systems dependent on human-automation interaction.

In fact, changes in the level of automation across the function classes affect human performance areas. These
are the mental workload, situation awareness, complacency and skill degradation. These are considered to
be primary evaluative criteria for automation design by (R. Parasuraman, Sheridan, and C. Wickens 2000).
In most cases, high levels of automation in information acquisition and analysis has showed a significant
decrease in mental workload. However, evidence shows that workload can indeed increase when it is difficult
for human operators to initiate and engage with the automation. Especially for a high level of automation for
decision selection and action implementation, this should be taken into account.

The Air Traffic Controller (ATCo) has two main cognitive tasks: maintaining situational awareness (SA) and
decision making for control actions (EUROCONTROL 1996). Increasing automation of information analysis
might improve the SA significantly. Take for example the horizontal situation indicator. Alternatively, when
having a high level of automation for decision selection, the human operator tends to be less aware of changes
in the dynamic environment. This might already occur if the human has a passive decision-making role in
which he or she has to check the functioning of the automation (Raja Parasuraman, Molloy, and I. L. Singh
1993). The SESAR and NextGen program both incorporate the concept of free flight. In case the level of
automation will go up for ATC, and FANS will be implemented, this might lead to an increase in air traffic
complexity and a decrease in situation awareness for the ATCos.

Another phenomenon that has been identified is "over-trust" or complacency of the human operator in the
automation. For a higher degree of automation, the operator becomes less likely to identify the occasions on
which the automation fails and to act properly to the failure (Raja Parasuraman, Molloy, and I. L. Singh 1993;
Bowden, Ren, and Loft 2018). Especially in case the automation is not reliable, this is an important aspect to
consider.

Finally, in case decision making is continuously performed by automation, the human controller will become
less skilled in performing the tasks of an ATCo (Volz et al. 2016). This might be detrimental to the design of a

Towards Explainable Automation for ATC M.C. Hermans

2. Air Traffic Control: Control Task Definition and Past Automation Efforts 35

system in which humans and automation have to work together. In case the automation fails, the situation
is more hazardous whilst the human controller might fail to perform as well. The aforementioned risks can
be combined and is formalised as the out-of-the-loop (OOTL) performance problem (Bowden, Ren, and Loft
2018). To successfully design an automated concept for ATC, the risks associated to the OOTL problem must
be taken into account.

(R. Parasuraman, Sheridan, and C. Wickens 2000) also note two secondary evaluative criteria: automation
reliability and costs of decision/action outcomes. A system should be reliable for benefits in terms of mental
workload and situation awareness to hold. This is because reliability is closely related to the trust a human
has in an automated system. Furthermore, when implementing automation in decision selection and action
implementation, the costs associated with these decisions and actions must be considered. Tasks whose
outcomes have low associated risk are good candidates for high automation in decision choices. According
to these researchers, high level of decision automation is not suitable in case humans must take over control
in case automation fails.

In this research the arguments elaborated upon in this section will be considered during the design of the
automation for ATC.

2.5. Automation Efforts
Lower level cognitive tasks such as the visualisation of flight data and tracks have already been implemented
(C. D. Wickens, Mavor, and R. Parasuraman 1998). For example, Medium-Term Conflict Detection (MTCD)
and Short-Term Conflict Alert (STCA) are implemented in current ATC, providing warning in case a poten-
tial conflict seems to happen based on (multiple) predicted trajectories. The MTCD can predict potential
conflicts looking up to 20 minutes ahead.

2.5.1. Failed Initiatives
In an effort to increase the degree of automation in ATC, Eurocontrol launched the ARC2000 project. The
core idea behind this project was to develop an automated ATC system based on "4D-tubes" for en-route free
flight. The strategy was to guarantee conflict free flight for the next 20 minutes by planning ahead using these
tubes (Garot and Durand 2005). The project was halted since it was at that time not possible to develop a
system that could tackle the problem of global optimisation of flight routes. Another effort by Eurocontrol
was the development of CORA (en-rout Conflict Resolution Assistant). This project was human-centered and
its purpose was to automate ATC according to controllers’ strategy for generating advisory resolutions (De
Prins et al. 2008). One of the proposed concepts was to artificially generate solutions and filter these based
on rules and heuristics adhering to an ATCos’ strategy. This project however never passed the concept phase.

2.5.2. Autonomous ATC
In recent years, researchers have turned to reinforcement learning as possible solution for the CD&R tasks.
(Puca et al. 2014) implemented a reinforcement learning method, Q-learning, to solve a gridworld problem
in which an agent has to avoid an object which represents the conflict area. It was concluded that RL could
provide good solutions for CD&R tasks. However, the lack of flexibility of this method would render unac-
ceptable computation times for problems only differing slightly from each other (Puca et al. 2014). Inspired
by the development of AlphaGo, (Brittain and Wei 2018) developed an hierarchical Deep Double Q-Network
for autonomous aircraft sequencing and separation. The algorithm implemented a parent and child agent,
and the web application NASA sector 33, shown in Figure 2.6a, was used as traffic control simulation:

• Parent agent:

– state space: raw pixels of the radar screen.
– action space: route combination (route A or B) for all aircraft. If there are two aircraft, the action

space consists of 4 unique route combinations.

• Child agent:

– state space: aircraft positions, aircraft velocities and route combination (from parent agent).
– action space: velocity changes: 300, 360, 420, 480, 540, 600[kts].

M.C. Hermans Towards Explainable Automation for ATC

36 2.5. Automation Efforts

The aircraft could have 6 different airspeeds varying between 300 and 600 kts. Furthermore, the airways are
fixed and the aircraft could therefore not alter heading continuously, but could take a combination of airways.
A numerical analysis of the implementation of the algorithm showed promising results, although it must be
noted that the action space was limited. Following the promising results of applying Deep RL to the ATC
problem, a Deep Distributed Multi-Agent Reinforcement Learning framework was developed in (Brittain and
Wei 2019). In this research, BlueSky was used as simulation environment, which is shown in Figure 2.6b.
The goal of the research was to investigate whether a multi-agent RL method utilising an actor-critic model,
which incorporated the loss function from Proximate Policy Optimisation to stabilise the learning, could solve
conflicts between aircraft in a dynamic, stochastic and high-density en-route sector (Brittain and Wei 2019).

(a) Sector 33 used in (Brittain and Wei 2018). (b) BlueSky simulation environment used in (Brittain and Wei 2019).

Figure 2.6: Simulation environments used in previous automation efforts.

Since it is a multi-agent scenario, the state and action space of each agent was given by:

• agent i:

– state space: so
t = (I (o),d (1),LOS(o,1),d (2),LOS(o,2), . . . ,d (n),LOS(o,n), I (1), . . . , I (n))

– action space: at = [vmi n , vt−1, vmax]

The state of the agent is composed of I (i), which represents the distance to the goal, the aircraft speed, aircraft
acceleration, distance to the intersection, route identifier, and half the loss of separation distance of aircraft i.
Furthermore, d (i) represents the distance from the controlled aircraft to aircraft i and LOS(o, i) represents the
loss of separation distance between aircraft o and i . The action space consists of three speeds, the minimal,
the current and maximal cruise speed. The sector used in the simulations contains multiple intersections and
merging points. A simplification, critical to the convergence of the policy, was made: aircraft on conflicting
route must have not reached the intersection. The AI agent was able to avoid conflicts for 100 % of the time
for merging routes scenario and 99.97 % for the intersecting routes scenario. The researches suggest that the
stochastic environment might have initiated a traffic scenario in which conflict was not avoidable. Overall,
this research shows promising results and confirms that deep multi-agent reinforcement learning methods
can enable a safe and efficient automated en-route airspace. However, limitations on the action-space and
assumptions were critical in obtaining a converging policy.

Brittain and Wei were not the only researchers implementing Actor-Critic methods to achieve autonomous
ATC. (Pham et al. 2019) developed a Single-Agent Actor Critic (Deep Deterministic Policy Gradient - DDGP)
framework to automate conflict resolution. An uncertain environment was simulated in which two aircraft
were in conflict. Arbitrarily, one of the two aircraft was the controlled aircraft, and the other was seen as the
observed aircraft. The goal of the controlled aircraft was to avoid the conflict by changing its heading. The
trained model could achieve 87%∓ accuracy for avoiding the conflict by solely altering heading. An impor-
tant result from the research is that even though the uncertainty of the environment slowed the convergence
speed, the convergence value was not influenced (Pham et al. 2019). (Tran et al. 2019) also explored the con-
cept of having a controlled and an observed aircraft, and provided the artificial agent with human solutions to
conflicts. An Actor-Critic framework, incorporating DDGP, was used as RL solution method. The controlled
aircraft could avoid the conflict by changing its heading, thus changing its route. The model’s performance is
assessed by the similarity between the agent’s suggested trajectory change point (TCP) and that of the human
controller in unseen scenarios of the test set. It shows that in 65% of the cases, the artificial agent chooses a
route similar to that of the human controller.

Towards Explainable Automation for ATC M.C. Hermans

2. Air Traffic Control: Control Task Definition and Past Automation Efforts 37

2.5.3. Strategic Conformal Automation
To increase trust and acceptance of automation, strategic conformal automation has been proposed in (Hilburn,
Westin, and Borst 2014). In line with this proposed method, (Regtuit et al. 2018) developed a strategic confor-
mal automation for ATC using RL. In this research, ATCos were asked to solve conflict scenarios. The artificial
agent was presented the same traffic situation and was rewarded for mimicking the actions taken by an ATCo.
The results seem to support the hypothesis that RL could be used to identify and replicate human control
strategies from logged human control strategies (Regtuit et al. 2018).

Next to using RL for strategic conformal automation, (Van Rooijen 2019) investigated whether human strategy
could be extracted from the Solution Space Diagram (SSD) using supervised learning. The research showed
that the SSD contains a majority of the parameters influencing ATCos decision making for CD&R. Further-
more, it confirmed the hypothesis on which strategic conformal ATC automation depends, which is that AT-
Cos apply personal strategies to solve CD&R conflicts. This was shown in an experiment in which models
trained on personal data had a higher prediction score than generic models for individual ATCos. The main
limitation of the methods proposed to achieve strategic conformal automation is that these purely try to
mimic strategies, but are not able to optimise the resolutions.

2.6. Concluding Remarks
In the previous automation efforts, two main areas of research were explored. First of all, strategic conformal
automation has been studied in the context of reinforcement learning and supervised learning. Strategy
could be identified by using reinforcement learning through showing demonstrations to the learning agent.
This approach has a few setbacks. To consistently identify an ATCo’s strategy, 55 demonstrations had to be
used in the same scenario. The generalisation that ATCos have different strategies for crossing, reciprocal
and same track conflicts might be inaccurate since ATCos could have different strategies in different parts of
the conflict domains. Moreover, different types of aircraft also have an effect on their strategy. To identify all
these different strategies, a vast amount of demonstrations are needed for different conflict geometries, which
is unlikely. Furthermore, it is difficult to verify whether the agent’s policy is both safe and strategic conformal.
The recent research into the use of supervised learning is interesting as it is relatively effective in mimicking
strategy of ATCos. In the research performed by (Van Rooijen 2019), the SSD was used to learn the strategy of
controllers. One of the cons asserted to supervised learning to learn strategy is that the model might learn the
strategy of a controller, but will never improve an ATCos strategy. If an ATCo performs inefficiently in complex
traffic scenarios, the automation will do that as well.

The second area of research is that of developing autonomous ATC. Recent studies showed promising results
for the implementation of Deep RL, although the state and action spaces remained fairly limited. The advan-
tage of using RL is that careful design of the reward function can steer the behaviour of an agent. Previously
identified strategies, such as preferably choosing the least disruptive manoeuvres, can be taken into account
next to efficiency and safety considerations. For autonomous ATC, using reinforcement learning seems to be
the most promising technique.

In previous studies into autonomously automating ATC with RL, adding more aircraft to the traffic scenario
would increase the state-space of the agent. For both the hierarchical and multi-agent approach discussed
in section 2.5, this was the case. Combining the support tools which were developed to assist ATCos with re-
inforcement learning might be an interesting solution to this problem. The SSD visualises the solution space
of a single aircraft in terms of heading and velocity changes. From the SSD, an ATCo can acquire information
on whether an aircraft will be in conflict and when that will happen. It is hypothesised that using raw pixel
data of the SSD as input for a reinforcement learning algorithm can enable an artificial agent to learn what
action (heading and/or velocity change) to take in a large variety of traffic scenarios. Since all the information
is captured in the SSD of which the pixel size is fixed, the dimensions of the state-space remain constant. The
SSD is aircraft specific and currently it is displayed in case an ATCo selects an aircraft.

The CD&R task of an ATCo using the SSD consists of two problems: what aircraft to select and what action to
perform. In this research, it shall be investigated whether the raw-pixel data of the SSD can be used to learn
an agent what action to take. To select an aircraft, either a rule-based algorithm will be designed or an agent
will be trained by using supervised or reinforcement learning.

Before diving into state-of-the-art reinforcement learning algorithms, the next chapter elaborates on the fun-
damentals of reinforcement learning.

M.C. Hermans Towards Explainable Automation for ATC

3
Representing the State of an Aircraft Using

the Solution Space Diagram

This chapter provides a literature review of supervisory control support tools which have been developed for
ATC. This part of the literature study aims to answer research question 2b: ’What information can be extracted
from the SSD?’.

3.1. Supervisory Control Support Tools
Apart from automating ATC, another area of research is the development of tools to support humans in a
supervisory control tasks. Two supervisory control support tools which have the potential to decrease the
workload of ATCOs are the separation monitor and Solution Space Diagram (SSD). These are elaborated upon
in subsection 3.1.1 and subsection 3.1.2.

3.1.1. Separation Monitor
Two parameters which are key for ATCOs to detect potential conflicts are the CPA and tC PA , as explained in
subsection 2.3.1. Currently, ATCOs estimate whether the CPA between two aircraft will be lower than 5 nm.
In case two aircraft would be in conflict according to their estimation, the tC PA determines when the ATCO
orders a manoeuvre for one of the two aircraft in conflict. Based on calculated aircraft trajectories which can
be extrapolated into the future, a graph showing the aircraft combinations and their corresponding C PA can
be shown as function of the tC PA . An example of a potential conflict portrayed with the separation monitor is
shown in Figure 3.1a and Figure 3.1b.

The power of this monitor is that it gives a quick overview of all the upcoming conflicts. The separation
monitor alone however does not contain any information on how to solve the upcoming conflicts. To this
end, the Solution Space Diagram was developed.

3.1.2. Solution Space Diagram
The concept of the SSD, which was developed in (Hermes et al. 2009), is to use ecological interface design
(EID) to facilitate fault detection and generate automated advisories in CD&R for the human controller. The
SSD displays the locomotion constraints of the controlled aircraft. The controlled aircraft is the aircraft which
an ATCO selects and from which he or she gets to see the SSD. The display shows how surrounding aircraft
and/or obstacles affect the solution space of the controlled aircraft in terms of heading and speed.

The construction of the diagram for a two aircraft conflict consists of a step-by-step process. First of all, the
projected zone around the observed aircraft has to be constructed, which in our case is 5 nautical miles. Then,
the relative velocity vector can be constructed and a triangular area can be identified for which the aircraft
would be in conflict in relative space. The velocity of the observed aircraft can then be added to the relative
velocity cone to determine the conflict velocity cone for in absolute space (Mercado Velasco et al. 2015). This
conflict cone is referred to as the Forbidden Beam Zone (FBZ). Finally, the flight envelope of the controlled
aircraft can be added to determine the bounds in which the aircraft can vary its speed, [Vmi n , Vmax]. These
steps are visualised in Figure 3.2.

38

3. Representing the State of an Aircraft Using the Solution Space Diagram 39

(a) Air traffic scenario. (b) Combining dC PA and tC PA to see what aircraft pairs will be in conflict.

Figure 3.1: Simulation environment with separation monitor.

Figure 3.2: Step-by-step construction of the SSD(Borst et al. 2017): (a) one can see the traffic geometry; (b) conflict zone in relative
space; (c) conflict zone in absolute space; (d) resulting SSD.

The controlled aircraft shall not be in collision with the observed aircraft in case its velocity vector (incorpo-
rating heading and absolute value) is outside the velocity obstacle. A conflict scenario with multiple aircraft
can easily be incorporated in the SSD of the controlled aircraft by calculating the triangular velocity obsta-
cles relative to the observed aircraft. The display incorporates all the useful parameters identified for the
CD&R task in subsection 2.3.1 and subsection 2.3.2. The features of the SSD representing these parameters
are shown in Table 3.1. The power of this presentation is that the fault detection performance, especially in
increasing the traffic complexity, is positively affected (Borst et al. 2017). Incorporating this display in a form
of automation will thus ensure that the human controller remains able to validate the computer generated
advice. Although it does contain all the relevant information for CD&R, the SSD on its own does not contain
enough information for the ATCO to identify the most efficient resolution.

M.C. Hermans Towards Explainable Automation for ATC

40 3.1. Supervisory Control Support Tools

Table 3.1: Parameters incorporated in the SSD. Adapted from (Van Rooijen 2019).

Parameter Feature in the SSD

Velocity Length of the velocity vector.
Velocity envelope Inner and outer circle on the SSD.
Heading Direction of the velocity vector.
Exit waypoint Strikingly colored heading vector within the speed limits.
Conflict in terms of heading and speed FBZ.
tC PA Width of the FBZ (smaller tC PA , wider FBZ); Color coding of FBZ.
dC PA Reflected by a translating FBZ.
Conflict angle Inclination of the FBZ.
Velocity other a/c Length FBZ.
Traffic Density Amount of FBZs represented in the SSD.
Traffic Complexity With a higher complexity, the FBZs of individual

observed aircraft overlap less and solution space becomes smaller.
Objects Represented as a FBZ covering entire

range of velocities in a certain direction.

An extension to the SSD is to incorporate intent routes of the observed aircraft. This will increase the detec-
tion time horizon and thereby enhance more efficient strategic solutions. In (Mercado Velasco et al. 2015) a
proposed solution was developed. This shows that the SSD can be extended to include more relevant infor-
mation for the ATCO. For now, the focus shall be on the SSD solely taking into account the triangular velocity
obstacle.

The SSD essentially thus contains all the relevant information for the CD&R task. One can also notice that
all of the relevant information is contained in the upper half of the SSD, since an aircraft will generally not
change its heading with more than 90 degrees at once.

Towards Explainable Automation for ATC M.C. Hermans

4
Reinforcement Learning Fundamentals

Reinforcement Learning is the problem faced by an artificial agent that must learn behaviour through in-
teracting with its environment (Pack Kaelbling et al. 1996; Francois-Lavet et al. 2018). It is a computational
approach to learn from interaction, mimicking the way that biological agents, such as humans, learn. In fact,
many of the basic algorithms in RL were inspired by biological learning systems (R. S. Sutton and A. G. Barto
2018). The promise of RL is that it is a way of programming agents based on reward and punishment with-
out having to specify how the agents needs to achieve a task (Pack Kaelbling et al. 1996). In recent years, RL
methods have been developed which exceed human performance in games such as Atari to Go and no-limit
poker (Botvinick et al. 2019). Breakthroughs in the development of deep learning methods have been major
contributors to these super-human performances. Before diving into these breakthroughs in RL, the basic
principles of RL should be well-understood. The goal of this chapter is to provide a high-level overview of the
working principles and different solution methods of RL.

RL applies in principle to any sequential decision-making problem that relies on past experiences (Francois-
Lavet et al. 2018) and can be formalised as the optimal control of incompletely-known Markov decision pro-
cesses (MDP) (R. S. Sutton and A. G. Barto 2018). The RL problem consists of 4 main elements: a policy, a
reward signal, a value function and optionally a model that mimics the behaviour of the environment. The
policy is a mapping from the state to the action. The agent uses its policy to decide what action to take in a
particular state. The performance of an action is measured by the reward signal and the value function indi-
cates the expected reward signals to accumulate over the future. Essentially, one wants to optimise the policy
to maximise the accumulation of reward signals obtained from interacting with the environment. The arti-
ficial agent thus learns from experiences retrieved from interacting with the environment. This introduces
an important challenge in RL, namely the trade-off between exploiting what has already been experienced
and exploring the unknown. Another feature that needs to be accounted for is delayed reward. Although a
certain action might give rise to a large immediate reward, it also affects the future state of the environment
and thereby the actions and opportunities available to the agent. Since the goal of the agent is to maximise
the accumulative reward, an effective RL algorithm requires foresight or planning (R. S. Sutton and A. G. Barto
2018).

Similar to other machine learning techniques, RL has to deal with the bias-variance trade-off. This essentially
entails that a model with high bias has failed to find a pattern in the data whilst a model which over-fits on the
data shows high variance. Due to the over-fitting, the model will then fail to generalise. One therefore aims to
find a model that balances these two considerations. Another factor influencing the design choice is the curse
of dimensionality. Whenever the state and action spaces increase, the amount of possible state-action pairs
often grows exponentially (Pack Kaelbling et al. 1996). Therefore, the agent has to deal with a large amount of
options which can endanger the convergence of a RL algorithm.

Briefly said, there are two types of RL solution methods. First of all, there are Tabular Solution Methods,
in which the methods can often find exact solutions. These are well suited for problems in which the state
and action spaces are limited. Secondly, there are Approximate Solution Methods, in which the goal is to
find a good approximation of the optimal policy as the state and action spaces are too large to find the exact
optimum.

41

42 4.1. Finite Markov Decision Processes

Each of the solution methods has to deal with the following challenges:

• Exploration vs exploitation

• Bias-variance trade-off

• Curse of dimensionality

• Design of the reward function

First, in section 4.1, the finite Markov decision processes are explained in more detail. Then, in section 4.2
and section 4.3, the tabular and approximate solution methods for RL are elaborated upon.

4.1. Finite Markov Decision Processes
MDPs are a mathematical formalisation of sequential decision making. In MDPs, actions not only influence
immediate reward, but also subsequent states through future rewards (R. S. Sutton and A. G. Barto 2018).
Naturally, MDPs involve the trade-off between immediate and delayed reward.

The learner and decision maker in an MDP is called an agent. The agent interacts with its environment by
performing an action. The environment responds by presenting new situations, states of the agent, and giving
rise to new rewards. RL is therefore essentially a mapping from a situation or state to an action to maximise
the reward. This interaction is visualised in Figure 4.1. At every discrete time step, the agent chooses a certain
action, at ∈ A(s), based on the state, st ∈ S, and reward, rt ∈ R, retrieved by the previous interaction with the
environment.

Agent

Environment

Rt+1

St+1

iterate

Action
 At

Reward
Rt

State
St

Figure 4.1: The agent-environment interaction in a Markov decision process. Adapted from (R. S. Sutton and A. G. Barto 2018).

The state an agent is in can be deterministic or stochastic. For a deterministic state, taking the same action
in a certain state always results in the same new state whilst for a stochastic state, the next state is a random
variable (Lucian Buş oniu Buş oniu et al. 2019). ATC is essentially a problem with stochastic state transitions
since wind influences the path of aircraft significantly. The problem can be simplified and modelled with
deterministic state transitions by excluding wind and other uncertainties. Since most of the theoretical fun-
damentals of RL are based on the deterministic environment, RL algorithms perform better in deterministic
environments (Jaakkola, S. Singh, and Jordan 1999). For the sake of this research, deterministic state transi-
tions shall be used to simulate ATC.

The formalisation of a MDP can be defined with a state space S, an action space A and a transition function
f which maps the state changes as a result of control actions as shown in Equation 4.1 for a discrete time step
(Lucian Buş oniu Buş oniu et al. 2019). f thus has dimension S × A.

Si+1 = f (si , ai) (4.1)

The agent also receives a scalar reward signal, according to a function R : S × A:

ri+1 = R(si , ai) (4.2)

Towards Explainable Automation for ATC M.C. Hermans

4. Reinforcement Learning Fundamentals 43

In a finite MDP, the random variables St and Rt have well defined discrete probability distributions dependent
on the previous state and action. This probability,p : S×R×S×A −→ [0,1], denotes the dynamics of the MDP
and is shown in Equation 4.3 in which s′ represents the next state.

p(s′,r |s, a)
.= Pr {St = s′,Rt = r |St−1 = s, At−1 = a}, (4.3)

Finally, as mentioned above, the agent chooses the action using a certain policy mapping states to actions.
This policy is defined by the function π : S =⇒ A. In a MDP, having the current state and action, in combina-
tion with the transition and reward function, always allows the agent to reach the next state and the reward.
In some RL problems, the agent can reach a terminal state, e.g. the finish of a racetrack. In this case, the agent
restarts from the initial state and performs another episode. All of the non-terminal states are in then denoted
by S+ ∈ S.

4.1.1. Return
The goal of the learning agent is to find a policy which optimises the cumulative reward retrieved along a
trajectory starting from the initial state. Actions taken might not only effect the immediate reward, but also
the subsequent situations the agent encounters and its accompanied rewards. This introduces the so-called
challenge of delayed rewards (R. S. Sutton and A. G. Barto 2018): actions taken in the present effect the po-
tential to achieve good rewards in the future, whilst the immediate reward provides no information about
these future rewards. In case of RL problems with a terminal state, it makes sense to calculate the cumulative
reward by taking the sum of rewards retrieved when reaching the terminal state (R. S. Sutton and A. G. Barto
2018). However, there are also RL problems in which the agent-environment interaction does not naturally
break into episodes, but goes on without a limit. These tasks are referred to as continuing tasks. Theoretically,
the final step in such tasks are at T = ∞, and the return could also be infinite. To overcome this issue, use
can be made of the concept discounting. Instead of maximising the sum of rewards, the agent tries to max-
imise the sum of discounted rewards it receives over the future. The return, Gt , using discounting is shown in
Equation 4.4 (R. S. Sutton and A. G. Barto 2018). In this equation, γ is the discount rate, 0 ≤ γ≤ 1.

Gt
.= Rt+1 +γRt+2 +γ2Rt+3 + ... =

∞∑
k=0

γk Rt+k+1 = Rt+1 +γGt+1 (4.4)

Alternatively, Equation 4.4 can be written as shown in Equation 4.5, which includes the possibility of T =∞
or γ= 1 (R. S. Sutton and A. G. Barto 2018).

Gt
.=

T∑
k=t+1

γk−t−1Rk (4.5)

From this equation, it can be seen that if γ< 1, the return is bounded; if γ= 0, the agent only takes immediate
reward into account. Essentially, a reward that is received k time steps into the future is worth γk−1 of what it
would be valued in case it would have been immediately (R. S. Sutton and A. G. Barto 2018).

4.1.2. Value Functions
Since maximising the accumulated sum of returns is the goal of an RL agent, RL agents make use of value
functions. The value function is an estimation of expected future rewards from the state the agent is in or
the action it takes. The value function of a state s ∈ S under policy π is given by Equation 4.6 and is named
the state-value function. In this equation, Eπ[·] denotes the expected value of a random variable following a
policy π (R. S. Sutton and A. G. Barto 2018).

vπ(s)
.= Eπ[Gt |St = s] = Eπ[

∞∑
k=0

γk Rt+k+1|St = s], for all s ∈S. (4.6)

Moreover, the state-action value, or action-value, denotes the expected reward expected from taking an ac-
tion a ∈A(s) in state s ∈S under policy π and is given by Equation 4.7.

qπ(s, a)
.= Eπ[Gt |St = s, At = a] = Eπ[

∞∑
k=0

γk Rt+k+1|St = s, At = a], for all s ∈S. (4.7)

The backup diagrams for the state and action-value functions are shown in Figure 4.2b.

M.C. Hermans Towards Explainable Automation for ATC

44 4.1. Finite Markov Decision Processes

A(s)

s'

π

p

Vπ(s')

p

s Vπ(s)

r

(a) State-value function.

π

p

s,a

s'

a' Qπ(s',a')

Qπ(s,a)

π

r

(b) Action-value function.

Figure 4.2: Backup diagram of the state-value and action-value function. In this diagram, s′ = st+1 and a′ = at+1.

Similarly as for the return, one can define a recursive relationship for the value function (R. S. Sutton and A. G.
Barto 2018):

vπ(s)
.= Eπ[Gt |St = s]

= Eπ[Rt+1 +γGt+1|St = s]

=∑
a
π(a|s)

∑
s′

∑
r

p(s′,r |s, a)[r +γEπ[Gt+1|St+1 = s′]]

=∑
a
π(a|s)

∑
s′,r

p(s′,r |s, a)[r +γvπ(s′)], for all s ∈S,

(4.8)

in which the next states are denoted by s′ ∈ S and p represents the dynamics of the MDP. This equation is
called the Bellman equation for vπ. The Bellman equation averages over all the possibilities, weighting each
by its probability of occurring. It states that the value of the start state must equal the (discounted) value of
the expected next state, plus the reward expected along the way (R. S. Sutton and A. G. Barto 2018).

In theory, there is a precise optimum policy to be found for finite MDPs. This optimum policy is denoted by
π? and holds if and only if vπ ≥ vπ′ , meaning that the expected future rewards under the policy π is larger
than that under policy π?. There might in fact be multiple optimal policies, which will all be denoted as π?.
These optimal policies all share the same state-value function, which can be calculated using Equation 4.9
and is denoted by v?(R. S. Sutton and A. G. Barto 2018).

v?(s)
.= max

π
vπ(s), for all s ∈ S (4.9)

Next to sharing the same value function, they also share the same action-value function. This is shown in
Equation 4.10 and is denoted by q?(s, a).

q?(s, a)
.= max

π
(s, a) for all s ∈S and a ∈A(s) (4.10)

For state-action pair (s,a), the action-value denotes the expected return for taking an action a from a state
s and thereafter following an optimal policy(R. S. Sutton and A. G. Barto 2018). Therefore, the action-value
function can be rewritten in terms of the optimal state-value function:

q?(s, a) = E [Rt+1 +γv?(St+1)|St = s, At = a]. (4.11)

v? is a value function for a policy and must therefore satisfy the Bellman equation shown in Equation 4.8.
However, since it is the optimum value function, one can rewrite the Bellman in equation into the so-called
Bellman optimality equation. The Bellman optimality equation for v? and q? is shown in Equation 4.12 and
Equation 4.13.

Towards Explainable Automation for ATC M.C. Hermans

4. Reinforcement Learning Fundamentals 45

v?(s) = max
a∈A(s)

qπ?(s, a)

= max
a

E [Rt+1 +γv?(St+1)|St = s, At = a]

= max
a

∑
s′,r

p(s′,r |s, a)[r +γv?(s′)]

(4.12)

q?(s, a) = E [Rt+1 +γmax
a

q?(St+1, a′)|St = s, At = a]

= ∑
s′,r

p(s′,r |s, a)[r +γmax
a

q?(s′, a′)] (4.13)

The Bellman equations also generalises to the continuous state and action spaces. It is relevant to note that
even though there is a precise model of the dynamics of an environment available, it is usually impossible
to compute an optimal policy by solving the Bellman’s equation. Critical to solving the problem facing the
agent is the amount of computations that the agent can perform per single time step. Another limiting factor
in retrieving the optimal policy is the available memory to store approximations of value functions, models
and policies. In case state and action spaces are limited, the RL problem is a tabular case and use can be
made of the memory to store the approximations. If the required memory capacity is too large, some sort of
parameterised function representation must be used to approximate the value functions, which is called the
approximate case.

4.2. Tabular Solution Methods
In the tabular case, the approximate value functions can be represented in arrays or tables since the state and
action spaces are small enough for the available memory capacity. Although the tabular solution methods are
not suited for the ATC problem, a brief explanation of the tabular solution methods is given since it provides
essential insights for the approximate solution methods.

The goal of a reinforcement learning agent is to find the optimum policy, which is referred to as the control
problem. To do so, an optimal method for estimating the value function must be found first. This is referred to
as the prediction problem. There are two categories of tabular solution methods. First of all there is dynamic
programming (DP), which refers to the collection of methods to compute optimal policies given a perfect
model of the environment as a MDP(R. S. Sutton and A. G. Barto 2018). Secondly, there are model-free meth-
ods such as temporal difference learning and Monte-Carlo learning. Each of them have a unique approach
to solving the prediction and control problem. For DP methods, the complete probability distributions of all
possible transitions is required. To complete a single iteration, the algorithm sweeps through the entire state
space,S. The iterative process of evaluating the policy and acting greedily upon the value function is guaran-
teed to converge to the optimal policy(R. S. Sutton and A. G. Barto 2018). This concept or process is referred
to as General Policy Iteration (GPI), and is visualised in Figure 4.3. GPI is used in the other RL algorithms as
well which shall be elaborated upon.

π Q

Evaluation

Improvement

Q ~ qπ

π	~	greedy(Q)

Figure 4.3: Overall idea of generalised policy iteration (GPI). Adapted from (R. S. Sutton and A. G. Barto 2018)

M.C. Hermans Towards Explainable Automation for ATC

46 4.2. Tabular Solution Methods

Model-free methods that are suited are any temporal-difference method (TD) or a Monte Carlo method
(MC). Both types of methods make use of the experience acquired in sample episodes. Therefore, the agent
interacts with the environment in both methods. The biggest difference between these two methods is that
Monte Carlo methods have to wait until the end of the episode before the return is known, and an update can
be performed, whilst TD can learn online after every step within the episode. TD methods namely bootstrap.
They base the update in part on an existing estimate and can therefore also learn from incomplete sequences
whilst MC methods cannot. TD methods are generally more practical than MC methods and widely used
in the reinforcement learning. However, as TD methods bootstrap, their target will have a certain bias as it
updates based on an estimate of the value function(R. S. Sutton and A. G. Barto 2018).

