
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Synthesis and
Verification of Neural
Control Barrier
Functions for Safe
Reinforcement
Learning with
Guarantees
Master Thesis
Xinyu Wang

Synthesis and
Verification of Neural

Control Barrier
Functions for Safe

Reinforcement
Learning with

Guarantees
by

Xinyu Wang

Student Name Student Number

Xinyu Wang 5454522

Instructor: Javier Alonso-Mora
Teaching Assistant: Luzia Knoedler
Project Duration: 12, 2022 - 11, 2023
Faculty: ME, Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

While learning-based control techniques often outperform classical controller designs, safety requirements limit
the acceptance of such methods in many applications. Recent developments address this issue through Certified
Learning (CL), which combines a learning-based controller with formal methods to provide safety guarantees.
This thesis focuses on the CL based on Control Barrier Functions (CBFs), as CBFs have been widely used for
safety-critical systems. However, it is non-trivial to design a CBF. Utilizing neural networks as CBFs has
shown great success, but it necessitates their certification as CBFs. In this work, we leverage bound propagation
techniques and the Branch-and-Bound scheme to efficiently verify that a neural network satisfies the conditions to
be a CBF over the continuous state space. To accelerate training, we further present a framework that embeds the
verification scheme into the training loop to synthesize and verify a neural CBF simultaneously. In particular, we
employ the verification scheme to identify partitions of the state space that are not guaranteed to satisfy the CBF
conditions and expand the training dataset by incorporating additional data from these partitions. The neural
network is then optimized using the augmented dataset to meet the CBF conditions. We show that for a non-linear
control-affine system, our framework can efficiently certify a neural network as a CBF and render a larger safe set
than state-of-the-art neural CBF works. We further employ our learned neural CBF to derive a safe controller to
illustrate the practical use of our framework.

i

Contents

Abstract i

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Contribution . 2

2 Related Work 4
2.1 Safe Reinforcement Learning without Guarantees . 4

2.1.1 Reinforcement Learning with Safety Encouragement 4
2.1.2 Constrained Markov Decision Process . 5

2.2 Certified Learning . 5
2.2.1 Reachability Analysis . 5
2.2.2 Control Barrier Function . 5

2.3 Neural Network Verification . 6
2.3.1 Bound the Neural Network . 6
2.3.2 Compute Lipschitz Constant and Bound Jacobian 6
2.3.3 Neural Control Barrier Function Verification . 6

3 Problem Formulation 7
3.1 Preliminaries . 7
3.2 Neural Control Barrier Function . 8

4 Neural Control Barrier Function Training and Verification 9
4.1 Learning a Neural Control Barrier Function . 9
4.2 Verifying the Learned Neural Control Barrier Function 10
4.3 Branch and Bound Verification-in-the-loop Training . 12

5 Results 14
5.1 Experimental Setup . 14

5.1.1 Inverted Pendulum . 14
5.1.2 2D Navigation Task . 15
5.1.3 Training Configuration . 15

5.2 Verification and Efficiency . 15
5.3 Size of Safe Set . 16

5.3.1 Impact of Nominal Controller . 17
5.3.2 Impact of Neural Network Architecture . 17

5.4 Application of Neural Control Barrier Functions to Safe Policy Learning 18

6 Conclusion 20
6.1 Summay . 20
6.2 Limitations and Future work . 20

6.2.1 Scalability . 20
6.2.2 Safety in Real World . 21
6.2.3 Optimality . 21

References 22

A Background 27
A.1 Common Terminologies . 27

A.1.1 System Model . 27
A.1.2 Reward Function . 27

ii

Contents iii

A.1.3 Safety Constraints . 28
A.2 Constrained Markov Decision Process . 28
A.3 Hamiltonian-Jacobian Reachability Analysis . 30
A.4 Control Barrier Function . 31
A.5 Model Predictive Control . 32

B Published Paper 34

List of Figures

1.1 Framework of Certified Learning . 2
1.2 Framework of Branch-and-Bound Verification-in-the-loop Training 3

4.1 Example of the Branch-and-Bound Verification scheme 11

5.1 The Workspace of the Inverted Pendulum. 14
5.2 The 0-superlevel Sets of NNs with and without BBVT . 16
5.3 The Forward Invariant Sets of Different Safe Value Functions 17
5.4 The 0-superlevel Sets of NNs with and without Nominal Controller 17
5.5 The 0-superlevel Sets of Different Neural Network Architectures 18
5.6 Training Results for 2D Navigation Task . 19

A.1 Illustration of the Different Safety Levels . 29
A.2 Illustration of Reinforcement Learning . 29
A.3 Illustration of Hamilton-Jacobian-Issac Reachability Analysis 30
A.4 Illustration of Control Barrier Function . 31
A.5 Illustration of Model Predictive Control . 32

iv

List of Tables

5.1 Hyper-parameter for Neural Control Barrier Function Training 15
5.2 Verification and Efficiency Comparison for the Inverted Pendulum 16

v

Acronyms

BBS Branch-and-Bound scheme.
BBV Branch-and-Bound Verification scheme.
BBVT Branch-and-Bound Verification-in-the-loop Training.
BF Barrier Function.
BRT Backward Reachable Tube.
BVF Backward Value Function.

CBC Control Barrier Condition.
CBF Control Barrier Function.
CBVF Control Barrier-Value Function.
CBVF-VI Control Barrier-Value Function Variational Inequality.
CE Counterexample.
CL Certified Learning.
CMDP Constrained Markov Decision Process.

DL Deep Learning.

FCNN Fully-Connected Neural Network.

GP Gaussian Process.

HJI-RA Hamilton-Jacobian-Issac Reachability Analysis.
HJI-VI Hamilton-Jacobian-Issac Variational Inequality.

LP Linear Programming.

MDP Markov Decision Process.
MIP Mixed Integer Programming.
MPC Model Predictive Control.

nCBF Neural Control Barrier Function.
NLP Nonlinear Program.
NN Neural Network.

QP Quadratic Program.

RA Reachability Analysis.
RL Reinforcement Learning.

SAT Boolean Satisfiability Problem.
SGD Stochastic Gradient Descent.

vi

Acronyms vii

SMT Satisfiability Modulo Theory.
SOS sum-of-squares.

TD Temporal-Difference.

1
Introduction

1.1. Motivation
Safety is a critical element of autonomous systems, including self-driving cars and manipulators
interacting with humans. As these systems become increasingly complex, ensuring their safe operation
poses significant challenges. Various techniques have been developed to address this challenge, such
as Model Predictive Control (MPC), Hamilton-Jacobian-Issac Reachability Analysis (HJI-RA), Control
Barrier Function (CBF), and Constrained Markov Decision Process (CMDP). We will discuss the
advantages and limitations of these techniques and propose pertinent research questions in Section
1.2. The contributions of this thesis are detailed in Section 1.3. For readers unfamiliar with the
aforementioned techniques, a comprehensive background chapter is available in the Appendix. A.

While traditional control schemes like the MPC offer safety guarantees, they face challenges in scaling
for high-dimensional systems and often rely on specific assumptions, such as the existence of a terminal
set and solver feasibility. Additionally, these methods struggle to capture complex patterns within
extensive datasets. In contrast, data-driven methods such as Reinforcement Learning (RL) and Deep
Learning (DL) have demonstrated remarkable success in handling large, complex systems by learning
from raw data, facilitating more accurate predictions and adaptation to unstructured environments.
However, the absence of safety guarantees and interpretability impedes the practical deployment of
these data-driven methods. Therefore, numerous efforts have been made to improve the safety of the
RL. Different safe RL approaches have emerged, including RL with Safety Encouragement, CMDP,
and Certified Learning (CL). The RL with Safety Encouragement aims to optimize the reward while
reducing constraint violations by embedding risk signals into objective functions, which may lead to
unsafe actions during the early training stages. Solving a CMDP means deriving a feasible policy that
consistently satisfies constraints. Although a finite discrete CMDP can be solved efficiently by Linear
Programming (LP), solving a CMDP in a continuous state space remains an open question. Given
these limitations, this thesis focuses on the third category of safe RL, namely CL. Unlike the other
approaches that simultaneously optimize reward and minimize constraint violations, the CL comprises
two subsystems: a neural controller responsible for performance enhancement through interacting with
the environment and a certificate that ensures unsafe actions from the neural controller are projected
into a safe action space, thus maintaining system safety at all times. The general framework of the CL is
shown in Fig. 1.1.

The HJI-RA and the CBFs are two common formal methods that synthesize certificates and provide
safety guarantees. Both certificates address safety through set invariance and safe controllers can be
derived easily. The certificate (i.e., safe value function) from the HJI-RA is generated by solving the
Hamilton-Jacobian-Issac Variational Inequality (HJI-VI) over a grid map but is prone to numerical errors
and may result in undesired jerk behaviors. On the other hand, the CBFs ensure safety with a smooth
controller and exhibit asymptotical stability even if the system violates the constraints [1]. Consequently,
the utilization of the CBFs for deriving a forward invariant set has received significant attention in the
control and learning community [2].

1

1.2. Research Questions 2

Figure 1.1: Framework of Certified Learning. The environment contains robots and obstacles. The robot learns a control policy
from data (e.g., RL) while a certificate (e.g., CBF, Reachability Analysis (RA), MPC) filters out unsafe actions and only applies safe

actions to the system.

However, no general and scalable technique exists for designing CBFs. Recent works [3, 4] synthesize
CBFs using Neural Networks (NNs) as function templates, which are referred to as Neural Control
Barrier Functions (nCBFs). Yet, these works rely on an initial guess of the forward invariant set or the
function structure of the CBF. An improper initial guess usually results in a suboptimal nCBF and
constructing an optimal CBF that renders a maximum forward invariant set is challenging.

Although utilizing NNs as CBFs offers universal approximation capabilities, it necessitates their
certification as CBFs to provide safety guarantees. Verifying the NN as an nCBF in the continuous
state space presents a significant challenge. Specifically, since the NN is trained using a finite set of
data points, it will only be verified on those points. Outside the certified points, safety is no longer
guaranteed. There are works [5, 6] that use the Satisfiability Modulo Theory (SMT) to verify their NNs.
However, they are restricted to very simple NNs due to expensive computation.

1.2. Research Questions
Considering the challenges outlined, the research questions of this thesis are:

1. How can we find an nCBF that renders the maximum safe area?
2. How can an nCBF be verified efficiently?

1.3. Contribution
A recent work [7] introduced the Control Barrier-Value Function (CBVF) which is a safe value function
and renders the maximum forward invariant set for a chosen time span. Inspired by that, in this work,
we synthesize a continuous nCBF that approximates the infinite-horizon CBVF and renders a safe set
that is close to the maximum forward invariant set. Then, we leverage bound propagation techniques [8]
and the Branch-and-Bound scheme (BBS) to efficiently verify nCBFs. In particular, we partition the state
space and utilize linear bound propagation techniques to provide lower and upper bounds of the NN
and its Jacobian. These bounds are used to verify if the NN satisfies the conditions to be a CBF. The BBS
is applied to refine the partition to improve scalability and achieve less conservative bounds. We refer
to the above verification scheme as the Branch-and-Bound Verification scheme (BBV). This approach is
similar to [9], however, we verify CBFs instead of barrier functions. To accelerate training, we embed the
BBV into the training loop to synthesize and verify an nCBF simultaneously, which we refer to as the
Branch-and-Bound Verification-in-the-loop Training (BBVT), see Fig. 1.2.

The contributions of this thesis are listed as follows:

1. The design of a novel loss function to synthesize an nCBF that renders a safe set close to the

1.3. Contribution 3

Figure 1.2: A schematic overview of the presented Branch-and-Bound Verification-in-the-loop Training. The framework
comprises two key components: the learner and the verifier, which operate sequentially. The learner optimizes the nCBF using a
fixed dataset and a Counterexample dataset. The verifier leverages bound propagation techniques and the Branch-and-Bound

scheme to refine a partition of the state space until the CBF conditions are satisfied or counterexamples are generated.

maximum forward invariant set.
2. Introduction of an efficient method for verifying an nCBF.
3. Validation on an inverted pendulum and 2D navigation task.

The rest of this thesis is laid out as follows: A comprehensive literature review is presented in Chapter 2,
followed by Chapter 3 which explains the fundamental theory and properties of a CBF, alongside the
precise definition of the system and problem statement. Chapter 4 elaborates on our method, including
the loss function, the BBV, and the training framework. Finally, Chapter 5 describes the validation of
our method on an inverted pendulum and demonstrates the practical use of our learned nCBF on a 2D
navigation task. This thesis resulted in a conference paper that will be presented at ECC 2024. The
paper is available in the Appendix B.

2
Related Work

Before addressing the outlined research questions, it is essential to establish a comprehensive under-
standing of the current state-of-the-art techniques in the safe RL. We start with the safe RL without
guarantees in Section 2.1 and focus more on the CL based on CBFs and the HJI-RA in Section 2.2. Since
the NN Verification is a necessary tool to verify our nCBFs, the relevant literature is discussed in Section
2.3.

2.1. Safe Reinforcement Learning without Guarantees
The RL employs a data-driven methodology, offering adaptability to unstructured contexts and scalability
to complex systems at the expense of providing formal guarantees. In this section, we provide a brief
introduction to two mainstream approaches, namely the RL with safety encouragement and the CMDP.
A comprehensive review of these two categories of safe RL can be found in [10].

2.1.1. Reinforcement Learning with Safety Encouragement
To enhance safety in RL, researchers frequently modify the reward function [11, 12] or integrate risk
signals into the Temporal-Difference (TD) error [13] so that the value function or Q-function reflects
the risk associated with future trajectories. However, the efficacy of these methods is limited when the
risk scenario constitutes only a small fraction of the training dataset. Therefore, some works propose
the utilization of a Safety Critic [14, 15], which predicts the risk associated with the current state and
action. Nevertheless, training a Safety Critic necessitates a dataset containing unsafe states and actions,
the collection of which involves potentially hazardous attempts. To augment the training dataset,
domain randomization is extensively employed to train agents across a spectrum of randomized and
perturbed environments and scenarios. This approach has demonstrated empirical success in facilitating
sim-to-real transfer in safety-critic tasks [16, 17].

In contrast to the aforementioned works where agents require a large number of trials to achieve a safe
policy, certain advanced strategies enable agents to adapt to unknown environments much more rapidly
during the learning process. To mitigate noise and better capture system dynamics, recent works in [18,
19] employ model ensembles to train a collision model online, predicting the probability of collision
given state and a sequence of actions. However, these approaches encounter challenges during the early
stages of training. To ensure safety throughout the learning process, the works in [20, 21, 22] confine
exploration to safe state space exclusively. Nevertheless, a major limitation of these methods arises
from the intractable computation of generating a valid safe space, particularly for complex continuous
systems. An alternative and more tractable strategy involves constraining the control policy instead of
exploration space. By directing policy updates toward safer directions, these methodologies [23, 24, 25]
gradually diminish constraint violations.

4

2.2. Certified Learning 5

2.1.2. Constrained Markov Decision Process
The CMDP is frequently utilized in the safe RL due to its capability to incorporate constraints that
express various safety notions. For readers unfamiliar with CMDPs, please refer to Section A.2. Given a
CMDP problem, an intuitive approach involves transforming the CMDP into an unconstrained Markov
Decision Process (MDP) using Lagrangian methods [26, 27]. Subsequently, standard RL algorithms can
be applied to solve the resulting MDP.

To retain hard constraints, researchers solve the discrete CMDP directly [28] by converting it into a
constrained LP. However, such an approach is limited to discrete CMDPs. For continuous CMDPs, the
Backward Value Function (BVF) [29] is utilized to predict the accumulated cost along the trajectory and
improve the control policy iteratively, which shares a similar idea that projects policy updates in a safe
direction. Other works [30, 31] assume the existence of a safe baseline policy and bootstrap the control
policy to solve the CMDP. However, in practice, a safe baseline policy is not always available.

2.2. Certified Learning
The CL usually consists of a controller and a certificate. The controller is designed to maximize the
reward and accomplish the task, while the certificate is tasked with filtering out unsafe actions and
forcing the satisfaction of the constraints. Two common certificates are CBFs and safe value functions
from HJI-RA, which are widely used in safety-critical applications. Section 2.2.1 and 2.2.2 explore the
relevant literature of these two certificate functions as well as the works that combine RL with CBFs or
the HJI-RA to achieve safe learning.

2.2.1. Reachability Analysis
The HJI-RA [32] is extensively utilized to generate the Backward Reachable Tube (BRT) (i.e., safe value
function) for the reach-avoid tasks. To compute BRTs, the HJI-RA explicitly solves the HJI-VI on a
discretized state space [33], resulting in an exponential scaling of computational and spatial complexity
with respect to system dimensionality. This is often referred to as the curse of dimensionality [32].
Although BRTs from the HJI-RA provide a maximum control invariant set, the curse of dimensionality
limits its practical use to only up to 5D systems [32]. There are several works [34, 35, 36] addressing
the curse of dimensionality by using sets of pre-specified shapes, such as polytopes, hyperplanes, and
zonotopes. These specific shapes enable the approximation of continuous reachable sets, thus avoiding
discrete state space. However, such a method results in conservative BRTs, and some works [37] rely on
the linearization of nonlinear dynamics. Another strategy to mitigate the curse of dimensionality is
decomposition. The work in [38] decomposes the complex nonlinear dynamics into multiple simple
subsystems. The BRTs of these low-dimensional subsystems are computed first, and then the full-
dimensional BRT of the original high-dimensional system is reconstructed from the low-dimensional
BRTs without additional approximation error.

Several learning-based methods have also been explored for computing approximate safe value functions
and using them as the safety filter. Recent works [39, 40] train NNs with large quantities of data to
approximate safe value functions and BRTs. Other researchers use the TD Learning [41] or Q-learning [42,
43] to simultaneously learn a safe value function and control policy.

