
Vulnerability Detection in Mobile
Applications Using State Machine Modeling

Wesley van der Lee

Delft University of Technology

Faculty of Electrical Engineering, Mathematics & Computer Science
Department of Intelligent Systems

Cyber Security Group

MSc. Thesis

Vulnerability Detection in Mobile Applications
Using State Machine Modeling

Wesley van der Lee

to obtain the degree of Master of Science in Computer Science
Data Science & Technology Track

with a specialization in Cyber Security
to be defended publicly on January 16th, 2018

Thesis Committee
Dr. ir. J.C.A. van der Lubbe Full Professor TUDelft
Dr. ir. M. Loog Assistant Professor, TUDelft
Dr. ir. S. Verwer Assistant Professor, TUDelft
R. van Galen Cyber Security Consultant, KPMG

Wesley van der Lee
Vulnerability Detection in Mobile Applications Using State Machine Modeling
MSc. Thesis, January 8, 2018

Delft University of Technology
Cyber Security Group
Department of Intelligent Systems
Faculty of Electrical Engineering, Mathematics & Computer Science

KPMG
Cyber Security
IT Advisory Services
Risk Consulting, Advisory

Abstract

Mobile applications play a critical role in modern society. Although mobile apps are
widely adopted, everyday news shows that the applications often contain severe
security vulnerabilities. Recent work indicates that state machine learning has proven
to be an effective method for vulnerability detection in software implementations.
The state machine that can be learned about a software implementation provides
additional insight into the internal software structure. The insight can then be used
as input for security assessment which most of the times is performed by manual
evaluation of the learned model.

In this thesis, we aim to extend state machine learning to improve the security of
mobile applications in an automated way, solving two problem. The first problem
is the lack of a methodology to learn state machines for mobile apps. The second
problem is the need for an approach that detects vulnerabilities from the inferred
models. To the best of our knowledge, there exists no framework that automatically
infers behavioral state machine models on mobile Android applications, nor does
there exist a methodology for automatic vulnerability detection on the inferred
models.

We propose two solutions to the aforementioned problems. For the former, a frame-
work for inferring a state machine model on general mobile Android applications
is presented, which uses active state machine learning algorithms to ensure time
optimization and model correctness on the learning process. For the latter, we
designed algorithms that use the inferred models and determine the presence of
vulnerabilities. We combine both solutions and propose a novel testing methodol-
ogy that gains new insights into the behavior of an app and achieves the goal of
vulnerability detection. The methodology identified relevant security weaknesses in
numerous Android apps. Moreover, the solution can detect rogue applications such
as a malicious WhatsApp version in the Android Play Store, which affected over a
million devices in three days on November 2017.

v

For family and friends, and friends that are family.

- Wesley van der Lee
Delft, 2018

vii

Contents

1 Introduction 1
1.1 Outline . 4

2 Building Blocks of Model Inference 7
2.1 Prerequisite terminology . 7
2.2 The L* Algorithm: The Basic Building Block of Model Inference . . . 9

2.2.1 Why the inferred DFA is minimal 12
2.3 Counterexample Decomposition . 13
2.4 The TTT Algorithm: A Redundancy-Free Approach to Active Automata

Learning . 14
2.4.1 Speedup of TTT opposed to L* 19

2.5 Equivalence Testing . 21
2.5.1 RandomWalk . 22
2.5.2 W-method . 22
2.5.3 Minimal Separating Sequences for All Pairs of states 25

3 Prior Art on Application Modeling 29
3.1 LearnLib . 29
3.2 The MAT Framework Implementation 30
3.3 Learning . 31

3.3.1 Alphabet Establishment . 31
3.3.2 Learning Steps . 32
3.3.3 Feasibility Techniques . 33

3.4 Discussion . 34

4 Model Inference Tool 35
4.1 Android Application Model Inference 35

4.1.1 L* and RandomWalk . 36
4.1.2 TTT and RandomWalk . 37
4.1.3 TTT and RandomWalk-HappyFlow 38
4.1.4 TTT and the W-method . 39

4.2 Mobile Variables . 42
4.2.1 Non-deterministic Application Behavior 42
4.2.2 Extended Input Alphabet . 44

4.3 Hardware Specifications . 45

5 Vulnerability Identification on Models 47
5.1 Model Enrichment . 47

5.1.1 Text . 48
5.1.2 Activity per state . 48
5.1.3 Network requests . 48

ix

5.2 Mobile Application Security . 51
5.2.1 OWASP Top-10 . 52
5.2.2 Detectable Through Models 55

5.3 Vulnerability Algorithms . 56

6 Results 63
6.1 Banking Application . 63
6.2 WhatsApp . 66
6.3 Remaining Results . 70

7 Discussion 71
7.1 Evaluation . 71

7.1.1 Improper Platform Usage . 72
7.1.2 Insecure Communication . 73
7.1.3 Insecure Authentication . 73
7.1.4 Code Tampering/Extraneous Functionality 74

7.2 Validation . 74
7.3 Limitations . 76

8 Conclusion 77
8.1 Reflection on Research Questions . 77
8.2 Future Work . 80

Bibliography 83

x

1Introduction

„What we have to learn to do we learn by doing

— Aristotle
The Nicomachean Ethics

Mobile applications play an ever-more important role in modern society. Mobile
apps are the gateways to use social media, to perform banking transactions, to
schedule trips and much more [1]. The same type of applications are not only
limited to run on mobile phones but can also run on other smart devices such as
smart televisions, smart watches and smart cars. The multi-platform deployment
of applications is particularly true for applications that are designed to run on the
Android operating system since Android is the most popular operating system for
smart devices1. As a result, Android applications facilitate a multitude of services
for everyday life. Although the Android platform is well-established, the security of
Android applications is not. The conclusion became especially true when in 2016
researchers of the Norwegian firm Promon were able to exploit Tesla’s Android
application and achieve full control of the Tesla car paired with the application[2].
Also in 2016, the research institute Fraunhofer SIT found exploitable vulnerabilities
in 9 popular password managers for Android that could compromise the passwords
locally stored by the user [3]. These examples illustrate that although today’s society
moves towards a pervasive adoption of mobile applications, the applications are
insufficiently secured.

The main reason why applications fail to meet modern security standards is that
software security is part of a trade-off where development methodology and time-
to-market play an essential role [4]. An early time-to-market brings an economical
strategic advantage for companies because of two reasons [5]. First of all, when a
company launches an application as soon as possible inside a niche domain, they can
become market leaders, with the ability to lock in users. Secondly, publishing soft-
ware expeditiously also generates an early revenue. On the other hand, a software
development life cycle that implements security, such as test-driven development,
might consume more time thus delaying the time-to-market, but results in a more
secure application.

