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Abstract

Background: Array comparative genome hybridization (aCGH) provides information about
genomic aberrations. Alterations in the DNA copy number may cause the cell to malfunction,
leading to cancer. Therefore, the identification of DNA amplifications or deletions across tumors
may reveal key genes involved in cancer and improve our understanding of the underlying biological
processes associated with the disease.

Results: We propose a supervised algorithm for the analysis of aCGH data and the identification
of regions of chromosomal alteration (SIRAC). We first determine the DNA-probes that are
important to distinguish the classes of interest, and then evaluate in a systematic and robust scheme
if these relevant DNA-probes are closely located, i.e. form a region of amplification/deletion.
SIRAC does not need any preprocessing of the aCGH datasets, and requires only few, intuitive
parameters.

Conclusion: We illustrate the features of the algorithm with the use of a simple artificial dataset.
The results on two breast cancer datasets show promising outcomes that are in agreement with
previous findings, but SIRAC better pinpoints the dissimilarities between the classes of interest.

Background

Genomic alterations in DNA copy number are important
events in cancer development [1]. A tumor suppressor
gene can be disabled by the physical loss of the gene, or
similarly an oncogene may be over-expressed via the
amplification of the region where it is located. The identi-
fication of chromosomal aberrations is, therefore, a pow-
erful instrument in studies of cancer. It may suggest target
genes for new drugs or shed light on the mechanisms
which regulate the response to therapies [2-4].

The first approach to search for copy number alterations
in CGH has been made by Kallioniemi et al. [5] using met-
aphase chromosomes. The extensions of this technique
employ array technology to perform a high resolution
scan of the genome. As reviewed by Pinkel et al. [3], sev-
eral array CGH (aCGH) techniques have been developed.
The spotting technology makes use of BAC clones (100 -
200 kb), cDNA clones (~100 - 1000 bp) and lately oligo-
nucleotides (30 - 100 bp). More recently, in-situ technol-
ogies synthesize small oligonucleotides directly onto the
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array. Since the oligos can be a few tens bp long, higher
resolution are reached, if a good coverage of the genome
is adopted.

An important challenge to analyze aCGH data is to find
the aberrated chromosomal regions specific to the prob-
lem under study, e.g. to distinguish between subtypes of
cancer. In order to reach this goal, three groups of
approaches can be found in the literature. The first group
of approaches uses only the aCGH data. First they identify
the amplifications/deletions in each sample individually,
and then search for the common aberrations between the
samples. The identification per sample of chromosomal
regions of aberration is a task in itself that has been
approached in several ways. The simplest solution is the
application of a threshold. The DNA-probes (BAC clones,
cDNA clones or oligonucleotides) which exceed the
threshold are considered amplified/deleted [6-9]. The
choice of the threshold is a very critical parameter. More-
over, the threshold methods have the limitation that they
do not take into account the spatial location of the DNA-
probes. Since amplicons (i.e. regions that are amplified in
a sample) are commonly assumed to involve more than a
single DNA-probe, the spatial position is an important
factor. Several more complex algorithms have been devel-
oped to identify, per sample, the aberrated regions in
more robust ways. Lai et al. [10] reviewed eleven different
methods available in the literature. Numerous segmenta-
tion methods have been proposed to divide the aCGH
profile in piece-wise constant segments, and a likelihood
function is used to estimate the model parameters from
the data. For example, Picard et al. [11] modeled the
aCGH profile with a random Gaussian process and intro-
duced an adaptive penalized likelihood to estimate the
segments and their locations. Jong et al. [12,13] proposed
a genetic algorithm to maximize the likelihood function.
A different approach was introduced by Wang et al. [14].
They identified the regions of amplification/deletion via a
hierarchical clustering along the chromosome.

The biologically relevant aberrations are not the ones that
characterize a single sample, since these can be the conse-
quence of the genomic instability of the particular tumor.
The more interesting aberrations are the ones shared by
many samples, ideally by all the samples in the same class.
Previous studies combined the information of the per
sample aberration by looking at the frequency of patients
that carry the aberration [6,8,14-17]. Again a threshold on
the minimal frequency is chosen. For example, Fridlyand
et al. [15] require the aberrations to be present in more
than 50% of one class and less than 30% of the second
class, whereas Hyman et al. [16] demands that the aberra-
tion be present in at least two specimens. These
approaches have in common that the class information is
taken into account only in the second stage of the analy-
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sis, i.e. when computing the aberration frequency across
the samples. In the first phase also the aberrations com-
mon to more classes are considered, even if they are not of
interest for the study. This introduces an extra parameter
when evaluating the significance of the aberrations to dis-
tinguish the classes of interest. Recently, Diskin et al. [18]
proposed a more complex and systematic way to evaluate
the significance of aberrations across samples. However,
they require the input data to be discretized per sample
into amplifications and deletions. This step can be per-
formed using one of the mentioned above methods, but
makes the results dependent on the particular approach
chosen for discretization.

