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Abstract 11 

Identifying areas prone to flooding is a key step in flood risk management. The purpose of this 12 

study is to develop and present a novel flood susceptibility model based on Bayesian Additive 13 

Regression Tree (BART) methodology. The predictive performance of the new model is assessed 14 

via comparison with the Naïve Bayes (NB) and Random Forest (RF) based methods that were 15 

previously published in the literature. All models were tested on a real case study based in the Kan 16 

watershed in Iran. The following fifteen climatic and geo-environmental variables were used as 17 

inputs into all flood susceptibility models: altitude, aspect, slope, plan curvature, profile curvature, 18 

drainage density, distance from river distance from road, stream power index (SPI), topographic 19 

wetness index (TPI), topographic position index (TPI), curve number (CN), land use, lithology 20 

and rainfall. Based on the existing flood field survey and other information available for the 21 

analyzed area, a total of 118 flood locations were identified as potentially prone to flooding. The 22 
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data available were divided into two groups with 70% used for training and 30% for validation of 23 

all models. The receiver operating characteristic (ROC) curve parameters were used to evaluate 24 

the predictive accuracy of the new and existing models. Based on the area under curve (AUC) the 25 

new BART (86%) model outperformed the NB (80%) and RF (85%) models. Regarding the 26 

importance of input variables, the results obtained showed that the location’s altitude and distance 27 

from the river are the most important variables for assessing flooding susceptibility. 28 

 29 

Keywords: Flood susceptibility mapping; Bayesian; Regression Tree; Ensemble model; Bayesian 30 

Additive Regression Tree (BART);  31 

1. Introduction 32 

Any unforeseen natural occurrence that weakens or destroys economic, social and physical 33 

capacity, such as loss of life and finances, destruction of infrastructure, economic resources and 34 

areas of employment is defined as a natural disaster. Examples include earthquakes, floods, 35 

drought, seawater, volcanoes, landslides, hurricanes and natural pests (Vetrivel et al. 2018). 36 

Flooding is one of the most dynamic and disruptive natural events that puts human life and property 37 

and social and economic conditions at greater risk than any other natural disaster (Rahmati et al. 38 

2016; Yariyan et al. 2020). This phenomenon causes damage to human achievements at all times 39 

(Woodward et al. 2014; Darabi et al. 2019; Vafakhah et al. 2020). The highest risk of flooding and 40 

corresponding damage is in the populated, i.e. urban areas. In recent years, the increase in urban 41 

flood hazards, particularly along the river banks, has resulted in the risk of flooding for residents 42 

and movable property (Choubin et al. 2019). Due to the varying climate, unpredictable 43 

temperatures and rainfall in many of Iran's watersheds, several floods occur every year (Tehrany 44 

et al. 2014). Limiting environmental resources, reducing and destroying them as a result of the 45 
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expansion of human activities, poses many challenges for today's society and the next generation. 46 

The Kan watershed is affected by flooding events annually and this vulnerability has been 47 

documented (Hooshyaripor et al. 2020). Seven important flood events were recorded in this 48 

watershed since …, causing damage to industrial, residential, agricultural land use, and fatalities, 49 

according to the available information. 50 

Reducing human casualties as well as damage to property and the environment is a key objective 51 

shared by countries most often impacted by natural disasters. They are increasingly conducting 52 

feasibility studies with economic analysis to mitigate the effects of these disasters (Molinos-53 

Senante et al. 2011). Although flooding cannot be prevented, the  damage can be mitigated through 54 

appropriate analysis and forecasting techniques (Heidari 2014). The first step is to identify flood-55 

prone areas (Janizadeh et al. 2019; Hosseini et al. 2020). One way to prevent and reduce flood 56 

damage is to provide people with reliable information through flood hazard zoning maps (Cook 57 

and Merwade 2009). The modelling of flood hazards, which may involve multi-temporal data sets, 58 

is required. Recently, machine learning methods have been successfully applied to assess flood 59 

risk with higher accuracy (Ngo et al. 2018; Talukdar et al. 2020). However, there is still no 60 

agreement on which method or set of methods can provide the best predictions (Kalantar et al. 61 

2021; Costache et al. 2021).  62 

Rapid access to satellite imagery based on remote sensing data has increased the use of geographic 63 

information systems in the preparation of flood susceptibility maps. A wide range of modelling 64 

techniques has been proposed and used in natural disaster assessment including AI based 65 

techniques (Sayers et al 2014). In recent years,  Bayesian methods, partly because of their over-66 

resistance to the presence of small sample sizes and ability to deal with missing or incomplete data, 67 

have been developed recently to model flood sensitivity. These include Naïve Bayes models (Liu 68 
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et al. 2016; Pham et al. 2020b; Tang et al. 2020) and regression tree models such as Random Forest 69 

(RF) models (Arabameri et al. 2020; Chen et al. 2020; Vafakhah et al. 2020), Decision Tree models 70 

(Khosravi et al. 2018; Costache 2019; Janizadeh et al. 2019; Pham et al. 2020a), Logistic 71 

Regression models (Shafapour Tehrany et al. 2017; Al-Juaidi et al. 2018; Tehrany and Kumar 72 

