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Abstract—Recent years have shown an interest in developing
and using quick-scan analysis tools for the evaluation of policy
options, such as planning issues, investments in infrastructure or
public transport or other measures to cope with the increasing
mobility problem. These tools can give a quick and easy insight
into the impacts of all kinds of measures, without the large
amount of work associated with the use of transport models. The
assignment procedure of these tools can be improved and made
more consistent with transport models. Therefore, it is needed
that the calculation time of standard assignment algorithms is
decreased. One possibility is to decrease the size of the route
sets used. In this paper, this possibility was investigated for a
number of small and medium-sized networks, using a dynamic
traffic assignment framework. It was found that a route set in
which each OD-pair has a maximum of 4-6 routes is sufficient to
get comparable results with the situation with larger route sets.
This rule of thumb for the maximum number of routes seems
stable if demand increases and is not influenced by the overlap
factor, which is an important parameter in the generation of
route sets. Further research should focus on the scale factor in
the route set generation algorithm and also larger networks need
to be studied to be able to come a better founded conclusion about
the size of the route set, which can be used in quick-scan tools.

Index Terms—route sets, quick-scan tool, dynamic traffic
assignment, DTA

I. INTRODUCTION

Recent years have shown an interest in developing and
using quick-scan tools for the evaluation of policy options,
such as planning issues, investments in infrastructure or pub-
lic transport or other measures to cope with the increasing
mobility problem. Policymakers have come to realize that
transport models can help in making choices, but that their
application relies on an extensive data collection and input
preparation process. Also, the output of these types of models
is not easy to interpret. Therefore, there is a need for quick-
scan analysis tools that can give a quick and easy insight
into the impacts of planning, infrastructural, design, mobility
and traffic management measures, without the large amount
of work associated with the use of transport models.

Quick-scan tools can be used to make a first selection of
alternatives that have been proposed as a solution to deal with
infrastructural, design or mobility problems. Subsequently
more advanced transport modeling tools can be used to
evaluate the remaining alternatives on their merits related to
accessibility, safety or sustainability. Quick-scan tools can also

be used to generate alternatives using ”what-if” scenarios. In
both cases, it is recommended to deviate only slightly from
traditional transport models, because if both type of tools
are used in the policy process, consistency questions will
arise. Therefore, these tools normally import and use data that
come from models, typically the network, the demand (origin-
destination matrix) and the flows and speeds (network loads).
The data can be visualized to get a picture of the situation, but
also enriched to new information with calculation rules. For
example using elasticities to determine the effect of a modal
shift measure or reassigning the traffic because of an increase
in speeds due to traffic management. To maintain a certain
consistency these calculation rules should not deviate too much
from normal transport and traffic models.

The definition of ’quick’ is a subjective one and can be
specified in many different ways. In this research, it is assumed
that a quick-scan tool is used in a workshop setting and
that results for a certain scenario should be available within
a short time period, typically 5-10 minutes. To meet this
requirement a reference scenario is derived from OD matrix
and the network of the transport model used. The model can
contain the information of a large region, for example the
whole of the Netherlands. To make it manageable a study area
is defined, which contains a smaller area, for example a city
or a region around a city. For the OD matrix, aggregations
are made to keep the number of zones for the study area at
an acceptable level, e.g. on average 250 zones. The network
is kept as detailed as it was imported from the transport
model. From the reference scenario, scenarios with one or
more different measures are developed. The number of these
alternative scenarios can differ from one to a large number,
dependent on the goal of the study or the workshop. For every
alternative scenario the results should be calculated, using the
calculation rules mentioned before. In this paper, the focus is
traffic assignment, as one of the calculation rules.

