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Severity-Based Hierarchical ECG
Classification Using Neural Networks

Sumit Diware
Christos Strydis

Abstract—Timely detection of cardiac arrhythmia character-
ized by abnormal heartbeats can help in the early diagnosis and
treatment of cardiovascular diseases. Wearable healthcare devices
typically use neural networks to provide the most convenient way
of continuously monitoring heart activity for arrhythmia detection.
However, it is challenging to achieve high accuracy and energy
efficiency in these smart wearable healthcare devices. In this work,
we provide architecture-level solutions to deploy neural networks
for cardiac arrhythmia classification. We have created a hierar-
chical structure after analyzing various neural network topolo-
gies where only required network components are activated to
improve energy efficiency while maintaining high accuracy. In our
proposed architecture, we introduce a severity-based classification
approach to directly help the users of the wearable healthcare
device as well as the medical professionals. Additionally, we have
employed computation-in-memory based hardware to improve en-
ergy efficiency and area consumption by leveraging in-situ data
processing and scalability of emerging memory technologies such as
resistive random access memory (RRAM). Simulation experiments
conducted using the MIT-BIH arrhythmia dataset show that the
proposed architecture provides high accuracy while consuming
average energy of 0.11 pJ per heartbeat classification and 0.11
mm? area, thereby achieving 25X improvement in average energy
consumption and 12 X improvement in area compared to the state-
of-the-art.

Index Terms—Arrhythmia, computation-in-memory, ECG,
neural networks, resistive random access memory (RRAM),
severity-based classification.

I. INTRODUCTION

HE heart plays an important role in human survival and any
heart-related disorders, commonly known as cardiovascu-
lar diseases (CVDs), can present a significant danger to human
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life. CVDs are reported to be one of the leading causes of death
worldwide [1] and are estimated to cause up to 23 million deaths
by 2030 [2]. Diagnosis of CVDs at an early stage can facilitate
timely medical treatment and greatly reduce CVD-related health
risks. Such early diagnosis can be achieved by detecting the
abnormal activity of the heart known as arrhythmia. There
exist several types of arrhythmia based on the manner in which
the heart activity deviates from its normal behavior. Timely
detection of various types of arrhythmia requires monitoring
of the activity of the heart. Wearable healthcare devices provide
the most convenient way of achieving such monitoring. These
devices are equipped with sensors that can record the heart
activity in the form of electrocardiogram (ECG) signal. The
task of identifying various types of arrhythmia is then expressed
as the classification of heartbeats in the recorded ECG signal
into different arrhythmia types (classes). As neural networks are
inherently best suited for such classification tasks, these devices
use neural networks as ECG classifiers to automatically identify
various types of arrhythmia.

The neural network-based ECG classifier in a wearable
healthcare device should have high classification accuracy to
detect various arrhythmia types correctly. Moreover, it has to
be energy-efficient as wearable healthcare devices are battery-
powered and thereby have limited energy resources. Its clas-
sification outputs should also indicate the severity impact of
detected arrhythmia classes which can help the users in knowing
how urgently they need to seek medical attention, which can po-
tentially prove to be life-saving. However, state-of-the-art neural
network-based ECG classifiers fail to meet these requirements.
Many works have adopted neural networks with a large number
of layers to obtain high accuracy [3], [4], [5]. This results in
high energy consumption as such big neural networks require
a lot of hardware resources. Most of the existing works just
focus on developing ECG classification models without taking
into account the implications on hardware performance metrics
such as energy [6], [7], [8], [9], [10], [11], [12], [13], [14].
Moreover, none of them take the severity impact into account.
Hence, there is a strong need for ECG classification hardware
that can deliver high accuracy and energy efficiency while also
considering severity impact.

In this paper, we address the challenge of designing a severity-
based, accurate, and energy-efficient ECG classifier. We first
create a classification architecture that consists of multiple small
sub-classifiers connected in a hierarchical manner instead of a
single large and complex classifier. Each sub-classifier deals
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with only a subset of arrhythmia classes which leads to good
accuracy. This hierarchical design also allows us to activate
various sub-classifiers only when needed, thereby saving energy.
The proposed architecture uses a novel severity-based activation
structure for sub-classifiers. The top levels of the hierarchy
indicate how quickly the user should seek medical attention. The
bottom hierarchical levels help the doctors in diagnosis (the pro-
cess of finding the physiological root cause of arrhythmia) and
then prescribing treatment (medicines, medical procedures, etc.)
for arrhythmia based on the diagnosis. Moreover, we propose a
hardware design methodology for each internal sub-classifier
using the most energy-efficient neural network while still en-
suring good accuracy. This hardware design is based on the
computation-in-memory (CIM) paradigm which uses emerging
memory technologies such as resistive random access memory
(RRAM) to provide higher energy efficiency compared to con-
ventional von-Neumann architecture-based implementation for
neural networks.

The key contributions of this paper are:

® We develop a hierarchical classification architecture that

breaks down the full classification task into smaller sub-
tasks to achieve high accuracy and activates various archi-
tectural components only when required in order to save
energy.

® We propose a severity-based activation structure that helps

the users in seeking timely medical attention as well as
helps the medical professional in speeding up the diagnosis
and treatment.

® We provide a methodology for the hardware design of

various components in the hierarchical ECG classification
architecture using RRAM-based computation-in-memory
paradigm to achieve the best balance between energy effi-
ciency and accuracy.

Simulation results show that the proposed architecture con-
sumes an average energy of 0.11 pJ per heartbeat classification
and requires 0.11 mm? area, which results in 25x less average
energy consumption and 12x less area compared to the state-
of-the-art while maintaining high accuracy.

The rest of the paper is organized as follows: Section II de-
scribes the basics of ECG and neural network-based arrhythmia
classification. Sections III, IV and V provide the design and
implementation details of the proposed severity-based energy-
efficient ECG classifier design. This is followed by simulation
setup details in Section VI and simulation results in Section VII.
Finally, Section VIII concludes the paper.

II. BACKGROUND
A. Electrocardiogram (ECG)

The human heart is made up of four chambers. The upper two
chambers are called atria and the lower two chambers are called
ventricles. These chambers undergo contraction and relaxation
in a periodic manner. This activity can be recorded as a graph
of voltage versus time known as electrocardiogram (ECG). A
single ECG recording contains multiple cycles of contraction
and relaxation of the heart chambers. These cycles are known as
ECG beats. A visualization of an ECG beat is shown in Fig. 1

Voltage ECG Beat

S
as, i
QRS Complex

Time

Fig. 1. ECG signal illustration with ‘PQRST’ cycle for an ECG beat, where
P: atrial contraction, Q: interventricular septum contraction, R: ventricular
contraction (main mass), S: ventricular contraction (at heart’s base), and
T: ventricular relaxation. Atrial relaxation is obscured by QRS complex.