Modern security testing tools aid the process of discovering bugs by applying a
multitude of automated testing techniques that come in three flavors: white-box,
grey-box and black-box testing [6]. White-box testing examines the application’s
internal logic by code reviews or specific tests. Grey-box testing tests the software’s
logic using metadata, such as documentation or file structure. Black-box testing
interacts with the software as an application and determines whether a given input
returns the correct output.

1https://developer.android.com/about/android.html

1

Black-box testing techniques can also be fine-tuned to understand the application’s
internal logic, by modeling the application logic as a state machine. A state ma-
chine visually graphs the software behavior, shows which application input lead to
which state and depicts the corresponding application responses for a given input.
Modeling a state machine with black-box testing is precisely what a state machine
learning algorithm does by observing a large number of traces: a combination of
inputs and outputs. The inferred state machine reveals detailed information about
the application’s logic, and can hence function as input for the identification of
vulnerabilities and weaknesses in the software application. The identification of bugs
or vulnerabilities from inferred state machines has been achieved for a wide range
of software systems, such as various driver implementations for the TLS protocol [7].
The last mentioned study assessed models for the existence of extraneous transitions
or states and concluded that the visual insight of the state machine aided the identi-
fication of vulnerabilities in the implementation. Another way to use state machine
learning is the to verify if a software implementation meets specific requirements.
A state machine can be modeled to function as a reference model that is based on
the predefined software requirements. The reference model can be compared to
the inferred state machine of the application. Discrepancies between the two state
machines can then be further investigated to assess whether the implementation
concurs the requirement model. One could also learn a state machine model for
formal documentation. Learning a model for the purpose to establish documentation,
has been performed for the chip in the Dutch biometric passport. It was more time
efficient to infer a state machine than having a team of experts establish such a
model [8].

State machine models can be learned from a set of existing traces (passive learning)
or a set of traces that are generated while learning (active learning). The traces
are generated by interacting with an application and observing input and output
combinations. The drawback of passive learning is that the model is incomplete in
the variety of existing traces, i.e., when the set of traces does not describe particular
application behavior, the inferred model does not specify this behavior either. Active
learning overcomes the shortcoming by querying for the information it needs to
know. Software systems, and therefore also Android applications, can function as a
data source to generate the required traces because the applications can respond
interactively. The drawback of applying active learning to software systems is that
interacting with an application consumes time, as each input needs to be simulated
and each output is required to be observed. To improve the learning process,
different active learning algorithms have been developed, such as the L* and TTT
algorithm.

Active state machine learning is often implemented according to the Minimally
Adequate Teacher (MAT) framework as first proposed by Angluin [9], which is
composed of a learner and a teacher. The goal of the learner is to infer the state
machine model of a system under test (SUT), by posing membership queries and
equivalence queries to the teacher. Membership queries ask whether the SUT
recognizes a specific behavior input. The combination of a query and answer form
a trace, and a hypothesized model can be constructed after a sufficient amount of
traces are generated. The model learner poses an equivalence query to the teacher
for the built hypothesis. The query determines if the model correctly describes
the SUT’s input/output behavior. Learning halts when the hypothesized model

2 Chapter 1 Introduction

is equivalent. If the model incorrectly describes the SUT’s behavior, the teacher
provides a trace which distinguishes the model and the SUT. The trace is also called
a counterexample because it invalidates the hypothesized model. The learner utilizes
the counterexample to refine the hypothesis. The process repeats itself until an
equivalence query yields success. Figure 1.1 visually depicts the discussed methods
of the MAT framework.

Fig. 1.1: Active Learning with the MAT Framework

A vital component of the discussed framework is the ability of the teacher to verify
equivalence between the hypothesized model and the unknown model that is im-
plemented by the SUT. Equivalence between a hypothesized model and the SUT is
determined through approximation. The teacher generates a number of test cases
and verifies whether the model’s output is equal to the outputs of the SUT. If a
given test case yields a different result, the model is inequivalent and the test case
itself forms the counterexample. Numerous algorithms generate the test cases such
as randomized input sequences and the W-method [10]. A common drawback of
the test case generation algorithms is that the tests are insufficiently diverse or
excessively long. Insufficiently diverse test cases prematurely determine a model
to be equivalent to the implementation, whereas the model is inequivalent to the
implementation. Excessively long test cases consume too much time, which makes
equivalence testing infeasible. Test case generation is a study on its own and this
thesis will only touch upon some model conformance algorithms that we apply for
equivalence approximation.

Because the model that is inferred by active state machine learning manifests
additional information about the application, the model might also be used as input
to assess the application’s security. Up until now, most research that involves active
learning stops when the model is automatically inferred and continues with manual
model inspection to conclude a security assessment, such as the identification of
extraneous behavior. The security assessment thus also depends on the reviewer and
may yield different results for different reviewers, as there exists no standardized
methodology. Furthermore, research on retrieving such a model for mobile Android

3

applications is insufficient. There is only one study performed by Lampe et al. that
developed a tool for a specific application to infer a state machine model [11]. This
model was also manually reviewed, and although the inferred model nor the review
results were publically published, the authors were able to apply state machine
learning to a single mobile application successfully. The research provides a limited
framework for model inference of mobile applications. Despite the limitations, the
proposed framework can be used as a basis for this research, but the framework’s
restrictions need to be overcome. Furthermore, we aim to utilize the inferred
model as a data source for an automated security assessment, such that the security
evaluation is not prone to human error when attempting to discover weaknesses in
the model.

1.1 Outline

This thesis describes the conducted research on how to infer a correct state machine
model for mobile Android applications and assess its security in an automated
way. To infer an accurate state machine model we review active automata learning
algorithms and solve challenges such as the equivalence approximation between a
model and an application. Furthermore, we need to establish algorithms that identify
vulnerabilities on the input of an inferred model. The primary goal of this thesis is
to use these building blocks to answer the following main research question:

How can one identify weaknesses in mobile Android applications through
feasible behavioral state machine learning?

To aid the process of answering the main question, the question has been divided
into the following sub-questions:

RQ 1. How can model learning be extended to apply to mobile Android
applications?
This research question mainly focuses on reducing or mitigating the limitations
of the framework provided by Lampe et al. [11]. This question deals with the
practical obstacles that arise when introducing active learning to the mobile
application domain.

RQ 2. How can the feasibility of model learning for of Android applications
be improved? Active learning from simulations is time-consuming. Different
active learning algorithms reduce the time complexity by limiting the number
of queries and the overall query length. This question focuses on the different
learning algorithms and corresponding attributes such as model equivalence
approximation.