2018). These regression tree models have become popular in the research environment due to their 73 

capability to model nonlinear phenomena such as floods. 74 

Machine learning algorithms by default usually present point estimates only, and so decisions are 75 

made ignoring the uncertainty surrounding these estimates. In recent years, the use of ensemble 76 

models has attracted the attention of researchers in various fields as ensemble models benefit from 77 

several individual models and therefore tend to have better performance than individual models 78 

(Al-Abadi 2018; Tehrany et al. 2019a; Costache and Bui 2020; Shahabi et al. 2020). Bayesian 79 

Additive Regression Tree is one of the new ensemble models that combines Bayesian and 80 

Regression tree algorithms giving the access to the full posterior distribution of all unknown 81 

parameters in the model. This can be useful to reduce the uncertainty.  82 

BART model has been used for modeling and predicting in different areas such as ecological 83 

processes (Plant et al. 2021) and gully erosion (Chowdhuri et al. 2020). Due to the fact that the 84 

flood is a non-linear phenomenon and has a lot of the uncertainty, use of appropriate models that 85 

have the ability to predict this phenomenon and reduce uncertainty is essential in the management, 86 

planning and prevention of flood risk. In the field of flood hazard modeling so far, very little 87 

attention has been paid to the role of hybrid Bayesian and Decision Tree algorithms. Therefore, 88 

the purpose of this study is to develop and present a new flood susceptibility model based on the 89 

ensemble type Bayesian Additive Regression Tree (BART) method. The new method will be 90 
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compared with the Naïve Bayes (Bayesian type) and Random Forest (regression tree type) based 91 

models to evaluate the predictive performance of the new method. 92 

 93 

1.2. Study area 94 

The Kan River watershed is 200 km2 and is located northwest of Tehran, Iran. This watershed is 95 

located between latitudes 51° 10′ and 51° 23′ east and 35° 46′ and 35° 58′ north (Fig. 1). The 96 

average height of the watershed is 2428 meters, the average slope of the whole watershed is 43.4% 97 

and the most important river in this mountainous region is the Kan river. The study area is located 98 

in the southern margin of the central Alborz region in terms of geological status and has a 99 

mountainous climate with the average annual rainfall of 414.13 mm. The average annual discharge 100 

of the Kan River is 2.2 m3/s and its annual water flow is about 70 million m3/year. Seven important 101 

flood events have been reported in the Kan watershed since …, which have caused damage to 102 

commercial and residential facilities, agricultural land and even caused casualties in the region 103 

(Delkash et al. 2014). 104 
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 105 

Fig. 1. Location of case study a) country of Iran b) Tehran Province and c) Kan watershed 106 

2. Material and methods 107 

2.1. Flood Inventory Data Preparation 108 

In order to prepare a flood susceptibility map it is necessary to analyze the historical floods. The 109 

Kan watershed has been severely affected by dangerous floods in recent decades, causing 110 

extensive damage and casualties. According to historical floods recorded by the Regional Water 111 

Company of Tehran Providence (1954/8/27, 1955/6/9, 1978/3/7, 1981/7/25, 1986/2/2, 1995/4/23, 112 

1996/4/3), field visits and interviews with locals on 2019/10/5 to 2019/10/9 and the identification 113 

of flood-affected areas by GPS equipment (Fig. 2), 118 flooding locations are identified in the 114 

area. In addition to this, further 118 non-flood points were randomly placed in the inter-fluvial 115 
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area, or within very steep altitude where the flood phenomenon is almost impossible in the case 116 

study area. The position of all 236 locations are presented in Fig. 1. The data were divided into 117 

two categories of training and validation for modeling, so that 70% of the data were used for 118 

training and 30% for validation (Ahmadlou et al. 2019; Choubin et al. 2019). The flowchart of 119 

research methodology is given in Fig. 3. 120 

 121 

 122 

Fig. 2. Example of a flood location in the Kan watershed  123 

 124 
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 125 

Fig. 3. Research Methodology 126 

 127 

2.2. Spatial Data Preparation 128 

Floods are one of the natural phenomena and are affected by various climatic and geo-129 

environmental factors. In this study, the following 15 climatic and geo-environmental variables 130 

are used as potential explanatory factors for flood susceptibility at a given location: altitude, aspect, 131 

slope, plan curvature, profile curvature, drainage density, distance form river distance from road, 132 

stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), 133 

curve number (CN), land use, lithology and annual rainfall (Ngo et al. 2018; El-Magd et al. 2021).  134 

The above 15 factors (i.e. potential flood susceptibility model independent variables) were 135 

confirmed as significant by using the multi-collinearity analysis. The multi-collinearity analysis 136 

evaluates the intensity of multiple correlations between considered variables by calculating the 137 
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variance inflation factors (VIFs). The higher the value of the VIF the more likely it is that that 138 

variable does not play a significant role in flood susceptibility prediction (Miles 2014). In this 139 

study, the threshold of 5 was used for VIF to identify significant independent variables (Tehrany 140 

et al. 2019a; Hosseini et al. 2020). VIFs were estimated using the USDM package in R software. 141 

