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Impact of Annotation Modality on Label Quality and
Model Performance in the Automatic Assessment of

Laughter In-the-Wild
Jose David Vargas Quiros , Laura Cabrera-Quiros , Catharine Oertel , and Hayley Hung

Abstract—Although laughter is known to be a multimodal signal,
it is primarily annotated from audio. It is unclear how laughter
labels may differ when annotated from modalities like video, which
capture body movements and are relevant in in-the-wild studies.
In this work we ask whether annotations of laughter are congruent
across modalities, and compare the effect that labeling modality has
on machine learning model performance. We compare annotations
and models for laughter detection, intensity estimation, and seg-
mentation, using a challenging in-the-wild conversational dataset
with a variety of camera angles, noise conditions and voices. Our
study with 48 annotators revealed evidence for incongruity in the
perception of laughter and its intensity between modalities, mainly
due to lower recall in the video condition. Our machine learning
experiments compared the performance of modern unimodal and
multi-modal models for different combinations of input modalities,
training, and testing label modalities. In addition to the same input
modalities rated by annotators (audio and video), we trained mod-
els with body acceleration inputs, robust to cross-contamination,
occlusion and perspective differences. Our results show that perfor-
mance of models with body movement inputs does not suffer when
trained with video-acquired labels, despite their lower inter-rater
agreement.

Index Terms—Action recognition, annotation, continuous
annotation, laughter, laughter detection, laughter intensity,
mingling datasets.

I. INTRODUCTION

LAUGHTER is traditionally associated to its characteristic
vocalization (ie. the sound of laughter). In research too, its

vocal manifestation has received the most emphasis.
Nonetheless, laughter is a multimodal phenomenon. Darwin

presented a curious depiction of excessive laughter: ”the whole
body is often thrown backwards and shakes, or is almost con-
vulsed; the respiration is much disturbed; the head and face
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become gorged with blood; with the veins distended; and the or-
bicular muscles are spasmodically contracted in order to protect
the eyes. Tears are freely shed.” [1, p.208]. This depiction makes
reference to multiple characteristic manifestations of laughter:
the facial movements of laughter, the full-body movements of
laughter, and the physiological changes of laughter.

Following this premise, works in social signal processing [2],
[3] have delved into the problem of automatically detecting
and classifying laughter from audio, video and audiovisual
recordings of its manifestations. Annotation is a key step in
these studies. The first step in annotation of naturally occurring
laughter usually involves the temporal localization, or segmen-
tation of laughter (from its context). Next, laughter segments or
episodes are categorized or otherwise rated. Functional or formal
categorizations are the most common, but no consensus coding
schemes exists for either of these tasks. Laughter intensity is also
a common variable of interest that has been rated in multiple
studies [4], [5], [6], [7], [8], [9], [10]. Mazzocconi et al. [11]
have linked laughter intensity directly to the meaning of laughter,
as an indication of the magnitude of a positive shift in arousal
caused by the laughable (the object of laughter) in the laughing
subject.

Nevertheless, the emphasis on the vocal manifestations of
laughter translates strongly to its annotation, where laughter has
most commonly been annotated from audio or audiovisual face
recordings, by third-party observers [12], [13], [14], [15]. Less
commonly, laughter has been annotated from body movements
alone, using video. This has been done in in-the-wild datasets
of mingling crowds recorded in real-life events [16], such as the
dataset in Fig. 1. In these datasets, audio recordings are com-
monly not available, due to the technical and logistic difficulty,
and privacy challenges when equipping each study participant
with a microphone. In-lab studies of the body movements of
laughter have also often opted for video-only annotation of
laughter, to align with the target task under study.

However, it is unknown if video labelling of laughter has
a relevant effect on annotation quality, and how annotations
acquired in this way differ from the more common audio-based
and audiovisual annotations. The same is true for audio-based
labeling: the benefits of including video at annotation time have
not been verified. In other words, the consequences of the choice
of annotation modality have received little attention in research.
Furthermore, it is unclear whether ratings of intensity of laughter
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Fig. 1. Screenshots from the four elevated views in our dataset of free-standing
interactions used in this work.

can be expected to be congruent across modalities, a question
with direct implications in the interpretation of laughter [11].

While inter-rater agreement is an important dimension of
annotation quality, higher annotation agreement does not neces-
sarily imply superior model performance. The question of how
annotation modality impacts model performance is therefore a
separate, yet also unexplored question.

Answering these questions is important both for the interpre-
tation of previous work focusing on a single modality, and for
informing annotation choices in future work. In this work, we
take a first step in that direction by studying laughter annotation
across modality conditions. First, we investigate how human
ability to detect, segment and estimate intensity of laughter
(three foundational tasks in laughter work) differ with and with-
out access to video or audio. Due to the difficulty of collecting
audio in in-the-wild mingling settings in particular [16], we use
an in-the-wild mingling dataset containing full-body motion
information. Data was collected during a real-life event, and
contains naturally-occurring laughs (Fig. 1). Body movements
of laughter (eg. shaking, swaying, arm and feet movements)
can be observed in the videos, but access to facial features is
limited due to occlusion. These factors, along with the diversity
of camera angles, and distances to the camera make the in-the-
wild mingling setting one of the most challenging scenarios for
laughter perception, especially from video. It should however be
noted that our dataset showcases a specific range of conditions
and our answers may not generalise to other scenarios with, for
example, more consistent access to facial or body movements.

Second, we study how labels acquired under different modal-
ity conditions affect the performance of machine learning mod-
els for laughter detection, segmentation and intensity estimation.
We pay special attention to the question of whether video-
acquired annotations result in performance comparable to that of
audio and audiovisual annotations. Naturally, the input modality
of the model itself plays an important role here. We compare
models with the same input modalities used in annotation: video,
audio and audiovisual. Additionally we included accelerometer
readings from chest-worn wearable devices (worn by many
subjects in our dataset) as an additional model input. Such
accelerometer readings have been used in previous work for

the detection of multiple social actions such as speaking [17],
[18], [19], with performance competitive and often superior
to that of video. Furthermore, wearable accelerometers have
privacy and scalability advantages due to their low cost and their
ability to capture information from the device wearer alone. We
hypothesized that acceleration would have a behavior similar
to video, since both modalities capture primarily body move-
ment information. However, we expected acceleration to better
capture laughter intensity when compared to video due to its
orientation invariance, and to it not being affected by occlusion
and cross-contamination like video is. Our contributions are the
following:
� We present the first human study of laughter annotations

across annotation modalities, comparing between three
conditions of interest in previous work: audio-only, video-
only and audiovisual. We studied the three annotation
tasks of laughter detection, time-localization and intensity
rating.

� We present a cross-modal analysis of annotations via inter-
annotator agreement within and between annotation condi-
tions: video-only, audio-only and audiovisual. We obtained
insights important both for the interpretation of previous
work annotating on a single modality, and for informing
annotation choices in future work.