2.2.2. Control Barrier Function
Many works use CBFs to ensure the safety of a system [44, 45, 46]. However, it is non-trivial to construct
CBFs. In recent years, new techniques emerged to automatically synthesize CBFs. For a system
with polynomial dynamics, a CBF can be obtained by solving a sum-of-squares (SOS) optimization
problem [47]. Unfortunately, the SOS scales poorly to higher dimensional systems [48]. To address this
shortcoming, NNs have been employed to approximate CBFs. They are trained by supervised learning [3,
4, 49] or RL with the Actor-Critic framework [50, 51]. The loss function designed to encourage the NN
to satisfy the Control Barrier Condition (CBC) will be defined later in Section 3. However, the quality of
the nCBF in those works depends on an initial guess of the forward invariant set, the CBF candidate, or
the exploration strategy. An improper initial guess results in a conservative nCBF with a small forward
invariant set. To address the conservativity, in this work, we learn an nCBF that renders a safe set close
to the maximum forward invariant set. Furthermore, the training does not require an initial guess.

The combination of a learning-based system with a CBF can be seen in [52, 53, 54]. They usually solve a

2.3. Neural Network Verification 6

Quadratic Program (QP) to get the least modified safe control input.

2.3. Neural Network Verification
As NNs increasingly serve as core techniques in various applications, including safety-critical tasks,
certifying the property of an NN has become an important research area in machine learning [55, 56].
Four categories of verification methods, which are dedicated to verifying properties and bounding the
output of NNs, are briefly introduced in Section 2.3.1. In addition to the output of NNs, Lipschitz
constants play a significant role in characterizing many properties of NNs, including robustness [57]
and generalization [58]. Since the Lipschitz constant can be computed by upper bounding the norm
of Jacobian [59], the related works about computing Lipschitz constants and the Jacobian of NNs are
presented in Section 2.3.2, followed by a discussion about the nCBF verification in Section 2.3.3.

2.3.1. Bound the Neural Network
Exact Verification [60, 61, 62, 63, 64] encodes the linear transform layer and activation layer of an NN
as a sequence of constraints. The properties of the NN are then verified by solving Mixed Integer
Programming (MIP) or using Boolean Satisfiability Problem (SAT) [65, 66]. However, solving MIP
and SAT has been shown to be NP-hard. As a result, Exact Verification can not scale to complex
systems. In contrast, Constraints Relaxation methods overcome the extensive computational burden by
over-approximating the effect of each activation layer with linear constraints at the expense of accuracy.
The representative works include Fast-Lin [67], CROWN [8], and Domain Abstraction [68]. Instead of
using linear constraints, Reachability-based methods [69, 70, 71] propagate the reachable set represented
by a rectangle or ellipsoid through a neural network and obtain the bound of the output layer. For a
detailed review, please refer to [2, 72].

2.3.2. Compute Lipschitz Constant and Bound Jacobian
Several works [64, 73] have been proposed to compute global Lipschitz constants. However, the local
Lipschitz constants are much tighter than the global Lipschitz constants and they characterize the
local behavior of NNs. Therefore, LipMIP [74] used MIP to compute exact local Lipschitz constants,
while LipBaB [75] combined relatively loose interval-bound propagation with branch-and-bound to
compute exact results. However, these methods suffer from scalability issues when applied to larger
models due to their computational cost. To address efficiency concerns, FastLip [67] and its improved
version RecurJac [76] used recursive procedures to bound the Jacobian. While these methods are much
more efficient, their bounds are relatively loose due to the use of strictly looser relaxations. Recent
advancements in [59, 77] provide novel approaches to computing the Jacobian of NNs with tight bound
via bound propagation, offering promising avenues for efficient computation of local Lipschitz constants.

2.3.3. Neural Control Barrier Function Verification
Commonly, NNs are trained through backpropagation of the empirical loss on a finite set of data
points. Therefore, it is important to note that even an empirical loss of zero does not guarantee that the
certificate is valid everywhere in the state space. Only a few works have verified their NNs, such as [5, 6,
78], which leverage the SMT to provide Counterexamples (CEs) and guarantee the correctness of the
synthesis procedure. However, the SMT is limited to simple NNs with around 20 neurons in one or
two hidden layers due to the need for expensive computation. In contrast to using the SMT for exact
verification, several efficient NN verification methods using linear bound propagation techniques have
been developed [8, 67]. These bounding methods provide a new direction to verify neural certificates.
The work in [9] partitions the state space with a BBS and verifies the property of the discrete-time
stochastic barrier function for each partition leveraging the method in [8]. Our work extends the BBS of
[9] to CBFs for continuous-time deterministic control-affine systems where the control input constraints
must be considered and use the BBV scheme to verify the learned continuous nCBF.

3
Problem Formulation

3.1. Preliminaries
Given the following continuous-time control-affine system

¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢, 𝑥(0) = 𝑥0 , (3.1)

where 𝑥 ∈ X ⊂ R𝑛 , 𝑢 ∈ U ⊂ R𝑚 , 𝑓 : R𝑛 → R𝑛 denotes the autonomous dynamics, and 𝑔 : R𝑛 → R𝑛×𝑚
denotes the input dynamics. We assume that 𝑓 , 𝑔 are Lipschitz continuous and X,U are compact sets.

The safety requirement for the system in (3.1) is encoded via a state admissible set X𝑎 ⊆ X and a convex
input admissible set U𝑎 ⊆ U. A safe system stays in the state admissible set for all time. To formally
define safety, we use 𝑥𝜋(𝑡; 𝑥0) to refer to a trajectory of the system in (3.1) at time 𝑡 with initial condition
𝑥0 and control policy 𝑢 = 𝜋(𝑥). Safety is then defined as:

Definition 1 (Safety). The system in (3.1) is safe if 𝑥𝜋(𝑡; 𝑥0) ∈ X𝑎 and 𝑢 = 𝜋(𝑥𝜋(𝑡; 𝑥0)) ∈ U𝑎 , ∀𝑡 ∈ [0,∞].
However, it should be noted that X𝑎 is not safe everywhere as there may not exist a control input that
transitions a state close to the boundary towards the interior of X𝑎 . A safe set should have the property
that if the system starts in the safe set, it stays inside for all time. Towards formally defining this property,
let a set 𝒞 be defined as the 0-superlevel set of a continuously differentiable function ℎ : R𝑛 → R, i.e.,

𝒞 = {𝑥 ∈ X : ℎ(𝑥) ≥ 0},
𝜕𝒞 = {𝑥 ∈ X : ℎ(𝑥) = 0}.

Then forward invariance and a safe set are defined as follows.

Definition 2 (Foward invariance). The set 𝒞 is forward invariant if for every 𝑥0 ∈ 𝒞, there exists a control
policy 𝑢 = 𝜋(𝑥) ∈ U𝑎 such that the trajectory of system in (3.1) 𝑥𝜋(𝑡; 𝑥0) ∈ 𝒞 , ∀𝑡 ∈ [0,∞].
Definition 3 (Safe set). The set 𝒞 is a Safe Set if 𝒞 is forward invariant and 𝒞 ⊆ X𝑎 .
A CBF renders a safe set and can be used to derive safe control inputs. Before defining CBFs, we must
introduce extended class𝒦∞ functions. An extended class𝒦∞ function is a mapping 𝛼 : R→ R that is
strictly increasing and for which 𝛼(0) = 0 holds. We define a continuous CBF as:

Definition 4 (Control Barrier Function). Let𝒞 ⊆ X𝑎 be the 0-superlevel set of a continuously differentiable
function ℎ : R𝑛 → R, then ℎ is a CBF in X𝑎 for system in (3.1) if there exists an extended class 𝒦∞
function 𝛼 such that

sup
𝑢∈U𝑎
[𝐿 𝑓 ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢] ≥ −𝛼(ℎ(𝑥)), (3.2)

for all 𝑥 ∈ X𝑎 , where 𝐿 𝑓 , 𝐿𝑔 represent Lie derivatives.

7

3.2. Neural Control Barrier Function 8

With the definition of a CBF, we may derive sufficient conditions for a safe system. According to the
main result in [1], the following theorem holds:

Theorem 1 ([1, Theorem 2]). If function ℎ is a CBF for the system in (3.1) and 𝜕ℎ
𝜕𝑥 (𝑥) ≠ 0 for all 𝑥 ∈ 𝜕𝒞, then

any Lipschitz continuous controller 𝜋(𝑥) ∈ 𝐾𝑐𝑏 𝑓 (𝑥) with

𝐾𝑐𝑏 𝑓 (𝑥) = {𝑢 ∈ U𝑎 : 𝐿 𝑓 ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 + 𝛼(ℎ(𝑥)) ≥ 0}, (3.3)

renders the set 𝒞 safe. Additionally, the set 𝒞 is asymptotically stable in X𝑎 .

Suppose a feedback controller 𝑢 = 𝜋𝑛𝑜𝑚𝑖𝑛𝑎𝑙(𝑥) is given, we can consider the following QP based safe
controller that finds the minimum perturbation on 𝑢 to guarantee safety for the system in (3.1):

𝑢safe = arg min
𝑢∈U𝑎
∥𝑢 − 𝜋𝑛𝑜𝑚𝑖𝑛𝑎𝑙(𝑥)∥2

𝑠.𝑡. 𝐿 𝑓 ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 + 𝛼(ℎ(𝑥)) ≥ 0.
(3.4)

3.2. Neural Control Barrier Function
With Theorem 1, we can ensure the safety of the system in (3.1) as long as a CBF is found and its gradient
does not vanish on 𝜕𝒞. Then, the objective of this work is to automatically synthesize an nCBF and
verify it for the continuous state space. The problem is defined as follows.

Problem 1. Given the system in (3.1), state admissible set X𝑎 , convex input admissible set U𝑎 and 𝛼(𝑥) = 𝛾𝑥
where 𝛾 is a positive constant, synthesize an nCBF denoted by ℎ̂𝑤(𝑥), where 𝑤 are the parameters of the NN, and
renders set 𝒞 safe for the system in (3.1). This is equivalent to

�̂� ⊆ X𝑎 , (3.5a)
inequality (3.2) holds in X𝑎 , (3.5b)

where �̂� = {𝑥 ∈ X : ℎ̂𝑤(𝑥) ≥ 0} is the 0-superlevel set of the nCBF.

Remark 1. The condition 𝜕ℎ
𝜕𝑥 (𝑥) ≠ 0 for all 𝑥 ∈ 𝜕𝐶 is omitted since it generally holds in our setting

as we only consider a Tanh-based Fully-Connected Neural Network (FCNN). More specifically, since
𝜕𝑡𝑎𝑛ℎ
𝜕𝑥 (𝑥) ∈ (0, 1] for all 𝑥, the condition is only violated if either 𝑤 = 0 or catastrophic cancellation occurs

in the linear layers, which will almost surely never happen.

4
Neural Control Barrier Function

Training and Verification

In this work, we design a new empirical loss to synthesize an nCBF, which is introduced in Section 4.1.
As the training set only contains a finite set of data points, the CBC may not hold in the continuous state
space. Therefore, in Section 4.2, we present the BBV to verify nCBFs. Nevertheless, it is often necessary
to iterate through multiple training and verification cycles before successfully learning an nCBF. Thus,
we introduce the BBVT in Section 4.3, which embeds the BBV in the training loop to accelerate training
for certifiability.

4.1. Learning a Neural Control Barrier Function
The primary goal of this work is to train an NN ℎ̂𝑤(𝑥) until it satisfies conditions (3.5a) and (3.5b) and
render a large forward invariant set. Towards this end, we leverage the main result in [7, Theorem 3],
where a CBVF is shown to recover the maximum safe set subject to safety constraints. Contrary to [7], we
are interested in infinite-horizon properties. Thus we extend the time-dependent Control Barrier-Value
Function Variational Inequality (CBVF-VI) to the infinite-horizon. Let ℎ(𝑥) denote the infinite-horizon
CBVF and 𝜌(𝑥) : X → R denote the signed-distance function for the set X𝑎 , which is defined as
𝜌(𝑥) = inf𝑦∈X/X𝑎 ∥𝑦− 𝑥∥ if 𝑥 ∈ X𝑎 and 𝜌(𝑥) = − inf𝑦∈X𝑎 ∥𝑦− 𝑥∥ if 𝑥 ∈ X/X𝑎 . The infinite-horizon CBVF-VI
is defined as

0 = min{𝜌(𝑥) − ℎ(𝑥),
max
𝑢∈U𝑎

𝐿 𝑓 ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 + 𝛾ℎ(𝑥)}. (4.1)

We use an NN ℎ̂𝑤(𝑥) to approximate the infinite-horizon CBVF ℎ(𝑥). Then, the empirical loss is defined
as follows:

ℒ =
1
𝑁1

∑
𝑥∈X𝑎
∥min{𝜌(𝑥) − ℎ̂𝑤(𝑥),

sup
𝑢∈U𝑎

𝐿 𝑓 ℎ̂𝑤(𝑥) + 𝐿𝑔 ℎ̂𝑤(𝑥)𝑢 + 𝛾 ℎ̂𝑤(𝑥) − 𝜆}∥ (4.2a)

+ 1
𝑁2

∑
𝑥∈X/X𝑎

max{ ℎ̂𝑤(𝑥) + 𝜆, 0}. (4.2b)

where 𝜆 is a small positive constant to encourage the strict satisfaction of the conditions. The loss
term (4.2a) shapes the NN to be the solution of the infinite-horizon CBVF-VI introduced in (4.1), which

9

4.2. Verifying the Learned Neural Control Barrier Function 10

encourages the satisfaction of condition (3.5b). The loss term (4.2b) ensures that the nCBF is negative in
the inadmissible area X/X𝑎 , which is equivalent to condition (3.5a). Since the system is control-affine,
the optimal solution 𝑢∗ for sup𝑢∈U𝑎 [𝐿 𝑓 ℎ̂𝑤(𝑥) + 𝐿𝑔 ℎ̂𝑤(𝑥)𝑢] must be one of the vertices of U𝑎 . Let U𝒱𝑎
denote the vertices of the input admissible set, we choose control input 𝑢★ = arg max𝑢∈U𝒱𝑎 𝐿𝑔 ℎ̂𝑤(𝑥)𝑢.
However, the Lie derivative of ℎ̂𝑤(𝑥) in the early training stage may not align with the Lie derivative
of the true CBVF ℎ(𝑥). This results in an undesirable optimization path and the NN can get stuck at
deadlock. The occurrence of a deadlock situation signifies that improvements at certain data points
cause constraint violations at other data points, as noted in [79]. To facilitate the training process and
avoid deadlocks, we borrow ideas from [5, 4], which use a nominal controller to guide the training.
Here, we train another neural network ℎ̂𝜙 with the same structure as ℎ̂𝑤 based on the loss of [42] and
choose 𝑢∗ = arg max𝑢∈U𝒱𝑎 ℎ̂𝜙(𝑥 + (𝑓 (𝑥) + 𝑔(𝑥)𝑢)Δ𝑡) by simulating one step ahead to guide the training
of the nCBF ℎ̂𝑤 .

4.2. Verifying the Learned Neural Control Barrier Function
Since the NN is trained on finite data points, one must note that the NN may not satisfy the CBF
conditions everywhere in the state space, even if the empirical loss decreases to zero. In fact, condition
(3.5b) may be violated almost everywhere, which means the NN may fail to render a forward invariant
set and the safety guarantee no longer exists. In this section, we propose to use the BBV to verify the
learned nCBF in the continuous state space. Specifically, our primary goal is to verify the satisfaction of
conditions (3.5a) and (3.5b).

Before we explain our verification scheme in detail, we introduce some notations first. Let the partition
of the state space be denoted as hyperrectangles B(𝑥𝑖 , 𝜖𝑖) = {𝑥 : | 𝑥 − 𝑥𝑖 |≤ 𝜖𝑖} centered at point
𝑥𝑖 ∈ X with radius 𝜖𝑖 ∈ R𝑛 , see Fig. 4.1. Initially, all hyperrectangles have the same radius 𝜖𝑖 = 𝜖𝑖𝑛𝑖𝑡 .
Let ℬ = {B(𝑥0 , 𝜖0), . . . ,B(𝑥𝑁 , 𝜖𝑁)} denote the set of all hyperrectangles, ℬX/X𝑎 ⊂ ℬ denote the set of
hyperrectangles that covers the inadmissible area X/X𝑎 , and ℬX𝑎 ⊂ ℬ denote the set of hyperrectangles
that covers the admissible area.

To verify condition (3.5a), which is equivalent to ℎ̂𝑤(𝑥) < 0,∀𝑥 ∈ X/X𝑎 , we rely on the linear bounds of
the NN computed using CROWN [8]. The linear bounds are defined as follows:

ℎ̂𝑙𝑖 ≤ ℎ̂𝑤(𝑥) ≤ ℎ̂𝑢𝑖 , 𝑥 ∈ B(𝑥𝑖 , 𝜖𝑖). (4.3)

We use these linear bounds to certify the satisfaction of condition (3.5a). In particular, the upper bound
ℎ̂𝑢𝑖 can be used to check for non-positivity

ℎ̂𝑤(𝑥) ≤ ℎ̂𝑢𝑖 ≤ 0, 𝑥 ∈ B(𝑥𝑖 , 𝜖𝑖),B(𝑥𝑖 , 𝜖𝑖) ∈ ℬX/X𝑎 . (4.4)

However, this upper bound tends to be conservative when B(𝑥𝑖 , 𝜖𝑖) covers a large area. Therefore, we
leverage the BBS that starts from the coarse partition and refines each hyperrectangle when ℎ̂𝑢𝑖 > 0
until ℎ̂𝑢𝑖 ≤ 0 or 𝜖𝑖 ≤ 𝑡𝑔𝑎𝑝 , where 𝑡𝑔𝑎𝑝 > 0 is the minimum partition size, see Fig. 4.1. The refinement is
done by splitting the state space in half in each dimension, see Algorithm 1. If condition (4.4) holds for
all hyperrectangles in ℬX/X𝑎 , then the condition (3.5a) holds in the continuous state space.