A second group of approaches to detect aberrations across
samples uses only the gene expression data together with
the chromosomal location of the genes. The assumption
is that an amplification directly affects the expression of
the genes. Therefore, the genes in that region should have
a detectable common over-expression. Similarly, the
genes located in a deletion would have a detectable under-
expression. Furge et al. [19] applied the binomial test per
sample on the genes within a given window size. In order
to cover the whole genome, the window is slid across the
genome, performing a test at fixed intervals. The z-scores
of the test for a particular location are averaged across sev-
eral window sizes and a threshold is chosen. The locations
above/below the threshold are identified as regions of
chromosomal aberration. Levin et al. [20] applied a Pois-
son model to the expression data and incorporated the
genomic location in their model-based scan statistic.
These results are compared per sample with the aCGH
data. Yiet al. [21] used a sliding window size of 5 genes to
test the significance of the region according to two scores,
which account for the homogeneity of behavior in the
window and the power of the genes in discriminating the
classes of interest. Dressman et al. [22] observed that the
genes over-expressed shared the same location, hypothe-
sized an amplification and validated their findings with
PCR. These studies show interesting examples of aberra-
tions identified using the transcriptome data only. How-
ever, the assumed strong correlation of aCGH and
expression could not be detected by other studies [17,23-
25]. Since the alteration in expression may be due to
diverse mechanisms, the potentially underlying chromo-
somal aberrations would need to be verified either by PCR
or FISH, if the number of loci to be tested is tractable, oth-
erwise by aCGH data. The advantage of the aCGH tech-
nology arises in the genome-wide coverage of the analysis.

The third group of approaches combines aCGH and
expression data to detect regions of chromosomal aberra-
tion. The SLAM algorithm (Adler et al. [26]) is a prime
example of this group. First the SAM analysis [27] is
applied to the aCGH data in order to identify the DNA-
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probes which distinguish the two classes. Then the focus
is on the DNA-probes that are correlated with the expres-
sion data. Based on the observation that many of them
were on the same chromosome arm, the hyper-geometric
distribution was used to test the significance of that arm.

Inspired by the work of Adler et al. [26], we propose a
supervised procedure to identify chromosomal regions of
aberration using solely aCGH data. We use the SAM anal-
ysis to determine the "relevant” DNA-probes, i.e. the
DNA-probes that distinguish the classes of interest. While
Adler et al. [26] evaluated only a single location chosen in
an ad hoc fashion, we build a systematic search to test the
whole genome. We adopt a sliding window approach sim-
ilar to the one proposed by Furge et al. [19]. More specifi-
cally, we apply a hyper-geometric test to window sizes of
different length, and test the significance of the number of
relevant DNA-probes in those windows. Our algorithm
belongs to the first group of approaches, since it uses only
aCGH data. However, it differs from the typical
approaches in this group in the following ways. First of all
it focuses only on the aberrations specific to the problem
of interest, by exploiting the class labels in the first step
(recognizing relevant DNA-probes). Importantly, no dis-
cretization, smoothing or segmentation algorithms are
applied to the aCGH data. This leads to the advantage that
the data is not altered based on the preconceived models
that these algorithms presume. Moreover, we also avoid
the optimization of the parameters that these models usu-
ally require (avoiding results sensitive to these choices).
The use of the hyper-geometric test corrects for the non-
uniform background distribution of the DNA-probes.
This is particularly important since the DNA-probes are
not equally spaced along the genome. In this way we
build a robust algorithm to identify areas of interest spe-
cific to the problem under study. We illustrate the benefit
of our procedure on an artificial dataset, and show the
results on two breast cancer datasets.

Algorithm description

Figure 1 illustrates our algorithm SIRAC (Supervised Iden-
tification of Regions of Aberration in aCGH data). A
detailed description is given in Appendix 1. An aCGH
dataset D and its label set y provide the starting point. The
procedure consists of three steps.

STEP 1. We identify with the SAM analysis [27] the DNA-
probes which discriminate between the classes of interest.
We call these DNA-probes the "relevant” probes. In Figure
1 (Step 1) the relevant DNA-probes are depicted on the
genomic location. Each probe is plotted with two circles
of different color representing the median value of the
samples in the two classes.
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STEP 2. We test, in a systematic way, whether the number
of relevant DNA-probes in a region is higher than
expected by chance. For this purpose we use the hyper-
geometric test for a genomic position, and test whether
the fraction of relevant DNA-probes in the window of
length 2w represents a significant enrichment. By sliding
the window of observation along the genome, shifting it a
single DNA-probe position at a time, we obtain the test
results for all positions. This procedure can be done effec-
tively since the genomic locations where the test presents
uncertainty, and therefore, needs to be computed, are
only a subset of all genome positions. The locations are
dependent on the positions where the relevant DNA-
probes are situated. More precisely, for a given window w,
the test needs only to be performed for three positions: a
window centered on the location [ of the DNA-probe
itself, and two windows centered at ] - w and I + w, i.e. cen-
tered at the end points of the first window. Consequently,
tests are done for the three windows [I - 2w, I], [I - w, | + w]
and [/, I + 2w] around the relevant DNA-probe. In total 3k
tests are performed, where k is the number of relevant
probes. This solution is computationally fast and allows a
feasible multiple testing correction while providing the
coverage of all genome positions relevant to the test. A
Bonferroni correction for multiple testing is applied by
multiplying the p-value of each test by the number of tests
performed (3k). Note that the Bonferroni correction is a
rather conservative correction, since the windows of
observation of different DNA-probe may not be inde-
pendent.