The idea of general policy iteration (GPI) used for DP is adapted for a model-free solution method to solve for
the control problem. Whereas in DP, the value functions are computed from knowledge, the value functions
are now learned from sample returns with the MDP(R. S. Sutton and A. G. Barto 2018). The return retrieved
from an experience can be calculated as discounted sum, which is shown in Equation 4.14.

Gt =
T−t∑
k=0

γk Rt+k+1 (4.14)

For Monte Carlo methods, the return is used to update the action values. This is shown in Equation 4.15.

vn+1
π (st) = 1

n

n∑
i=1

Gt

= vn
π (st)+ 1

n
[Gt − v j+1

π (st)]

= vn
π (st)+α[Gt − v j+1

π (st)]

(4.15)

Next to Monte Carlo, there are TD methods which do not need the episode to wait until the end of an episode
to learn and update the policy. The simplest form of TD methods is called TD(0), one-step TD, and entails
updating the value function as follows:

v j+1
π (st) ←− v j

π(st)+α[Rt+1 +γv j
π(st+1)− v j+1

π (st)] (4.16)

Essentially, the target of MC update is Gt , obtained after an entire episode, whilst the target of an one-step
TD update is Rt+1 +γvπ(st+1), which can be computed after a single step (R. S. Sutton and A. G. Barto 2018).
TD methods base its update on an estimate, they namely sample the expected values and use the current
estimate of vπ.

Neither Monte Carlo nor one-step Temporal Difference methods are always the best(R. S. Sutton and A. G.
Barto 2018). The ideologies of both methods can be combined in so called n-step TD methods, which gener-
alise both methods so one can shift smoothly between the two. An important limiting factor of the one-step
TD methods is that the time step determines both how often an action is taken as well as the interval over
which bootstrapping is performed. N-step TD methods decouples these two, enabling bootstrapping to oc-
cur over multiple steps. Whereas one-step TD methods considers one next reward and one next state, 2-step
TD methods consider the next two rewards and the estimated value of the two steps ahead. This is visualised
in Figure 4.4. In case n is increased to the number of samples in an episode, the n-step TD method is a Monte
Carlo method.

Towards Explainable Automation for ATC M.C. Hermans

4. Reinforcement Learning Fundamentals 47

TD(0) 2-step TD 3-step TD

...

Rt+1

MC, ∞-step	TD

...

RT

St

At

Rt+2

St+1

At+1

Rt+3

St+2

At+2

St+3

ST

Figure 4.4: Backup diagrams of n-step methods. Adapted from (R. S. Sutton and A. G. Barto 2018).

One of the problems that needs to be addressed by all the learning control methods is the conflict between
exploration and exploitation. An artificial agents seek to learn action values conditional on subsequent
optimal behaviour, but they also need to behave non-optimally in order to explore all actions and possibly
find the optimal solution(R. S. Sutton and A. G. Barto 2018). In general, there are two types of approaches to
this challenge, the on-policy and off-policy approach.

On-Policy Methods
On-policy methods attempt to evaluate or improve the policy that is used to make decisions, whereas off-
policy methods evaluate or improve a policy different from that used to generate the data. The policy being
learned is called the target policy, whilst the policy used to make decisions is called the behaviour policy.
Off-policy methods often show more variance and therefore converge more slowly than on-policy methods.
However, off-policies can be more powerful and general (R. S. Sutton and A. G. Barto 2018). First, the on-
policy model-free control methods are discussed.

To implement model-free methods in control, the same ideology as in DP, generalised policy iteration, can
be used. In GPI, both an approximate policy and approximate value function are maintained. There are two
types of on-policy control methods that use Monte Carlo methods, either first-visit MC or every-visit MC.
Policy evaluation is performed according to Equation 4.15, using the action-value function instead of the
state-value function. Policy improvement is performed by making the policy greedy w.r.t. the current value
function(R. S. Sutton and A. G. Barto 2018), which means that it tries to maximise this value function. For MC
methods it makes sense to alternate between evaluation and improvement on an episode-by-episode basis,
since MC requires the episode to be finished before being able to evaluate.

To ensure the agent continues to select exploratory actions, several approaches exist. In RL, the most com-
mon approach to ensure exploration as well as exploitation is by implementing ε-greedy policies. This means
that the agent takes an exploratory action, thus selects a random action, with a probability of ε. This means
that the greedy action has a probability to be selected of 1− ε+ ε

|A (s)| . The greedy selection is given by Equa-
tion 7.5, which essentially selects the action a for which the action value is maximised.

at
.= ar g max

a
Qt (st ,A(st)) (4.17)

The algorithm used for on-policy TD control is called SARSA(State-Action-Reward-State-Action). For on-
policy methods, first the state-action value function must be estimated to update the current policy π. This is

M.C. Hermans Towards Explainable Automation for ATC

48 4.2. Tabular Solution Methods

shown in Equation 4.18. Similar to the state-value function, the action-value update is based on an existing
estimate, Rt+1 +γQπ(st+1, at+1).

Qπ(s, a) ←−Qπ(s, a)+α[Rt+1 +γQπ(st+1, at+1)−Qπ(st , at)]. (4.18)

As in all on-policy methods, the action-value function for the behaviour policy π is continuously updated,
whilst at the same time changing the policy towards greediness w.r.t qπ(R. S. Sutton and A. G. Barto 2018).
Lastly, the on-policy control method which implements n-step TD prediction is called n-step SARSA.

Off-Policy Methods
As with on-policy methods, there exists both off-policy MC as well as TD methods. The most well known
off-policy TD methods is Q-learning, which was a major breakthrough in RL. Q-learning is defined by:

Q(st , at) ←−Q(st , at)+α[Rt+1 +γmax
a

Q(st+1, A(st+1))−Q(st , at)] (4.19)

In this case, the learned action-value function Q, directly approximates q?(R. S. Sutton and A. G. Barto 2018).
For correct convergence to the optimal policy, the only requirement is that all state-action pairs continue to
be updated, which is a minimal requirement since all methods finding the optimal policy must require it.
Q-learning is considered an off-policy method since it can learn from experience obtained from any policy.

Another method using the scheme of Q-learning is called Expected SARSA. In Expected SARSA, the algorithm
does not take the maximum over next state-action pairs but uses the expected value, taking into account the
likeliness of a certain action under the current policy(R. S. Sutton and A. G. Barto 2018). The action-value
update now becomes:

Qπ(st , at) ←−Qπ(st , at)+α[Rt+1 +γ
∑
a
π(a|st+1)Qπ(st+1, a)−Qπ(st , at)] (4.20)

Expected SARSA is computationally more demanding, but eliminates the variance obtained from the random
selection of At+1. Given the same experience, Expected SARSA therefore performs slightly better than the
regular SARSA algorithm(R. S. Sutton and A. G. Barto 2018).

A pitfall for Q-learning and SARSA is that these algorithms both involve maximisation over estimated values.
This can induce a positive bias, called the maximisation bias. To visualise this, imagine being in a state from
which one can choose three actions, of which the true action-value function equals zero. The agent, however,
sees the estimated values, which are uncertain and therefore distributed around zero. Although the true
maximum action-value for all actions is zero, the maximum will now be a positive value (R. S. Sutton and
A. G. Barto 2018).

A concept used to overcome this maximisation bias is double learning. In double learning, the episodes are
divided into two sets. Two independent estimates, Q1(a) and Q2(a), each try to estimate the true value q(a).
One of these can than be used to determine the maximisation action, A? = ar g max

a
Q1(a), and the other can

be used to estimate the value, Q2(A? = ar g max
a

Q1(a)). The estimate is unbiased since using this concept

resolves in the following: E[Q2(A?)] = q(A?). The role of the independent estimates can be reversed to get a
second unbiased estimate.

Having explored the possibilities within model-based methods and model-free methods, these two sets of
solution methods can be unified. In DP, the distribution model of the environment must be known. This
entails that the probabilities of next states and rewards for possible actions should be available. Such a model
is difficult to obtain. Alternatively, a sample model produces single transitions and rewards, similar to those
used by most of the model-free RL methods elaborated upon in this chapter. In DP methods, the optimal be-
haviour is planned, whereas in model-free methods, it is learned. It is straightforward to implement planning
methods which are based on an estimate of the model. To learn the model, (state, action) are mapped to (next
state, reward) (R. S. Sutton 1991). The RL agent then fully trusts its estimate of the model to plan the optimal
behaviour. One of these methods that uses model-learning is called Dyna, of which the working principles
is shown in Figure 4.5. The ideology of planning and learning of optimal behaviour can be brought together
using this iterative process.

Towards Explainable Automation for ATC M.C. Hermans

4. Reinforcement Learning Fundamentals 49

value/policy

ExperienceModel

acting

Direct
 RL

model
learning

planning

Figure 4.5: Dyna.

4.3. Approximate Solution Methods
Tabular solution methods are well-suited for problems with limited state and action spaces. Whenever the
state and action space becomes too large, approximate solution methods need to be implemented. In most
of the problems which need to be solved using approximate learning methods, the states encountered will
probably have never been seen by the agent before. Therefore, one of the big challenges in these solution
methods is generalisation. Since generalisation has been studied extensively, the RL methods can be ex-
tended with existing generalisation techniques. One of these techniques that RL often requires is function
approximation(R. S. Sutton and A. G. Barto 2018). Function approximation can be classified as supervised
learning since it expects to retrieve correct input-output behaviour of the function it tries to estimate. Broadly
speaking there are two types of RL solution methods for the approximate learning case which both incorpo-
rate function approximators. First of all, there are value-based methods and secondly there are policy-based
methods.

4.3.1. Value-Based Methods
Instead of representing the value function as a table, it is represented as a parameterised function with a
weight vector w ∈ RD . Thus, v̂(s, w) ≈ vπ(s), in which s is an approximate state value. v̂ might be a linear
function approximator such as a polynomial, but also an artificial multi-layer neural network in which w is a
vector representing the connection weights. In approximate learning methods, the weight vector most often
has a dimension which is much smaller than the number of states. In that case, a change of a single weight
influences multiple states.

In the tabular case, an explicit objective did not have to be specified for the prediction problem since the
value function could equal the true value function. An objective often used is the mean squared value error
(VE), which is shown in Equation 4.21. The VE gives an indication to what degree the approximation values
differ from the true values. As can be seen, the equation for the VE includes µs , which is the state distribution
representing relative importance of the error in each state s. µ(s) is often chosen as fraction of the time spent
in a certain state s, also referred to as the on-policy distribution.

¯V E(w)
.= ∑

s∈S
µ(s)[vπ(s)− v̂(s, w)]2 (4.21)

One of the most widely used function approximators are stochastic gradient descent methods (SGD). SGD
methods are especially well-suited for online reinforcement learning. In gradient descent methods, the weight
vector has a fixed number of real-valued components. Each step, this weight vector is adjusted by a small
amount in the direction that would reduce the error on the sample. In fact, the weight is updated propor-
tional to the negative gradient of the sample’s squared error(R. S. Sutton and A. G. Barto 2018). This is shown
in Equation 4.22. If α decreases over time in a way to satisfy the standard stochastic approximation condi-
tions, then the SGD method is guaranteed to converge to a local optimum(R. S. Sutton and A. G. Barto 2018).

wt+1
.= wt − 1

2
α∆[vπ(st)− v̂(st , wt)]2 = wt +α[vπ(st)− v̂(st , w)]∆v̂(st , wt), (4.22)

M.C. Hermans Towards Explainable Automation for ATC

50 4.3. Approximate Solution Methods

in which the gradient of f with respect to w is defined as follows:

∆ f (w)
.= (
δ f (w)

δw1
,
δ f (w)

δw2
, . . . ,

δ f (w)

δwd
)T . (4.23)

In case the precise value of a state is unknown, an unbiased estimate for the value of a state can be used,
Ut . There are several different RL methods which use gradient-descent such as the Gradient Monte Carlo
Algorithm. These algorithms differ in the way the estimate of the value function is derived and updated. For
a Gradient Monte Carlo Algorithm, the weight update would use the return of an episode, Gt , as unbiased
estimate of vπ(St):

w ←− w +α[Gt − v̂(st , w)]∆v̂(st , w) (4.24)

Whenever a bootstrapping estimate is used for the target Ut , the convergence guarantees do not hold. These
methods are semi-gradient methods. One of the advantages of semi-gradient methods is that these enable
significant faster learning, and they allow for continuous and online learning without having to wait for the
end of an episode. A typical semi-gradient method is semi-gradient TD(0), in which the value estimate Ut

.=
Rt+1 +γv̂(st+1, w). To improve the generalisation in function approximation, state aggregation can be used.
This technique groups states together, with one estimated value for each group.

An approximate function which is a linear function of the weight vector is called a linear method. In linear
methods, there is a real-valued vector corresponding to every state, x(s), with the same amount of compo-
nents as the weight vector. This vector is called the feature vector. The state-value function approximate is
then composed by the inner product of the feature vector and the weight vector:

v̂(s, w)
.= wT x(s)

.=
d∑

i=1
wi xi (s). (4.25)

Since ∆v̂(s, w) = x(s), SGD updates can be used in linear function approximation. These methods prove to
converge to or near a global optimum since it is only one optimum(R. S. Sutton and A. G. Barto 2018). An
example of a linear method which incorporates SGD as a learning method is n-step semi-gradient TD. The
details of this algorithm can be found in (R. S. Sutton and A. G. Barto 2018). There are several methods to
effectively represent the feature vector for linear methods. These are summarised below:

• Polynomials: for some tasks, separate state representations alone do not effectively represent the state.
One might be more interested in the interaction of these states and therefore these interactions can be
added as separate states. The state vector for a k-dimensional state-space can then be represented as a
polynomial: xi (s) =Πk

j=1s
ci , j

j , in which ci , j is an integer in the set 0,1, ...,n for an integer n ≥ 0. Higher-

order polynomials generally allow for more accurate state representations. However, the number of
features grows exponentially in a polynomial. Therefore, one must choose a subset of these based on
prior beliefs and knowledge. The curse of dimensionality should be taken into account in choosing a
subset of the polynomials. In general, polynomials are not recommended for online learning.

• Fourier Basis: the feature vector is here represented as a sum of sines and cosines. The advantage
of using Fourier series is that the approximation can filter out high-frequency components which are
considered as noise. However, this also results in the fact that local properties are difficult to represent.

• Coarse Coding, Tile Coding: in coarse coding, the state-space is composed of circles representing fea-
tures. In case the state is inside a circle, that feature is said to be present and retrieves the value 1.
The other features are then 0 and called absent. In tile coding, hashing can be used to reduce mem-
ory. Hashing is a method to reduce features with a potentially infinite feature vector to a table with
fixed-size.

Towards Explainable Automation for ATC M.C. Hermans

4. Reinforcement Learning Fundamentals 51

Figure 4.6: Coarse coding. It is a generalisation technique in which state s is transformed to s′. The receptive fields, in this case circles,
have one feature in common (the overlapping area). Therefore there will be slight generalisation between them.

• Radial Basis Functions: natural generalization of coarse coding to continuous-valued features.

Apart from the linear feature representations, there are also nonlinear function approximators. Among these,
the most widely used are the Artificial Neural Networks (ANNs). A detailed explanation on neural networks is
given in chapter 6.

4.3.2. Policy Gradient Methods
Whereas for value-based methods the algorithms learn the values and select actions based on these learned
values, policy gradient methods instead learn a parameterised policy that can select actions without con-
sulting a value function. These methods learn the policy parameter based on the gradient of a scalar per-
formance measure J (θ) w.r.t. the policy parameter. The algorithm seeks to optimise the performance, and
therefore updates using stochastic gradient ascent in J, as shown in Equation 4.26. If J is a loss function, one
wants to minimise this objective. To do so, updates are performed using gradient descent. Methods employ-
ing stochastic gradient descent are well-suited for online learning. Online learning means that the agent can
learn learn from data that becomes available in a sequential order, instead of having to update on the entire
training set.

θt+1 = θt +α ˆ∆J (θt), (4.26)

In this equation ˆ∆J (θt) ∈ Rd ′
is a stochastic estimate whose expectation approximates the gradient of the

performance measure w.r.t. its arguments θt (R. S. Sutton and A. G. Barto 2018).

Methods which learn the value function next to the policy, are called Actor-Critic Methods (AC). In these
methods, the ‘actor’ and ‘critic’ refer to the learned policy and the learned value function respectively. The
policy can be parameterised in any way, as long as π(a|s,θ) is differentiable w.r.t. its parameters. That is as
long as the gradient of the policy, ∆π(a|s,θ), exists and is finite for all s ∈ S, a ∈ A(s), and θ ∈ Rd ′

. A param-
eterisation suitable for environments with limited action spaces is called soft-max in action preferences. The
actions with the highest preference, defined by h(s, a,θ) ∈ R, are given the highest probabilities of being se-
lected. The actions themselves can be parameterised arbitrarily by e.g. a deep artificial neural network or a
linear function.

In action value methods, an ε-greedy action selection is performed. Approximating a policy has three main
advantages over ε-greedy action selection:

• Approximate policy can approach a deterministic policy whereas for ε-greedy selection there is always
a probability, ε, of selecting a random action.

• Enables the selection of actions with arbitrary probabilities which might be useful for card games in
which incomplete information is available to the agent. ε-greedy have no natural way to produce
stochastic policies.

• For a specific problem, the policy might be a simpler function to approximate than the action value
function, for which a PD method will learn faster and yield a superior policy (R. S. Sutton and A. G.
Barto 2018).

M.C. Hermans Towards Explainable Automation for ATC

52 4.3. Approximate Solution Methods

In PG methods, one wants to know the performance gradient w.r.t. the policy parameter. However, this
gradient is dependent on both the action selections and the distribution of the states in which these selections
are made. The latter effect is often unknown since it is a function of the environment. In the episodic scenario,
the Policy Gradient Theorem provides a solution to this problem. This theorem derives an expression for the
performance w.r.t. the policy parameter which is not dependent on the unknown distribution of the states,
shown in Equation 4.27.

∆J (θ) ∝∑
s
µ(s)

∑
a

qπ(s, a)∆π(a|s,θ), (4.27)

in which µ(s) is the on-policy distribution under π and often chosen as the fraction of the time spent in
state s. One of the first policy gradient methods to be developed was REINFORCE. REINFORCE is a Monte
Carlo policy gradient algorithm and therefore uses the return retrieved through an entire episode to update
its policy. The derivation from the policy gradient theorem to an expression in which the return can be used
is shown in Equation 4.28

∆J (θ) ∝∑
s
µ(s)

∑
a

qπ(s, a)∆π(a|s,θ)

= Eπ[
∑
a

qπ(st , a)∆π(a|st ,θ)]

= Eπ[Gt
∆π(a|st ,θ)

π(a|st ,θ)
] ;Because qπ(s, a) = Eπ[Gt |s, a]

(4.28)

This derivation results in the REINFORCE update according to the generic stochastic gradient ascent algo-
rithm(Equation 4.26):

θt+1
.= θt +αGt

∆π(at |st ,θt)

π(at |st ,θt)
(4.29)

An often implemented extension to this algorithm is Reinforce with Baseline. In this method a baseline value
is subtracted from the return, Gt , to reduce the variance of the gradient estimation whilst not influencing
the bias. A more detailed explanation can be found in (R. S. Sutton and A. G. Barto 2018). Like all Monte
Carlo methods, REINFORCE tends to learn slow and is inconvenient for online implementations or continu-
ing problems. As seen in the tabular case and for value approximation methods, temporal difference meth-
ods provide a solution since these methods bootstrap. The policy gradient methods suitable for continuing
problems are actor-critic methods with a bootstrapping critic. Another advantage is that the bias introduced
through bootstrapping is often beneficial to the learning speed as it reduces variance. The actor and critic are
defined as follows:

• Critic: the critic updates the weights of either the action-value function or the state-value function,
q̂(s, a, w) or v̂(s, w) depending on the algorithm.

• Actor: the actor updates the policy parameters θ of π(s|a,θ), in the direction indicated by the critic.

For the episodic one-step actor-critic method, the full return as used in REINFORCE is replaced by the one-
step return.

θt+1
.= θt +α(Rt+1 +γv̂(st+1, w)− v̂(st , w))

∆π(at |st ,θt)

π(at |st ,θt)

= θt +αδt
∆π(at |st ,θt)

π(at |st ,θt)

(4.30)

This ideology can easily be extended with an n-step return or the addition of eligibility traces. For Policy
gradient methods used for continuing problems, the performance should be defined in terms of the average
rate of reward per time step (R. S. Sutton and A. G. Barto 2018).

J (θ)
.= r (π)

.= l i m
h−→∞

1

h

h∑
t+1

E[Rt |S0, A0:t−1 ∼π]

= l i m
t−→∞E[Rt |S0, A0:t−1 ∼π]

(4.31)

Towards Explainable Automation for ATC M.C. Hermans

4. Reinforcement Learning Fundamentals 53

The pseudo code for an on-policy actor-critic method is given in 1. In this algorithm one can clearly see how
the TD error is influenced by the critic and how this influences the update of the policy parameter.

Algorithm 1 Actor-Critic with Eligibility Traces (continuing), for estimation πθ ≈ π?. Adapted from (R. S.
Sutton and A. G. Barto 2018).
Require: A differentiable policy parameterisation π(a|s,θ) A differentialbe state-value function parameteri-

sation v̂(s, w)
Parameters: : trace-decay rates λθ ∈ [0,1], λw ∈ [0,1]; step sizes αθ > 0,αw > 0,αR > 0

1: initialise: Policy parameter θ ∈Rd ′
and state-value weights w ∈Rd (e.g. to 0)

2: for episode n in episodes do
3: Initialise s0

4: zθ ←− 0
5: (d ′-component eligibility trace vector)
6: zw ←− 0 (d-component eligibility trace vector)
7: I ←− 1
8: while st is not terminal do
9: at ∼π(·|st ,θ) Take action at , observe st+1,Rt

10: δ←− Rt − R̄t + v̂(st+1, w)− v̂(st , w)
11: R̄ ←− R̄ +αR̄δ

12: zw ←− γλw zw +∆v̂(st , w)
13: zθ ←− γλθzθ+ I∆lnπ(at |st ,θ)
14: w ←− w +αwδzw

15: θ←− θ+αθδzθ

16: I ←− γI
17: st ←− st+1

18: end while
19: end for

1em

Up until now, only on-policy gradient descent and ascend methods have been covered. In other words, the
training samples are gathered according to the target policy. However, off-policy actor-critic methods provide
some additional advantages:

• Experience replay can be implemented, increasing the data efficiency

• Since the samples are gathered with a behaviour policy, these algorithms have better exploration prop-
erties.

The off-policy gradient descent methods shall be discussed in more detail in the next chapter. An overview of
the fundamental algorithms discussed in this chapter is shown in Figure 4.7 and Figure 4.8.

M.C. Hermans Towards Explainable Automation for ATC

54 4.4. Concluding Remarks

Tabular solution
methodsContinuous Methods

Approximate value function
represented as a table

Episodic Solution
Methods

On-policy Off-policy

TD(λ)

True online TD(λ)

n-step truncated TD(λ)
Sarsa(λ)

Dynamic
Programming

Requires complete
knowledge of the system

dynamics

On-policy first-visit
 MC control (є-greedy) Off-policy MC control

MC with exploring starts

Sarsa: on-policy TD control Q-learning: off-policy TD controlExpected-Sarsa

n-step Sarsa

Off-policy n-step Sarsa

Off-policy n-step Q(σ)

Eligibility Traces

Dyna

Tabular Dyna-Q

Prioritized sweeping Real-time DP

Monte Carlo Tree Search

Figure 4.7: Overview of tabular RL solution methods. In this overview, a clear distinction is made between continuous and episodic
methods, and between on- and off-policy methods.

Approximate Solution
Methods

Episodic Solution
Methods

Approximate Value function is
represented as a parameterized

functional form with weight vector
w

Continuous Solution
Methods

Linear methods: v = w*x(s)

Non-linear methods:

polynomials

Fourier Basis Coarse Coding

Tile Coding

Radial Basis functions

Artificial Neural Networks

Deep Residual Learning

CNNs

LSTD: Data efficient,
 computationally demanding

ParametricNon-Parametric

Memory-Based

Nearest neighbor
weighted average methods

Locally weighted regression

Kernel regression

Semi-Gradient

Sarsan-step Sarsa

On-Policy Semi-Gradient

Sarsa n-step Sarsa

Eligibility Traces

TD(λ)

True online TD(λ)

n-step truncated TD(λ)

Sarsa(λ)	with	binary	features	
and	linear	function	approx

True online Sarsa(λ)

Off-Policy

Watkin's Q(λ)
TB(λ)Action-Value BasedPolicy-GradientLearn a Parameterised

Policy

REINFORCE: Monte Carlo
 Policy Gradient

REINFORCE with Baseline
Actor-Critic
Methods

State-value learned as
critic

One-step Actor-Critic

Episodic Solution
Methods

Continuous Solution
Methods

Actor-Critic
Methods

AC with Eligibility Traces AC with Eligibility Traces

Off-Policy: high variance,
complex still

Well-suited for online Learning as it
uses Stochastic Gradient Descent

Figure 4.8: Overview of approximate RL solution methods. In this overview, a clear distinction is made between continuous and
episodic methods, and between on- and off-policy methods. Methods employing stochastic gradient descent are well-suited for online

RL.

4.4. Concluding Remarks
In this chapter, an introduction to MDPs and the associated tabular and approximate solution methods for
RL is given. The CD&R task of ATC can be extremely simplified in order to be suited for tabular solution
methods. Although applying tabular solution methods might prove that RL can be used to optimise traffic
scenarios, the solution cannot be extended to realistic traffic situations due to the increment in state and
action spaces. Past automation efforts of the CD&R task, which were discussed in section 2.5 have achieved
promising results in upholding safe operations by using deep reinforcement learning. In deep RL, the state-

Towards Explainable Automation for ATC M.C. Hermans

4. Reinforcement Learning Fundamentals 55

action value function and/or policy is approximated using deep neural networks. This category of methods
belongs to the approximate solution methods.

Before surveying state-of-the-art deep RL algorithms, the next chapter introduces the main concepts of deep
learning.

M.C. Hermans Towards Explainable Automation for ATC

5
Deep Learning: Extracting Information

from Visual Imagery

In 2012, a great milestone was achieved when an agent trained with deep learning methods had matched
human performance on image recognition tasks (Cireşan, Meier, and Schmidhuber 2012). From that moment
on, deep learning techniques have been applied to a wide variety of tasks involving visual imagery. The raw
pixel-date of the SSD will be used as input for the RL algorithm. Therefore, deep neural networks shall be used
to approximate a value function or a policy directly. In this chapter the working principles of Deep Learning
are set out.

First, section 5.1 introduces two commonly used neural networks: Artificial (ANN) and Convolutional Neural
Networks (CNNs). Then, section 5.2 explains the activation functions required in deep neural networks. Hav-
ing explained some of the fundamentals of RL, an example of an ANN is setup in section 5.3 which is used
throughout the remainder of this chapter. Section 5.4 elaborates on the objective function of deep learning
algorithms. section 5.5 explores the different optimisation algorithms available to meet the objective. Finally,
the regularisation techniques used to avoid overfitting on the training data are explained in section 5.6

5.1. Artificial and Convolutional Neural Networks

Networks with deep architectures can automatically create learning features instead of fully relying on "hand-
crafted" features (Sutton and Barto 2018). In deep learning, there are three general types of neural networks:
ANNs, CNNs and Recurrent Neural Networks (RNNs). The focus of this chapter is only on ANNs and CNNs.
The reason for this is that RNNs are useful for sequence prediction problems such as analysing language,
which is not applicable to this research.

An ANN, also known as Multilayer Perceptrons (MLPs), is useful for regression and classification prediction
given (tabular) input data. In this research, an ANN can be useful if the ATC environment is represented by
a state-space consisting of multiple parameters such as the coordinates of the aircraft in the sector. An ANN
is composed of an input, output and a set of "hidden" layers. The amount of hidden layers represent the
‘deepness’ of the neural network. An example of an ANN is given in Figure 5.1. This example has three inputs,
two outputs and two hidden layers. During training of a RL agent, the network weights are updated in order
for the network to accurately estimate the outputs, given the inputs.

56

5. Deep Learning: Extracting Information from Visual Imagery 57

Inputs
Hidden Layers

Outputs
h1 h2

o1

o2

I1

I2

I3

Weights

Wo
W2W1

Figure 5.1: Example of an ANN with two hidden layers.

A class of deep learning networks which is generally applied to visual imagery, or any other grid-like topol-
ogy, is called Convolutional Neural Networks (Goodfellow, Bengio, and Courville 2016). The definition as
given in (Goodfellow, Bengio, and Courville 2016) is the following: "Convolutional networks are simply neu-
ral networks that use convolution in place of general matrix multiplication in at least one of their layers." By
applying multiple convolutions, or filters, visual features such as edges and lines can be extracted from an
image. A convolution is denoted by an astrix and the standard convolution operation applied in CNNs is
shown in Equation 5.1. In this equation k is referred to as the kernel function, which is a probability density
function. The output is essentially a weighted average and is often referred to as the feature map.

s(t) = (x?k)(t) =
∫ ∞

−∞
x(τ)k(t −τ)dτ (5.1)

When convolutions are applied to multi-dimensional input arrays, the kernel is also a multi-dimensional
array of which the parameters are adjusted during training. An example of this is shown in Figure 5.2. During
training, the parameters of the kernel, w, x, y and z, are adapted. One can also see that the kernel is essentially
slided over the input image to generate the values of the new 2x3 output map.

M.C. Hermans Towards Explainable Automation for ATC

58 5.1. Artificial and Convolutional Neural Networks

Figure 5.2: Example of a 2D convolution operation. In this image, the kernel matrix has a width of 2 and height of 2. (Goodfellow,
Bengio, and Courville 2016)

One of the advantages of a CNN with a kernel size smaller than the input is that it reduces the amount of
parameters that need to be stored and improves its statistical efficiency (Goodfellow, Bengio, and Courville
2016). In a fully connected neural network, each weight is used only once when computing the output. If
you have a neural network with m inputs and n outputs, the network requires mxn parameters and O(mxn)
run time1. However, if the convolutional layer has a kernel width of three (1D example), k = 3, the input
only affects three outputs instead of all outputs. This means that you have to store kxn parameters and
O(kxn) run time. As one can see, this can significantly lower the computational complexity and memory
requirements. Additionally, parameter sharing can be applied to further reduce the storage requirement of
kxn weights down to k weights. Instead of learning weights of the kernel for every separate location in the
multi-dimensional array, a single set of weights is learned.

A convolutional layer is typically composed of three stages. In the first stage, the convolution is applied. After
this, a nonlinear activation function is applied to introduce nonlinearity. More details on this are described in
the next section. Finally, a pooling layer is applied to convert the output of this nonlinear activation function
to some summary statistic. The goal of this pooling layer is to ensure that the network is invariant to small
local translations of the input. In Figure 5.3, an example of a max pooling operation is shown. A node in the
final output is affected by three nodes of the input of the pooling layer, taking the maximum value of these
nodes. When applying a pooling layer to a 2D array, applying a max pooling operation ensures that the output
is invariant to small translations and rotations of that image. The degree to which it is invariant is dependent
on the size of the pooling operation.

1Big O notation: indicates how the run time or space requirements grow as the input size grows (Avigad and Donnelly 2004)

Towards Explainable Automation for ATC M.C. Hermans

5. Deep Learning: Extracting Information from Visual Imagery 59

Figure 5.3: Example of a max pooling operation. The final output nodes (upper layer) are each affected by three nodes from the input of
the pooling layer (lower layer). (Goodfellow, Bengio, and Courville 2016)

Next to applying a kernel, there are other variants on the basic convolution. The most popular ones are
summarised below:

• Padding: when a kernel matrix is applied to the input image, the size of the output is dependent on the
size of the input and kernel. In case the kernel size is larger than 1, the image ‘shrinks’, as illustrated
in Figure 5.2. This causes the NN to lose information at the borders. To prevent that from happening,
zero-padding can be applied. Zero padding extends the input array is extended with zeros to ensure
that the image does not shrink.

• Striding: this defines the number of pixels the kernel shifts at a time. If the stride is 1, the kernel is
shifted one pixel to the right/left/down/up at a time. If the stride value becomes larger, the image is
essentially downsampled.