Although verifying condition (3.5a) is simple, verifying condition (3.5b) sup𝑢∈U𝑎 [𝐿 𝑓 ℎ̂𝑤(𝑥)+𝐿𝑔 ℎ̂𝑤(𝑥)𝑢] ≥
−𝛾 ℎ̂𝑤(𝑥), ∀𝑥 ∈ X𝑎 is challenging. For improved readability, we denote 𝑞(𝑥) = sup𝑢∈U𝑎 [𝐿 𝑓 ℎ̂𝑤(𝑥) +
𝐿𝑔 ℎ̂𝑤(𝑥)𝑢 + 𝛾 ℎ̂𝑤(𝑥)]. Hence, verifying condition (3.5b) is equivalent to verifying 𝑞(𝑥) ≥ 0,∀𝑥 ∈ X𝑎 . Let
𝑞𝑙𝑖 define a lower bound of 𝑞(𝑥) for 𝑥 ∈ B(𝑥𝑖 , 𝜖𝑖). Then the following condition has to hold:

𝑞(𝑥) ≥ 𝑞𝑙𝑖 ≥ 0, 𝑥 ∈ B(𝑥𝑖 , 𝜖𝑖),B(𝑥𝑖 , 𝜖𝑖) ∈ ℬX𝑎 . (4.5)

Similarly to condition (3.5a), the BBS starts from a coarse partition and refines each hyperrectangle when
𝑞𝑙𝑖 < 0 until 𝑞𝑙𝑖 ≥ 0 or 𝜖𝑖 ≤ 𝑡𝑔𝑎𝑝 . If condition (4.5) holds for all hyperrectangles in ℬX𝑎 , then condition
(3.5b) holds in the continuous state space.

4.2. Verifying the Learned Neural Control Barrier Function 11

Figure 4.1: An example of the BBV in a 2D state space. The scheme starts with a coarse partition B(𝑥0 , 𝜖0) and refines it using the
Branch-and-Bound scheme. For each hyperrectangle B(𝑥𝑖 , 𝜖𝑖), 𝑖 = 0, 1, 2, . . ., upper bounds for the neural network are computed.

In this case, the hyperrectangles B(𝑥0 , 𝜖0) and B(𝑥2 , 𝜖2) are refined as ℎ̂𝑢0 > 0, ℎ̂𝑢2 > 0.

Algorithm 1 Branch and Bound Scheme (One Iteration)
Input:
System dimension 𝑛
Initial hyperrectangles ℬ = {B(𝑥0 , 𝜖𝑖𝑛𝑖𝑡), . . .B(𝑥𝑁 , 𝜖𝑖𝑛𝑖𝑡)}
2𝑛 offset directions: 𝑜 𝑓 𝑓 𝑠𝑒𝑡_𝑑𝑖𝑟𝑠

function BranchAndBound(ℬ)
for B(𝑥𝑖 , 𝜖𝑖) in ℬ do

if B(𝑥𝑖 , 𝜖𝑖) ∈ ℬX/X𝑎 then
Get ℎ̂𝑢𝑖 from (4.3)

else
Get 𝑞′

𝑙𝑖
from (4.10a)

end if
if ℎ̂𝑢𝑖 ≥ 0 or 𝑞′

𝑙𝑖
< 0 then

for 𝑑𝑖𝑟 in 𝑜 𝑓 𝑓 𝑠𝑒𝑡_𝑑𝑖𝑟𝑠 do
𝑥𝑛𝑒𝑤 ← 𝑥𝑖 + 0.25 ∗ 𝑑𝑖𝑟 ∗ 𝜖𝑖
𝜖𝑛𝑒𝑤 ← 0.5 ∗ 𝜖𝑖
ℬ.𝑎𝑑𝑑(B(𝑥𝑛𝑒𝑤 , 𝜖𝑛𝑒𝑤))

end for
end if
ℬ.𝑑𝑖𝑠𝑐𝑎𝑟𝑑(B(𝑥𝑖 , 𝜖𝑖))

end for
end function

4.3. Branch and Bound Verification-in-the-loop Training 12

However, the challenge arises in the computation of 𝑞𝑙𝑖 . The computation of 𝑞𝑙𝑖 can be reframed as an
optimization problem within the hyperrectangle B(𝑥𝑖 , 𝜖𝑖)

𝑞𝑙𝑖 = min
𝑥

𝑞(𝑥) (4.6a)

s.t. 𝑥 ∈ B(𝑥𝑖 , 𝜖𝑖). (4.6b)

The term 𝑞(𝑥) is a complex function containing nonlinear dynamic functions 𝑓 , 𝑔, a neural network ℎ̂𝑤 as
well as its Jacobian, which renders a constrained Nonlinear Program (NLP) in (4.6a). The state-of-the-art
NLP solver [80] requires gradients of the objective function, which involves computation of the Hessian
of the NN. The expensive computation makes it impractical to solve (4.6a) directly.

Although computing the lower bound of 𝑞(𝑥) is quite complex, computing the bound of the components
of 𝑞(𝑥) separately is much simpler. We can compute the bound of the NN using CROWN [8] and its
Jacobian leveraging a recent result in [59] or [77]:

ℎ̂𝑙𝑖 ≤ ℎ̂𝑤(𝑥) ≤ ℎ̂𝑢𝑖 ,∀𝑥 ∈ B(𝑥𝑖 , 𝜖𝑖), (4.7)

𝐽𝑙𝑖 ≤ ∇ℎ̂𝑤(𝑥) ≤ 𝐽𝑢𝑖 ,∀𝑥 ∈ B(𝑥𝑖 , 𝜖𝑖). (4.8)

Furthermore, we can approximate the nonlinear dynamic functions 𝑓 and 𝑔 using Taylor Models as
done in [81] or sampling:

𝑥𝑙𝑖 ≤ 𝑓 (𝑥) + 𝑔(𝑥)𝑢★ ≤ 𝑥𝑢𝑖 ,∀𝑥 ∈ B(𝑥𝑖 , 𝜖𝑖). (4.9)

In (4.6a), the objective function depends on the variable 𝑥 and is constrained within the feasible region
for 𝑥. We simplify (4.6a) by considering three independent variables subject to independent constraints.
This results in

𝑞′𝑙𝑖 = min
ℎ,𝐽 ,𝑥

𝑞′(ℎ, 𝐽 , 𝑥) = ⟨𝐽 , 𝑥⟩ + 𝛾ℎ (4.10a)

s.t. ℎ̂𝑙𝑖 ≤ ℎ ≤ ℎ̂𝑢𝑖 , (4.10b)
𝐽𝑙𝑖 ≤ 𝐽 ≤ 𝐽𝑢𝑖 , (4.10c)
𝑥𝑙𝑖 ≤ 𝑥 ≤ 𝑥𝑢𝑖 , (4.10d)

where 𝑥 denotes the value of 𝑓 (𝑥) + 𝑔(𝑥)𝑢, ℎ denotes the value of ℎ̂𝑤(𝑥) and 𝐽 denotes the value of
∇ℎ̂𝑤(𝑥). When (4.7), (4.8), and (4.9) are over-approximations of the true intervals, it is clear that the
optimal solution 𝑞′

𝑙𝑖
from (4.10a) is an over-approximation of the optimal solution 𝑞𝑙𝑖 from (4.6a), which

means 𝑞′
𝑙𝑖
≤ 𝑞𝑙𝑖 . To efficiently solve (4.10a), we may compute the optimal solution independently for

each term, taking the minimum over the set of vertices.

Although the theoretical complexity of the BBV is still exponential in the dimension of the state
space, it improves the scalability in practice. One must note that our method is a sound verification
method instead of a complete one, which means the failure to obtain ℬX/X𝑎 and ℬX𝑎 that satisfy
condition (4.4), (4.5) does not imply the invalidation of the nCBF, as we over-approximate the conditions.
We want to emphasize that the chosen over-approximation method, CROWN [59], has been the winning
strategy at the Verification of Neural Networks Competition for multiple years [82].

4.3. Branch and Bound Verification-in-the-loop Training
Although the BBV provides a practical way to certify the NN as an nCBF, it requires several training
and verification processes until an nCBF is obtained. Therefore, leveraging the information from the
verification and ensuring the satisfaction of conditions (3.5a) and (3.5b) becomes the task of BBVT. This

4.3. Branch and Bound Verification-in-the-loop Training 13

Algorithm 2 Branch-and-Bound Verification-in-the-loop Training
Input:
Neural Network ℎ̂𝑤 , Training Dataset𝒟, Maximum Iterations 𝑛𝑚𝑎𝑥
loss function ℒ in (4.2) , learning rate 𝛼 , minimum partition size 𝑡𝑔𝑎𝑝 , verify after 𝑘 epochs

Initialize:
satisfaction← False
function Main

while not satisfaction and 𝑛𝑚𝑎𝑥 do
for 𝑖 in 𝑘 do

for 𝑥 in𝒟 do
𝑤 ← 𝑤 − 𝛼∇𝑤ℒ(𝑥, 𝑤)

end for
end for
𝑛𝑚𝑎𝑥 ← 𝑛𝑚𝑎𝑥 − 1
initialize hyperrectangles ℬ
while not reach 𝑡𝑔𝑎𝑝 do

run BanchAndBound(ℬ) in Algorithm. 1
if all ℎ̂𝑢𝑖 < 0 and 𝑞′

𝑙𝑖
≥ 0 then

satisfaction← True
break

end if
end while
𝒟 .𝑎𝑢𝑔𝑚𝑒𝑛𝑡(ℬ)

end while
return ℎ̂𝑤

end function

type of method is also known as the CE guided inductive synthesis [83]. See Fig. 1.2 for an overview of
the framework.

We start with the initial fixed training dataset𝒟 that contains a number of uniformly sampled points.
During the training procedure, we optimize the NN to decrease the loss in (4.2) using𝒟. After 𝑘 epochs,
the verifier starts with a coarse partition of the state space. The upper bound ℎ̂𝑢𝑖 , ∀B(𝑥𝑖 , 𝜖𝑖) ∈ ℬX/X𝑎
and lower bound 𝑞′

𝑙𝑖
, ∀B(𝑥𝑖 , 𝜖𝑖) ∈ ℬX𝑎 are computed. The hyperrectangles, whose ℎ̂𝑢𝑖 ≥ 0 or 𝑞′

𝑙𝑖
≤ 0,

are split until 𝜖𝑖 ≤ 𝑡𝑔𝑎𝑝 . After reaching the minimum partition size 𝑡𝑔𝑎𝑝 , the hyperrectangles whose
ℎ̂𝑢𝑖 ≥ 0 or 𝑞′

𝑙𝑖
≤ 0 are treated as the violation areas. The centre points are added to the CE dataset and

the training procedure is repeated until the verifier returns satisfaction or the maximum number of
iterations 𝑛max is reached, see Algorithm 2.

Note that although the universal approximation theorem in [84] guarantees the existence of ℎ̂𝑤(𝑥) to be
an nCBF that renders maximum forward invariant set, this is under the assumption that the NN has a
sufficient number of neurons. Thus, in practice, the training procedure is not guaranteed to converge
to an nCBF, but if the verifier returns satisfaction, the NN is an nCBF for the given system in the
continuous state space.

5
Results

In this section, we evaluate our proposed framework on two systems: an inverted pendulum and a 2D
navigation task. The experimental setup is introduced in Section 5.1. In Section 5.2 and Section 5.3, we
provide a comprehensive assessment on the inverted pendulum, addressing the verification efficiency
and the size of the safe set, respectively. In Section 5.4, we consider a 2D navigation task with
nonconvex constraints to display the practical use of our framework and combine the learned nCBF
with RL to achieve safe learning. Our code is available on GitHub https://github.com/tud-amr/
ncbf-simultaneous-synthesis-and-verification.

We consider the following baseline methods:

• LST: The Level Set Toolbox (LST) [33] generates a safe value function by HJI-RA over a discrete
grid.

• NeuralCLBF: Neural Control Lyapunov Barrier Function (NeuralCLBF) [4] parametrizes the CBF
as an NN and optimizes it according to their empirical loss based on (3.2) and a nominal safe set.

• SMT: [5] trains a neural Lyapunov function with the SMT generating CEs and ensures the validation
of the result. The constraints considered by the SMT are conditions (3.5a) and (3.5b). To have a
fair comparison, the training loss is chosen to be the same as in (4.2).

5.1. Experimental Setup
5.1.1. Inverted Pendulum
Let 𝑠 = [𝜃, ¤𝜃] ∈ X ⊂ R2 be the state variable and 𝑢 ∈ U ⊂ R be the control input. We consider the state
space X = {𝑠 : 𝜃 ∈ [−𝜋,𝜋], ¤𝜃 ∈ [−5, 5]} and the input space U = {𝑢 : 𝑢 ∈ [−12, 12]}. The dynamics of

Figure 5.1: The workspace of the considered inverted pendulum.

14

https://github.com/tud-amr/ncbf-simultaneous-synthesis-and-verification
https://github.com/tud-amr/ncbf-simultaneous-synthesis-and-verification

5.2. Verification and Efficiency 15

Table 5.1: Hyper-parameter for the nCBF Training.

𝛾 0.5 𝜆 0.05

learning rate 𝑟 10−3 learning rate
decay 𝛽

0.995

verify after
every 𝑘 epochs 20 minimum partition

gap 𝑡𝑔𝑎𝑝
0.005

initial radius 𝜖𝑖𝑛𝑖𝑡
(inverted pendulum) [0.2, 0.2] initial radius 𝜖𝑖𝑛𝑖𝑡

(2D navigation)
[0.2, 0.2,
0.2, 0.2]

Num. fixed points
(inverted pendulum) 105 Num. fixed points

(2D navigation) 106

𝑛𝑚𝑎𝑥 100

the inverted pendulum are given by:

¤𝜃 = ¤𝜃,

¥𝜃 =
3𝑔
2𝑙 𝑠𝑖𝑛(𝜃) −

3𝛽
𝑚𝑙2
¤𝜃 + 3

𝑚𝑙2
𝑢,

(5.1)

where𝑚 = 1, 𝑏 = 0.1, 𝑔 = 9.81, and 𝑙 = 1. The state admissible set isX𝑎 = {𝑠 : 𝜃 ∈ [− 5𝜋
6 ,

5𝜋
6], ¤𝜃 ∈ [−4, 4]}

and the input admissible set is U𝑎 = U, see Fig. 5.1.

5.1.2. 2D Navigation Task
We consider a 2D navigation task in which a point robot should reach a goal position while avoiding
obstacles, see Fig. 5.6a. Let 𝑠 = [𝑥, 𝑦, ¤𝑥, ¤𝑦] ∈ X ⊂ R4 be the state variable and 𝑢 = [𝑎𝑥 , 𝑎𝑦] ∈ U ⊂ R2 be
the control input representing the acceleration along the x-axis and y-axis. The dynamics of the point
robot are:

¤𝑥
¤𝑦
¥𝑥
¥𝑦

 =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 𝑠
𝑇 +

0 0
0 0
1 0
0 1

[
𝑎𝑥
𝑎𝑦

]
. (5.2)

We consider the admissible position set 𝑋1 = {𝑠 : 𝑥 ∈ [0, 4], 𝑦 ∈ [0, 4]} except the obstacle set 𝑋2 = {𝑠 :
𝑥 ∈ [1.5, 2.5], 𝑦 ∈ [0, 2]}, together with velocity constraints 𝑋3 = {𝑠 : ¤𝑥 ∈ [−1, 1], ¤𝑦 ∈ [−1, 1]}. Thus, the
state admissible set is X𝑎 = 𝑋1 ∪ (𝑋2)𝐶 ∪ 𝑋3, where (·)𝐶 represents the complement of a set. See Fig. 5.6
for a pictorial representation of the set. The input admissible set is𝑈𝑎 = {𝑢 : 𝑎𝑥 ∈ [−1, 1], 𝑎𝑦 ∈ [−1, 1]}.

5.1.3. Training Configuration
For both systems, we train the nCBF using Pytorch on NVIDIA A40, and Stochastic Gradient Descent is
used as the optimizer to avoid local minima. The used hyper-parameters can be found in Table 5.1, where
𝛾 and 𝜆 are parameters in loss function (4.2). For the inverted pendulum, we choose a Tanh-based FCNN
with one hidden layer which consists of 36 neurons. For the 2D navigation task, a larger Tanh-based
FCNN is required since the shape of the environment is more complex. Here we choose a Tanh-based
FCNN with two hidden layers, each of which consists of 256 neurons.

5.2. Verification and Efficiency
In this section, we use the inverted pendulum to discuss the certification of the trained NN as an CBF.
To showcase the disadvantage of training without verification, we train the nCBF with a fixed data set
and stop training the nCBF after 200 epochs. We then examine the satisfaction of condition (3.5b) with a
denser testing dataset. The 0-superlevel set of the trained NN is shown in blue in Fig. 5.2a. The orange
area indicates the testing data points that violate condition (3.5b).

We resume the training with the same dataset and use the BBVT to augment the training dataset with
CEs every 𝑘 epochs until the verifier returns satisfaction. Figure. 5.2b shows the distribution of the
CEs after the first verification loop. As we augment the dataset, the verifier returns satisfaction after
240 epochs, see Fig. 5.2c.

5.3. Size of Safe Set 16

(a) Training without verification-in-the-loop (b) Distribution of counterexamples (c) Training with verification-in-the-loop

Figure 5.2: Shapes of 0-superlevel sets of the NNs trained with and without the BBVT for the inverted pendulum. In Fig. 5.2a the
NN is trained with a fixed dataset and evaluated on a denser testing dataset to showcase that condition (3.5b) is not satisfied for

the continuous state space. Figure. 5.2b shows the counterexamples added to the dataset according to the BBVT. Figure. 5.2c
showcases that, after training the NN with the BBVT, no validations are detected since the NN is an nCBF.

Table 5.2: Verification and efficiency comparison for the inverted pendulum. The BBVT is compared against LST, NeuralCLBF,
and the SMT to synthesize an nCBF. LST and NeuralCLBF do not verify their safe value function, which is represented by ’-’ in
columns 3 and 4. To validate the verification process, we calculate the ratio of points that violate condition (3.5b) on a uniform

grid with a size of 103 × 103 within the state space X.