In order to identify the regions of aberration, we interpo-
late the corrected p-values of the hypergeometric test
using the maximum value; i.e. given two successive loca-
tions with corrected p-value a and b, the base-pairs posi-
tioned between those locations are assigned the
maximum of a and b. The base-pairs of the genome where
the corrected p-value is smaller than 0.05 are considered
significantly enriched for genomic aberrations. This step is
repeated for different window sizes in order to detect both
small and large aberrations. An illustrative result is shown
in Figure 1 (Step 2). On the vertical axis are the different
window sizes, the blue lines along the genome (the hori-
zontal axis) show the regions judged significant by the
algorithm.

STEP 3. The regions of aberration are identified based on
a consensus between the results of the different window
sizes. As illustrated in Figure 1 (Step 3), the number of
window sizes for which a location is judged significant by
the hyper-geometric tests are shown on the vertical axis.
The "relevant” regions are the locations judged significant
by at least s window sizes (the result for s = 9 is depicted
by the red curve in Figure 1, Step 3). The researcher can
decide to accept relevant regions as those in which any of
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Input: aCGH dataset with n samples, p clones, and n labels for a two-class problem.

Step 1 The DNA-probes
discriminate the two classes.
identified by SAM analysis.

\ 4

Step 2 A window is slid over the
genome. Enrichment of relevant
probes within each window is
determined using a hypergeometric
test. Significant windows at different
scales (window sizes) are selected.

¥

Step 3 The genome locations that are
judged significant in at least s
different scales are identified as
relevant regions. (s=9).
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Output: list of chromosomal regions of aberration.

Figure |

Description of the SIRAC algorithm. lllustration of the algorithmic steps of SIRAC. The corresponding results for the NKI
dataset are shown. The data is labeled according to the cancer subtypes introduced by Sorlie and Perou [30, 31, 32]; in this

example the label Luminal A subtype versus all others subtypes is used. In Step | the relevant DNA-probes are selected. Each
DNA-probe is plotted on the genomic location with two circles of different color representing the median value of the samples
in the two classes. In Step 2, the vertical axis represents the different window sizes, the blue lines along the genome (the hori-
zontal axis) show the regions judged significant by the algorithm. In the final step, Step 3, the number of window sizes for which
the location is judged significant by the hyper-geometric test are shown along the vertical axis. The relevant region selected

when s = 9 is highlight by the red curve.

the window sizes showed a significance, or may be more
strict and demand the significance across several scales.
The regions of chromosomal aberration are provided as
output.

Complexity and scalability issues

Our real datasets are BAC aCGH, with ~ 3000 DNA-
probes. The complexity of the SIRAC algorithm is 1) O (N
log(N)), where N is the total number of elements (DNA-
probes) in the array (since the SAM analysis has to be per-
formed for each single probe), and 2) O (k), where k is the
number of relevant elements selected by SAM (since the
hypergeometric test is applied three times per relevant
probe). Therefore, SIRAC can be used also with higher res-
olution aCGH, such as the cDNA or the oligo arrays. To
give an indication of the time demands we have evaluated

the run time of SIRAC on our computer server (an Intel
Xeon 2.33 GHz with 8 G of memory). The run time for the
NKI dataset with 2952 DNA-probes, and 692 relevant
DNA-probes was 50 seconds; while SIRAC took 401 sec-
onds to run on a cDNA array dataset with 30601 DNA-
probes, 2532 of which were judged relevant by the SAM
analysis.

Experimental results

Set-up

We illustrate our algorithm on an artificial dataset,
described in the following Section and apply our method
to two breast cancer datasets. The first dataset (NKI) is
composed by 67 patients and 3219 BAC clones (DNA-
probes). The samples are a selected series of the 295 breast
cancer samples described in [28], and the BAC platform is
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discussed in [29]. The second dataset (Fridlyand) contains
67 samples and 2464 BAC clones, as described in [15].

In our proposed algorithm there are a few choices that the
researcher has to make. A first important decision con-
cerns the number of relevant DNA-probes. We choose to
be conservative and require that the selected DNA-probes
have a false discovery rate smaller than 0.005. This
ensures that we include a very small fraction of false posi-
tive DNA-probes in further steps. Another parameter is the
range of window sizes that are used to probe the genome.
Since the average space between the clones is 1 Megabase
(Mb), the minimum window of observation is set to 1
Mb. The maximum window size is fixed to 24 Mb because
this is roughly half the length of the shortest chromo-
some. In this way, we enforce that the largest window
does not always cover both the p and q arm of the chro-
mosome.