TABLE I
AAMI [17] GROUPING OF ECG ARRHYTHMIA CLASSES IN MIT-BIH
DATASET [15]

AAMI Class Arrhythmia Class
Normal Beat (N)
Left Bundle Branch Block Beat (L)
Right Bundle Branch Block Beat (R)
Atrial Escape Beat (e)
Nodal (Junctional) Escape Beat (j)
Atrial Premature Beat (A)
Aberrated Atrial Premature Beat (a)
Nodal (Junctional) Premature Beat (J)
Supraventricular Premature Beat (S)
Fusion of Ventricular and Normal Beat (F)
Premature Ventricular Contraction (V)
Ventricular Escape Beat (E)
Paced Beat (/)
Fusion of Paced and Normal Beat (f)
Unclassifiable Beat (Q)

Normal (N)

Supraventricular
Ectopic Beat (S)

Fusion Beat (F)
Ventricular
Ectopic Beat (V)

Unknown Beat (Q)

which begins with the contraction of atria represented by ‘P’.
This is followed by relaxation of the atria and contraction of the
ventricles observed as the ‘QRS’ complex. ‘Q’ wave represents
the contraction of the interventricular septum. ‘R’ wave indicates
the contraction of the main mass of the ventricles. ‘S’ wave
denotes the contraction of the ventricles at the base of the heart.
The beat ends when the ventricles undergo relaxation denoted
as ‘T’. When a recorded ECG beat deviates from its expected
normal behavior, it represents the abnormal activity of the heart
chambers called arrhythmia. There exist several different classes
(types) of arrhythmia based on the exact manner in which
the recorded ECG beat deviates from its normal behavior. For
instance, MIT-BIH Arrhythmia dataset [15] (provided through
PhysioNet [16]) consists of 15 arrhythmia classes which are
further grouped into 5 superclasses by Association for the Ad-
vancement of Medical Instrumentation (AAMI) [17] as shown in
Table I. The arrhythmia classes can be distinguished from each
other (as well as the normal heart activity) by using different
features of the ‘QRS’ complex such as timing, amplitude, etc.
Hence, the ‘QRS’ complex in an ECG beat plays a crucial role
in identifying arrhythmia classes.

B. Arrhythmia Detection

Activity of the heart should be regularly monitored for timely
detection of arrhythmia. This involves recording the ECG sig-
nal and identifying the types of abnormal beats in it. Various
approaches used for such monitoring are as follows:
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Fig. 2. Development flow for neural network-based ECG classification.

® Manual: In this case, medical professionals record the
ECG signal at the hospital and identify the abnormal beats
by visual inspection. This requires frequent visits to the
hospital which are time-consuming and inconvenient for
most people. Moreover, arrthythmia may get detected late
as there is no monitoring of the heart activity in the time
span between successive hospital visits.
® Semi-automated: Problems such as inconvenience in fre-
quent hospital visits and late arrhythmia detection in the
manual approach can be solved by using wearable health-
care devices. Such devices allow the monitoring of heart
activity without hospital visits. These devices contain sen-
sors that can directly record the ECG signal and are also
equipped with hardware that can identify the types of
abnormal beats. If the hardware in such devices uses tradi-
tional machine learning techniques (which do not involve
neural networks) like support vector machine [18], the
features have to be first manually extracted from the ECG
recording and provided as inputs to the device. Hence, such
an approach is known as semi-automated. It suffers from
poor classification performance due to the imprecise nature
of manual feature extraction.
® Fully automated: The need for manual feature extraction in
the semi-automated approach can be eliminated by using
neural networks. They are inherently capable of extracting
the features from ECG recordings and then performing
classification based on the extracted features. Hence, this
approach is called fully automated. Moreover, automatic
feature extraction results in superior classification perfor-
mance compared to manual feature extraction. This can
prove crucial for correct diagnosis and timely treatment.
Hence, neural network-based fully automated ECG classifica-
tion is the most effective approach to building smart arrhythmia
detection solutions. The generic flow for the development of
neural network-based ECG classification solutions is shown in
Fig. 2 . The recorded ECG data is pre-processed to remove the
noise and enhance the regions of interest such as the ‘QRS’
complex in each ECG beat. It is then divided into a training set,
a validation set, and a test set. The neural network training and
hyperparameter tuning is performed using the training set and
validation set, respectively. The classification performance of

the trained network is then evaluated using the test set followed
by the model deployment once the performance on the test set
is deemed satisfactory.

C. Related Work

There are many works that achieve high accuracy (around
98-99%) by leveraging various complex neural network topolo-
gies such as LSTMs [8], BLSTMs [7], [10], CNNs [4], [9], [12]
and hybrid networks which combine LSTMs with CNNs [11],
[19]. However, they just focus on software model development
without any consideration of hardware resource requirements.
Hence, they end up with networks that provide high accuracy at
the expense of large energy consumption. This is not desirable
for personalized healthcare devices which are battery-powered
as frequent charging due to fast draining of the battery makes
continuous health monitoring impractical and cumbersome.
Hence, there is a need for energy-efficient ECG classification
where such energy efficiency is achieved while still maintaining
high accuracy. Works like [6], [13] leverage spiking neural net-
works to provide energy efficiency but suffer from low accuracy.
Alternatively, RRAM-based hardware for ECG classification
using non-spiking neural network in [14] can be leveraged
for energy efficiency. However, it does not even consider the
full AAMI classes (just considers a subset and ignores many
types of possible input heartbeats) and still suffers from low
accuracy. This is because it performs ECG classification in
a naive manner without any innovation at the architecture or
neural network level. The network architecture in [5] allows
some parts of the network to be deactivated when not needed.
However, as it uses AAMI classes which have intermixing
of arrhythmia types with different severity impacts, it cannot
take advantage of the fact that more severe arrhythmia types
occur rarely and its network parts cannot be deactivated for a
significant amount of time, which makes the energy savings very
small. Moreover, as the architecture in [5] internally uses large
neural network components, its energy efficiency is reduced. The
most energy-efficient ECG classification among state-of-the-art
works is provided by [3] which exploits the characteristics
of ECG data to achieve a high degree of computation reuse.
However, as it also uses AAMI classes having intermixing of
arrhythmia types with different severity impacts, it misses out
on a potentially huge improvement in energy efficiency that can
be achieved via severity-based classification. In this paper, we
develop a highly energy-efficient ECG classification architecture
by leveraging the difference in severity impact of arrhythmia
classes, while still maintaining high accuracy.

III. PROPOSED SEVERITY-BASED CLASSIFICATION
A. Concept

A medical disorder represents improper functioning of a
certain organ in the human body and has various subtypes based
on the manner in which the malfunctioning occurs in that organ.
For instance, arrhythmia is a disorder that indicates improper
functioning of the heart, and there exist different arrhythmia
subtypes based on which part of the heart is affected as well
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Medical Disorder

[ I I ]
i i i

4 . .
[ [ Normal ] [ Mild ] [Moderate] [ Severe ] P E:;a;_r:hlcal
[Subtypes of] [Subtypes ofJ Hierarchical

Moderate Severe Level-2

Fig. 3. Severity-based hierarchical classification for wearable healthcare de-
vices intended to monitor any medical disorder.

as the way in which it is affected. The disorder subtypes differ
in severity impact based on the extent to which they obstruct
the organ’s normal functioning. Severe subtypes may highly
impact the organ leading to life-threatening situations, while
others may have a minor impact leading to just a temporary
inconvenience. The severity impact determines the urgency with
which a person should seek medical help for certain disorder sub-
types. For example, severe subtypes may need medical attention
immediately while the non-severe ones may need it within a few
days. Moreover, the desired speed of diagnosis and treatment
is also governed by the severity impact. For instance, severe
subtypes may need faster diagnosis and treatment to prevent
further damage to the health over time, while such a speedup
may not be necessary for the non-severe subtypes.