� We investigated the effect of annotation modality in ma-
chine learning model performance. Mirroring the human
study, we used state-of-the-art models for detection, in-
tensity estimation and time-localization. We implemented,
trained and evaluated models for different combinations of
input modalities (audio, video, acceleration), training and
testing label modality (video, audio and audiovisual). It is
shown that despite the lower inter-annotator agreement of
video-based labeling, they may be entirely appropriate to
train models for laughter detection from body movements.

II. BACKGROUND AND RELATED WORK

In this section we discuss laughter annotation in research,
especially in computational work towards understanding laugh-
ter. In Section II-A) we start by briefly summarizing part of
the research landscape surrounding laughter. In Section II-B
we discuss automatic laughter detection and related machine
learning tasks. In Section II-C we discuss work on laughter
annotation and how laughter has been annotated in previous
studies.

A. The Study of Laughter in Interaction

Laughter has been approached from the perspective of mul-
tiple scientific disciplines. Psychology and linguistics are con-
cerned with, among others, the semantics and functions of laugh-
ter in interaction [20], [21], [22], [23], [24], [25]. In biology,
the evolutionary role [26], [27] and physiological effects of
laughter [28] are subject of study. Meanwhile, social signal
processing, speech and human-agent interaction fields are con-
cerned with automatic tasks such as laughter detection [29], [30],
classification [31], [32] and synthesis [33], with datasets being
created for the study of laughter in specific [13], [34], [35].
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Laughter is most often analyzed as a meaningful signal in so-
cial interactions, as it is an overwhelmingly social phenomenon
found to be about 30 times more likely in social situations than
when by oneself [36]. To this end, drawing a parallel with the
study of speech, Mazzocconi et al. [11] distinguished two broad
levels for the study of laughter: 1) laughter form and context
and 2) laughter’s (social) meaning and function. Laughter form
includes the physiology and body movements of laughter, and
its acoustic features; and laughter context includes the situation
in which it is produced [37], its positioning with respect to
speech, to others’ laughter, and to its object (the laughable) [36],
[38]. Most of the work on the form of laughter is concerned
with it’s phonetics and acoustic structure, with different coding
schemes for segmentation of laughter into its constituent (acous-
tic) components often being used [39]. Laughter intensity has
also received attention as a dimension of laughter form [4], [5],
[6], [7], [8], [9], [10], [40], [41]. Most laughter in conversations
has been observed to occur at relatively low intensity [11], [41].

Laughter form and context influence its second level of
analysis: the meaning and function of laughter. Mazzocconi
et al. proposes the following as the meaning of laughter: “The
laughable l having property P triggers a positive shift of arousal
of value d within A’s emotional state” [11, p.4], where A is
the producer of the laugh. This interpretation provides a link
between laughter intensity and laughter meaning. Despite the
importance of laughter intensity in previous work, it is not known
to what extent intensity ratings are congruent (or not) across
modalities.

Laughter has been found to serve a multitude of functions at
the coordination level as a cue for topic termination [42], [43])
and at the social level to foster relationships, cooperation and
group cohesion [27], [44].

B. Automatic Laughter Detection, Classification, and Intensity
Estimation in the Wild

Most research in laughter detection and classification has
made used of meeting datasets and focused on the audio and
audiovisual modalities. Truong et al. [14], [45] used spectral
features, pitch, energy and voicing to discriminate laughter from
speech. In a series of papers, Petridis et al. investigated audiovi-
sual laughter detection and discrimination [46], [47] from upper
body meeting videos, using static and dynamic features fed into
a single-layer perceptron. Bohy et al. [48] studied laughter and
smile classification from audiovisual recordings, including the
role of intensity levels.

There have been fewer attempts to automatically assess laugh-
ter exclusively from the video modality. Mancini et al. [4]
proposed a method to estimate laughter intensity from the move-
ment of shoulder and head keypoints in a video. More recent
action recognition methods based on 3D convolutional neural
networks (CNNs) [49] have not been applied and analyzed in
this task.

Full body poses and acceleration have also been inputs of
interest. [32], [50] showed that traditional classifiers are capa-
ble of recognizing and classifying elicited laughter from pose
sequences alone.

The related task of voice activity detection (VAD) has received
more attention in in-the-wild settings, with models having been
proposed for the detection of speech from video alone [51],
[52]. Here, a deep 3D-CNN-based model has been shown to
improve over previous approaches [53]. Additionally, work with
accelerometer inputs has shown that this modality holds suffi-
cient discriminative power to improve over larger video-based
methods [18], [53].

C. Laughter Perception and Annotation

At its lowest level, laughter annotation is concerned with the
recognition and segmentation of the form of laughter. Most
of the work on the form of laughter is concerned with it’s
phonetics and acoustic structure. Laughter is typically classified
in voiced, unvoiced and speech laughter (speech with laughter
characteristics) [54]. Distinction between voiced and unvoiced
is often made based on the degree of engagement of the vocal
chords [55]. Speech laughter, although traditionally receiving
less attention than isolated laughter, has been found in some
cases to have comparable frequency of occurence [56]. Regard-
ing its temporal extent, there is not a widely-accepted definition
of what constitutes a laughter episode. Most studies of laughter
delving into its structure have relied on audio waveforms for
the segmentation of laughter, typically into laughter syllables or
vowels (ha) at the lowest level, followed by bouts (sequences
of syllables), which are separated by inhalations [57]. Truong
et al. propose a multi-level segmentation scheme to describe
the structure of laughter, including speech laughter [39]. This
scheme, however, relies on audio alone.

Body movements, especially those occurring below the face,
have been largely disregarded in the study of laughter form.
There are however, notable exceptions. In a perception study,
Griffin [32] showed that humans are capable of recognizing
laughter and even of classifying it functionally based on stick fig-
ures. The use of stick figures provided a way to isolate the body
movement component of laughter. Note however, that in contrast
to our work, this study was not concerned with annotation (where
the goal is to use the most reliable information available) and
did not analyze agreement across modalities. Bohy et al. [58]
studied the correlations between 2D joint displacements and
audio laughter intensity and Hammoudeh [59] found differences
in the body movements of laughter between males and females.

In the work most similar to ours, but focused exclusively on
facial movements, authors created visual, audio, and audiovisual
laughter stimuli/examples from face recordings [60]. The audio
contained different levels of artificial noise to make laughter
more difficult to detect. 20 annotators indicated if they perceived
laughter or not in these examples. The goal was to study how
much the face contributes to the perception of laughter. The
study reported that ”visual laughter consistently made auditory
laughter more audible” (ie. audiovisual laughter was easier to
detect than audio-only laughter), a phenomenon also observed
previously for speech perception [60]. Although this is, to the
best of our knowledge, the only work to perform a cross-modal
analysis of laughter perception, its findings do not necessarily
generalize to our setting, where the video modality contains
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overall body movement information, but facial movements are
not consistently available. Furthermore, being a perception
study, they considered expert annotations to be ground truth,
but provided no analysis of inter-rater agreement.