RQ 3. How can the learned model be used to assess the application’s secu-
rity? The novelty of this thesis lies in the application of active learning on Android
applications and the automatic processing of the model as a new data source to as-
sess the application’s security. The latter inquires a set of identification algorithms
that determine the presence of vulnerabilities on the input of the inferred model.

4 Chapter 1 Introduction

My initial expectation is that an extension of the framework proposed by Lampe
et al. can achieve model inference of Android applications. The tool has not been
maintained since its publication from 2015, therefore to be able to launch the tool is
already a starting requirement. Moreover, we hypothesize that the inferred model
can function as a data source for identifying vulnerabilities. Before we can discover
vulnerabilities from state machines, we likely need to add additional information to
the model to precisely describe a state. For example, the type of the incurred network
requests when performing a specific action. Given the assumption that the inferred
model describes the entire application, certain invariants for the application must
hold. An example of such an invariant could be that all network requests performed
by the application are done over an encrypted connection, i.e., connections over
SSL.

The research that is presented in this thesis has also be submitted as a scientific
paper to the first workshop on Security Protocol Implementations: Development and
Analysis (SPIDA)2. The workshop is organized in conjunction with IEEE EuroS&P
2018. At the moment of publishing this thesis, the paper is in the process of external
review.

The structure of this thesis is as follows. Chapter 2 gives an overview of the
building blocks of active state machine learning, where various learning algorithms
are discussed, as well as techniques that solve the model equivalence problem.
Chapter 3 reviews the prior work of Lampe et al. by elaborating on the framework
they proposed and identifying its limitations. Chapter 4 discusses requirements to
overcome the recognized limitations and introduces a solution framework that is
developed based on these requirements. Chapter 5 describes algorithms that identify
security vulnerabilities in the learned models. Chapter 6 depicts the results of the
resulting proof of concept running on various mobile Android applications. Chapter
7 discusses validation and the results. Chapter 8 answers the research questions and
provides a perspective ahead by presenting future work references.

2https://spida.cs.ru.nl/

1.1 Outline 5

2Building Blocks of Model
Inference

„Quid opus est verbis?
(What need is there for words?)

— Terence

Up until now, we discussed in what way active state machine learning can contribute
to the security of mobile applications. Active state machine learning utilizes a learner
and a teacher, where the learner is guided by active learning algorithms to ask the right
questions and the teacher is responsible for providing correct answers. For the teacher
to be able to answer the questions posed by the learner, the teacher must have access to
an oracle that solves the equivalence relation between an inferred model and a mobile
application.

This chapter discusses methodologies that are essential to achieve state machine
learning. Because an active state machine learning algorithm guides the learner, the
algorithm that first proposed the MAT framework, the L* algorithm, is explained,
as well as an improved version of L*, the TTT algorithm. Another technique that is
imperative in the MAT framework is the equivalence oracle that is utilized by the
teacher. The oracle is responsible for refinement of the learner’s hypothesis state
machine and eventually ascertains the halting condition of learning. There exist
different algorithms that enact the oracle to answer equivalence relations, such as
the RandomWalk algorithm and the W-method.

This chapter is organized as follows. To consistently discuss varied literature, Section
2.1 establishes a uniform terminology that is used throughout this thesis and provides
the prerequisite knowledge that is required for components of the MAT framework.
Section 2.2 and 2.4 reviews the L* and TTT active state machine learning algorithms
respectively. At last, building blocks that can contribute to the equivalence oracle
are examined in Section 2.5.

2.1 Prerequisite terminology

When discussing the building blocks of model inference, the related work applies
their terminology. To keep the terminology consistent, this section establishes a
formal mathematical notation. The remainder of this thesis uses the presented
formal mathematical notation. The notation will be consistent with the notation that
is proposed by Sipser [12].

7

The deterministic finite automaton (DFA) U is used to formalize state machines. U
can be defined as follows:

Definition 1 (Deterministic Finite Automaton). A DFA can be formalized by a 5-tuple
U = (Q,Σ, δ, q0, F), where

1. Q is a finite set called the states,

2. Σ is a finite set called the alphabet,

3. δ : Q× Σ→ Q is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.

An example DFA A is depicted in Figure 2.1. At this point and throughout this
chapter, U is an abstract DFA that is utilized for generic statements about DFAs,
whereas A is an actual example DFA and has defined all fields as described in
Definition 1.

q0 q1

q2

b
a, b

a a

b

Fig. 2.1: Example DFA A.

The example DFA A shows three states: q0, q1 and q2 depicted by the circles. Double
edged circles indicate that the state is an accepting state, which in the example of A
is the case for q0 and q2. Arrows and their labeled input symbol indicate transitions
from one state to another state. From the example DFA it can be observed that the
input alphabet Σ of A solely consists of the input symbols a and b.

Σ∗ is the set of words over symbols in Σ, including the empty word ε. The ∗-notation
follows from the unary operation, which attaches any number of strings in Σ together:
Σ∗ = {x1, x2 . . . , xk−1, xk|k ≥ 0 and each xi ∈ Σ}. For all input sequences in A
one can see that word w1 = abbb ∈ Σ∗, because w1 leads to an accepting state1. A
word w2 = abab can be identified as not a member of Σ∗: w2 /∈ L(A)2. For words
w,w′ ∈ Σ∗, w ·w′ is a concatenation-operation of the two words. The concatenation-
operation of two words can also be written by omitting the operator · and just write
ww′.

1δ(q0, abbb) = δ(δ(q0, a), bbb) = δ(δ(δ(q0, a), b), bb) = δ(δ(δ(δ(q0, a), b), b), b) = δ(δ(δ(q1, b), b), b) =
δ(δ(q1, b), b) = δ(q1, b) = q2 ∈ F → abbb ∈ L(A).

2δ(q0, abab) = δ(δ(q0, a), bab) = δ(δ(δ(q0, a), b), ab) = δ(δ(δ(δ(q0, a), b), a), b) =
δ(δ(δ(q2, b), a), b) = δ(δ(q2, a), b) = δ(q1, b) = q1 /∈ F → abab /∈ L(A).

8 Chapter 2 Building Blocks of Model Inference

In general, a state q′ ∈ Q which is the result of a transition from another state
q ∈ Q with input letter a ∈ Σ, is also called the a-successor of q, i.e. q′ = δ(q, a) is
the a-successor of q. In the example of DFA A, state q1 is the b-successor of state
q0. The successor-notation can also be extended for words by defining δ(q, ε) = q
and δ(q, wa) = δ(δ(q, w), a) for q ∈ Q, a ∈ Σ and w ∈ Σ∗. For words w ∈ Σ∗
the transition function δ(q, w) implies the extended transition function: δ(q, w) =
δ(q0, w) unless specifically specified. Moreover, by also utilizing the notation of
Vazirani et al. [13]. A state of a general DFA U can be denoted as U [w] for w ∈ Σ∗,
where U [w] corresponds to the state in U reached by w, i.e. U [w] = δ(q0, w). For
q ∈ Q if U [w] = q then w is also called an access sequence for q. The singleton
transition without an associating input letter, indicates the empty transition, which
points to the initial starting state of A.