The influence of severity impact on the urgency in seeking
medical attention as well as the speed of diagnosis and treatment
can be leveraged to create severity-based classification with a
two-level hierarchical structure as shown in Fig. 3. The first
level of the hierarchy is intended for the user of the wearable
device and indicates how urgently one needs to seek medical
attention. Knowing the severity impact alone would suffice for
this purpose and there is no need to know the exact disorder
subtype. Hence, we can group the disorder subtypes into four
broad classes based on their severity impact as follows:

® Normal: This class represents the normal working of the
human body and the absence of the considered medical
disorder. Hence, this category does not require any medical
attention.

® Mild: This class includes disorder subtypes that have a very
minor impact on normal organ functioning and do not lead
to life-threatening scenarios over time. It is advisable to
schedule a checkup in the upcoming few days if this class
is detected.

® Moderate: This class includes disorder subtypes that have a
minor impact on normal organ functioning at onset, but can
potentially result in life-threatening scenarios over time. It
requires medical attention much more quickly compared
to the mild class, but not immediately.

e Severe: This class includes disorder subtypes that can sig-
nificantly affect normal organ functioning at onset and are
very likely to lead to life-threatening scenarios. It requires
immediate medical attention upon detection.

Such a grouping can potentially improve the classification

accuracy as the wearable device needs to detect only four broad
classes instead of tens of subtypes of the considered medical

disorder. Moreover, as the number of output classes is reduced,
a smaller neural network can be used to reduce energy con-
sumption while still maintaining high accuracy. The second
level of this hierarchy is intended for speeding up the diagnosis
and treatment. This can be achieved if the wearable device
detects the exact disorder subtype and presents this information
to the medical professional. Such speedup is only required for
disorder subtypes that are either life-threatening from the onset
or which become life-threatening over time. Hence, we need to
only detect the disorder subtypes which are grouped together
into moderate and severe classes at hierarchical level-1. As a
result, hierarchical level-2 only consists of subtypes of moderate
class and subtypes of severe class. We refer to the process of
detecting the disorder types contained within a broad level-1
class as finer classification. As discussed earlier, it is clear that
finer classification is only required for moderate and severe
classes in level-1. Finer classification becomes redundant and
is not required for mild class as everything will be thoroughly
examined in a full checkup. Also, there is no need for finer
classification of normal class as it needs no medical attention.
As finer classification is not required for all disorder subtypes,
this also simplifies the classification task as well as the hardware
design providing further accuracy and energy efficiency benefits.

B. ECG Classification

For this work, Table II shows the mapping of arrhythmia
classes (subtypes) in the MIT-BIH arrhythmia dataset [15] to
our severity-based classification structure. The rationale behind
this mapping can be explained as follows [20], [21]:

® “N” beats belong to the normal class as they represent the
normal working of the heart. Moreover, “paced” beats (/)
also belong to the normal class as they indicate the normal
working of the heart when aided by a pacemaker.

e “L,”“R,)”“e,” “j” beats belong to mild class because even
though they deviate from perfectly normal beats (“N” and
“paced”), they do not affect the functioning of the heart
significantly and do not result in life-threatening scenarios
over time.

e “A)”“a” and “S” beats are related to improper functioning
of atria which do not contribute significantly to the blood
circulation process, while “J”” and “E” beats indicate only a
minor impact on ventricles which are vital for blood circu-
lation. Hence, these beats have little impact on proper heart
functioning at the onset. However, they can potentially lead
to life-threatening scenarios over time and hence belong to
the moderate class.

® “V” beat arises due to abnormal functioning of ventricles
which are vital for blood circulation and thus indicates a
danger to human life. “F” and “f” beats represent super-
imposition of cardiac cell potentials which can also lead to
life-threatening scenarios. Hence, “V,” “F” and “f” belong
to the severe class. Moreover, we conservatively include
the unclassifiable beat (“Q”) in the severe class as its exact
nature is not clear.

Human health falls into normal and mild classes much more

often compared to moderate and severe classes. When the health
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TABLE II
SEVERITY-BASED ECG CLASSIFICATION HIERARCHY FOR ARRHYTHMIA CLASSES IN MIT-BIH DATASET WITH DETAILS REGARDING MEDICAL ATTENTION AND
FINER CLASSIFICATION

Class in Hierarchical Level-1 Arrhytmia Class in MIT-BIH Dataset

Advice for Medical Attention Finer Classification

Normal Normal Beat (N)

Paced Beat (/)

No medical attention required. Not required.

Left Bundle Branch Block Beat (L)

Mild Right Bundle Branch Block Beat (R)

Atrial Escape Beat (e)

Schedule a heart checkup in the upcoming days. Not required.

Nodal (junctional) Escape Beat (j)

Atrial Premature Beat (A)

Aberrated Atrial Premature Beat (a)

Moderate Nodal (junctional) Premature Beat (J)

Seek medical attention within a few hours. Required.

Supraventricular Premature Beat (S)

Ventricular Escape Beat (E)

Fusion of Ventricular and Normal Beat (F)

Premature Ventricular Contraction (V)
Severe

Fusion of Paced and Normal Beat (f)

Seek medical attention immediately. Required.

Unclassifiable Beat (Q)

¥

Moderate
Classifier-2

Normal
Classifier-1 24, Severe

Enable|signal

I

Fig. 4. Anexample of a hierarchical classification architecture.

is in the moderate or severe class, people seek medical attention,
and the health returns back to normal or mild class. Thus,
the ECG classifier deals with normal and mild classes much
more frequently compared to moderate and severe classes. This
fact can be leveraged for achieving energy efficiency by using
a hierarchical connection of small classifiers which deal with
only a subset of arrhythmia classes and are activated only when
necessary. For example, consider the hierarchical architecture
shown in Fig. 4. Both classifier-1 and classifier-2 are provided
with the same ECG input. Initially, only classifier-1 is activated.
If the input does not fall into the normal or mild class, classifier-1
activates classifier-2 which then classifies the input into the
moderate or severe class. Classifier-2 remains off for most of the
time as the inputs from moderate and severe classes occur less
frequently, leading to energy savings. Moreover, as classifier-1
is always active, simplifying its design (e.g. using a small neural
network) can also bring a reduction in energy consumption. This
concept can be leveraged to design an energy-efficient hierarchi-
cal hardware architecture as described in the next section.