The analysis has shown that all fifteen variables shown here have VIF values below the above 142 

threshold (see section 4.1) hence they have all been used a potential explanatory factors for 143 

predicting the flooding susceptibility.  144 

The values of above 15 variables were prepared based on previous studies (see Fig 4, 5 and 6). For 145 

this purpose, the digital elevation model (DEM) of the study area with resolution of 12.5×12.5 m 146 

was developed with elevation data obtained using the type L-band Synthetic Aperture Radar 147 

(PALSAR) (https://vertex.daac.asf.alaska.edu/#). The aspect map was prepared based on DEM at 148 

nine class in the ArcGIS 10.5 software (Choubin et al. 2019; Janizadeh et al. 2019). The ground 149 

slope is one of the important factors in the occurrence of floods in watersheds (Tehrany et al. 2015; 150 

Chapi et al. 2017). The slope map was prepared based on the DEM in ArcGIS 10.5 software 151 

(Khosravi et al. 2018). 152 

The plan and profile curvature are the spatial parameters used in the preparation of flood maps of 153 

watersheds. These variables were prepared in ArcGIS 10.5 software using a DEM (Rahmati et al. 154 

2016; Hong et al. 2018). Drainage density of the study area in ArcGIS 10.5 environment was based 155 

on line density extension (Mahmoud and Gan 2018; Zhao et al. 2019). Distance from rivers is one 156 

of the most important factors affecting flooding of lands along the rivers (Tehrany et al. 2014; 157 

Khosravi et al. 2016, 2018). This map was prepared using the Euclidean order in ArcGIS 10.5 158 

software (Khosravi et al. 2018). Distance from the road is also a factor affecting flooding. This 159 
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variable was prepared using the 1:50,000 road map of Tehran province, the ArcGIS10.5 software 160 

and the Euclidean extension, to determine distance from the road (Shafapour Tehrany et al. 2017). 161 

The stream power index (SPI) is one of the important parameters for flooding in watersheds and 162 

the following relationship is defined here (Tehrany et al. 2014; Shafizadeh-Moghadam et al. 2018):  163 

𝑆𝑃𝐼 = 𝐶𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡 𝐴𝑟𝑒𝑎 ∗ tan (𝑠𝑙𝑜𝑝𝑒)                                                                                    (1) 164 

System for Automated Geoscientific Analyses Geographic Information System (SAGA GIS 2.6) 165 

software was used to prepare this variable (Tehrany et al. 2014). 166 

Topographic position index (TPI) indicates the topographic status of the area, with positive values 167 

indicating high altitudes and negative values indicating low altitudes such as valleys (Papaioannou 168 

et al. 2015). Due to the role of topographic shape in the formation of floods, this index is considered 169 

as one of factors affecting floods and this variable was prepared using the SAGAGIS 2.6 software. 170 

TWI measures the effect of local topography on runoff production and shows the long-term 171 

moisture content of a landscape (Hong et al. 2018; Khosravi et al. 2019), hence this indicator is 172 

one of the influential variables in flood risk assessment in watersheds. This variable was obtained 173 

based on the following (Khosravi et al. 2019) in SAGAGIS 2.6 software: 174 

𝑇𝑊𝐼 = ln (𝐶𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡 𝐴𝑟𝑒𝑎/tan (𝑠𝑙𝑜𝑝𝑒))                                                                              (2) 175 

Lithology is one of the important factors in watershed flooding due to its direct effect on the level 176 

of permeability and surface runoff (Rahmati et al. 2016). The geological map of the Kan watershed 177 

was prepared based on the 1:100,000 geological map of the Iranian National Cartographic Center 178 

(NCC) and then turned into a raster layer with a resolution of 12.5 m. The lithology map of the 179 

study area was divided into seven different classes. The soil type map was also prepared using the 180 

data from the Administration of Natural Resources of Tehran Province and the vector file of this 181 
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map was created with a raster format with pixel size of 12.5 meters using the ArcGIS 10.5 software 182 

(Tehrany et al. 2014).  183 

Land use is the result of the interrelationships of socio-cultural parameters and the potential of the 184 

land (Rahmati et al. 2016; Bui et al. 2018). Changes in land use and land cover can have significant 185 

impact on flooding in watersheds (Khosravi et al. 2018). This map was prepared using images of 186 

Landsat 8 satellite imagery OLI sensors in 2019 and using the maximum likelihood algorithm and 187 

supervised classification in the ENVI 5.1 software and divided into four classes: orchard, 188 

rangeland, residential and rocky lands.  189 

In order to prepare the annual rainfall map, the rainfall data of 7 gauge stations (inside and outside 190 

the watershed) were used in the period 1994-2019. After carefully examining the various 191 

interpolation methods in the ArcGIS 10.5 software, the distribution of annual rainfall in Kan 192 

watershed was prepared based on the ordinary Kriging method.  193 

One of the most important factors in the occurrence of floods is soil condition and different land 194 

uses, which directly affects the amount of water infiltration into the land. In other words, the curve 195 

number (CN) at the level of each area indicates the hydrological behavior of that area and its 196 

discharge regime during rainfall. In order to determine the CN map the land use map and the 197 

hydrological soil groups map were combined in the ArcGIS software environment. Then, based 198 

on the tables related to the CN for different land uses of watersheds and according to hydrological 199 

soil groups map, the value of CN was determined in the case of previous average humidity 200 