Results
Artificial dataset

The artificial dataset is created using the clone distribution
of the 207 clones of Chromosome 1 on the NKI array. The
amplitude of the DNA-probes is drawn from a normal dis-
tribution with zero mean and unit variance N (0, 1). We
chose to have two classes with 35 samples each. In Class 1
we simulate an amplification of amplitude m spanning u
DNA-probes situated between positions I, and [,. The
remaining DNA-probes have an average amplitude of
zero. For Class 2 all samples have an average amplitude of
zero for all DNA-probes. Zero mean, unit variance Gaus-
sian noise is added to all samples across all DNA-probes.
More formally, for a DNA-probe p at position ! in a sample
of class 1 the following holds:

3 N(m,1),
p(l) = { O,

The samples in the other class are all drawn from the nor-
mal distribution N (0, 1). The artificial dataset provides
us with a ground truth which allows us to investigate the
sensitivity and specificity of the algorithm and the effects
of different window sizes. We applied our algorithm to

I, <1<, (1)

otherwise.

amplifications with a range of amplitudes (m € {0.2, 0.4,
0.6, 0.8, 1}) and widths (u € {2, 4, 8, 12, 16, 20, 24, 28,
32} megabases (Mb)). Given the region of amplification
found by the algorithm, the DNA-probes located in this
region that also belong to the interval between positions
l;and 1,are defined as true positive, while the DNA-probes
outside the interval are denoted false positives. Similarly,
for the DNA-probes outside the region of amplification
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found by the algorithm, true negatives are the DNA-
probes outside the interval between positions I, and I,

while false negative are the DNA-probes included in this
interval. In general, the same trend for specificity and sen-
sitivity as a function of m is observed. Figure 2 shows the
average sensitivity and specificity for 10 different instanti-
ations of the artificial dataset with the amplitude of the
amplification m = 0.8. On the horizontal axis are the dif-
ferent window sizes used to detect the amplification. The
different color bars show the results for the different
amplification lengths, u, adopted. In the upper plot the
sensitivity is shown. Let us focus on the amplification of
length 2 Mb (dark blue bar). It can be seen that the maxi-
mum sensitivity is reached for window sizes of length 2
and 4 while the sensitivity decreases for larger window
sizes. Similarly the amplification of length 16 Mb (green
bar) is detected with the maximum sensitivity of 1 by a
window size 18 Mb. Consequently, smaller window sizes
detect small amplifications better, while larger window
sizes more accurately reveal the larger amplifications. This
behavior highlights the benefits of using window sizes of
different lengths, to detect both large and small chromo-
somal aberrations. As expected, the specificity is maximal
for small window sizes and decreases when larger window
sizes are used. This behavior is due to the fact that wider

Sensitivity

Speecificity

Window sizes (Mb)

Figure 2

Artificial dataset, sensitivity and specificity across dif-
ferent amplification lengths. Sensitivity and specificity of
the different window sizes for 10 instantiations of the artifi-
cial dataset with amplification amplitude m = 0.8. For each
plot, on the horizontal axis are the distinct window sizes
used to detect the amplification. The different color bars
show the results for the individual amplification lengths u
adopted.
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window sizes include a larger number of false positives
DNA-probes than the smaller windows sizes.

In our algorithm, we combine the different window sizes
in order to obtain a unique region of amplification, by set-
ting the parameter s. A location is amplified if it is judged
amplified in s window sizes. We also investigated the
effect of the parameter s. The top four plots of Figure 3
illustrates the sensitivity and specificity for two values of
the parameters, i.e. s € {2, 9}. We choose s = 2 as a loose
constraint, while the more strict value of s = 9 requires the
consensus of two-thirds of the window sizes. For each
plot, the horizontal axis depicts the different amplifica-
tion lengths, u used, and the vertical axis the amplitudes
of the amplification, m. The colors code the value of the
sensitivity and specificity from 0 to 1. The small amplifi-
cation of m = 0.2 is very difficult to detect, therefore the
sensitivity is very low regardless of the length of the ampli-
fication (bottom row of blue squares in Figure 3(a)).
When the amplification amplitude increases, the sensitiv-
ity rises as well. If s = 9 fewer extremely large and small
aberrations are not detected compared to s = 2, in other
words, the sensitivity is lower when s = 9 compared to s =
2. However, at the same time, the specificity increases
(Figure 3(d)).

In order to evaluate the control of the error rate, we com-
puted the False Positive Rate (FPR), which is defined as
FP
FP +TP
tives and TP the number of True Positives. Figure 3(e) and
3(F) shows the FPR for s = 2 and s = 9 discretized into 10
equal sized intervals of size 0.1. We can observe that when
s =9 the FDR is mostly below 0.1, while the control of the
FDR is not so strict when s = 2. However, the improved
control of the FDR is achieved at the cost of the sensitivity.
In the following experiments with real data, we choose to
use the less stringent constrain of s = 2 to maximize the
sensitivity. A further prioritization of the DNA-probes in a
region can take into account the "strength" of the amplifi-
cation. For example, the list of DNA-probes may be prior-
itized according to the number of window sizes in which
each DNA-probe is judged aberrated. In this way, the
strong aberrations can be differentiated from the weak

ones.