In quick-scan tools, traffic assignment can be used to deter-
mine the effect of certain measures on route choice behavior,
for example the building of new infrastructure or the increase
of speed on routes due to traffic management measures. A
full-fledged user equilibrium model is not suitable, because
that would infringe the ’scan’ character. But traffic assignment
should also not be too simple, because then the results will
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be too inconsistent with the results of other traffic assignment
models (whether they are static or dynamic) will produce. So,
to assign all traffic to the shortest route is not the best option.
Then the question arises what the best method is for traffic
assignment in quick-scan tools, which is not too complicated,
fast enough to be used in a workshop setting and consistent
with traditional traffic assignment models.

To find good and approximate algorithms, the traffic as-
signment process is decomposed into a number of steps. In
general, it is an iterative process. First, demand is assigned to
the available routes, based on initial travel times, e.g. the free
flow travel times. This distribution of traffic is used to calculate
route travel times or costs. On their turn these travel times or
costs are used to reassign the demand, which gives new route
flows and with these again travel times are calculated. This
process is repeated until convergence is reached. Input for
the traffic assignment are a transportation network, a travel
demand matrix and a set of routes, that connects each origin
with the relevant destinations. The structure of this assignment
approach and its separate parts shown in figure 1.
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Fig. 1. Structure of a dynamic traffic assignment model

In this research the set of routes for every origin-destination
(OD) pair is fixed and is generated a priori, thereby avoiding
time-consuming (dynamic) fastest paths computations while
running the traffic assignment model, especially for large
networks [1]. Although the method was not compared with
other link-based and route-based assignment methods (as in [2]
and [3]), it is obvious that this assignment type is advantageous
for a quick-scan tool.

In this paper, the focus is on the route set generation model
and specifically on the question how many routes per OD-pair
are needed for reasonable results and what is ’reasonable’ has
to be defined. But first the available literature on this topic
and some methods to generate a set of routes is described.
After these methods are tested on several cases, the results
are analyzed and some conclusions are drawn.

II. LITERATURE REVIEW

As already mentioned in the introduction, transport models
are an important tool in the development and evaluation of
policy and planning measures. A central component within
these models is the traffic assignment that describes the route
flows, which are a result of travel demand and network supply
interactions. Traffic assignment typically consists of choice

set generation and route choice modeling. Distinguishing the
processes of route choice set formation on the one hand and
modeling the choice between these routes on the other, is
advantageous from a theoretical, computational and behavioral
point of view [4]. However, for large congested networks
the problem of choice set generation is particularly tough,
given that there is a clear trade-off between including all
relevant alternative routes for behavioral realism and limiting
the overall number of routes for computational efficiency (or
even feasibility). For example, the planning model for the
Western part of the Randstad (The Netherlands) contains ˜3.4k
centroids and ˜1.2M routes, while other important regional
models in The Netherlands and Belgium contain up to ˜4M
routes [5].

Compared to the relatively vast bodies of literature on route
set generation, route choice modelling and solving the traffic
assignment problem, much limited research has been done on
what the effects are of choice set size and composition. At
the same time, this research tends to focus on dependencies
between the choice set generation and the route choice model
estimation, such as in [6], [7], [8], [9] and [10]. Another topic
is how choice set generation algorithms are able to yield choice
sets that coincide with chosen routes as observed in real-life, as
in [11], [12] and [13]. Here, and in other studies like [14], [15],
[16] and [17], typical sizes of choice sets that are tested range
from 20 to 50 routes, whereas in regional transport models
used in practice route choice sets tend to contain fewer than
10 routes per origin-destination pair [5]. For example, in the
planning model for the region of The Hague (The Netherlands)
the average number of routes per origin-destination (OD) pair
exceeds 3 [18], whilst the observed number of unique GPS
routes averages 2.1, with a minimum of 1 and maximum of 6
routes [13]. Another example is the study by [19] analyzing
the Chicago area, where an average of 2.7 routes per OD-
pair were observed, and for which 56% of the OD-pairs were
connected by only 1 route, while 95% of the OD-pairs were
connected by fewer than 10 routes.