(Mahmoud and Gan 2018; Tang et al. 2018).  201 

The data summary information of all independent variables is shown in Table 1. 202 

Table 1. Information of independent variables 203 
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Variables Data Type Data Source Data resolution 
Elevation 

Raster Grid 
ALOS PALSAR DEM, 

(Alaska Satellite 
Facility) 

12.5 m* 12.5 m resolution 

Aspect 
Slope 

Plan Curvature 
Profile Curvature 
Drainage Density 

SPI 
TWI 
TPI 

Distance from River Line and polygon coverage 

Administration of 
Natural Resources, 
Department Tehran 

Province. 
 
 

1:50000 

Distance from Road Line and polygon coverage  1:50000 
LULC Spatial/Raster grid Landsat 8 OLI (USGS) 30 m spatial resolution 

Lithology 
Line, point and polygon 

coverage 

Geological Map by 
country's mapping 
organization (Iran) 

1: 100000 

Rainfall 
Station specific 

information 
25 Years information of 

rain gage stations 
Interpolation with same spatial 

resolution with other parameters 

CN Raster Grid 
LULC and hydrological 

soil groups map 
 

 204 



13 
 

 205 

Fig 4. Flood conditioning factors: a) altitude, b) aspect, c) slope, d) plan curvature, e) profile curvature, f) 206 
drainage density 207 
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 208 

Fig 5. Flood conditioning factors: g) distance from river, h) distance from road, i) SPI, j) TWI, k) TPI, l) CN 209 
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 210 

 211 

 212 

Fig. 6. Flood conditioning factors: m) land use, n) lithology and o) annual rainfall 213 

2.3. Flood susceptibility models 214 

This section describes three different models for predicting flood susceptibility: BART, NB and 215 

RF. All models are based on different machine learning methods that predict the flood 216 

susceptibility defined as the probability of flood occurrence at a given location of the analyzed 217 
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watershed. All three models have the same set of input variables, the fifteen explanatory / 218 

independent variables described in section 2.3. These model inputs were determined in all cases 219 

using correlation and multi-collinearity analysis (see next section). Finally, all models are trained 220 

and tested using the data described in the next section.  221 

 222 

2.3.1. Naïve Bayes Model 223 

The Bayesian method is a way of classifying phenomenon based on the probability of that 224 

phenomenon occurring or not occurring. Based on the inherent characteristics of probability 225 

(especially probability division), Naive Bayes method offers good results after receiving the initial 226 

practice (Rish and others 2001). Learning method in the simplest way, the base is the type of 227 

learning with the supervisor. Bayes suggests a way to calculate the posterior probability, P (c | x), 228 

from P (c), P (x) and P (x | c). The Naive Bayes classifier assumes that the effect of the predictor 229 

cost (x) on a given category (c) of the different predictor values is neutral. This assumption is 230 

known as conditional independence: 231 

𝑃(𝑐|𝑥) =
௉(𝑐|𝑥)∗௉(௖)

௉(௫)
  (3) 232 

𝑃(𝑐|𝑋) = 𝑃(𝑥ଵ|𝑐) ∗ 𝑃(𝑥ଶ|𝑐) ∗ … ∗ 𝑃(𝑥௡|𝑐)                                                                                    (4) 233 

where 𝑃(𝑐|𝑥)  is posterior probability of target, 𝑃(𝑐) is prior probability of class and 𝑃(𝑥) is the 234 

prior probability of predictor (Zhang 2004). The e1071 package in R software was used for Naïve 235 

Bayes modeling. 236 

2.3.2. Random Forest Model 237 
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Random Forest (RF) method is a relatively complex method in which several decision trees are 238 

trained in order to increase the predictive accuracy of the model. The result is a prediction of a 239 

group of decision trees. In the random forest learning method, each decision tree is taught using a 240 

random sample selected from the training data set. The total selection of predictive variables used 241 

to divide nodes is also random. In the random forest method, the two properties mtry and ntree are 242 

determined for the number of auxiliary variables used in each subset and the number of trees used 243 

in the forest, respectively. One of the advantages of a random forest is that it can be used for both 244 

classification and regression type models. Random forest has parameters similar to the decision 245 

tree or "Bagging Classifier". Random forest adds randomness to the model as trees grow. Instead 246 

of searching for the most important features when dividing a "node", this algorithm looks for the 247 

best features among a random set of features. This leads to more variety and ultimately a better 248 

model. Therefore, in a random forest, only one subset of features is considered by the algorithm to 249 

divide a node. By adding a random threshold for each attribute, instead of searching for the best 250 

possible threshold, trees can be made even more random (Liaw et al. 2002). The randomForest 251 

package in R software was use for the RF modeling here. 252 

2.3.3. Bayesian Additive Regression Tree (BART) Model 253 

BART is a Bayesian approach to non-parametric output estimation using regression trees. The 254 

regression trees are relying on the return of the binary division of the predictive space into a set of 255 

superconductors to approximate certain unknown functions. The predictive space has dimensions 256 

corresponding to the number of variables. Tree-based regression models are capable of generating 257 

plenty of interaction and nonlinearity (Hill et al. 2020). Models consisting of a number of 258 

regression trees are more capable of capturing interaction and nonlinearity than single trees, as are 259 

additives in f. 260 
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BART can be considered a general collection of trees with a new estimation method based on a 261 

complete Bayesian probability model. The BART model can be expressed as follows: 262 