Furthermore, for words w ∈ Σ∗ the state U [w] of a DFA U either results in an
accepting state or a rejecting state. Double-edged nodes represent accepting states,
whereas single-edged nodes represent rejecting states. For states q ∈ Q that are
accepting states, it also holds that q ∈ F . The accepting states of A are q0 and
q2. The set of all words w ⊆ Σ∗ that DFA U accepts is called the language of U
indicated by L(U). A language can be infinite as Σ∗ is unbounded. This is the case
for DFA A as it accepts an input existing of any number of b’s after a single a, i.e.
{ε, a, ab, abb, abbb, · · · , ab∗}. The λ-function also evaluates if a DFA accepts an input
sequence. For a word w ∈ Σ∗ the λ-evaluation λ(w) returns 1 iff the DFA in question
accepts word w, that is if the extended transition function for q0 concludes in an
accepting state. The function λ(w) returns 0 if the extended transition function
results in a rejecting state.

Example 2.1.1. DFA A from Figure 2.1, can be formally written as the 5-tuple
A = {Q,Σ, δ, q0, F} where

Q = {q0, q1, q2},
Σ = {a, b},
δ is described as:

a b

q0 q2 q1
q1 q1 q1
q2 q1 q2

q0 is the starting state, and
F = {q0, q2}.

2.2 The L* Algorithm: The Basic Building Block of
Model Inference

Learning Regular Sets from Queries and Counterexamples by Dana Angluin [9] forms
the basis of many modern state machine inference algorithms. Her research intro-
duces the polynomial L* algorithm for learning a regular set, a task which before was
computationally intractable because it was proven to be NP-hard [14]. A regular set
represents the value of expressions that describe languages or regular expressions.
Expressions are regular if they are created by regular operators, such as union and

2.2 The L* Algorithm: The Basic Building Block of Model Inference 9

intersection [12]. The reason to infer a regular language is that if a set is regular, it
can be modeled by a DFA.

Example 2.2.1. The regular expression to express DFA A is (ε∪ab∗), since it accepts
the empty string and a single a followed by any number of b’s.

The basic idea of the L* algorithm is a learner whose goal is to create a conjecture
state machine model by utilization of an expert system, the Minimally Adequate
Teacher (MAT). A conjecture is a hypothesized DFA that approximates the SUT’s
behavior and is either equivalent or not. Two types of queries that are posed to the
teacher enable a learner to infer a state machine model:

• membership queries that answer yes or no for an input word w depending on
whether w is a member of the to be hypothesized DFA. This is equivalent to
the lambda-evaluation for a word w that depicts whether w is recognized by
the set U: λ(w)→ {0, 1}.

• equivalence queries that take as input a conjecture DFA and then answers
yes if the conjecture is equal to the set U . If this is not the case, the MAT
provides a counterexample, which is a string w′ in the symmetric difference of
the conjecture and the unknown language.

The learner keeps track of the queried strings, classified by either a member or
non-member of the unknown regular set U. This information is organized in an
observation table that consists of three fields: a nonempty finite prefix-closed set S
of strings, a nonempty finite suffix-closed set E of strings and a finite function T
that maps all entries that are formed by concatenating the prefix and suffix together,
see Figure 2.2. A set is prefix-closed if all prefixes of every member of the set is also
a member of the set. Suffix-closed is defined analogously. A word u recognized by
the set U can be typical of the form u = sae, for s ∈ S, e ∈ E and a ∈ Σ, meaning a
word starts with a prefix and ends with a suffix. Sometimes a one-letter extension
in Σ is added to the prefix. The one-letter prefix extension identifies transitions in
the hypothesized model. The latter will become apparent in the running example
of the L* algorithm. Angluin applies the notation of words in the form u = sae
as u ∈ ((S ∪ S · Σ) · E), thus if u ∈ U then T (u) will return 1 and 0 otherwise.
Function T thus corresponds to the earlier mentioned λ-function: T (w) =̂ λ(w). To
maintain consistency with Angluin’s work, the remainder of this section uses the T
notation for to depict a lambda evaluation. In conclusion, an observation table can
be denoted as a 3-tuple (S,E, T).

To clarify the terminology, imagine the example where a learner is required to learn
the behavior of DFA A described in Figure 2.1. Initially, any information except A’s
alphabet Σ is unknown to the learner, but the learner has access to a MAT that can
answer membership and equivalence queries. The learner starts by first creating
the observation table. Set S initially contains the input alphabet of A and the
empty string ε as one-letter prefixes. Thus S = {ε} ∪ Σ = {ε, a, b} The commencing
distinguishing suffix is ε, therefore set E = {ε}. The learner then fills the entries
in observation table S × E with the output of membership queries, depending on
whether an entry e ∈ S × E is accepted by A or not. This leads to the initial
observation table depicted in Figure 2.2a. Note that the table vertically distinguishes
two sections that are separated by an additional line. That is, set S is divided into

10 Chapter 2 Building Blocks of Model Inference

two subsets. The top section of S represents all distinct rows with respect to the
outcome of T . Since row(ε) = 1 and row(b) = 0, those distinct rows are put in the
top part of S. Row(a) results to 1, which is equivalent to row(ε), hence row(a) is
put in the bottom part of S.

The learner queries for the right amount of data from the MAT, by ensuring that the
observation table is both closed and consistent. An observation table is closed if for
every entry e ∈ S × Σ, there exists an element s ∈ S such that row(e) = row(s). If
the table is not closed, it lacks information for transitions. Table 2.2a is not closed,
because this property is not ensured for the state A[b]. The table depicts at least
two states because there are two distinct rows. However, A[b] requires information
on where to transit from that state. Hence the access sequence of the state A[b]
appended with one-letter extensions are added to the set of prefixes. In other
words, {ba, bb} are to be added to the set S. This results in a bigger observation
table, depicted in Table 2.2b. The learner identifies which suffix distinguishes the
rows and adds the word to the set S. An observation table is consistent when for
all s1, s2 ∈ S where row(s1) = row(s2), if for all a in the alphabet Σ holds that
row(s1 · a) = row(s2 · a). If the table is inconsistent, the language would be non-
deterministic and can thus not be modeled by a deterministic finite automaton. The
learner identifies for which s1, s2 ∈ S distinguishes the result of output T and adds
the word to the set E. Given the observation table in 2.2b, the observation table is
consistent.

