
EXTRF.KE WAVES .AND WAVE LOADING IN SHALLOW WATER 

Gert Klopman and Marcel J.F. Stive 

Delft Hydraulics 

P.O.Box 152, 8300 AD Emmeloord 
The Netherlands 

Paper presented at the E&P Forum Workshop 
"Wave and current kinematics and loading" 

Paris,France 
25-26 October 1989 

delft hydraulics 



Abstract 

EXTREME WAVES AND W AYE LOADING IN SHALLOW WATER 

Gert Klopman and Marcel J.F. Stive 

Delft'Hydraulics 

Harbours, Coasts and Offshore Technology Division 

P.O.Box 152, 8300 AD Emmeloord 

The Netherlands 

As an alternative to a more or less standard derivation procedure for 
design wave heights in relatively shallow water, two improvements of the 
procedure are suggested which lead to less conservative results. These 
improvements are based on observations of shallow water effects on both 
the decay of total wave energy density and on the extreme waves in the 
wave height distribution. Existing semi-empirical formulations to account 
for these effects are adopted and somewhat further evaluated here. The 
implications of introducing the improved procedures for the resulting 
design wave loading on a slender cylinder are indicated. 
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1. Introduction 

In the field of ocean and coastal engineering the use of wave generation 

and wave propagation models for the derivation of integral wave field 

parameters such as H and T 
s p 

is widely known and applied for design 

purposes. Relatively reliable results may be acquired as long as shallow 

water effects as refraction due to bottom or current variations and depth 

1 imi ted breaking are negligible. It is somewhat less known that also 

progress has been made with the modelling of reliable dissipative source 

terms due to depth induced wave breaking, that is when we are interested 

in the above integral parameters (Battjes and Stive, 1985; Dingemans et 

al., 1984). 

With respect to the distribution of extreme wave and crest heights on 

shallow water however, there is still a lack of reliable model 

formulations. The extreme values are of great importance in the design of 
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offshore structures. Because of the said lack a usual procedure is to 

apply the Rayleigh distribution until the theoretical limiting height of a 

regular wave on a horizontal bottom is exceeded. On the basis of 

measurements in the field and especially in the laboratory it has appeared 

that this does not give reliable results. A semi-empirical formulation, 

which models the expected deviation from the theoretical Rayleigh 

distribution in a heuristic manner, yields more reliable results. This 

formulation is described in Section 2. 

So as to indicate the consequences of the above modelling suggestions 

for the design loads on offshore structures, firstly in Sections 3 and 4 

the formulations are described for the wave-induced velocity field and the 

resulting horizontal loading, as caused by the extreme waves. Based on 

these formulations we show in Section 5 for a characteristic situation 

which differences can occur between a standard approach and two 

alternative approaches to derive design loads which account for the above 

modelling suggestions with respect to shallow water effects. 

2. Extreme shallow water wave statistics 

In relatively deep water it appears that the heights of individual waves 

follow a Rayleigh distribution. The eventual deviations from this 

distribution due to non-linearities and finite bandwidth are relatively 

small (Longuet-Higgins, 1980), i.e. judged against the deviations which 

may occur for extreme waves in the tail of the wave height distribution on 

relatively shallow water. For the lower wave heights in the distribution 

this is less clear; e.g. Thornton and Guza's (1983) interpretation of the 

NSTS data leads to negligible (non-significant) deviations up to the 

H 
1/10 

The deviations in the tail of the wave height distribution in relatively 

shallow water are well-known. They are ascribed to the height (or 

steepness) limiting effects of a finite waterdepth d. The practical upper 

boundary which usually is adopted is the theoretical maximum for a steady 

solitary wave on a horizontal bottom H/d = 0.833 (Williams, 1981). The 

validity of this choice is amongst others determined by the degree in 

which individual waves in a natural wave field on shallow water behave as 

steady solitary waves. In the limit for d ~ 0 this is a realistic 

assumption, but it appears from e.g. laboratory measurements that in the 
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transition zone from nearly breaking to saturated breaking there is no 

proof for a more general validity of the limiting situation. This is 

illustrated in Figure 1 where, as a function of the relative water depth 

kd, extreme wave height values from two laboratory programs are plotted 

against an adapted Miche criterion. The measurements concern random wave 

decay in flumes on 1 in 40 and 1 in 100 slopes; they are described in 

Stive (1985, 1986). The Miche criterion for the maximum wave heights 

realizes a smooth transition between the limit deep water wave steepness 

and the maximum solitary wave height on shallow water. It is adapted 

(according to Battjes and Janssen, 1978) in order to create a shallow 

water limit different from 0.88: 

H 
max 

d 
0.88 t h ( kd ) = kd an ° 0.88 (1) 

in which 0 = 0.833 and k is the wave number. 