Figure 5.4: Stride operation visualised.(Goodfellow, Bengio, and Courville 2016)

In Figure 5.5, one can see an example of a CNN. In this CNN, an input image of size 32x32 is mapped to an
output layer of size 10. In the first convolution layer, six different kernels of size 5x5 are applied to get an acti-
vation layer consisting of 6 feature maps (C1). The total size of the output of this operation is 28x28x6. Pixels
are lost at the border as the kernel has a size of 5x5. Subsequently, an average pooling operation that takes
the average of a 2x2 pixel area is applied, converting the 2x2 pixel area to a single pixel value. It essentially
subsamples the array to a size of 14x14x6 (S2). In the second convolutional layer (C3), a kernel with size 5x5
is applied with 16 feature maps. Then, the same pooling layer is applied to subsample the activation layer
to the size of 5x5x16 (S4). Finally, a convolutional layer is applied with 120 feature maps and a kernel of size
5x5, which flattens the activation volume into a vector (C5). The last two layers are a hidden layer with 84
(F6) neurons and an output layer of 10 neurons (OUTPUT). Finally, the softmax layer is applied to convert
the predicted output classes to a probability density function.

M.C. Hermans Towards Explainable Automation for ATC

60 5.2. Activation Function

Figure 5.5: Convolutional Neural Network structure (LeNet5) for character recognition.(LeCun et al. 1998)

5.2. Activation Function
To describe the features present in a state, a nonlinear function is needed (Goodfellow, Bengio, and Courville
2016). To do so, hidden layers have activation functions which determine the hidden layer values. If no
activation would be applied, the output would simply be a linear function of the input. The most commonly
used activation function is the rectified linear unit (ReLU), which is described using Equation 5.2. As one can
see in Figure 5.6, the function takes a value of zero for z ≤ 0 and becomes a ramp function after zero.

g (z) = max{0, z} (5.2)

Figure 5.6: The ReLU activation function. This activation function is the default activation function recommended for use with all
neural networks. Applying this function to the output of a linear function results in a nonlinear output. (Goodfellow, Bengio, and

Courville 2016)

Other activation functions are sigmoid and the hyperbolic tangent functions. These however suffer from
vanishing gradients, especially in deep neural networks.

5.3. Example of an ANN for Classification

x1

x2

h1

h2

y

f1() f2()

f3()w1

w2

w3

w4

w5

w6

W w

Figure 5.7: Example neural network used throughout this chapter.

Towards Explainable Automation for ATC M.C. Hermans

5. Deep Learning: Extracting Information from Visual Imagery 61

Since an ANN is more intuitive as a CNN, an ANN will be used as running example for the next sections to
elaborate on the optimisation phase of the learning process. The ANN, shown in Figure 5.7, has two inputs
and one output. The ANN has a simple structure and is fully connected.

The goal of this ANN is to classify something based on the two inputs. So, e.g. to classify whether an aircraft
is in the climbing phase based on its vertical speed and altitude. The forward propagation through this ANN
is shown in Equation 5.3. In this equation, g () represents any activation function that can be applied in the
hidden layers, e.g. a maximisation. Furthermore, cT and b represent bias nodes which are added to increase
the flexibility of the model.

f (x;W) = g (x1w1 +x2w2 + c1)w5 + g (x1w3 +x2w4 + c2)w6 +b = g (W xT + cT)+b (5.3)

When viewing this at a higher level, by just looking at the layers, the forward pass becomes the following:

f (x;W) = f 3(f 2(f 1(x))), (5.4)

in which f1 is the input layer, f2 the hidden layer and f3 the output layer. The classifier in this case thus is
y = f (x;W) and one wants to optimise this function to accurately classify y , f (x;W) −→ f (x;W ?).

5.4. Loss Function
In this classification example, one wants the network to classify the input correctly. To update the weights in
the network, these must be updated with regard to some objective. A logical loss function, also referred to
as cost function, for this example would be the mean squared error of the classification and the value in the
training data set. This is shown in Equation 5.5. When updating the parameters using batches, the total loss
function is a sum of these individual classification losses, as shown in Equation 5.6.

L(x, y ;W) = (f (x;W)− y)2 (5.5)

J (W) = 1

n

n∑
i=1

L(xi , yi ;W) (5.6)

The goal of the optimisation process is to minimise this loss function. Having a loss function of zero would
mean that all classification in the training batch are done correctly. If a small change is made to W , the loss
function changes according to:

L(x, y ;W +ε) ≈ L(x, y ;W)+εL′(x, y ;W) (5.7)

Whenever the gradient of the loss function is negative, a step in the positive direction needs to be taken
to minimise the loss function. To minimise the loss function, a step in the opposite sign of the gradient
should thus always be taken. This is called stochastic gradient descent. The gradient of the loss function
is composed of a vector containing all the partial derivatives of the loss function with respect to the weight
parameters, dL

dW . An efficient technique to compute the gradient is called backpropagation.

5.5. Optimisation
Having set an objective, one wants to update the weight parameters to improve the value of the objective
function. A widely known algorithm to do is called stochastic gradient descent. In this algorithm, a step
is taken in the negative direction of the gradient of the loss function. This is shown in Equation 5.8. In this
equation, ε is the learning rate. This is an important hyper parameter to tune since a learning rate which is too
high might lead to the neural network never being able to learn since it overshoots the optimum constantly.
On the flip side, a learning rate which is too small will take very long to find a good solution.

θ′ = θ−ε∆θ J (W) (5.8)

Since the introduction of SGD, few improvements on this algorithm have been made. One of the disadvan-
gates of SGD is that all the weights are updated with the same step size. To improve on this, Root Mean Square
Propagation (RMSProp) was developed. In this algorithm, parameter specific learning rates are maintained
which are updated based on the exponentially weighted moving average of the mean magnitude of the gradi-
ents in the previous updates. Another gradient descent algorithm which tackles this problem is the Adaptive

M.C. Hermans Towards Explainable Automation for ATC

62 5.5. Optimisation

Gradient algorithm (AdaGrad). This algorithm scales the parameter specific learning rate inversely propor-
tional to the square root of the sum of all the previously obtained values of the gradient and is especially
useful for environments in which the gradients are sparse(Goodfellow, Bengio, and Courville 2016). More
details about the exact working principles of this algorithm can be found in (Duchi, Hazan, and Singer 2011).

Lastly, an algorithm which combines RMSProp with momentum was developed in (Kingma and Ba 2014)
and is called the Adam (adaptive moments) Optimisation Algorithm. Momentum is incorporated as an
estimate of the first-order moment (with exponential weighting) of the gradient. Furthermore, an estimation
of the second-order momentum term is included. These estimates are corrected with a bias term to account
for their initialisation at the origin(Goodfellow, Bengio, and Courville 2016). This is currently the most widely
used optimiser since it slightly outperforms RMSprop in the end of the optimisation when gradients become
sparser due to the incorporated bias correction terms(Ruder 2017). In Figure 5.8, a comparison between
optimisation algorithms, used to train an algorithm on the MNIST data set is shown. It can be seen that the
Adam algorithm slightly outperforms the other algorithms.

Figure 5.8: Comparison of optimisers on the MNIST data set. It can be seen that Adam slightly outperforms other algorithms. (Kingma
and Ba 2014)

5.5.1. Back Propagation
Computing the gradient needed for the optimisation is computationally demanding due to the large amount
of weights present in a NN. Backpropagation is an efficient method to compute gradients. It does this through
re-using values. For the loss function in Equation 5.5, the gradient is composed of the partial derivatives
dL

dW , dL
dc , dL

db . Let’s consider the first two partial derivatives. Using the chain rule, these can be computed as
shown in Equation 5.9 and Equation 5.10.

dL

dW
= dL

d f

d f

d z

d g

dW
(5.9)

dL

dc
= dL

d f

d f

d z

d g

dc
(5.10)

One can see that for the computation of both these partial derivatives, dL
d f

d f
d z needs to be calculated. Back-

propagation uses this commonality to reuse these values once they have been calculated to efficiently com-
pute the partial derivatives(Goodfellow, Bengio, and Courville 2016). In Equation 5.11 - Equation 5.14 it can
be seen that if calculated in the correct order, values can be reused when calculating partial derivatives. In
these equations, x̄ = dL

d x .

f̄ = dL

d f
(5.11) z̄ = f̄

d f

d z
(5.12) W̄ = z̄

d z

dW
(5.13) c̄ = z̄

d z

dc
(5.14)

The topological order of computations need to be known to effectively reuse values. To get the topological
order, first a computational graph is setup. The computational graph for the example is shown in Figure 5.9.

Towards Explainable Automation for ATC M.C. Hermans

5. Deep Learning: Extracting Information from Visual Imagery 63

In a computational graph, nodes can be a scalar, matrix or tensor whilst the lines connecting them represent
operations. From the computational graph it can be seen that the topological order of the running example
is (c,x,w,z,b,y’,y,L). To calculate the loss, the forward pass is performed. In the forward pass, ni is evaluated
using its function f (i)(ni).

X z

c

w

y'

y

L

b
Compute Gradient

Compute Loss

Figure 5.9: Computational graph of the example shown in Figure 5.7.

During the backward pass, the gradient is computed. To do so, only the gradient with respect to the children
of that node need to be computed. This is shown in Equation 5.15. Using this equation, the gradient of bias

term b would be: b̄ = ȳ ′ d y ′
db . n̄N = 1 since the gradient with respect to itself is 1. Using this approach, gradients

can be calculated efficiently. Each node aggregates the error signal of its children and passes on a message
from its parents.

n̄i =
∑

n j ∈C hi ldr en(ni)
n̄ j

dn j

dni
(5.15)

5.6. Regularisation
In deep learning, one wants to find a balance between fitting the training data and having a generalised
model. When fitting a function on training data, the function can underfit, fit the data just right or overfit the
data.

To avoid the neural network from overfitting on the training samples, regularisation techniques can be ap-
plied to the neural network. Regularisation techniques discourage overly complex models. Below, the most
widely applied regularisation techniques are explained.

• L1 and L2 regularisation: these are parameter norm regularisers. Essentially, an extra term is added
to the loss function to construct the regularised loss. For L2 regularisation, also referred to as weight
decay, this is shown in Equation 5.16. The goal of this regularisation technique is to drive the weights
closer to the origin. In L1 regularisation, weights are allowed to decrease all the way to zero, essentially
removing nodes and thus selecting certain features from the network. For L1 regularisation the added
term is α||w ||1.

J̃ (w ; x, y) = α

2
wT w + J (w ; x, y) (5.16)

• Early stopping: prematurely stop the optimisation process to limit the overfitting on the training set.
Instead of optimising towards w?, updates try to reach the regularised optimum w̃ . This is only useful
if the weights are initialised near zero.

• Noise robustness: adding noise the network weights and outputs encourages stability of the model.
Adding noise to the input data would actually be the same as training set augmentation. (Graves 2011)

• Dropout: randomly remove nodes/units from the neural network during training. This essentially re-
moves more and more complex features. More details can be found in (Geoffrey E. Hinton et al. 2012).

5.7. Concluding Remarks
In this chapter, the main concepts of Deep Learning have been explained. When representing the state of
an environment using variables, one should use an ANN. For visual imagery, CNNs are used as they can

M.C. Hermans Towards Explainable Automation for ATC

64 5.7. Concluding Remarks

extract visual features from the image by applying multiple convolutions. Activation functions are critical for
learning complex relations since these add non-linearity. In the learning phase, Deep learning algorithms
try to minimise a loss function using an optimiser. In general, the best performing optimiser is the Adam
optimiser. This optimiser will therefore also be used in this thesis. To optimise the loss function, optimisers
update the weights in the negative direction of the gradient of the loss function. Backpropagation is applied
to efficiently calculate the gradients. Lastly, one wants to avoid overfitting on the training data. To do so, one
can apply different regularisation techniques such as dropout and parameter norm regularisation.

In deep reinforcement learning these concepts are used to train a network to estimate either an actor policy
or a value function. Whenever the input of a network is an image, it is common to use a CNN to represent the
policy or value function.

Towards Explainable Automation for ATC M.C. Hermans

6
State-of-the-Art Reinforcement Learning

Algorithms

In this chapter, deep reinforcement learning techniques are explored which can be used to develop au-
tonomous ATC by using the SSD as input. Following the chapters introducing RL and Deep learning, this
chapter aims to answer research question 2c: ’Which deep RL algorithms are useful for a multiple-aircraft
traffic scenario?’. First of all, the trade-off between single agent and multi-agent RL is made in section 6.1.
Since the ATC CD&R task has a certain hierarchy to it, hierarchical reinforcement learning is elaborated on in
section 6.2. Then, in section 6.3, the state-of-the-art reinforcement learning algorithms are explained.

6.1. Single Agent vs. Multi-Agent RL (MARL)
The multi-agent environment is fundamentally more complex than the single-agent environment since mul-
tiple agents interact with the environment at the same time. Research in multi-agent RL is mainly focused on
two focal points (L Buş oniu Buş oniu et al. 2008):

• Stability of the agents’ learning dynamics. A

• adaption to the changing behaviour of the other agents.

MARL comes with quite a few challenges. First of all, the curse of dimensionality has an effect on the learning
performance of the agents. The introduction of a new agent will add dimensions to the joint state-action
space, which leads to an exponential increase of computational complexity. Secondly, non-stationarity arises
since all agents are learning simultaneously. The agents therefore face a moving-target learning problem
since the optimal policy varies dependent on the changing policies of the other agents. Thirdly, just as with
single agent RL, the exploration-exploitation trade-off must be addressed in MARL. In the MARL scenario,
the agents do not only have to explore the environment, but they should also explore other agents. Consider
an agent which tries to explore the behaviour of other agents, which simultaneously are also exploring, then
this might destabilise the learning of the agent (L Buş oniu Buş oniu et al. 2008). To deal with these problems,
coordination between agents is required.

There are two main approaches to MARL, namely the decentralised and centralised approach. In the decen-
tralised approach, independent learners directly use the algorithms which are valid for the single-agent case
in the multi-agent setting. This however violates the Markov property which states that the future dynamics
and reward only depends on the current state (Hernandez-Leal, Kartal, and Taylor 2019). This method can
therefore fail in settings in which an opponent of the agent learns based on the past history of interactions.
However, in terms of scalability, this method has proven to be advantageous. An example of such an algo-
rithm is Dec-HDQRN (Omidshafiei et al. 2017). In centralised methods, agents have a shared critic that is
provided with the policy of all agents during training and a decentralised actor to optimise the policy. These
learning methods do not suffer from the non-stationarity from which decentralised methods suffer.

According to (Hernandez-Leal, Kartal, and Taylor 2019), modern MARL algorithms can further be subdivided
into four categories:

• Emergent behaviours: these algorithms explore the use of classical RL algorithms for a single agent
setting in the multi agent setting.

65

66 6.2. Hierarchical Reinforcement Learning

• Learning communication: in these works, agents share information with each other through certain
communication protocols.

• Learning cooperation: most research in this category is focused on fostering cooperation in learning
agents.

• Agents modelling agents: these works are focused on agents which try to construct models of the other
agents to predict their future behaviour in the environment.

Successful implementations of multi-agent RL to automate ATC were developed in (Brittain and Wei 2019;
Brittain, Yang, and Wei 2020). In (Brittain and Wei 2019), a Deep Distributed Multi-Agent Reinforcement
Learning framework (DD-MARL) was implemented. In this framework, a centralised learning with decen-
tralised execution framework is utilised. The learning architecture consists of a single neural network in
which the actor and critic share layers of the same neural network, reducing the number of parameters to
be trained. This is shown in Figure 6.1a.

(a) Learner neural network architecture used in (Brittain and Wei 2019) (b) Learner neural network architecture used in (Brittain, Yang, and Wei 2020)

Figure 6.1

A common disadvantage of many multi-agent RL problems is that an increase in agents, also increases the
shared state dimensions. The effect of this relates to the curse of dimensionality, but is also a limitation in the
sense that general feedforward neural networks typically require a fixed-size input which prohibits a decre-
ment or increment in the initial number of agents. This problem was also addressed in (Brittain and Wei
2019) by letting each agent have access to the state information of N-closest agents. The hyper-parameter
N had to be tuned through experimentation in a single traffic scenario, limiting the transferability to other
environments. (Brittain, Yang, and Wei 2020) addressed this problem by implementing an attention layer,
shown in Figure 6.1b, which can have a variable input size. In the research, it is shown that the performance
is invariant to the number of aircraft and therefore poses a promising solution for ATC applications. Further-
more, the attention variant also showed to converge in a fewer number of training episodes than the neural
network architecture incorporating the information of N-nearest agents.

Although these are promising results, the multi-agent setting nevertheless increases computational complex-
ity. Non-stationarity in the learning process is encountered since coordination between agents is needed,
which might lead to divergence. (Hoff 2020) used a decentralised multi-agent reinforcement learning algo-
rithm to automate ATC. It was found that in more complex and high-density air traffic scenarios, this method
failed to find a solution due to a lack of coordination between the agents. Furthermore, it is hypothesised that
automating ATC in a multi-agent RL setting will increase the workload of ATCOs to monitor the automation.
This is because agents can perform actions simultaneously. Since one of the goals of this research is to de-
velop an explainable form of autonomous ATC, it is chosen to automate the CD&R task using a single agent
setting. This type of automation is more conformal with how ATCOs currently approach the CD&R task.

6.2. Hierarchical Reinforcement Learning
In this section, an introduction to hierarchical reinforcement learning is given. Whereas deep learning relies
on a hierarchy of features, hierarchical learning relies on a hierarchy of policies. The main concept is that
apart from primitive actions, policies should also be able to run sub-policies which are suitable for fine con-
trol (Arulkumaran, Deisenroth, et al. 2017). Many real-world problems contain a certain hierarchy. This hier-
archy can be translated to the world of reinforcement learning and create a sample efficient solution method.
To translate the hierarchy found in real-life to reinforcement learning, the MDP setting defined for RL must

Towards Explainable Automation for ATC M.C. Hermans

6. State-of-the-Art Reinforcement Learning Algorithms 67

be adapted. Whereas in an MDP, the state transitions occur at a discrete time step, the state transitions for
hierarchical RL can occur at irregular time intervals. This is because sub-actions in a hierarchy might take an
irregular amount of time. A setting that does so is called a Semi-Markov Decision Process(SMDP). The state
transition now does not only depend on the state and action, but also on the time elapsed since the action
has been taken, p(s′|s, a) ←− p(s′,τ|s, a).

There are three main techniques which implement hierarchy in reinforcement learning:

1. Feudal Networks: in this method, a managerial hierarchy is learned. At the highest level, the agent will
learn how to assign tasks to its sub-agents. The framework employs a manager and worker module.
The input to the manager module is a state and it outputs a goal. The worker module then uses this
goal as input, together with its own state, and tries to form a policy to meet the goal set by the manager
module. The power of Feudal networks is that each level of hierarchy can be provided with a different
state resolution, providing enough information to be able to make a choice at that level. The reduced
state-space from which the sub-agents learn significantly speeds up the learning process. This type of
HRL is however not guaranteed to converge (Vezhnevets et al. 2017). Consider a maze with a U-shaped
barrier. The maze can be split up at successively finer grains, as shown in Figure 6.2. Multiple managers
can then be assigned to separate parts of the maze. At every timestep, an action is taken at all levels.
However, the highest manager sets the task for the subsequent second level, which on its turn sets a
goal for the third level. At the lowest level, the geographical moves are considered which lay within the
confines of the larger state defined by the third level manager.

Figure 6.2: Feudal breakdown of a RL problem (Dayan and Geoffrey E Hinton 1993).

2. Options (R. S. Sutton, Precup, and S. Singh 1999): This is the most well-known hierarchical reinforce-
ment learning framework. This framework is based on Markov options – closed loop policies for taking
actions over a certain period of time – which are defined as a triple given by o =< Io ,πo ,βo >. Io ⊆ S
is the initiation set, πo : S × A −→ [0,1] is the policy of the option and βo : S −→ [0,1] is the termi-
nation condition. This framework essentially captures the idea that actions are composed of other
sub-actions. Options can be defined at different abstraction levels. Examples of an option are picking
up an object, opening a door, but also twitching a muscle or applying a joint torque. The concept of
an option is visualised against an MDP and SMDP in Figure 6.3. The agent trains a policy over-options
which can initialise an option. In case an option is terminated, the agent can select a new option. The

M.C. Hermans Towards Explainable Automation for ATC

68 6.2. Hierarchical Reinforcement Learning

main advantage of options is that it has proven to significantly speed up learning. Opposed to Feu-
dal networks, options have theoretical convergence proofs towards an optimal policy in case the the
action space consists of primitive actions and options. In (Arulkumaran, Dilokthanakul, et al. 2016),
a method is developed which combines this option framework with deep Q-networks by augmenting
DQN with "option heads". In this paper, the researchers show that using options indeed lowers the
sample complexity.

Figure 6.3: Options framework as opposed to the SMDP and MDP (R. S. Sutton, Precup, and S. Singh 1999).

3. Hierarchical Abstract Machines (HAM): a HAM consists of multiple non-deterministic finite state ma-
chines which can invoke lower-level machines (Parr and Russell 1998). Essentially, HAMs provide a hi-
erarchical means of expressing constraints at varying levels of specificity and detail. Machine states can
be represented by: action states, call states, choice states and stop states. Action states execute an action
in the environment, call states deterministically execute another machine as subroutine, choice states
non-deterministically select a next machine state and stop states halt execution of the machine and
return control to the previous call state (Parr and Russell 1998). After an action or call state, the transi-
tion function determines the next machine state which is dependent on the current machine states and
features of the environment state. Typically, machines are presented with a partial description of the
environment. Learning in this framework only occurs in the choice states. This allows learning to occur
only on a part of the entire state space, which speeds up the learning. In Figure 6.5, a non-deterministic
finite-state controller for negotiating obstacles, shown in Figure 6.4, is given. In case the agent encoun-
ters an obstacle, a choice state is created to choose between the two next possible machines, ‘Follow
Wall’ and ‘Back Off’. Just as options, HAMs have an optimality guarantee. The disadvantage of the
method is that HAMs are generally very complex to define and implement. An example of a reinforce-
ment learning algorithm incorporating this ideology is called HAMQ-learning.

Towards Explainable Automation for ATC M.C. Hermans

6. State-of-the-Art Reinforcement Learning Algorithms 69

Figure 6.4: Environment with obstacles which an agent must avoid. Initial state is in the top left of the figure. Next to the gridworld a
closeup of one of the obstacles is given (Parr and Russell 1998).

Figure 6.5: Nondeterministic finite-state controller for negotiating obstacles (Parr and Russell 1998).

In the next sections, deep reinforcement learning shall be elaborated upon. The hierarchical concepts intro-
duced in this section do not directly translate to the domain of deep RL. There are however hierarchical deep
reinforcement learning algorithms developed which incorporate the ideologies of Feudal networks, options
and HAMs.

6.3. State of the Art Deep Reinforcement Learning Algorithms
The introduction of deep reinforcement learning teaches agents to make decisions in high-dimensional state
and action spaces in an end-to-end framework in which features are learned in the layers of a deep neural
network. It has significantly improved the generalisation property of RL (Shao et al. 2019). Below, one can
find some remarks on deep RL.

• Exploration-Exploitation: this remains a struggle in RL, as well for DRL. Solutions proposed are to add
parametric noise to the network (Arulkumaran, Deisenroth, et al. 2017) and to incorporate randomised
value functions.

M.C. Hermans Towards Explainable Automation for ATC

70 6.3. State of the Art Deep Reinforcement Learning Algorithms

• Sample efficiency: hierarchical reinforcement learning and demonstration have posed significant im-
provements.

• Generalisation and transfer: just as for tabular methods, deep reinforcement learning methods suffer
from overfitting to a certain learning environment. The degree to which a model is generalised therefore
remains of interest (Zhang et al. 2018).

• The action space can be both discrete as continuous.

On-policy methods in deep RL have higher variance and will therefore require more samples to converge
to an optimal solution. In the next sections the focus shall be on advanced deep learning methods. The
environment to which these algorithms are applied, have discrete action spaces. Therefore, algorithms based
on continuous action spaces such as Deep Deterministic Policy Gradient (DDPG) and Soft Actor-Critic (SAC)
are excluded from the analysis.

In this section a comparison shall be made between state-of-the art algorithms which are compatible with
the SSD as input. The criteria used to evaluate a deep RL algorithm are:

• Generalisation properties.

• Data efficiency.

• Convergence properties.

6.3.1. State-of-the-Art Value-Based Methods
Deep Q-Network (DQN) (Mnih, Kavukcuoglu, et al. 2015) is an online value based approximate solution
method in which a deep neural network is used to approximate the optimal action value function. The op-
timal value function is determined by solving the Bellman equations as shown in Equation 4.13. The steps
taken in a DQN are visualised in Figure 6.6. For a given state and action, the deep neural network outputs an
estimate of the action value Q(s,a;θ).

State

Action

Neural Network Q-value

Q(s,a,Θ) ≈	Q*(s,a)

Figure 6.6: Visualisation of DQN.

The Q-learning update at iteration i uses the following loss function:

Li (θi) = E(s,a,r,s′)∼U (D)[(r +γmax
a′ Q(s′, a′;θ−i)−Q(s, a;θi))2], (6.1)

in which θ−i is the target network and θi are the parameters of the Q-network, also called the prediction
network.

Essential to the functioning of this architecture are the introduction of Experience Replay and having a fixed
target network:

• Experience Replay: experiences (actions, states, transitions and rewards) are stored from which mini-
batches are created to perform updates on the network. Experience replay removes correlation in the
observation data and smooths changes in the data distribution (Mnih, Kavukcuoglu, et al. 2015). More
formally put, the agent’s experiences are stored at each time step t in the data set D t = e1, ...,et , in which
et = (st , at ,rt , st+1). The Q-learning updates are performed on randomly drawn samples, (s, a,r, s′)∼
U (D).

• Fixed Target Network: the target network, θ−i is updated every X steps and the parameters are held
fixed between individual updates. This increases the stability of the algorithms.

Towards Explainable Automation for ATC M.C. Hermans

6. State-of-the-Art Reinforcement Learning Algorithms 71

In 2015, (Mnih, Kavukcuoglu, et al. 2015) showed that Deep-Q Networks could outperform all the previous
algorithms, receiving only pixels and scores as input, on the Atari 2600 games2. This was the first algorithm to
show that policies could be learned not only from handcrafted features, but from high-dimensional sensory
inputs using end-to-end learning as well.

In addition to Deep Q-Networks, double learning can be added to create Double Deep Q-Networks (DDQN).
(Hasselt, Guez, and Silver 2015) showed that the max operator in Q-learning which is used to select the action
resulting in maximal future rewards causes the Q-values to be overestimated. Just as explained in the tabular
case, a second independent value function is being trained. This value function is now yet another estimate
using a deep network with weights θ′. During each iteration, one of the networks is used to estimate the
maximisation action, and the other is used to estimate the value. (Brittain and Wei 2018) used a DDQN in a
deep hierarchical agent algorithm to sequence and separate aircraft in a simplified ATC setting which showed
promising results.

(Schaul, Quan, Antonoglou, Silver, and Deepmind 2016) improved the DQN and DDQN in terms of perfor-
mance on the Atari 2600 games by adding prioritised replay instead of experience replay. The basic idea of
prioritised replay is to draw important samples more often instead of randomly drawing samples. During
optimisation, the algorithms tries to minimise the temporal-difference (TD) error. The basic idea of priori-
tised sweeping is to increase the replay probability for samples in the set of experiences which have a high
expected learning progress, as measured by the magnitude of the TD error. The TD error for the DQN and
DDQN architectures are given in Equation 6.2 and Equation 6.3.

δi = ri +γmax
a∈A

Qθ− (st+1, a)−Qθ(st , at) (6.2)

δi = ri +γmax
a∈A

Qθ− (st+1,argmax
a∈A

Qθ(st+1, a))−Qθ(st , at) (6.3)

For some environments, it is not necessary to know the action value at every time step. For these types of
problems, (Z. Wang et al. 2016) introduced the Dueling Deep Q-Network architecture. In a Dueling DQN, the
action value calculations are decomposed into two streams:

• A(s,a): the advantage of taking action a in state s, against all the other possible actions in that state.

• V(s): value function of being in that state.

This is shown in Equation 6.4 and visualised in Figure 6.7.

Q(s, a) = A(s, a)+V (s) (6.4)

Figure 6.7: Network architecture of a Dueling Deep Q-Network. Adapted from (Z. Wang et al. 2016).

2Atari 2600 is a home video game console on which simple and low-resolution games as Pong and Pac-Man could be played. In deep
RL, the performance of an algorithm is commonly evaluated on multiple Atari games. This enables a fair comparison between the
performance of different RL algorithms.

M.C. Hermans Towards Explainable Automation for ATC

72 6.3. State of the Art Deep Reinforcement Learning Algorithms

In the paper, the dueling architecture obtains state-of-the-art results on the Atari 2600 domain, improving the
performance of DQN and DDQN with prioritised replay. According to the researchers, the advantage of this
architecture mostly lies in its ability to learn the state-value function more efficiently. Instead of updating the
value of a single action in a certain state is updated, the value function is updated every iteration. It is shown
that this advantage is more prominent if the amount of actions grow.

In (Hessel et al. 2017), the authors develop an RL architecture called RAINBOW which combines the suc-
cesses of the extensions to DQN, which are double learning, prioritized replay, dueling networks and multi-
step learning (A3C, described in subsection 6.3.2), distributional RL and the use of noisy nets to deal with the
exploration/exploitation trade-off. The details of the network can be found in more detail in (Hessel et al.
2017). Over 57 Atari games, RAINBOW is able to match the best performance of any DQN after having trained
on 44M frames whilst only having seen 7M frames. Continuing the training, RAINBOW is able to reach sig-
nificantly better performance than any DQN network. The new architecture thus is more data efficient and
achieves better performance in the limit.

Distributed learning

In deep learning algorithms, the most time is spent on generating experience and only a small fraction of that
is spent on updating the neural network. The limiting factor in update speed is thus generation of experience
and not the actual updating of the network. Decoupling of generating experience and network updating can
allow for an increase in generating experience and hence a higher update speed. This ideology was used to
develop a distributed variant of DQN, called Ape-X DQN (Horgan et al. 2018). In distributed learning, there
are multiple workers which gather experience whilst the policy is being updated centrally from experience
replay. Each worker functions on a different CPU core and the learning speed of this algorithm is thus depen-
dant on how many CPU cores there are available. This is visually represented in Figure 6.8

Figure 6.8: Decoupling of obtaining experience and learning used in Ape-X.

DQN with Hierarchy

A variant to DQN which utilises the computational advantages enabled by hierarchical reinforcement learn-
ing is called h-DQN. In h-DQN, the option framework discussed in section 6.2 is implemented. There is thus
a meta-controller which sets a goal based on the given state and action. Given this the goal, the controller
then acts to reach that goal. Separate DQNs are used inside the meta-controller and the controller.

Towards Explainable Automation for ATC M.C. Hermans

6. State-of-the-Art Reinforcement Learning Algorithms 73

Figure 6.9: Overview of h-DQN (Kulkarni et al. 2016)

Especially for environments with sparse rewards and thus sparse feedback, on which DQN fails to learn a
stable well-performing policy, this method has proven to be powerful (Kulkarni et al. 2016). Considering the
ATC environment, rewards for certain actions will also be sparse. Think for example of rewards retrieved for
acting conform to how an ATCO would resolve certain traffic scenarios.

6.3.2. State-of-the-Art Policy Gradient Methods
Recently, (Mnih, Puigdomènech Badia, et al. 2016) developed a multi-threaded asynchronous variant of the
on-policy advantage actor-critic method and called it A3C. The aim of their research was to develop a method
which was computationally more efficient than previous architectures. In this proposed method, multi-
ple actors-learners run in parallel to explore different parts of the environment. To ensure different parts
of the environment are explored, each actor-learner can have its own exploration policy. The most promi-
nent benefits of this algorithm are that the reduction in training time is roughly linear with the amount of
actors-learners. Furthermore, for most deep learning methods experience replay is needed to stabilise the
learning, which can only be implemented for off-policy methods. However,the introduction of multiple par-
allel actors-learners stabilise the learning as well and therefore allow on-policy methods to be used as well.
In this paper, the researchers show that in five Atari 2600 games, A3C outperforms DQN in terms of training
speed but also obtains a higher score in the limit. The method was also compared with other state-of-the-art
algorithms on 57 Atari games. These other algorithms were trained for 8-10 days on a Graphics Processing
Unit (GPU), which is computationally much more powerful than a CPU, whilst A3C was trained in 4 days on
16 CPU cores. A3C showed to significantly improve the state-of-the-art average on these games in half the
training time. Furthermore, after 1 day of training it already matched the scores obtained by the Dueling
Deep Q-Networks.

One of the disadvantages of this asynchronous implementation of the multi-threaded actor-critic method is
that the different agents communicate with the global network parameters separately. This causes the agents
to sometimes work with an outdated version of the network parameters. A natural solution which researchers
found was the construction of a synchronous and deterministic implementation, which was called A2C. In
this implementation, the network averages over all the agents in its updates and does so if all the agents have
finished exploring a sector. Research indicates that A2C makes use of the GPU more effectively and achieves
similar or improved performance compared to A3C.