In light of the fact that calculation time and memory usage
of these transport models strongly depend on the number of
routes in the choice sets, the question remains as to how the
choice set size and composition may affect the overall results
of the traffic assignment model component, particularly in
terms of route flows and travel times as prominent output
in policy and planning studies, but also as input for quick-
scan tools. This has been analyzed for the case of static traffic
assignment by [8], using the Sioux Falls network and the
denser Winnipeg network as test cases. Here they find that
choice sets of maximum 6-8 routes per OD-pair for Sioux
Falls, respectively 10-15 for Winnipeg, lead to (stochastic)
equilibrium route flows with only 3-5% higher delays than
in case of maximum choice sets (while saving more than
70% CPU time). The question is whether these results can
be generalized (1) to other networks, (2) to other traffic
conditions, and (3) to the more realistic setting of dynamic
traffic assignment. This paper contributes to the third issue.



III. ROUTE SET GENERATION

To study how the cardinality of the route sets and traffic
conditions affect the traffic assignment in a dynamic setting,
we first consider methods for constructing the route sets.
Below, the notation and definitions are given first. Then,
methods for generating routes are presented.

A. Definitions

We consider a network to be a directed graph G = (N,A),
where N is the set of nodes and A is the set of directed links.
Some nodes o are origins and some nodes d are destinations.
An origin o and destination d are connected with one or more
sets of links, which is called a route r ∈ <od, where <od is
the set of feasible routes or paths between o and d that has
no cycle. This is only relevant for OD-pairs with a demand
larger than zero and because a dynamic framework is used,
the demand should be larger than zero for one or more time
periods k. Those OD-pairs (o, d) belong to the set Q, which
is a subset of all OD-pairs.

B. Simple Methods

A simple and obvious choice would be that <od contains
exactly one route for every (o, d) ∈ Q. This can be the
shortest route in distance or time (or some other criterion).
This leads to the so-called all-or-nothing (AON) assignment,
because all demand for an OD-pair is assigned to this one
route. In a quick-scan tool used in the Netherlands, another
simple method is implemented. It has two routes: one based
on the free-flow speeds and the other on peak-period speeds.
These speeds can be imported from the transport model, or
from available floating car data, which means that then these
are measured speeds. The traffic demand is simply assigned in
half. To see how this works out in practice both methods are
applied to a small network as shown in figure 2. The network
contains both motorways and urban roads and consists of 63
nodes (from which 8 are origins and 8 are destinations) and
141 links. It has 56 OD-pairs with a demand larger than zero
for at least one time period. The methods are run for a scenario
with 100% demand and one with 125% to see what the effects
are.

The results of both methods are shown in table I. For
comparison reasons another, more advanced, method is added,
which is described later. For now, it is chosen that this method
generates a maximum of 5 routes, just for the example. Net-
work coverage is defined as the percentage of lane kilometers
that is used by the set of routes. Note that lane kilometers are
used instead of link kilometers, to account for the difference
between urban links and motorway links. The delay presented
is relative to the maximum speed of links.

From the table it is clear that both simple methods give
very different results than the advanced method, which is used
as the baseline for this example. First, it can noticed that the
method with 2 routes generates on average 1.3 routes per OD-
pair. That means that a lot of OD-pairs still have only 1 route
available. This goes up to 1.4 route per OD-pair if the demand
increases, because then there is more congestion and more

Fig. 2. Example network

TABLE I
RESULTS FOR THE EXAMPLE NETWORK

Scenario Routes Routes Coverage TDT Delay
total per OD (lane km.) (veh.km) (veh.hrs)

100% - 1 56 1.0 85.8% 106.9 1159.1
100% - 2 73 1.3 91.1% 108.9 801.0
100% - 5 167 3.0 96.3% 112.1 530.0

125% - 1 56 1.0 85.8% 118.1 2903.6
125% - 2 80 1.4 91.6% 133.8 1714.3
125% - 5 167 3.0 96.3% 137.8 1427.8

links have speeds lower than the free-flow speeds, which gives
more opportunities to generate different routes. This is also
clear from the network coverage which increases with higher
demand for this scenario.