𝑃(𝑌 = 1|𝑋) = 𝜑(𝜏ଵ
ே(𝑋) + 𝜏ଶ

ே(𝑋) + ⋯ + 𝜏௡
ே(𝑋)                                                                              (5) 263 

where 𝜑 denotes the cumulative density attribute of the prevalent regular distribution. In this 264 

formulation, the sum-of-trees model serves as an estimate of the conditional probit at x which can 265 

be besides issues modified into a conditional threat estimate of Y = 1 (Kapelner and Bleich 2013). 266 

The bartMachine package in R software was use for BART modeling. 267 

2.3.4. Model Validation and Performance Assessment 268 

The ROC curve characterizes the relative performance of each model. The ROC curve is a graph 269 

in which the true positive (or specificity value) is shown in the vertical axis whilst the false positive 270 

(or sensitivity) is shown on the vertical axis (Frattini et al. 2010). For the sensitivity or a proportion 271 

of occurrence pixels that have been correctly predicted, the larger this value the more accurate the 272 

model is in determining the occurrence points. Also, the feature means a ratio of non-occurring 273 

pixels that the model correctly predicted. The area under the curve (AUC) measures one aspect of 274 

performance. The value of AUC varies from 0 to 1, where  the value of 0.5 denotes the random 275 

prediction and 1 denotes the perfect prediction (Yesilnacar and Topal 2005). In this study, the 276 

following equations have been used to calculate true positive rate (TPR), true negative rate (TNR), 277 

specificity, sensitivity and AUC: 278 

𝑇𝑃𝑅 =
்௉

(்௉ାிே)
                                                                                                                                      (6)     279 

𝑇𝑁𝑅 =
்ே

(்ேାி௉)
                                                                                                                                          (7) 280 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
ே௨௠௕௘௥ ௢௙ ௣௢௦௜௧௜௩௘௦

(ே௨௠௕௘௥ ௢௙ ௣௢௦௜௧௜௩௘௦ାே௨௠௕௘௥ ௢௙ ௙௔௟௦௘ ௣௢௦௜௧௜௩௘௦)
                    (8) 281 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
ே௨௠௕௘௥ ௢௙ ௧௥௨௘ ௡௘௚௔௧௜௩௘௦

(ே௨௠௕௘௥ ௢௙ ௧௥௨௘ ௡௘௚௔௧௜௩௘௦ାே௨  ௢௙ ௙௔௟௦௘ ௡௘௚௔௧௜௩௘௦)
                                                     (9) 282 

𝐴𝑈𝐶 =
∑்௉ା∑்ே

(௉ାே)
                                                                                                                                        (10) 283 

where, TP (true positive) and TN (true negative) are truly classified pixel numbers, while FP (false 284 

positive) and FN (false negative) are falsely classified pixel numbers; P is the total number of 285 

floods and N is the total number of non-floods (Choubin et al. 2019; Khosravi et al. 2019). 286 

 287 

3. Results  288 

3.1. Analysis of Independent Variables 289 

In order to build a flood susceptibility model, potential model input variables are first analyzed for 290 

independence (via correlation) and linearity (via multi-collinearity analysis).  291 

The results of the correlation study of the variables used in flood susceptibility modelling based 292 

on Spearman correlation test are shown in Fig.7. As it can be seen from this figure, the analyzed 293 

variables have a relatively low correlation with each other hence these were all selected for further 294 

analysis. 295 
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 296 

Fig. 7. Correlation analyses between independent variables 297 

 298 

In order to determine the appropriate inputs for flood susceptibility modelling, multiple 299 

multiplexing and tolerance tests were used using usdm package (in the R software environment). 300 

In order to investigate the linearity of the VIF range, all variables with VIF value smaller than 5 301 

were considered.  302 

The results of multi-colinearity and tolerance analyses are shown in Table 2. The study of the 303 

linearity of the variables shows that all analyzed variables have a VIF value smaller than 5. The 304 

highest linearity was obtained for distance from the river with VIF equal to 2.39 and the tolerance 305 

equal to 0.42. The smallest linearity was obtained for the aspect variable with VIF of 1.07 and 306 
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tolerance of 0.93. Based on this, all variables shown in Table 2 are selected as potential inputs into 307 

the flood susceptibility model. 308 

Table 2. Multi-collinearity analysis base on VIF and Tolerance to determine the linearity of the independent 309 

variables 310 

Variables VIF Tolerance 
Altitude 2.09 0.48 
Aspect 1.07 0.93 
Slope 1.57 0.64 

Plan curvature 1.9 0.53 
Profile Curvature 1.47 0.68 
Drainage density 2.33 0.43 

Distance from River 2.39 0.42 
Distance from road 2.09 0.48 

SPI 1.09 0.92 
TPI 1.37 0.73 
TWI 2.01 0.50 
CN 1.35 0.74 

Land use 1.29 0.77 
Lithology 1.27 0.79 
Rainfall 1.46 0.68 

 311 

3.2. Tuned parameters 312 

The tuned parameter values for the BART model are shown in Table 3 and Figure 8. 313 