Inspection of Figure 1 indicates that the data scatter is relatively 

large, and that even qualitatively the criterion does not seem to be a 

good approximation. Apparently, the relative water depth is not the 

dominant parameter in the physical process. 

Further analysis of the measurements has shown that there is a dominant 

parameter existing, i.e. the ratio total local energy density over depth, 

here represented by H I d, where H has been defined as H = 4 vm , with 
s s s 0 

m the total water surface elevation variance. This is a measure for the 
0 

breaking wave intensity (Battjes and Janssen, 1978). As the intensity of 

wave breaking increases the deviations from the Rayleigh distribution 

should increase. This is illustrated in Figure 2 for some characteristic 

extreme wave heights. It appears that the dependency of the parameter is 

such that other eventual dependencies are obscured, and relatively little 

scatter results at least up to H Id= 0.6 which is in the very shallow 
s 

water range. The reasons for this behaviour are not really well 

understood, but our suggestion is that there are probably effects of wave 

grouping on the characteristics of extreme wave heights. 

Qualitatively this dependency has already been accounted for by 

Glukhovskiy (1966) and it has been verified to a limited North Sea data 

set by Bouws (1979). The method essentially comes down to a Weibull 

formulation with the above ratio as a parameter, in the deep water limit 

reducing to the Rayleigh distribution. Here we present a quantitatively 

somewhat modified formulation, which accounts for consistency between the 
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parameters (private communication Battjes, 1986): 

P(H) = P { H > H I H, d } = exp [ - A ( H I H )K ] , (2) 

with: 

K = 2 ( 1 - d )-
1 

(3) 

~ H 
d = d ' (4) 

where H denotes the mean wave height. 

For the Weibull distribution we have the following expression for the n-th 

moment M : 
n 

(5) 

where f(x) denotes the gamma function. Since M has to be equal to H, the 
1 

following relation exists between A and K: 

A
1
IK = f ( ! + 1 ) 

The root mean square wave height H 
rms 

becomes: 

~M [ r ( 
2 

+ 1 ) ] 1/2 

H 2 K 
rms 

= = 
H 

M r ( 
1 

+ 1 ) 
1 K 

and the wave height H with an exceedance probability of P (H ) 
N N 

equal to: 

:N = r ln ~N) 1i/K 
H ~ -rt J 

(6) 

= 11N 

(7) 

The significant wave height H , defined as the mean value of the waves 
1/3 

higher than H
3

, is related to the average wave height through: 

H 
1/3 

H 

r[!.+l 
K ' 

H I 
3 

= 3 --------------------------- (8) 

is 

with f(a,x) the incomplete gamma function. Some characteristic values of 

several ratio's as a function of the relative average wave height ratio 

H I d are given in the following table. 
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-
H H H H H 

1/3 1/3 100 1000 
- -- --
d d H v2 H ¥2 H 

rms rms rms 

0.00 0.00000 1.41573 1. 51743 1.85846 

0.10 0.15408 1.39153 1.43354 1.72049 

0.20 0.29665 1.36366 1.34964 1.58729 

0.30 0.42744 1.33202 1.26598 1. 45901 

0.40 0.54623 1.29654 1. 18279 1.33578 

0.50 0.65284 1.25714 1. 10033 1. 21772 

0.60 0.74712 1. 21377 1.01884 1. 10491 

0.70 0.82899 1. 16638 0.93856 0.99741 

In the above we have adopted Glukhovskiy's suggestion for a 

parameterization of K, but disregarded his suggestion for a 

parameterization of A, for consistency reasons. Although further empirical 

optimisation would be possible, we suggest that for the moment this 

paramerization follows the data up to H Id= 0.6 with reasonable 
s 

accuracy (see Figure 2). For H Id> 0.6 the data are probably influenced 
s 

by a positive correlation of the extreme wave heights with increased 

set-up due to surfbeat. 