Also, the final result in terms of total delay is very different.
For the scenario with 1 route the total delay is more than twice
the delay in the baseline scenario for both demand levels. If
the distance traveled for the higher demand is considered, it is
much lower for this scenario than the other two. This has to
do with traffic which is stuck in the origin and cannot enter
the network due to queues, but is accounted for in the total
delay. For the scenario with 2 routes the total delay is about
50% higher for the normal demand level and this decreases to
a 20% higher delay with 25% more demand. This could be
the effect of more routes available.

The results show that the number of routes has a large
influence on the final result. For larger networks also the
calculation time comes into play and then it becomes a balance



between enough routes to get good results, but not too much
routes resulting in long calculation times.

C. Advanced Method

As stated before for a quick-scan tool an a-priori set of
routes would be beneficial in terms of calculation time. The
advantage is that the routes can be computed in advance and
don’t change during other calculations. Also, starting with a set
of routes instead of with a single route enables the distribution
of the OD flows over multiple routes already from the first
iteration. This can speed up the convergence. But a fixed set
of routes can also be a disadvantage, because it is possible
that used routes are not included in the set. Therefore, it is
important that the generated set of routes is sufficiently large,
such that for each OD-pair at least all used routes are included.

Sets of routes can be generated in several advanced ways,
e.g. all acyclic routes, the k-shortest routes, the essentially least
cost routes, the most probable routes and the efficient routes
[20]. Normally, travel times are used for this, which can be
based on the maximum speed or can be estimated with travel
time functions. For this research, a combination of the second
and third alternative is used, which means that the number of
routes for each OD-pair is limited and the routes are bounded
in length. Furthermore, the set is generated with a stochastic
process, using a Monte Carlo simulation in which the link
costs are varied randomly, but within a certain bandwidth. To
adhere to the bandwith, a scaling factor ω is used, which is
defined as:

C∗= C(1 + ω |Λ|) (1)

where C is the original link cost matrix, which represents the
costs to travel each link from one node (row) to the other
(column). Normally these costs are defined as the travel time,
but this could be extended with other costs also. In equation
(1) C∗ is the adjusted link cost matrix, ω a scaling factor and
Λ a matrix with elements following the standardized normal
distribution N(0, 1). So, for every link a separate, extra cost
term is added. If ω = 2

3 is chosen, the length of the adjusted
routes can never be longer than three times the original length.
That is, with 99.7% certainty, because with that probability
the elements of Λ lie between -3 and 3. This is sufficient for
the purpose of this study. The algorithm for the generation of
routes is given in table II.

In Step 2 and Step 3 shortest paths are calculated. and this
is done with Dijkstra’s algorithm [21]. For this research, the
fast and reliable heap implementation by Bindel [22] is used.
Note that Dijkstra is used for a singe origin to all destinations
in one execution. In Step 4 there is a check on overlap of
routes. This check is introduced to prevent routes that look
much the same are included in the route set. For example a
route using an off-ramp and on-ramp (compared to a route
using the motorway) is unwanted. Before a route r is added
to the set of routes or OD-pair (o, d), it is checked with every
existing route s ∈ <od if the number of overlapping links
divided by the minimum number of links in s or r should be
smaller than a threshold.

TABLE II
ALGORITHM FOR THE ROUTE SET GENERATION

Step 1: Choose number of wanted routes p and number of random
drawings m∗.

Step 2: For every (o, d), find the shortest route for the original cost
matrix C and add this route to the set of routes <od.
For m = 1 : m∗

Step 3: Draw the error matrix Λ(m).
Calculate the adjusted link costs with equation (1).
For every (o, d) and cost matrix C(m), find the shortest route
rodm.

Step 4: For every (o, d) and route rodm:
Check if rodm is shorter than the p-th longest route in the set
<od.
Check if there is not too much overlap with the other routes
in the set.