Table 3. Tune parameters in BART model 314 

Parameters Tuned value 
Number of trees 100 
Number burn in 500 

Number iteration after burn in 1000 
Alpha 0.95 
Beta 2 

K 2 
Q 0.9 

 315 
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 316 

Fig. 8. The result of the BART model for flood susceptibility 317 

3.3 Model Validation 318 

ROC curves parameters include sensitivity, specificity, NPV, PPV and area under curve (AUC). 319 

These parameters were used to evaluate the efficiency of Naïve Bayes, RF and BART models. The 320 

corresponding results for the training and testing stages of these models are shown in Figs. 9 and 321 

10 and Table 4.  322 

According to the results obtained in the training phase, the sensitivity statistics in NB, RF and 323 

BART models are equal to 0.76, 0.99 and 0.99, respectively. This shows the high sensitivity of the 324 

three models and their accuracy. The specificity statistics for the NB, RF and BART models are 325 

equal to 0.89, 0.95 and 0.90, respectively. The PPV statistics of 0.74, 0.95 and 0.91 and the NPV 326 

statistics of 0.77, 0.99 and 0.98 were obtained for the NB, RF and BART models, respectively. 327 

This shows the high accuracy of these models in predicting the non-occurrence points. The results 328 

of model evaluation based on the AUC show that the accuracy of NB, RF and BART models is 329 
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0.88, 0.99 and 0.89, respectively. Therefore, all three models have high predictive accuracy at the 330 

training stage. 331 

Evaluation of the three models at the validation stage shows that the sensitivity statistics for NB, 332 

RF and BART models are equal to 0.76, 0.91 and 0.94, respectively. This shows the high 333 

sensitivity of these models in flood estimation. The specificity statistics in the NB, RF and BART 334 

models are equal to 0.75, 0.72 and 0.78, respectively. Evaluation of the same three models based 335 

on PPV and NPV statistics result in PPV values of 0.74, 0.75, 0.80, and NPV values of 0.77, 0.90, 336 

and 0.93 respectively, indicating high accuracy of these models when predicting non-flood points 337 

compared to flood points. For the overall evaluation of the models at the validation stage, the AUC 338 

statistic was used too and the values obtained for the NB, RF and BART models are equal to 0.81, 339 

0.85 and 0.89, respectively. 340 

Table 4. The results of evaluating the efficiency of Naïve Bayes, RF and BART models in train and validation 341 

stage 342 

Models Stage 
Parameters 

Sensitivity Specificity PPV NPV AUC 
Naïve 
Bayes 

Train 0.76 0.89 0.87 0.78 0.88 
Validation 0.76 0.75 0.74 0.77 0.81 

RF 
Train 0.99 0.95 0.95 0.99 0.99 

Validation 0.91 0.72 0.75 0.90 0.85 

BART 
Train 0.99 0.90 0.91 0.98 0.98 

Validation 0.94 0.78 0.80 0.93 0.89 
 343 
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 344 

Fig. 9. The ROC curve analysis for Naïve Bayes, RF and BART models using the train dataset 345 

 346 

 347 

Fig. 10. The ROC curve analysis for Naïve Bayes, RF and BART models using the testing dataset. 348 

 349 

 350 

 351 



25 
 

 352 

3.4. Flood susceptibility modeling results 353 

After modelling the flood sensitivity using NB, RF and BART models and evaluating the 354 

efficiency of these models, flood susceptibility was forecasted for the whole analyzed watershed. 355 

The final map was divided into five flooding susceptibility classes (very low, low, moderate, high 356 

and very high) by using the natural break algorithm (Fig. 11). According to the map obtained, 357 

flooding susceptibility is the highest sensitivity around the main river and the areas near the outlet 358 

of the watershed, which have a lower altitude. At the same time, most of the area analyzed, which 359 

is generally high altitude, has a very low sensitivity.  360 

The results of the area and percentage covered by each susceptibility class are shown in Table 5. 361 

According to the results, the area of very high susceptibility class is equal to 22.11 km2 (10.26%) 362 

in the NB model, 21.23 km2 (9.85%) in the RF model and 19.48 km2 (9.04%) in the BART model. 363 

However, the BART model, with 50.5 km2 (23.5%) has predicted the largest area with very high 364 

and high susceptibility classes. 365 

In order to evaluate the validity of the predicted flood susceptibility maps in relation to the 366 

identified flood points in the study area, the frequency ratio (FR) approach was used (Fig. 9). As 367 

it can be seen from Figure 12, the highest frequency ratio is in very high and high classes, which 368 

indicates the appropriate prediction of the models used for flood-susceptibility areas. However, 369 

the predictions of the RF and BART models that are in the very high class are much higher than 370 

the corresponding class predictions made by two other models, which indicates a more accurate 371 

prediction of flood susceptibility in this area. 372 

 373 
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 375 
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 376 