Finally, there are more advanced actor-critic methods achieving state-of-the-art performance. (Gruslys et al.
2017) propose a method which is more sample efficient based on a multi-step return off-policy actor-critic
architecture called Reactor. A new policy evaluation algorithm called Distributional Retrace is implemented.
Furthermore, a newβ−l eave−one−out policy gradient algorithm is used. More details on the exact working
principles can be found in (Gruslys et al. 2017). Reactor was compared to DQN, Double DQN, DQN with
prioritised experience replay, Dueling DQN, prioritised Dueling DQN, ACER, A3C and Rainbow across 57
Atari games. It showed that Reactor exceeded the overall performance of the other algorithms under random
human starts of the games.

M.C. Hermans Towards Explainable Automation for ATC

74 6.3. State of the Art Deep Reinforcement Learning Algorithms

Trust Region Methods
In (Schulman, Levine, et al. 2015), the researchers developed Trust Region Policy Optimisation (TRPO) which
has guaranteed monotonic improvement to the optimisation of control policies. This algorithm has strong
theoretical foundations, but it is sample inefficient and therefore impractical. Proximal policy optimisation
(PPO) (Schulman, Wolski, et al. 2017) is an improvement to this algorithm and similar to TRPO does not
use a line search method such as gradient descent but makes use of trust regions. In line search methods,
the steepest direction is determined first in order to move forward in that direction by a step size. In trust
regions, this process is reversed. First the maximum step size is determined, using KL-divergence in PPO, after
which the optimal point to continue exploring within that maximum step size is chosen. KL-divergence is the
difference between the distributions of the two policies after each iteration, πθ and πθold . The advantages of
PPO are that it is much easier to implement than its predecessor Trust Region Policy Optimisation (TRPO), it
generalises better and has a better sample-complexity. PPO samples data by interacting with the environment
and implements stochastic gradient ascent to optimise the objective:

L(θ) = Êt [min(
πθ(at |st)

πθol d
(at |st)

Ât ,cl i p(
πθ(at |st)

πθol d
(at |st)

,1−ε,1+ε))Ât]. (6.5)

Not only to its direct predecessor, but it also achieves significantly better results on Atari games over the
entire training period compared to A2C and ACER - another trust region policy optimisation method - which
indicates it learns much faster. However, in the paper ACER did score higher over the last 100 episodes. Since
ACER and PPO achieve similar performance and PPO is simpler to implement, it is chosen to exclude ACER
from the analysis.

6.3.3. Imitation Learning
Although DRL techniques have achieved state-of-the-art performance on a number of tasks, data efficiency
remains to be a challenge for RL. In theory, data efficiency is not a major concern in simulations since enough
data can be generated. However, for practical use-cases, data-efficiency is essential. In (Hester et al. 2017), the
researchers constructed a novel method called Deep Q-learning from demonstrations (DQfD). In the method,
supervised learning is used to train an initial policy and value function based on the demonstrations. In the
next phase, a DQN is used to improve this value function. Important to note is that a regularised loss function
is used to minimise overfitting on the demonstration data set. The research shows that the DQfD indeed has
better initial performance than Prioritised Dueling Double Deep Q-Networks on 41 of the 42 Atari games the
methods were trained on. Furthermore, state-of-the-art results were obtained on 11 of the 42 Atari games
with human demonstration data, proving the potential of this method being both data-efficient and high
performing.

In (Pohlen et al. 2018), the DQfD was extended using a transformed Bellman operator and a temporal consis-
tency (TC) loss to improve the stability of the algorithm. This new algorithm is called Ape-X DQfD, which also
utilises distributed learning, and was able to consistently perform well on the 42 Atari 2600 games, exceeding
average human performance on 40 of the 42 games. It must be noted that in order to train the paper, 128
workers were used to gather experience.

6.3.4. Inverse Reinforcement Learning
In the previous section, the concept that an agent can learn an initial policy from demonstrations, i.e. learn
a mapping between states and actions, was introduced. There is another research area based on Learning
from Demonstrations which is called inverse RL. This category of RL relies on the assumption that the policy
of the expert creating demonstrations is optimal and consistent with regard to an unknown reward function.
This reward function is learned using direct RL and subsequently learns an optimal policy with regard to the
reward function. An advantage that IRL has over pure imitation learning is that it allows constant learning
over time, online, through real interactions with the environment.

Generally, IRLs have proven exceptionally difficult to use for high-dimensional problems (Fu, Luo, and Levine
2017). Furthermore, they have shown to be less data efficient compared to imitation learning. Causes for this
are that a large variety of optimal policies and many different reward functions can fitted to the demonstra-
tions provided. IRLs are therefore an ill-defined problem. To deal with these cons, (Fu, Luo, and Levine 2017)
developed an inverse reinforcement learning algorithm based on adversarial networks. This method seems
to be especially successful in environments in which there is a significant variability in the environment com-
pared to the demonstrations.

Towards Explainable Automation for ATC M.C. Hermans

6. State-of-the-Art Reinforcement Learning Algorithms 75

By learning the reward function through IRL, the artificial agent could possibly learn the strategy of an in-
dividual ATC controller. Implementing such an algorithm is therefore of interest for strategic conformal au-
tomation. On the flip side, these methods of RL will never improve the performance obtained by ATCOs since
the agent ideally would mimic the strategies applied by the ATCO.

6.3.5. Hierarchy
In (Frans et al. 2017), a method is developed which incorporates a meta-learning approach to learning hierar-
chical policies by using shared primitives. These are policies that are executed for large numbers of timesteps.
The method is called Meta Learning Shared Hierarchies (MLSH) and can be incorporated with an arbitrary
reinforcement learning algorithm such as DQN, A2C and PPO. The main concept is that the policy is di-
vided into several sub-policies which are each responsible for reaching a certain sub-goal. A master policy
on its turn chooses the sub-policy. To fully exploit the gains of implementing this hierarchical architecture,
the amount of sub-policies should be equal to all the sub-goals to a task. An overview of MLSH is given in
Figure 6.10. Especially in an environment with sparse rewards, this type of hierarchical learning is useful.
Normally, naive PPO cannot learn in such a setting as exploration over the action space does not result in
a reward signal. Instead of exploring over the action space, the agent can explore over the different sub-
policies, which probably results in a sequence in which a reward signal is retrieved. Overall, this method is
able to significantly increase the sample efficiency in case the amount of sub-policies represent the amount
of sub-goals.

Figure 6.10: Overview of Meta Learning Shared Hierarchies (MLSH) (Frans et al. 2017).

The difference of this method compared to h-DQN is that it has a controller for every sub-goal instead of a
single controller trying to achieve the goal set by the meta-controller. ATCOs in a sense try to resolve traffic
scenarios similar.

6.3.6. Concluding Remarks
In this section, state-of-the-art deep RL methods are discussed. In the preliminary analysis, a trade-off be-
tween algorithms well-suited for this research is performed. Based on literature, it can be concluded that
some of the methods elaborated upon in this chapter are not interesting to include in the trade-off.

First of all, multi-agent RL algorithms were discussed. Implementing a multi-agent RL method increases the
computational complexity significantly. Furthermore, since coordination is needed in both a centralised and
decentralised, non-stationarity in the learning process is a common challenge faced during implementation
which can lead to divergence. More importantly, since every agent performs an action simultaneously, it is
hypothesised that such automation of ATC will be difficult for the ATCO to supervise and fully understand.
Therefore, the multi-agent RL algorithms will be excluded from the trade-off.

In the CD&R task of an ATCO a clear hierarchy is present. An ATCO must first select an aircraft, then decide
what type of action is needed and finally decide on the magnitude of that action. Implementing hierarchi-
cal RL will significantly increase the sample efficiency. However, the aforementioned tasks in CD&R can be

M.C. Hermans Towards Explainable Automation for ATC

76 6.3. State of the Art Deep Reinforcement Learning Algorithms

decoupled and a separate agent can be trained for both tasks. In the task determining what action to take,
a hierarchy is present though. Considering a simplified ATC environment in which an ATCO cannot alter
the altitude, an ATCO can choose to do three things: only alter the heading, alter the speed or alter both the
heading and speed. For hierarchical RL to function properly, concrete subgoals must be set with regards to
these tasks. These might be reaching a highlighted pixel in the SSD which is not in the FBZ. The amount of
subgoals will however be just as many as the action space of a RL agent which does not apply hierarchical
learning. Therefore, the data efficiency advantages will not be achieved when applying hierarchical learning
in this environment. For this reason, hierarchical RL methods will be excluded from the trade-off as well.

In terms of data-efficiency, value based methods perform well. Extensions to one of the first deep learning
methods available, DQN, have continuously been made. Especially prioritised experience replay, double
learning and a duelling architecture are seen as major contributors to improving the performance of DQN.
RAINBOW combines the most valuable extensions to DQN which lead to a significant improvement on the
performance of the agent in the limit. It must be noted that this algorithm also uses distributed learning. Due
to the good performance in terms of data efficiency, a DQN method with the aforementioned extensions is
still interesting to take into account in the trade-off.

For ATCOs, their understanding of the automation is of importance for accepting of it. One of the aspects
contributing to their understanding is strategic conflormal automation (Van Rooijen 2019). DQfD learns from
demonstrations and can contribute to reaching the goal of this research by enabling the agent to mimic cer-
tain strategies applied by the expert and thereafter improve on these. Whereas inverse RL methods are also
able to mimic strategies, these methods will never be able to improve the performance achieved by an ATCO.
Therefore inverse RL methods are excluded from further analyses as well.

From literature, it can be concluded that methods which use distributed learning have significantly improved
the performance of RL algorithms. Distributed learning stabilises the learning and increases the efficiency in
terms of computation time. The effectiveness of these algorithms depend significantly on the computing
resources available. The computing resources available for this research are limited and therefore it is cho-
sen that for now, the algorithms which implement distributed learning are not considered when trading-off
algorithms. Most of the distributed learning algorithms are extensions to value and policy based methods,
such as Ape-X DQN and distributed PPO. These extensions towards distributed learning can therefore still be
made at a later stage in the research.

Summarising, deep reinforcement learning algorithms which are well-suited for this research are:

• Duelling DQN with prioritised replay.

• PPO.

• DQfD.

The distributed extensions to these algorithms are:

• Ape-X and Rainbow.

• Ape-X DQfD.

• Distributed PPO.

Towards Explainable Automation for ATC M.C. Hermans

7
Making AI Explainable with the Solution

Space Diagram

In subsection 3.1.2, the solution space diagram has been introduced. This diagram will be used as input
for the RL agent and as supervisory control support tool for monitoring the automation. Although it can
show whether the actions taken by the agent are safe or not, it does not visualise why an agent takes certain
actions. When a human operator must supervise a form of automation that the operator does not fully un-
derstand, a higher workload is experienced. Therefore, explainability of the automation is one of the focus
areas of this research. In this chapter, literature available on making AI solutions explainable is reviewed to
answer research question 2c: ’What techniques are there available to contribute to the explainability of the
automation?’. Section 7.1 introduces a framework for designing explainable AI solutions. Then, section 7.2
and section 7.3 elaborate on two methods which can contribute to the explainability of Deep RL.

7.1. Explainable AI

A new era has arrived in which machine learning implementations will drive dramatic transformations in a
large variety of sectors. The introduction of these machine learning solutions is even referred to as the fourth
industrial revolution (M. Xu, David, and Kim 2018). However, the effectiveness of state-of-the-art AI solutions
is still limited due to their inability to explain decisions. To address this hurdle of machine learning, Defence
Advanced Research Projects Agency (DARPA) has launched a program dedicated to developing Explainable
Artificial Intelligence (XAI) (Gunning 2017). The basic premise of what XAI is trying to achieve is shown in
Figure 7.1. In addition to developing a model which just outputs a solution to a problem, an explanation
interface is added. This interface should be able to extract the reasons for a solution from the explainable
model.

77

78 7.1. Explainable AI

Figure 7.1: Framework for developing Explainable AI (Gunning 2017).

Ideally, the explanation is presented to the user, who still has to approve the proposed resolution based on
the explanation backing up this proposition. According to (Gunning 2017), measures of the effectiveness of
this framework are:

• User Satisfaction:

– Clarity of the explanation (user rating).
– Utility of the explanation (user rating).

• Mental Model:

– Understanding of individual decisions.
– Understanding of overall model.
– Strength/weakness assessment.
– ‘What will it do’ prediction.
– ‘How do I intervene’ prediction.

• Task Performance:

– Does the explanation improve the user’s decision, task performance?
– Artificial decision tasks introduced to diagnose the user’s understanding.

• Trust Assessment: Appropriate future use and trust.

• Correctability (Extra Credit):

– Identifying errors.
– Correcting errors.
– Continuous training.

This is merely one framework for developing explainable AI. In this research, the factors contributing to the
explainability of the automation of CD&R using RL are investigated. Therefore, explainability must first be
clearly defined in the context of this research. Improving the explainability will in this research be focused on
improving the mental model and increasing the trust the human operator has in the automation. The human
operator takes a supervisory role. When identifying factors contributing to the explainability of the automa-
tion, one must take the considerations listed underneath "Mental Model" into account and see whether trust
in the automation can be increased. To evaluate to what degree a model is explainable, human-in-the-loop
experiments should be performed to retrieve subjective performance metrics. Currently, there are namely
no objective performance metrics to evaluate explainability. Evaluating to which degree the automation is
explainable exceeds the scope of this research and is left for future research.

Towards Explainable Automation for ATC M.C. Hermans

7. Making AI Explainable with the Solution Space Diagram 79

Currently, AI methods achieving high performance, such as neural networks, are not transparent. For ex-
ample, a Convolution Neural Network trained to identify cats from photos will output a probability of an
image containing a cat. It however does not show ’why’ this image contains a cat. Reasons could be that the
following features were identified: fur, cat ears and claws.

7.2. Visualising Features Exciting Neurons in Neural Networks
In (Tjoa and Guan 2019), a survey was performed on techniques to make convolutional neural networks more
explainable. According to the researchers there are two main types of methods: perceptive and mathematical
interpretability methods.

The first category of methods is focused on interpretabilities that can be perceived by humans. These in-
terpretabilities are often considered to be obvious. An example method is the construction of saliency maps
which show the importance of input components relative to the decision/resolution. These can be in the
form of probabilities or pixels which form heatmaps. This, however, only indicates what parts of an image
excite the neurons in the network the most.

Another method is Layered-wise Relevance Propagation (LRP) which was introduced in (Bach et al. 2015).
In this method, a backpropagation occurs in which the output can be mapped to the input. Essentially, the
pixels which contribute to the decision are excited. The strength of this method is that any output can be
retraced to the input to see what part of the input would contribute to reaching a certain output. An example
of this is shown in Figure 7.2. In this example, one can see LRP can be used to see what features in an image
contribute to classifying an image to e.g. ‘cat’. Extending this ideology to the problem at hand, the LRP
constructed heatmap can be superimposed on the SSD to show which features contribute to taking a certain
action. In RL, the agent tries to predict what action to take to maximise the reward it will receive in the future.
With this method, it will thus be possible to indicate which parts of an image contributed in making a certain
decision. In Figure 7.2 an example of this is shown for classifying numbers from an image. The image shows
that the randomly drawn image contains the most features of being classified as ‘6’. However, it still does not
really show ‘why’.

Figure 7.2: Visualisation of the pixel-wise decomposition process. (Bach et al. 2015)

Figure 7.3: Pixel-wise decomposition for all classes for a randomly drawn image from the MNIST test set. (Bach et al. 2015)

7.3. Reinforcement Learning Specific Explanations
The aforementioned methods were not reinforcement learning specific, but can also be applied to supervised
learning. Reinforcement learning is intuitive in the sense that the designer can steer the behaviour of the
automation by carefully designing the reward function. The sole goal of the agent is namely to maximise the
reward it receives over the entire episode.

For problems with a clear causal structure, (Madumal et al. 2020) performed research into the possibility
of explaining sample-free reinforcement learning through a causal lens. In this setting, an action influence

M.C. Hermans Towards Explainable Automation for ATC

80 7.3. Reinforcement Learning Specific Explanations

model is constructed which depicts how states are influenced by other states in case a certain action is taken.
From this action influence model, a description model - with prior understanding of the causal structure -
can be learned for the questions ‘Why’ and ‘Why not’. A test was performed to see whether the understand-
ing of actions taken by an agent would improve after having seen example actions with the corresponding
explanations for ‘Why’ and ‘Why not’ an agent took certain actions. Empirical results on an experiment with
120 participants showed that the humans got a significantly better understanding of the agent’s strategy. This
was tested by showing the participants a scenario of gameplay of Starcraft II after which the participant had
to select one of three explanations, which included the option ‘I don’t know’. This shows that humans can
indeed obtain a better understanding of artificial agents through making AI explainable. The CD& R task un-
fortunately does not seem to be suited to generate these explanations since there is not such a clear causal
structure present.

For RL, (Juozapaitis et al. 2019) developed a RL algorithm which uses the reward differences to generate ex-
planations for actions taken by the agent. In this method, the reward function is decomposed into different
reward types. For the ATC problem one can think of safety, efficiency and airspace disruptiveness as different
reward types. To gain insight into the reasoning for an agent to prefer an action over another, the decomposed
Q-vectors for these actions can be compared to see what action would e.g. result in the highest expected fu-
ture rewards corresponding to ‘safety’. This is referred to as Reward Difference Explanations (RDX). To do so,
decomposed Q-functions must be learned, for which a new algorithm was developed called drQ. Since the
pixel data of the SSD shall be used as input to the algorithm, a deep RL algorithm shall be used. This concept
can also be applied to DQN. Let the reward function be composed of a set of reward types C , then the reward
function becomes vector-valued, R −→ ~R : S×A. This is formalised in Equation 7.1. Naturally, the value func-
tion, which is represented by a function approximator (e.g. neural network), can be decomposed as well, as
shown in Equation 7.2.

~R(s, a) = ∑
c∈C

Rc (s, a) (7.1)

~Qπ(s, a|θ) =∑
c

Qπ
c (s, a|θc) (7.2)

In the paper, the researchers present a theorem for drQ which implies that drQ’s overall Q-function Q t (s, a)
converges to the optimal Q-function Q?(s, a) =∑

c∈C Qπ?

c (s, a) and hence an optimal policy π? (Juozapaitis et
al. 2019). This theorem can directly be extended to drDQN. Accordingly, the update rules for the decomposed
Q-value functions can be defined. DrDQN operates similar to DQN, except for the fact that each component
Q-function is updated based on the current greedy action of the target network. The network obtains experi-
ences and saves these in the replay memory. Following this, a mini-batch of experience samples is retrieved
from the replay memory. This mini-batch is then used to update the parameters, θc according to Equation 7.3
- Equation 7.5. Periodically, the target network is updated with current learning parameters.

L(θc) =
k∑

i=1
(yc,i −Qc (si , ai ;θc))2) (7.3)

yc,i =
{

rc : for terminal s′i
rc +γQc (s′i , a+

i ;θ′c) for non-terminal s′i
(7.4)

a+
i = ar g max

a′

∑
c∈C

Qc (s′i , a′,θ′c) (7.5)

In a gridworld in which an agent can move UP, DOWN, LEFT or RIGHT, the RDX is shown in Figure 7.4. One
can see that by having trained individual Q-values for the different rewards the agent can receive, it can make
a decision on what action would give it the largest reward.

Towards Explainable Automation for ATC M.C. Hermans

7. Making AI Explainable with the Solution Space Diagram 81

Figure 7.4: RDX of a gridworld in which reward can be obtained through treasure, monster, gold and cliff (Juozapaitis et al. 2019).

This method is focused on decomposing the reward function and the state-action value to real-time be able to
see why an agent chooses a certain action. Another option would be to analyse the types of rewards an agent
receives in hindsight. Although this would not enable real-time explainations, it is hypothesised that re-
experiencing traffic scenarios, in which the human operator did not understand why the automation choose
to perform a particular action, could improve the mental model of the automation. Especially since ATCos
have to control a single sector in which similar traffic scenarios are encountered frequently, this might be a
powerful strategy.

There are two types of explanations the authors focus on. First of all the MSX, secondly the RDX.

7.4. Concluding Remarks
Currently, the research performed into constructing explainable forms of automation is limited. Explain-
ability in this research refers to the mental model a human operator has of the automation and the degree
to which he or she trusts the automation. This research focuses on finding factors which contribute to the
explainability and incorporate these in the design of the automation. Evaluating the degree to which the
automation is explainable is left for future research.

There are two appropriate methods to contribute to the explainability of a deep reinforcement learning
method. First of all one can visualise what features in an image drive the decision made by an agent. This can
be achieved by constructing saliency maps, but also by LRP. Secondly, one can focus on reward decomposi-
tion to see what rewards an agent expects to retrieve when taking a particular action. It is hypothesised that
the last method will be most insightful for ATCos since it is able to show the reasoning of the agent. Further-
more, decomposing the reward function can assist the designer of the automation to monitor learning and
identify unwanted behaviour of the reinforcement learning agent.

M.C. Hermans Towards Explainable Automation for ATC

8
Reward Shaping and Performance

Evaluation

This chapter aims to answer research question 4a: ’What factors should be incorporated in the reward func-
tion?’. With this goal in mind, the design considerations for the two agents, one for choosing which aircraft
should perform an action and one for choosing what action to perform, are discussed in this chapter. The
final thesis focuses on automation for conflict resolution. However, as implementing automation for con-
flict resolution is dependent on the ability to develop automation to choose which aircraft should perform
an action, design considerations for the latter are also reviewed in this chapter. First, in section 8.1, the pos-
sible types of automation for choosing which aircraft should perform an action are explored. This is done
by surveying available literature and analysing which strategies employed by ATCOs should be taken into
account. Then, section 8.2 elaborates on the design of the reward function for the agent choosing what ac-
tion the aircraft should take. Finally, section 8.3 discusses how the automation can be evaluated in terms of
performance.

8.1. Aircraft Choice
In this section, the possible types of automation for selecting which aircraft should perform a manoeuvre are
set out.

8.1.1. Design Considerations
As presented in Table 2.1, ATCOs apply certain strategies. The ones relevant for choosing which aircraft
should perform an action are:

• Identify conflicts pairwise.

• Prefer resolutions which require less co-ordination.

• Look for the one key action that resolves the problem.

• Focus visual attention on crossing points and sector borders.

• Adopt a look-ahead time between 5 and 10 minutes.

• Turn slower aircraft behind faster aircraft.

• Solve the head-on conflicts first.

Other factors that the agent should account for in this situation are:

• If possible, all aircraft should have their heading on the target heading.

• Optimally, aircraft should minimise deviation.

When choosing a type of automation for selecting which aircraft should perform a manoeuvre, the conformity
with these strategies should be taken into account.

8.1.2. Possible Types of Automation
There are three realistic options for automating the selection process of which aircraft should perform an
action: using supervised learning, design a rule-based algorithm and reinforcement learning. First of all, the

82

8. Reward Shaping and Performance Evaluation 83

aircraft selection can be performed using a rule-based algorithm. In that case a model of the environment is
required. Relevant variables for this environment are shown in Table 8.1.

Table 8.1: Variables needed for an agent to choose which aircraft should perform an action.

Variables Reason Size
tC PA [sec] identify conflicts #a/c !

(2·(#a/c−2)!)
dC PA [nm] identify conflicts #a/c !

(2·(#a/c−2)!)
VT AS [km/h] steer slower a/c behind faster # a/c
δtarget heading identify which a/c is not on target heading # a/c

By including the tC PA , the agent will also be able to solve conflicts between aircraft on reciprocal tracks earlier
whilst they have a large spatial distance since these will have a smaller tC PA compared to conflicts between
aircraft on the same track or crossing track.

An example of a rule-based algorithm would be to solve the potential conflicts with a tC PA < 5 min first. If
all these potential conflicts have been solved, the aircraft of which the δtarget heading is not equal to zero is
selected. This is just an example, but to create a well-performing algorithm, these rules and the hierarchies
between them should be carefully determined. One of the disadvantages of this type of automation is that
such an algorithm will not be able to be ATCO conform neither will it learn to perform optimally. Further-
more, it is difficult to incorporate strategies as "prefer resolutions which require less co-ordination" in the
rule based algorithm.

A second option is to use supervised learning to train an agent to select which aircraft should perform an
action. In (Van Rooijen 2019), experiments were conducted in which participants had to select an aircraft
which either did not fly on its target heading or was part of a potential conflict. In the experiment, the strategic
conformal automation then selected what action the aircraft had to take. The data available (in terms of tC PA ,
dC PA etc.) on when the participant selected what aircraft can be used to train a supervised learning. The
participants were however not experts in CD&R due to which the data might contain a lot of inconsistencies.
(Westin, Borst, and Hilburn 2015) performed an experiment to research the degree of consistency for repeated
conflicts over time. The researchers concluded that "controllers are consistent, but disagreed on how to solve
conflicts". This means that controllers individually are consistent but all apply slightly different strategies.
Therefore, it is hypothesised that a supervised agent can be trained from a large data set containing data from
an ATCO on when to select which aircraft to perform a manoeuvre. One of the advantages of this method is
that this type of automation would be conform with the conflict detection strategies applied by the ATCOs.
This might however not be the most suitable method since a lot of data needs to be acquired.

A third option is to design a reinforcement learning agent for this task as well. The state for this reinforcement
learning agent can be composed of either radar screen pixel data or a model of the environment in terms
of relevant parameters for conflict detection. The advantage of using the radar screen as input is that the
state space is constant. A well trained agent that can decide which aircraft should perform a manoeuvre
can therefore more easily be transferred to a new environment with a different amount of aircraft. Applying
reinforcement learning in this environment is however difficult since the reward the agent receives is also
dependent on the action selection.

Both for the underlying data for supervised learning and the model for reinforcement learning, it can be seen
from Table 8.1 that in case there are 9 aircraft in the sector, the agent should already be trained with a state
of size 36+36+9+9 = 90. To limit the size of the state space, (Brittain and Wei 2019) gave the agent access
to the information of the N-closest aircraft. This is a solution, but the hyperparameter N needed extensive
tuning for each traffic scenario. Another option is to include an attention layer, of which the input size can be
variable.

8.2. Reward Function Design for Manoeuvre Choice
In this section, the reward function for choosing what action to take is defined. The sole objective of the
learning agent is to maximise the reward it retrieves in the long run. The reward function influences both
the time to converge and the convergence point (Matignon, Laurent, and Le Fort-Piat 2006). Therefore, the
reward function should be designed carefully in order to reward ‘good’ actions and punish unwanted actions.
Furthermore, one of the goals of this research is to investigate whether a more explainable automation can be

M.C. Hermans Towards Explainable Automation for ATC

84 8.3. Performance Evaluation

developed. To do so, the preferences of human controllers should be accounted for in the reward function.
The raw pixel data of the SSD will be the input for the agent. The ultimate goal for the agent is to optimise the
manoeuvre in terms of:

• Safety

• Efficiency

• ATCO conformance

In previous research into automating ATC with RL, different kinds of reward functions have been defined.
The events that were rewarded with a positive or negative reward are summarised in Table 8.2 per research.
These can be used as inspiration for the design of the reward function in this research.

Table 8.2: Reward function design in papers using RL to automate CD&R for ATC.

Research Positive Negative

(Brittain and Wei 2018) higher cruise speeds, amount of air-
craft reaching their goal.

conflict, being out of time (threshold).

(Brittain and Wei 2019; Brittain, Yang, and Wei 2020) [-] conflict (-1), minimal separation <
do,i < 10 nm (function of distance,
−1 ≤ r ≤ 0)

(Pham et al. 2019) [-] conflict, larger deviation
(Regtuit et al. 2018) [-] Los of separation, deviating from ref-

erence signal (demonstration) and ev-
ery pilot request (to minimise the
amount)

In terms of safety, the agent should be penalised for the amount of conflicts. Furthermore, to increase safety
margin, a negative reward can be awarded to aircraft which near a conflict situation. These are aircraft with a
2 ≤ tC PA ≤ 5[mi n]. In terms of efficiency, the deviation of the resolution can be taken into account. This can
both be done in a continuous way by considering the heading deviation from the target or at the end of an
episode by considering the flown path relative to the direct path. Finally, some might argue that an airspace in
which most aircraft have a high cruise speed increases the throughput of the airspace and therefore increases
its efficiency. However, since air traffic controllers value a less disruptive manoeuvre which upholds the safety
requirements more than the throughput of a sector, this will not be included.

In Table 2.1, several strategies of ATCOs regarding CD&R are identified. The most important strategies for
conflict resolution are summarised below:

• Solve conflicts pairwise and later check for consequences on other aircraft.

• Look for the one key action that resolves the potential conflict.

• Prefer resolutions which require less co-ordination.

• Select resolution that requires least amount of sector disruption.

• First try to solve conflict by vectoring aircraft, only if necessary perform a speed resolution.

• Turn slower a/c behind (minimises extra distance flown).

• Manoeuvres that more clearly resolve the conflict are preferred.

8.3. Performance Evaluation
To evaluate the performance of the automation, one needs metrics for evaluating the automation in a two-
aircraft traffic scenario and for the multi-aircraft traffic scenario. The most important metrics for CD&R are
listed below:

• # LOS.

• # conflicts solved last-minute (2<tC PA<5 min).

• # actions that need to be taken.

• % of aircraft reaching its exit waypoint.

Next to these metrics, one can define a scoring function on the efficiency. Furthermore, test scenarios will be
set up to see whether the RL agent shows expected behaviour, conform with the design of the reward function.
One of these tests could be to see whether the RL agent steers the slower aircraft behind a faster one. These
metrics shall be evaluated for both the two-aircraft and multi-aircraft traffic scenario.

Towards Explainable Automation for ATC M.C. Hermans

8. Reward Shaping and Performance Evaluation 85

Next to evaluating the performance with absolute metrics, it is relevant to compare the automation with a
baseline. In (Van Rooijen 2019), the Multi-Voltage Potential (MVP) method, which was developed in (J.M
Hoekstra, van Gent, and Ruigrok 2002), was used as baseline. The MVP is a decentralised approach to au-
tomating CD&R. To make a fair comparison between the MVP method and the RL agent in the two-aircraft
traffic scenario, the MVP method should be altered slightly. Instead of being able to provide all aircraft with
resolutions, the MVP is limited to providing resolutions to the controlled aircraft only, just as the RL agent is.
When setting a baseline with the MVP method in a multi-aircraft traffic scenario, the MVP method is enabled
to provide resolutions to all the aircraft.

8.4. Concluding Remarks
In this chapter, the design options for choosing what aircraft should perform an action are discussed. In
the final thesis a decision shall be made on whether to use a rule-based algorithm to automate this process
or to train an agent using supervised or reinforcement learning to do so. Furthermore, considerations when
designing the reward function for choosing what action an agent should take are elaborated upon. In the final
thesis, it will be decided which considerations will be included in the reward function and to what degree they
are valued.

M.C. Hermans Towards Explainable Automation for ATC

9
Preliminary Analysis

In this chapter, a trade-off is made between two different deep RL architectures. These are PPO and DQfD, of
which some of the basic principles were elaborated on in chapter 6. First, in section 9.1, the experiment for the
trade-off is setup. Then, in section 9.2, the algorithms of PPO and DQfD are explained in detail. Furthermore,
to be able to make a fair trade-off, the hyperparameters of both algorithms are carefully selected or tuned.
The trade-off is performed in section 9.3, in which one of the two algorithms is selected to be used in the final
thesis. Finally, section 9.4 explores the effect of using a different network architecture on the performance of
the chosen algorithm.

9.1. Experiment Setup
In (Van Rooijen 2019), the visual value of the SSD for deep neural networks was investigated. The author
showed that the SSD could be used to train an agent with supervised learning. This research will, however,
be the first to explore the value of the SSD for a reinforcement learning agent. The details on the environ-
ment are given in subsection 9.1.3. To be able to make a well-considered trade-off, the algorithms are both
quantitatively or qualitatively evaluated along five trade-off criteria.

9.1.1. Selection of Trade-Off Criteria
For this research there are several criteria that the algorithms should meet. During the trade-off, the algo-
rithms will be evaluated for each of the following criteria:

1. Generalisation: since the agent should be able to make a decision in situations it has not encountered,
the degree to which it is not over-fitting to the training samples is of importance. To evaluate the gen-
eralisation property the performance of the agent during unseen traffic scenarios is evaluated.

2. Sample-efficiency: it is beneficial for the agent to learn efficiently since the range of traffic scenarios
it can encounter and actions it can take are relatively high compared to most Atari games RL is being
used for. To evaluate this, the amount of frames it takes the learning algorithms to meet a certain level
of training performance are compared.

3. Convergence-properties: deep reinforcement learning can become unstable due to sparse rewards in
the environment. Considering the options for designing the reward function, as presented in chapter 8,
it is expected that the agent shall also deal with sparse rewards, e.g. rewards assigned for the disrup-
tiveness of an action. Convergence is also influenced by hyperparameter selection. The convergence
property of an algorithm is compared both theoretically as through analysing the training curve.

4. Explainability of the algorithm: since this research investigates the development of an algorithm which
contributes to the explainability of the automationt for ATC, this is an important criteria in the selec-
tion of the RL algorithm. However, this is difficult to measure quantitatively and it will therefore be
evaluated qualitatively according to the principles of Explainable AI.