, with FP representing the number of False Posi-

The NKI dataset

Sorlie and Perou [30-32] introduced the distinction of
breast cancer into five different subtypes (Basal, ERBB2,
Luminal A, Luminal B, Normal-like) based on the gene
expression of the so called intrinsic genes. These genes were
selected as the genes that had significantly greater varia-
tion in expression between different tumors than between
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paired samples of the same tumor. Using these genes, the
profile of a centroid was obtained for each subtype. These
centroids, in combination with the gene expression of 295
breast tumors [28] were employed to assign each sample
in the NKI set to one of the subtypes based on its correla-
tion with the centroid profiles across the intrinsic genes.
In the NKI data, 21 out of 67 samples were labeled as
Basal, 10 as ERBB2, 21 as Luminal A, 12 as Luminal B and
3 as Normal-like.

Recently, Bergamaschi et al. [33] studied the genomic
aberrations of the different subtypes on a aCGH dataset.
We applied our method to the NKI dataset and compare
our findings to the results of Bergamaschi et al. [33]. More
specifically, we applied the SIRAC algorithm four times,
each time analyzing one subtype against the rest. The Nor-
mal-like subtype was not considered in this analysis due
to the small number of samples.

Figure 4 shows the results of Step 1 and 2 of the SIRAC
algorithm for the four different subtypes in the NKI breast
cancer dataset. In the top plot of each figure the relevant
DNA-probes detected by the SAM analysis are displayed.
For each relevant DNA-probe two circles are plotted at its
location on the genome, representing the median of the
class of interest (Basal, ERBB2, Luminal A or Luminal B)
and the median of the remaining samples. From these
plots it is visible how some locations are significantly
more densely populated by relevant DNA-probes than
others. The lower plot of each subtype highlights the
regions of aberration detected by SIRAC, color coded with
the direction of the aberration. Green is used for an ampli-
fication, red for a deletion. Since our algorithm also high-
lights regions where the aberrations are not in the samples
of the class of interest, when this occurs the region is
depicted in gray, e.g. Chromosome 16 for the ERBB2 sub-

type.

Figure 5(a) summarizes the aberrations found on the p or
q chromosomal arms of the different subtypes when s = 2.
The same color coding used in the lower plots of Figure 4
is applied to the chromosome arms, i.e. red specifies a
deletion, green an amplification, and gray indicates that
the aberration was not in the class of interest. Note that
the resolution of SIRAC is neither restricted to chromo-
some arms nor to cytobands. The representation per chro-
mosomal arm given in Figure 5 is adopted only for the
sake of conciseness. The Basal subtype is associated with
the largest number of aberrations, with deletions on
Chromosomes 4, 5, 14 and 15, and amplifications on
Chromosomes 6, 10 and 12. The ERBB2 subtype has only
an amplification on the q arm of Chromosome 17, cover-
ing the genomic position where the ERBB2 gene is
located. This is a known aberration, and the results sug-
gest that this is the only aberration that differentiates this
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NKI dataset, SIRAC results of Step | and 2 for the different cancer subtypes. Results of Step | and 2 of the SIRAC
algorithm for the four different subtypes in the NKI dataset. In the top panel of each figure the relevant DNA-probes detected
by the SAM analysis are displayed on their genomic location (horizontal axis). For each relevant DNA-probe two circles are
plotted at its location, representing the median of the class of interest (Basal, ERBB2, Luminal A or Luminal B) and the median
of the remaining samples. In the bottom plot, the regions identified by the algorithm as significantly aberrated are shown for all
genomic locations (horizontal axis) with a line for each window width used (vertical axis). The length of the line indicates the
region on the genome that is significantly enriched with relevant DNA-probes. The color indicated whether the aberration is
an amplification (green) or a deletion (red) in the class of interest, or an aberration in the other samples (gray).
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Figure 5

NKI dataset, summary tables results and comparison
with Bergamaschi et al. Summary of the aberrations per
chromosome arm for the four different subtypes (Basal,
ERBB2, Luminal A or Luminal B). The numbers in the top of
the tables denotes the chromosomes. A arm is indicated with
a red color when a significant region is found on that arm
that shows a deletion of the DNA-probes of interest. Simi-
larly, green indicates amplification. The gray boxes indicate
that the aberration was not present in the class of interest
but in the rest of the samples. The top and the bottom tables
show the aberrations found with the SIRAC algorithm on the
NKI dataset for two different values of the FDR, i.e. FDR <
0.005 and FDR < 0.05 respectively. The middle table
presents the results of Bergamaschi et al. [33] on their breast
cancer dataset.
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subtype from the other samples. The fact that this known
aberration is found, also serves as a positive control for
the SIRAC algorithm. The Luminal A subtype is character-
ized by a strong amplification on Chromosome 1 and a
deletion on Chromosome 16. The Luminal B has less pro-
nounce aberrations on Chromosomes 1, 8, 12 and 20.