ε

ε 1
b 0
a 1
(a)

ε

ε 1
b 0
a 1
ba 0
bb 0
(b)

ε b

ε 1 0
b 0 0
a 1 1
ba 0 0
bb 0 0
aa 0 0
ab 1 1

(c)

Fig. 2.2: Gradually growing observation tables corresponding to various steps of the L*
algorithm: (a) initial observation table T0, (b) observation table T1 that is a closed
and consistent version of the initial observation table, (c) final observation table
T2 describing DFA A.

A[ε] A[b]

a

b

a, b

Fig. 2.3: Hypothesized conjecture DFA H0 corresponding to observation table T1 (Table
2.2b).

If (S,E, T) is closed and consistent, an acceptor H(S,E, T) can be defined which
is consistent with function T . H then forms the hypothesized model based on the

2.2 The L* Algorithm: The Basic Building Block of Model Inference 11

contents of the observation table. A conjecture H = (Σ, Q, δ, q0, F) can be modeled
as follows:

1. Q = {row(s)|s ∈ SH}
2. q0 = row(ε)
3. F = {row(s)|s ∈ SH and TH(s, ε) = 1}
4. δ(row(s), a) = row(sa)

Example 2.2.2. A hypothesized DFA H0 generated according to the steps above
consistent to the observation table 2.2b that has the following contents: Q =
{A[ε],A[b]}, q0 = A[ε], F = A[ε]. Conjecture H0 is visualized in Figure 2.3. The
learner then verifies the conjecture to the MAT and receives a counterexample
back, indicating that the conjecture is inequivalent to U. Although the learner was
unable to see this, the model depicted in Figure 2.3 clearly differs from the SUT
shown in Figure 2.1. Suppose that the learner received the counterexample word
w = ab. This is a valid counterexample because λA(ab) = 1, λH0(ab) = 0 and thus
λA(ab) 6= λH0(ab) holds.

The L* algorithm adds the entire counterexample and all its prefixes to S to guarantee
that the right suffix is added. Since the observation table is not consistent anymore,
it will find a breakpoint on the distinguishing suffix for b. Letter b is a breakpoint
because analysis of the counterexample w = ab shows that if suffix b is added, H0
predicts the wrong output. Element b is therefore identified as a distinguishing suffix
and hence added to set E. The observation table must now be updated again: the
new entries caused by the appearance of the b-column are filled and to make the
table closed again, new prefixes for the new state A[a] have to be determined. This
process results in the observation table depicted in Table 2.2c. Following the steps to
establish a DFA from an observation table yields the original DFA shown in Figure
2.1 which is the correct DFA that corresponds to the observation table T2 shown in
Table 2.2c. After the learner poses an equivalence query with this DFA, the MAT
answers yes, indicating that the learner inferred the correct DFA and hence learning
stops.

2.2.1 Why the inferred DFA is minimal

Up until now, the focus was for the conjecture to be consistent with T . Since a DFA
with the state size equal to the number of observations, that is each observation leads
to a new state in a conjecture, such a DFA would be incorrect because it possibly
incorrectly models unforeseen future observations. A hypothesized conjecture H
should thus not only be consistent with T , but also have the smallest set of states
to model the SUT’s behavior. The L* algorithm only learns a DFA consistent with T
and that has the smallest set of states. Angluin proves this as follows. Let q0 be the
starting state (row(ε)) and δ be the transition function from one state to another in
the acceptor, then for s ∈ S and a ∈ Σ holds that because δ(row(s), a) = row(s · a)
follows ∀s ∈ (S ∪ S · Σ) : δ(q0, s) = row(s), thus the closed property ensures that
any row in the observation table corresponds with a valid path in the acceptor.
∀s ∈ (S ∪ S · Σ)∀e ∈ E → δ(q0, s · e) is an accepting state if and only if T (s · e) = 1,
thus due to the consistency with finite function T , a word will be accepted by the
acceptor if it is in the regular set. To see that H(S,E, T) is the acceptor with the

12 Chapter 2 Building Blocks of Model Inference

least states, one must note that any other acceptor H ′ consistent with T is either
isomorphic or equivalent to H(S,E, T) or contains more states.

Algorithm 1 provides a complete overview of the L* algorithm.

Algorithm 1 The L* Algorithm

Input: Access to the teacher functions MQ and EQ for respectively computing
membership and equivalence queries

Output: Hypothesis DFA H
1: S ← {ε}
2: E ← {ε}
3: (S,E, T)←MQ for ε and Σ . (S,E, T) is the observation table
4: while H is incorrect do . H is the conjecture
5: while (S,E, T) is not consistent or not closed do
6: if (S,E, T) is not consistent then
7: find s1 and s2 in S, a ∈ Σ and e ∈ E such that:
8: row(s1) = row(s2) and T (s1 · a · e) 6= T (s2 · a · e)
9: add a · e to E

10: extend T to (S ∪ S · Σ) · E using MQ
11: end if
12: if (S,E, T) is not closed then
13: find s1 in S and a ∈ Σ such that:
14: row(s1 · a) is different for all s ∈ S
15: add s1 · a to S
16: extend T to (S ∪ S · Σ) · E using MQs
17: end if
18: end while . (S,E, T) is closed and consistent
19: H = H(S,E, T) . H is the conjecture
20: if EQ(H) is a counter example t then
21: add t and all its prefixes to S
22: extend T to (S ∪ S ·A) · E using MQ
23: end if
24: end while
25: return H

2.3 Counterexample Decomposition

In the previous section, the learner was tasked to infer the behavior of set A illus-
trated in Figure 2.1. At some point the learner inferred an incorrect conjecture H0,
depicted in Figure 2.3. The key step to improve H0 towards A was to utilize a given
counterexample word w = ab. This section discusses how the counterexample can be
decomposed by the learner and elaborates on the process of how this decomposition
leads towards the appearance of a new state.