 377 

Fig. 11. Flood susceptibility map using the Naïve Bayes, RF and BART models 378 

Table 5. The watershed area (in km2 and %) in each flood susceptibility class 379 

Susceptibility 
class 

NB model RF model BART model 
Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%) 

Very low 121.85 56.52 112.32 52.10 106 49.17 
Low 31.53 14.62 33.24 15.42 28.39 13.17 

Moderate 21.67 10.05 31.04 14.40 30.65 14.22 
High 18.44 8.55 17.77 8.24 31.08 14.42 

Very High 22.11 10.26 21.23 9.85 19.48 9.04 
 380 

 381 
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 382 

Fig. 12.  Analysis of the frequency of floods on the flood susceptibility maps predicted using the FR method 383 

3.5. Explanatory Variable Importance  384 

The results of the importance of the independent (i.e. input) variables used to model the flood 385 

susceptibility using the three models are shown in Fig. 13. It is clear that in the three models used 386 

different input variables have different effects on determining the flood susceptibility. It is also 387 

clear that altitude and distance from the river are more important than other variables in all three 388 

models. 389 

Due to the importance of 4 variables (altitude, distance from the river, distance from the road and 390 

rainfall) on flood susceptibility in the BART model, these 4 variables were further investigated 391 

(Fig. 14). As it ca be seen from Fig. 14, the flood susceptibility decreases with increasing altitude, 392 

with highest sensitivity to floods being at an altitude of 1400 meters (which is close to the altitude 393 

of the outlet of the watershed). This indicates the inverse relationship between the altitude and the 394 

flooding susceptibility. Further, a study of the distance from the river shows that locations with 395 

distances smaller than 500 meters have a high susceptibility to flooding whilst locations with 396 
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distances larger than 500 meters from the river have a decreasing flooding susceptibility which 397 

stabilizes around a low value for the distances of 1000-1500 meters. Regarding the distance from 398 

the road, it can be noted from Fig 14 that the flooding susceptibility decreases with the increasing 399 

distance from the road with most sensitive areas being located less than 1000 meters from the road. 400 

Finally, a study of the effect of rainfall on flooding susceptibility shows that areas with 450 to 500 401 

mm of rainfall per year are more sensitive than the areas with higher rainfall (the susceptibility 402 

decreases so that from rainfall 550 to 650 mm it is low and constant).  403 

 404 

 405 

Fig. 13. Results of relative importance of independent variables in flood sensitivity modeling in Naïve Bayes, 406 

RF and BART models  407 
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 408 

Fig 14. Partial effect plot for four importance variable (altitude, distance from river, distance from road and 409 

rainfall) 410 

 411 

4. Discussion 412 

In the present study, we developed and presented a novel flood susceptibility BART model that is 413 

based on machine learning and Bayesian approach. In addition, two existing models, NB and RF 414 
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were used for comparison. The results obtained showed that all three models have a high 415 

performance in predicting the flooding susceptibility in the Kan watershed in Iran but, based on 416 

the model performance  criteria, the new BART model has outperformed the other two models. In 417 

terms of input variable importance, the results obtained show that the altitude and distance from 418 

the river are the most important variables for assessing flooding susceptibility in the study area. 419 

One of the main objectives of this study was to apply the BART model and evaluate the efficiency 420 

of this model in flood modeling in the study area. Performance evaluation of NB, RF, and BART 421 

models shows that the BART model performed best in the validation stage in terms of predicting 422 

flood susceptibility. The use of the Bart model in Natural Hazard studies and especially flood 423 

sensitivity modeling has been reported rarely before. The efficiency of this model has been proven 424 

in other fields such as forest science. Ahmadi et al. (2021) used BART model to mapping forest 425 

stand characteristics and showed that this model has a high performance in comparison to other 426 

models.  427 

The BART model is a non-parametric Bayesian regression approach that uses consistent basic 428 

random elements. Bayesian Additive Regression Trees (BART) provides a flexible way to fit a 429 

variety of regression models while avoiding strong parametric assumptions (Hill et al. 2020). The 430 

tree ensemble model is supported by an uncertainty framework in the Bayesian inferential 431 

framework and provides a principled approach to regulation through previous specifications 432 

(Pratola and Higdon 2016; Sparapani et al. 2016). This model uses a non-parametric tree 433 

aggregation model to allow flexibility of the average structure of a regression. But it also has the 434 

advantages of a Bayesian inferential framework given the amount of uncertainty and its regulation 435 

through calibrated data locations (Sparapani et al. 2016; Hill et al. 2020; Prado et al. 2021; Wu et 436 

al. 2021).  437 
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One of the main advantages of the BART model is the capacity to form inference on numerous 438 

features of the survival distribution directly from the posterior samples. As a Bayesian model, 439 