Stop criteria Total computation time
(s)

Average verification time
(s/epoch)

Average generation time
(s/per counterexample)

Violation points/testing points
(%)

LST(0.2) value converges 5.34 - - 1.9
LST(0.05) value converges 104.48 - - 0.0064
LST(0.02) value converges 1075.38 - - 0.0007

NeuralCLBF loss converges 584.6 - - 0.0013
SMT max # iter reached 5311.68 14.73 1.34 0.7742

BBVT(ours) verified 1214.15 16.20 0.004 0.0

To highlight the efficacy of BBVT, we evaluate the training time, verification time, and the ratio of
violation areas for our framework and the baseline methods. The results are shown in Table 5.2. We
first compare our method with LST [33]. The table shows the results of LST for three different grid gaps,
which are 0.2 , 0.05 and 0.02 respectively. It is evident that an increased grid density leads to improved
accuracy at the cost of longer computation time. However, a dense grid map is not always possible, since
the memory space of LST grows exponentially, which is referred to as the Curse of Dimensionality. With
a grid gap of 0.02, LST requires 153.39kB memory space, while we only need to store the parameters of
the nCBF, which is 1.2kB. This is important for embedded devices such as the control unit on drones.

Then, we compare our method with NeuralCLBF. Due to the lack of a verification process and
counterexample data set, the fixed data set for NeuralCLBF contains 106 data points in order to have a
fair comparison with our method. Since NeuralCLBF learns an nCBF based on a nominal safe set, the
training process is assisted by prior knowledge and results in less training time, see Table 5.2. However,
there are sparse areas that violate the conditions as discussed in [4] and how these sparse areas grow
with the complexity of the system has not been studied yet.

We also compare our method with the SMT. However, the SMT did not return satisfaction until the
maximum number of iterations 𝑛max was reached, see Table 5.2. Although there exist some works [5, 6]
that use the SMT to verify a neural controller, they only use a very simple FCNN with around 9 neurons.
In our case, the computation time of the SMT grows dramatically since the NN is more complex. Also,
the SMT can only generate several counterexamples at each iteration, while BBVT generates all the
counterexamples in state space X, which is more efficient than SMT.

5.3. Size of Safe Set
We will compare the size of the forward invariant set derived using our framework and the baseline
methods in this section. Since the SMT failed to verify the nCBF and LST with a grid gap of 0.2 has a large
violation area, we compare our framework only against LST with a grid gap of 0.05 and NeuralCLBF
with the nominal safe set being X𝑛 = {𝑠 : ∥𝑠∥ < 3𝜋

4 }).
The forward invariant sets derived by the different methods are illustrated in Fig. 5.3. We see that the
size of the forward invariant set from NeuralCLBF is conservative, while our method approximates

5.3. Size of Safe Set 17

Figure 5.3: The forward invariant set of safe value functions obtained by different methods for the inverted pendulum.

Figure 5.4: The 0-superlevel sets of nCBFs obtained by training with and without a nominal controller.

the CBVF and renders a safe set that is close to the maximum forward invariant set. Since the forward
invariant set of the CBF is always a subset of that from HJI-RA, which is discussed in [7], it is not
surprising that LST renders a larger safe set than ours. We note that 𝜆 > 0 in (4.2a) encourages the
satisfaction of the CBF conditions at the expense of rendering a smaller safe set.

5.3.1. Impact of Nominal Controller
In Section 4.1, we mentioned that we borrow ideas from [4, 5], which use a nominal controller to facilitate
the training process and avoid deadlocks. Here, we train another NN ℎ̂𝜙 based on the loss of [42] and
choose 𝑢∗ = arg max𝑢∈U𝒱𝑎 ℎ̂𝜙(𝑥 + (𝑓 (𝑥) + 𝑔(𝑥)𝑢)Δ𝑡) to be the nominal controller and guide the training
of the nCBF ℎ̂𝑤 . Figure. 5.4 shows the training results with and without a nominal controller. Without a
nominal controller, it took a longer time to learn an nCBF, and the training process became trapped
in a local minimum resulting in a smaller control invariant set. One must note that a badly chosen
nominal controller can lead to an incorrect optimization direction, which makes training unstable, while
deadlocks happen occasionally when no nominal controller guides the training. Therefore, there is a
tradeoff between using a nominal controller or not.

5.3.2. Impact of Neural Network Architecture
Figure. 5.5 shows the training results for different NN architectures but using the same hyperparameters
as stated in Table 5.1. Among the groups with the same depth, the NN with more neurons in each layer
has more compacity to fit the shape of the nCBF and renders a larger safe set. However, increasing
the depth of the NN harms the training. Stacking more layers does not help with training due to the

5.4. Application of Neural Control Barrier Functions to Safe Policy Learning 18

(a) neuron:4, depth:3 × (b) neuron:8, depth:3 ✓ (c) neuron:32, depth:3 ✓

(d) neuron:4, depth:5 × (e) neuron:8, depth:5 ✓ (f) neuron:32, depth:5 ✓

(g) neuron:4, depth:10 × (h) neuron:8, depth:10 × (i) neuron:32, depth:10 ×

Figure 5.5: Shapes of 0-superlevel sets of NNs with different depth and width. Number of the neurons indicates the width of each
hidden layer. The depth of the NN refers to the number of layers it contains, including input, hidden, and output layers. × and ✓

represent whether the verifier returns satisfaction after reaching the maximum epochs.

notorious problem of vanishing/exploding gradients [85]. We observe that the NN with 10 layers
can not converge from the beginning. To address such a problem, normalized initialization [86] and
intermediate normalization layers [87] can be augmented into our framework in the future. Furthermore,
there are recently advanced architectures that enable training extremely large and deep NNs, such as
ResNet [85] and Transformer [88]. However, the mainstream NN verification tools [59, 77] only accept
plain NNs. Verifying these advanced NNs remains an open area.

5.4. Application of Neural Control Barrier Functions to Safe Policy
Learning

In this section, we use RL to address the 2D navigation task introduced in Section 5.1.2. Let 𝑠𝑔 =

[𝑥𝑔 , 𝑦𝑔 , 0, 0] be the goal state. The step reward is defined as 𝑟𝑡 = −0.01 ∗ ∥𝑠 − 𝑠𝑔 ∥, the terminal reward is
𝑟collision = −5 when the robot collides with the obstacles and 𝑟goal = 10 when the robot reaches the goal
area 𝑋𝑔 = {𝑠 : ∥𝑠 − 𝑠𝑔 ∥ < 𝜖} where 𝜖 = 0.1 is the goal tolerance. We use Proximal Policy Optimization
[89] to train the agent. To ensure safety during the training, we solve

𝑢safe = arg min
𝑢∈U𝑎
∥𝑢 − 𝑢RL∥2

𝑠.𝑡. 𝐿 𝑓 ℎ̂𝑤(𝑥) + 𝐿𝑔 ℎ̂𝑤(𝑥)𝑢 + 𝛼(ℎ̂𝑤(𝑥)) ≥ 0,
(5.3)

to project the action 𝑢RL of the RL policy to the safe action 𝑢safe with the least modification.

5.4. Application of Neural Control Barrier Functions to Safe Policy Learning 19

(a) Trajectories during learning without the nCBF (b) Trajectories during learning with the nCBF

(c) Moving average reward (d) Heatmap of the nCBF.

Figure 5.6: Training Results for 2D Navigation Task. Figure. 5.6a and Fig. 5.6b show all the trajectories during the RL training.
Figure. 5.6c illustrates the moving average reward of every 2048 steps. Figure. 5.6d is the slice of heatmap of ℎ̂𝑤(𝑥) with velocity

¤𝑥 = 0.2, ¤𝑦 = 0.2.

We note that, theoretically, this controller guarantees safety with infinite control frequency. However,
a continuous controller is not possible to implement on discrete control units. This limits the safety
guarantees we may provide. How to address the gap between continuous controllers and their discrete
implementations remains an open question. Figure. 5.6a shows all trajectories performed during the
training. We can see that several trajectories collide with the obstacles. Note, that the learned policy
is not guaranteed to be safe. Figure. 5.6b shows all the training trajectories with the nCBF as a safety
filter and no trajectories are colliding with the obstacles. However, we observe that the average reward
with the nCBF is larger than for nominal RL without the nCBF in the very early stage but has a slower
growth rate and converges to a lower reward level compared with the nominal RL, see Fig. 5.6c. The
reason is that the nCBF provides prior knowledge about the environment and the agent could avoid
exploring unsafe regions in the early stage and gain a higher reward than the nominal RL. However, the
forward invariant set is still suboptimal as discussed in Section 5.3, which means only a suboptimal
policy is learned and exploration is restricted. Nevertheless, we believe that provided safety guarantees
are beneficial in safety-critical applications.

6
Conclusion

In this chapter, we summarize the method and the results of this thesis as well as the limitations and
future research directions.

6.1. Summay
This thesis has addressed the critical challenges in ensuring the safety of autonomous systems under the
framework of the Certified Learning (CL). Particularly, we focused on the synthesis and verification of
Neural Control Barrier Functions (nCBFs), which guarantee safety through set invariance. Two research
questions are addressed throughout this research.

RQ1: How can we find an nCBF that renders the maximum safe area? No general and scalable
technique exists for designing Control Barrier Functions (CBFs). Many works rely on the initial guess of
function structure or forward invariant set. An improper initial guess usually results in a suboptimal
CBF. In this thesis, a newly derived loss function leads to an nCBF which renders a large safe area close
to the maximum safe set. Although our method renders a larger safe area than baseline methods, the
size of the safe set depends on the proper choice of Neural Network (NN) architectures.

RQ2: How can an nCBF be verified efficiently? Although utilizing NNs as CBFs offers universal
approximation capabilities, it necessitates their certification as CBFs to provide safety guarantees. Some
works use the Satisfiability Modulo Theory (SMT) to verify the NNs. However, they are restricted to very
simple NNs due to expensive computation. In this thesis, we presented a framework that simultaneously
synthesizes and verifies continuous nCBFs. To this end, we leveraged bound propagation techniques
and the Branch-and-Bound scheme to efficiently verify NNs as CBFs in the continuous state space.
In experiments, we showed that our framework verified the nCBF much more efficiently than other
state-of-the-art methods. We hope that our framework could have important implications for the
deployment of neural controllers in real-world applications.

6.2. Limitations and Future work
While our method provides a systematic way to synthesize and verify nCBFs, several limitations hinder
its application to high-dimensional systems and real-world experiments. We categorize these drawbacks
into three areas: scalability, safety guarantee, and optimality.

6.2.1. Scalability
The memory requirements and computation time of the Branch-and-Bound Verification scheme still
increase almost exponentially with the system dimension. That is the tradeoff we face for exact verification
of an NN. In future work, we aim to address the scalability of our framework by implementing a
smarter sampling scheme. For instance, the approaches in [90, 91] use evolutionary algorithms to
augment training datasets, thereby improving the accuracy of image classifiers. Other works in [79, 92]
borrowed the concept of adversarial training [93]. In these approaches, researchers randomly initialize

20

6.2. Limitations and Future work 21

the counterexamples and push them in the direction of breaking the Control Barrier Condition (CBC).
These methods offer potential avenues for enhancing the scalability and efficiency of our framework in
future research endeavors.

Instead of pursuing exact verification, an alternative research direction could involve providing only a
probability safety guarantee to avoid the need for a massive amount of sampling. The researchers in [94]
use the Gaussian Process (GP) to model the properties of an NN and generate counterexamples with
low confidence or verify the absence of counterexamples with a certain level of belief. This probabilistic
approach offers a more scalable solution by providing a probabilistic assessment of safety rather than
requiring exhaustive sampling for exact verification.

6.2.2. Safety in Real World
One must note that the proof of Theorem 1 assumes that the controller 𝜋(𝑥) ∈ 𝐾𝑐𝑏 𝑓 (𝑥) is a continuous
controller. However, only discrete controllers can be implemented on a real-world robotic system with
electrical control unit. Such a continuous-to-discrete gap breaks the safety guarantee that our method
provides. To address this issue, [95] proposed a modified QP for a discrete controller but requires
the Lipschtz constant of Lie derivatives 𝐿 𝑓 ℎ, 𝐿𝑔ℎ whose expensive computation is not applicable for
real-time performance. To avoid heavy computation, we can consider the maximum Lipschitz constant
of Lie derivatives (i.e., worst scenario) or use online learning methods (e.g., GP) to approximate those
Lipschitz constants.

6.2.3. Optimality
According to [7], the solution that satisfies the Control Barrier-Value Function Variational Inequality
(CBVF-VI), is only a Lipschitz continuous function instead of a differentiable function. Although we
use a Tanh-based NN to match the definition of the CBF, the loss based on the CBVF-VI may lead to
incorrect training results. What is the property of the optimal CBF that renders the maximum safe set
remains an open question.

References

[1] Aaron D. Ames et al. “Control Barrier Functions: Theory and Applications”. In: 2019 18th European
Control Conference (ECC). 2019, pp. 3420–3431. doi: 10.23919/ECC.2019.8796030.

[2] Charles Dawson, Sicun Gao, and Chuchu Fan. “Safe Control With Learned Certificates: A Survey
of Neural Lyapunov, Barrier, and Contraction Methods for Robotics and Control”. In: IEEE
Transactions on Robotics (2023).

[3] Bolun Dai, Prashanth Krishnamurthy, and Farshad Khorrami. “Learning a better control barrier
function”. In: 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE. 2022, pp. 945–950.

[4] Charles Dawson et al. “Safe nonlinear control using robust neural lyapunov-barrier functions”. In:
Conference on Robot Learning. PMLR. 2022, pp. 1724–1735.

[5] Ya-Chien Chang, Nima Roohi, and Sicun Gao. “Neural Lyapunov Control”. In: Advances in Neural
Information Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019. url:
https://proceedings.neurips.cc/paper_files/paper/2019/file/2647c1dba23bc0e0f9cdf
75339e120d2-Paper.pdf.

[6] Andrea Peruffo, Daniele Ahmed, and Alessandro Abate. “Automated and formal synthesis of
neural barrier certificates for dynamical models”. In: Tools and Algorithms for the Construction and
Analysis of Systems: 27th International Conference, TACAS 2021, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March
27–April 1, 2021, Proceedings, Part I 27. Springer. 2021, pp. 370–388.

[7] Jason J Choi et al. “Robust control barrier–value functions for safety-critical control”. In: 2021 60th
IEEE Conference on Decision and Control (CDC). IEEE. 2021, pp. 6814–6821.

[8] Huan Zhang et al. “Efficient neural network robustness certification with general activation
functions”. In: Advances in neural information processing systems 31 (2018).

[9] Frederik Baymler Mathiesen, Simeon C Calvert, and Luca Laurenti. “Safety certification for
stochastic systems via neural barrier functions”. In: IEEE Control Systems Letters 7 (2022), pp. 973–
978.

[10] Lukas Brunke et al. “Safe learning in robotics: From learning-based control to safe reinforcement
learning”. In: Annual Review of Control, Robotics, and Autonomous Systems 5 (2022), pp. 411–444.

[11] Peter Geibel and Fritz Wysotzki. “Risk-sensitive reinforcement learning applied to control under
constraints”. In: Journal of Artificial Intelligence Research 24 (2005), pp. 81–108.

[12] Núria Armengol Urpí, Sebastian Curi, and Andreas Krause. “Risk-averse offline reinforcement
learning”. In: arXiv preprint arXiv:2102.05371 (2021).

[13] Clement Gehring and Doina Precup. “Smart exploration in reinforcement learning using absolute
temporal difference errors”. In: Proceedings of the 2013 international conference on Autonomous agents
and multi-agent systems. 2013, pp. 1037–1044.

[14] Brĳen Thananjeyan et al. “Recovery rl: Safe reinforcement learning with learned recovery zones”.
In: IEEE Robotics and Automation Letters 6.3 (2021), pp. 4915–4922.

[15] Homanga Bharadhwaj et al. “Conservative safety critics for exploration”. In: arXiv preprint
arXiv:2010.14497 (2020).

[16] Matteo Turchetta, Andreas Krause, and Sebastian Trimpe. “Robust model-free reinforcement
learning with multi-objective Bayesian optimization”. In: 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2020, pp. 10702–10708.

[17] Antonio Loquercio et al. “Deep drone racing: From simulation to reality with domain randomiza-
tion”. In: IEEE Transactions on Robotics 36.1 (2019), pp. 1–14.

[18] Björn Lütjens, Michael Everett, and Jonathan P How. “Safe reinforcement learning with model
uncertainty estimates”. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE.
2019, pp. 8662–8668.

[19] Gregory Kahn et al. “Uncertainty-aware reinforcement learning for collision avoidance”. In: arXiv
preprint arXiv:1702.01182 (2017).

22

https://doi.org/10.23919/ECC.2019.8796030
https://proceedings.neurips.cc/paper_files/paper/2019/file/2647c1dba23bc0e0f9cdf75339e120d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/2647c1dba23bc0e0f9cdf75339e120d2-Paper.pdf

References 23

[20] Teodor Mihai Moldovan and Pieter Abbeel. “Safe exploration in markov decision processes”. In:
arXiv preprint arXiv:1205.4810 (2012).

[21] Michael Kearns and Satinder Singh. “Near-optimal reinforcement learning in polynomial time”.
In: Machine learning 49 (2002), pp. 209–232.

[22] Gal Dalal et al. “Safe exploration in continuous action spaces”. In: arXiv preprint arXiv:1801.08757
(2018).

[23] Joshua Achiam et al. “Constrained policy optimization”. In: International conference on machine
learning. PMLR. 2017, pp. 22–31.

[24] John Schulman et al. “Trust region policy optimization”. In: International conference on machine
learning. PMLR. 2015, pp. 1889–1897.

[25] Tsung-Yen Yang et al. “Projection-based constrained policy optimization”. In: arXiv preprint
arXiv:2010.03152 (2020).