Most studies of automatic laughter detection (see Sec-
tion II-B) rely on laughter annotations made from audio [30],
[46] (possibly automatic like the ones in AMI [61] and SE-
MAINE [62]) or audiovisually [50], [63], [64]. However, studies
concerned with the body movements of laughter often obtained
ground truth annotations from the video modality alone. [4]
rated laughter intensity from body movements alone. Cu et
al. [65] annotated five affective categories of laughter from body
movement, without sound. These studies, however, do not offer
a comparison with audio-based annotation, and it is therefore
uncertain to what extent annotations would be congruent across
modalities.

III. OUR APPROACH

Answering our research questions requires the annotation of
a large set of laughter segments with associated audio and video
signals. Measuring inter-annotator agreement across conditions
additionally requires that the same segments are annotated by
multiple annotators. Annotations must also be done by a rep-
resentative sample of annotators, large enough to ensure that
individual biases do not drive the results. The first step in a study
of laughter in the wild is to localize laughter in the target dataset.
Ideally, a large number of annotators would each watch our
complete dataset (with more than 50h of individual behavior)
to find and annotate laughter episodes. This, however, would
involve thousands of hours of human labour. Due to the relative
scarcity of laughter in conversation in the wild, most of this
time would be spent listening to speech with only sporadic
laughter. Therefore, the first simplification that we adopted was
to pre-localize laughter candidates. Laughter candidates are
segments (or thin slices) where the author of the study (who
did the pre-annotation) perceived laughter to occur, with some
temporal context around the laugh (details in Section V-A). The
pre-annotation was done inclusively, meaning that in case of
doubt laughter was always annotated. These positive candidates
were complemented with negative examples, where laughter
was not perceived to occur, to obtain a dataset of laughter/non-
laughter candidates. The resulting dataset was used both for
human annotation and machine learning experiments.

Fig. 2 shows an overview of our study. In Section IV we
present the audiovisual dataset chosen. In Section V we delve
into our methodology for: the design of our human annotation
study (Section V-B); analysis of annotator agreement (Sec-
tion V-C); and analysis of machine learning model performance
(Section V-D) for classification, segmentation and laughter in-
tensity estimation.

IV. DATASET

Our dataset was collected during a business networking event
in Delft, The Netherlands. Subjects in the experiment were
members of a group organizing regular events. During the event,

most of the interaction consisted of free-standing conversation
(Fig. 1). Participants were free to move around as they pleased.
While the event also included several pre-planned activities
including a social game and music performance, we excluded
these moments and made use only of the segment of the data
containing free interaction. The following data was collected
during the interaction:

Body Acceleration: A wearable accelerometer sensor that was
hung around the neck like a badge measured upper torso
acceleration. Importantly, the weight of our device was such
that it in most situations it would not swing erratically but
rather rest against the chest.

Individual Audio: Lavalier-type microphones attached to the
face of participants via Lavalier tape recorded sound at
44.1 kHz. Microphones were connected to a Sennheiser
SK2000 transmitter worn around the waist area. Our audio
equipment consisted of 32 such microphones. These indi-
vidual audio recordings were used to obtain Voice Activity
Detection (VAD) labels at 100Hz for each participant, mak-
ing use of rVAD [66], a state-of-the-art unsupervised VAD
method specially designed for noisy audio. 100Hz is the fixed
output frequency of rVAD and enough to capture even single
syllables in languages like English [67].

Video: 12 overhead cameras and four side-elevated cameras were
placed above and in the corners of a video zone. Participants
were informed about this video zone, and asked to stay outside
if they did not wish to be recorded. In this work we only make
use of the side elevated cameras, due to it being a viewpoint
more familiar to observers and able to capture the face.
Fig. 1 shows a capture of the four elevated camera views.

In coordination with event organizers, it was decided that
each participant would be free to choose which sensors to wear
(microphone, accelerometer, or both). Of about 100 attendees to
the event, 43 wore a sensor during the event. Of them, 20 were
male and 23 female. The rest decided not to take part of the data
collection, or could not be given a sensor due to our supply limit.

While similar mingling datasets have been published in the
past [16], [68], our dataset was the first to contain high-quality
individual audio recordings, opening the door for cross-modality
studies such as this one.

V. METHODS

In this section, we detail the methods used in our study
of laughter for: 1) obtaining laughter/non-laughter candidates
for annotation, 2) laughter annotation, 3) the study design (ie.
assignment of laughter candidates to annotators, and related
decisions) and 4) automatic laughter assessment.

A. Laughter Candidate Generation

To obtain the previously introduced laughter candidate seg-
ments to be annotated in our human study, the authors localized
any possible occurrences of laughter in the dataset by watching
the audiovisual recordings for every data subject and segment-
ing perceived laughter episodes using the annotation software
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Fig. 2. Overview of our study. From a mingling dataset with video, individual audio, and accelerometer readings (Section IV), we extracted pre-annotated
segments of potential laughter and speech, each of 7 s in length. These segments were annotated for laughter presence, segmentation and intensity under three
conditions: audio-only, video-only and audiovisual. We analyze the labels directly (Section VI-A) and use the different sets of labels to train and benchmark models
for laughter detection, segmentation and intensity estimation (Section VI-B).

ELAN [69] to indicate the start and end of each laugh while
referencing the audio waveform (normal ELAN annotation pro-
cess). We were deliberately inclusive by annotating segments
when in doubt and we localized all types of laughter, including
speech laughter. We included cases where subjects appeared
to be laughing in the video but the audio was not clear, or
vice-versa. The cameras in which a particular laughter episode
was visible were also annotated. Segments not visible in at least
one of the videos were discarded. Segments present in multiple
cameras were only considered once by randomly picking one
of the cameras. Finally, annotations closer than 1 s apart were
joined into a single laughter episode. Regarding duration of the
laughs, onset and offset inhalations [11] were not considered to
be part of the laugh, since they were most often hard to perceive
among the cocktail party noise in the scene. At this stage, our
candidate set consisted of 459 laughter candidates. Next we

complemented this set with segments likely to be negative (no
laughter).

1) Negative Candidate Generation: As negative samples we
extracted a number of segments likely containing no laugh-
ter from the rest of the dataset. To avoid having mostly seg-
ments of listening behavior in this negative set (our con-
versing groups were often large), we sampled negative can-
didates from speech utterances as given by our VAD la-
bels. Additionally, since some data subjects were much more
likely to laugh than others, we sampled the distribution of
negative samples per subject proportional to the distribu-
tion of positive samples. Concretely, our sampling procedure
is:

1) samples a subject S with probability PL(S) where PL(S)
is the probability of a positive laughter candidate belong-
ing to subject S.
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Fig. 3. Screenshots of the annotation interface in Covfee [70]. The two steps shown were repeated for every example that an annotator rated. In (a) annotators
were shown a target person marked by a red box, and part of the scene around the target, and instructed to hold down a key when laughter was perceived to be
occurring by the target person. The interface provided visual feedback when the key was held down. In (b), subsequently, annotators rated laughter intensity (Likert
scale 1–7) and their confidence in their assessment (Likert scale 1–7).