Suppose at some point the learner poses an equivalence query to the teacher for an
incorrect conjecture H and receives a counterexample word w. Word w is composed
of a prefix and a suffix part. The suffix part can be written as av, where v is the
distinguishing character. Since H is incorrect, there exist two access sequences u, u′

2.3 Counterexample Decomposition 13

q

q′

q′′

u

u′
a

v

v

(a)

q2

q′

q′′

q1

u

u′

v

a

v

(b)

Fig. 2.4: Formal progression of an incorrect conjecture: (a) inconsistent model for distin-
guishing suffix v from state q, (b) consistent model after splitting q into new states
q1 and q2.

from the set of prefixes, such that ua and u′ reach the same state in H. The latter
is true because input uav (the given counterexample) yields a different result than
input u′v (hypothesis). Because w is a counterexample it holds that λH(w) 6= λA(w),
or in other words λH(ua · v) 6= λA(u′ · v). This is also visually depicted in Figure 2.4a
where input word uav leads to state q′ and input word u′v leads to q′′. One could
digest this even further by concluding that the state with access sequence u trailed
with letter a is a different state in comparison to the state with access sequence ua.
In other words λ([u] · a · v) 6= λ([ua] · v).

Since a word w = 〈prefix, suffix〉 and the suffix is modeled as av, a counterex-
ample word w can also be decomposed in a three-tuple w = 〈u, a, v〉. Element v is
called a distinguishing suffix, because it distinguishes the states U [ua] and U [u′] from
each other. Angluin’s L* algorithm adds v to the set E, such that in the observation
table the rows ua and u′ differ from each other. This results in one more distinct row
in the observation table, hence that state q is split into two states: one state q1 that
leads uav to q′ and one state q2 that leads u′v to q′′. The latter is depicted in Figure
2.4b.

Example 2.3.1. In the running example of the former section the counterexample
word w = ab led to the appearance of a new state in the conjecture. Word w is a valid
counterexample because λH(ab) 6= λA(ab). According to the decomposition from
above, this must be true because λH(ua · v) 6= λH(u′ · v) with the counterexample
decomposition w = 〈u, a, v〉 = 〈ε, a, b〉. In Figure 2.3 H[ua · v] = H[ε · a · b] = H[ab]
is equal to the state H[u′v] = H[ε · b] = H[b], whilst λA(ab) 6= λA(b). The state
H[ε · a] = H[a] should thus be added. This is achieved by splitting H[ε], because
both H[ε] and H[a] have the same output for λ. This results into two new states:
H[ε] and H[a].

2.4 The TTT Algorithm: A Redundancy-Free
Approach to Active Automata Learning

In The TTT Algorithm: A Redundancy-Free Approach to Active Automata Learning [15]
Isberner et al. recognize that one of the computational expensive disadvantages
of Angluin’s L* algorithm is a consequence of redundant entries in the observation
table. The redundant entries are a result of suboptimal and possibly excessively

14 Chapter 2 Building Blocks of Model Inference

long counterexamples provided by the MAT to the learner’s equivalence queries.
The prefix-part and the suffix-part of the counterexample contain elements that do
not contribute to the discovery of new states even the distinguishing suffix possibly
include redundant symbols. The L* algorithm can only establish a conjecture when
the observation table is closed and consistent. As a result, the learner also poses
membership queries to fill out each new entry field that is created by the product of
the counterexample’s redundant prefix and suffix elements. To illustrate the presence
of the redundant fields: the observation table of the employed example DFA shown
in Table 2.2c contains the value 0 in the ε-column, which suffices to distinguish the
A[b]-state from the other two states. The remaining fields for these particular rows
denoted by the b-suffix do not contribute to the distinctiveness of these rows, hence
the suffix to distinguish the state A[b] from A[ε] and A[a] are redundant.

To overcome performance impacts caused by redundancies in counterexamples,
Isberner et al. propose the TTT algorithm. The TTT algorithm does so by utilization
of a redundancy-free organization of observations in a discrimination tree. A discrim-
ination tree adopts two sets S,E ⊂ Σ∗ that are non-empty and finite like Angluin’s
L* algorithm does, the only difference being that S consists of state access strings
opposed to prefixes. Set E still contains distinguishing suffixes, which are referred to
by Isberner as discriminators. The tree can then be modeled by a rooted binary tree
where leafs are labeled with access strings in S and inner nodes are labeled with
suffixes in E. The two children of an inner node correspond to labels ` ∈ {>,⊥}
that represent the λ-evaluation. Other studies apply different terminology, like
` ∈ {+,−}, ` ∈ {1, 0} or adopt consistency in the direction their children have: a
child to the left coincides with ` = > and a child to the right coincides with ` = ⊥
[15, 16].

The discrimination tree is shaped in a way such that words can be sifted through
the tree. Sifting is required to determine the transitions when determining the
transitions of a conjecture. The process of sifting is administered to a word w ∈ Σ∗
that starts at the root of the tree. For every internal node v ∈ E of the discrimination
tree the sifting process passes one branch to the >- or ⊥- child depending on the
value λ(w · v) until the process reaches a leaf node. The leaf node then represents
the resulting state with the corresponding access sequence for word w. The relation
of the leaf node to its direct parent, either > or ⊥, depict whether w is accepted or
not. Each pair of states have then precisely one distinguishing suffix, which is the
lowest common ancestor of the two leafs.

The discrimination tree DT corresponding to A is depicted in Figure 2.5. How
the TTT algorithm gradually builds this tree will be discussed at the end of this
section. Note that the state names q0, q1 and q2 are replaced by their access sequence
notation: [ε], [b] and [a] respectively.

Example 2.4.1. Sifting is used to establish the transitions of a conjecture from
a discrimination tree. If for example the b-transition from state A[a] should be
determined i.e. δ(A[a], b), one needs the access sequence for state A[a] which is a,
and the one-letter extension which in this case is b. Together they form the word
w = ab and this is sifted through DT . Starting at the root of the tree, one must
evaluate λ(ab · ε) which results to 1. Thus one follows the >-branch and finds the
inner-node b. Then λ(ab · b) is evaluated, which also results to 1. Again following

2.4 The TTT Algorithm: A Redundancy-Free Approach to Active Automata Learning 15

ε

[b] b

[ε] [a]

Fig. 2.5: Discrimination Tree DT corresponding to DFA A.

the >-branch of the tree, results in the leaf [a], at which point the process shows that
δ(A[a], b) = A[a].