[26] Yinlam Chow et al. “Risk-constrained reinforcement learning with percentile risk criteria”. In: The
Journal of Machine Learning Research 18.1 (2017), pp. 6070–6120.

[27] Qingkai Liang, Fanyu Que, and Eytan Modiano. “Accelerated primal-dual policy optimization for
safe reinforcement learning”. In: arXiv preprint arXiv:1802.06480 (2018).

[28] Yinlam Chow et al. “Lyapunov-based safe policy optimization for continuous control”. In: arXiv
preprint arXiv:1901.10031 (2019).

[29] Harsh Satĳa, Philip Amortila, and Joelle Pineau. “Constrained markov decision processes via
backward value functions”. In: International Conference on Machine Learning. PMLR. 2020, pp. 8502–
8511.

[30] Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. “Safe policy improvement with
baseline bootstrapping”. In: International conference on machine learning. PMLR. 2019, pp. 3652–3661.

[31] Thiago D Simão and Matthĳs TJ Spaan. “Safe policy improvement with baseline bootstrapping in
factored environments”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 01.
2019, pp. 4967–4974.

[32] Somil Bansal et al. “Hamilton-jacobi reachability: A brief overview and recent advances”. In: 2017
IEEE 56th Annual Conference on Decision and Control (CDC). IEEE. 2017, pp. 2242–2253.

[33] Ian M Mitchell et al. “A toolbox of level set methods”. In: UBC Department of Computer Science
Technical Report TR-2007-11 1 (2007), p. 6.

[34] Goran Frehse et al. “SpaceEx: Scalable verification of hybrid systems”. In: Computer Aided
Verification: 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings
23. Springer. 2011, pp. 379–395.

[35] Alexander B Kurzhanski and Pravin Varaiya. “Ellipsoidal techniques for reachability analysis”. In:
Hybrid Systems: Computation and Control: Third International Workshop, HSCC 2000 Pittsburgh, PA,
USA, March 23–25, 2000 Proceedings. Springer. 2002, pp. 202–214.

[36] Antoine Girard. “Reachability of uncertain linear systems using zonotopes”. In: HSCC. Vol. 3414.
Springer. 2005, pp. 291–305.

[37] Bastian Schürmann and Matthias Althoff. “Guaranteeing constraints of disturbed nonlinear
systems using set-based optimal control in generator space”. In: IFAC-PapersOnLine 50.1 (2017),
pp. 11515–11522.

[38] Mo Chen et al. “Decomposition of reachable sets and tubes for a class of nonlinear systems”. In:
IEEE Transactions on Automatic Control 63.11 (2018), pp. 3675–3688.

[39] Jérôme Darbon, Gabriel P Langlois, and Tingwei Meng. “Overcoming the curse of dimensionality
for some Hamilton–Jacobi partial differential equations via neural network architectures”. In:
Research in the Mathematical Sciences 7 (2020), pp. 1–50.

[40] Somil Bansal and Claire J Tomlin. “Deepreach: A deep learning approach to high-dimensional
reachability”. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2021,
pp. 1817–1824.

[41] Anayo K Akametalu and Claire J Tomlin. “Temporal-difference learning for online reachability
analysis”. In: 2015 European Control Conference (ECC). IEEE. 2015, pp. 2508–2513.

[42] Jaime F Fisac et al. “Bridging hamilton-jacobi safety analysis and reinforcement learning”. In: 2019
International Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 8550–8556.

[43] Kai-Chieh Hsu et al. “Safety and liveness guarantees through reach-avoid reinforcement learning”.
In: arXiv preprint arXiv:2112.12288 (2021).

References 24

[44] Aaron D Ames et al. “Control barrier function based quadratic programs for safety critical
systems”. In: IEEE Transactions on Automatic Control 62.8 (2016), pp. 3861–3876.

[45] Quan Nguyen et al. “3d dynamic walking on stepping stones with control barrier functions”. In:
2016 IEEE 55th Conference on Decision and Control (CDC). IEEE. 2016, pp. 827–834.

[46] Xiangru Xu et al. “Realizing simultaneous lane keeping and adaptive speed regulation on
accessible mobile robot testbeds”. In: 2017 IEEE Conference on Control Technology and Applications
(CCTA). IEEE. 2017, pp. 1769–1775.

[47] Amir Ali Ahmadi and Anirudha Majumdar. “Some Applications of Polynomial Optimization in
Operations Research and Real-Time Decision Making”. In: arXiv e-prints, arXiv:1504.06002 (Apr.
2015), arXiv:1504.06002. doi: 10.48550/arXiv.1504.06002. arXiv: 1504.06002 [math.OC].

[48] Mohit Srinivasan et al. “Extent-compatible control barrier functions”. In: Systems & Control Letters
150 (2021), p. 104895.

[49] Mohit Srinivasan et al. “Synthesis of control barrier functions using a supervised machine learning
approach”. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
2020, pp. 7139–7145.

[50] Desong Du et al. “Reinforcement Learning for Safe Robot Control using Control Lyapunov Barrier
Functions”. In: arXiv preprint arXiv:2305.09793 (2023).

[51] Yujie Yang et al. “Model-free safe reinforcement learning through neural barrier certificate”. In:
IEEE Robotics and Automation Letters 8.3 (2023), pp. 1295–1302.

[52] Yousef Emam et al. “Safe Reinforcement Learning Using Robust Control Barrier Functions”. In:
arXiv preprint arXiv:2110.05415 (2021).

[53] Zhaojian Li, Uroš Kalabić, and Tianshu Chu. “Safe reinforcement learning: Learning with
supervision using a constraint-admissible set”. In: 2018 Annual American Control Conference (ACC).
IEEE. 2018, pp. 6390–6395.

[54] Xiangru Xu et al. “Correctness guarantees for the composition of lane keeping and adaptive cruise
control”. In: IEEE Transactions on Automation Science and Engineering 15.3 (2017), pp. 1216–1229.

[55] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. “The robustness of deep
networks: A geometrical perspective”. In: IEEE Signal Processing Magazine 34.6 (2017), pp. 50–62.

[56] Battista Biggio and Fabio Roli. “Wild patterns: Ten years after the rise of adversarial machine
learning”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 2018, pp. 2154–2156.

[57] Yujia Huang et al. “Training certifiably robust neural networks with efficient local lipschitz
bounds”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 22745–22757.

[58] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. “Spectrally-normalized margin bounds for
neural networks”. In: Advances in neural information processing systems 30 (2017).

[59] Zhouxing Shi et al. “Efficiently computing local Lipschitz constants of neural networks via bound
propagation”. In: Advances in Neural Information Processing Systems 35 (2022), pp. 2350–2364.

[60] Guy Katz et al. “Reluplex: An efficient SMT solver for verifying deep neural networks”. In:
Computer Aided Verification: 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part I 30. Springer. 2017, pp. 97–117.

[61] Rudy Bunel et al. “Branch and bound for piecewise linear neural network verification”. In: Journal
of Machine Learning Research 21.2020 (2020).

[62] Ruediger Ehlers. “Formal verification of piece-wise linear feed-forward neural networks”. In:
Automated Technology for Verification and Analysis: 15th International Symposium, ATVA 2017, Pune,
India, October 3–6, 2017, Proceedings 15. Springer. 2017, pp. 269–286.

[63] Gagandeep Singh et al. “Boosting robustness certification of neural networks”. In: International
conference on learning representations. 2019.

[64] Mahyar Fazlyab et al. “Efficient and accurate estimation of lipschitz constants for deep neural
networks”. In: Advances in Neural Information Processing Systems 32 (2019).

[65] Luca Pulina and Armando Tacchella. “Challenging SMT solvers to verify neural networks”. In: Ai
Communications 25.2 (2012), pp. 117–135.

[66] Xiaowei Huang et al. “Safety verification of deep neural networks”. In: Computer Aided Verification:
29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I 30.
Springer. 2017, pp. 3–29.

[67] Lily Weng et al. “Towards fast computation of certified robustness for relu networks”. In:
International Conference on Machine Learning. PMLR. 2018, pp. 5276–5285.

https://doi.org/10.48550/arXiv.1504.06002
https://arxiv.org/abs/1504.06002

References 25

[68] Gagandeep Singh et al. “An abstract domain for certifying neural networks”. In: Proceedings of the
ACM on Programming Languages 3.POPL (2019), pp. 1–30.

[69] Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. “Reachable set computation and safety
verification for neural networks with relu activations”. In: arXiv preprint arXiv:1712.08163 (2017).

[70] Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. “Output reachable set estimation and
verification for multilayer neural networks”. In: IEEE transactions on neural networks and learning
systems 29.11 (2018), pp. 5777–5783.

[71] Timon Gehr et al. “Ai2: Safety and robustness certification of neural networks with abstract
interpretation”. In: 2018 IEEE symposium on security and privacy (SP). IEEE. 2018, pp. 3–18.

[72] Changliu Liu et al. “Algorithms for verifying deep neural networks”. In: Foundations and Trends®
in Optimization 4.3-4 (2021), pp. 244–404.

[73] Christian Szegedy et al. “Intriguing properties of neural networks”. In: arXiv preprint arXiv:1312.6199
(2013).

[74] Matt Jordan and Alexandros G Dimakis. “Exactly computing the local lipschitz constant of relu
networks”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 7344–7353.

[75] Aritra Bhowmick, Meenakshi D’Souza, and G Srinivasa Raghavan. “LipBaB: Computing exact
Lipschitz constant of ReLU networks”. In: Artificial Neural Networks and Machine Learning–ICANN
2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 14–17,
2021, Proceedings, Part IV 30. Springer. 2021, pp. 151–162.

[76] Huan Zhang, Pengchuan Zhang, and Cho-Jui Hsieh. “Recurjac: An efficient recursive algorithm
for bounding jacobian matrix of neural networks and its applications”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp. 5757–5764.

[77] Jacob Laurel et al. “A dual number abstraction for static analysis of Clarke Jacobians”. In:
Proceedings of the ACM on Programming Languages 6.POPL (2022), pp. 1–30.

[78] Nicholas Boffi et al. “Learning stability certificates from data”. In: Conference on Robot Learning.
PMLR. 2021, pp. 1341–1350.

[79] Simin Liu, Changliu Liu, and John Dolan. “Safe control under input limits with neural control
barrier functions”. In: Conference on Robot Learning. PMLR. 2023, pp. 1970–1980.

[80] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming. Cham, Switzerland:
Springer International Publishing, Nov. 2021. isbn: 978-3-030-85450-8. url: https://link-
springer-com.tudelft.idm.oclc.org/book/10.1007/978-3-030-85450-8.

[81] Matthew Streeter and Joshua V Dillon. “Automatically Bounding the Taylor Remainder Series:
Tighter Bounds and New Applications”. In: arXiv preprint arXiv:2212.11429 (2022).

[82] Christopher Brix et al. First Three Years of the International Verification of Neural Networks Competition
(VNN-COMP). 2023. arXiv: 2301.05815 [cs.LG].

[83] Alessandro Abate et al. “Counterexample guided inductive synthesis modulo theories”. In:
International Conference on Computer Aided Verification. Springer. 2018, pp. 270–288.

[84] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are
universal approximators”. In: Neural networks 2.5 (1989), pp. 359–366.

[85] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 770–778.

[86] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification”. In: Proceedings of the IEEE international conference on computer vision. 2015, pp. 1026–
1034.

[87] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network training
by reducing internal covariate shift”. In: International conference on machine learning. pmlr. 2015,
pp. 448–456.

[88] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information processing
systems 30 (2017).

[89] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347
(2017).

[90] Daniel Ho et al. “Population Based Augmentation: Efficient Learning of Augmentation Policy
Schedules”. In: arXiv (May 2019). doi: 10.48550/arXiv.1905.05393. eprint: 1905.05393.

[91] Jason Liang et al. “Regularized Evolutionary Population-Based Training”. In: arXiv (Feb. 2020).
doi: 10.48550/arXiv.2002.04225. eprint: 2002.04225.

https://link-springer-com.tudelft.idm.oclc.org/book/10.1007/978-3-030-85450-8
https://link-springer-com.tudelft.idm.oclc.org/book/10.1007/978-3-030-85450-8
https://arxiv.org/abs/2301.05815
https://doi.org/10.48550/arXiv.1905.05393
1905.05393
https://doi.org/10.48550/arXiv.2002.04225
2002.04225

References 26

[92] Marc Rigter, Bruno Lacerda, and Nick Hawes. “RAMBO-RL: Robust Adversarial Model-Based
Offline Reinforcement Learning”. In: Advances in Neural Information Processing Systems. Ed. by
S. Koyejo et al. Vol. 35. Curran Associates, Inc., 2022, pp. 16082–16097. url: https://proceedings.
neurips.cc/paper_files/paper/2022/file/6691c5e4a199b72dffd9c90acb63bcd6-Paper-
Conference.pdf.

[93] Hoki Kim, Woojin Lee, and Jaewook Lee. “Understanding catastrophic overfitting in single-step
adversarial training”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 9. 2021,
pp. 8119–8127.

[94] Shromona Ghosh et al. “Verifying controllers against adversarial examples with bayesian opti-
mization”. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2018,
pp. 7306–7313.

[95] Joseph Breeden, Kunal Garg, and Dimitra Panagou. “Control barrier functions in sampled-data
systems”. In: IEEE Control Systems Letters 6 (2021), pp. 367–372.

[96] Kenji Doya. “Reinforcement learning in continuous time and space”. In: Neural computation 12.1
(2000), pp. 219–245.

[97] Max Schwenzer et al. “Review on model predictive control: An engineering perspective”. In: The
International Journal of Advanced Manufacturing Technology 117.5-6 (2021), pp. 1327–1349.

[98] J.B. Rawlings, D.Q. Mayne, and M. Diehl. Model Predictive Control: Theory, Computation, and Design.
Nob Hill Publishing, 2017. isbn: 9780975937730. url: https://books.google.nl/books?id=
MrJctAEACAAJ.

https://proceedings.neurips.cc/paper_files/paper/2022/file/6691c5e4a199b72dffd9c90acb63bcd6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6691c5e4a199b72dffd9c90acb63bcd6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6691c5e4a199b72dffd9c90acb63bcd6-Paper-Conference.pdf
https://books.google.nl/books?id=MrJctAEACAAJ
https://books.google.nl/books?id=MrJctAEACAAJ

A
Background

This chapter is designed for researchers who are outside the robotics community and not familiar with
CMDP, MPC, HJI-RA, and CBF. We first present the general symbols and terminologies in Section A.1.
Then the CMDP will be introduced later in Section A.2. The background knowledge on HJI-RA, CBF,
and MPC are presented in Section A.3 A.4 A.5, respectively.

A.1. Common Terminologies
A.1.1. System Model
A transition model 𝑃 : X ×U ×X→ [0, 1] denotes the probability 𝑃𝑟(𝑥′ |𝑥, 𝑢) of transitioning to state
𝑥′ given current state and action pair (𝑥, 𝑢), where X and U are state space and action space. Here,
we consider a robot with a physical structure whose dynamics can be represented by the following
continuous dynamic model:

¤𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)), (A.1)

or discrete dynamic model with time step Δ𝑡

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘), (A.2)

where 𝑘 ∈ Z≥0 is the discrete index, 𝑥(𝑡), 𝑥𝑘 ∈ X are the states and 𝑢(𝑡), 𝑢𝑘 ∈ U are the actions, 𝑓 , 𝑓𝑘
denote the dynamic model of the robot, 𝑤(𝑡) ∈ W(𝑡), 𝑤𝑘 ∈ W(𝑘) is the process noise distributed
according to a bounded distributionW(𝑡) orW(𝑘). Then the deterministic transition model 𝑃 can be
written as:

𝑃(𝑥, 𝑢, 𝑥′) =
{

1 if 𝑥′ = 𝑓𝑘(𝑥, 𝑢, 𝑤)
0 otherwise (A.3)

We assume direct access to measurements of the state 𝑥(𝑡), 𝑥𝑘 and neglect the problem of state estimation.
Such a system can be easily extended to stochastic disturbance by using Gaussian Process(GP) to learn
the disturbance.

A.1.2. Reward Function
The robot’s task is described by a reward(cost) function 𝑅 : X ×U ×X→ R, which returns the reward
at state 𝑥𝑘 with action 𝑢𝑘 . We consider the reward along a trajectory with a finite time horizon of 𝑁
(It becomes the reward along an infinite long trajectory when 𝑁 →∞). Given an initial state �̄�0 and a
control policy 𝜋, we can have a trajectory 𝑥0:𝑁 = {𝑥0 , 𝑥1 , · · · , 𝑥𝑁 } from transition model (A.2). Then, the
return of the trajectory can be computed:

27

A.2. Constrained Markov Decision Process 28

𝐽𝜋(�̄�0) = E𝜋[
𝑁∑
𝑘=0

𝛾𝑘𝑅(𝑥𝑘 , 𝑢𝑘 , 𝑥𝑘+1)]. (A.4)

A.1.3. Safety Constraints
Safety constraints ensure the safe operation of the robot and include:

(i) allowable state space X𝑎 ⊆ X, which define the set of safe operating states
(ii) allowable action space U𝑎 ⊆ U, which describe the physical limits of actuators

To encode the safety constraints, we define 𝑛𝑐 constraint functions: 𝑐𝑘(𝑥𝑘 , 𝑢𝑘 , 𝑑𝑘) ∈ R𝑛𝑐 with each
constraint 𝑐 𝑗

𝑘
being a real-valued, time-varying function. Starting with the strongest guarantee, we

introduce three levels of safety: hard, probabilistic, and soft constraints.