2) samples a speech utterance uniformly from the set of
speech utterances of S of length lmin < l < lmax where
lmin and lmax are the lengths of the shortest and longest
laughter episodes. This was done to avoid very long speech
utterances from being introduced as negative examples.

We aimed for 30% of total candidates (about 200) to be
negative, to provide a large-enough set for computing laughter
detection agreement, but maintaining a majority of positive
examples in which laughter intensity could also be rated. This
resulted in a total of 659 candidates (459 positive and 200
negative).

2) Expanding Candidates in Time: Finally, laughter candi-
dates (positive and negative) were expanded in time. The goal
was to more closely resemble the process of annotating laughter
in the wild, where it is unknown when laughter might happen,
and allow the annotator to understand some of the context of
the scene. To this end, we expanded each segment at both ends
with a duration randomly (uniformly) sampled between 1.5 s
and 3.5 s. We set the bottom of this range (1.5 s) to be close
to the mean length of a laughter episode. Empirically, this was
enough to process the scene and be ready for annotation. We
set the top of the range (3.5 s) with the goal of obtaining total
segment lengths below 10 s to maintain the annotation process
fast. We used a uniform distribution to minimize predictability
of the location of the laughter episode.

3) Spatial Localization Via Bounding Box: Since our side-
elevated camera views captured most of the interaction scene, the
target subject needed to be extracted or indicated to annotators.
This was done by annotating a single, tight, bounding box around
the target person for the first frame of the video. To allow anno-
tators to use visual context of the scene while providing good
visibility of the target subject, videos were cropped beyond the
borders of this bounding box by multiplying its width and height
by 3 (constrained to fitting within the frame) and maintaining
its center. Our observations showed that this was in most cases
enough to capture the interlocutors of the target person. The
target person’s box was shown to the annotators before the start
of the video (see Fig. 3(a)).

B. Annotation of Laughter Candidates

Central to our study of laughter annotation is the design of the
process to be followed by annotators. The first step in annota-
tion of laughter in the wild is the localization of the laughter
episodes in time. This process may range from spontaneous
annotation of laughter with little instruction to annotators, to
carefully-directed segmentation following a specific protocol.
We leaned towards spontaneous, less instructed annotation due
to it being a common first step in the annotation of in-the-wild
datasets. Note that careful segmentation of laughter boundaries
may not be necessary for many uses of such datasets where
achieving a high time precision is not the goal. Furthermore,
precise segmentation may be performed as a second step over
roughly-localized laughter instances. Our goal was therefore not
to obtain precise separation of individual laughter events such
as episodes or bouts, but rather to obtain usable indications of
laughter occurrence.

Actions are traditionally localized in videos using tools such
as ELAN [69], where the user localizes the start and end frame of
the action by drawing an interval on top of an audio waveform.
In tools such as Vatic and CVAT, actions are annotated via flags,
which are turned on for the frame when the action is deemed
to start, and off for the end of the action. In affective comput-
ing, continuous annotation techniques are commonly used to
annotate variables such as arousal and valence. In continuous
annotation, annotators control the value of the target variable
while watching the subject in video, usually without pause. This
has the advantage of letting the annotator perceive the behavior
without interruption, and being efficient and predictable in terms
of time needed to annotate. On the other hand, continuous meth-
ods also necessarily introduce a reaction time delay. Multiple
techniques have been proposed to mitigate these delays.

We chose to make use of continuous annotation for our study
due to the mentioned advantages. We mitigated annotation delay
by making use of an experimentally defined offset, as detailed
in Section V-B3. We made use of a binary action localization
technique implemented in the Covfee framework [70], which
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asks annotators to hold down a keyboard key when they perceive
laughter to be occurring. Its graphical interface is shown in
Fig. 3(a). This process allows annotators to maintain focus on
the videos by minimizing the input effort, while still giving us
access to high-resolution segmentations of laughter. Since the
annotation time is shortened and predictable, this process also
allowed us to obtain more annotations per annotator, relevant
for our study design (Section V-B1).

After the continuous annotation step, for each candidate, we
asked annotators explicitly whether they perceived laughter to
occur, their perceived laughter intensity, and their confidence in
their laughter ratings (Fig. 3(b)). Annotators could replay the
laughter episode if they desired.

1) Crowd-Sourced Annotation Process: As introduced in
Section V, answering our research questions requires annota-
tions of laughter under three conditions: audio-only, video-only
and audiovisual. Measuring agreement within a condition im-
poses the requirement that at least two annotators rate each
(candidate, condition) combination. A sufficient number of
candidates must also be annotated to be able to train our com-
putational models and measure agreement over a large-enough
set. Finally, for access to a large pool of annotators, annotations
would be crowd-sourced and each annotation HIT (human intel-
ligence task) should ideally not last longer than approximately
45 minutes to avoid fatigue. In our tests, we estimated each
candidate to require about 30 seconds for annotation. This
imposes an upper bound on the number of samples per annotator
of around 90, which we reduced to 84 to have room for error.

One other natural choice to consider was whether to use a
between-subjects or within subjects design. To maximize the
number of annotators per condition, we opted for a study where
each annotator takes part in all three conditions. To avoid bias,
we impose the restriction that one annotator never annotates the
same candidate under different (or the same) modalities, ie. one
annotator rates three disjoint sets of candidates.

According to these design decisions, we divided our 659
candidates into 7 sets of 84 examples and one set containing
the remaining 71 candidates. Each of these candidates sets
was in turn divided into three equal-size subsets (for the three
conditions). Each permutation of these three subsets resulted
in a different human intelligence task (HIT), each containing
the same candidate subsets but mapped to different conditions.
Fig. 4 is a diagram of this process for each set of 84 candidates.
Each HIT was completed by two annotators. Annotating all can-
didates required 48 annotators in total. This design allowed us
to compute pair-wise inter-annotator agreement (per condition)
over sets of 28 paired ratings, for 24 distinct pairs of annotators.
This resulted in a total of 3954 annotator ratings.

2) Annotation HITs: We crowd-sourced our annotations to
48 annotators via the Prolific crowd-sourcing platform [71]. We
implemented the complete annotation flow using the Covfee
annotation framework [70]. Each HIT contained several in-
troductory tasks and examples, followed by three annotation
blocks, one for each modality condition. The order of video-only,
audio-only and audiovisual blocks was randomized to avoid
ordering bias due to factors like fatigue. The ordering of laughter
examples within each block was also randomized for the same

Fig. 4. Structure of the annotation stage of our study. Sets of 84 randomly-
selected candidates are separated into 3 equal-size sets of 28 candidates. Candi-
dates are then separated into their audio and audiovisual modalities and assigned
to HITs such that each HIT contains 28 distinct candidates per condition. Each
HIT was annotated by 2 annotators.

reason. The detailed structure of a HIT is presented in Appendix
A.1, which can be found on the Computer Society Digital Li-
brary.1 Statistics of the ratings provided by each annotator, time
to complete the experiment and experience ratings are presented
in Appendix A.2, available in the online supplemental material.