3. Design wave kinematics 

There has been a steady progress in the development of wave theories for 

periodic long-crested waves travelling over a horizontal bottom. At the 

moment, it is possible to obtain highly accurate solutions of the wave 

kinematics for engineering purposes, assuming potential flow theory is 

valid, see Teles da Silva & Peregrine (1988), and the reviews of Fenton 

( 1989) and So bey et al. (1987). The validity ranges of several theories 

are given by Fenton (1989). 

However, in nature waves are almost always short-crested, irregular, 

superimposed on turbulent shear flows, influenced by the air flow over the 

waves and the sea bed topography, and also the waves may be breaking. On 

many of these physical effects still a lot of research has to be done, in 

order to be able to incorporate them into sound engineering design 

procedures. 

Subsequentially, we will use the design wave concept for predicting wave 

kinematics and forces. In deep water the design wave height will be much 
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smaller than the limiting wave height, so low order Stokes's wave theories 

are sufficient to describe the design wave kinematics. In shallow water, 

however, the design wave will be a near-breaking wave, so a higher order 

theory applicable at shallow water should be used. Here we use the Fourier 

approximation method of Rienecker & Fenton (1981), which can describe the 

wave kinematics of periodic waves superimposed on a uniform current, up to 

the limiting wave height. A simplified version of the method, including 

the FORTRAN code, can be found in Fenton (1988). 

Comparisons of the computed fluid velocities under the wave crest with 

measurements of Le Mehaute et al. (1968) were already presented by 

Rienecker & Fenton (1981). In Figure 3, a comparison is made with measured 

velocities under the wave crests at the breaking point on an 1 : 30 slope 

(Iwagaki & Sakai; 1976). Even though the waves are unsteady, the agreement 

is quite satisfactory. 

4. Design wave forces 

Presently, one still has to rely on empirical methods for the prediction 

of wave forces on cylinders at high Reynolds numbers and outside the 

diffraction regime. The inline forces on fixed vertical cylinders in 

long-crested waves can be described reasonably well by Morison's equation 

(Bearman et al., 1985; Bearman, 1988). However, for other cylinder 

orientations the agreement between wave forces as predicted by Morison's 

equation and measurements is quite poor (Bearman et al., 1985). For 

horizontal cylinders, improved formulations for forces at low 

Keulegan-Carpenter numbers have been derived by Chaplin (1988). 

For cylinders in shallow water, a description of the forces in the 

splash zone and forces due to breaking waves are important. Results of 

field measurements on forces on vertical cylinders near the free surface 

can be found in Dean et al. ( 1981). 

No results are yet available of laboratory experiments at sufficient large 

scale. It is essential, in order be able to extrapolate laboratory results 

to prototype conditions, to perform tests at postcritical Reynolds 

numbers, and at sufficient large scale for letting wave impact forces 

become independent of surface tension effects on air entrainment in the 

breaking waves. For laboratory experiments at subcritical Reynolds numbers 

and in deep water, Kjeldsen et al. (1986) found that inline forces on a 

vertical cylinder in breaking waves can be higher than the forces due to 

higher non-breaking waves. Force coefficients for a vertical cylinder due 
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to non-breaking deep water waves in the splash zone and at subcri tical 

Reynolds numbers are presented by T0rum (1989). 

For the computation of wave forces, we have used Morison' s equation, 

without taking free surface effects into account. As an example, a 

comparison is made between a measurement CT0rum, 1989) and computed 

results using Morison's equation. The experimental conditions were: 

Mean water depth 

Regular wave height 

Wave period 

Cylinder diameter 

3.0 

0.609 

2.012 

0.06 

m 

m 

s 

m 

The velocity field and velocity partial time derivative field, as computed 

with the Fourier approximation method of Rienecker & Fenton (1981), are 

presented in Figure 

coefficient C = 1.10, 
D 

4. An inertia coefficient C = 1.60 and 
M 

corresponding to the values found below 

level for this test by T0rum (1989), were used to compute the 

drag 

trough 

inline 

forces. Apart from very near the free surface, a reasonable agreement is 

found with the measurements, see Figure 5. 

5. Results and discussion 

In Sections 1 and 2 we have described two effects which are not commonly 

accounted for when shallow water wave design conditions have to be 

derived. The first effect concerns the decay of the total wave energy 

density due to depth limited breaking as a random wave field shoals 

towards shallower water. This may be accounted for by the type of model as 

described by Battjes & Stive (1985), which they show to result in a 

reliable variation of the total wave variance, H ~ v(8 m). The second 
rms 0 

effect concerns the implications of shallow water effects on the wave 

height distribution of a random wave field as it propagates towards 

shallower depths, as explained in Section 2. 