5. Controller conformity: (Van Rooijen 2019) showed that controllers have personal strategies regarding
the CD&R task. To increase acceptance of automation in ATC, tailoring automation to an individual’s
strategy is proposed as possible solution in (Westin, Borst, and Hilburn 2015). To evaluate this criteria
a qualitative analysis w.r.t. controller conformance shall be performed on all the algorithms.

86

9. Preliminary Analysis 87

9.1.2. Methodology
To be able to perform a trade-off between different RL algorithms, hyperparameters of the algorithms should
be tuned and multiple tests need to be done. Performing these tests using advanced ATC simulation environ-
ments such as BlueSky is unnecessary since the trade-off is based on criteria which can be evaluated using a
simplification of the ATC environment as well. In the preliminary analysis, an agent is trained with PPO and
DQfD in a simplified learning environment. A manual hyperparameter tuning will be performed after which
each agent is trained until it reaches stable performance. Then, the two algorithms are compared according
to the criteria listed in subsection 9.1.1. Based on this comparison, one of the two algorithms is selected to be
used in the final thesis. This methodology is visualised in Figure 9.1.

For DQfD, expert demonstrations are needed. An agent which was trained with a publicly available PPO
implementation was used to generate these demonstrations. Since the ‘expert’ does not perform perfectly, it
was chosen to filter the demonstrations for well-performing examples.

SSD_Environment
(imperfect)

Expert
Demonstrations

pretrains

Replay
Buffer

Interacts

SSD_Environment
Interacts

Data Efficiency

Convergence

Generalisation

Data Efficiency

Convergence

Generalisation

Training Phase

Performance
Validation

Trade-Off

Qualitative Analysis

Conformity

Explainability

Conformity

Explainability

Performance
Validation

Well-trained
PPO agent from

library

Quantitative Analysis

PPO
DQfD

Hyperparameter
 Tuning

Figure 9.1: Methodology used for preliminary analysis.

9.1.3. Environment
For the preliminary analysis, an environment with limited action and observation space has been developed
using the OpenAI Gym library. The SSD in this environment contains one randomly initiated Forbidden Beam
Zone. This environment will be referred to as the SSD environment.

As explained in subsection 3.1.2, the velocity vector is composed of the velocity and the heading of the air-
craft. The velocity is indicated by the length of the arrow and the heading is represented by the angle the
arrow makes with the centre line. The velocity vector has a green colour in the SSD environment. The FBZ
is indicated by a red polygon spanning between the inner circle and outer circle, which represent the flight
envelope in terms of speed. The target heading, for ATCOs this will be the bearing to the exit waypoint of that
aircraft, is represented by a blue line.

State and Action Space
The state-space of the environment is composed of raw pixel data of the SSD. Since RGB (Red, Green, Blue)
is applied, a pixel can have a value between 0 and 255 at each of the three layers. The image is cropped to
remove the extra white space leaving an image height of 202 pixels and width of 201 pixels, each consisting of
three channels. The agent can only alter its heading. Its action space is shown in Equation 9.1.

Aag ent = {−90°,−67.5°,−45°,−22.5°,0°,22.5°,45°,67.5°,90°} (9.1)

The lines drawn in the SSD to indicate the current and target heading are relatively large to be clearly distin-
guishable for the agent. This is possible because the headings in the action space lie far apart. In an action
space spanning significantly more possible headings, the lines must be made thinner. Thicker lines are pre-
ferred since the image can then be downscaled in order to decrease the state space whilst the lines still remain
distinguishable.

Reward Function
The reward function is composed of five components, which are listed below.

M.C. Hermans Towards Explainable Automation for ATC

88 9.1. Experiment Setup

• Rt = +10 in case the heading (green) is exactly the same as the target heading and the arrow head is not
in the FBZ.

• Rt = 1 in case the new heading is closer to the target heading and not in the FBZ.

• Rt = −0.5 in case the new heading did not change compared to the previous heading.

• Rt = −2 in case the new heading is further away from the target heading and not in the FBZ.

• Rt = −30 in case the new heading is in the FBZ.

The agent is thus punished for having a velocity vector which is in the FBZ and rewarded if the heading is
close or exactly on the target heading. In theory, the maximum reward the agent can receive is 13. It can do
so if the target heading is at 0° whilst the initial heading is either −90° or 90° and there is no FBZ separating
the target and initial heading. It can then take three steps into the direction of the target heading, each time
receiving a reward of 1, and finally take the action leading to the target heading, receiving a reward of 10.

Figure 9.2: Example of SSD environment on which algorithms are
trained. This gives a reward of -2 since the previous heading was

closer to the target heading.

Figure 9.3: Example of arrow head being in the FBZ. This gives the
agent a reward of -30.

9.1.4. Image Preprocessing
The images provided to the RL agents should be pre-processed using the same techniques. For both the PPO
and DQfD agent, the image is pre-processed using the following steps:

1. Image is cropped to remove the white spaces.

2. Image is downsized from 3x202x201 −→ 3x128x128.

3. Image is converted to greyscale: 3x128x128 −→ 1x128x128

4. Image is normalised using a mean value and standard deviation retrieved from 10.000 images.

Figure 9.4: 202x201 pixels. Figure 9.5: 128x128 pixels. Figure 9.6: 64x64 pixels. Figure 9.7: 32x32 pixels.

It was decided to downscale to 128x128 instead of all the way to 64x64 since it was hypothesised that the
agent could not accurately determine what heading would be inside or just outside the FBZ. Furthermore,
the image is converted to greyscale in order to decrease the dimensions by a factor 3.

For any convolution neural net, normalisation is useful to ensure that each input pixel has a similar data
distribution. This causes the training process to speed up significantly (Buduma 2017). To do so, the mean

Towards Explainable Automation for ATC M.C. Hermans

9. Preliminary Analysis 89

value of the pixel input and standard deviation must be calculated. Prior to training the algorithms, 10,000
runs of the environment are done to determine these parameters.

In the final thesis, BlueSky will be used as simulation environment. Since the construction of the SSD slightly
differs in that environment, a comparison between downscaling the image to 1x128x128 and 1x64x64 will be
made only in the final thesis. Furthermore, to decrease the state-space, an analysis will be performed to see
whether using only the upper half of the SSD (in which the current heading always points upwards) can speed
up the learning process.

9.2. Algorithms
In this section, the details of the algorithms which are included in the comparisons are explained in detail.
First, in subsection 9.2.1, the working principles behind DQfD are elaborated on.

9.2.1. DQfD
In (Hester et al. 2017), the DQfD algorithm is developed. The core idea of this algorithm is to speed up learn-
ing by leveraging small sets of demonstrations. The original algorithm presented in (Hester et al. 2017) is
reproduced and used to train an agent in the SSD environment in order to make a comparison with PPO. The
core idea of the algorithm is to first train the agent on demonstrations, which are stored in a demonstrations
replay buffer. The agent imitates the demonstration data by updating the network with a supervised large
margin classification loss and a temporal difference loss. The temporal difference loss is needed to learn a
self-consistent value function to continue learning after the pre-training phase. Having pre-trained on the
demonstrations, the agent obtains new experiences and continues training on both demonstrations as well
as the new experiences. To do so, the researchers have implemented prioritised replay. The algorithm is
shown in pseudo code in Algorithm 2.

Algorithm 2 The pseudo-code of Deep Q-Learning from Demonstrations (DQfD) (Hester et al. 2017). The
behaviour policy πεQθ is ε-greedy with respect to Qθ.

Require: Dr epl ay : initialised with demonstration data set; θ: weights for initial behaviour network (random);
θ′: weights for target network (random); τ: frequency at which to update target net; k: number of pre-
training gradient updates;

1: for steps t ∈ {1,2, ...k} do
2: Sample a mini-batch of n transitions from Dr epl ay with prioritisation
3: Calculate loss J(Q) using target network
4: Perform a gradient descent step to update θ
5: if t mod τ = 0 then
6: θ′ ←− θ

7: end if
8: end for
9: for steps t ∈ {1,2, ...} do

10: Sample action from behaviour policy a ∼πεQθ

11: Play action a and observe (s′,r)
12: Store (s, a,r, s′) into D, overwriting oldest self-generated transition if over capacity occurs
13: Sample a mini-batch of n transitions from Dr epl ay with prioritisation
14: Calculate loss J(Q) using target network
15: Perform a gradient descent step to update θ (Adam optimiser)
16: if t mod τ = 0 then
17: θ′ ←− θ

18: end if
19: s ←− s′
20: end for

Network Architecture
There are multiple different ways to parameterise the value function using a neural network. In (Van Rooijen
2019), it was concluded that a simple architecture is preferred for supervised learning since it decreases the
number of trainable network parameters and because it mitigates overfitting. Furthermore, performance in

M.C. Hermans Towards Explainable Automation for ATC

90 9.2. Algorithms

the limit did not seem to be affected. In RL, the most time-consuming part is acquiring new data, much
more than updating the weight parameters. For this trade-off, a comparison between different architectures
will therefore not be done. It is decided that both DQfD and PPO will be trained using the same network
architecture. Only after deciding which algorithm to use for the final thesis, a comparison between commonly
used networks will be done.

The network architecture used in (Hester et al. 2017) is a Dueling DQN architecture (Z. Wang et al. 2016). In the
dueling architecture, a state value and action advantage is computed to approximate the state-action value.
The dueling network thus has two heads which share same the feature learning module, one for estimating
the state value and one for estimating the action advantage.

The feature learning module is composed of the same convolutional neural network as used in (Mnih, Kavukcuoglu,
et al. 2015; Hasselt, Guez, and Silver 2015). It has three convolutional layers and is described per layer in Ta-
ble 9.1.

Table 9.1: Setup of the feature extractor used for DQfD. The first and second convolutional layer have a stride of 4 and 2.

Layer # Type of Layer Input Size # Feature Maps Kernel Size
1 CONV(s4) 1 32 8x8
3 ReLU 32 32 -
4 CONV(s2) 32 64 4x4
6 ReLU 64 64 -
7 CONV(s1) 64 64 3x3
9 ReLU 64 64 -

The feature learning module is extended with a stream for the value and advantage function, which is vi-
sualised in Figure 9.8. The details of these layers can be found in Table 9.2. As one can see, both the value
stream and advantage stream are composed of a fully-connected layer with 512 units. Remember that the
input of the network is an image composed of 128x128 pixels. Due to the different convolutions applied to
the image, the dimensions are altered. With Equation 9.2, one can calculate the dimension of the output of a
convolutional layer. Doing this for all the layers in the feature learning module, one can calculate that it has
an output size of 5408. This is the input size of the two streams.

size of the output = (

⌊
si ze − (kernel size−1)−1

stride size

⌋
+1) ·# feature maps (9.2)

Table 9.2: Head of value and advantage approximator in the Dueling DQN.

Type Input Size Output Size
value stream layer #1 Linear 5408 512

value stream head Linear 512 1

advantage stream layer #1 Linear 5408 512
advantage head Linear 512 # actions

Towards Explainable Automation for ATC M.C. Hermans

9. Preliminary Analysis 91

Figure 9.8: Dueling network architecture used in DQfD (Z. Wang et al. 2016). The top stream represents the state-value head, which has
a single output. The bottom stream represents the action advantage head, which has as many outputs as possible action.

To calculate the state-action value, the state-value and action advantage are added. This is shown in Equa-
tion 9.3. In this equation, θ represents the weights of the feature learning module whilst α and β represent
the weights of the action advantage and value stream of fully-connected layers. The advantage is corrected
by an average value over all the advantages over the next possible actions in order to address the issue of
identifiability. Without including such a term, the values of V and A cannot be recovered from Q.

Q(s, a;θ,α,β) =V (s;θ,β)+ (A(s, a;θ,α)− 1

|A |
∑
a′

A(s, a′;θ,α)) (9.3)

Prioritised Replay
Experience replay has posed the opportunity to re-experience rare experiences and to break temporal cor-
relations by using both experiences obtained in the past with recent experiences acquired during updates.
This has stabilised the training process of the value function (Schaul, Quan, Antonoglou, and Silver 2016). In
(Schaul, Quan, Antonoglou, and Silver 2016), a method to prioritise experiences is constructed. This is done
to replay important transitions more frequently to speed up learning. Implementing prioritised replay with
DQN outperformed an implementation with uniform replay in 41 out of 49 Atari games. In DQfD, prioritised
replay is used to balance the amount of demonstration data contained in a mini-batch during training with
new experiences as well. To define the priority a sample has, the authors suggest two variants. First of all
proportional prioritisation, which is shown in Equation 9.4. In this equation, δi is the temporal difference
(TD) error. This error indicates how far the value is from the next-step estimate: it indicates how surprising
or expected the transition is (Andre, Friedman, and Parr 1998).

pi = |δi |+ε (9.4)

The second variant is called rank-based priority, which is shown in Equation 9.5. In this equation r ank(i) is
the rank of transition i when the replay memory is sorted according to |δi |.

pi = 1

r ank(i)
(9.5)

Rank-based priority is more robust as it is insensitive to outliers (Schaul, Quan, Antonoglou, and Silver 2016).
In the paper (Hester et al. 2017) in which DQfD is first described, the authors however implement the propor-
tional priority, due to which this variant of determining the priority is used for this implementation of DQfD
as well. In the paper, an additional demonstration priority bonus, εd , is added to pi of the demonstration data
to boost the frequency at which they are selected. In that case, pi = |δi |+εa +εd . The probability of sampling
a transition is given in Equation 9.6. In this equation, α determines how much prioritisation is used. Setting
α to zero corresponds with the uniform case.

P (i) = pα
i∑

k pα
k

(9.6)

To have an accurate estimation of the expected value with stochastic updates, these updates must have the
same distribution as its expectation. However, the probabilities are non-uniform due to the prioritisation.

M.C. Hermans Towards Explainable Automation for ATC

92 9.2. Algorithms

This induces a bias in the solution of the expected value estimate. To correct for this, importance-sampling
(IS) weights can be used, which are shown in Equation 9.7. In this equation, N is the size of the replay
buffer and β controls the amount of IS with β = 0 corresponding to no IS and β = 1 to full IS (Schaul, Quan,
Antonoglou, and Silver 2016). In most applications, the bias is annealed by defining a schedule on β in which
β is linearly increased over time to the value of 1. In the Q-learning update, wiδi must be used instead of δi .

wi = (
1

N
· 1

P (i)
)β (9.7)

Implementing these weights in the Q-learning update is called Weighted Importance Sampling.

Loss Function

The loss function is setup of four components. It contains a double Q-learning loss for every update, both dur-
ing pre-training as well as during the normal training phase. Additionally, for updates using demonstration
data, a n-step double Q-learning loss, a supervised large margin classification loss and an L2 regularisation
for generalisation purposes. These components are explained below:

• The double Q-learning loss is implemented to overcome the maximisation bias present in regular DQN
updates. A policy network is used to calculate the ar g max over the next state values whilst a target
network is used to calculate the value over the next state-action pair.

amax
t+1 = argmax

a
Q(st+1, a;θ) (9.8)

The double Q-learning loss is then the difference between the state-action value function as given by
the target and current network, as shown in Equation 9.9. In this equation, θ′ indicate the weights of
the target network.

JDQ (Q) = (R(s, a)+γQ(st+1, amax
t+1 ;θ′)−Q(s, a;θ))2 (9.9)

• The n-step double Q-learning loss is included during updates on demonstration data to propagate the
values of the demonstrator’s trajectory through all the previous states (Hester et al. 2017).

Jn−step (Q) = (rt +γrt+1 +·· ·+γn−1rt+n−1 +argmax
a

γnQ(st+n , a;θ′)−Q(s, a;θ))2 (9.10)

• To ensure that the agent imitates the demonstration data, a large margin classification loss is included.
It does this by making sure that the values of the other actions are at least a margin lower than the one
taken by the demonstrator. This is shown in Equation 9.11, in which l (aE , a) = 0 in case a = aE . For all
the other actions, l (aE , a) takes a positive value. Essentially, by minimising this loss function, a margin
between the value of the expert demonstration and the second best action is added (Piot, Geist, and
Pietquin 2014).

JE (Q) = max
a∈A

[Q(s, a;θ)+ l (aE , a)]−Q(s, aE ;θ) (9.11)

• The last term is the L2 regularisation term, which is included to prevent over-fitting. In the algorithm it
is included by adding weight decay to the Adam optimiser.

The total loss function then becomes:

J (Q) = JDQ (Q)+λ1 Jn(Q)+λ2 JE (Q)+λ3 JL2(Q) (9.12)

In this loss function,λ are the weighting coefficients of the loss components. λ3 is zero in this implementation
since the L2 regularisation loss is added by using weight decay in the Adam optimiser. To fully understand
how this algorithm functions, the computational graph of DQfD is constructed in Figure 9.9. One can see that
the target net does not require a gradient since its network parameters are not updated at each epoch.

Towards Explainable Automation for ATC M.C. Hermans

9. Preliminary Analysis 93

JDQ(Q)

Jn-step(Q)

JE(Q)

+

reward

discounted value
target net, next
state and best

action

Q value current
policy

-

discounted n-
step reward

+ Discounted
return

+

discounted n-step
value target net,

state n, action
maximising value

Discounted n-
step return -

large margin
classification

error

Value of expert
demonstration

+ -

State

Action

Next
State

Action
Maximising

State n

Action
Maximising

Q value current
policy

Action
Maximising

Jtpt(Q)

Compute Loss

Compute Gradient

Non-expert action with highest value

Only if sample
is a demonstration

Figure 9.9: Computational graph of DQfD. Nodes which are green require a gradient (the weights of these networks are updated) and
the grey nodes indicate that the target network is used to calculate the value. Note that the n-step loss and large phase margin loss are

only applied when the sample is a demonstration.

Hyperparameters

Prior to comparing DQfD with PPO, a hyperparameter selection and tuning must be performed. The selection
of hyperparameters is important stage in the RL process that affects the performance (R.S. Sutton and A.G.
Barto 1998). In Table 9.3, the hyperparameters of DQfD are listed. The only hyperparameter of which the
value is not stated in the paper is the learning rate. Since the problems faced in the paper, the Atari games,
are more complex than the SSD environment it is chosen to decrease τ from 10.000 to 10. This should only be
increased in case the learning becomes unstable. The hyperparameters which are often most important to
tune are the discount factor, the learning rate and exploration rate. For computational reasons, it is decided
to only tune the discount factor and the learning rate for the trade-off. In case this algorithm is selected in the
trade-off, a more extensive hyperparameter tuning will be performed in the final thesis.

There are three methods which can be used for hyperparameter selection: manual tuning, tuning through
a grid search and tuning through Bayesian optimisation. In the final thesis, a grid search or Bayesian opti-
misation will be performed. For computational reasons it is chosen to perform a manual grid search for the
trade-off.

M.C. Hermans Towards Explainable Automation for ATC

94 9.2. Algorithms

Table 9.3: Value of the hyper parameters used in DQfD which are not tuned for the trade-off.

Hyper Parameter Value Paper Value Used Explanation

Discount rate 0.99 tuning importance of future states
Batch size 128 128 size of batch used to update network

ε 0.01 0.01 value of ε
τ 10,000 10 frequency at which to update target network
k 750,000 6,400 number of pre-training steps

l (aE , a) 0.8 0.8 expert margin when a! = aE

α 0.4 0.4 prioritized replay exponent
εa , εd 0.001, 1.0 0.001, 1.0 prioritised replay constants
β0 0.6 0.6 prioritized replay importance sampling exponent
n 10 3 length of N-step returns
lr [-] tuning learning rate optimiser

λ1, λ2 1.0, 1.0 1.0, 1.0 weighting coefficients in the loss function

First, the discount rate is tuned. The values of the discount rate which are compared are: 0.2, 0.4, 0.6, 0.8,
0.99. In Figure 9.10, the validation results of training the agent for 600 epochs are shown. The first 50 epochs,
the agent pre-trains on 2000 demonstrations. After that, new samples are generated and these are also used
for training. One can see that the agent trained with a discount factor of 0.2 continuously has the highest
validation reward on average for the first 600 epochs. Therefore, a discount factor of 0.2 will be used to train
the agent in the final trade-off and to tune the learning rate.

Figure 9.11 shows the training results of agents having a discount factor of 0.2 and a learning rate of: 0.01,
0.001, 0.0001 and 1.0 ·10−5. One can notice that the reward received during validation does not vary as much
as it did when tuning the discount factor. Initially, the agent with a learning rate of 1.0 · 10−5 achieves the
highest validation reward. At epoch 600, the validation reward received is more similar. Overall, the agent
with l r = 1.0 ·10−5 achieves the highest validation reward and is therefore chosen to be used for the trade-off.

Figure 9.10: Average validation rewards received over 50 episodes using the
current policy of the DQfD agent.

Figure 9.11: Tuning of the learning rate with γ= 0.2.

DQfD vs. Dueling DQN

Having selected the hyperparameters for DQfD, it is interesting to see how DQfD performs relative to Dueling
DQN in terms of data-efficiency. In Figure 9.12, the validation curve for Dueling DQN and DQfD is shown for
the first 600 epochs. DQfD indeed is more data-efficient as it achieves a much higher validation reward on
average in the first 600 epochs.

Towards Explainable Automation for ATC M.C. Hermans

9. Preliminary Analysis 95

Figure 9.12: Average validation reward retrieved during the first 600 epochs of training. One can see that DQfD is more data efficient.

9.2.2. PPO algorithm
Unlike Double DQN, the Proximal Policy Optimisation algorithm is a policy gradient method. This means
that instead of mapping the state-action values, it updates its policy based on the reward retrieved at a certain
step. PPO is an advanced actor-critic methods, and therefore learns both a policy as well as a value function. A
stochastic policy is implemented to allow the agent to explore the state space without always taking the same
action. As explained in subsection 6.3.2, PPO is a trust region method which aims at taking the largest possible
step to improve its policy with the data available without risking a sudden collapse in performance. There are
two variants to the PPO algorithm presented in (Schulman, Wolski, et al. 2017). The first variant is one that
implements a clipped surrogate objective. The second variant is a KL-penalised objective, which can be used
instead or in addition to the clipped surrogate objective. It adapts the KL-penalty to achieve some target
value of the KL divergence dt ar g at each policy update. KL divergence is a measure for the difference between
distributions. Results in (Schulman, Wolski, et al. 2017) show that the clipped surrogate objective performs
better than the KL-penalised objective. Therefore, the latter variant shall not be used in this implementation
of PPO.

The general structure of the PPO algorithm is shown in Algorithm 3. One can see that each iteration, the agent
acquires a fixed amount of experience and optimises for K epochs on that acquired experience.

Algorithm 3 The pseudo-code of Proximal Policy Optimisation (PPO) (Schulman, Wolski, et al. 2017).

Require: θ: weights for initial behaviour network (random); N: experience horizon; K: number of epochs to
perform at each iteration; M: mini-batch size;

1: for iteration=1,2,... do
2: for actor = 1,2,...,N do
3: Run policy πθol d

in environment for T time steps
4: Compute advantage estimates Â1, ..., ÂT

5: end for
6: Optimise surrogate L w.r.t. θ, with K epochs and mini-batch size M ≤ N T
7: θol d ←− θ

8: end for

The algorithm uses the current policy to obtain new experiences for N steps. At each step, the difference
between the state-action value and state-value, also called the advantage function, is determined. Since an
update on the network parameters is performed every N steps, the estimator for the advantage function must
not look further ahead then N steps. The estimator used in (Schulman, Wolski, et al. 2017) originates from
(Mnih, Puigdomènech Badia, et al. 2016) and is calculated by using the following equation:

Ât = δt + (γλ)δr+1 +·· ·+ · · ·+ (γλ)T−t+1δT−1, (9.13)

M.C. Hermans Towards Explainable Automation for ATC

96 9.2. Algorithms

where δt = rt +γV (st+1)−V (st). Having obtained the experiences and computed the advantages, the policy
parameters are updated by optimising a loss function with the Adam optimiser for K epochs.

During training, a categorical policy is implemented. This is a stochastic policy which can be used for a
discrete action space.

Network Architecture

To make a fair comparison between PPO and DQfD, the same feature extractor will be implemented for PPO.
This network architecture was also used to evaluate the performance of the algorithm in the original paper
(Schulman, Wolski, et al. 2017). Details about this network can be found in subsection 9.2.1. Instead of having
a single network with two heads to estimate the state-value and action advantage, an actor and critic network
co-exist. The actor network outputs a probability density over the next possible actions. To do so, a softmax
layer is added to this network. The critic network outputs a single value. The details on the heads of the two
networks are shown in Table 9.4.

Table 9.4: Critic and actor head for PPO algorithm.

Layer # Type Input Size Output Size
critic head 1 Linear 5408 1
actor head 1 Linear 5408 # actions

2 SoftMax #actions # actions

Loss Function

The loss function is composed of three components when a neural network architecture is used which has
shared parameters between the policy (actor) and value (critic) function: the clipped surrogate loss, a squared-
error loss between the policy surrogate and value function, and an entropy loss. These components are ex-
plained below:

• Clipped surrogate loss:

LCLIP(θ) = Êt [mi n(rt (θ)Ât ,cl i p(rt (θ),1−ε,1+ε)Ât)] (9.14)

In this equation, rt (θ) is the probability ratio: rt (θ) = πθ(at |st)
πθol d

(at |st) . This means that rt (θol d) = 1. This ob-

jective can be decomposed into three parts. The first component, rt (θ)Ât represents the conservative
policy iteration (Kakade and Langford 2002). The second component clips the ratio between 1− ε and
1+ε, which removes the incentive for rt (θ) to move outside these bounds. Finally, a minimum operator
is applied on the clipped and unclipped objective (Schulman, Wolski, et al. 2017). This part of the loss
function ensures that the probability ratio is only included if it would make the objective worse. More
details can be found in (Schulman, Wolski, et al. 2017).

• Squared-error loss:

LV F
t (θ) = (Vθ(st)−Vθol d

(st))2 (9.15)

This is the critic loss component, which is also added in the DQfD algorithm.

• Entropy bonus term: S[πθ](st). This is added to ensure sufficient exploration.

The total objective is then given by Equation 9.16. In this equation, c1 and c2 are coefficients for the critic loss
and entropy bonus. In the paper, c1 = 1 and c2 = 0.01.

LPPO(θ) = LCLIP(θ)− c1LV F
t (θ)+ c2S[πθ](st) (9.16)

The computational graph is shown in Figure 9.13.

Towards Explainable Automation for ATC M.C. Hermans

9. Preliminary Analysis 97

Compute Loss

Compute Gradient

+ Jtpt(Q)

JClip

Advantage

rt(Θ)

Return

V(Θ)

-
1-є

1+є

x unclipped
objective

min

V(Θ)

V(Θold)

JVF-

State

Reward

Sentropy

Next
State

πΘ(st,	at)

πΘold(st, at)

÷Action

Figure 9.13: Computational graph of the PPO algorithm. Nodes which are green require a gradient (the weights of these networks are
updated) and the grey nodes indicate that the old network weights are used to calculate the value.

Hyper Parameter Tuning

PPO is a policy gradient method, the algorithm therefore consists of two phases: acquiring experience and
updating its policy. Accordingly, there are two questions to be answered. Namely, how much experience the
agent should gather before updating and how the policy should be updated based on the acquired experience.
These questions are answered based on the hyperparameters chosen. In Table 9.5, the hyperparameters of
PPO are listed.

Just as for DQfD, it is chosen to only tune the discount and learning rate for computational reasons. First,
agents with different discount factors are compared using a learning rate of 0.00001. Then, using the chosen
discount rate, agents are trained with different learning rates.

Table 9.5: Hyperparameters present in PPO (Schulman, Wolski, et al. 2017).

Hyper Parameter Acquiring Experience Updating Policy Values Paper3 Value Used

Horizon x 2048 2048
Mini-batch range x 64 64

Epoch range x 10 10
γ x 0.99 tuned

λG AE x 0.95 0.95
Learning rate x [-] tuned

In Figure 9.14, the validation rewards retrieved when training the agent with a discount factor of 0.2, 0.4, 0.6,
0.8, 0.99 are shown. It can be seen that initially, the agent with a discount factor of 0.6 outperforms the other
agents and also has the steepest validation reward curve at 500 epochs. Therefore, it is chosen to perform
the hyperparameter tuning of the learning rate with γ= 0.6. Using a discount rate of 0.6, the learning rate is

tuned. The results of running PPO agents with a discount factor of 0.1, 0001, 0.0001 and 1.0 ·10−5 are shown
in Figure 9.17. One can see that the agent with a learning rate of 1.0 · 10−5 continuously achieves a higher
validation reward than the other agents. Therefore, it is chosen to use that agent for the trade-off.

M.C. Hermans Towards Explainable Automation for ATC

98 9.3. Trade-Off

Figure 9.14: Average validation rewards received over 50 episodes using the
current policy of the PPO agent. Smoothing weight vector of 0.8.

Figure 9.15: Tuning of the learning rate for the PPO agent. One can see that a
learning rate of 1e-05 performs best during training. Smoothing weight vector of

0.8.

9.3. Trade-Off
In this section, the DQfD agent and PPO agent are compared in terms of generalisation, sample-efficiency,
stability properties, their potential to contribute to the explainability and controller conformity. The two
agents were trained until reaching a stable performance on the validation data.

DQfD was trained until epoch 1650 to achieve stable performance whilst PPO was trained until epoch 1050.
Stable performance was achieved when the validation curve flattened. The validation curves for the PPO and
DQfD agent are shown in Figure 9.16 and Figure 9.17.

Figure 9.16: Average validation rewards received over 50 episodes during training
of the PPO agent.

Figure 9.17: Average validation rewards received over 50 episodes during training
of the DQfD agent.

9.3.1. Generalisation
To compare the performance of the DQfD and PPO agent, both were used to select actions in 200 simulations.
At each of these simulations, the agents were presented with the same initial state.

In Figure 9.18, a box plot of the received reward during the simulations is shown for the DQfD and PPO agent.
One can see that the median of the reward received of the DQfD agent is 10, and that the lower and upper
bound are also 10. The DQfD agent thus shows a stable performance. This can be explained by the fact that
the demonstration data solely contained examples in which the agent selected the action that would turn
the aircraft to the target heading, retrieving a reward of 10. Due to the large phase margin loss, the trained
agent mimics these actions when encountering similar states. This shows that DQfD can be used to force the
automation to take certain actions in a particular situation. By including demonstrations from ATCOs, the
automation can become more conform with the strategies applied by ATCOs.

The PPO agent shows more variance in its performance. The median of the received reward during the 200
simulations is 8. The agent did however learn to first take a step in the direction of the target heading before
selecting the target heading immediately. This explains the few episode rewards > 10. Although the DQfD
agent shows a steady performance, it does not find the optimal solution to the problem. This is caused by the

Towards Explainable Automation for ATC M.C. Hermans

9. Preliminary Analysis 99

fact that the demonstrations were imperfect and implied that the agent should always take the action which
resulted in a reward of 10. This stresses the importance of good demonstrations when using DQfD.

Figure 9.18: Boxplots of received reward on 200 episodes for DQfD and PPO agents. Both agents werre presented with the same initial
states.

To get more insight in the performance of the agents, Figure 9.19 shows the percentage of simulations in
which the agent received a reward larger than 8. It can be seen that the DQfD agent performs well in 88% of
the simulations whilst the PPO agent performs well in only 57% of the simulations. Arguably more important
is how often the agent took an action into the FBZ. Figure 9.20 shows that the DQfD agent did not once select
an action into the FBZ during the 200 simulations whilst the PPO agent selected an action into the FBZ 17
times.

Figure 9.19: Percentage of test scenarios in which the algorithm
showed good performance (>8). The percentage is taken from the
total number of episodes in which the target heading was outside

the FBZ.

Figure 9.20: Number of times the agent selected an action into the
FBZ. One can see that the PPO algorithm selected such an action

signficantly more often than DQfD.

9.3.2. Efficiency
There are three components of interest to the efficiency of RL algorithms: the number of frames acquired,
the number of frames used to update the network weights and the computation time. The algorithms are
compared when achieving a minimal validation reward of 2.

Most important for this thesis is the sample-efficiency, which refers to how many experiences should be ac-
quired for the learning process. The amount of frames acquired are plotted against the validation reward
received during training in Figure 9.21 and Figure 9.22. One can see that DQfD needed to acquire much less
data (∼3,500 frames) than the PPO agent (∼88,000 frames) to achieve an average validation reward of 2. It
must be noted that in addition to the new frames the DQfD agent needed to acquire, it had 2000 demonstra-
tion frames to learn from.

M.C. Hermans Towards Explainable Automation for ATC

100 9.3. Trade-Off

Figure 9.21: Validation curve plotted against the number of new experiences
acquired by the DQfD agent.

Figure 9.22: Validation curve plotted against the number of new experiences
acquired by the PPO agent. One can see that the PPO agent needs to acquire
more experiences than the DQfD agent to reach the same validation reward.