3) Annotation Delay Correction: Delays in continuous an-
notation have been investigated within the affective computing
community for continuous-value annotations of affective di-
mensions. Some works have proposed machine learning models
that are robust to annotation delays [72], [73]. Mariooryad et
al. [74] proposed a method for correcting delay by maximizing
mutual information between the continuous label time series
and an auxiliary signal containing facial keypoints. However,
the authors also showed that simply offsetting annotations by
a constant value resulted in performance comparable to that of
more complex schemes.

Despite these results, it is unclear to what extent delay depends
on the particular actions being annotated. We therefore decided
to measure delay directly for our task and annotators. At six
points in each annotation HIT (two per condition, see Sec-
tion V-B2), we inserted special calibration (positive) laughter
examples, which were the same for all annotators. We precisely
labeled the onset and offset times of laughter in these six ex-
amples, using ELAN [69]. This allowed us to calculate a delay
in the annotator’s continuous labels, to approximate the average
delay of each annotator. We used this average annotator delay
as correction offset for an annotator’s labels.

C. Measuring Inter-Annotator Agreement

We designed our study for the computation of inter-rater
agreement, or reliability, within and across conditions. Cohen’s

1Online available: https://doi.org/10.1109/TAFFC.2023.3269003
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Kappa, Fleiss’ Kappa, and Krippendorfs Alpha are some com-
monly used measures of agreement. For nominal values (eg.
laughter/non-laughter) Cohen’s Kappa is capable of computing
agreement between exactly two annotators. Although Cohen’s
Kappa is subject to biases in some instances, it still has been
recommended by previous work for fully crossed designs with
multiple coders, by computing the average of pairwise agree-
ment [75]. Since each of our annotator groups rated a set of
examples not rated by any other pair (ie. our study consists of a
set of fully-crossed designs), we used this approach to measure
agreement for nominal values.

Cohen’s Kappa is however not appropriate for interval/ordinal
values like laughter intensity (Likert scale 1–7). Here, we used
Krippendorff’s alpha, a reliability measure applicable to any
number of raters and which adjusts for small sample sizes. We
averaged pairwise Krippendorff’s alpha values over rater pairs.

Measuring agreement between time series is a more com-
plex challenge. Straightforward application of agreement mea-
sures like Cohen’s Kappa at the frame level fails to consider
the strong dependencies between contiguous frames. Measures
specifically designed for segmentation such as Staccato [76] and
Gamma [77] are not suitable to our use case due to their as-
sumption that every annotated segment corresponds to a distinct
event, separate from any contiguous units. Our goal was not to
obtain precise separation of individual laughter events such as
episodes or bouts, but rather to obtain good indications of when
laughter was occurring. Given this goal, we consider a measure
such as Intersection over Union (IoU) to be appropriate because
it indicates the degree of overall overlap between annotations.
We computed IoU as the size of the intersection of positive
annotations over the size of the union of positive annotations.
This is inspired on action localisation metrics used in computer
vision [78], which make use of IoU to identify true positives.
An IoU of one indicates perfect correspondence between the
positive sections of the time series, while an IoU of zero indicates
no overlap. In cases where both signals contain only negatives
(IoU is undefined), we set the metric to one to indicate full
agreement. It should be noted that IoU does not correct for
chance agreement and is therefore not an inter-rater agreement
measure such as Krippendorff’s alpha, which can be compared
across datasets. However, since our goal is to observe potential
differences across modalities over the same set of underlying
data, we do not require such correction.

D. Automatic, Laughter Detection, Intensity Estimation, and
Segmentation

Video-based models for detecting, assessing (eg. intensity)
and segmenting actions have been extensively studied in com-
puter vision and pattern recognition (Section II-B). We make
use of modern approaches within these fields. Regarding the
video modality, due to the small size of our dataset, training
state-of-the-art methods from scratch would be infeasible. We
focused on approaches with pre-trained models available to use
as feature extractors. Among those, 3D convolutional neural net-
works (CNNs) are known to reliably achieve top performances
in action recognition benchmarks. We decided to make use of a

3D ResNet pretrained on Kinetics-400, a large action recognition
dataset with 400 action classes and over 300000 labeled video
clips. The network implementation and models are available as
part of the Pytorchvideo library [79].

Regarding audio-based models, work by Gillick et al. [29]
investigated laughter detection in two datasets with significant
background noise. One of these, the Audioset dataset [80] is
freely available to download. This dataset of 10-second clips
from Youtube videos recorded in a variety of in-the-wild settings
contains 5696 clips labeled as containing laughter. In their im-
plementation, the authors provided a list of randomly-sampled
no-laughter clips to complete the dataset with negative. Given
that this dataset had more examples and variety of subjects than
ours, we decided to pre-train the audio-based model on it. We
made use of the same model proposed by Gillick et al. [29]:
a 2D ResNet model operating on the spectrogram of the audio
inputs. We trained on 85% of the dataset, with 15% separated to
determine a good stopping point. We otherwise used the same
hyper-parameters used by the authors.

As motivated in Section III, we made use of accelera-
tion as an additional modality capturing body movements. As
acceleration-based model, we made use of a ResNet variant for
time series, implemented as part of the tsai library [81]. Given the
much lower dimensionality of the acceleration data (compared
to video and audio), and the lack of availability of comparable
acceleration datasets, we trained this model from scratch.

For both video and audio models, we used pre-trained models
as feature extractors by freezing all parameters and removing
network heads. For classification, the features output by the base
networks (with dimensionalities: 2304 (audio), 8192 (video) and
128 (acceleration)) are fed into a head consisting in a linear layer
followed by an output sigmoid layer and binary cross-entropy
loss, standard choices for binary classification. For multimodal
evaluation, we concatenate the features from multiple models
before the head of the network.

We decided to approach intensity estimation as a regression
task, given the interval nature of the ratings. We follow the same
model structure, but we removed the sigmoid computation from
the output and used L2, or mean squared error (MSE) loss, a
standard choice for data with no outliers.

For segmentation, we decided to approach the task as the
estimation of a binary mask (ie. of our continuous binary anno-
tations). This would allow us to use the same base networks and
pre-trained models. However, multimodal fusion should now
be done earlier, since the time dimension encodes information
likely useful for segmentation. We therefore implemented sep-
arate segmentation heads per modality, which are fused at the
output via average pooling. For all models, we apply pooling and
convolution operations over the spatial and channel dimensions,
and up-sample the time dimension to the length of the target
segmentation mask (45). Details of the architecture are presented
in Appendix B, available in the online supplemental material.