We compared our findings with the conclusions of Berga-
maschi et al. [33] that also searched for aberrations asso-
ciated with subtypes on a different aCGH dataset. They
first used the CLAC algorithm [14] to determine per sam-
ple the chromosomal gains and losses, then discretized
the information per cytoband. Finally they use the SAM
analysis to identify the aberrations correlated with the
class labels. The aberrations found by them are summa-
rized in Figure 5(b). In the Basal subtype, 6 of the 7 aber-
rations found by applying SIRAC to the NKI dataset are
also in their list. The ERBB2 subtype only has the amplifi-
cation on Chromosome 17, as in our findings. In the
Luminal A subtype the strong amplification on Chromo-
some 1 is present while the one on the p arm of Chromo-
some 16 only reaches significance for an FDR = 0.05. In
fact, as it is visible from Figure 4(c) , on the q arm of this
chromosome many relevant DNA-probes show a dele-
tion, while fewer DNA-probes on the p arm, although
present, are not significant. In the Luminal B subtype, one
of the three regions found by us is also present in Berga-
maschi et al. [33] results.

Some of the differences between our results obtained on
the NKI dataset and Bergamaschi results can be explained
by the fact that our algorithm targets only the aberrations
specific for a given class when compared to the rest of the
samples. Therefore, we don't have the same aberrations
for two subtypes. This is, for example, the case for the
amplification on Chromosome 17 that is present both in
the Basal and ERBB2 subtype for Bergamaschi et al. [33]
while it is only a feature of the ERBB2 subtype in our
results. Similarly, the amplification on the q arm of Chro-
mosome 1 is a strong aberration only in the Luminal A
subtype in the NKI dataset, while Bergamaschi et al. [33]
reported it for both the Luminal A and the Basal subtypes.
Another aspect to take into account is that we choose an
FDR < 0.005 for the identification of the relevant DNA-
probes by the SAM analysis. This rather strict value limits
the number of false positives, and enables us to highlight
the stronger aberrations. We repeated the experiments
with a less strict constraint, i.e. using a FDR smaller than
0.05 or 0.1. The results for the FDR < 0.05 are shown in
Figure 5(c). Four more aberrations were detected in the
Basal, two of which are present in Bergamaschi et al. [33]
(the amplification on Chromosome 7, and the deletion
on the q arm of Chromosome 12). The ERBB2 still shows
only the amplification on Chromosome 17. In the Lumi-
nal A subtype we detected one more amplification on the
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p arm of Chromosome 16, in agreement with the results
of Bergamaschi et al. [33]. On the other hand, we find a
few more aberrations for the Luminal B subtype, but these
did not match the findings of Bergamaschi et al. [33].

Overall, given the differences in the datasets and in the
methodology used, we can see striking similarities in the
subtype characterization of the cancer. Especially the
Basal, the ERBB2 and the Luminal A subtypes seem better
defined, while the Luminal B type, seems rather weak, and
we advocate that a better definition of this subtype needs
to be established.

As stated earlier, we simply chose to represent the detected
aberrations in terms of chromosome arms in order to ease
the comparison with Bergamaschi et al. [33]. However,
such a representation does not highlight a very useful fea-
ture of the SIRAC algorithm: the scale space. The scale
space allows evaluation of aberrations at different
genomic resolutions, and the number of scales across
which an aberration remains significant can also be
employed to judge the importance of a region, for a fixed
SAM-FDR. By employing this feature, one can zoom in on
potentially interesting regions, where the aberration has a
larger average amplitude, and is of medium length (see
Figure 1 (Step 3)). When increasing the number of scales
(s) across which an aberration should be significant, the
number of DNA-probes in significant regions across the
genome is typically reduced strongly. More specifically if,
for the NKI dataset, s is changed from s = 2 to s = 9, the
number of DNA-probes in significant regions decrease
from 174 to 56 for the Basal subtype (68% reduction), 76
to 31 for ERBB2 (59% reduction), 135 to 86 (36% reduc-
tion) for Luminal A and 33 to 7 (79% reduction) for
Luminal B. Therefore, if only copy number is employed to
identify putative regions (genes), the scale space analysis
provides a powerful tool to reduce the list of genes puta-
tively involved in the studied process.