Step 5: If these condition are fulfilled, add route rodm to route set
<od.
If m < m∗ go back to Step 3.

In [1] it was shown that the algorithm from table II can
be applied to large-scale networks in an acceptable amount
of time. For that case (and using the computer power of that
time) ’acceptable’ meant 15-45 minutes for 10-25 routes. The
question is if these calculation times will also be acceptable
in a quick-scan tool. Before that point is explored, the rest of
the modeling framework that is used, is described first.

IV. MODELING FRAMEWORK

To be able to evaluate the results of the route set generation
algorithm on the final outcome, for example in terms of total
delay, it is necessary to use the complete DTA framework as
shown in figure 1. In this section the assignment algorithm, the
network loading model and convergence aspects are described
briefly.

A. Dynamic Traffic Assignment

To distribute the traffic demand over the available routes
for all modeled periods, a dynamic traffic assignment model
is needed. For this work the stochastic assignment approach
is used [23] and for this approach it is assumed that the
travel costs have an error term that is independently and
identically distributed and with a certain distribution it leads
to the multinomial logit (MNL) model [24]. In this model the
probability P rodk to choose route r for OD-pair (o, d) and time
period k is given by

P rodk =
e−θc

rod
k∑

s∈<od

e−θc
sod
k

, ∀o, d, r ∈ <od, k, (2)

where θ > 0 is a parameter that reflects the degree of
uncertainty in the travel time knowledge of the road users.
The MNL-model has a problem with overlapping routes and
several solutions have been proposed to overcome this. In
[17] an overview of this discussion is given, but it has
not been concluded yet, although a preference for the path-
size logit approach is expressed. Because of implementation
issues, the C-logit model [25] is prefered and used in the
stochastic dynamic traffic assignment assignment procedure.



This approach takes overlap of routes into account with the
commonality factor CF , which for route r of OD-pair od and
time period k, is defined by

CF rodk = β ln
∑
s∈<od

[
Lrs√
LrLs

]γ
, ∀o, d, r ∈ <od, k, (3)

where Lr and Ls are the ‘lengths’ of routes r and s belonging
to OD-pair (o, d), Lrs is the ‘length’ of the common links
shared by routes r and s and β and γ are positive parameters,
which in our case are β = 1 and γ = 2. For the ’length’ of the
route, the free flow travel time is used. With this commonality
factor and the realized travel time crodk , the probability to
choose route r, for OD-pair od and time period k, is given
by

P rodk =
e−θc

rod
k −CF rod

k∑
s∈<od

e−θc
sod
k −CF sod

k

, ∀o, d, r ∈ <od, k. (4)

and the accompanying route flows frodk are then given by

frodk = P rodk qodk , ∀o, d, r ∈ <od, k, (5)

where qodk is the demand for OD-pair (o, d) and time period k.
These route flows are used to calculate the route travel times
again using a dynamic network loading model.

B. Dynamic Network Loading Model

In the dynamic network loading (DNL) model traffic de-
mand is put on the network at the origins using a demand
profile, which can be step-wise or more fluent. Traffic is
propagated through the network using travel time functions.
These functions are standard functions derived from literature
[26], [27] and they are different for different link types (normal
link, controlled link, roundabout link, etc.). For normal links
the travel time τa (s) for link a is calculated as follows:

τa = τ̃a + 0.9la∆h

(
za +

√
z2a +

8kaϕa
Qa∆h

)
, (6)

where τ̃a is the free flow travel time (s), la is the length
of the link (m), ∆h is the length of the analysis time period
(h), ϕa is the degree of saturation, za = ϕa − 1, Qa is the
capacity of the link and ka is a link dependent parameter,
which is related to other parameters through

ka =
2Qa(

ϑf
a

ϑc
a
− 1)2

∆h(ϑfa)2
, (7)

where ϑfa is the free flow speed (km/h) for link a and ϑca
is the speed (km/h) at which free flow turns into congestion.
The speed at congestion ϑca is an input parameter and can
be different for different free flow speeds. From the free flow
speed, the free flow travel time τ̃ can be calculated with