1) Generating Train and Test Samples From Laughter An-
notations: Given that the examples seen by laughter annotators
contained a significant amount of context, using the complete
7 s candidates for the machine learning tasks would not be
ideal given the much shorter average duration of laughter.
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Fig. 5. Illustration of the process used to select positive laughter samples for
our machine learning tasks. Given the binary laughter/non-laughter annotations
for a particular segment, we select a location for the window center from the
positively-annotated intervals in the signal. We then extract a window of 1.5
seconds around the chosen center. We pad if necessary.

Furthermore, our models made use of fixed size inputs, and the
examples rated by annotators were not fixed length. To address
the situation, we used the continuous binary labeling signal
as reference, and sampled shorter positive windows around its
positive sections (ie. exactly where laughter was detected to have
occurred). Fig. 5 shows a simplified depiction of the process.
Given a binary annotation signal with at least one positive
segment, we consider the intervals within its positive segments
as candidate window locations. We sample uniformly from these
locations to select the window center, which determines the
limits of the window. For negative examples (ie. with no positive
segments), we consider every location in the signal to be a
candidate for the window center (ie. we perform a random crop).

To determine the size of the window, we looked at the dis-
tribution of laughter lengths, as obtained from our continuous
annotations. The average laughter length was 1.14 s, with a
long-tailed distribution such that 80 percent of laughs were under
1.56 s. We chose a length of 1.5 s as this length guarantees that
most laughter segments will be contained in the window without
excessive non-laughter context.

In evaluation, to avoid randomness, instead of the sampling
procedure the window is always centered on a positive segment
for positive examples. For negatives, the window is always in
the middle of the complete candidate.

We followed the same process for the three tasks of laughter
detection, intensity estimation and segmentation, but the labels
differ per task. For detection, the sample is labeled positive
when it comes from a positive annotation segment, and negative
otherwise. For intensity estimation, the segment is labeled with
the intensity label (Likert scale 1–7) for the laughter candidate.
Negative samples were included, and assigned an intensity of
zero. For segmentation, the target is a vector corresponding to the
continuous binary annotations (30 fps) within the target window
(vector of size 45 for our 1.5 s windows).

Note that our annotation study involved two raters per candi-
date and condition. Both of these continuous ratings are included
in the sampling process for each epoch.

2) Evaluation Procedure: For evaluation, we made use of
standard metrics for each task. For classification, we make use
of the area under the ROC curve (AUC), a metric designed
for binary classification and invariant to class imbalance. For

TABLE I
PRECISION, RECALL AND INTER-ANNOTATOR AGREEMENT AND SIMILARITY

MEASURES ACROSS MODALITIES

regression, we make use of Mean Squared Error (MSE). We
also make use of AUC for segmentation, where we treat every
window element as one separate prediction. Although metrics
like Intersection over Union (IoU) are more commonplace in
segmentation, we made use of AUC due to it not being affected
by class imbalance.

We evaluated via 10-fold cross-validation, to obtain an ag-
gregated performance measure over the whole dataset. We used
the first fold for tuning the number of epochs to train for (per
combination of modalities) and excluded the first fold from
evaluation.

VI. RESULTS

A. Comparison of Human Laughter Annotation Agreement
Across Modalities

To test our hypotheses around differences in annotations
across modalities, we started by calculating inter-annotator
agreement within and across modalities via pairwise computa-
tion of agreement metrics (Section V-C). Tables I(a) and (b) show
the results of our agreement calculations for laughter detection
and intensity rating. Note that within-modality calculations are
averages over 24 (pairwise) comparisons and between-modality
calculations are averages over 96 pairs. Standard deviations
are shown in parentheses (calculated across pairs). Agreement
scores for laughter detection Table I(a) show that the audio
and audiovisual conditions have greater within and between
modality agreement scores (∼ 0.8), with video being signifi-
cantly lower (0.396− 0.550). The video condition had higher
within-condition agreement (0.550) than agreement with other
modalities (0.396− 0.424).

Agreement in intensity estimation Table I(b) shows a similar
trend. The lowest agreements, once again, were found between
audio and video (0.237± 0.228) and between audiovisual and
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TABLE II
PRECISION AND RECALL W.R.T. TO ANNOTATION REFERENCE

video conditions (0.267± 0.239). These are lower than all
within-modality agreement scores, even that of video. This
suggests that the concept of laughter intensity was perceived
differently when audio was available and when it was not. Note
that agreement in laughter intensity was only calculated between
examples labeled positively (as laughter) so that scores are not
biased by detection ratings. This resulted in the exclusion of
36% of total ratings (from 3954 to 2531).

We tested the effect of annotation condition on intensity
ratings via a linear mixed effects model with the condition as
fixed effect. The annotator ID was used as grouping variable
(random effect) to control for annotator-specific variance. We
fitted the model only on the subset of positive laughter anno-
tations. We found the condition to have a significant effect on
intensity (p = 0.00223). A cluster bootstrap analysis revealed
that laughter was annotated as being significantly less intense
in audiovisual (95% confidence interval of [−0.44,−0.0406])
and video-only conditions (95% CI of [−0.45,−0.0482]). This
is a relatively small effect considering the scale of our intensity
ratings (1–7).

To get further clarity about the quality of video-based anno-
tations, we compared them to reference annotations from the
audiovisual condition. We consider the audiovisual condition to
be the most ideal one due to annotators having access to both
modalities. However, laughter is not always a clear signal and
therefore we consider this to be a reference set rather than ground
truth. We derived this set of binary labels via majority voting,
for each (candidate, condition) pair, on the annotator ratings
(2), and the expert rating (1), for a total of three votes. We used
this reference set for calculation of precision and recall scores.

Table II shows the precision and recall scores for the three
annotation modalities w.r.t. the reference annotations. Results
show that false positives are rare in our annotations. Recall
scores show more differences, with video being lower than both
audio and audiovisual scores. This aligns with our hypothesis
that the video modality is not enough to detect many episodes
of laughter (ie. large number of false negatives). As expected,
the audiovisual condition had the highest precision and recall.
Note however that reference annotation were obtained from
audiovisual labels, and this might cause the numbers to be
artificially inflated.

Comparing agreement in localization of laughter is less
straightforward, since multiple variables are involved. We did
so via computing annotation similarity in corresponding candi-
dates using Intersection over Union (Section V-C). Table I(c)
shows a behavior similar to that observed in detection and
intensity agreement (Table I(a) and (b)), with similarity in the
video condition being even closer to audio(visual) conditions.
For a qualitative analysis of agreement in segmentation, we

Fig. 6. Aggregated onsets and offsets w.r.t. reference annotations from differ-
ent modalities.

plotted the mean value of annotations, across different examples,
around reference onsets (rising edge of the binary signal) and
offsets (falling edge). Ideally, annotators would agree exactly
on the onset of the laugh and we would observe a step-like
plot. In practice, onsets and offsets vary per annotation and a
curve is observed. Fig. 6 shows the mean value of annotations
around onsets (key pressed) and offsets (key released). These
are aggregated over different laughter samples, and show once
again better agreement when audio is present. Offsets display
less agreement (flatter shape) than onsets. Note that due to our
intention to capture spontaneous annotations of laughter, we did
not instruct annotators about the inclusion of the final inhalation
as part of the laugh, and this is a possible reason for less offset
agreement. It is also possible that offsets tend to be more gradual
than onsets on average, but this has not been verified.