BART consists of a set of priors for the construction and the leaf parameters and a possibility for 440 

data in the terminal nodes (Pratola and Higdon 2016; Sparapani et al. 2016). The object of the 441 

priors is to afford regularization, limiting any single regression tree from dominating the total fit. 442 

Many Machine learning (ML) models suffer from missing data problems. BART model has a 443 

specialty that provides the user with the straight designation missing covariate data within the 444 

BART structure. This method combines missing data indicators into the training data set and 445 

supports for divisions on the missing indicators, guiding to raised efficiency under a pattern 446 

ensemble model structure (Hill et al. 2020; Prado et al. 2021; Sparapani et al. 2021).  447 

Determining the importance of independent variables in flood susceptibility modeling in the Kan 448 

watershed showed that altitude, distance from river, distance from road and rainfall variables are 449 

important factors affecting flood susceptibility in this region. A study of altitude variable shows 450 

that low altitudes, which are often at the outlet of watersheds, are highly susceptible to flooding, 451 

which is consistent with the findings of Khosravi et al. (2019), Pham et al., (2020a).  452 

Distance from river is another important factor in flood susceptibility in the Kan watershed, and 453 

the results indicate the sensitivity of areas close to the river. Ahmadlou et al., (2019) showed in 454 

their studies that areas 500-1000 meters from the river are highly sensitive to flooding. Given that 455 

the flood-prone areas are located near the river and the reason is due to rise of flow from the river 456 

channels (Choubin et al. 2019; Darabi et al. 2019; Panahi et al. 2021), in the Kan watershed, due 457 

to lack of observance of riverbed and river boundaries, several restaurants and villas have been 458 

built in the areas near the river, and due to the presence of more orchard in the river area, has led 459 

to the obstruction of flow in these areas and has increased the sudden release of flood current. 460 



33 
 

Invasion of the river boundaries and the create of orchard in it, in addition to causing financial 461 

damage to the residents of the area, also by blocking the flow in sections such as tunnels, will 462 

cause secondary floods and intensify the damage to the people and downstream areas.  463 

Another factor affecting the flood susceptibility in the Kan watershed is the distance from road. 464 

Construction and crate of communication roads will increase the runoff and runoff speed because 465 

it will reduce the area of the existing surface to absorb rainfall and thus will increase the sensitivity 466 

to flooding in these areas (Tehrany et al. 2019b; Zhao et al. 2019).  467 

The study of the rainfall indicates that areas with less rainfall are highly susceptible to flood, which 468 

are mainly areas close to the outlet of the Kan watershed. Due to the mountainous nature of the 469 

region, most of the precipitation in the upstream areas of the Kan watershed is snow, so in these 470 

areas the possibility of infiltration is higher. In addition, precipitation in the downstream areas is 471 

in the form of storms and these storms are usually more severe in the autumn and causes the river 472 

inundation and flooding. 473 

In recent years, due to human interventions and the resulting climate and land-use changes, the 474 

rate of flooding and the corresponding damages have increased significantly. Studies such as this 475 

one allow managers to reduce flood risks through planning and flood susceptibility analysis. 476 

Therefore, we are always looking for more accurate modeling approaches to reduce the bias in the 477 

prediction of flood susceptibility. In the present study, we showed that BART model is an accurate 478 

model that can be used for effective flood susceptibility modeling. This model can be applied in 479 

the future along with other modes that have shown high ability in flood modeling studies. 480 

 481 

5. Conclusion 482 
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Floods are one of the most frequent and destructive natural disasters that can cause a lot of damage. 483 

In order to investigate and analyze the susceptibility of some are to flooding, different methods 484 

have been developed by the researchers. 485 

In this study, the Bayesian based model (Naïve Bayes), regression tree type model (Random 486 

Forest) and ensemble type model (Bayesian Additive Regression Tree - BART) were developed 487 

to predict flood susceptibility in the Kan watershed. A total of 15 explanatory (i.e. model input) 488 

variables were used after multi-collinearity analyses as independent variables and 118 flood 489 

locations and 115 non-flood locations after field surveys and the use of available information as a 490 

dependent variable for flood modeling.  491 

The validation results obtained for flood susceptibility modeling showed that the Naïve Bayes, RF 492 

and BART models all have a good predictive performance. However, the new BART model has 493 

the higher prediction accuracy than the Naïve Bayes and RF models. This is due to the fact that it 494 

uses features of both methods in the ensemble setting.  495 

The analysis of the importance of explanatory variables showed that the effect of independent 496 

variables is different in each model. However, the altitude and distance from the river were more 497 

important than other variables in all three models meaning that low-height areas and areas close to 498 

the river are more susceptible to flooding.  499 

The Kan watershed is close to the city of Tehran and the pleasant climate of this tourist area has 500 

caused that its riverbanks are occupied with many constructions that have been carried out. These 501 

areas receive a large number of tourists in spring and summer and hence are strongly affected by 502 

the floods. It is therefore necessary to provide flood hazard maps for the region. The results of this 503 
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research can be used as a baseline map in development projects to determine areas susceptible to 504 

flooding hence prevent the construction in these high-risk areas. 505 
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