This large difference in experiences which the agents need to acquire can be seen in the computation time of
the agents. The PPO agent performed updates on ∼39,000 frames in ∼16,000 seconds to achieve an average
validation reward of 2. This is shown in Figure 9.13 and Figure 9.24. On the other hand, the DQfD agent
needed to perform updates on ∼440,000 frames, which it retrieved from its replay memory, in ∼5,600 seconds
to achieve the same validation reward. This can be seen in Figure 9.25 and Figure 9.26. The difference in
computation time is caused by the amount of time that the PPO agent spends on acquiring data instead of
learning from its acquired data. From literature it was already seen that many implementations of PPO use
distributed learning to speed up this process. DQfD is much more data-efficient as it uses memory replay.

Figure 9.23: Average validation rewards received over 50 episodes using the
current policy of the PPO agent plotted against the computation time in seconds.

Figure 9.24: Average validation rewards received over 50 episodes using the
current policy of the PPO agent plotted against the frames needed for the

updates.

Towards Explainable Automation for ATC M.C. Hermans

9. Preliminary Analysis 101

Figure 9.25: Average validation rewards received over 50 episodes using the
current policy of the DQfD agent plotted against the computation time in

seconds.

Figure 9.26: Average validation rewards received over 50 episodes using the
current policy of the DQfD agent plotted against the frames needed for the

updates.

9.3.3. Stability Properties
To analyse the stability properties of the reinforcement learning algorithm, one can look at the loss function.
For a stable reinforcement learning algorithm, the loss function should steadily decrease and converge. In
Figure 9.27 and Figure 9.28, the loss function for the PPO and DQfD agent are shown. Considering the loss
function of the PPO agent, it is apparent that it initially steadily declines but keeps on fluctuating in the limit.
The agent has thus not yet converged to a stable policy. The training loss function of the DQfD agent shows
much less variance and seems to converge to a steady value.

Figure 9.27: Training loss PPO. Figure 9.28: Training loss DQfD.

Looking at literature available, Dueling DQN and PPO have shown to learn a well-performing policy on dif-
ferent Atari games. Dueling DQN has shown to achieve high performance only on games with discrete action
spaces whilst PPO has also achieves high performance on continuous action spaces (Schulman, Wolski, et al.
2017). Since the action space of the agent in the final thesis will be discrete, it is expected that both methods
will converge to a well-performing policy.

9.3.4. Explainability
In this trade-off, explainability will be evaluated qualitatively instead of quantitatively. Since there are yet
hardly any implementations of reinforcement learning algorithms which are focused on being explainable,
the algorithms shall be evaluated for the potential they have to contribute to the explainability of the automa-
tion. Both agents can be designed such that they show wanted behaviour by altering the reward function. For

M.C. Hermans Towards Explainable Automation for ATC

102 9.4. Finalising the Network Architecture

deep RL agents in specific there are two methods which can contribute to the explainability of the model:
visualising features and reward decomposition.

As explained in section 7.3, reward decomposition can only be applied to value based methods. For these
methods theoretical guarantees exist that the overall Q-function still converges to the optimal Q-function.
This allows the model to continuously show why the agent makes a certain decision. Since PPO is not a value
based method, DQfD has the most potential to contribute to the explainability of the model. Next to reward
decomposition, saliency maps and LRP can be applied to help human operators understand what features in
a SSD have led the agent to make a certain decision. These can be applied on models trained by either PPO
or DQfD. To conclude this section, DQfD has higher potential to become more explainable than PPO since
reward decomposition can be implemented alongside DQfD.

9.3.5. Controller Conformity
Controller conformity can be achieved in two ways. First of all, careful design of the reward function can cause
the agent to mimic strategies employed by ATCOs. This holds for all the algorithms. However, an algorithm
with a significant better performance in the limit is more likely to accurately mimick strategies incorporated
in the rewards function. Experiments showed that the PPO agent was able to identify scenarios in which the
optimal reward was obtained whilst DQfD failed to. Experiments are inconclusive as to whether DQfD or PPO
shows better performance in the limit. It can, however, be assumed that both algorithms can show wanted
behaviour as they both managed to learn a policy which maximised the retrieved reward.

The second possibility is to have an agent learn on demonstration data (DQfD). Since a large margin classi-
fication loss is incorporated, the agent will mimick the demonstrations shown in the expert demonstration
data. The performance comparison shown in Figure 9.18 shows that the DQfD agent indeed mimicks the
demonstration data.

9.3.6. Concluding Remarks
For the final thesis, it is chosen to use the DQfD algorithm. DQfD shows a significantly better performance
compared to PPO after acquiring significantly less experience. PPO requires the acquisition of more new
experiences compared to DQfD, which is the most time consuming phase in RL. Literature shows that (dis-
tributed) PPO in general outperforms most of the value based methods when trained for a large amount of
epochs. In this research, agents should be trained for every sector separately. Training a PPO agent for these
sectors would therefore computationally be too demanding for the resources attributed to this research.

Moreover, DQfD has two algorithm specific advantages over PPO: it learns from demonstrations and has the
potential to contribute more to the explainability of the automation. Demonstrations in DQfD enable the
agent to learn ATCO specific preferences, contributing to the conformity of the automation. Furthermore, as
DQfD is a value-based method, reward decomposition can be implemented.

9.4. Finalising the Network Architecture
Increasingly deep CNNs are achieving a high model accuracy on image classification tasks, such as the VGG16
network developed in (Simonyan and Zisserman 2014). However, with deeper NNs, more weights have to
be updated at each iteration. Furthermore, as the model is made more complex, the model will overfit the
training data. Since training efficiency and generalisation is important to this research, it is decided to keep
the neural network simple.

In (Van Rooijen 2019), numerous network architectures were compared to see whether it affected the perfor-
mance of the automation. For supervised learning, it did not significantly affect the model accuracy, but it
did have an effect on the training time. In this section, a comparison between three network architectures is
made. The baseline architecture is the one used throughout this chapter, a NN which is widely used in DQN
implementations. The second neural network is the neural network which was used by (Van Rooijen 2019)
to train the supervised learning algorithms. Finally, the third neural network has three convolutional layers,
just as the baseline, but also has two pooling layers. It was chosen to include this network to see the effect of
including a third convolutional layer on top of the second network architecture.

Towards Explainable Automation for ATC M.C. Hermans

103

Table 9.6: Neural Network Architectures for DQfD. k indicates the kernel size and s the size of the stride.

Architecture # Composition
Baseline CONV(k=(8x8),s4) −→ CONV(k=(4x4),s2) −→ CONV(k=(3x3),s1)

2 CONV(k=(5x5),s2) −→POOL(4) −→ CONV(k=(5x5), s1)−→ POOL(2)
3 CONV(k=(5x5),s2) −→ POOL(4) −→ CONV(k=(5x5),s1) −→ POOL(2) −→ CONV(k=(2x2),s1)

The results of training a DQfD network with the three different NN architectures are shown in Figure 9.29. All
three networks were trained with a discount rate of 0.2 and a learning rate of 1.0 ·10−5. The results show that
the baseline architecture is more data-efficient and achieves a higher validation reward throughout the first
600 epochs of the training phase. Therefore, the baseline network architecture will be used in the final thesis.

Figure 9.29: Comparison of network architectures. One can see that the baseline network achieves the highest validation reward on
average during the first 600 epochs of training.

M.C. Hermans Towards Explainable Automation for ATC

III
Conclusions and Recommendations

104

10
Conclusions and Recommendations

10.1. Addressing the Original Research Questions
This work aimed to develop a form of automation for ATC that contributes to being explainable for a human
ATCo. In order to contribute to the explainability, two approaches were used. The first aimed to increase the
conformance between the automation and the ATCo, whilst the second was aimed at increasing the mental
model of the automation for an ATCo. This research aimed to answer the main RQ:

“How can reinforcement learning be applied to the ATC task of conflict detection & resolution by exploiting
features from the Solution Space Diagram and contribute to the explainability of the automation?”

There were six subquestions to this main research question. These could be answered through a literature
review and by running various experiments.

1. What traffic scenarios and ATC tasks are relevant to analyse?

A: In the literature review, the control task of 2D en-route conflict detection & resolution was identified
as the focus of this research due to its importance in an increasingly crowded airspace. Similar traffic
scenarios are encountered frequently in a sector since it is composed of fixed airways. Just as an ATCo
specialises in an air traffic sector, an agent should be trained for each sector separately.

2. What type of reinforcement learning agent can be used to automate CD&R for a single controlled air-
craft in a multiple-aircraft traffic scenario by using the SSD as state-input?

(a) What states and actions are used by an ATCo to perform their tasks?

A: ATCos identify and resolve upcoming conflicts pairwise. ATCos primarily resort to an altitude
change in the en-route airspace, secondly a heading change, and lastly, a velocity change. The
latter instruction is avoided as the velocity window of aircraft in the en-route airspace is limited
by the flight envelope. The time to the closest point of approach, the distance of closest approach,
conflict angle, and speed difference are primary conflict characteristics that an ATCo uses to de-
termine what action to take.

(b) What information can be extracted from the SSD?

A: A single SSD does not enable an ATCo to determine the most optimal resolution for an upcom-
ing conflict as certain features in the SSD are not distinguishable for a human. All of the essential
conflict characteristics identified in RQ 2a are contained in a single SSD. It was hypothesised that
an artificial agent could learn certain features in the SSD that are hard to interpret for an ATCo.
Using the pixel-data of the SSD as input for the reinforcement learning agent ensures that the state
has a fixed size, limiting the observation space to specific bounds.

(c) Which deep RL algorithms are suitable for a two-aircraft traffic scenario?

A: A literature survey showed that multi-agent RL algorithms still show too much instability when
the task becomes too complex and require too many computational resources. Proximal Policy

105

106 10.1. Addressing the Original Research Questions

Optimisation and Deep Q-learning from Demonstrations were identified as potential RL algo-
rithms for this research due to their learning characteristics and potential to contribute to the
explainability of the automation.

A: In the preliminary analysis, a trade-off between PPO and DQfD was performed using a simplified ATC
environment in which the SSD was provided as input for the agent. It was concluded that DQfD would
be used for this research as it was more data-efficient and uses demonstrations in the pre-training
phase. It was hypothesised that demonstrations could increase the strategic conformity between the
ATCo and the automation. Furthermore, since DQfD is a value-based algorithm, it can be combined
with reward decomposition (RQ 4a).

3. What metrics can be used to evaluate the performance of the automation?

A: A literature review showed that the most significant parameters to analyse the performance of the
automation are whether a loss of separation occurred, the flight path distance flown, and whether or
not the controlled aircraft could reach the exit waypoint.

4. What factors can contribute to the explainability?

(a) What techniques are there available?

A: The literature review concluded that research on explainable reinforcement learning remains
limited. Reward decomposition was shown to have the most considerable potential to contribute
to the explainability of the reinforcement learning algorithm. By learning decomposed value func-
tions, the RL agent can show in real-time which part of the reward function contributes the most
to the action selection. Furthermore, it enables the designer to monitor the RL agent in more
detail.

(b) How can strategy be incorporated?

A: The final thesis explored two different methods to answer this research question. First of all, by
utilising demonstrations and secondly through shaping the reward function. Demonstrations can
be utilised to pre-train a RL agent to be strategically conformal to the demonstrator. This research
supports the hypothesis that demonstrations can increase the conformance of the automation
since results show that the RL agent starts optimising from the pre-trained model. For all conflicts,
the RL agent did improve on the demonstrations it was provided with, at the cost of conformance.

Carefully designing the reward function enables the incorporation of ATCo strategies. This re-
search focused on strategies related to the conflict geometry of the resolution. Putting this con-
cept into a broader perspective, strategies can be incorporated to take into account any of the
parameters present in the state representation of the RL agent.

A: This research question was answered in the final thesis by implementing decomposed rewards and
increasing strategic conformance by using demonstrations and shaping the reward function. Reward
decomposition enables the visualisation of what the RL agent has learned in terms of the various com-
ponents of the reward function. Reward decomposition takes a first step to increase the understanding
of the action selection for the user, and can also assist the designer in analysing what the RL agent
has learned in more detail. Results show that reward decomposition can assist in tuning the reward
function in environments that require complex learning functions to be used.

5. How can the automation be implemented in a two-aircraft traffic scenario with a controlled and ob-
served aircraft?

(a) What factors should be incorporated in the reward function?

A: The literature review highlighted the importance of automation to be conformal with an ATCo.
To resolve a conflict, an ATCo, in general, provides the controlled aircraft with a single instruction.
After the conflict is solved, the ATCo can instruct the controlled aircraft to continue its naviga-
tion towards the exit waypoint. Three components were identified to be included in the reward
function. The RL agent would be negatively rewarded for getting into a loss of separation, neg-
atively rewarded for instructing the aircraft to perform a heading change to avoid a conflict, and

Towards Explainable Automation for ATC M.C. Hermans

10. Conclusions and Recommendations 107

negatively rewarded proportionally to the flight path deviation. To enforce that the agent would
instruct the controlled aircraft to continue its intended route as soon as the conflict was resolved,
it was not negatively rewarded for instructing the controlled aircraft to continue its flight path to
the exit waypoint.

A: In the final thesis, this research question was answered by implementing Deep Q-learning from
Demonstrations and Decomposed Dueling DQN which use the Solution Space Diagram to represent
the state of the controlled aircraft. It was shown that the RL agents were able to extract all significant
conflict characteristics from the state representation to resolve conflicts efficiently in terms of flight
path deviation. By pre-training the RL agent on a limited training set of demonstrations, the initial
performance of the RL agent was improved significantly.

10.2. Concluding Remarks
Results show that the SSD is a promising state representation for a RL agent to solve conflicts pairwise for
2D en-route CD&R. The author does believe that reconsidering the pre-processing of the SSD for a RL agent
is essential for future implementations. Furthermore, this research shows that training the RL agent with
demonstrations increases the data-efficiency of the algorithm and strategic conformance of the automation.

Whereas this research started with a focus on increasing the explainability of the automation for a human
ATCo, it actually has taken a step to increase the explainability for the designer. Reward decomposition pro-
vides a designer with useful information on the hierarchies between the various reward components, which
can be used to tune the reward function. Also, it enables the designer to spot anomalies in the learning.

10.3. Future Recommendations
Although this research has shown how various concepts can be combined to automate CD&R whilst con-
tributing to the explainability, there are still some challenges to overcome. Future recommendations are
focused on five different areas of research: increasing the applicability in the current ATM system; the effect
of hyperparameters of the DQfD algorithm on strategic conformance; the development of reward functions
that trade-off strategic conformance and optimal control; the potential of reward decomposition to serve as
the basis for a user-interface; expanding the resolution method to solve for conflicts in a realistic air traffic
sector.

This work only considered two-aircraft traffic scenarios. To test whether this method could work in a realistic
traffic scenario, a RL agent should be trained to solve conflicts pairwise in multiple-aircraft traffic scenarios.
In multi-aircraft traffic scenarios, the RL agent should be able to solve a wide variety of conflicts. To enable
this, the challenges concerning the stability of the algorithm addressed in this research must be overcome
first. Moreover, a coordination algorithm should be developed to choose which aircraft must perform a con-
flict resolution.

In pursuit of strategic conformance through the use of demonstrations, future research is recommended to
focus specifically on how hyperparameters of the DQfD algorithm can be tuned to trade-off conformance and
optimality. Results show that the RL agent starts to optimise from the pre-trained model but is inconclusive
about how demonstrations can precisely be utilised to make up this balance. Parameters that significantly af-
fect the conformance are the number of demonstrations present in the replay buffer, the sampling probability
of the demonstrations, the exploration rate, and the pre-train period.

The second approach taken in this research to increase strategic conformance is to shape the reward function
to incorporate the preferences of ATCos. Future research is encouraged to map all personalised strategies that
ATCos apply and research how these can be incorporated when designing the reward function. An advantage
of this approach is that the designer can trade-off optimal control and strategic heterogeneity by tuning the
weights related to the various reward components.

To increase the mental model of the automation, this research has implemented reward decomposition. The
reward function of the CD&R task can naturally be decomposed into meaningful components. To enable
reward decomposition to be useful for an user-interface, research should first focus on decreasing the loss
of the individual reward components. When the loss decreases to an acceptable level, one can relate the
decomposed values to performance measures. The RL agent could then expedite why it prefers a particular

M.C. Hermans Towards Explainable Automation for ATC

108

action in terms of flight path distance to the exit waypoint or in terms of how many new conflicts the RL agent
expects a resolution maneuver will cause (sector disruptiveness).

Finally, stability of the learning algorithm remains a challenge for deep RL methods. To enable training a RL
agent to solve conflicts for a wide range of traffic scenarios, improving the stability is deemed necessary. More
advanced RL algorithms achieve a higher performance in the limit and have better stability characteristics.
Especially distributed learning algorithms improve the stability of these algorithms. The effectiveness relies
heavily on the computational resources available. In case the availability of these resources improves, the
author urges the implementation of state-of-the-art distributed learning algorithms.

Towards Explainable Automation for ATC M.C. Hermans

IV
Appendices

109

A
Training Methodology

In this chapter, the training methodology used to train the RL agents in the various case studies is elaborated
on. The details of the experiment setup for the various case studies in terms of air traffic scenarios are detailed
in the scientific paper. This chapter specifies more of the actual implementation in Python to train the various
RL agents.

A.1. Simulation Environment
As simulation environment, it was chosen to use BlueSky (Hoekstra and Ellerbroek 2016). BlueSky is a high-
fidelity ATC simulation environment. The user can interact with the simultion environment through an in-
terface or by running BlueSky in ‘detached’ simulation mode. This research focuses on the en-route airspace.
Specific details on the experiment implementation in BlueSky are listed below:

• All traffic scenarios contain aircraft that are initialised at FL (Flight Level) 360. During all the experi-
ments, the aircraft do not change altitude.

• All aircraft used in the simulation are B737’s.

• To calculate performance metrics of the aircraft, The OpenAP (Sun et al. 2020) was used as performance
model.

A.2. State Calculations and the Solution Space Diagram
Consider the controlled aircraft, A, and observed aircraft, B. The future position of either aircraft, dependent
on the current velocity vector v, can be calculated using Equation A.1. The distance between the controlled
and observed aircraft at future positions can then be calculated using Equation A.2, in which p A is the posi-
tion of the controlled aircraft whilst pB is the position of the observed aircraft.

p(t) = p0 + v · t (A.1)

dA,B (t) = p A(t)−pB (t) (A.2)

To calculate the time to closest point of approach, tC PA , the absolute distance between aircraft A and B,
D A,B (t), is of interest. The calculations for this variable are shown in Equation A.3.

D A,B (t) = ||dA,B (t)||
= dA,B (t) ·dA,B (t)

= ((p0A + v A · t)− (p0B + vB · t))2

= ((p0A −p0B)+ (v A − vB) · t)2

= (p0A −p0B) · (p0A −p0B)+ (v A − vB) · (v A − vB) · t 2 +2(p0A −p0B) · (v A − vB) · t

(A.3)

110

A. Training Methodology 111

Hence, the tC PA can be found by calculating the time which minimises D A,B (t). To find this, the derivative of
the absolute distance between the controlled and observed aircraft should equal zero. The full derivation of
tC PA is shown in Equation A.4 (Huo, Delahaye, and Y. Wang 2018).

d

d t
D A,B (t) = 0

2 · (v A − vB) · (v A − vB) · t +2(p0A −p0B) · (v A − vB) = 0

tC PA =− (p0A −p0B) · (v A − vB)

||(v A − vB)||2

(A.4)

Having calculated the time to the closest point of approach, the distance of closest approach can be calcu-
lated using Equation A.5 (Huo, Delahaye, and Y. Wang 2018).

dC PA(t) = ||p A(tC PA)−pB (tC PA)|| (A.5)

To compose the solution space diagram, use was made of pre-defined functions in BlueSky to calculate the
forbidden beam zones. These were plotted using matplotlib. On top of that, the following steps were taken:

1. Determine Vmi n and Vmax of the controlled aircraft using the performance model. Plot these as the
inner and outer circle in the SSD.

2. Calculate the FBZ per observed aircraft.

3. Calculate tC PA and dC PA to the observed aircraft.

4. Use tC PA to determine the colour of the FBZ.

5. Plot FBZ between Vmi n and Vmax .

6. Plot velocity vector of the controlled aircraft, plot exit bearing.

7. Rotate the SSD to have the velocity vector of the controlled aircraft pointed upwards.

8. Crop image to contain only the ‘upper half of the SSD’.

202 px

202 px

202 px

101 px

Rotate
Vmin

Vmax

Ex
it B

ea
rin

g

VA

Figure A.1: Construction of the SSD. Details on further pre-processing can be found in the scientific paper.

A.3. Transforming BlueSky
In this thesis, a deep RL method is used. Due to the large number of weights present in the convolutional
neural network used in this research, backpropagation is time consuming. Performing backpropagation on a
GPU is faster than on a CPU as a GPU can run some of the calculations related to backpropagation in parallel
(Navarro, Hitschfeld-Kahler, and Mateu 2014). Computational resources were limited in this research, there-
fore use was made of Google’s Colaboratory. Google Colaboratory allows the user to run code on GPU’s for
free (for a limited amount of time per day).

BlueSky’s back-end was transformed to an OpenAi’s gym environment. Gym was created to serve as stan-
dardised format for reinforcement learning implementations. It requires an environment that can give back
observations and rewards, whilst requiring an action as input. The Gym environment requires the user to
define the observation space, action space, initial conditions of the episode (defined in the reset function) and

M.C. Hermans Towards Explainable Automation for ATC

112 A.4. Training Loop

a step in the RL environment (defined in the step function). In this research, the following step and reset
functions were used:

• Step(action): returns the next state, reward and whether or not the agent has reached the terminal
state (done). During each step of the RL environment, BlueSky’s simulation is run until the action is
completed, in steps of 10 seconds. For the actions {-10, -5, 0, 5, 10}[deg], the heading change for a B737
will always be completed within 10 seconds. However, for the∆DC T action, this can take multiple steps
of 10 seconds for the action to be completed.

• Reset: resets the environment and initialises an episode.

The experiments were defined in a Google Colaboratory notebook. The experiment conditions are used to
setup the correct OpenAi gym environment. This ensures that reset() of the OpenAI gym environment ini-
tialises the episode with the correct initial states of the conflict. The data transfers between the various com-
ponents needed to enable training are shown in Figure A.2. In this figure, dminRT, represents the minimal
distance from the controlled aircraft to the exit waypoint for the episode to be finished.

BlueSky (detached) OpenAI gym
environment Google Colaboratory

GPU

specify experiment
characteristics

conflict angles
intruder

velocities
intruder

tCPA dCPA

epochs

hyperparameters

episode
characteristics

tterminal[s]

dminRT

at

st+1, rt, done

network
update

RLagent

at
st

experiment characteristics

Figure A.2: Software architecture used to train the Dueling DQN, DQfD and drDuel-DQN RL agents.

To monitor the learning, Tensorflow’s Tensorboard was used. From the notebook in Google Colaboratory, real-
time information on training statistics such as the loss per episode and accumulated reward were written to
Tensorboard logs. For most complex RL algorithms, publicly available Python libraries are available for use.
However, the DQfD and decomposed Dueling DQN algorithm is not included in any of these libraries yet. To
build these RL agents, the library Pytorch (Paszke et al. 2019) was used.

A.4. Training Loop

In this section, the training loop for the Dueling DQN and normal training phase of the DQfD agent is detailed.
First of all, the policy network parameters are initialised using Xavier Weight Initialisation (Glorot and Bengio
2010). It was chosen to use this weight initialiser as it has been used in other Dueling DQN implementation
(Tavakoli, Pardo, and Kormushev 2017). After the weights of the policy network are initialised, a copy of the
network is made and used as target network for the first τ-steps. Further details on the training loop can
be found in Figure A.3. It is important to note that samples are removed in the order that they entered the
memory replay buffer once its capacity is surpassed.

For the network updates, the Adam optimizer is used (Kingma and Ba 2014). This optimizer maintains a per
parameter learning rate. The state of this optimizer should therefore always be loaded before continuing the
learning.

Towards Explainable Automation for ATC M.C. Hermans

A. Training Methodology 113

D

RL Agent

et = (st, at, st+1, rt)

at

st

provide command to ac (bs.stack)

step BlueSkysimulation until
tsim new = tsim old +10 s

1. initialise agent with random policy initialise episode

Reset Environment
if done

episode += 1

if not done

OpenAi BlueSky Env

Construct SSD from simulation state

Stack frame with SSDt-1sample batch
calculate loss

perform network update
update target network every τ

update steps

after every 4 steps
 of OpenAI env.

Normal Training Phase
s0

epoch += 1

Figure A.3: Training loop used for experiments. Note that the network parameters are updated once every 4 steps of the simulation.

A.5. Pre-Training Phase DQfD
During the pre-training phase of the DQfD agent, which is visualised in Figure A.4, the agent does not inter-
act with the simulation environment. Each iteration, it samples n samples from the expert memory replay
and performs updates on these using the Adam optimizer. When collecting demonstrations from BlueSky,
episode information is collected in the episode replay buffer, which is used to calculate the n-step loss.

Dexpert

RL Agent

et = (st, at, st+1, rt)

1. initialise agent with random policy

sample batch from expert demonstrations

perform network update
update target network every τ

update steps

DQfD Pre-Training

epoch += 1

Depisode
replay

Expert
Lossn-step loss DQN loss

+
Calculate Loss

n x

while epoch < pre-train epochs

Save Expert Demonstrations in Replay
Buffer normal training phase
Load weights pre-trained model to current
policy DQfD
Ensure state optimizer (per parameter lr) is
loaded on the optimizer for normal training
phase

important steps before normal training phase

Load acquired
demonstrations
 into memories

Figure A.4: Pre-training phase of DQfD agent.

A.6. Reward Decomposition
The training loop of the drDuel-DQN agent is similar to that of the Dueling DQN agent. The only difference
is that each sample that is stored in the memory replay contains contains the separate reward components,
instead of the full reward retrieved at tsi m . The experience saved in the memory replay for case study 3 and
case study 4 are shown in Equation A.6 and Equation A.7.

et = (st , at , st+1,rN At ,rT Ht ,rLOSt) (A.6)

et = (st , at , st+1,rN At ,rT Ht ,rLOSt ,rCGPt) (A.7)

M.C. Hermans Towards Explainable Automation for ATC

114 A.7. Detailed Implementation of Dueling DQN Algorithm

A.7. Detailed Implementation of Dueling DQN Algorithm

In Algorithm 4, the algorithm used to train a Dueling DQN agent is detailed in pseudo-code. During training,
the RL agent first collects random samples to fill up the memory replay for emi n steps. After this phase, the RL
agent starts to perform updates on the network weights once every 4 steps in the simulation environment. To
incorporate the importance sampling weights, the loss on each experience in the batch is multiplied by the
related importance sampling weight, wi . The calculations for the importance sampling weight are detailed
in the scientific paper.

Algorithm 4 The pseudo-code of Dueling DQN (Z. Wang et al. 2016). The behaviour policy πεQθ is ε-greedy
with respect to Qθ .

Require: Dr epl ay : initialised with demonstration data set; θ: weights for initial behaviour network (random);
θ′: weights for target network (random); τ: frequency at which to update target net; emi n : minimum
amount of experiences required in replay memory prior to gradient updates; n: batch size; α0: initial
learning rate Adam optimizer; OpenAI_environment

1: s ←− Initialise_OpenAI_environment(tC PA , dC PA , C ASi ntr uder , C Ai ntr uder)
2: for steps t ∈ {1,2, ...,emi n} {acquiring experiences} do
3: Sample action a from behaviour policy a ∼πεQθ

4: (s′,r) = Step_OpenAI_environment()
5: Store (s, a,r, s′) into D
6: s ←− s′
7: if s′ = done then
8: Reset_OpenAI_environment()
9: end if

10: end for
11: for steps t ∈ {1,2, ..., Ntraining epochs} {normal training phase} do
12: for steps t ∈ {1,2,3,4} do
13: Sample action from behaviour policy a ∼πεQθ

14: Play action a and observe (s′,r)
15: Store (s, a,r, s′) into D, overwriting oldest self-generated transition if over capacity occurs
16: end for
17: Sample a mini-batch of n transitions from Dr epl ay with prioritisation {prioritised replay}
18: Calculate loss L(Q) using target network {incorporate importance sampling weights, wi }
19: Perform a gradient descent step to update θ (Adam optimiser)
20: if t mod τ = 0 then
21: θ′ ←− θ {update target network}
22: end if
23: s ←− s′
24: epoch += 1
25: if s′ = done then
26: Reset_OpenAI_environment()
27: end if
28: end for

A.8. Detailed Implementation of DQfD Algorithm

In Algorithm 5, the implementation of the DQfD algorithm is detailed in pseudo-code. The training phase
consists of three phases: pre-training on collected demonstrations; filling the memory replay; the normal
training phase. The loss is not only calculated with a DQN loss, as for the Dueling DQN agent, but also
includes an Expert and n-step loss component for samples from the demonstrator.

Towards Explainable Automation for ATC M.C. Hermans

A. Training Methodology 115

Algorithm 5 The pseudo-code of the DQfD algorithm (Hester et al. 2017). The behaviour policy πεQθ is ε-
greedy with respect to Qθ.

Require: Dr epl ay : initialised with demonstration data set; θ: weights for initial behaviour network (random);
θ′: weights for target network (random); τ: frequency at which to update target net; emi n : minimum
amount of experiences required in replay memory prior to gradient updates; n: batch size; α0: initial
learning rate Adam optimizer; OpenAI_environment

1: load_demonstrations_into_Expert_Replay_memory()
2: load_demonstrations_into_Episode_Replay_memory()
3: for steps t ∈ {1,2, ...k} {pre-training phase} do
4: Sample a mini-batch of n transitions from Dr epl ay with prioritisation
5: Calculate Expert Loss {incorporate importance sampling weights, wi }
6: Calculate n-step Loss using target network {incorporate importance sampling weights, wi }
7: Calculate DQN loss (1-step TD) using target network {incorporate importance sampling weights, wi }
8: Determine total loss by adding individual components
9: Perform a gradient descent step to update θ

10: if t mod τ = 0 then
11: θ′ ←− θ {update target network}
12: end if
13: s ←− s′
14: end for
15: s ←− Initialise_OpenAI_environment(tC PA , dC PA , C ASi ntr uder , C Ai ntr uder)
16: for steps t ∈ {1,2, ...,emi n} {acquiring experiences} do
17: Sample action a from behaviour policy a ∼πεQθ {prioritised replay}
18: (s′,r) = Step_OpenAI_environment()
19: Store (s, a,r, s′) into D
20: s ←− s′
21: if s′ = done then
22: Reset_OpenAI_environment()
23: end if
24: end for
25: for steps t ∈ {1,2, ..., Ntraining epochs} {normal training phase} do
26: for steps t ∈ {1,2,3,4} do
27: Sample action from behaviour policy a ∼πεQθ

28: Play action a and observe (s′,r)
29: Store (s, a,r, s′) into D, overwriting oldest self-generated transition if over capacity occurs
30: end for
31: Sample a mini-batch of n transitions from Dr epl ay with prioritisation {prioritised replay}
32: Calculate Expert and n-step Loss on sampled demonstrations {incorporate importance sampling

weights, wi }
33: Calculate DQN loss (1-step TD) on all samples using target network {incorporate importance sampling

weights, wi }
34: Perform a gradient descent step to update θ (Adam optimiser)
35: if t mod τ = 0 then
36: θ′ ←− θ {update target network}
37: end if
38: s ←− s′
39: epoch += 1
40: if s′ = done then
41: Reset_OpenAI_environment()
42: end if
43: end for

A.9. Detailed implementation of decomposed Dueling DQN algorithm
Algorithm 6 details the algorithm used for case study 3 and 4 in pseudo-code. For case study 3, the reward
function was decomposed into three different reward components: getting into a short term conflict (SC),

M.C. Hermans Towards Explainable Automation for ATC

116 A.9. Detailed implementation of decomposed Dueling DQN algorithm

taking nonzero actions (NA) and following the target heading (TH). In case study 4, an additional component
was included related to being strategically conformal to a certain conflict geometry preference (CGP).

Algorithm 6 The pseudo-code of the decomposed Dueling DQN. The behaviour policy πεQθ is ε-greedy with
respect to Qθ.