We complete our analysis by looking at annotator confidence,
as an indication of the difficulty of the task in each modality.
Fig. 7 we plot the distribution of laughter intensity and confi-
dence values for the three conditions. We used a Likert scale
for both of these ratings, and the distributions are therefore
discrete. While intensity distributions are similar across the three
conditions, the confidence histograms make clear how much
more challenging the video-only condition was to annotators.
The wider distribution reveals a clear correlation between laugh-
ter intensity and confidence in their annotation, as would be
expected.

1) The Role of Laughter Intensity: The results in Section
VI-A showed that video-only laughter annotations have lower
recall than audio-only annotations. We hypothesized, however,
that this is likely due to the difficulty of detecting low-intensity
laughs, which are likely to have less salient associated body
movements.

To verify this, we separated our dataset by laughter inten-
sity. We obtained a single consolidated audiovisual intensity
rating per example by averaging the intensity ratings from
both annotators. We then separated the dataset into 10 intensity
buckets, from lowest to highest intensity. To ensure a sufficient
number of samples per bucket, we used percentiles to define
the bucket sizes, such that bucket i includes laughs between
the (i× 10)th and ((i+ 1)× 10)th percentiles of intensity.
We computed recall for each bucket. Fig. 8 plots the results
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Fig. 7. Joint distribution of confidence and intensity values. Both were annotated using a Likert scale (1–7). Confidence indicates the confidence of the annotator
on their laughter annotation for the candidate segment.

Fig. 8. Laughter recall against (audiovisual) intensity of the laughs. The x
axis indicates the middle of percentile bucket (eg. 15 is the bucket with laughs
between the 10th and 20th percentile). As intensity increases the recall of video-
only annotations approaches that of audio-only annotations.

of this analysis. As expected, recall of both audio and video
conditions increases with the audiovisual intensity of the laugh.
As hypothesized, video recall tends to approach audio recall
for the most intense laughs. It stands out, however, that the gap
between them never closes completely, even for the 10% most
intense laughs. This can be understood in the light of the findings
of Section VI-A, were it was shown that intensity ratings in the
audio and audiovisual have high agreement, but they both have
low agreement with the video-only ratings. Our consolidated
audiovisual intensity ratings, therefore, do not reflect intensity
as perceived in the video-only condition. These results align with
previous work which observed a positive relationship between
laughter intensity and automatic classification performance [48],
suggesting that it is not unique to human raters.

B. Effect of Labeling Modality on Supervised Laughter Tasks

Although the analysis of inter-annotator agreement performed
in the previous section is relevant to understanding differences
in labels themselves, it does not ultimately answer the question
of how useful annotations acquired from different modalities are
for training automated models.

The answer to this question is nuanced. We might have access
to video-based annotations of laughter, and want to understand
if training a video-based action recognition model with them
would help detect vocalizations of laughter. However, asking
the reverse question is also of interest: would audio-based anno-
tations result in a model capable of detecting the characteristic
body movements of laughter? Furthermore, would audio-based
annotations be the most appropriate, or would it be preferable
to label the same modality that is input to the model?

The goal of this section is to investigate the impact of annota-
tion modality on trained model performance. Machine learning
methods can naturally accept different modalities of input data
and we are interested in the relationship and possible interactions
between input modality, training label modality, and testing label
modality.

To this end, in line with the tasks that annotators performed in
our human study, we trained and evaluated models for the tasks
of laughter detection, intensity estimation and segmentation
(Section V-D). For each of these tasks, we evaluated models for
all possible combinations of six different input types (accelera-
tion, audio-only, video-only, video+acceleration, audio+video,
audiovisual), training label modalities (audio, video, audiovi-
sual) and testing label modalities (audio, video, audiovisual).
We used acceleration as an additional input to leverage the
wearable data available in our dataset. Wearable acceleration
has been found in previous work to be a useful proxy for body
movement. Positive and negative examples were generated for
our experiments from the human laughter annotations per the
procedure in Section V-D1. We evaluated each model using
10-fold cross-validation and the Area under the ROC Curve
(AUC) as evaluation metric, as explained in section V-D2.

Fig. 9 presents the results of our machine learning runs. For
readers’ convenience we may refer to the results in the tables
using the abbreviations in the column labels. For example, I =
Acceleration, Tr = V ideo, Te = V ideo localizes the fourth
cell in the Acceleration column.

It is clear that for all tasks (audio-)visual inputs
trained (audio-)visual labels (I = Audio|Audio+ V ideo,
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Fig. 9. Results of our machine learning experiments (10-fold cross-validation). Columns correspond to different model input modalities. Rows correspond to
training label modality and testing label modality. For example, Audio > V ideo indicates a model trained with labels acquired from audio alone, and tested on
labels acquired from video alone.

Tr = Audio|Audiovisual) had the best performances, except
when applied to video-based labels (Te = V ideo). This is likely
explained by these methods detecting many positives that are not
labeled in video, due to having low body movement intensity.
In defense of video-based labeling, it stands out that models

with video inputs show no significant differences in performance
across training and testing label modalities (I = V ideo). In
other words, the modality used for labeling had no effect on
the final performance of video models. The acceleration, and
video+acceleration methods had a similar behavior, with no
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significant differences due to training label modality. This pro-
vides some support for the use of video labelling for model inputs
capturing body movement information. Furthermore, video
labels were enough for training an audio-based detection
method with an AUC of 0.782 (I = Audio, Tr = V ideo,
Te = Audio), a performance drop of less than 0.15 AUC with
respect to audio labels.

Note that classification results Fig. 9(a) display a pattern sim-
ilar to that of segmentation (Fig. 9(c)). For segmentation, how-
ever, scores of audio-based methods (I = Audio) are lower than
for classification, while the scores of video-based methods I =
V ideo) remain the same, making the video-based methods more
competitive with the audio-based ones, though still significantly
worse-performing for most label combinations. Regarding the
acceleration modality, it stands out that Acceleration+ V ideo
methods often improved over both modalities in isolation, sup-
porting the idea that these modalities are complementary.

The results of intensity regression methods Fig. 9(b) are more
particular. In contrast to classification and segmentation, most
multimodal models performed worse (higher MSE) than audio-
only models for the same labels (ie. I = Audio generally has
the lowest MSE), meaning that adding input modalities tended
to affect the model. We also observe that video and acceleration
regression models perform best when trained and tested on video
labels, but training on audio and testing on video or vice-versa
results in some of the worst performances. This aligns with
the findings from the annotation experiments that intensity of
laughter in the video and audio modalities are incongruent.