τ̃a =
3.6la

ϑfa
(8)

At decision nodes the traffic is distributed among the
outgoing links according to the splitting rates determined by

the route flows frodk , taking into account the travel time needed
to reach this node. Before traffic enters a link, it is checked
if this link has enough space. If this is not the case traffic is
held back on the upstream link, so blocking back is modeled.
If there are more than one upstream links, the queue is divided
over these links according to the number of lanes.

The link travel times are used to calculate the route travel
times crodk , which on their turn are input for the dynamic
assignment model. More details on the model and the steps
taken, can be found in [28].

C. Convergence

Every traffic assignment model assumes that traffic is in
some sort of equilibrium and that can be a deterministic or
a stochastic one. Both types of equilibria are found using an
iterative solution procedure for the process shown in figure
1. For a stochastic assignment to come to an equilibrium, the
solution for a certain iteration f (calc) is combined with the
solution from the previous iteration f (j−1) to obtain the input
f (j) for the next one:

f (j) = f (j−1) + ζ(j)(f (calc) − f (j−1)), (9)

where ζ(j) is the smoothing factor. For a stochastic assignment
a dynamic adjusted smoothing factor gives the best conver-
gence properties and this smoothing factor is also used in this
research [29].

To determine if equilibrium is reached a convergence cri-
terion is used. For this study, the maximum difference (over
OD-pairs and time periods) between the route flows of two
iterations is used, calculated as a percentage of the demand of
that OD-pair during that time period:

ε = 100% ·max
k

max
od

max
r

∣∣∣frod(j)k − frod(j−1)k

∣∣∣
qodk

. (10)

This error can be considered as the maximum shift in flow
from one route to another, for a certain OD-pair and time pe-
riod. For now ε < 1%, to keep a balance between comparable
results for the networks and calculation time. An option is to
keep the absolute shift of flow below a certain threshold. This
would give more weight to OD pairs with higher demand, but
also could lead to slower convergence.

V. CASE STUDIES

In this section, some results, obtained with the algorithms
described, are presented. First, the influence of the overlap
factor is investigated and after that the influence of the
maximum number of routes.

A. Case 1: Influence of Overlap Factor

For the first case a somewhat larger network than the
example network is used. This network has 431 nodes, of
which 25 are origins and 25 are destinations. It has 841 links,
both urban and motorway and the OD-matrix has 600 OD-
pairs with a dynamic demand profile, for 48 5-minute time
periods, spanning a simulation period of 4 hours. The network
is shown in figure 3 and it is clear that the structure of



Fig. 3. Network for Case 1

this network is different from the example network: it has
a structure with ring roads, which makes the number of route
choices possibly larger.

For this network the overlap factor, which determines how
much overlap between routes in the route set is allowed,
is varied. A large overlap factor means a lot of overlap is
permitted. It was varied between 0.75 and 0.99 in steps of
0.05. For every overlap factor, the route set was generated
according to the algorithm described in Tabel II, for which p
(maximum number of routes) was set to 15 and m∗ (number
of random draws) to 50. For this network and these settings,
figure 4 shows the average number of routes per OD-pair and
figure 5 shows the frequency distribution.