The Fridlyand dataset

Recently, Fridlyand et al. [15] analyzed the aberrations of
67 breast cancer samples. First they smoothed each sam-
ple using Circular binary segmentation [34], and defined
chromosomal aberrations per sample. Based on the clus-
tering of the smoothed data they identified three sub-
types, i.e. the 1q164, the Complex and the Mixed amplifier
subtypes. The 14164 subtype is named after the only copy
number aberrations detected, i.e. a gain on 1q and a loss
on 164. The Complex subtype is characterized by many low
level copy number alterations, mainly ER negative
tumors, and worse outcome than the others subtypes. The
Mixed amplifier subtype tumors were both ER positive and
ER negative and did show several aberrations. They ana-
lyzed the aberration frequency in each subtype in order to
find patterns of chromosomal changes across samples.
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We applied our algorithm to their data, analyzing each
subtype against the remaining samples. Figure 6 summa-
rizes our findings. We identified a loss on the q arms of
Chromosomes 16 and 4 for the 1q16q and the Complex
subtypes respectively, and the amplifications on Chromo-
somes 8, 16 and 20 for the Mixed amplifier subtype. The
comparison with the conclusions of Fridlyand et al. [15] is
not straightforward, since their goal was not to identify
aberrations specific for one class. Their results consist in a
frequency plot for each subtype of the copy number
changes more frequently associated with it. More specifi-
cally, they show the frequency of the clone aberrations
present in more than 50% of the samples of one subtype
and in less than 30% of the samples in the other subtypes.
This illustration is not clearly pointing out the differences
between subtypes, since often a percentage of the same
aberration is present in two or more subtypes. However,
our findings show correspondences with the results of
Fridlyand et al. [15]. They define the class 1q16q as exhib-
iting an amplification on Chromosome 1 and a deletion
on Chromosome 16. We only detect the deletion on
Chromosome 16. We think that the aberration on Chro-
mosome 1, which is not detected by our algorithm, may
be not specific for this class. From the data it is apparent
that this amplification is present in all samples, i.e. not
specific for the 1q16q subtype. Other aberrations detected
by our algorithm reflect a pattern in the frequency plot of
Fridlyand et al. [15], such as for the deletion in 4q of the
Complex subtype and the amplification in 8¢ of the Mixed
amplifier subtype. In other cases, such as the amplifica-
tions on Chromosomes 16 and 20 in the Mixed amplifier
class, our findings are not reflected in the frequency plot
of Fridlyand et al. [15]. In conclusion, the results of SIRAC
and Fridlyand et al. [15] exhibit partial overlap. The
advantage of our algorithm is that it better highlights the
differences between subtypes and clearly points out the
specific chromosomal aberrations.

1[2]3|4|5[6[7[8[9[10[11]12]13|14[15]|16/17|18|19|20|21|22|23
; ]
p
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Figure 6

Fridlyand dataset, summary tables results. Summary of
the aberrations per chromosome arms for the Fridlyand data-
set [15]. The deletions are depicted in red, and the amplifica-
tion in green, the gray boxes indicates that the aberration
was significant not in the class of interest but in the rest of
the samples.
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Discussion and conclusion

We have presented a method to identify aberrant chromo-
somal regions that are specific for the problem under
study. Our emphasis is not on the identification per sam-
ple of a chromosomal gain or loss, but we strive to evalu-
ate what makes two classes different from each other, and
what are the aberrations that distinguish them. We also
want to limit the number of preprocessing steps, in order
to reduce the set of inevitable parameters to be tuned. This
motivated us to avoid the characterization per sample of
the DNA-probes being amplified or deleted, which is
instead the necessary input data for the STAC algorithm
[18] and the approach followed by Fridlyand et al. [15].
We chose to use the raw data as input and assumed that a
DNA-probe amplified/deleted in one class and not in the
other is selected as significant by the SAM analysis. Of
course the researcher has to choose the appropriate false
discovery rate. This decision influences the number of
DNA-probes preselected as relevant. This is an important
starting point of our algorithm. We opted for a low false
discovery rate for all the problems analyzed. The different
number of relevant DNA-probes selected in the distinct
cases already gave us an indication of the number and the
strength of the chromosomal aberrations. For example in
the NKI dataset the largest number of relevant DNA-
probes was present in the Basal subtype, while the ERBB2
class was associated with only a few DNA-probes mainly
on Chromosome 17.

Our algorithm is designed to identify the copy number
alterations in the aCGH data. The core of the algorithm
resides in the identification of the regions of chromo-
somal aberration. We assumed that an aberration involves
more than a single DNA-probe. Therefore, we tested in a
systematic manner the candidate regions, i.e. the locations
in the vicinity of the DNA-probes identified by the SAM
analysis. The use of different window sizes allows us to
detect different lengths of copy number changes and not
to miss aberrations in regions sparsely covered by the
aCGH probes. Since for the samples in the NKI data also
the expression is available, we tested if similar results
could be obtained by applying our algorithm to the
expression directly, as Furge et al. [19] did. However, the
assumption that an over/under expression should involve
more than a single gene here does not hold anymore.
Even if a region is amplified, not all genes may be active
and, therefore, differentially expressed with respect to the
reference. Moreover, while in the aCGH data the only
cause of aberration resides in the copy number variation,
the variance in the expression is due to multiple factors. In
general, we observed in our expression dataset that the rel-
evant genes selected by the SAM analysis were scattered
across the genome and, therefore, no clear regions of sig-
nificance were identified. This result further indicates that
the detection of genomic aberration using gene expression
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datasets should be performed with caution, and results
should always be validated with other tests, such as FISH
or PCR, if not with genomic copy number data itself.

Instead, the expression data can be used to perform a post-
processing step on the algorithm applied to the aCGH
data. Once the aberrated regions have been identified, the
expression data allows for a further analysis of the genes
present in these regions. For example, the genes can be
prioritized according to the correlation between the
expression and the aCGH data, or according to the ability
of each gene to distinguish between the classes of interest.
This is especially relevant since we expect that, for
instance, not all genes in a region of aberration will be
active, some may be silent and not contributing to the
mechanism of cancer. A selection can be done based on
this additional information source, resulting in a smaller
list of potentially interesting genes to be further analyzed.
The benefits of the use of the expression data are exempli-
fied by the ERBB2 subtype in the NKI dataset. The genes
present in the amplified region of Chromosome 17 were
ranked according to the product of the p-value of the t-test
(computed on the gene expression and class labels) and
the p-value of the correlation between the expression of
each gene and its closest DNA-probe. The top two genes
are the ERBB2 gene itself and the GRB7, i.e. the growth
factor receptor-bound protein 7. This is expected since the
ERBB2 subtype is characterized by the amplification of the
ERBB2 gene, and the GRB7 is found to be over-expressed
and co-amplified with the ERBB2 gene [22,35,36]. There-
fore, a combined approach of SIRAC and the use of gene
expression is a powerful additional tool in the search for
marker genes.