VII. DISCUSSION

Our inter-rater agreement results present evidence that an-
notation of laughter occurrence, intensity and temporal extent
can differ substantially across annotation modalities. Per our
hypothesis, video annotations had lower agreement than audio
and audiovisual ones. When comparing against audiovisual ref-
erence annotations, we found recall to be worse in the video
condition. Differences in precision scores were lower, with all
modalities being close to the 90% to 95% range. These findings
suggest that video-based annotation of laughter, while feasible,
should not be used in applications requiring high recall. Zooming
into the issue of low recall revealed that recall improves for video
annotations the more intense the laughs being considered, likely
as a result of higher saliency of body movement cues. In the
light of previous work [41], this means that video-based laugh-
ter annotations are more likely to capture humorous laughter,
strongly associated to high intensities, than the more common
rule-bound conversational laughter.

Regarding differences between audio and audiovisual condi-
tions, our results revealed high within and between-condition
agreement ( 0.8 for detection, 0.66 for intensity estimation)
between them. These results validate the use of audio as primary
modality for laughter annotation, but they are not without nu-
ance. Although they indicate that there was a more clear shared
concept being annotated when audio was present, video anno-
tations had higher within-condition agreement than agreement
with audio and audiovisual annotations. This suggests that there

is a different concept being perceived in the video condition
with some consistency. In other words, there appears to be
incongruence in the perception of laughter occurrence across
modalities. Given the low recall of the video condition, we
interpret this to indicate that false negatives (w.r.t. audiovisual
reference) are missed systematically, likely due to the absence
or subtlety of their visual cues. Systematic false positives across
annotators also likely contribute to these results, though to a
smaller degree. Speech laughter too could play a role in this
incongruence. Because no specific instructions were given to
annotators on whether to label speech laughter as positive or
negative, it is possible that speech laughter was less ambiguous
in the video condition than when audio was present.

These results set the stage for the question explored in our
machine learning analysis: is perception of laughter in the visual
modality a meaningful concept to annotate for the purpose of
building detectors, despite it’s incongruence with audiovisual
laughter?

Importantly, we measured a similar incongruence in laughter
intensity ratings, where only positively-labeled segments were
included in the agreement calculations, indicating that laughter
intensity is not perceived in the same way when audio is present
and when it is not. Such incongruences in laughter intensity
across modalities have only been studied in the context of laugh-
ter synthesis. Niewiadomski et al. found that synthetic laughter
episodes with incongruent body movement and vocalization
intensities were rated as less believable [8]. This would seem
to go against our results, which suggest that significant incon-
gruence exists in in-the-wild laughter perception. However, the
magnitude of the incongruencies used (which can be controlled
in a synthesis study, but not in the wild) could explain this
discrepancy.

Our results have implications in studies of laughter inten-
sity [4], [5], [6], [7], [8], [9], [10], suggesting that the concept
of laughter intensity should not be treated as a scalar property
of the laughter episode, but rather as a nuanced evaluation
affected especially by the modalities available to the observer. In
particular, the question of whether a clear distinction should be
made between the intensity of body movements and the intensity
of the sound of laughter deserves consideration. McKeown et al.
already asked the question of whether laughter body movement
intensity itself should be considered multi-dimensional [6], but
the distinction between visual and auditory intensity has not
been considered before, to the best of our knowledge.

Our findings lead us to the fundamental question of what
is laughter intensity in the wild. Are the observed differences
across modalities mainly a product of imperfect recording con-
ditions, or would we observe them too under ideal conditions?
(eg. in face-to-face interactions). While in our dataset subjects
prioritized audio in the multimodal condition, it is not clear
if body movement information would be prioritized in other
datasets in which it is easier to perceive (ie. with consistent
access to the face or upper body), or in which the audio is
harder to perceive. We consider it likely that in such cases
visual information will play a more important role. Although
the amount of temporal context (Section V-A2) was the same
across modalities, the amount of visual context (Section V-A3)
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is unique to the video condition and could play a role in our
results as annotators use cues from interlocutors to interpret
laughter intensity (and also occurrence). More work is necessary
to provide an answer to these questions.

Despite the lower inter-annotator agreement in the video
condition, our machine learning experiments with different com-
binations of model inputs, training label modalities, and testing
label modalities, revealed that model performance was the same
across labels for models trained using video and acceleration
inputs, both of which capture body movements. This was re-
gardless of the evaluation modality. In other words, annotating
laughter (traditionally understood primarily as a vocalization)
from video alone may be perfectly valid when the goal is
to optimize model performance. We think that the reason for
such results is explained by our human annotation analysis.
Concretely, episodes with lower intensity were most commonly
missed (w.r.t. to the audiovisual reference). The subtlety of
these training samples would presumably make them more chal-
lenging for the learning algorithm, and therefore their absence
would not have an adverse effect on performance. We obtained
these results in a challenging dataset, where many positive
(audiovisual) laughter episodes were missed by annotators, and
using a modern action recognition 3D-CNN. It is once again
unclear whether these results would translate to a dataset with
more consistent access to, for example, facial visual information.
The presence of visual cues could improve the model, but their
subtlety could be a challenge to most state-of-the-art models.
More work is warranted in this direction.

Our results provide validation for previous works using video-
only labelling to train laughter assessment models from body
movements [4], [65], and datasets providing video-only anno-
tations [16]. Recording audio is not only a technical challenge
(especially for large groups), but the use of video labeling is
also more privacy conscious as it avoids the need for recording
the content of conversations. However, the fact that annotations
obtained from video are largely incongruent with audiovisual
annotations should be a consideration in studies of laughter.

We think that these results could have wider implications if
they generalize to other multi-modal social signals with mani-
festations in body movement. Speaking status (or voice activity)
and back-channels have been of interest in previous work [51],
[82]. Video-only annotations of speaking status have been used
in previous work [16], [17], [19], but the implications in model
performance of this annotation choice have not been explored.
Our results would suggest that it is possible to annotate speaking
from video alone without an adverse effect on the model’s
ability to detect speech, but further work is necessary to provide
validation for other multimodal social signals besides laughter.

A. Limitations

We consider the main limitation of our work to be that we used
only one dataset in our experiments. Our dataset is however
representative of one of the most challenging scenarios for
perception of laughter from video: with little access to the face
of the participants, different views and distances to camera, low
light conditions, and significant occlusion of parts of the body

from other participants in the scene. We therefore considered
it a useful data point to study. We expect that more traditional
front-facing datasets with consistent access to the body and face
of the subjects will result in lower differences in agreement and
model performance between the video condition and the audio
and audiovisual ones. We think it is possible that clear access
to the face will negate the incongruence observed in laughter
intensity ratings, since facial features may share more informa-
tion with the laughter vocalization than overall body movement
does. Finally, obtaining annotations of speech-laughter may
have allowed us to better understand the role of speech laughter
in the incongruence between audio and video based annotations.
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