The results show that even for a high value of the overlap
factor the average number of routes per OD-pair does not
exceed 5. This is confirmed in the frequency graph which
shows that 5 routes are enough to cover 95% of the route set
for the overlap factors 0.75, 0.80, 0.85 and 0.90. Even for an
overlap factor of 0.99 5 routes are enough to cover about three
quarters of the route set.
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B. Case 1: Number of Maximum Routes

If the overlap factor is set to a fixed value of 0.90 and the
number of maximum routes in the route generation process
is varied, the final results, in terms of the total delay of the
equilibrium solution, can be analyzed. The results are shown in
figure 6. For this network and this settings, above a maximum
of 9 routes there are no changes any more. In that case the
average number of routes per OD-pair is 2.4 and the network
coverage is 99.76%, which is already obtained with 3 routes.
With a maximum of 4 routes the total delay of the calculated
equilibrium is within 1% of the total delay of the equilibrium
with 9-15 routes. If the demand is increased with 25% the
results stays the same. The total delay triples, but still 4 routes
are enough to stay within 1% of the total delay of the runs
with 9-15 routes.
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C. Case 2: Number of Maximum Routes

A second, somewhat larger case involves a part of the
Amsterdam road network: the western part of the ring road
and the surrounding urban network. It consists of 1438 links,
787 nodes (of which are 100 origins and 99 destinations) and
4618 OD-pairs. All OD-pairs have a dynamic demand profile



Fig. 7. Network for Case 2

for 10 periods of 15 minutes (2.5 hrs in total). The network
is shown in figure 7.

For this network the overlap factor is set to a fixed value
of 0.85, because the on- and off-ramps of the motorway are
closely spaced and the route generation should not benefit
too much from that possibility. Again the route generation
algorithm and DTA framework are used to calculate the total
delay in the equilibrium situation if the maximum number of
routes is varied from 1 to 15. The results are shown in figure
8.

From the figure it can be seen that the number of routes
increases until the end, although with a minimal quantity for
15 routes (+18). Also for higher number of maximum routes
the route set still increases a little bit with 3-10 routes. The
average number of routes per OD-pair in the case of 15 routes
is 3.4. This is considerable higher than the previous case,
which has to do with the network structure: on the urban
many route options are available. The total delay already
reaches a more or less stable value for 3 routes. The network
coverage has then already reached its maximum value of
98.24% (minimum is 96.02%). This is probably due to the
fact that most of the delay is suffered on the motorway and
due to the structure of the network long distance traffic has
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Fig. 8. Total Delay and Number of Routes for Case 2

not much choice than to use the motorway. For more than 3
routes the total delay is within 1% of the equilibrium value of
the situation with a maximum number of 15 routes. Although
for 6 routes a small deviation can be seen, the values of the
total delay for the situations with 7 routes and more are even
within 0.1% of this final solution.

VI. CONCLUSIONS

In this research, the size of route sets for different networks
is investigated. The purpose was to see whether a certain
maximum value for the number of routes per OD-pair could be
determined. If this could be smaller than normally is used in
transport models, quick-scan tools could use the same route
set generation and assignment methods, because calculation
times can be limited and the consistency with transport models
is better.

This was done using an existing dynamic traffic assignment
framework together with a route set generation algorithm. The
algorithm has a number of variables of which some were
varied in this research. The frameworks was tested on an
example network which showed that the assumption in current
quick-scan tools that 2 routes is enough, is not valid.

From the small and medium-sized networks studied, it can
be concluded that a route set in which each OD-pair has a
maximum of 4-6 routes is sufficient to get comparable results
with the situation with larger route sets. Therefore, a number
of 2 routes, which is now sometimes used, is not enough. It
was also concluded that the overlap factor, used in the route set
generation algorithm to filter comparable routes, influences the
size of the route set, but not the point at which the maximum
number of routes gives comparable results. Also, this rule of
thumb for the maximum number of routes seems stable if
demand increases.

Only a limited number of networks was investigated, al-
though the networks were realistic ones. Also, not all possible
variables of the route set generation algorithm were inves-
tigated. Especially, the scale factor ω (see equation (1)) is
worth a closer look. Also, alternatives for the used route-
set generation algorithm (k-shortest paths) could be useful to
study, especially the use of the overlap factor. Furthermore,



larger networks need to be studied to be able to come a better
founded conclusion about the size of the route set, which can
be used in practical applications of a quick-scan tool with
assignment properties.
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