IV. PROPOSED HIERARCHICAL HARDWARE ARCHITECTURES

The hierarchical hardware architecture can achieve energy
efficiency by
e Activating the classifiers associated with infrequently oc-
curring classes only when needed.
e Using simpler/smaller neural networks for classifiers deal-
ing with frequently occurring classes.
This approach leads to four possible hardware architectures
for the severity-based ECG classification which are shown in
Table III , discussed next.

A. Architecture-1

This is the simplest architecture for the severity-based ECG
classification. Classifier-1 classifies the input into four classes:
normal, mild, moderate and severe. Classifier-2 and classifier-3
classify moderate and severe classes further into their subtypes.
Classifier-1 activates classifier-2 or classifier-3 when it detects
moderate or severe class.

This architecture leads to energy savings as classifier-2 and
classifier-3 remain inactive for most of the time. As classifier-1
is always on, it needs to use a smaller neural network to improve
energy efficiency. Moreover, high accuracy for classifier-1 is
important as its output advises the user about seeking medical
help. However, a small neural network may not lead to high
accuracy for classifier-1. Hence, there is a potential challenge of
simultaneously achieving high accuracy and energy efficiency
for classifier-1 in this architecture.

B. Architecture-2

Architecture-2 can facilitate high accuracy with a small neu-
ral network for classifier-1 by using only three classes. This
is achieved by grouping moderate and severe classes into a
single abnormal class for classifier-1 and using an additional
classifier-2 to split the abnormal class into moderate and se-
vere classes. Classifier-2 activates classifier-3 and classifier-4 to
classify moderate and severe classes further into their subtypes.

This architecture can potentially achieve high accuracy and
low energy consumption for classifier-1 by using a smaller neural
network, as classifier-1 now handles three classes unlike four
classes in architecture-1. However, this architecture requires a
total of four classifiers instead of three classifiers in architecture-
1 which can increase overall energy consumption.

C. Architecture-3

Architecture-3 can reduce the number of classifiers from four
(in architecture-2) to three, while still maintaining only three
classes in classifier-1. This is achieved by making classifier-2
handle six classes: five of them being subtypes of moderate (A,
a, J, S, E) and sixth being the severe class. Thus, classifier-
1 still handles three classes: normal, mild, and abnormal. It
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TABLE III
POSSIBLE HARDWARE ARCHITECTURES FOR SEVERITY-BASED ECG CLASSIFICATION. ECG INPUT DATA IS INDICATED BY RED ARROWS, WHILE THE BLUE
ARROWS REPRESENT CLASSIFICATION OUTPUTS WHICH ALSO ACT AS THE ENABLE SIGNALS

Name Architecture Structure
. Classifier-2 [T 7 Subtypes of
Architecture-1 o P
| Normal | (C5) |1 . [ Moderate
Classifier-l Mild
(c1) Moderate
Severe Classifier-3 _l_’l | Subtypes
(C6) |1+ .| ofsevere
I | -
Classifier-3 [ ! i Subtypes
: 5 1 -
Architecture-2 Normal (c5) : of Moderate
ECG — | (lassifier-1| Mild Classifier-2| Moderate 1 -
beat — — c3
(€2) (cs) Severe -
Abnormal Classifier-4 : Subtypes
l [} (ce) -1, | ofSevere
I -
Architecture-3 Normal -:—» Subtypes
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Classifier names are shown in brackets, where the classifiers present in different architectures but having the same output classes are given the

same name.

activates classifier-2 if it detects abnormal class. Classifier-2
then classifies abnormal class into six classes: A, a, J, S, E,
and severe. If classifier-2 detects severe class then it activates
classifier-3 which further classifies the severe class into its
subtypes.

This architecture can retain all the benefits of classifier-1 in
architecture-2 while reducing the overall energy consumption
compared to architecture-2 as it needs only three total clas-
sifiers unlike four total classifiers in architecture-2. However,
classifier-2 in this architecture has to deal with six classes unlike
classifier-2 in architecture-2 which deals with only two classes.
This can result in reduced accuracy.

D. Architecture-4

Architecture-4 provides another way of reducing the total
number of classifiers in architecture-2 by making classifier-2
handle five classes: four of those being subtypes of severe (F,
V, f, Q) and the fifth one being the moderate class. Classifier-1
still has to deal with only three classes: normal, mild, abnor-
mal and activates classifier-2 if it detects the abnormal class.
Classifier-2 then classifies abnormal into five classes: F, V, f,
Q, and moderate. If classifier-2 detects moderate class then it
activates classifier-3 which further classifies moderate into its
subtypes.
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TABLE IV
LIST OF CLASSIFIER COMPONENTS REQUIRED FOR VARIOUS ARCHITECTURES

Classifier Output Classes Used in
Cl Normal, Mild, Moderate, Severe Archl
Cc2 Normal, Mild, Abnormal Arch2, Arch3
C3 Moderate, Severe Arch2
C4 Severe and Moderate Subtypes: A, a, J, S, E Arch3
C5 Moderate Subtypes: A, a, J, S, E Archl, Arch2
C6 Severe Subtypes: F, V, f, Q Archl, Arch2, Arch3

Given:
Architecture-1, Architecture-2,
Architecture-3
i
Compare
Architecture-1 and
Architecture-2

Compare
Architecture-2 and
Architecture-3

Architecture-1
selected ?

Final Choice:

Architecture-1 Architecture-2 No

selected ?

Final Choice:
Architecture-3

Final Choice:
Architecture-2

|

Architecture selection process.

Fig. 5.

Classifier-1 in this architecture provides the same bene-
fits as classifier-1 in architecture-3. However, classifier-2 and
classifier-3 remain on for significantly more amount of time
compared to those in architecture-3 as moderate classes occur
more frequently than severe ones. This makes architecture-4 a
worse version of architecture-3 in terms of energy efficiency.
Hence, we do not select architecture-4, and it is just included
here for completeness purpose.

E. Architecture Selection Criteria

Different classification architectures lead to different clas-
sification accuracy and energy consumption. We can rule out
architecture-4 as discussed in the previous subsection which
leaves us with architecture-1, architecture-2, and architecture-3
as possible choices. Our goal now is to develop a methodology
for selecting the appropriate architecture out of these three
options. Table IV lists various classifier components needed for
implementing architecture- 1, architecture-2, and architecture-3.
We assign names (Cl, C2....C6) to the individual classifier
components to make it easy to refer to a particular classifier. The
architecture selection process consists of two phases as depicted
inFig. 5. In the first phase, our goal is to select an architecture that
results in more number of timely hospital visits for the user of the
wearable healthcare device. This means the selected architecture
should have more accuracy on abnormal (moderate and severe)
classes which is governed by classifier C1 for architecture-1 and
classifier C2 for architecture-2 as well as architecture-3. Thus, if
classifier C1 is better at detecting abnormal classes then we select

architecture-1. Otherwise, we discard architecture-1 if classifier
C2 performs better on abnormal classes and perform further
exploration to select either architecture-2 or architecture-3 in
the second phase.