Require: Dr epl ay : initialised with demonstration data set; θ: weights for initial behaviour network (random);
θ′: weights for target network (random); τ: frequency at which to update target net; emi n : minimum
amount of experiences required in replay memory prior to gradient updates; n: batch size; α0: initial
learning rate Adam optimizer; OpenAI_environment

1: s ←− Initialise_OpenAI_environment(tC PA , dC PA , C ASi ntr uder , C Ai ntr uder)
2: for steps t ∈ {1,2, ...,emi n} {acquiring experiences} do
3: Sample action a from behaviour policy a ∼πεQθ

4: (s′,rSC ,rN A ,rT H , (rCGP)) = Step_OpenAI_environment()
5: Store (s, a,rSC ,rN A ,rT H , (rCGP), s′) into D
6: s ←− s′
7: if s′ = done then
8: Reset_OpenAI_environment()
9: end if

10: end for
11: for steps t ∈ {1,2, ..., Ntraining epochs} {normal training phase} do
12: for steps t ∈ {1,2,3,4} do
13: Sample action from behaviour policy a ∼πεQθ

14: Play action a and observe (s′,rSC ,rN A ,rT H , (rCGP))
15: Store (s, a,rSC ,rN A ,rT H , (rCGP), s′) intoD, overwriting oldest self-generated transition if over capacity

occurs
16: end for
17: Sample a mini-batch of n transitions from Dr epl ay with prioritisation {prioritised replay}
18: Determine greedy action, a+

i , with respect to the complete target network (all reward components in-
cluded)

19: Calculate loss LSC using target network of the particular reward component, QSC (s′, a+
i ;θSC)

20: Calculate loss LN A using target network of the particular reward component, QN A(s′, a+
i ;θN A)

21: Calculate loss LT H using target network of the particular reward component, QT H (s′, a+
i ;θT H)

22: Calculate loss LCGP using target network of the particular reward component, QCGP (s′, a+
i ;θCGP) {for

case study 4}
23: Calculate total loss L(Q) by summing individual loss components {incorporate importance sampling

weights, wi }
24: Perform a gradient descent step to update network weights (Adam optimiser)
25: if t mod τ = 0 then
26: θ′ ←− θ {update target network}
27: end if
28: s ←− s′
29: epoch += 1
30: if s′ = done then
31: Reset_OpenAI_environment()
32: end if
33: end for

Towards Explainable Automation for ATC M.C. Hermans

B
Pre-Processing of the SSD and

Hyperparameter Selection

In this chapter, the pre-processing of the solution space diagram is analysed. First, section B.1 explains how
the SSD should be altered to create a well-defined MDP to train the agent in. Then, section B.2 defines the
action space of the controlled aircraft. In section B.3, the first set of experiments are performed to trade-off
how the SSD should be pre-processed and determine what batch size and learning rate will be used for this
research. In this analysis, a different action space was used than in the scientific article. The reason for this
is that the resolution of the action space was increased at a later stage of the thesis to enable a wider range
of conflict resolutions for two-aircraft traffic scenarios. Furthermore, a single SSD instead of a stack of two
SSDs was used in this analysis as the state representation was altered at a later stage in the thesis. However,
the conclusions of this analysis remain significant for the final thesis.

B.1. Altering SSD

To ensure that the environment is a well-defined MDP, the final state should be visible to the agent. When
the terminal state is not visible to the agent, the agent has to act in a partially observable MDP (MOMDP).
This can lead to instability in the learning and to converging to a sub-optimal policy due to the inability to
correctly determine the value of a state (Pardo et al. 2017). At a later stage in the thesis, the components of
the reward function are selected. Rewards can either be given continuously, from now on defined as direct
rewards or at the end of the episode, from now on referred to as indirect rewards. Altering the SSD is especially
important when incorporating indirect rewards.

To include information on when the RL agent has reached its terminal state, a dot representing the distance
from the controlled aircraft to the exit waypoint is plotted along the blue exit bearing indicator. This is shown
in Figure B.1.

117

118 B.2. Action-Space

Figure B.1: Adjusted SSD to ensure that the RL agent can observe the terminal state.

B.2. Action-Space
Since one of the goals of this research is to develop a form of automation which is conform with strategies
implemented by ATCOs, the action space for the RL agent is analogous to that of a human operator. Human
operators most often give commands to pilots in steps of 5 degrees. Furthermore, ATCOs commonly give a
single command to solve a potential conflict and once the CPA has passed, they inform the pilot to continue
its planned route.

The action space consists of heading changes. A heading change is defined as relative angle from the current
heading:

ψt+1 =ψt +at (B.1)

Resolutions to upcoming conflicts will generally not involve a more radical action than ± 30 degrees. There-
fore, a realistic action space, conform an ATCOs solution space, only spans a range of ±30 degrees. This is
shown in Equation B.2, in which taking the action ∆TH instructs the aircraft to follow the target heading.

ARL agent(s) = {−30,−25,−20,−15,−10,−5,0,5,10,15,20,25,30,∆DCT}[°] (B.2)

The agent will have the opportunity to select an action once every 10 seconds, which is conform with the radar
update frequency (Association 2016). The heading change an aircraft can implement depends on the turning
rate of the aircraft. A waiting buffer is implemented to ensure that the agent cannot provide an aircraft with a
new resolution before the aircraft has reached the previously given command. A larger action space increases
the amount of weights in the network. To limit the number of epochs needed for an agent to learn a well-
performing policy, the resolution of the action space is lowered to 15 degrees for the first three experiments.
The new action space is shown in Equation B.3.

ARL agent(s) = {−30,−15,0,15,30,∆DCT}[°] (B.3)

B.3. Learning to Avoid a Conflict
In order to test whether the agent is capable of learning how to avoid a conflict, an agent is trained with
the sole purpose of avoiding a loss of separation. In this part of the thesis, the performance models, and
thereby realistic flight envelopes, are not yet included in the simulation. The minimum and maximum CAS,
independent of the flight phase, of the B737 is taken as minimum and maximum velocity in the SSD. The
reward function is composed of two components. The first component is a negative reward for being in
conflict with another aircraft. Additionally, a negative reward is added for every non-desired action:

Towards Explainable Automation for ATC M.C. Hermans

B. Pre-Processing of the SSD and Hyperparameter Selection 119

• rconflict = -100 if a loss of separation occurs.

• raction = -5 for all actions except ∆DCT and 0 degrees.

The training environment is defined by a controlled aircraft and a semi-randomly initialised observed aircraft.
The observed aircraft is initialised with a slightly higher calibrated airspeed, 340 kts compared to 300 kts of
the controlled aircraft. Furthermore, the observed aircraft is initialised at a conflict angle between 5 and 265
degrees, which is visualised in Figure B.2. Dueling DQN is suited for episodic tasks, therefore clear initial and
terminal states must be defined. The initial and terminal states of an episode in this learning environment
are defined as follows:

• Initial state controlled aircraft:

– position: (N 52° 12’ 10.8" N, E 5° 13’ 26.4") [Decimal Degrees]
– heading: 17 [°]
– CAS: 300 [kts]

• Initial state observed aircraft:

– Conflict Angles: {5, 25, . . . , 245, 265 } [°]
– tcpa : 300 [s]
– CAS: 340 [kts]

• Terminal state:

1. Loss of separation between controlled and observed aircraft.

2. Controlled aircraft reaching target waypoint.

3. Episode which runs out of time (tsi m > 1200[s]).

Figure B.2: Possible initial coordinates of observed aircraft. Only one observed aircraft is initialised at the beginning of an episode.4

B.3.1. Pre-Processing of SSD
It is hypothesised that all the relevant information to avoid a conflict is present in the upper half of the SSD.
This learning environment will be used to investigate how the SSD can best be pre-processed to be used for
RL. The four training runs which will be performed are shown in Table B.1. By downscaling the SSD, the size of

4In the figure it appears that KL002 and KL003 are in conflict. It is however the case that only one observed aircraft is initiated thus these
conflicts will not occur during training.

M.C. Hermans Towards Explainable Automation for ATC

120 B.3. Learning to Avoid a Conflict

the state-space, and thereby the amount of weights in the network, is decreased. To perform this experiment,
a batch size of 64 was used in combination with a learning rate of 0.00001. These hyperparameters follow
from the preliminary analysis.

Table B.1: Pre-processing of SSD for the training runs learning to avoid a conflict.

Run Amount of Information Pixels # Weights network
1 Full SSD 128x128 9,513,639
2 Upper Half SSD 64x128 3,222,183
3 Full SSD 64x128 3,222,183
4 Upper Half SSD 128x128 9,513,639

In Figure B.3a and Figure B.3b, the accumulated reward and loss per episode during training the RL agents
for 30,000 epochs, with states represented by pre-processing the SSD according to Table B.1, are visualised.
Each RL agent has performed a different number of episodes during the training phase due to an inconsis-
tent episode length. Figure B.4a and Figure B.4b visualise the number of conflicts and number of resolution
commands given during the training phase. From the graphs, the following conclusions can be drawn:

• Both agents with a smaller state space (64x128 pixels), having less weights in the network, outperform
the agents with larger state-space (128x128 pixels) when trained for 30,000 epochs. The loss function of
these two agents decreases steadily during the training, effectively showing that the agent improves its
estimate of the state-action values.

• Cropping of the full SSD to 64 x 128 pixels seems to cause the state to lose information. This is notice-
able as the agent which has the same size of the state-space and only uses the upper half of the SSD has
a more stable reward curve.

• The ‘upper half SSD [64x128]’ agent has encountered significantly less conflicts towards the end of the
training phase compared to the other agents.

• The amount of resolution actions are similar for all agents.

It is chosen to use the upper half of the SSD to represent the state and to downsize that image from 100x201
pixels to 64x128 pixels in this research. This is due to the slight advantages when considering the learning
curves, but also due to the decrease in memory demand compared to the agents which have an input size of
128x128 pixels.

(a) (b)

Figure B.3: Training curves per episode for the Dueling DQN agent being trained for 30,000 epochs learning to avoid a conflict: the left
figure displays the reward obtained during the training process; the right curve shows the average loss per episode.

Towards Explainable Automation for ATC M.C. Hermans

B. Pre-Processing of the SSD and Hyperparameter Selection 121

(a) (b)

Figure B.4: Training curves per episode for the Dueling DQN agent being trained for 30,000 epochs learning to avoid a conflict. The left
figure visualises whether the episode ended in a conflict and the right figure shows the amount of resolution commands given during

an episode.

B.3.2. Hyperparameter Tuning
First of all, it is important to note that these results were obtained prior to altering the training loop for the
Dueling and DQfD agent. In this training environment, a single experience was acquired at each iteration
instead of four as implemented in the scientific paper. However, the author still recognises the added value
of incorporating this section in the appendix as certain relations between hyperparameters and the perfor-
mance of the algorithm still hold.

The performance of reinforcement learning algorithms is highly dependent on pre-processing of the input
and on the hyperparameter selection (Nguyen, Schulze, and Osborne 2019). Especially the learning rate,
batch size and exploration parameters have shown to influence the performance of Double DQN significantly.
As performance is important for the experiments which are still to be performed, the learning rate, batch size
and εdecay will be tuned.

First, the effect of changing the learning rate and batch size will be analysed. The best combination will then
be used to train three RL agents, each with a different value of εdecay to evaluate the effect of altering this
hyperparameter. For this hyperparameter selection, the values shown in Table B.2 will be used. According
to (Henderson, Romoff, and Pineau 2018), a learning rate between 1e-03 and 1e-05 would show the best
performance when using the Adam optimiser. Therefore, these will be analysed. For this hyperparameter
selection, the agent starts with a high exploration rate of (εst ar t = 0.6). The exploration rate is decreased to
0.001 in εdecay steps to ensure convergence of the loss function.

Table B.2: Hyperparameters compared for tuning.

Hyperparameter Values Tested
Learning rate 0.001, 0.0001, 0.00001

Batch size 64, 128
εdecay 3000
εstart 0.6
εend 0.001

In Figure B.5a and Figure B.5b, the reward and loss function of the agents trained with the hyperparameters of
Table B.2 are shown. All of these agents have been trained with an εdecay of 3000. The following observations
can be made:

• The RL agents trained with a learning rate of 0.001 perform worse or comparable to the agents trained
with lower learning rates.

• Three agents manage to decrease the loss function to a value lower than 5 after 20,000 epochs of train-
ing. These are the agents trained with a learning rate of 1e-05 and the agent trained with a learning rate

M.C. Hermans Towards Explainable Automation for ATC

122 B.4. Concluding remarks

of 1e-04 and batch size of 64. However, it can be noted that the agents with a batch size of 64 manage
to achieve a higher reward faster than the one trained with a batch size of 128.

• The RL agent with a batch size of 128 and a lr of 1e-05 seems to have learned a more stable performing
policy. Initially, the RL agents gets into many conflicts after which it steadily learns to avoid conflicts.
The reward obtained after 20,000 epochs is also slightly higher compared to the RL agent trained with
a lr of 1e-05 and batch size of 64.

(a) (b)

Figure B.5: Training curves per episode for the Dueling DQN agent being trained for 20,000 epochs learning to avoid a conflict: the left
figure displays the accumulated reward during the training process; the right curve shows the average loss per episode.

(a) (b)

Figure B.6: Training curves per episode for the Dueling DQN agent being trained for 20,000 epochs learning to avoid a conflict. The left
figure visualises whether the episode ended in a conflict and the right figure shows the amount of resolution commands given during

an episode.

B.4. Concluding remarks
For the final thesis it is chosen to only use the upper half of the SSD to represent the state of the RL agent.
Furthermore, the SSD is downsampled from 100x201 pixels to 64x128 pixels. From the hyperparameter com-
parison, it is chosen to use a learning rate of 1.0x10−5 in combination with a batch size of 128. Although
the training loop and reward function are changed for the experiments performed in the final thesis, it is be-
lieved that effect of the analysed hyperparameters do not change. Other decisions on the final selection of
hyperparameters are supported in the scientific paper.

Towards Explainable Automation for ATC M.C. Hermans

C
Additional Results Case Study 1

This chapter details the training phase of the RL algorithms trained for Case Study 1. In section C.1, the details
of the training phase of the Dueling and DQfD agent are presented.

C.1. Training Curves per Episode

The accumulated reward during training is shown in Figure C.1a. One can see that near the end of the training
phase, the agent seems to have converged to a local optimum. In Figure C.1b, whether or not the episode
ended in a loss of separation is visualised during the training phase. One can see that both agents initially
encounter a lot of loss of separations, whilst near the end of the training phase both have learned to avoid a
conflict.

0 500 1000 1500 2000 2500 3000
Episode

200

150

100

50

0

50

Ac
cu

m
ul

at
ed

 re
w

ar
d

DQfD
Duel-DQN

(a) Accumulated reward per episode during training.

0.00

0.25

0.50

0.75

1.00
DQfD

0 500 1000 1500 2000 2500 3000

0.00

0.25

0.50

0.75

1.00
Duel-DQN

C
on

fli
ct

 (1
: T

ru
e,

 0
: F

al
se

)

Episode

(b) Whether or not the episode during training ended in a conflict (1 = True, 0
= False).

Figure C.1

In Figure C.2a and Figure C.2b, the loss and amount of nonzero actions of the Dueling and DQfD agent is visu-
alised per episode. For both agents, the loss clearly converges. Corresponding to this convergent behaviour,
it can be seen that the agent also learns to minimise the amount of nonzero actions it takes.

123

124 C.1. Training Curves per Episode

0 500 1000 1500 2000 2500 3000
Episode

0

20

40

60

80

100

120

140
Av

g
lo

ss
DQfD
Duel-DQN

(a) Loss per episode.

0 500 1000 1500 2000 2500 3000
Episode

0

5

10

15

20

25

30

35

40

of

 n
on

ze
ro

 c
om

m
an

ds

DQfD
Duel-DQN

(b) Amount of nonzero actions taken during training.

Figure C.2

Towards Explainable Automation for ATC M.C. Hermans

D
Additional Results Case Study 2

In this chapter, additional results for Case Study 2 are presented. First, the resolutions the DQfD agent has
learned for the conflict angles 90 and 135 degrees are presented in section D.1. Then, section D.2 details
learning curves that show the effect of the pre-training phase. Finally, learning curves for the normal training
phase are shown in section D.3.

D.1. Resolutions Conflict Angle 90 and 135 Degrees
In Figure D.1, the resolution as provided by the DQfD agent is shown at a conflict angle of 90 degrees. The
DQfD agent takes its first action at the same time as the pre-trained model did. Figure D.1b shows the dC PA

of the resolution. The pre-trained model has clearly not yet learned an efficient resolution in terms of flight
path as the dC PA is around 8 nm, whereas the resolution provided by the demonstration has a dC PA of 5.4
nm. After the normal training phase, the DQfD agent has learned a more optimal resolution compared to the
pre-trained model. It exactly matches the resolution provided by the demonstration in terms of dC PA .

8765432101234567
tCPA [min]

50

60

70

80

90

100

C
A

[d
eg

]

demonstration
pre-trained model
DQfD, 36000 epochs
DQfD, 40000 epochs

(a)

8765432101234567
tCPA [min]

0

2

4

6

8

d C
PA

 [n
m

]

demonstration
DQfD, 36000 epochs
DQfD, 40000 epochs
pre-trained model

(b)

Figure D.1: Resolution for the conflict at 90 degrees conflict angle.

Figure D.2a shows the resolution in terms of the conflict angle for the traffic scenario with an observed air-
craft at a CA of 135 degrees. The pre-trained model for this conflict is not conform with the demonstration
trajectory. Instead of steering the controlled aircraft in front of the observed aircraft, the pre-trained model
steers the aircraft behind the observed aircraft. After an additional 40,000 epochs at an exploration rate of
0.01 the DQfD agent still steers the aircraft behind the observed aircraft. Figure D.2b shows the dC PA of the
resolution. It shows that the pre-trained model has not yet learned an optimal resolution. Just as for the
conflict encountered at a conflict angle of 90 degrees, the fully trained DQfD agent has learned to solve the
conflict at a dcpa ≈ 5 [nm].

125

126 D.2. Learning Curves Pre-Training Phase

8765432101234567
tCPA [min]

90

100

110

120

130

140

150
C

A
[d

eg
]

demonstration
pre-trained model
DQfD, 36000 epochs
DQfD, 40000 epochs

(a)

8765432101234567
tCPA [min]

0

1

2

3

4

5

6

7

8

d C
PA

 [n
m

]

demonstration
DQfD, 36000 epochs
DQfD, 40000 epochs
pre-trained model

(b)

Figure D.2: Resolution for the conflict at 135 degrees conflict angle.

Results in this section support the conclusion drawn in the paper that the DQfD agent optimises the reward
function starting from the policy learned during the pre-train period. To develop strategic conformal au-
tomation, research should be focused on maximising the conformance between the pre-trained model and
demonstrations.

D.2. Learning Curves Pre-Training Phase
To develop a thorough understanding of the algorithm, this section specifies learning curves that show how
the algorithm optimises. In Figure D.3a, the loss is shown during the pre-training phase. One can see that the
loss decreases significantly during the first few epochs. Figure D.3b visualises the amount of experiences sam-
pled from the experience replay at which the greedy action does not resemble the action of the demonstrator.
It can be noticed that for the first 15,000 epochs, the RL agent learns to learn how to update its parameter
weights towards the policy of the demonstrator. However, after epoch 15,000, it does not seem to improve its
policy w.r.t. the demonstrator anymore.

5000 10000 15000 20000 25000 30000
Epoch

0

5

10

15

20

25

30

35

Lo
ss

pre-trained model

(a) Loss during training.

0 5000 10000 15000 20000 25000 30000
Epoch

30

40

50

60

70

80

90

100

N
on

si
m

ila
r a

ct
io

ns
 [%

 o
f b

at
ch

 s
iz

e]

pre-trained model

(b) Non-similar actions during optimisation step. The metric is shown as
percentage of the batch size (128).

Figure D.3

D.3. Learning Curves of Interest Normal Training Phase
Figure D.4 visualises the ratio of demonstrations used during an optimisation step of the network. One can
see that the amount of demonstrations decreases to ≈ 0.02 after 15,000 epochs in the normal training phase
(epoch 45,000). It can thus be seen that the RL agent kept on learning from demonstrations, but very limited

Towards Explainable Automation for ATC M.C. Hermans

D. Additional Results Case Study 2 127

after 15,000 epochs into the normal training phase. This causes the network to update more towards the new
experiences it has acquired.

30000 35000 40000 45000 50000 55000 60000 65000 70000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f d
em

on
st

ra
tio

ns
 in

 b
at

ch

DQfD

Figure D.4: Ratio of demonstrations used during a batch update.

D.4. Conclusions Drawn from Additional Results
Results support the conclusion that the DQfD algorithm improves on the demonstrations starting from the
policy as learned in the pre-training phase. For the traffic scenarios at an initial conflict angle of 90 and 135
degrees, the RL agent performs its first action to avoid the conflict at the same time as the pre-trained model.
However, for both resolutions, it seems to have learned how to optimise the resolution in terms of minimising
the deviation from the flight path.

M.C. Hermans Towards Explainable Automation for ATC

E
Additional Results Case Study 3 & 4

This chapter details additional results obtained for case study 3 and 4. In case study 3, a drDuel-DQN agent
was trained for the conflict angles of 45, 90 and 135 degrees. It was chosen to lower the tC PA and tsi mter mi nal

to increase the amount of conflicts the agent would encounter per unit time. In section E.1, relevant training
curves are visualised for case study 3. In case study 4, a RL agent was trained to avoid an observed aircraft
coming from a conflict angle of 90 degrees. Relevant training results for this case study are presented in
section E.2.

E.1. Training Curves Case Study 3
In Figure E.1b, the accumulated reward per episode is visualised. The figure shows that the performance of
the agent remains fluctuant during training. This can also be deducted from Figure E.1b, which visualises
whether the episode ended in a conflict or not. The RL agent seems to continue getting into a conflict. How-
ever, one can also note that after getting into a conflicts, the agent seems to improve its performance.

0 1000 2000 3000 4000 5000
Episode

125

100

75

50

25

0

25

50

Ac
cu

m
ul

at
ed

 re
w

ar
d

drDuel-DQN

(a) Accumulated reward per episode during training.

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

1.0

drDuel-DQN

C
on

fli
ct

 (1
: T

ru
e,

 0
: F

al
se

)

Episode

(b) Whether or not the episode during training ended in a conflict (1 = True, 0
= False).

Figure E.1

The total loss per epoch can be seen in Figure E.2a. The individual loss components can be found in Fig-
ure E.2b, Figure E.4a and Figure E.4b. Note that these various loss components each have a different scale for
the loss on the y-axis.

The peaks in the total loss can be explained by examining the decomposed loss values. Showing the decom-
posed losses provides insights to the designer as to what components of the reward function the RL agent has
been able to learn well. The reward component related to taking nonzero actions seems to be learned well
by the agent (low and steadily decreasing loss), whereas the reward for following the target heading seems to

128

E. Additional Results Case Study 3 & 4 129

be difficult to learn. Without decomposing the reward function, these insights would not be available to the
designer.

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Epoch (x 103)

0

100

200

300

400

500

600

700

800

Lo
ss

drDuel-DQN

(a) Loss per epoch of training.

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Epoch (x 103)

0

200

400

600

800

1000

1200

LO
S

Lo
ss

drDuel-DQN

(b) Loss related to getting into a Loss of Separation per epoch of training.

Figure E.2

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Epoch (x 103)

0

20

40

60

80

100

120

N
on

ze
ro

 L
os

s

drDuel-DQN

(a) Loss during updates of the reward component related to taking nonzero
actions per epoch of training.

10.0 20.0 30.0 40.0 50.0 60.0
Epoch (x 103)

0

5

10

15

20

25

30

Ta
rg

et
 L

os
s

drDuel-DQN

(b) Loss related to the deviation of the target heading per epoch of training.

Figure E.3

The purpose of case study 3 was to show how decomposed rewards can be implemented and show how it
can be utilised to increase the explainability of the algorithm. Due to a lack of computational resources and
time constraints, the RL agent was not trained up to full convergence. The policy at epoch 60,000 showed to
be able to avoid all conflicts from the training set. Therefore, it was chosen to use that policy to perform the
experiment for case study 3.

E.2. Training Curves Case Study 4
For case study 4, a RL agent was trained to avoid a conflict for an observed aircraft at a conflict angle of 90
degrees. The agent was trained for 30,000 epochs. As the goal of this case study is not to avoid a conflict
by minimising the flight path, the agent used for this case study was not trained until it showed convergent
behaviour. As the goal was to research whether the agent could learn decomposed values, the policy at epoch
30,000 was used to research the decomposed values throughout the trajectory.

M.C. Hermans Towards Explainable Automation for ATC

130 E.2. Training Curves Case Study 4

0 500 1000 1500 2000 2500
Episode

0

20

40

60

80

100

120

140
Av

g
lo

ss
drDuel-DQN

(a) Average loss per episode during updates.

0 500 1000 1500 2000 2500
Episode

125

100

75

50

25

0

25

50

75

Ac
cu

m
ul

at
ed

 re
w

ar
d

drDuel-DQN

(b) Accumulated reward during training.

Figure E.4

The conflicts encountered during the training phase by the drDuel-DQN agent are shown in Figure E.5. The
agent has has learned to steadily avoid all conflicts between episode 600 and 1600. After episode 1600, it starts
to experience conflicts again.

0 500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

1.0

drDuel-DQN

C
on

fli
ct

 (1
: T

ru
e,

 0
: F

al
se

)

Episode

Figure E.5: Conflicts encountered during the learning phase.

Towards Explainable Automation for ATC M.C. Hermans

Bibliography

Andre, David, Nir Friedman, and Ronald Parr (1998). “Generalized Prioritized Sweeping”. In: Advances in
Neural Information Processing Systems. Ed. by M. Jordan, M. Kearns, and S. Solla. Vol. 10. MIT Press. URL:
https://proceedings.neurips.cc/paper/1997/file/7b5b23f4aadf9513306bcd59afb6e4c9-
Paper.pdf.

Arulkumaran, Kai, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath (Nov. 2017). Deep rein-
forcement learning: A brief survey. DOI: 10.1109/MSP.2017.2743240.

Arulkumaran, Kai, Nat Dilokthanakul, Murray Shanahan, and Anil Anthony Bharath (Apr. 2016). “Classifying
Options for Deep Reinforcement Learning”. In: URL: http://arxiv.org/abs/1604.08153.

Association, International Civil Aviation (2016). Doc 4444: Procedures for Air Traffic Management. 16th, pp. 79–
79. ISBN: 978-92-9258-081-0. URL: www.icao.int.

Avigad, J. and K. Donnelly (2004). “Formalizing O Notation in Isabelle/HOL”. In: International Joint Confer-
ence on all aspects of Automated Reasoning.

Bach, Sebastian, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus Robert Müller, and Woj-
ciech Samek (July 2015). “On pixel-wise explanations for non-linear classifier decisions by layer-wise rel-
evance propagation”. In: PLoS ONE 10.7. ISSN: 19326203. DOI: 10.1371/journal.pone.0130140.

Bekier, Marek, Brett R.C. Molesworth, and Ann Williamson (Feb. 2012). “Tipping point: The narrow path be-
tween automation acceptance and rejection in air traffic management”. In: Safety Science 50.2, pp. 259–
265. ISSN: 09257535. DOI: 10.1016/j.ssci.2011.08.059.

BISSERET, A. (Sept. 1971). “Analysis of Mental Processes Involved in Air Traffic Control”. In: Ergonomics 14.5,
pp. 565–570. ISSN: 0014-0139. DOI: 10.1080/00140137108931276. URL: https://www.tandfonline.
com/doi/full/10.1080/00140137108931276.

Borst, Clark, Vincent A. Bijsterbosch, M. M. van Paassen, and Max Mulder (Nov. 2017). “Ecological interface
design: supporting fault diagnosis of automated advice in a supervisory air traffic control task”. In: Cog-
nition, Technology and Work 19.4, pp. 545–560. ISSN: 14355566. DOI: 10.1007/s10111-017-0438-y.

Botvinick, Matthew, Sam Ritter, Jane X. Wang, Zeb Kurth-Nelson, Charles Blundell, and Demis Hassabis (May
2019). Reinforcement Learning, Fast and Slow. DOI: 10.1016/j.tics.2019.02.006.

Bowden, Vanessa, Luke Ren, and Shayne Loft (Sept. 2018). “Supervising High Degree Automation in Simu-
lated Air Traffic Control”. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting
62.1, pp. 86–86. ISSN: 1541-9312. DOI: 10.1177/1541931218621019. URL: http://journals.sagepub.
com/doi/10.1177/1541931218621019.

Brittain, Marc and Peng Wei (2018). “Autonomous Aircraft Sequencing and Separation with Hierarchical Deep
Reinforcement Learning”. In: International Conference for Research in Air Transportation.

— (2019). “Autonomous Air Traffic Controller: A Deep Multi-Agent Reinforcement Learning Approach”. In:
Computing Resources Repository abs/1905.01303. URL: http://arxiv.org/abs/1905.01303.

Brittain, Marc, Xuxi Yang, and Peng Wei (Mar. 2020). “A Deep Multi-Agent Reinforcement Learning Approach
to Autonomous Separation Assurance”. In: URL: http://arxiv.org/abs/2003.08353.

Buduma, Nikhil (2017). Fundamentals of Deep Learning. 1st. Sebastopol: O’Reilly Media, p. 105.
Buş oniu, L Buş oniu, R Babuška, B De Schutter, Lucian Buş oniu Buş oniu, Robert Babuška, and Bart De

Schutter (2008). “A comprehensive survey of multi-agent reinforcement learning”. In: 38.2, pp. 156–172.
Buş oniu, Lucian Buş oniu, Robert Babuška, Bart De Schutter, and Damien Ernst (Nov. 2019). Reinforcement

learning and dynamic programming using function approximators.
Cireşan, Dan, Ueli Meier, and Juergen Schmidhuber (Feb. 2012). “Multi-column Deep Neural Networks for

Image Classification”. In: URL: http://arxiv.org/abs/1202.2745.
Dayan, Peter and Geoffrey E Hinton (1993). “Feudal Reinforcement Learning”. In: Advances in Neural In-

formation Processing Systems. Ed. by S. Hanson, J. Cowan, and C. Giles. Vol. 5. Morgan-Kaufmann. URL:
https://proceedings.neurips.cc/paper/1992/file/d14220ee66aeec73c49038385428ec4c-
Paper.pdf.

De Prins, Johan, Ramon Gomez Ledesma, Max Mulder, and M.M. van Paassen (2008). “Literature review of
air traffic controller modeling for traffic simulations”. In: 2008 IEEE/AIAA 27th Digital Avionics Systems
Conference, pp. 2.C.3-1-2.C.3–11. DOI: 10.1109/DASC.2008.4702782.

131

https://proceedings.neurips.cc/paper/1997/file/7b5b23f4aadf9513306bcd59afb6e4c9-Paper.pdf
https://proceedings.neurips.cc/paper/1997/file/7b5b23f4aadf9513306bcd59afb6e4c9-Paper.pdf
https://doi.org/10.1109/MSP.2017.2743240
http://arxiv.org/abs/1604.08153
www.icao.int
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1016/j.ssci.2011.08.059
https://doi.org/10.1080/00140137108931276
https://www.tandfonline.com/doi/full/10.1080/00140137108931276
https://www.tandfonline.com/doi/full/10.1080/00140137108931276
https://doi.org/10.1007/s10111-017-0438-y
https://doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.1177/1541931218621019
http://journals.sagepub.com/doi/10.1177/1541931218621019
http://journals.sagepub.com/doi/10.1177/1541931218621019
http://arxiv.org/abs/1905.01303
http://arxiv.org/abs/2003.08353
http://arxiv.org/abs/1202.2745
https://proceedings.neurips.cc/paper/1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf
https://proceedings.neurips.cc/paper/1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf
https://doi.org/10.1109/DASC.2008.4702782

132 BIBLIOGRAPHY

Dekker, Sidney and David Woods (Sept. 1999). “To Intervene or not to Intervene: The Dilemma of Manage-
ment by Exception”. In: Cognition, Technology Work 1, pp. 86–96. DOI: 10.1007/s101110050035.

Djokic, Jelena, Bernd Lorenz, and Hartmut Fricke (2010). “Air traffic control complexity as workload driver”.
In: Transportation Research Part C: Emerging Technologies 18.6, pp. 930–936. ISSN: 0968090X. DOI: 10.
1016/j.trc.2010.03.005.

Duchi, John, Elad Hazan, and Yoram Singer (July 2011). “Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization”. In: J. Mach. Learn. Res. 12.null, pp. 2121–2159. ISSN: 1532-4435.

EUROCONTROL (1996). Model for Task and Job Descriptions of Air Traffic Controllers. European Air Traffic
Control Harmonisation and Integration Programme. Tech. rep. ECAC.

European Commission (2009). European Air Traffic Management Master Plan. Tech. rep.
Fothergill, S and A Neal (2008). “The Effect of Workload on Conflict Decision Making Strategies in Air Traffic

Control”. In: DOI: 10.1518/107118108X353101.
Francois-Lavet, Vincent, Peter Henderson, Riashat Islam, Marc G. Bellemare, and Joelle Pineau (Nov. 2018).

“An Introduction to Deep Reinforcement Learning”. In: Foundations and Trends in Machine Learning
11.3-4, pp. 219–354. DOI: 10.1561/2200000071. URL: http://arxiv.org/abs/1811.12560%20http:
//dx.doi.org/10.1561/2200000071.

Frans, Kevin, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman (Oct. 2017). “Meta Learning Shared
Hierarchies”. In: URL: http://arxiv.org/abs/1710.09767.

Fu, Justin, Katie Luo, and Sergey Levine (Oct. 2017). “Learning Robust Rewards with Adversarial Inverse Re-
inforcement Learning”. In: URL: http://arxiv.org/abs/1710.11248.

Garot, Jean-Marc and Nicolas Durand (Nov. 2005). “Failures in the automation of air traffic control ”. In: Col-
loque de l’AAA 2005. Toulouse, France. URL: https://hal- enac.archives- ouvertes.fr/hal-
01291420.