Safety Level III: Constraint Satisfaction Guaranteed. The system satisfies hard constraints:

𝑐
𝑗

𝑘
(𝑥𝑘 , 𝑢𝑘 , 𝑑𝑘) ≥ 0, (A.5)

for all times 𝑘 ∈ {0, · · · , 𝑁} and constaint indexes 𝑗 ∈ {1, · · · , 𝑛𝑐}
Safety Level II: Constraint Satisfaction with Probability 𝑝. The system satisfies probabilistic constraints:

Pr(𝑐 𝑗
𝑘
(𝑥𝑘 , 𝑢𝑘 , 𝑑𝑘) ≥ 0) ≥ 𝑝 𝑗 , (A.6)

where Pr(.) denotes the probability and 𝑝 𝑗 ∈ (0, 1) defines the likelihood of the j-th constraint being
satisfied, with 𝑗 ∈ {1, · · · , 𝑛𝑐} and for all times 𝑘 ∈ {0, · · · , 𝑁}.
Safety Level I: Constraint Satisfaction Encouraged. The system encourages constraint satisfaction.
This can be achieved by adding a penalty term to the objective function that discourages the violation of
the constraints with high cost. A non-negative 𝜖 𝑗 is added to the right-hand side of the inequality (A.5),
for all times 𝑘 ∈ {0, · · · , 𝑁} and 𝑗 ∈ {1, · · · , 𝑛𝑐},

𝑐
𝑗

𝑘
(𝑥𝑘 , 𝑢𝑘 , 𝑑𝑘) ≥ −𝜖 𝑗 , (A.7)

and an appropriate penalty term 𝑙𝜖(𝜖) ≥ 0 with 𝑙𝜖(𝜖) = 0⇔ 𝜖 = 0 is added to the return in (A.4). The
vector 𝜖 includes all elements 𝜖 𝑗 and is an additional variable of the optimization problem. Alternatively,
although 𝑐 𝑗

𝑘
(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘) is a step-wise quantity, some safe RL approaches only aim to provide guarantees

on its expected value 𝐸[·] on a trajectory level:

𝐽𝑐 𝑗 = E𝜋[
𝑁−1∑
𝑘=0

𝑐
𝑗

𝑘
(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘)] ≥ 𝜖 𝑗 . (A.8)

Visualization of three different safety levels is shown in Fig. A.1

A.2. Constrained Markov Decision Process
The MDP is usually used to formulate the RL problem. A MDP is defined by a tuple (X, U, 𝑅, 𝑃, �̄�0, 𝛾),
where X and U are state space and action space, 𝑅 represents reward function, 𝑃 denote the transition
model of the system, 𝛾 ∈ [0, 1] is a discount factor. �̄�0 is the initial state or sometimes it could be written
as �̄�0 ∼ 𝜇 where 𝜇 denotes the initial state distribution. Let 𝜋 : X→ 𝒫(U) be a stationary policy, with
𝜋(𝑢 |𝑥) denote the probability of selecting action 𝑢 at state 𝑥 (𝜋(𝑢 |𝑥) = 1 renders a deterministic policy).
We denote the set of all stationary policies by Π, and the nominal RL problem can be formulated as:

𝜋∗ = arg max
𝜋∈Π

𝐽𝜋(�̄�0) = E𝜋[
𝑁∑
𝑘=0

𝛾𝑘𝑅(𝑥𝑘 , 𝑢𝑘 , 𝑥𝑘+1)]. (RL)

A.2. Constrained Markov Decision Process 29

Figure A.1: Illustration of the different safety levels from [10]

The common solution to (RL) is approximating value function based on Bellman Equation [96]:

𝑉𝜋(𝑥) = E𝑢∼𝜋(𝑢 |𝑥)[𝑄𝜋(𝑥, 𝑢)], (A.9)

𝑄𝜋(𝑥, 𝑢) = 𝑅(𝑥, 𝑢, 𝑥′) + E𝑥′∼𝑃(𝑥,𝑢,𝑥′)[𝑉𝜋(𝑥′)], (A.10)

where 𝑉𝜋(𝑥) is the value function that describes the maximum reward one can get from current
state 𝑥 and 𝑄𝜋(𝑥, 𝑢) is the action-value function that represents the maximum reward one can get
when applying action 𝑢 with current state 𝑥. Traditionally, the agent updates the value function and
action-value function by interacting with the environment (see Fig. A.2).

Figure A.2: Illustration of RL. The agent takes actions to manipulate the environment and obtain rewards.

However, plain MDP doesn’t take constraints into account. Therefore, CMDP is commonly utilized in
safe RL due to its capability to incorporate constraints that express various safety notions. Generally,
solving CMDP is a policy search process to maximize reward or minimize cost while respecting some
constraints. A CMDP is denoted by a tuple (X, U, 𝑅, 𝑐, 𝑃, �̄�0, 𝛾), where 𝑐 represents constraint functions.

Let’s define the set of feasible stationary policies for a CMDP:

Π𝐶 = {𝜋 ∈ Π :Safety constraints are satisfied according to either
Equation (A.5), Equation (A.6), Equation (A.7), Equation (A.8),∀𝑘 ∈ [0, 𝑁]}. (A.11)

A.3. Hamiltonian-Jacobian Reachability Analysis 30

Solving a CMDP means searching for a policy that maximizes the expected return of the trajectory
while respecting constraints all the time. It can be formulated as the following optimization problem:

𝜋∗ = arg max
𝜋∈Π𝐶

𝐽𝜋(�̄�0) = E𝜋[
𝑁∑
𝑘=0

𝛾𝑘𝑅(𝑥𝑘 , 𝑢𝑘 , 𝑥𝑘+1)]. (A.12)

Although optimal policies for the finite discrete CMDP with known models can be obtained by LP [23],
solving the high-dimensional continuous CMDP is still an open question.

A.3. Hamiltonian-Jacobian Reachability Analysis
The HJI-RA [32] is a verification method for guaranteeing the safety properties of the systems by
considering all possible system behaviors and disturbances. For safety-critic applications, we are often
interested in the BRT. This is the set of states such that the trajectories that start from this set would
eventually reach a target set (obstacles) at any point in the time horizon, and thus become unsafe. Here,
we briefly introduce how one can compute a BRT. For example, there is a Pilot who drives his plane to
avoid a target area (obstacle). However, a strong Wind appears on the way, which causes aircraft to drift
sideways (see Fig. A.3).

Figure A.3: Illustration of the HJI-RA. The black dash line represents the unsafe trajectory starting from the BRT and the plane
will eventually hit the obstacle no matter how hard the Pilot tries

We reformulate the dynamics in Equation (A.1) as:

¤𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑎(𝑡), 𝑏(𝑡)), 𝑡 ∈ [𝑡0 , 0], 𝑎(𝑡) ∈ A, 𝑏(𝑡) ∈ B, (A.13)

where 𝑎(𝑡) and 𝑏(𝑡) denote the input from Player 1 (Pilot) and Player 2 (Wind), A,B are compact action
space and 𝑡0 represents the time horizon. Let 𝜁(𝑡; �̄�0 , 𝑡0 , 𝑎(.), 𝑏(.)) : [𝑡0 , 0] → R𝑛 be the trajectory (solution
of Equation (A.13)) given initial state �̄�0, time horizon 𝑡0 and control policies 𝑎(.), 𝑏(.) from two players.
We define the target area that we want to avoid as 𝒢0 ⊆ R𝑛 = {𝑥 : 𝑔(𝑥) < 0} where 𝑔(𝑥) ≥ 0⇔ 𝑥 ∈ X𝑎
and X𝑎 denotes the area that system is allowed to visit. To encode whether the system would enter the
target area, we defined a cost function to represent the minimum distance to 𝒢0 along the trajectory:

𝐽𝑡0(�̄�0 , 𝑎(.), 𝑏(.)) = min
𝑡∈[𝑡0 ,0]

𝑔(𝜁(𝑡; �̄�0 , 𝑡0 , 𝑎(.), 𝑏(.))), (A.14)

𝐽𝑡0(�̄�0 , 𝑎(.), 𝑏(.)) < 0 means that the system would collide with an obstacle within the time horizon 𝑡0.
However, the trajectory of the system is determined by two control policies 𝑎(.), 𝑏(.). Therefore, our
goal becomes capturing the minimum distance 𝐽𝑡0(�̄�0 , 𝑎(.), 𝑏(.)) of the optimal trajectory of the system
which is generated when Player 1 (Pilot) maximizes the distance and the worst-case disturbance (Wind)

A.4. Control Barrier Function 31

minimizes the distance. If this optimal trajectory enters the target area, it means that there exists no
control that can save the system from a collision. Let a value function represent the minimal distance to
the target area 𝒢0 along the optimal trajectory:

𝑉(�̄�0 , 𝑡) = inf
𝑏(.)∈B

sup
𝑎(.)∈A

𝐽𝑡(�̄�0 , 𝑎(.), 𝑏(.)). (A.15)

Using the principle of dynamic programming, it can be shown that the value function 𝑉(�̄�0 , 𝑡) in (A.15)
is the solution of the following HJI-VI [40]:

min{𝐷𝑡𝑉(𝑥, 𝑡) + 𝐻(𝑥, 𝑡), 𝑔(𝑥) −𝑉(𝑥, 𝑡)} = 0, 𝑉(𝑥, 0) = 𝑔(𝑥). (A.16)

where 𝐷𝑡 and ∇ represent the time and spatial gradients of the value function and Hamiltonian 𝐻(𝑥, 𝑡)
is given by:

𝐻(𝑥, 𝑡) = max
𝑎(.)∈A

min
𝑏(.)∈B

< ∇𝑉(𝑥, 𝑡), 𝑓 (𝑥, 𝑎(.), 𝑏(.)) > . (A.17)

Once we obtain the value function 𝑉(�̄�0 , 𝑡) by solving the HJI-VI in (A.16), the BRT is given as the
sub-zero level set of the value function:

𝒢(𝑡) = {𝑥 : 𝑉(𝑥, 𝑡) < 0}. (A.18)

The corresponding optimal safe controller can be derived as:

𝑎∗(𝑥) = arg max
𝑎(.)∈A

min
𝑏(.)∈B

< ∇𝑉(𝑥, 𝑡), 𝑓 (𝑥, 𝑎(.), 𝑏(.)) > . (A.19)

This controller would be activated when the system hits the boundary of the BRT. We will have a deep
review of HJI-RA in Section 2.2.1

A.4. Control Barrier Function
The CBF [1] is a certificate function that describes the safety of the system and provides safety guarantees.
Unlike the HJI-RA, which intends to compute BRTs, the CBF renders a forward invariance set and keeps
the system inside the safe set (see Fig. A.4).

Figure A.4: Illustration of the CBF. The black solid line denotes the trajectory starting from the initial state. The corresponding
orange trajectory reflects the evolution of the value of the CBF

A.5. Model Predictive Control 32

Conventionally, the CBF deals with a nonlinear control affine system in Equation (A.20)

¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢. (A.20)

We assume there exists an allowable set of states X𝑎 = {𝑥 ∈ X : 𝜌(𝑥) ≥ 0} and a continuously
differentiable function ℎ : X→ R. We say that ℎ is a CBF if there exists an extended class𝒦∞ function 𝛼
such that the CBC is satisfied:

sup
𝑢∈U
[𝐿 𝑓 ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢] ≥ −𝛼(ℎ(𝑥)), (A.21)

and 0-superlevel set of ℎ is a subset of the allowable set:

{𝑥 ∈ X : ℎ(𝑥) ≥ 0} ⊆ X𝑎 . (A.22)

When we find a valid CBF, we can solve a QP to derive a safe controller:

𝑢∗𝐶𝐵𝐹 = arg min
𝑢
| |𝑢𝜋 − 𝑢 | |2 (CBF-QP)

s.t.𝐿 𝑓 ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 ≥ −𝛼(ℎ(𝑥)), (A.23a)
𝑢 ∈ U, (A.23b)

where 𝑢𝜋 = 𝜋(𝑥) is the control from the NN or RL policy, 𝑢∗
𝐶𝐵𝐹

is the least modification on 𝑢𝜋 but ensure
the safety. We have a deep review of CBF in Section 2.2.2

A.5. Model Predictive Control
The MPC has seen significant success in recent decades [97] and has become the primary control
method for the systematic handling of system constraints in diverse fields. The MPC scheme relies on a
sufficiently accurate model to predict the future behavior of the system (see Fig. A.5).

Figure A.5: Illustration of the MPC. The controller will predict 𝑁 steps ahead and choose the best trajectory that satisfies the
constraints and uses less energy

Based on the model, the MPC is also called receding horizon control as an optimization problem that
optimizes future trajectory in a short time horizon according to the cost function and the constraints
would be solved online iteratively. The optimization problem is formulated as:

A.5. Model Predictive Control 33

𝐽𝜋
∗(�̄�0) = min

𝜋

𝑁−1∑
𝑘=0

𝑙𝑡(𝑥𝑘 , 𝑢𝑘) + 𝑙𝑁 (𝑥𝑁) (A.24a)

s.t.discrete dynamics in Equation (A.2), (A.24b)
𝑢𝑘 = 𝜋(𝑥𝑘), (A.24c)
𝑥0 = �̄�0 , (A.24d)
𝑥𝑁 ∈ 𝒳𝑡 , (A.24e)
Safety constraints according to either
Equation (A.5), Equation (A.6), Equation (A.7), Equation (A.8),∀𝑘 ∈ [0, 𝑁], (A.24f)

where 𝑙𝑡(𝑥𝑘 , 𝑢𝑘) denotes the stage cost at each time step, 𝑙𝑁 (𝑥𝑛) denotes the terminal cost at last step,
�̄�0 is the initial state, 𝒳𝑡 is the terminal set and 𝜋(𝑥𝑘) denotes the control policy. At each iteration, the
first value of the optimal control sequence would be applied to control the system. The challenge of
designing a good MPC lies in the choice of terminal cost and terminal set. These two elements are the
cornerstone of proving recursive stability and feasibility. More details can be found in [98].

B
Published Paper

The work of this thesis resulted in a published paper in ECC 2024. The paper is attached below.

34

Simultaneous Synthesis and Verification of Neural Control Barrier
Functions through Branch-and-Bound Verification-in-the-loop Training

Xinyu Wang1, Luzia Knoedler1, Frederik Baymler Mathiesen2, and Javier Alonso-Mora1

Abstract— Control Barrier Functions (CBFs) that provide
formal safety guarantees have been widely used for safety-
critical systems. However, it is non-trivial to design a CBF.
Utilizing neural networks as CBFs has shown great success,
but it necessitates their certification a s C BFs. I n t his work,
we leverage bound propagation techniques and the Branch-
and-Bound scheme to efficiently v erify t hat a n eural network
satisfies t he c onditions t o b e a C BF o ver t he c ontinuous state
space. To accelerate training, we further present a framework
that embeds the verification s cheme i nto t he t raining l oop to
synthesize and verify a neural CBF simultaneously. In partic-
ular, we employ the verification s cheme t o i dentify partitions
of the state space that are not guaranteed to satisfy the CBF
conditions and expand the training dataset by incorporating
additional data from these partitions. The neural network is
then optimized using the augmented dataset to meet the CBF
conditions. We show that for a non-linear control-affine system,
our framework can efficiently certify a neural network as a CBF
and render a larger safe set than state-of-the-art neural CBF
works. We further employ our learned neural CBF to derive a
safe controller to illustrate the practical use of our framework.

I. INTRODUCTION

Safety is a critical element of autonomous systems, such as
self-driving cars and manipulators that interact with humans.
As autonomous systems grow more complex, determining
whether they operate safely becomes challenging.

Safety can be formulated via invariance, in the sense that
any trajectory originating within an invariant set will never
traverse beyond the boundaries of that set. Lately, the use
of Control Barrier Functions (CBFs) to derive a forward
invariant set has received significant a ttention in the control
and learning community [1]. However, there exists no general
and scalable technique for designing CBFs. Therefore, recent
works [2], [3] synthesize continuous CBFs using Neural
Networks (NNs) as a function template, which are referred
to as Neural Control Barrier Functions (nCBFs). Yet, these
works rely on an initial guess of the forward invariant set or
the function structure of the CBF to synthesize the nCBF.
An improper initial guess usually results in a suboptimal

This paper has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 101017008.
Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect t hose o f t he E uropean U nion o r t he European
Research Council Executive Agency. Neither the European Union nor the
granting authority can be held responsible for them.

1Xinyu Wang, Luzia Knoedler, and Javier Alonso-Mora are with the
Cognitive Robotics Department, Delft University of Technology, 2628
CD Delft, The Netherlands
Frederik Baymler Mathiesen is with the Delft Center for Systems and
Control, Delft University of Technology, 2628 CD Delft, The Netherlands
f.b.mathiesen@tudelft.nl

Fig. 1: A schematic overview of the presented Branch-
and-Bound Verification-in-the-loop Training. The framework
comprises of two key components: the learner and the
verifier, which operate sequentially. The learner optimizes the
nCBF using a fixed dataset and a Counterexample dataset.
The verifier leverages bound propagation techniques and the
Branch-and-Bound scheme to refine a partition of the state
space until the CBF conditions are satisfied or counterexam-
ples are generated.

nCBF. Constructing an optimal CBF that renders a max-
imum forward invariant set is challenging. A recent work
[4] introduced the Control Barrier-Value Function (CBVF)
which is a safe value function and renders the maximum
forward invariant set for a chosen time span. In this work, we
synthesize a continuous nCBF that approximates the infinite-
horizon CBVF and renders a safe set that is close to the
maximum forward invariant set.

Although utilizing NNs as CBFs offers universal approxi-
mation capabilities, it necessitates their certification as CBFs
to provide safety guarantees. Verifying the NN as an nCBF in
the continuous state space presents a significant challenge.
Specifically, since the NN is trained using a finite set of
data points, it will only be verified on those points. Outside
the certified points, safety is no longer guaranteed. There
are works [5], [6] that use the Satisfiability Modulo Theory
(SMT) to verify their NNs. However, they are restricted
to very simple NNs due to expensive computation. In this
work, we leverage bound propagation techniques [7] and
the Branch-and-Bound scheme (BBS) to efficiently verify
nCBFs. In particular, we partition the state space and utilize
linear bound propagation techniques to provide lower and
upper bounds of the NN and its Jacobian. These bounds
are used to verify if the NN satisfies the conditions to

be a CBF. The BBS is applied to refine the partition to
improve scalability and achieve less conservative bounds.
We refer to the above verification scheme as Branch-and-
Bound Verification scheme (BBV). This approach is similar
to [8], however, we verify CBFs instead of barrier functions.
To accelerate training, we embed the BBV into the training
loop to synthesize and verify an nCBF simultaneously, which
we refer to as Branch-and-Bound Verification-in-the-loop
Training (BBVT), see Fig. 1. We show the efficiency of our
method and the practical use of nCBFs on an inverted pen-
dulum and a 2D navigation task in a simulation environment.