The selection between architecture-1 and architecture-2 in the
first phase depends on the choice between C1 and C2 as follows:

e [f C1 has a significantly higher accuracy compared to C2,
then architecture-1 should be selected.

e If C2 turns out to be significantly more accurate than CI,
then architecture-2 should be chosen.

e If Cl and C2 have similar overall accuracy, then select
architecture-1 if C1 has better accuracy on moderate and
severe classes, otherwise select architecture-2 if C2 has
better accuracy on moderate and severe classes. The selec-
tion is based on moderate and severe classes as they can
lead to life-threatening scenarios.

e If Cl and C2 have similar overall accuracy as well as
similar accuracy on moderate and severe classes, select
the architecture containing the classifier which consumes
less energy.

If we end up selecting architecture-2, we subsequently explore
the choice between architecture-2 and architecture-3 in the sec-
ond phase. This selection depends on the comparison between
C3 and C4 as follows:

e If C3 turns out to be significantly more accurate than C4,

we select architecture-2.

e [f C4 has much higher accuracy than C3, we select
architecture-3.

e If C3 and C4 have similar overall accuracy, then select
architecture-2 if C3 has higher accuracy on severe class,
otherwise select architecture-3 if C4 has higher accuracy
on severe class. The decision is based on the severe class
here as it can result in life-threatening situations.

e If C3 and C4 have similar overall accuracy and similar
accuracy on severe class, select the one containing the
classifier which consumes less energy.

Thus, we have defined clear selection criteria for the architec-
tures based on the comparison of associated classifiers. In order
to use these selection criteria, we have to first determine the
topology and network configuration for each classifier which
provides the best balance between accuracy and energy effi-
ciency when implemented in hardware. The next section de-
scribes the details of the hardware implementation of these clas-
sifiers using RRAM-based computation-in-memory, followed
by design space exploration to find out the network topology
and configuration for the best balance between accuracy and
energy efficiency.

V. IMPLEMENTATION OF HIERARCHICAL HARDWARE
ARCHITECTURES

Neural networks are conventionally implemented using
hardware platforms like CPUs [22], GPUs [23], and Al-oriented
ASICs like TPUs [24] which are based on the von-Neumann ar-
chitecture and CMOS technology. The von-Neumann architec-
ture entails the physical separation of memory and computation
units which leads to a large number of data transfers to execute
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using Computation-In-Memory (CIM).

vector-matrix multiplication (VMM) operations for neural
network applications. This results in high energy consumption
and loss of performance as VMM operations account for more
than 75% of the computations in neural networks [25], [26], [27],
[28], [29], [30] Moreover, CMOS technology is facing issues like
excessive sub-threshold leakage and scalability challenges [31],
[32], [33]. Computation-in-memory (CIM) utilizes emerging
memory technologies such as resistive random access memories
(RRAMSs) [34], [35], [36], [37], [38] to overcome the aforemen-
tioned limitations of the von-Neumann architecture and CMOS
technology. Data storage in the form of RRAM conductance
allows CIM to leverage circuit laws (Ohm’s law and Kirchhoff’s
current law) to perform computing within the memory itself
which eliminates the data transfer bottleneck. Moreover, RRAM
devices overcome the technological challenges faced by CMOS
as they are non-volatile (leakage-free), highly scalable, and
small in size. Thus, CIM becomes a promising alternative to the
conventional hardware for neural networks [39], [40], [41], [42].
Hence, we select the RRAM-based CIM paradigm to implement
the neural networks required for the ECG subclassifiers.

A. RRAM-Based Computation-in-Memory for ECG
Classification

1) Computation-in-Memory (CIM) Paradigm: Mapping of
VMM operation between two layers of an ECG classification
neural network to CIM hardware is shown in Fig. 6. CIM uses
memory elements that store the data in the form of conductance.
A mesh-like structure built using such memory elements is called
the crossbar. The crossbar performs computations in the analog
domain and exchanges data with other digital system com-
ponents using data converters like digital-to-analog converters
(DACs) and analog-to-digital converters (ADCs). Weights are
mapped to conductances (G’s) in the crossbar and ECG inputs
are applied in the form of voltages (V’s) using DACs. The result-
ing current through all the G’s due to Ohm’s law is equivalent to
element-wise multiplication of V’s and GG’s. The accumulation
of currents from G’s in the same column due to Kirchhoff’s
law gives the accumulation of the element-wise products in the
form of output currents (/’s). Thus, CIM performs a multiply-
and-accumulate operation in the analog domain for each column.
The multiply-and-accumulate operations across all the columns
constitute a VMM operation. Thus, VMM is performed with
O(1) time complexity as all the columns produce the outputs at
the same time. ADCs then convert the column currents to digital
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(a) SET and RESET processes in RRAM. (b) RRAM I-V characteristics.

Fig. 7. RRAM device technology.

outputs. The digitized VMM output is sent to other parts of the
system for further operations.

2) RRAM Device Technology: The RRAM device (also
known as memristor) is made up of an oxide material sand-
wiched between two metal electrodes. It has a high-resistance
state (HRS) and a low-resistance state (LRS). These states can
be used to store data as 0 or 1. The transition from HRS to
LRS is called “SET”, whereas that from LRS to HRS is called
“RESET”. When a set voltage (VsgT) is applied to an RRAM
device in HRS, it creates a conductive path called filament. This
increases the conductivity of the oxide layer leading to a change
of state from HRS to LRS. When reset voltage (VrgsgT) iS
applied to an RRAM device in LRS, it causes rupture of the
conductive filament. This reduces the oxide layer conductivity
resulting in a change of state from LRS to HRS. Both SET and
RESET processes for an RRAM device are depicted in Fig. 7.
Reading the data from an RRAM device refers to detecting its
resistance state. This is achieved by applying a very small voltage
VreaD (VREAD << |Vsgr|and Vreap << [Vreser|) across
it and measuring the resulting output current. A small output
current means the device is in HRS and high output current
means the device is in LRS. Moreover, a single RRAM device
can exhibit more than two conductance states by controlling
the extent of filament creation or rupture. This is known as a
multi-level cell (MLC) operation which allows a single RRAM
device to store multiple bits of information [43].

B. Selection of Network Topology and Layer Configuration

After selecting the CIM paradigm for hardware implemen-
tation, the next task is to find the neural network (topology
and layer configuration) for each classifier that provides
the best balance between accuracy and energy consumption
considering CIM-based hardware. This is achieved by design
space exploration across four types of neural networks:
fully-connected network (FC) [44], [45], long short-term
memory network (LSTM) [46], [47], bidirectional long
short-term memory network (BLSTM) [48], [49] and temporal
convolutional network (TCN) [50], [51], as shown in Fig. 8. We
first list the various classifiers needed for a given hierarchical
hardware architecture. We then choose a classifier from this list
and implement it using all four aforementioned network types
(FC, LSTM, BLSTM and TCN) so that each network achieves
its maximum possible accuracy. Energy consumption for all four
resulting networks is then estimated by considering a CIM-based
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Fig. 8. Design space exploration flow for implementing a given hierarchical
hardware architecture.

hardware implementation. Finally, we select the network (FC or
LSTM or BLSTM or TCN) which provides the best balance be-
tween accuracy and energy consumption for the classifier. This
process is repeated for all the classifiers required in the given
architecture. Standard convolutional neural network (CNN) [52]
is not included for this design space exploration as we already
consider TCN, which is an advanced form of CNN that deals
more effectively with time series data like ECG. For complete-
ness, we will compare our hierarchical ECG classification with
state-of-the-art CNN-based ECG classification in Section VII.