The TTT algorithm follows the following steps to infer a correct model:

1. Hypothesis Construction

2. Hypothesis Refinement

3. Hypothesis Stabilization

4. Discriminator Finalization

1. Hypothesis Construction
The initial discrimination tree is constructed by evaluating λ(ε). The initial evaluation
results in either a tree with as root node ε and a single leaf with access string [ε]
on either the >- or ⊥-child of the root node depending on the λ-evaluation. A
conjecture DFA can be created, such that:

1. Q are all the leaf nodes in the discrimination tree,

2. Σ is already known,

3. δ is determined by sifting all words w ∈ Q× Σ,

4. q0 is [ε] and

5. F are all leaf nodes that are a >-child in the tree.

Example 2.4.2. Following the example where DFA A from Figure 2.1 should be
learned again, but now according to the TTT algorithm, the algorithm starts with
evaluating λ(q0, ε). The evaluation results in 1, thus an initial discrimination tree is
established where the >-child points to the initial state since it is an accepting state.
The initial discrimination tree DT0 is depicted in Figure 2.6a. In order to create
an initial conjecture DFA, one takes all leafs from DT0, in this case only H[ε] and
determines transitions by sifting the access sequence with all one-letter extensions.
Thus εa and εb are sifted in order to respectively determine the a and b transitions
from the initial state H[ε]. Furthermore, a state q ∈ QH is in FH if the associated
leaf is on the >-side of the ε-node. The initial state is the only state in the hypothesis,
hence S = {ε}, and since q0 is an accepting state, the q0-leaf is the >-child of the
ε-root. The initial conjecture DFA H0 corresponding to DT0 is depicted in Figure
2.6b.

16 Chapter 2 Building Blocks of Model Inference

ε

H[ε]

(a)

q0

a, b

(b)

ε

H[b] H[ε]

(c)

q0 q1

a

b

a, b

(d)

ε

H[b] bbbb

H[ε] H[a]

(e)

ε

H[b] b

H[ε] bbbb

H[a]

(f)

Fig. 2.6: Evolution of discrimination trees and conjectures towards learning the DFA A with
the TTT algorithm: (a): initial discrimination tree DT0, (b) conjecture DFA H0 cor-
responding to DT0, (c) discrimination tree DT1 after processing counterexample
w = b, (d) the conjecture DFA H1 corresponding to DT1, (e) discrimination tree
a temporary node, (f) discrimination tree where the temporary node is pushed
down.

2.4 The TTT Algorithm: A Redundancy-Free Approach to Active Automata Learning 17

2. Hypothesis Refinement
The initial hypothesis is likely to be inequivalent to the SUT, in which case the
teacher will return a counterexample. As discussed in section 2.3, a counterexample
can be decomposed as 〈u, a, v〉. The a-part is called a breaking point because the
conjecture predicts ambiguous results for the v-part after a. Th breaking point is
added as a node in the tree, depending on the evaluation of λ(ua) on the >- or ⊥
branch.

Example 2.4.3. Suppose that conjecture H0 was submitted as an equivalence query
to the teacher and the learner receives a counterexample w = b. Word w is a
valid counterexample since λA(b) = 0 6= λH(b) = 1. As discussed in section 2.3, a
counterexample can be decomposed as 〈u, a, v〉. Word w can thus also be read as
w = εbε, thus the complete decomposition of the counterexample is: u = ε, a = b
and v = ε. Since state H[ua] = H[εb] = H[b] = qH0

0 should be split to a new state
[u]Ha → [ε]Hb, a new state q1 is introduced that can be reached by the transition
δ(q0, b). The outbound transitions from the new state are determined by sifting the
access sequence of the new state with Σ. These adjustments are depicted in DT1
and H1 (Figure 2.6c and 2.6d).

3. Hypothesis Stabilization
Although the previous step of hypothesis refinement constructed a discrimination
tree and a DFA conjecture that are consistent with each other, consistency does
not necessarily need to be the case. There is a possibility that for a word that
can be formed by concatenating an element from the set of prefixes S and the set
of suffixes E. A >-child predicts the output 1 but the hypothesized conjecture 0
or a ⊥-child predicts the output 0, but the hypothesized conjecture predicts the
output 1. Word w then forms a new counterexample and is dealt with likewise the
former counterexample. This step is done until the hypothesis is stable and the
discrimination tree and the conjecture are consistent.

4. Hypothesis Finalization
Often the counterexample retrieved is not minimal, such that the counterexample, for
example, contains redundant information. The discriminator is added as a new node
in the discrimination tree, but the algorithm adds non-elementary (more than one
element in the alphabet) discriminators as a temporary node. To prevent redundancy,
trees that contain temporary nodes must be refined until all discriminators consist of
a single element of the alphabet. The subtree generated with the temporary node
as root must be split by subsequential replacement of the temporary discriminator
closest to the subtree’s root by its final discriminator. The final discriminators are
obtained by prepending a symbol from the alphabet to an existing final discriminator.
Prepending a symbol to an existing final discriminator results in the addition of a
parent node in the discrimination tree above the temporary node, thus shifting the
temporary node a level down the tree. The temporary node can now be assessed for
redundant behavior and if the node does not provide distinguishable behavior, it can
be removed from the tree. This scenario is also illustrated in example 2.4.4.

Example 2.4.4. Suppose H1 was subjected to an equivalence query, which resulted
in the counterexample abbbb. Because λA(H[u]a · v) 6= λA(H[ua] · v) only holds
for a = a, the corresponding 〈u, a, v〉-decomposition of this counterexample thus is
〈ε, a, bbbb〉. Splitting H[a] = qH1

0 into a new state H[a] a new state q2 is introduced

18 Chapter 2 Building Blocks of Model Inference

that can be reached by the transition δ(q0, a). The discriminator bbbb is added as
a temporary node, indicated by the dashed surroundings depicted in Figure 2.6e.
The algorithm finds b to be a final discriminator, as for all elements in Σ this yields
the same behavior, hence b is added as a node above the temporary discriminator,
shown in Figure 2.6f. Finally, since the temporary discriminator does not provide
distinguishable behavior compared to the new final discriminator, the temporary
discriminator is removed from the discrimination tree, which results in DT Figure
2.5. Following the steps as before to construct a DFA from the discrimination tree
results in the example DFA A.

2.4.1 Speedup of TTT opposed to L*

Because the TTT algorithm can omit redundant entries during active learning, the
algorithm implies a polynomial speedup opposed to the L* algorithm. The remainder
of this section will analyze the theoretical speedup of both algorithms, and quantify
the difference in complexity between the algorithms.

Three variables matter when computing the time complexity of both learning algo-
rithms. The variables are the size of the state machine of the actual implementation,
which is unknown in advance, and the maximum length of the counterexamples
provided by the teacher. Furthermore, the size of the input alphabet also determines
the number of queries. However, the input alphabet may be assumed to be fixed.
Let the size of the state machine of the target system be n, the maximum length of
all counterexamples be m and the cardinality of Σ be k. For both L* and TTT it is
essential to realize that in the worst case n − 1 counterexamples are necessary to
learn a state machine because each counterexample introduces a new state in the
conjecture and the conjecture can have at most n states.

Complexity of L*

Angluin argues that the L* algorithm is a polynomial algorithm, which means that
the algorithm’s time complexity can be defined by a polynomial function based
on the learning input variables: m and n when k is treated as a constant. The
function can be determined by analysis of the implementation of L*. Recall that the
observation table (S,E, T) has two dimensions: the prefixes S and the suffixes E.