Glorot, Xavier and Yoshua Bengio (13–15 May 2010). “Understanding the difficulty of training deep feedfor-
ward neural networks”. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics. Ed. by Yee Whye Teh and Mike Titterington. Vol. 9. Proceedings of Machine Learning Re-
search. Chia Laguna Resort, Sardinia, Italy: PMLR, pp. 249–256. URL: http://proceedings.mlr.press/
v9/glorot10a.html.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. The MIT Press. ISBN: 0262035618.
Graves, Alex (2011). “Practical Variational Inference for Neural Networks”. In: Advances in Neural Information

Processing Systems. Ed. by J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger. Vol. 24.
Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper/2011/file/7eb3c8be3d411e%
208ebfab08eba5f49632-Paper.pdf.

Gruslys, Audrunas, Will Dabney, Mohammad Gheshlaghi Azar, Bilal Piot, Marc Bellemare, and Remi Munos
(Apr. 2017). “The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement Learning”. In:
URL: http://arxiv.org/abs/1704.04651.

Gunning, David (2017). Explainable Artificial Intelligence (XAI). Tech. rep. URL: https://www.cc.gatech.
edu/~alanwags/DLAI2016/(Gunning)%20IJCAI-16%20DLAI%20WS.pdf.

Gurtner, G., C. Bongiorno, M. Ducci, and S. Miccichè (Mar. 2017). “An empirically grounded agent based
simulator for the air traffic management in the SESAR scenario”. In: Journal of Air Transport Management
59, pp. 26–43. ISSN: 09696997. DOI: 10.1016/j.jairtraman.2016.11.004.

Hasselt, Hado van, Arthur Guez, and David Silver (Sept. 2015). “Deep Reinforcement Learning with Double
Q-learning”. In: URL: http://arxiv.org/abs/1509.06461.

Helbing, Helge (Sept. 1997). “A Cognitive Model of En-Route Air Traffic Control”. In: IFAC Proceedings Volumes
30.24, pp. 57–60. ISSN: 14746670. DOI: 10.1016/S1474-6670(17)42222-1. URL: https://linkinghub.
elsevier.com/retrieve/pii/S1474667017422221.

Henderson, Peter, Joshua Romoff, and Joelle Pineau (2018). “Where Did My Optimum Go?: An Empirical Anal-
ysis of Gradient Descent Optimization in Policy Gradient Methods”. In: European Workshop on Reinforce-
ment Learning. Vol. 14.

Hermes, P., M. Mulder, M. M. van Paassen, J. H. L. Boering, and H. Huisman (Nov. 2009). “Solution-Space-
Based Complexity Analysis of the Difficulty of Aircraft Merging Tasks”. In: Journal of Aircraft 46.6, pp. 1995–
2015. ISSN: 0021-8669. DOI: 10.2514/1.42886. URL: https://arc.aiaa.org/doi/10.2514/1.42886.

Hernandez-Leal, Pablo, Bilal Kartal, and Matthew E. Taylor (Nov. 2019). “A survey and critique of multiagent
deep reinforcement learning”. In: Autonomous Agents and Multi-Agent Systems 33.6, pp. 750–797. ISSN:
15737454. DOI: 10.1007/s10458-019-09421-1.

Towards Explainable Automation for ATC M.C. Hermans

https://doi.org/10.1007/s101110050035
https://doi.org/10.1016/j.trc.2010.03.005
https://doi.org/10.1016/j.trc.2010.03.005
https://doi.org/10.1518/107118108X353101
https://doi.org/10.1561/2200000071
http://arxiv.org/abs/1811.12560%20http://dx.doi.org/10.1561/2200000071
http://arxiv.org/abs/1811.12560%20http://dx.doi.org/10.1561/2200000071
http://arxiv.org/abs/1710.09767
http://arxiv.org/abs/1710.11248
https://hal-enac.archives-ouvertes.fr/hal-01291420
https://hal-enac.archives-ouvertes.fr/hal-01291420
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.neurips.cc/paper/2011/file/7eb3c8be3d411e%208ebfab08eba5f49632-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/7eb3c8be3d411e%208ebfab08eba5f49632-Paper.pdf
http://arxiv.org/abs/1704.04651
https://www.cc.gatech.edu/~alanwags/DLAI2016/(Gunning)%20IJCAI-16%20DLAI%20WS.pdf
https://www.cc.gatech.edu/~alanwags/DLAI2016/(Gunning)%20IJCAI-16%20DLAI%20WS.pdf
https://doi.org/10.1016/j.jairtraman.2016.11.004
http://arxiv.org/abs/1509.06461
https://doi.org/10.1016/S1474-6670(17)42222-1
https://linkinghub.elsevier.com/retrieve/pii/S1474667017422221
https://linkinghub.elsevier.com/retrieve/pii/S1474667017422221
https://doi.org/10.2514/1.42886
https://arc.aiaa.org/doi/10.2514/1.42886
https://doi.org/10.1007/s10458-019-09421-1

BIBLIOGRAPHY 133

Hessel, Matteo, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan,
Bilal Piot, Mohammad Azar, and David Silver (Oct. 2017). “Rainbow: Combining Improvements in Deep
Reinforcement Learning”. In: URL: http://arxiv.org/abs/1710.02298.

Hester, Todd, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan,
Andrew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z. Leibo, and Audrunas Gruslys
(Apr. 2017). “Deep Q-learning from Demonstrations”. In: URL: http://arxiv.org/abs/1704.03732.

Hilburn, Brian (Jan. 2004). “Cognitive complexity in air traffic control: a literature review”. In:
Hilburn, Brian, Carl Westin, and Clark Borst (Apr. 2014). “Will Controllers Accept a Machine That Thinks like

They Think? The Role of Strategic Conformance in Decision Aiding Automation”. In: Air Traffic Control
Quarterly 22.2, pp. 115–136. ISSN: 1064-3818. DOI: 10.2514/atcq.22.2.115.

Hinton, Geoffrey E., Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhutdinov (July
2012). “Improving neural networks by preventing co-adaptation of feature detectors”. In: URL: http :
//arxiv.org/abs/1207.0580.

Hoekstra, J and J Ellerbroek (2016). “BlueSky ATC Simulator Project: An Open Data and Open Source Ap-
proach”. In: 7th International Conference for Research in Air Transportation (ICRAT). ICRAT.

Hoekstra, J.M, R.N.H.W van Gent, and R.C.J Ruigrok (2002). “Designing for safety: the ‘free flight’ air traffic
management concept”. In: Reliability Engineering System Safety 75.2, pp. 215–232. ISSN: 0951-8320. DOI:
https://doi.org/10.1016/S0951-8320(01)00096-5. URL: https://www.sciencedirect.com/
science/article/pii/S0951832001000965.

Hoff, Dennis van der (2020). “A Multi-Agent Reinforcement Learning Approach to Air Traffic Control”. MA
thesis. Technical University of Delft. URL: http://repository.tudelft.nl/.

Horgan, Dan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt, and David
Silver (Mar. 2018). “Distributed Prioritized Experience Replay”. In: URL: http://arxiv.org/abs/1803.
00933.

Huo, Ying, Daniel Delahaye, and Yanjun Wang (June 2018). “Sensitivity Analysis of Closest Point of Approach”.
In: ICRAT 2018, 8th International Conference for Research in Air Transportation. Barcelone, Spain. URL:
https://hal-enac.archives-ouvertes.fr/hal-01823194.

Jaakkola, Tommi, Satinder Singh, and Michael Jordan (Nov. 1999). “Reinforcement Learning Algorithm for
Partially Observable Markov Decision Problems”. In: Advances in Neural Information Processing Systems
7.

Juozapaitis, Zoe, Anurag Koul, Alan Fern, Martin Erwig, and Finale Doshi-Velez (2019). “Explainable Rein-
forcement Learning via Reward Decomposition”. In: International Joint Conference on Artificial Intelli-
gence.

Kakade, S and J Langford (2002). Approximately Optimal Approximate Reinforcement Learning. Vol. 2. ICML,
pp. 267–274.

Kallus, K, D Van Damme, and A Dittmann (1999). Integrated Task and Job Analysis of Air Traffic Controllers -
Phase 2: Task Analysis of En-route Controllers. Eurocontrol, pp. 1–98.

Kingma, Diederik P. and Jimmy Ba (Dec. 2014). “Adam: A Method for Stochastic Optimization”. In: 3rd Inter-
national Conference for Learning Representations. URL: http://arxiv.org/abs/1412.6980.

Kirwan, B and M Flynn (2002). Investigating Air Traffic Controller Conflict Resolution Strategies. Tech. rep.
EUROCONTROL.

Kulkarni, Tejas D, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum (2016). “Hierarchical Deep Re-
inforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation”. In: Advances in Neural
Information Processing Systems. Ed. by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Vol. 29.
Curran Associates, Inc. URL:https://proceedings.neurips.cc/paper/2016/file/f442d33fa06832%
20082290ad8544a8da27-Paper.pdf.

Law, David J., James W. Pellegrino, Steve R. Mitchell, Susan C. Fischer, Thomas P. McDonald, and Earl B. Hunt
(1993). “Perceptual and cognitive factors governing performance in comparative arrival-time judgments.”
In: Journal of Experimental Psychology: Human Perception and Performance 19.6, pp. 1183–1199. ISSN:
1939-1277. DOI: 10.1037/0096-1523.19.6.1183. URL: http://doi.apa.org/getdoi.cfm?doi=10.
1037/0096-1523.19.6.1183.

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner (1998). “Gradient-Based Learning Applied to
Document Recognition”. In: Proceedings of the IEEE. Vol. 86. 11, pp. 2278–2324. URL: http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.42.7665.

Madumal, Prashan, Tim Miller, Liz Sonenberg, and Frank Vetere (Apr. 2020). “Explainable Reinforcement
Learning through a Causal Lens”. In: Proceedings of the AAAI Conference on Artificial Intelligence 34.03,

M.C. Hermans Towards Explainable Automation for ATC

http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1704.03732
https://doi.org/10.2514/atcq.22.2.115
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
https://doi.org/https://doi.org/10.1016/S0951-8320(01)00096-5
https://www.sciencedirect.com/science/article/pii/S0951832001000965
https://www.sciencedirect.com/science/article/pii/S0951832001000965
http://repository.tudelft.nl/
http://arxiv.org/abs/1803.00933
http://arxiv.org/abs/1803.00933
https://hal-enac.archives-ouvertes.fr/hal-01823194
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2016/file/f442d33fa06832%20082290ad8544a8da27-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/f442d33fa06832%20082290ad8544a8da27-Paper.pdf
https://doi.org/10.1037/0096-1523.19.6.1183
http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.19.6.1183
http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.19.6.1183
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.7665
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.7665

134 BIBLIOGRAPHY

pp. 2493–2500. DOI: 10.1609/aaai.v34i03.5631. URL: https://ojs.aaai.org/index.php/AAAI/
article/view/5631.

Matignon, Laetitia, Guillaume J. Laurent, and Nadíne Le Fort-Piat (2006). “Reward function and initial val-
ues: Better choices for accelerated goal-directed reinforcement learning”. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Vol. 4131 LNCS - I. Springer Verlag, pp. 840–849. ISBN: 3540386254. DOI: 10.1007/11840817{_}87.

Mercado Velasco, GA, M Mulder, and MM van Paassen (2010). “Air Traffic Controller Decision-Making Sup-
port using the Solution Space Diagram”. English. In: Proceedings of the 11th IFAC/IFIP/IFORS/IEA Sym-
posium on Design, Analysis and Evaluation of Human-Machine Systems (IFAC-HMS 2010). Ed. by W Chul
Yoon. the 11th IFAC/IFIP/IFORS/IEA Symposium on Design, Analysis and Evaluation of Human-Machine
Systems (IFAC-HMS 2010) ; Conference date: 31-08-2010 Through 03-09-2010. IFAC, pp. 1–6.

Mercado Velasco, Gustavo Adrian, Clark Borst, Joost Ellerbroek, M. M. Van Paassen, and Max Mulder (Aug.
2015). “The Use of Intent Information in Conflict Detection and Resolution Models Based on Dynamic
Velocity Obstacles”. In: IEEE Transactions on Intelligent Transportation Systems 16.4, pp. 2297–2302. ISSN:
15249050. DOI: 10.1109/TITS.2014.2376031.

Metzger, Ulla and Raja Parasuraman (2006). “Effects of automated conflict cuing and traffic density on air
traffic controller performance and visual attention in a datalink environment”. In: International Journal
of Aviation Psychology 16.4, pp. 343–362. ISSN: 10508414. DOI: 10.1207/s15327108ijap1604{_}1.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hass-
abis (Feb. 2015). “Human-level control through deep reinforcement learning”. In: Nature 518.7540, pp. 529–
533. ISSN: 14764687. DOI: 10.1038/nature14236.

Mnih, Volodymyr, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim Harley, Timothy P Lillicrap,
David Silver, and Koray Kavukcuoglu (2016). “Asynchronous Methods for Deep Reinforcement Learning”.
In: International Conference on Machine Learning (ICML).

Navarro, Cristóbal A., Nancy Hitschfeld-Kahler, and Luis Mateu (2014). “A Survey on Parallel Computing and
Its Applications in Data-Parallel Problems Using GPU Architectures”. In: Communications in Computa-
tional Physics 15.2, pp. 285–329. ISSN: 1991-7120. DOI: https://doi.org/10.4208/cicp.110113.
010813a. URL: http://global-sci.org/intro/article_detail/cicp/7096.html.

Nguyen, Vu, Sebastian Schulze, and Michael A Osborne (Sept. 2019). “Bayesian Optimization for Iterative
Learning”. In: URL: http://arxiv.org/abs/1909.09593.

Nolan, M. (2010). Fundamentals of Air Traffic Control. Cengage Learning. ISBN: 9781435482722. URL: https:
//books.google.nl/books?id=6yhTiGC3ulcC.

Omidshafiei, Shayegan, Jason Pazis, Christopher Amato, Jonathan P. How, and John Vian (Mar. 2017). “Deep
Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial Observability”. In: URL: http:
//arxiv.org/abs/1703.06182.

Pack Kaelbling, Leslie, Michael L Littman, Andrew W Moore, and Smith Hall (1996). “Reinforcement Learning:
A Survey”. In: Journal of Artificial Intelligence Research 4, pp. 237–285.

Parasuraman, R., T.B. Sheridan, and C.D. Wickens (2000). “A model for types and levels of human interaction
with automation”. In: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
30.3, pp. 286–297. DOI: 10.1109/3468.844354.

Parasuraman, Raja, Robert Molloy, and Indramani L. Singh (Jan. 1993). “Performance Consequences of Automation-
Induced “Complacency””. In: The International Journal of Aviation Psychology 3.1, pp. 1–23. ISSN: 15327108.
DOI: 10.1207/s15327108ijap0301{_}1.

Pardo, Fabio, Arash Tavakoli, Vitaly Levdik, and Petar Kormushev (Dec. 2017). “Time Limits in Reinforcement
Learning”. In: URL: http://arxiv.org/abs/1712.00378.

Parr, Ronald and Stuart Russell (1998). “Reinforcement Learning with Hierarchies of Machines”. In: Proceed-
ings of the 1997 Conference on Advances in Neural Information Processing Systems 10. NIPS ’97. Denver,
Colorado, USA: MIT Press, pp. 1043–1049. ISBN: 0262100762.

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala (Dec. 2019). “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In: URL:
http://arxiv.org/abs/1912.01703.

Towards Explainable Automation for ATC M.C. Hermans

https://doi.org/10.1609/aaai.v34i03.5631
https://ojs.aaai.org/index.php/AAAI/article/view/5631
https://ojs.aaai.org/index.php/AAAI/article/view/5631
https://doi.org/10.1007/11840817{_}87
https://doi.org/10.1109/TITS.2014.2376031
https://doi.org/10.1207/s15327108ijap1604{_}1
https://doi.org/10.1038/nature14236
https://doi.org/https://doi.org/10.4208/cicp.110113.010813a
https://doi.org/https://doi.org/10.4208/cicp.110113.010813a
http://global-sci.org/intro/article_detail/cicp/7096.html
http://arxiv.org/abs/1909.09593
https://books.google.nl/books?id=6yhTiGC3ulcC
https://books.google.nl/books?id=6yhTiGC3ulcC
http://arxiv.org/abs/1703.06182
http://arxiv.org/abs/1703.06182
https://doi.org/10.1109/3468.844354
https://doi.org/10.1207/s15327108ijap0301{_}1
http://arxiv.org/abs/1712.00378
http://arxiv.org/abs/1912.01703

BIBLIOGRAPHY 135

Pham, Duc Thinh, Ngoc Phu Tran, Sim Kuan Goh, Sameer Alam, and Vu Duong (May 2019). “Reinforcement
learning for two-aircraft conflict resolution in the presence of uncertainty”. In: RIVF 2019 - Proceedings:
2019 IEEE-RIVF International Conference on Computing and Communication Technologies. Institute of
Electrical and Electronics Engineers Inc. ISBN: 9781538693131. DOI: 10.1109/RIVF.2019.8713624.

Piot, Bilal, Matthieu Geist, and Olivier Pietquin (2014). “Boosted Bellman Residual Minimization Handling
Expert Demonstrations”. In: Proceedings of the 2014th European Conference on Machine Learning and
Knowledge Discovery in Databases - Volume Part II. ECMLPKDD’14. Nancy, France: Springer-Verlag, pp. 549–
564. ISBN: 9783662448502. DOI: 10.1007/978-3-662-44851-9_35. URL: https://doi.org/10.1007/
978-3-662-44851-9_35.

Pohlen, Tobias, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan, David Budden, Gabriel
Barth-Maron, Hado van Hasselt, John Quan, Mel Večerík, Matteo Hessel, Rémi Munos, and Olivier Pietquin
(May 2018). “Observe and Look Further: Achieving Consistent Performance on Atari”. In: URL: http:
//arxiv.org/abs/1805.11593.

Puca, Riccardo, Erik-Jan Van Kampen, Clark Borst, Maarten Tielrooij, and Qi Ping Chu (2014). “Experience-
based AI methods for ATC decision-making support”. MA thesis. Delft University of Technology.

Rantanen, Esa M and Ashley Nunes (2005). “Hierarchical Conflict Detection in Air Traffic Control”. In: Inter-
national Journal of Aviation Psychology 15.4, pp. 339–362. DOI: 10.1207/s15327108ijap1504{_}3.

Rantanen, Esa M. and Christopher D. Wickens (July 2012). “Conflict Resolution Maneuvers in Air Traffic Con-
trol: Investigation of Operational Data”. In: International Journal of Aviation Psychology 22.3, pp. 266–281.
ISSN: 10508414. DOI: 10.1080/10508414.2012.691048.

Regtuit, Robert M., Clark Borst, Erik-Jan van Kampen, and M. M. van Paassen (2018). “Building strategic con-
formal automation for air traffic control using machine learning”. In: AIAA Information Systems-AIAA In-
fotech at Aerospace, 2018. 209989. American Institute of Aeronautics and Astronautics Inc, AIAA. ISBN:
9781624105272. DOI: 10.2514/6.2018-0074.

Ribeiro, Marta, Joost Ellerbroek, and Jacco Hoekstra (June 2020). “Review of conflict resolution methods for
manned and unmanned aviation”. In: Aerospace 7.6. ISSN: 22264310. DOI: 10.3390/AEROSPACE7060079.

Ruder, Sebastian (Sept. 2017). “An overview of gradient descent optimization algorithms”. In: URL: http:
//arxiv.org/abs/1609.04747.

Schaul, Tom, John Quan, Ioannis Antonoglou, and David Silver (2016). “Prioritized Experience Replay”. In:
International Conference on Learning Representations. Puerto Rico.

Schaul, Tom, John Quan, Ioannis Antonoglou, David Silver, and Google Deepmind (2016). “PRIORITIZED EX-
PERIENCE REPLAY”. In: International Conference on Learning Representations (ICLR). ISBN: 1511.05952v4.

Schulman, John, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel (Feb. 2015). “Trust Region
Policy Optimization”. In: URL: http://arxiv.org/abs/1502.05477.

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov (July 2017). “Proximal Policy
Optimization Algorithms”. In: URL: http://arxiv.org/abs/1707.06347.

Seamster, Thomas L., Richard E. Redding, John R. annon, Joan M. Ryder, and Janine A. Purcell (1993). “Cogni-
tive Task Analysis of Expertise in Air Traffic Control”. In: The International Journal of Aviation Psychology
3.4, pp. 257–283. ISSN: 15327108. DOI: 10.1207/s15327108ijap0304{_}2.

Shao, Kun, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao (Dec. 2019). “A Survey of Deep Re-
inforcement Learning in Video Games”. In: URL: http://arxiv.org/abs/1912.10944.

Simonyan, Karen and Andrew Zisserman (Sept. 2014). “Very Deep Convolutional Networks for Large-Scale
Image Recognition”. In: URL: http://arxiv.org/abs/1409.1556.

Sun, Junzi, Joost Ellerbroek, Jacco Hoekstra, and Jacco M Hoekstra (2020). “OpenAP: An open-source air-
craft performance model for air transportation studies and simulationstransportation studies and simu-
lations”. In: Aerospace 7.8. DOI: https://doi.org/10.3390/AEROSPACE7080104.

Sutton, R and A Barto (2018). Reinforcement learning: an introduction. Second Edition. Cambridge: The MIT
Press, p. 225.

Sutton, R.S. and A.G. Barto (1998). Introduction to Reinforcement Learning. 1st. Cambridge, MA, USA: MIT
Press.

Sutton, Richard S. (July 1991). “Dyna, an Integrated Architecture for Learning, Planning, and Reacting”. In:
SIGART Bull. 2.4, pp. 160–163. ISSN: 0163-5719. DOI: 10.1145/122344.122377. URL: https://doi.org/
10.1145/122344.122377.

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement learning : an introduction. Second Edition.
Cambridge: The MIT Press, p. 526. ISBN: 9780262039246.

M.C. Hermans Towards Explainable Automation for ATC

https://doi.org/10.1109/RIVF.2019.8713624
https://doi.org/10.1007/978-3-662-44851-9_35
https://doi.org/10.1007/978-3-662-44851-9_35
https://doi.org/10.1007/978-3-662-44851-9_35
http://arxiv.org/abs/1805.11593
http://arxiv.org/abs/1805.11593
https://doi.org/10.1207/s15327108ijap1504{_}3
https://doi.org/10.1080/10508414.2012.691048
https://doi.org/10.2514/6.2018-0074
https://doi.org/10.3390/AEROSPACE7060079
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
https://doi.org/10.1207/s15327108ijap0304{_}2
http://arxiv.org/abs/1912.10944
http://arxiv.org/abs/1409.1556
https://doi.org/https://doi.org/10.3390/AEROSPACE7080104
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377

136 BIBLIOGRAPHY

Sutton, Richard S., Doina Precup, and Satinder Singh (1999). “Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning”. In: Artificial Intelligence 112.1, pp. 181–211. ISSN:
0004-3702. DOI: https://doi.org/10.1016/S0004- 3702(99)00052- 1. URL: https://www.
sciencedirect.com/science/article/pii/S0004370299000521.

Tavakoli, Arash, Fabio Pardo, and Petar Kormushev (Nov. 2017). “Action Branching Architectures for Deep
Reinforcement Learning”. In: URL: http://arxiv.org/abs/1711.08946.

Tjoa, Erico and Cuntai Guan (July 2019). “A Survey on Explainable Artificial Intelligence (XAI): Towards Med-
ical XAI”. In: URL: http://arxiv.org/abs/1907.07374.

Tran, Ngoc Phu, Duc Thinh Pham, Sim Kuan Goh, Sameer Alam, and Vu Duong (Apr. 2019). “An intelligent in-
teractive conflict solver incorporating air traffic controllers’ preferences using reinforcement learning”. In:
Integrated Communications, Navigation and Surveillance Conference, ICNS. Vol. 2019-April. Institute of
Electrical and Electronics Engineers Inc. ISBN: 9781728118932. DOI: 10.1109/ICNSURV.2019.8735168.

Van Dam, S.B.J., An.L.M. Abeloos, M. Mulder, and M.M. van Paassen (2004). “Functional presentation of travel
opportunities in flexible use airspace: an EID of an airborne conflict support tool”. In: 2004 IEEE Interna-
tional Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583). Vol. 1, 802–808 vol.1. DOI:
10.1109/ICSMC.2004.1398401.

Van Meeuwen, Ludo W., Halszka Jarodzka, Saskia Brand-Gruwel, Paul A. Kirschner, Jeano J.P.R. de Bock, and
Jeroen J.G. van Merriënboer (Aug. 2014). “Identification of effective visual problem solving strategies in
a complex visual domain”. In: Learning and Instruction 32, pp. 10–21. ISSN: 09594752. DOI: 10.1016/j.
learninstruc.2014.01.004.

Van Rooijen, S J (2019). “Personalized Automation for Air Traffc Control using Convolutional Neural Net-
works”. MA thesis. Technical University of Delft. URL: http://repository.tudelft.nl/.

Vezhnevets, Alexander Sasha, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David Silver, and
Koray Kavukcuoglu (Mar. 2017). “FeUdal Networks for Hierarchical Reinforcement Learning”. In: URL:
http://arxiv.org/abs/1703.01161.

Volz, Katherine, Euijung Yang, Rachel Dudley, Elizabeth Lynch, Maria Dropps, and Michael C. Dorneich (2016).
“An evaluation of cognitive skill degradation in information automation”. In: Proceedings of the Human
Factors and Ergonomics Society. Human Factors an Ergonomics Society Inc., pp. 191–195. DOI: 10.1177/
1541931213601043.

Wang, Ziyu, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas (Nov. 2016).
“Dueling Network Architectures for Deep Reinforcement Learning”. In: URL: http://arxiv.org/abs/
1511.06581.

Westin, Carl, Clark Borst, and Brian Hilburn (Feb. 2015). “Strategic Conformance: Overcoming Acceptance
Issues of Decision Aiding Automation?” In: IEEE Transactions on Human-Machine Systems 46.1, pp. 41–
52. ISSN: 21682291. DOI: 10.1109/THMS.2015.2482480.

Wickens, Christopher D., John Hellenberg, and Xidong Xu (June 2002). “Pilot Maneuver Choice and Workload
in Free Flight”. In: Human Factors: The Journal of the Human Factors and Ergonomics Society 44.2, pp. 171–
188. ISSN: 0018-7208. DOI: 10.1518/0018720024497943. URL: http://journals.sagepub.com/doi/
10.1518/0018720024497943.

Wickens, Christopher D., C. D. Mavor, and R. Parasuraman (Oct. 1998). “The Future of Air Traffic Control:
Human Operators and Automation”. In: Ergonomics in Design: The Quarterly of Human Factors Applica-
tions 6.4, pp. 18–22. ISSN: 1064-8046. DOI: 10.1177/106480469800600407. URL: http://journals.
sagepub.com/doi/10.1177/106480469800600407.

Xu, Min, Jeanne M. David, and Suk Hi Kim (Apr. 2018). “The fourth industrial revolution: Opportunities and
challenges”. In: International Journal of Financial Research 9.2, pp. 90–95. ISSN: 19234031. DOI: 10.5430/
ijfr.v9n2p90.

Xu, Xidong and Esa M. Rantanen (June 2007). “Effects of air traffic geometry on pilots’ conflict detection
with cockpit display of traffic information”. In: Human Factors 49.3, pp. 358–375. ISSN: 00187208. DOI:
10.1518/001872007X197008.

Zhang, Chiyuan, Oriol Vinyals, Remi Munos, and Samy Bengio (Apr. 2018). “A Study on Overfitting in Deep
Reinforcement Learning”. In: URL: http://arxiv.org/abs/1804.06893.

Towards Explainable Automation for ATC M.C. Hermans

https://doi.org/https://doi.org/10.1016/S0004-3702(99)00052-1
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
http://arxiv.org/abs/1711.08946
http://arxiv.org/abs/1907.07374
https://doi.org/10.1109/ICNSURV.2019.8735168
https://doi.org/10.1109/ICSMC.2004.1398401
https://doi.org/10.1016/j.learninstruc.2014.01.004
https://doi.org/10.1016/j.learninstruc.2014.01.004
http://repository.tudelft.nl/
http://arxiv.org/abs/1703.01161
https://doi.org/10.1177/1541931213601043
https://doi.org/10.1177/1541931213601043
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581
https://doi.org/10.1109/THMS.2015.2482480
https://doi.org/10.1518/0018720024497943
http://journals.sagepub.com/doi/10.1518/0018720024497943
http://journals.sagepub.com/doi/10.1518/0018720024497943
https://doi.org/10.1177/106480469800600407
http://journals.sagepub.com/doi/10.1177/106480469800600407
http://journals.sagepub.com/doi/10.1177/106480469800600407
https://doi.org/10.5430/ijfr.v9n2p90
https://doi.org/10.5430/ijfr.v9n2p90
https://doi.org/10.1518/001872007X197008
http://arxiv.org/abs/1804.06893

	Preface
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Problem Formulation
	Related Work
	Contribution
	Report Structure

	I Scientific Paper
	introduction
	Background
	Conflict Detection & Resolution
	Detection
	Resolution

	Solution Space Diagram
	Reinforcement Learning
	Deep Q-Networks
	Dueling Deep Q-Networks
	Learning from Demonstrations
	Prioritised Experience Replay
	Reward Decomposition

	Methodology
	Problem Formulation of the RL Task
	Objective
	Simulation Environment
	Assumptions
	State Representation
	Action Space Definition
	Reward Function
	Terminal State
	Neural Network Value Function Approximation
	Collecting Demonstrations

	Hyperparameters and Training Loop
	Case Study 1: Increasing Data Efficiency & Performance
	Case Study 2: Incorporating Strategy with Demonstrations
	Case Study 3: Increasing Transparency for the Designer and User
	Case Study 4: Incorporating Strategy Through Reward Shaping

	Results
	Case Study 1 - Dueling DQN in Two-Aircraft Conflict
	Case Study 2 - Incorporating Strategy with Demonstrations
	Case Study 3 - Added Value of Decomposed Rewards
	Case Study 4 - Using Reward Shaping to Mimic Strategy

	Sensitivity Analysis
	Effect of Action Space Resolution

	Discussion
	Applicability in ATM System
	Added Value of Demonstrations
	Strategy Replication
	Explainability
	SSD State Representation
	Pre-Processing SSD
	Improving the State Representation

	Stabilising Training in Deep RL
	Conclusions
	References
	II Preliminary Thesis [already graded]
	Air Traffic Control: Control Task Definition and Past Automation Efforts
	Introduction to Air Traffic Control
	Future of ATM
	Formalisation of the Conflict Detection & Resolution Task
	Design Considerations of Automation in ATC
	Automation Efforts
	Concluding Remarks

	Representing the State of an Aircraft Using the Solution Space Diagram
	Supervisory Control Support Tools

	Reinforcement Learning Fundamentals
	Finite Markov Decision Processes
	Tabular Solution Methods
	Approximate Solution Methods
	Concluding Remarks

	Deep Learning: Extracting Information from Visual Imagery
	Artificial and Convolutional Neural Networks
	Activation Function
	Example of an ANN for Classification
	Loss Function
	Optimisation
	Regularisation
	Concluding Remarks

	State-of-the-Art Reinforcement Learning Algorithms
	Single Agent vs. Multi-Agent RL (MARL)
	Hierarchical Reinforcement Learning
	State of the Art Deep Reinforcement Learning Algorithms

	Making AI Explainable with the Solution Space Diagram
	Explainable AI
	Visualising Features Exciting Neurons in Neural Networks
	Reinforcement Learning Specific Explanations
	Concluding Remarks

	Reward Shaping and Performance Evaluation
	Aircraft Choice
	Reward Function Design for Manoeuvre Choice
	Performance Evaluation
	Concluding Remarks

	Preliminary Analysis
	Experiment Setup
	Algorithms
	Trade-Off
	Finalising the Network Architecture

	III Conclusions and Recommendations
	Conclusions and Recommendations
	Addressing the Original Research Questions
	Concluding Remarks
	Future Recommendations

	IV Appendices
	Training Methodology
	Simulation Environment
	State Calculations and the Solution Space Diagram
	Transforming BlueSky
	Training Loop
	Pre-Training Phase DQfD
	Reward Decomposition
	Detailed Implementation of Dueling DQN Algorithm
	Detailed Implementation of DQfD Algorithm
	Detailed implementation of decomposed Dueling DQN algorithm

	Pre-Processing of the SSD and Hyperparameter Selection
	Altering SSD
	Action-Space
	Learning to Avoid a Conflict
	Concluding remarks

	Additional Results Case Study 1
	Training Curves per Episode

	Additional Results Case Study 2
	Resolutions Conflict Angle 90 and 135 Degrees
	Learning Curves Pre-Training Phase
	Learning Curves of Interest Normal Training Phase
	Conclusions Drawn from Additional Results

	Additional Results Case Study 3 & 4
	Training Curves Case Study 3
	Training Curves Case Study 4

	Bibliography