VI. SIMULATION SETUP
A. ECG Dataset

We use the MIT-BIH arrhythmia dataset [15] available in
Physiobank [16] for our simulation experiments. It consists of 30
minutes of ECG recording from 48 patients across 15 arrhythmia
types. The distribution of ECG beats for each of the arrhythmia
types is given in Table V. As this work focuses on ECG clas-
sification and not on QRS peak detection, we directly use the
QRS peak annotations available in the MIT-BIH dataset. QRS
peak detection at runtime can be achieved by algorithms like
Pan-Tompkins algorithm [53] which can also be implemented
in hardware [54].

B. Performance Metrics

Performance metrics for the evaluation of the proposed hi-
erarchical ECG classification are considered at two levels: al-
gorithmic and hardware. Algorithmic performance metrics are
accuracy and critical accuracy while the hardware performance
metrics are energy and area. These are described in detail as
follows:

1) Algorithmic Metrics:

® Accuracy: It is the ratio of the total number of correctly

classified beats to the total number of input beats.

TABLE V
DISTRIBUTION OF ECG BEATS IN MIT-BIH ARRHYTHMIA DATASET
MIT-BIH Class No. of Beats
Normal Beat (N) 75022
Paced Beat (/) 7025
Left Bundle Branch Block Beat (L) 8072
Right Bundle Branch Block Beat (R) 7255
Atrial Escape Beat (e) 16
Nodal (junctional) Escape Beat (j) 229
Atrial Premature Beat (A) 2546
Aberrated Atrial Premature Beat (a) 150
Nodal (junctional) Premature Beat (J) 83
Supraventricular Premature Beat (S) 2
Ventricular Escape Beat (E) 106
Fusion of Ventricular and Normal Beat (F) 802
Premature Ventricular Contraction (V) 7129
Fusion of Paced and Normal Beat (f) 982
Unclassifiable Beat (Q) 33
Total 109452

TABLE VI
CRITICAL CLASS DEFINITIONS FOR CLASSIFIERS

Classifier Output Classes Critical Classes
C1 Normal, Mild, Moderate, Severe Moderate, Severe
C2 Normal, Mild, Abnormal Abnormal
C3 Moderate, Severe Severe

Severe and
c4 Moderate Subtypes: A, a,J, S, E Severe
C5 Moderate subtypes: A, a, J, S, E -
Co6 Severe subtypes: E, V, f, Q -

Critical Accuracy: We define critical classes as a subset of
the total output classes that can be more life-threatening and
hence considered more important. Table VI defines critical
classes for various classifiers required in severity-based
classification architectures presented in Section I'V. Please
note that the concept of critical classes is only applicable
to classifiers that handle at least one of the broad classes
(normal, abnormal, mild, moderate, and severe) which are
fundamentally based on severity differences. It is not appli-
cable to classifiers that only handle subtypes of moderate or
subtypes of severe as the subtypes indicate similar severity
levels. We now define critical accuracy as the ratio of the
total number of correctly classified beats belonging to the
critical classes to the total number of input beats belonging
to the critical classes. For instance, consider classifier
C1 in Table VI with four output classes: normal, mild,
moderate, and severe. As moderate and severe can lead
to life-threatening scenarios, they are considered critical
classes. Critical accuracy for classifier C1 can then be
obtained as follows:

Correct,,;; : Correct classified moderate and severe beats
Total..i; : Total input moderate and severe beats

C Ceri
Critical accuracy for C1 (in %) = 100 x Lorreclerit
Totaleyit
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2) Hardware Metrics:

e FEnergy: As wearable healthcare devices are battery-
powered, the energy consumed by the CIM-based ECG
classifier is an important hardware performance metric.

® Area: Apart from energy efficiency, wearable healthcare
devices should be compact in size. Hence, the area oc-
cupied by the CIM-based ECG classifier is considered
another hardware performance metric.

C. Simulation Platform

Accuracy and critical accuracy are evaluated by implementing
the neural networks using PyTorch [55] with RMSProp [56]
optimizer. The details of the used neural networks are described
below. Please note that only the number of output neurons
(neyt) varies from two to six based on which classifier is being
implemented, the rest stays the same.

® Fully-connected network (FC) [44], [45]: Tt has an input
layer of 250 neurons, a hidden layer of 100 neurons, and
Noyus output neurons. FC network can thus be expressed as
250-100-n4,¢. The activation function used is ReLLU.

® Long short-term memory network (LSTM) [46], [47]: An
input sequence of 250 samples is fed to two cascaded
standard LSTM units, each having a hidden state size of
30. The output from the last LSTM unit corresponding to
the final timestep is flattened and connected to an output
layer consisting of ng,t neurons. LSTM structure can be
expressed as 250-LSTM(30)-LSTM(30)-Flatten-n .

e Bidirectional long short-term memory network (BLSTM)
[48], [49]: Tts structure is exactly the same as the LSTM
described earlier, with standard LSTM units being replaced
by their bidirectional version. BLSTM structure can be
expressed as 250-BLSTM(30)-BLSTM(30)-Flatten-ngt.

e Temporal convolutional network (TCN) [50], [51]: Tt is
provided with a 250 sample long single channel input se-
quence. This sequence is fed into a cascade of six temporal
blocks. The convolutions within each temporal block have
a kernel size of four and 20 output channels. Output from
the last temporal block corresponding to the final timestep
is flattened and connected ne,¢ neurons in the output
layer. TCN structure can be expressed as 250-TB1-TB2-
TB3-TB4-TB5-TB6-Flatten-n,,;, where TBn represents
n'" temporal block.

We split the ECG data as 60% for the training set, 20% for
the validation set, and 20% for the test set. The networks are
trained using the training set and the validation set is used for
hyperparameter tuning. The test set is not exposed to the network
during training or the hyperparameter tuning process. It is used
only after the network is fully trained and tuned. All the accuracy
and critical accuracy results are presented for the test set so that
they correctly reflect the generalization performance on unseen
test data.

