Modelling in applied hydraulics: more accurate in decision making than in science?

Erik Mosselman

SimHydro2017
Sophia-Antipolis, France, 14 June 2017
Modelling in applied hydraulics

MODELS

abstract

mathematical

physics-based

conceptual empirical analytical numerical scale analogue

$L_M = 10B$
Modelling of hydrodynamics and morphodynamics:

- Physical scale models
- Numerical models

Choice of type of model and required accuracy depends on context of application:

- Scientific hydraulic research
- Hydraulic engineering
- Public decision making
Physical scale models

Context of scientific research

• Generic experimental set-ups
• Relatively simple geometries
• Controlled conditions

• Study of elementary processes and their interactions
• Interpretation of mathematical findings
Physical scale models

Context of scientific research

Context of scientific research

Physical scale models

Context of hydraulic engineering practice

- Tool for design

- Compared to numerical models:
 > Superior for local 3D flows (because of imprecise empirical turbulence closure)
 > Inferior for areas where horizontal dimensions are much larger than vertical dimensions (because of scale effects)
 > provided that mathematical descriptions and computer codes are available for relevant processes
Physical scale models

Context of hydraulic engineering practice
Physical scale models

Context of hydraulic engineering practice

prototype

scale model

2DH numerical morphodynamic model in 1980s
Physical scale models

Context of hydraulic engineering practice

Physical scale models

Context of decision making with stakeholders

- Communication: explication and demonstration

3. Alternating Flow Patterns and Fish Habitat Created by the Design

4. Model Design Plan Implemented in the Actual Mississippi River

US Army Corps of Engineers, St. Louis District
Numerical models

Context of scientific research

- Tool to test hypotheses
- Tool to identify requirements for field measurements
- Object of scientific research

- No basis for scientific evidence, at most “confirmation” (because of truncation errors and underdetermination)
- Oreskes et al (1994): “Verification and validation of numerical models of natural systems is impossible”

Cross-section representative for Waal at Dodewaard

Flood water level at discharge of 10 682 m³/s?

- **Cross-section area:**
 - $C = 28 \text{ m}^{1/2}/\text{s}$
 - $C = 45 \text{ m}^{1/2}/\text{s}$

- **Discharge parameters:**
 - 0.9 m+NAP
 - 8.6 m+NAP
 - 1800 m
 - 260 m

Numerical models
Numerical models

Flood water level at discharge of 10 682 m3/s?

Cross-section representative for Waal at Dodewaard
Numerical models

Calculated flood water levels

- Roughness: main channel 45 m\(^{1/2}\)/s and floodplain 28 m\(^{1/2}\)/s:
 > Flood water level = 13.08 m + NAP

- Roughness: main channel 48 m\(^{1/2}\)/s and floodplain 26.05 m\(^{1/2}\)/s:
 > Flood water level = 13.08 m + NAP

What is the effect of lowering the floodplain by 1 m?
Numerical models

Effect of 1 m floodplain lowering

- Roughness: main channel 45 m$^{1/2}$/s and floodplain 28 m$^{1/2}$/s:
 > Flood water level = 12.35 m + NAP
 > Effect = -0.73 m

- Roughness: main channel 48 m$^{1/2}$/s and floodplain 26.05 m$^{1/2}$/s:
 > Flood water level = 12.38 m + NAP
 > Effect = -0.70 m

Uncertainty due to underdetermination
Numerical models

Context of hydraulic engineering practice

- Integration of knowledge in a structured database
- Enhancing of data through “intelligent” interpolation
- Identification of requirements for measurements and monitoring
- Diagnosis of problems
- Assessment of effects of interventions and scenarios
- Quantification of design conditions

Dealing with uncertainty

- Safety factors
- Sensitivity analysis (assessment of robustness)
- Probabilistic approaches

How to communicate this to stakeholders?
Numerical models

Context of decision making with stakeholders

Room for the River programme: 2.2 billion euro
Numerical models

Context of decision making with stakeholders

Nijmegen flood channel: 0.3 billion euro
Numerical models

Context of decision making with stakeholders
Numerical models

Context of decision making with stakeholders

2D flow models with great detail

Topography
Numerical models

Context of decision making with stakeholders

2D flow models with great detail

Vegetation roughness
Numerical models

Context of decision making with stakeholders

2D flow models with great detail

Levees, weirs, groynes
Numerical models

Context of decision making with stakeholders

Flow velocities
Numerical models

Context of decision making with stakeholders

- Accuracy of design flood levels:
 > According to assessment: ±0.5 to ±1 m
 > Suggestion in stakeholder communication: ±1 mm to ±1 cm

- Rationality of communicating values in centimetres:
 > Differences of centimetres involve significant costs of interventions (flood defences, room for the river)
 > Permission to construct in case of small flood level rises sets precedents towards larger cumulative effects

- Paradox: higher accuracy demands than in science
Lack of knowledge: groyne streamlining
Lack of knowledge: groyne streamlining

Insight from 3D computations

standard weirs
streamlined weirs
standard groynes
streamlined groynes
Thanks!