II. RELATED WORK

Many works use CBFs to ensure the safety of a system
[9]–[11]. However, it is non-trivial to construct CBFs. In
recent years, new techniques emerged to automatically syn-
thesize CBFs. For a system with polynomial dynamics, a
CBF can be obtained by solving a sum-of-squares (SOS)
optimization problem [12]. Unfortunately, SOS scales poorly
to higher dimensional systems [13]. To address this short-
coming, NNs have been employed to approximate CBFs.
They are trained by supervised learning [2], [3], [14] or
Reinforcement Learning (RL) with the Actor-Critic frame-
work [15], [16]. However, the quality of the nCBF in those
works depends on an initial guess of the forward invariant set,
CBF candidate, or exploration strategy. An improper initial
guess results in a conservative nCBF with a small forward
invariant set. To address the conservativity, in this work, we
learn a continuous nCBF that renders a safe set close to the
maximum forward invariant set. Furthermore, the training
does not require an initial guess.

Commonly, NNs are trained through backpropagation of
the empirical loss on a finite set of data points. Therefore,
it is important to note that even an empirical loss of zero
does not guarantee that the certificate is valid everywhere
in the state space. Only a few works have verified their
NNs, such as [5], [6], [17], which leverage SMT to provide
Counterexamples (CEs) and guarantee the correctness of the
synthesis procedure. However, SMT is limited to simple NNs
with around 20 neurons in one or two hidden layers due
to the need for expensive computation. In contrast to using
SMT for exact verification, several efficient NN verification
methods using linear bound propagation techniques have
been developed [7], [18]. These bounding methods provide
a new direction to verify neural certificates. The work in
[8] partitions the state space with a BBS and verifies the
property of the discrete-time stochastic barrier function for
each partition leveraging the method in [7]. Our work extends
the BBS of [8] to CBFs for continuous-time deterministic
control-affine systems where the control input constraints
must be considered and uses the BBV scheme to verify the
learned continuous nCBF.

III. PROBLEM FORMULATION

Given the following continuous-time control-affine system

ẋ = f(x) + g(x)u, x(0) = x0, (1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm, f : Rn → Rn denotes
the autonomous dynamics, and g : Rn → Rn×m denotes
the input dynamics. We assume that f , g are Lipschitz
continuous and X,U are compact sets.

The safety requirement for the system in (1) is encoded via
a state admissible set Xa ⊆ X and a convex input admissible
set Ua ⊆ U. A safe system stays in the state admissible set
for all time. To formally define safety, we use xπ(t;x0) to
refer to a trajectory of the system in (1) at time t with initial
condition x0 and control policy u = π(x). Safety is then
defined as:

Definition 1 (Safety). The system in (1) is safe if xπ(t;x0) ∈
Xa and u = π(xπ(t;x0)) ∈ Ua, ∀t ∈ [0,∞].

However, it should be noted that Xa is not safe everywhere
as there may not exist a control input that transitions a state
close to the boundary towards the interior of Xa. A safe set
should have the property that if the system starts in the safe
set, it stays inside for all time. Towards formally defining
this property, let a set C be defined as the 0-superlevel set
of a continuously differentiable function h : Rn → R, i.e.,

C = {x ∈ X : h(x) ≥ 0},

∂C = {x ∈ X : h(x) = 0}.

Then forward invariance and a safe set are defined as follows.

Definition 2 (Foward invariance). The set C is forward
invariant if for every x0 ∈ C, there exists a control policy
u = π(x) ∈ Ua such that the trajectory of system in (1)
xπ(t;x0) ∈ C, ∀t ∈ [0,∞].

Definition 3 (Safe set). The set C is a Safe Set if C is forward
invariant and C ⊆ Xa.

A CBF renders a safe set and can be used to derive safe
control inputs. Before defining CBFs, we must introduce ex-
tended class K∞ functions. An extended class K∞ function
is a mapping α : R → R that is strictly increasing and for
which α(0) = 0 holds. We define a continuous CBF as:

Definition 4 (Control Barrier Function). Let C ⊆ Xa be
the 0-superlevel set of a continuously differentiable function
h : Rn → R, then h is a CBF in Xa for system in (1) if
there exists an extended class K∞ function α such that

sup
u∈Ua

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)) (2)

for all x ∈ Xa, where Lf , Lg represent Lie derivatives.

With the definition of a CBF, we may derive sufficient
conditions for a safe system. According to the main result
in [19], the following theorem holds:

Theorem 1 ([19, Theorem 2]). If function h is a CBF for
the system in (1) and ∂h

∂x (x) ̸= 0 for all x ∈ ∂C, then any
Lipschitz continuous controller π(x) ∈ Kcbf (x) with

Kcbf (x) = {u ∈ Ua : Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0}.
(3)

renders the set C safe. Additionally, the set C is asymptoti-
cally stable in Xa.

With Theorem 1, we are able to ensure the safety of the
system in (1) as long as a CBF is found and its gradient does
not vanish on ∂C. We show in Section V-D how to obtain a
safe policy satisfying (3) using CBFs.

The objective of this work is to automatically synthesize
a nCBF and verify it for the continuous state space. The
problem is defined as follows.

Problem 1. Given the system in (1), state admissible set Xa,
convex input admissible set Ua and α(x) = γx where γ is
a positive constant, synthesize a nCBF that is denoted by
ĥw(x), where w are the parameters of the NN, and renders
set C safe for the system in (1). This is equivalent to

Ĉ ⊆ Xa, (4a)
inequality (2) holds in Xa, (4b)

where Ĉ = {x ∈ X : ĥw(x) ≥ 0} is the 0-superlevel set of
the nCBF.

Remark 1. The condition ∂h
∂x (x) ̸= 0 for all x ∈ ∂C

is omitted since it generally holds in our setting as we
only consider a Tanh-based Fully-Connected Neural Network
(FCNN). More specifically, since ∂tanh

∂x (x) ∈ (0, 1] for all x,
the condition is only violated if either w = 0 or catastrophic
cancellation occurs in the linear layers, which will almost
surely never happen.

IV. NEURAL CONTROL BARRIER FUNCTION TRAINING
AND VERIFICATION

In this work, we design a new empirical loss to synthesize
an nCBF, which is introduced in Section IV-A. As the
training set only contains a finite set of data points, the
CBF conditions may not hold in the continuous state space.
Therefore, in Section IV-B, we present the BBV to verify
nCBFs. Nevertheless, it is often necessary to iterate through
multiple training and verification cycles before successfully
learning an nCBF. Thus, we introduce BBVT in Section IV-
C, which embeds BBV in the training loop to accelerate
training for certifiability.

A. Learning a Neural Control Barrier Function

The primary goal of this work is to train an NN ĥw(x)
until it satisfies conditions (4a) and (4b) and render a large
forward invariant set. Towards this end, we leverage the main
result in [4, Theorem 3], where a CBVF is shown to recover
the maximum safe set subject to safety constraints. Con-
trary to [4], we are interested in infinite-horizon properties.
Thus we extend the time-dependent Control Barrier-Value
Function Variational Inequality (CBVF-VI) to the infinite-
horizon. Let h(x) denote the infinite-horizon CBVF and
ρ(x) : X → R denote the signed-distance function for the
set Xa, which is defined as ρ(x) = infy∈X/Xa

∥y − x∥ if
x ∈ Xa and ρ(x) = − infy∈Xa∥y − x∥ if x ∈ X/Xa. The
infinite-horizon CBVF-VI is defined as

0 = min{ρ(x)− h(x),

max
u∈Ua

Lfh(x) + Lgh(x)u+ γh(x)}. (5)

We use an NN ĥw(x) to approximate the infinite-horizon
CBVF h(x). Then, the empirical loss is defined as follows:

L =
1

N1

∑

x∈Xa

∥min{ρ(x)− ĥw(x),

sup
u∈Ua

Lf ĥw(x) + Lgĥw(x)u+ γĥw(x)− λ}∥ (6a)

+
1

N2

∑

x∈X/Xa

max{ĥw(x) + λ, 0}. (6b)

where λ is a small positive constant to encourage the strict
satisfaction of the conditions. The loss term (6a) shapes
the NN to be the solution of the infinite-horizon CBVF-
VI introduced in (5), which encourages the satisfaction of
condition (4b). The loss term (6b) ensures that the nCBF is
negative in the inadmissible area X/Xa, which is equivalent
to condition (4a). Since the system is control-affine, the
optimal solution u∗ for supu∈Ua

[Lf ĥw(x) + Lgĥw(x)u]
must be one of the vertices of Ua. Let UV

a denote the
vertices of the input admissible set, we choose control input
u⋆ = argmaxu∈UV

a
Lgĥw(x)u. However, the Lie derivative

of ĥw(x) in the early training stage may not align with the
Lie derivative of the true CBVF h(x). This results in an
undesirable optimization path and the NN can get stuck at
deadlock. The occurrence of a deadlock situation signifies
that improvements at certain data points cause constraint
violations at other data points, as noted in [20]. To facilitate
the training process and avoid deadlocks, we borrow ideas
from [2], [6], which use a nominal controller to guide the
training. Here, we train another neural network ĥϕ with the
same structure as ĥw based on the loss of [21] and choose
u∗ = argmaxu∈UV

a
ĥϕ(x+(f(x)+g(x)u)∆t) by simulating

one step ahead to guide the training of the nCBF ĥw. To
further guide the training, we may integrate the verification
procedure with a so-called Counterexample Guided Inductive
Synthesis (CEGIS) approach, as described in Section IV-C.

B. Verifying the learned Neural Control Barrier Function

Since the NN is trained on finite data points, one must note
that the NN may not satisfy the CBF conditions everywhere
in the state space, even if the empirical loss decreases to zero.
In fact, condition (4b) may be violated almost everywhere,
which means the NN may fail to render a forward invariant
set and the safety guarantee no longer exists. In this section,
we propose to use the BBV to verify the learned nCBF in
the continuous state space. Specifically, our primary goal is
to verify the satisfaction of conditions (4a) and (4b).

Before we explain our verification scheme in detail, we
introduce some notations first. Let the partition of the state
space be denoted as hyperrectangles B(xi, ϵi) = {x : |
x− xi |≤ ϵi} centered at point xi ∈ X with radius ϵi ∈ Rn,

Fig. 2: An example of the BBV in a 2D state space. The
scheme starts with a coarse partition B(x0, ϵ0) and refines it
using the Branch-and-Bound scheme. For each hyperrectan-
gle B(xi, ϵi), i = 0, 1, 2, . . ., upper bounds for the neural
network are computed. In this case, the hyperrectangles
B(x0, ϵ0) and B(x2, ϵ2) are refined as ĥu0 > 0, ĥu2 > 0.

see Fig. 2. Initially, all hyperrectangles have the same radius
ϵi = ϵinit. Let B = {B(x0, ϵ0), . . . ,B(xN , ϵN)} denote the
set of all hyperrectangles, BX/Xa

⊂ B denote the set of
hyperrectangles that covers the inadmissible area X/Xa, and
BXa

⊂ B denote the set of hyperrectangles that covers the
admissible area.

To verify condition (4a), which is equivalent to ĥw(x) <
0,∀x ∈ X/Xa, we rely on the linear bounds of the NN
computed using CROWN [7]. The linear bounds are defined
as follows:

ĥli ≤ ĥw(x) ≤ ĥui, x ∈ B(xi, ϵi). (7)

We use these linear bounds to certify the satisfaction of
condition (4a). In particular, the upper bound ĥui can be used
to check for non-positivity

ĥw(x) ≤ ĥui < 0, x ∈ B(xi, ϵi),B(xi, ϵi) ∈ BX/Xa
. (8)

However, this upper bound tends to be conservative when
B(xi, ϵi) covers a large area. Therefore, we leverage the
BBS that starts from the coarse partition and refines each
hyperrectangle when ĥui > 0 until ĥui ≤ 0 or ϵi ≤ tgap
where tgap > 0 is the minimum partition size, see Fig. 2.
If condition (8) holds for all hyperrectangles in BX/Xa

, then
the condition (4a) holds in the continuous state space.

Although verifying condition (4a) is simple, verify-
ing condition (4b) supu∈Ua

[Lf ĥw(x) + Lgĥw(x)u] ≥
−γĥw(x), ∀x ∈ Xa is challenging. For improved readability,
we denote q(x) = supu∈Ua

[Lf ĥw(x)+Lgĥw(x)u+γĥw(x)].
Hence, verifying condition (4b) is equivalent to verifying
q(x) ≥ 0,∀x ∈ Xa. Let qli define a lower bound of q(x) for
x ∈ B(xi, ϵi). Then the following condition has to hold:

q(x) ≥ qli ≥ 0, x ∈ B(xi, ϵi),B(xi, ϵi) ∈ BXa
. (9)

Similarly to condition (4a), the BBS starts from a coarse
partition and refines each hyperrectangle when qli < 0
until qli ≥ 0 or ϵi ≤ tgap. If condition (9) holds for all
hyperrectangles in BXa

, then condition (4b) holds in the
continuous state space.

However, the challenge arises in the computation of qli.
The computation of qli can be reframed as an optimization
problem within the hyperrectangle B(xi, ϵi)

qli = min
x

q(x) (10a)

s.t. x ∈ B(xi, ϵi). (10b)

The term q(x) is a complex function containing nonlinear
dynamic functions f , g, a neural network ĥw as well as its
Jacobian, which renders a constrained Nonlinear Program
(NLP) in (10a). The state-of-the-art NLP solver [22] requires
gradients of the objective function, which involves compu-
tation of the Hessian of the NN. The expensive computation
makes it impractical to solve (10a) directly.

Although computing the lower bound of q(x) is quite
complex, computing the bound of the components of q(x)
separately is much simpler. We can compute the bound of the
NN using CROWN [7] and its Jacobian leveraging a recent
result in [23] or [24]:

ĥli ≤ ĥw(x) ≤ ĥui,∀x ∈ B(xi, ϵi), (11)

Jli ≤ ∇ĥw(x) ≤ Jui,∀x ∈ B(xi, ϵi). (12)

Furthermore, we can approximate the nonlinear dynamic
functions f and g using Taylor Models as done in [25] or
sampling:

xli ≤ f(x) + g(x)u⋆ ≤ xui,∀x ∈ B(xi, ϵi). (13)

In (10a), the objective function depends on the variable
x and is constrained within the feasible region for x. We
simplify (10a) by considering three independent variables
subject to independent constraints. This results in

q′li = min
h,J,x

q′(h, J, x) = ⟨J, x⟩+ γh (14a)

s.t. ĥli ≤ h ≤ ĥui, (14b)
Jli ≤ J ≤ Jui, (14c)
xli ≤ x ≤ xui, (14d)

where x denotes the value of f(x) + g(x)u, h denotes the
value of ĥw(x) and J denotes the value of ∇ĥw(x). When
(11), (12), and (13) are over-approximations of the true
intervals, it is clear that the optimal solution q′li from (14a) is
an over-approximation of the optimal solution qli from (10a),
which means q′li ≤ qli. To efficiently solve (14a), we may
compute the optimal solution independently for each term,
taking the minimum over the set of vertices.

Although the theoretical complexity of the BBV is still
exponential in the dimension of the state space, it improves
the scalability in practice. One must note that our method

is a sound verification method instead of a complete one,
which means the failure to obtain BX/Xa

and BXa that satisfy
condition (8), (9) does not imply the invalidation of the
nCBF, as we over-approximate the conditions. We want
to emphasize that the chosen over-approximation method,
CROWN, has been the winning strategy at the Verification
of Neural Networks Competition for multiple years [26].

C. Branch and Bound Verification-in-the-loop Training

Although the BBV provides a practical way to certify the
NN as nCBF, it requires several training and verification
processes until an nCBF is obtained. Therefore, leveraging
the information from the verification and ensuring the sat-
isfaction of conditions (4a) and (4b) becomes the task of
BBVT. This type of method is also known as CEGIS [27].
See Fig. 1 for an overview of the framework.

We start with the initial fixed training dataset D that
contains a number of uniformly sampled points. During
the training procedure, we optimize the NN to decrease
the loss in (6) using D. After k epochs, the verifier starts
with a coarse partition of the state space. The upper bound
ĥui, ∀B(xi, ϵi) ∈ BX/Xa

and lower bound q′li, ∀B(xi, ϵi) ∈
BXa

are computed. The hyperrectangles, whose ĥui ≥ 0 or
q′li ≤ 0, are split until ϵi ≤ tgap. After reaching the minimum
partition size tgap, the hyperrectangles whose ĥui ≥ 0 or
q′li ≤ 0 are treated as the violation areas. The center points
are added to the CE dataset and the training procedure is
repeated until the verifier returns satisfaction or the
maximum number of iterations nmax is reached.

Note that although the universal approximation theorem in
[28] guarantees the existence of ĥw(x) to be an nCBF that
renders maximum forward invariant set, this is under the
assumption that the NN has a sufficient number of neurons.
The training procedure is not guaranteed to converge to an
nCBF, but if the verifier returns satisfaction, the NN is
an nCBF for the given system in the continuous state space.
It is possible to introduce adversarial training, i.e. training
on the worst-case state in a region around each sample x, to
improve the convergence to a verifiable nCBF [8].

V. RESULTS

In this section, we evaluate our proposed framework on
two systems: an inverted pendulum and a 2D navigation
task. The experimental setup is introduced in Section V-A. In
Section V-B and Section V-C, we provide a comprehensive
assessment on the inverted pendulum, addressing the verifi-
cation efficiency and the size of the safe set, respectively.
In Section V-D, we consider a 2D navigation task with
nonconvex constraints to display the practical use of our
framework and combine the nCBF with RL to achieve safe
policy learning. Our code is available on GitHub1.

