In terms of the scientific relevance of this thesis, while the topic seeks to investigate the technical interest in the vast possibilities of timber construction, it further investigates the possibilities of computational design as a systematic way of thinking in terms of configuration of spaces with attributes and properties one can take into account. I believe the technical interest of this thesis is subjective, the attempt to craft a computational workflow and process is the key interest in the work. The final product is not as relevant as the procedure that was designed and fabricated. This positions my thesis towards the idea of generative ideation. Rather than forcing the design process, the tools of computation become a collaborator where the access to rapid prototyping, high performance algorithms, and interactive intelligent feedback creates a very new design process that feels less micro managed as it is right now.

Moreover, the results of this thesis can contribute to a broader scientific and professional framework to today’s relevance in AI, computation, IoT and subjects such as material science. In the future, industry centres seem to be at the heart of this movement towards new research and development by taking the agenda of the digital age towards the built environment and the built environment towards the digital age. Through the contributions to the discussion towards the architectural industry.

While there are indeed ethical issues that need to be addressed in relation to the broader subject of automation, robotics and AI, the same arguments are always exhibited: whether it be the threat to the economy or the well being of society. However, speaking within the bubble of the building industry, the discussion around the design process is a rethinking of the built environment. The industry seems to be at the crossroads of automation, where the process of computation can aid in the design and rapid process towards new paradigms in the discipline. The digital age is not only an exponential shift, Computational and systematic thinking is the key process for this thesis and the advancement of my thinking towards my design.

I believe my approach with the help of my mentors was informed and thorough. While the thesis requirements have informed my thinking towards the built environment, my mentors have informed me to think larger and more complex which forced me to consider the design and build process in a broader fashion with a certain level of detail and precision towards my design. However, my mentors have been very patient and helpful in guiding me through the process of designing and building. The key to building flexibility to change and continue feedback throughout the design was a crucial aspect for my approach.