In the SIRAC algorithm we first detect associations of sin-
gle probes with the class label, and then search for regions
that are enriched for class label associated probes. This is
advantageous especially when working with tumor sam-
ples. The heterogeneity of the tumors may lead to signals
for the aberrations smaller than the ones expected if the
sample cells were homogeneous. Therefore, amplifica-
tions/deletions with small absolute values may be of
interest as well, especially when they discriminate the
classes of interest. Several authors (e.g. Saramaki et al.
[37], Fridlyand and Chin et al. [15,38], and Nymark et al.
[39]) have recently pointed out that even low-level copy
number aberrations may have significant effects on the
gene-expression and, therefore, on the cell functioning
and tumor development.

The error rate control of SIRAC is performed in two differ-
ent steps. First the null-hypothesis being constructed dur-
ing the permutation steps of the SAM procedure, second,
the Bonferroni correction for multiple testing applied to
the p-values of the hypergeometric test. The artificial
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experiment illustrates how the dependencies between
these two steps may lead to an anti-conservative control of
the error rate. The choice of the parameter s, which com-
bines the outcomes of different window sizes, plays an
important role. The artificial experiments suggests that the
stricter the value, e.g. s = 9, the better the control of the
error rate. However, this is achieved at the expenses of the
sensitivity. Therefore, less conservative choices, e.g. s = 2,
may be used. In this case, the p-values of the hypergeo-
metric test need to be interpreted with caution. The SIRAC
algorithm, however, provides useful details, such as the
number of window sizes in which each DNA-probe was
judge significant, that can be used to further prioritize the
regions. Moreover, if the expression data is available, fur-
ther validation of the aberrations may be performed by
investigating the correlation with the expression of the
genes in the identified region.

In conclusion, we focused on the identification of the
chromosomal aberrations that discriminate between the
classes of interest and proposed a robust algorithm for the
evaluation of their significance. Our algorithm does not
require preprocessing of the data such as discretization or
smoothing, and uses a limited number of parameters. Our
findings on the two breast cancer datasets are in agree-
ment with previous studies, and better highlight the dis-
similarities between the classes of interest.

Appendix
Algorithm 1 SIRAC: Supervised Identification of Relevant
Aberration in aCGH datasets

1: Input: dataset D, label set y, SAM parameters: d for the
desired false discovery rate and number of iterations I;
vector W with half the sizes of observation windows;
threshold t for the hyper-geometric distribution; mini-
mum number of windows sizes s for which the location is
judged significant.

2: Apply the SAM analysis with the given parameters d and
I to the labeled dataset D, y. A vector ] stores the indexes
of the relevant DNA-probes obtained.

3: Initialize variables: P = ones(|W|, 3|J|), stores the p-
value of the test; POS = zeros(|W]|, 3|J|) stores the location
where the test is applied.

4: Vw e W (for all window sizes)

5: Initialize: bon = 0; (count the number of tests per-
formed)

6: Vj €] (for all relevant DNA-probes)

http://www.biomedcentral.com/1471-2105/8/422

7: Determine position of the window centers C = [l -
w, U, + w] around the DNA-probe, with I the position of
the jth DNA-probe.

8 I Ch(li-w)= Ch(l) = Ch(l+w),with Chafunc-
tion that assigns the chromosome number of the corre-
sponding base pair location

9: Then

10: Initialize: H = ones(1, 3), (stores the test value for
the triplet position in C)

11: V ¢ € C (for all window positions)
12: h=2" H(i| Mk N) with:
13: x = number of relevant DNA-probes in the

window [c¢ - w, ¢ + w],

14: M = number of DNA-probes in the dataset D,
15: k = number of relevant DNA-probes in the
dataset D,

16: N = number of DNA-probes in the window |c
-w, ¢ +w.

17: He=1-h;

18: bon = bon+1; (update the counter)

19: End

20: Pw = H; (Pw is the p-value on row w and probe
triplet j);

21: POSw = C; (POSW stores the triplet window loca-
tion);

22: Pw=DPwx bon; (Bonferroni correction)
23: VI € G (all positions in the genome):
. _ w _ . .
24: EF = Zle , (F;= number of window sized where
the test is above the threshold t), with:
25:

N = |1 i3 [P ST Ve Qmax(Pe PPt ) <),
0, otherwise.
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26: Output: all locations with F;<s.

Availability and requirements
Project name: SIRAC

Project

home page: http://bioinformatics.nki.nl/soft

ware.php

Operating system(s): Platform independent

Programming language: Matlab
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