We have developed a Python-based framework to estimate
energy and area for neural networks using computation-in-
memory hardware known as ISAAC presented in [57]. Its
main building block is shown in Fig. 9. The full-precision
neural network weights and inputs are split into smaller bit-size
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Fig. 9.

chunks called slices. This is because i) the bit-capacity of
RRAM devices is typically less than bit-size needed for neural
network weights and ii) digital-to-analog converters (DACs) and
analog-to-digital converters (ADCs) with high bit-resolutions
consume high energy and area. For example, as shown in Fig. 9,
2-bit slices of the weights are converted to conductances and
mapped to RRAMs in different crossbar columns, while 1-bit
slices of the inputs are converted to voltages and mapped to
different time-steps in which they are applied to the crossbar.
With 1-bit DACs and 16-bit digital inputs as an example, 1-bit is
fed at a time to all the DACs and this process is repeated 16 times
(called 16 timesteps). The DACs convert the bits into equivalent
voltage which produces a current at the output of every column
in the crossbar. These currents are latched into sample and
hold circuits (S&H) and then converted to digital outputs by
ADCs. The outputs of ADCs belong to various weight slices
based on which column they come from, and to different input
data slices based on which timestep they belong to. To account
for the slicing of weights across different crossbar columns,
ADC outputs undergo shift and add operations across columns.
Moreover, to account for time-multiplexed inputs (1-bit at a
time), the shifted and added ADC outputs undergo another
round of shift and add operations for merging with the outputs
from previous timesteps to produce the full-precision digital
output. We estimate the energy and area for neural networks
using the design in [57] which utilizes this functionality.

D. Experiments Performed

1) Architecture Selection: The goal of this experiment is to
select the hierarchical classification architecture which provides
the best balance between accuracy and energy efficiency, where
architecture- 1, architecture-2, and architecture-3 are the possible
choices. We leverage the criteria described in Section IV-E for
this selection and use design space exploration described in Sec-
tion V-B to obtain the neural network types and configurations
for classifiers in the selected architecture.

2) Comparison With State-of-The-Art: In this experiment,
we demonstrate the effectiveness of our hierarchical ECG classi-
fication by comparing its performance with state-of-the-art ECG
classifiers based on metrics described in Section VI-B.
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Comparison of classifiers C1 and C2 for selection between architecture-1 and architecture-2.

TABLE VII
COMPARISON OF THE PROPOSED HIERARCHICAL CLASSIFICATION WITH STATE-OF-THE-ART ECG CLASSIFIERS. VALUES MARKED WITH * ARE ESTIMATED BY
OUR FRAMEWORK ASSUMING RRAM-BASED CIM IMPLEMENTATION

Performance Metric Wu-IEEE Access’2019 [3] | Xiao-JBHI’2022 [4] | Wang-TBCAS’2019 [5] This Work
Output Classes AAMI: AAMI: AAMI: Seyerity—based:
N,S,V,EQ N,S,V,E Q N,S,V.E Q Normal, Mild, Moderate, Severe

Finer Classification No No No Yes
Accuracy (%) 96.06 99.10 98.40 98.29
Energy per heartbeat classification (1.J) 2.78 710.00 488.817 0.11
Area (mm?) 1.40 - 1.117 0.11
Hardware Design Complexity High High High Low

Unavailable or not applicable values are indicated by “-”.

VII. SIMULATION RESULTS
A. Architecture Selection

As discussed in Section IV-E, we break the task of selecting
the appropriate architecture into two phases. In the first phase, we
make a choice between architecture-1 and architecture-2. The
selection process stops if architecture-1 is selected. Otherwise,
we proceed to the second phase to make a selection between
architecture-2 and architecture-3, as our final choice.

For the first phase, the choice between architecture-1 and
architecture-2 is governed by the comparison of classifiers C1
(Normal vs Mild vs Moderate vs Severe) and C2 (Normal vs
Mild vs Abnormal) described in Table IV. We implement both
C1 and C2 using all four types of neural networks (FC, LSTM,
BLSTM and TCN) as described in Section V-B. Fig. 10 shows
the performance metrics across various network topologies for
C1 and C2. It is clear that FC provides the best balance be-
tween accuracy and energy efficiency for both C1 and C2.
FC achieves accuracy comparable to other network topologies
(LSTM, BLSTM, TCN) as the classification boundaries for
ECG data seem to be simple and do not benefit much from the
extra computational powers in other topologies. The low energy
consumption of FC can be attributed to two factors:

e [t needs fewer hardware resources compared to LSTM,
BLTSM, and TCN as it doesn’t involve complex com-
putations like hidden state updates in LSTM/BLSTM or
convolution operation in TCN.

e LSTM, BLSTM, and TCN involve iterative computations
such as updating the hidden state after each input
sample (LSTM and BLSTM) or sliding convolution
windows across input feature maps (TCN). Thus, they
use the same hardware multiple times and total energy

is the sum of energies required for each iteration. The
energy consumption increases further as such iterative
computation is needed for each layer in the network.
FC just requires a single non-iterative matrix-matrix
multiplication per layer, saving a lot of energy.

CNN [52] is not included in the above comparison as clarified
in Section V-B. Nevertheless, CNN will also suffer from high
energy consumption problem like TCN because both of them
involve iterative sliding window convolution as the basic com-
putation. We quantitatively demonstrate this later in Table VII
by comparing our FC-based ECG classification with CNN-based
state-of-the-art ECG classification [3], [4], [5].

Mixing network topologies into a hybrid structure can po-
tentially yield better results when the topologies that are being
mixed have a significant difference in accuracy but not a large
difference in energy consumption. However, Fig. 10 shows that
all of these networks deliver similar accuracy while LSTM,
BLSTM, and TCN consume much more energy than that of
FC. Hence, topology mixing is not useful as it would result in
adding a large energy-consuming component to the FC network
for almost no change in accuracy.

As shown in Fig. 10, FC version of C2 achieves 2% higher
critical accuracy (please see Table VI for critical classes) than
the FC version of C1. This is because combining the moderate
and severe classes in C1 into a single abnormal class in C2
simplifies the classification task, as C2 has to learn only three
classification boundaries (normal vs mild vs abnormal) unlike
four classification boundaries in C1 (normal vs mild vs mod-
erate vs severe). Higher critical accuracy also indicates that C2
correctly detects more scenarios where the user needs to seek
medical help. Hence, we select the FC version of C2 and thereby
architecture-2 in the first phase.
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Having selected architecture-2 in the first phase, we then begin
the second phase to make a selection between architecture-2
and architecture-3. This depends on the comparison between
classifiers C3 (Moderate vs Severe) and C4 (A vs a vs J vs
S vs E vs Severe) described in Table IV. Both C3 and C4 are
implemented using all four types of neural networks (FC, LSTM,
BLSTM, and TCN) and their performance comparison across
various network topologies is shown in Fig. 11. FC network
ends up delivering the best balance between accuracy and energy
efficiency for both C3 and C4, for the same reasons as discussed
while comparing C1 and C2. It can also be seen that FC versions
of C3 and C4 have almost identical performance across all the
metrics. However, C4 leads to architecture-3 with a total of
three classifiers while C3 leads to architecture-2 which needs
a total of four classifiers. Thus, we select C4 (its FC version)
and thereby architecture-3 as it needs fewer hardware resources
and less energy, without any impact on accuracy and critical
accuracy.