So as to illustrate the implications of incorporating the above effects 

in a design procedure for wave loading, we evaluate two alternative 

methods next to a more or less standard design method. The characteristic 

design case is as follows. Assume that on a water depth of 30 m a 

"significant" wave height H 
s 

- 4vm 
0 
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H and corresponding wave periods are known: say H = 7. 60 m, 
1000 s 

H = 14.13 m, T = 12.0 s. Say the design procedure requires design wave 
1000 

heights on shallower water depths, e.g. 20 m and 10 m. 

Method 1, the conservative design method, would realisticly follow the 

reasoning to apply the same design wave on the shallower depths as on the 

30 m depth, as long as the theoretical limit for a regular wave on a 

horizontal bottom is not exceeded. 

Method 2, accounting for total wave energy decay due to depth-induced 

breaking, would first apply the energy decay model to derive the variation 

of total wave energy, and therewith derive a characteristic wave height, 

such as H = 4 v'(m ) on the shallower depths. Based on this wave height 
s 0 

design wave heights would be derived assuming a Rayleigh distribution. 

Here, again as long as the theoretical limit for a regular wave on a 

horizontal bottom is not exceeded. 

Finally, method 3, accounting for wave decay as in method 2 but also for 

the shallow water effects on the distribution of the extreme waves, would 

derive the design wave height from the decayed significant wave height and 

the applying the modified Rayleigh distribution as described in Section 2. 

The resulting wave heights which follow from these three methods are 

collected in the table below. 

H [m] H [m] 
s design 

at a water depth of at a water depth of 

30 m 20 m 10 m 30 m 20 m 10 m 

* * * Method 1 7.60 7.60 7.26 14.13 13.67 7.26 

* Method 2 7.60 6.90 4.05 14.13 12.83 7.26 

I Method 3 I 7.60 I 6.90 I 4.05 I 12.43 I 10.73 I 6.10 I 

The wave heights marked with an asterisk (*) are limited by the maximum 

obtainable regular wave height at that particular water depth, as computed 

with the Fourier approximation method of Rienecker & Fenton (1981). 

So as to illustrate the implications of the alternative design wave 

heights for the design wave loading, a loading calculation was done 

according to the method described in Sections 3 and 4. The results for the 

maximum total horizontal force and maximum total bed overturning moment on 

a slender cylinder extending over the total water column are given in the 

table below. 
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F [kN] M [kNm] 
max max 

at a water depth of at a water depth of 

30 m 20 m 10 m 30 m 20 m 10 m 

Method 1 223 298 100 5806 6664 1141 

Method 2 . 223 254 100 5806 5070 1141 

Method 3 163 160 73 3943 2847 681 

From the results it clearly follows that the design wave heights and wave 

loading derived according to method 3 are substantially lower than that 

according to method 1 and 2. This indicates that a revision of shallow 

water design procedures may lead to important savings. A more sound basis 

of this revision though should be based on further research. 
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Figure 1 Dimensionless extreme wave height values HId versus relative 
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water depth kd; 

+ : H Id on a 1:40 slope, (H li\) = 0.01 (Stive, 1985); 
700 rms 0 

X H Id on a 1:40 slope, (H li\) = 0.04 (Stive, 1985); 
800 rms 0 

0 H Id on a 1:100 slope, several tests series with 
1000 

0.03 < (H li\) < 0.06 (Stive, 1986); 
rms 0 

: equation ( 1) . 
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Figure 3 Maximum horizontal velocity profiles, at the point of breaking 

on a 1:30 slope; 

0 measurements by Iwagaki and Sakay (1976); 

computation with Rienecker & Fenton Fourier approximation 

method. 
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Figure 4 Velocity ·and acceleration field under a wave of period 

T = 2.012 s and height H = 0.609 m in a mean water depth of 

d = 3.0 m, as computed with the Fourier approximation method of 

Rienecker & Fenton (1981). 
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Figure 5 Inline force F on a vertical cylinder as a function of the 
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vertical coordinate z; cylinder diameter 0.06 m, wave conditions 

as in Figure 4; wave phase relative to wave crest 8 = 348°; 

0 measurements by T0rum (1989); 

Morison equation with velocities and accelerations as in 

figure 4. 
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