We consider the following baseline methods:
• LST: The Level Set Toolbox (LST) [29] generates a safe

value function by Hamilton-Jacobian-Issac Reachability
Analysis (HJI-RA) over a discrete grid.

1https://github.com/tud-amr/
ncbf-simultaneous-synthesis-and-verification

• NeuralCLBF: Neural Control Lyapunov Barrier Func-
tion (NeuralCLBF) [2] parametrizes the CBF as an NN
and optimizes it according to their empirical loss based
on (2) and a nominal safe set.

• SMT: [6] trains a neural Lyapunov function with SMT
generating counterexamples and ensures the validation
of the result. The constraints considered by SMT are
conditions (4a) and (4b). To have a fair comparison,
the training loss is chosen to be the same as in (6).

A. Experimental Setup

1) Inverted Pendulum: Let s = [θ, θ̇] ∈ X ⊂ R2 be the
state variable and u ∈ U ⊂ R be the control input. We
consider the state space X = {s : θ ∈ [−π, π], θ̇ ∈ [−5, 5]}
and the input space U = {u : u ∈ [−12, 12]}. The dynamics
of the inverted pendulum are given by:

θ̇ = θ̇,

θ̈ =
3g

2l
sin(θ)− 3β

ml2
θ̇ +

3

ml2
u,

(15)

where m = 1, b = 0.1, g = 9.81, and l = 1. The state
admissible set is Xa = {s : θ ∈ [− 5π

6 , 5π
6], θ̇ ∈ [−4, 4]} and

the input admissible set is Ua = U, see Fig. 3.
2) 2D navigation task: We consider a 2D navigation task

in which a point robot should reach a goal position while
avoiding obstacles, see Fig. 6a. Let s = [x, y, ẋ, ẏ] ∈ X ⊂ R4

be the state variable and u = [ax, ay] ∈ U ⊂ R2 be the
control input representing the acceleration along the x-axis
and y-axis. The dynamics of the point robot are:

ẋ
ẏ
ẍ
ÿ

 =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 sT +

0 0
0 0
1 0
0 1

[
ax
ay

]
(16)

We consider the admissible position set X1 = {s :
x ∈ [0, 4], y ∈ [0, 4]} except the obstacle set X2 = {s :
x ∈ [1.5, 2.5], y ∈ [0, 2]}, together with velocity constraints
X3 = {s : ẋ ∈ [−1, 1], ẏ ∈ [−1, 1]}. Thus, the state
admissible set is Xa = X1 ∪ (X2)C ∪ X3, where (·)C
represents the complement of a set. See Figure 6 for a
pictorial representation of the set. The input admissible set
is Ua = {u : ax ∈ [−1, 1], ay ∈ [−1, 1]}.

Fig. 3: The workspace of the considered inverted pendulum.

(a) Training without verification-in-the-loop (b) Distribution of counterexamples (c) Training with verification-in-the-loop

Fig. 4: Shapes of 0-superlevel sets of NNs trained with and without BBVT for the inverted pendulum. In Fig. 4a the NN is
trained with a fixed dataset and evaluated on a denser testing dataset to showcase that condition (4b) is not satisfied for the
continuous state space. Figure 4b shows the counterexamples added to the dataset according to BBVT. Figure 4c showcases
that, after training the NN with BBVT, no validations are detected since the NN is an nCBF.

TABLE I: Hyper-parameter for nCBF Training.

γ 0.5 λ 0.05

learning rate r 10−3 learning rate
decay β

0.995

verify after
every k epochs 20 minimum partition

gap tgap
0.005

initial radius ϵinit

(inverted pendulum) [0.2, 0.2] initial radius ϵinit

(2D navigation)
[0.2, 0.2,
0.2, 0.2]

Num. fixed points
(inverted pendulum) 105

Num. fixed points
(2D navigation) 106

nmax 100

3) Training Configuration: For both systems, we train
the nCBF using Pytorch on NVIDIA A40, and Stochastic
Gradient Descent is used as the optimizer to avoid local
minima. The used hyper-parameters can be found in Table I.
For the inverted pendulum, we choose a Tanh-based FCNN
with one hidden layer which consists of 36 neurons. For the
2D navigation task, a larger Tanh-based FCNN is required
since the shape of the environment is more complex. Here
we choose a Tanh-based FCNN with two hidden layers, each
of which consists of 256 neurons.

B. Verification and Efficiency

In this section, we use the inverted pendulum to discuss
the certification of the trained NN as an CBF. To showcase
the disadvantage of training without verification, we train
the nCBF with a fixed data set and stop training after 200
epochs. We then examine the satisfaction of condition (4b)
with a denser testing dataset. The 0-superlevel set of the
trained NN is shown in blue in Fig. 4a. The orange area
indicates the testing data points that violate condition (4b).

We resume the training with the same dataset and use
BBVT to augment the training dataset with CEs every k
epochs until the verifier returns satisfaction. Figure 4b
shows the distribution of the CEs after the first verifica-
tion loop. As we augment the dataset, the verifier returns
satisfaction after 240 epochs, see Fig. 4c.

To highlight the efficacy of BBVT, we evaluate the train-
ing time, verification time, and the ratio of violation areas
for our framework and the baseline methods. The results are
shown in Table II. We first compare our method with LST
[29]. The table shows the results of LST for two different

grid gaps, which are 0.2 and 0.05 respectively. It is evident
that an increased grid density leads to improved accuracy
at the cost of longer computation time. However, a dense
grid map is not always possible, since the memory space of
LST grows exponentially, which is referred to as the Curse
of Dimensionality. With a grid gap of 0.05, LST requires
24.41kB memory space, while we only need to store the
parameters of the nCBF, which is 1.2kB. This is important
for embedded devices such as the control unit on drones.

Then, we compare our method with NeuralCLBF. Due to
the lack of a verification process and counterexample data
set, the fixed data set for NeuralCLBF contains 106 data
points in order to have a fair comparison with our method.
Since NeuralCLBF learns an nCBF based on a nominal safe
set, the training process is assisted by prior knowledge and
results in less training time, see Table II. However, there are
sparse areas that violate the conditions as discussed in [2]
and how these sparse areas grow with the complexity of the
system has not been studied yet.

We also compare our method with SMT. However, SMT
did not return satisfaction until the maximum number
of iterations nmax was reached, see Table II. Although there
exist some works [5], [6] that use SMT to verify a neural
controller, they only use a very simple FCNN with around
9 neurons. In our case, the computation time of SMT grows
dramatically since the NN is more complex. Also, SMT
can only generate several counterexamples at each iteration,
while BBVT generates all the counterexamples in state space
X, which is more efficient than SMT.

C. Size of Safe Set

We will compare the size of the forward invariant set
derived using our framework and the baseline methods in
this section. Since SMT failed to verify the nCBF and
LST with a grid gap of 0.2 has a large violation area, we
compare our framework only against LST with a grid gap
of 0.05 and NeuralCLBF with the nominal safe set being
Xn = {s : ∥s∥ < 3π

4 }).
The forward invariant sets derived by the different methods

are illustrated in Fig. 5. We see that the size of the forward
invariant set from NeuralCLBF is conservative, while our

TABLE II: Verification and Efficiency Comparison for the inverted pendulum. BBVT is compared against LST, NeuralCLBF,
and SMT to synthesize an nCBF. LST and NeuralCLBF do not verify their safe value function, which is represented by
’-’ in columns 3 and 4. To validate the verification process, we calculate the ratio of points that violate condition (4b) on a
uniform grid with a size of 103 × 103 within the state space X.

Stop criteria Total computation time
(s)

Average verification time
(s/epoch)

Average generation time
(s/per counterexample)

Violation points/testing points
(%)

LST(0.2) value converges 5.34 - - 1.9
LST(0.05) value converges 104.48 - - 0.0064

NeuralCLBF loss converges 584.6 - - 0.0013
SMT max # iter reached 5311.68 14.73 1.34 0.7742

BBVT(ours) verified 1214.15 16.20 0.004 0.0

Fig. 5: The forward invariant set of safe value functions
obtained by different methods for the inverted pendulum.

method approximates CBVF and renders a safe set that
is close to the maximum forward invariant set. Since the
forward invariant set of the CBF is always a subset of that
from HJI-RA, which is discussed in [4], it is not surprising
that LST renders a larger safe set than ours. We note that
λ > 0 in (6a) encourages the satisfaction of the CBF
conditions at the expense of rendering a smaller safe set.

D. Application of Neural Control Barrier Functions to Safe
Policy Learning

In this section, we use RL to address the 2D navigation
task introduced in Section V-A.2. Let sg = [xg, yg, 0, 0] be
the goal state. The step reward is defined as rt = −0.01·∥s−
sg∥, the terminal reward is rcollision = −5 when the robot
collides with the obstacles and rgoal = 10 when the robot
reaches the goal area Xg = {s : ∥s−sg∥ < ϵ} where ϵ = 0.1
is the goal tolerance. We use Proximal Policy Optimization
[30] to train the agent and solve

usafe =arg min
u∈Ua

∥u− uRL∥2

s.t. Lf ĥw(x) + Lgĥw(x)u+ α(ĥw(x)) ≥ 0
(17)

to project the action uRL of the RL policy to the safe action
usafe with the least modification.

We note that, theoretically, this controller guarantees safety
with infinite control frequency. However, a continuous con-
troller is not possible to implement on discrete control units.
This limits the safety guarantees we may provide. How to
address the gap between continuous controllers and their
discrete implementations remains an open question.

Figure 6a shows all trajectories performed during the
training and we can see that several trajectories collide
with the obstacles, while there are no unsafe trajectories
in Figure 6b with nCBF as a safety filter. However, we
observe that the average reward with nCBF is larger than
for nominal RL without nCBF in the very early stage but
has a slower growth rate and converges to a lower reward
level compared with nominal RL, see Fig. 6c. The reason is
that nCBF provides prior knowledge about the environment
and the agent could avoid exploring unsafe regions in the
early stage and gain a higher reward than nominal RL.
However, the forward invariant set is still suboptimal as
discussed in Section V-C, which means only a suboptimal
policy is learned and exploration is restricted. Nevertheless,
we believe that provided safety guarantees are beneficial in
safety-critical applications.

VI. CONCLUSION

In this work, we presented a framework that simultane-
ously synthesizes and verifies continuous Neural Control
Barrier Functions (nCBFs). To this end, we leveraged bound
propagation techniques and the Branch-and-Bound scheme to
efficiently verify neural networks as Control Barrier Func-
tions (CBFs) in the continuous state space. In experiments,
we showed that our framework efficiently synthesizes an
nCBF which renders a larger safe set than state-of-the-art
methods without requiring an initial guess.

Since the memory requirements and computation time of
the Branch-and-Bound Verification scheme increase expo-
nentially with the system dimension, in future work, we may
address the scalability of our framework.

REFERENCES

[1] C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates:
A survey of neural lyapunov, barrier, and contraction methods for
robotics and control,” IEEE Transactions on Robotics, 2023.

[2] C. Dawson, Z. Qin, S. Gao, and C. Fan, “Safe nonlinear control using
robust neural lyapunov-barrier functions,” in Conference on Robot
Learning, pp. 1724–1735, PMLR, 2022.

[3] B. Dai, P. Krishnamurthy, and F. Khorrami, “Learning a better control
barrier function,” in 2022 IEEE 61st Conference on Decision and
Control (CDC), IEEE, 2022.

[4] J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L. Herbert,
“Robust control barrier–value functions for safety-critical control,” in
60th IEEE Conference on Decision and Control (CDC), IEEE, 2021.

[5] A. Peruffo, D. Ahmed, and A. Abate, “Automated and formal syn-
thesis of neural barrier certificates for dynamical models,” in Tools
and Algorithms for the Construction and Analysis of Systems: 27th
International Conference, TACAS 2021, Springer, 2021.

[6] Y.-C. Chang, N. Roohi, and S. Gao, “Neural lyapunov control,” in
Advances in Neural Information Processing Systems, vol. 32, Curran
Associates, Inc., 2019.

(a) Trajectories during learning without nCBF (b) Trajectories during learning with nCBF

(c) Moving average reward (d) Heatmap of the nCBF.

Fig. 6: 6a and 6b show all the trajectories during RL training. 6c illustrates the moving average reward of every 2048 steps.
6d is the slice of heatmap of ĥw(x) with velocity ẋ = 0.2, ẏ = 0.2.

[7] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel,
“Efficient neural network robustness certification with general acti-
vation functions,” Advances in neural information processing systems,
vol. 31, 2018.

[8] F. B. Mathiesen, S. C. Calvert, and L. Laurenti, “Safety certification for
stochastic systems via neural barrier functions,” IEEE Control Systems
Letters, vol. 7, 2022.

[9] Q. Nguyen, A. Hereid, J. W. Grizzle, A. D. Ames, and K. Sreenath, “3d
dynamic walking on stepping stones with control barrier functions,” in
IEEE 55th Conference on Decision and Control (CDC), IEEE, 2016.

[10] X. Xu, T. Waters, D. Pickem, P. Glotfelter, M. Egerstedt, P. Tabuada,
J. W. Grizzle, and A. D. Ames, “Realizing simultaneous lane keeping
and adaptive speed regulation on accessible mobile robot testbeds,”
in 2017 IEEE Conference on Control Technology and Applications
(CCTA), pp. 1769–1775, IEEE, 2017.

[11] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, no. 8, 2016.

[12] A. A. Ahmadi and A. Majumdar, “Some Applications of Polynomial
Optimization in Operations Research and Real-Time Decision Mak-
ing,” arXiv e-prints, p. arXiv:1504.06002, Apr. 2015.

[13] M. Srinivasan, M. Abate, G. Nilsson, and S. Coogan, “Extent-
compatible control barrier functions,” Systems & Control Letters, 2021.

[14] M. Srinivasan, A. Dabholkar, S. Coogan, and P. A. Vela, “Synthesis
of control barrier functions using a supervised machine learning
approach,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2020.

[15] D. Du, S. Han, N. Qi, H. B. Ammar, J. Wang, and W. Pan, “Re-
inforcement learning for safe robot control using control lyapunov
barrier functions,” arXiv preprint arXiv:2305.09793, 2023.

[16] Y. Yang, Y. Jiang, Y. Liu, J. Chen, and S. E. Li, “Model-free
safe reinforcement learning through neural barrier certificate,” IEEE
Robotics and Automation Letters, vol. 8, no. 3, pp. 1295–1302, 2023.

[17] N. Boffi, S. Tu, N. Matni, J.-J. Slotine, and V. Sindhwani, “Learning
stability certificates from data,” in Conference on Robot Learning,
pp. 1341–1350, PMLR, 2021.

[18] L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel,
D. Boning, and I. Dhillon, “Towards fast computation of certified

robustness for relu networks,” in International Conference on Machine
Learning, pp. 5276–5285, PMLR, 2018.

[19] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European Control Conference (ECC), 2019.

[20] S. Liu, C. Liu, and J. Dolan, “Safe control under input limits with
neural control barrier functions,” in Conference on Robot Learning,
pp. 1970–1980, PMLR, 2023.

[21] J. F. Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, and C. J. Tomlin,
“Bridging hamilton-jacobi safety analysis and reinforcement learning,”
in 2019 International Conference on Robotics and Automation (ICRA),
pp. 8550–8556, IEEE, 2019.

[22] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming.
Cham, Switzerland: Springer International Publishing, Nov. 2021.

[23] Z. Shi, Y. Wang, H. Zhang, J. Z. Kolter, and C.-J. Hsieh, “Efficiently
computing local lipschitz constants of neural networks via bound
propagation,” Advances in Neural Information Processing Systems,
vol. 35, pp. 2350–2364, 2022.

[24] J. Laurel, R. Yang, G. Singh, and S. Misailovic, “A dual number
abstraction for static analysis of clarke jacobians,” Proceedings of the
ACM on Programming Languages, vol. 6, no. POPL, pp. 1–30, 2022.

[25] M. Streeter and J. V. Dillon, “Automatically bounding the taylor
remainder series: Tighter bounds and new applications,” arXiv preprint
arXiv:2212.11429, 2022.

[26] C. Brix, M. N. Müller, S. Bak, T. T. Johnson, and C. Liu, “First three
years of the international verification of neural networks competition
(vnn-comp),” 2023.

[27] A. Abate, C. David, P. Kesseli, D. Kroening, and E. Polgreen,
“Counterexample guided inductive synthesis modulo theories,” in
International Conference on Computer Aided Verification, pp. 270–
288, Springer, 2018.

[28] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, no. 5, 1989.

[29] I. M. Mitchell et al., “A toolbox of level set methods,” UBC Depart-
ment of Computer Science Technical Report TR-2007-11, 2007.

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

	Abstract
	Introduction
	Motivation
	Research Questions
	Contribution

	Related Work
	Safe rl without Guarantees
	rl with Safety Encouragement
	cmdp

	cl
	Reachability Analysis
	Control Barrier Function

	Neural Network Verification
	Bound the nn
	Compute Lipschitz Constant and Bound Jacobian
	ncbf Verification

	Problem Formulation
	Preliminaries
	ncbf

	Neural Control Barrier Function Training and Verification
	Learning a Neural Control Barrier Function
	Verifying the Learned Neural Control Barrier Function
	Branch and Bound Verification-in-the-loop Training

	Results
	Experimental Setup
	Inverted Pendulum
	2D Navigation Task
	Training Configuration

	Verification and Efficiency
	Size of Safe Set
	Impact of Nominal Controller
	Impact of nn Architecture

	Application of Neural Control Barrier Functions to Safe Policy Learning

	Conclusion
	Summay
	Limitations and Future work
	Scalability
	Safety in Real World
	Optimality

	References
	Background
	Common Terminologies
	System Model
	Reward Function
	Safety Constraints

	cmdp
	Hamiltonian-Jacobian Reachability Analysis
	Control Barrier Function
	Model Predictive Control

	Published Paper