After finalizing architecture-3, the only remaining thing is to
figure out the neural network type and configuration to use for its
remaining classifier (classifier C6 in Table IV) which deals with
the classification of subtypes of severe class (F, V, f, and Q). We
implement it using all four possible types of neural networks
(FC, LSTM, BLSTM, and TCN) and show their performance
comparison in Fig. 12. The FC version is selected as it provides
the best balance between accuracy and energy efficiency. Thus,
our final selection is architecture-3 with all of its classifiers
being FC networks with configurations as shown in Fig. 13.
Classifier-1, classifier-2 and classifier-3 achieve accuracy of
98.29%, 98.31%, 97.26% and energy consumption of 0.094 p.J,
0.095 wJ, 0.094 pJ, respectively. As the selection between
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Comparison of classifiers C3 and C4 for selection between architecture-2 and architecture-3.
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Fig. 13.  Final classifier architecture with network type and configuration
annotated.

architecture- 1 and architecture-2 depends on the choice between
classifiers C1 and C2 only, while that between architecture-2 and
architecture-3 depends on the comparison between classifiers C3
and C4 only, we have not evaluated the accuracy of classifier C5
in Table VI. Moreover, as we end up selecting architecture-3
which does not include C5, there is no further need to evaluate
its accuracy.

B. Comparison With State-of-The-Art and Discussion

Performance comparison of the proposed hierarchical ECG
classification with state-of-the-art is presented in Table VII. It
includes [4] which represents the most accurate ECG classifi-
cation and [3] which represents the most energy-efficient ECG
classification, for AAMI classes among state-of-the-art works
as discussed in Section II-C. We also include [5] in Table VII
because its architectural approach (selectively turning off some
classification components) is close to our paper.

The reported accuracy of 98.29% for the proposed ECG clas-
sification architecture in Table VII is the accuracy of classifier-
I in Fig. 13. This is because classifier-1 classifies the ECG
beats only into the broad severity classes similar to the state-of-
the-art works which classify the ECG beats into broad AAMI
classes only and do not detect the actual arrhythmia classes.
The accuracy comparison in Table VII shows that we achieve
classification accuracy on par with state-of-the-art ECG clas-
sification solutions. Even though the accuracies obtained by
our work and state-of-the-art works are very similar, the clas-
sification boundaries addressed by our work are different than
the state-of-the-art. For instance, the normal beat in MIT-BIH
dataset belongs to AAMI class “N,” while paced beat belongs
to AAMI class “Q”. However, both normal beat and paced beat
in MIT-BIH dataset belong to the same “Normal” class in our
severity-based ECG hierarchy. Thus, the accuracy results do not
reflect a fair comparison. Hence, the emphasis should be on the
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TABLE VIII
ENERGY CONSUMPTION AND TEST SET FRACTION FOR SEVERITY CLASSES

Severity Energy per Heartbeats in | Fraction of test set

Class heartbeat classification test set (N) (N + 21,891)
Normal 0.094 16410 0.75

Mild 0.094 1J 3115 0.14
Moderate 0.19 pJ 571 0.03

Severe 0.28 uJ 1789 0.08

fact that our work achieves good accuracy on severity-based
classes, rather than comparing the absolute accuracy values.

For a heartbeat that belongs to a broad severity class or a
broad AAMI class, finer classification refers to detecting its
actual arrhythmia class. For instance, once we classify a beat
into the broad severity class “Moderate”, then finer classification
determines the arrhythmia class of that beat out of the five
arrhythmia classes (“A”, “a”, “J”, “S”, and “E”) contained within
the broad “Moderate” class. More details about finer classifi-
cation can be found in Section III-A. As shown in Table VII,
only the proposed severity-based architecture provides such finer
classification which can help doctors with faster diagnosis and
treatment.

The energy consumption for various severity-based classes
in our proposed hierarchical ECG classification architecture
(Fig. 13) is shown in Table VIII. If the input beat falls into
the “Normal” or “Mild” class, only classifier-1 is active which
consumes 0.094 pJ. If the input beat gets classified as the
“Moderate” class, both classifier-1 and classifier-2 get utilized
consuming a total of 0.094 pJ + 0.095 pJ = 0.19 pl. If the
input beat is identified as the “Severe” class, all classifiers get
utilized consuming a total of 0.094 pJ + 0.095 pJ + 0.094 ©J
= 0.28 1J which is the worst-case energy consumption for any
single heartbeat in our architecture. For a fair comparison with
state-of-the-art works in Table VII which report average energy
consumption, we derive the average energy consumption for our
architecture as the weighted average of the energy consumption
across the severity classes. Here, the weight coefficients used
for averaging indicate what fraction of total heartbeats in the
test set (21,891) belongs to a specific severity class as shown
in Table VIII. This results in an average energy consumption of
0.11 pJ per heartbeat classification with a standard deviation of
0.052 1.

Table VII shows that the proposed hierarchical ECG classifier
consumes 25 x less energy and 12x less area compared to the
state-of-the-art while keeping the accuracy benefits intact. The
energy savings can be attributed to the fact that hierarchical
architecture simplifies the design, activates the hardware compo-
nents only when necessary, and uses RRAM-based computation-
in-memory which further improves energy efficiency. Area sav-
ings arise from the design simplification due to hierarchical
architecture as well as the high scalability of RRAM devices.

We have presented an architecture for ECG classification
which can be transformed into a hardware chip, where exist-
ing neural network algorithms are implemented as hardware
components. Hence, the complexity comparison with state-of-
the-art refers to the complexity of designing such a chip. The
use of simple fully-connected (FC) neural network topology

in our proposed architecture greatly simplifies the dataflow,
storage of intermittent calculations, and control logic compared
to complex network topologies in [3], [4], [5]. This results in the
simplification of various chip design processes like placement,
routing, and timing analysis resulting in faster chip develop-
ment. Hence, our architecture greatly reduces the hardware
design complexity compared to the state-of-the-art as shown in
Table VII.

VIII. CONCLUSION

We propose severity-inclusive, accurate, and energy-efficient
ECG classification using hierarchical hardware architecture and
RRAM-based computation-in-memory (CIM) paradigm. The
hierarchical structure achieves high accuracy by breaking down
the complete classification task into smaller subtasks and saves
energy by activating internal components only when they are
needed. The hierarchical structure also accounts for severity dif-
ferences between various arrhythmia classes to help the users of
the wearable healthcare device in seeking timely medical atten-
tion as well as assist medical professionals with faster diagnosis
and treatment. We further perform design space exploration to
implement the internal components for the classification sub-
tasks using the neural networks (topology and configuration)
which provide high energy efficiency while still maintaining
good accuracy, considering RRAM-based CIM hardware. The
proposed ECG classification architecture achieves 25x im-
provement in terms of average energy consumption and 12x
improvement in terms of area compared to the state-of-the-art.
This work has shown that by smartly designing the computation
architecture based on the characteristics of the application as
well as the underlying hardware technology, one can achieve
significant improvements in terms of energy efficiency and area
footprint.
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