At the start of the algorithm, the sets S and E only contain the empty word ε and
the initial goal is to make (S,E, T) closed and consistent. When the observation
table is not closed a single element is added to the set S and when the observation
table is not consistent a single element is added to the set E. Once the observation
table is closed, consistent and inequivalent to the target model, a counterexample
word w with at most size m is treated. Because the counterexample and all new
prefixes are added to the observation table, at most m new entries are added to S
for each counterexample.

The conjecture will contain at most n states because the system under test has a
maximum number of n states and the L* algorithm guarantees a minimal equivalent

2.4 The TTT Algorithm: A Redundancy-Free Approach to Active Automata Learning 19

state machine. The maximum length of a suffix in E is initially 0 and can be increased
by 1 for every suffix that is added to E. This only happens n− 1 times as the size of
E is at most n− 1, hence the maximum length of a suffix in E is also n− 1.

There are two cases when an element is added to set S, either when the table
is inconsistent or when a counterexample is received. The observation table is
discovered to be not closed at most n− 1 times. The learner can also receive only
n−1 counterexamples, which have a maximum upper bound of m. Since all prefixes
of the counterexample can be added to the observation table, a maximum of n− 1
times m elements can be added to S. The maximum length of any element in S is
increased by at most 1 for every string that is added. Thus the maximum length of
an element in S is at most m+ n− 1.

In terms of Σ, S and E, the set of all entries in the observation table can be written
as (S ∪ S · Σ)E. If one would substitute the sets with their corresponding maximum
cardinality, the maximum complexity in terms of n and m is:

(k + 1)(n+m(n− 1))n = O(mn2)

Analogous substitution of the sets by the maximum length shows an upper bound
of:

m+ 2n− 1 = O(m+ n)

The upper bound polynomial for the observation table in terms of m and n is the
product of the cardinality and the maximum length of an element in the table:

mn2 · (m+ n) = O(mn3 +m2n2)

The L* algorithm stops learning if the observation table if closed, consistent and
the teacher does not provide a counterexample, which happens within the above
established period. The complexity of the L* algorithm is thus O(mn3 +m2n2).

Complexity of TTT

The TTT algorithm requires in the worst case scenario n − 1 equivalence queries
and the most pessimistic discrimination tree is entirely unbalanced and thus of
height n. Analogous to the L* algorithm, a discrimination tree consists of prefixes
and suffixes. Ideally, suffixes are distinguishing suffixes, but before a suffix is
elementary, they might contain redundant elements, due to redundant elements in
the counterexamples.

It is clear to see that the discrimination set E comprises each node in the discrimina-
tion tree. Hence E’s cardinality is n.

20 Chapter 2 Building Blocks of Model Inference

Set S depicts all transitions in the discrimination tree. Since the eventual and
correct conjecture contains n states, at least kn transitions are required to model the
deterministic behavior. Because of the redundant free storage in the discrimination
tree, the transitions between discriminator nodes are also included in the kn upper
bound. The cardinality of S can thus be noted as kn.

Because the most degenerate discrimination tree can be of height n, sifting the
longest counterexample of size m thus consumes at most n+m queries. The value
n+m thus forms an upper bound for the size of a term in S.

In terms of k, S and E, the tree’s cardinality can be computed in S × E, hence the
maximum complexity in terms of n and m is:

kn · n = O(n2)

The maximum length of a query has shown to be of O(m + n). The upper bound
polynomial for the observation table in terms of m and n is the product of the
cardinality and the maximum length of an element in the table:

n2 · (m+ n) = O(n3 +mn2)

Discussion

At this point it has been established that the polynomial complexity of L* is O(mn3 +
m2n2) and the polynomial complexity of TTT is O(n3 +mn2). The TTT algorithm is
thus a factor m less complex opposed to the L* algorithm. The m-factor reduction is
in practice an under-estimation because the worst case scenario for the TTT algorithm
is less likely to occur opposed to the worst case scenario for the L* algorithm. The
situation depicted for TTT’s worst-case scenario is improbable because the tree will
never be completely unbalanced in practice. As a consequence, the height of the tree
will not be of size n. The unlikeliness of entirely unbalanced trees is also shown in
the experimental results provided by Isberner et al. (Figure 5 in [15]). In conclusion,
the TTT algorithm is superior over L* concerning time complexity.

2.5 Equivalence Testing

Once a learning algorithm converges to a stable hypothesis, a counterexample is
needed to ensure further progress. Counterexamples are the result of an equivalence
queries that test the equality between a hypothesized model and the actual SUT.
Equivalence queries in particular return a positive result, indicating that both models
are equal or provide a symmetric difference between the hypothesis and the unknown
model of the SUT. This conclusion is drawn after running a series of exhaustive or
trivial test cases. This section discusses the two most popular DFA equivalence testing
methods: the RandomWalk and the W-method. The W-method is an improvement
over RandomWalk regarding the determination of the equivalence between two DFA’s,

2.5 Equivalence Testing 21

but the method has a gradual drawback in performance due to the large number
of test sequences it generates. Hence, a recently developed method for finding
separating sequences for all pairs of states will also be discussed as a conformance
testing method.

2.5.1 RandomWalk

To test whether two DFAs A and H are equivalent, one could perform a series of
random ’walks’ over H and compare if the SUT yields the same output. A walk
is an arbitrary input sequence that either concludes in an accepting state or a
rejecting state. If for enough sequences both A and H return the same output, the
two DFAs are equivalent. If one test case fails, then the sequence functions as a
counterexample and refinement of H starts until the RandomWalk oracle is used
again. The RandomWalk algorithm is depicted in Algorithm 2.

Algorithm 2 The RandomWalk Algorithm

Input: H the hypothesis DFA, Σ the input alphabet, maxSteps the maximum num-
ber of steps to be performed

Output: A word walk which is a counter example or null if no counter example
can be found

1: step← 0
2: current← H ’s initial state
3: while steps < maxSteps do
4: walk ← ε
5: if random then
6: increment step by 1
7: w ← random element in Σ
8: append w to walk
9: if δH(current, w) is not equal to δSUT (current, w) then

10: return walk
11: end if
12: current← δH(current, w) . traverse 1 step
13: else . restart the walk
14: walk ← ε
15: current← H ’s initial state
16: end if
17: end while
18: return null

2.5.2 W-method

The W-method was first proposed by Chow in Testing Software Design Modeled
by Finite-State Machines [10] as a method of testing the correctness of control
structures that can be modeled by a finite state machine. The method embodies
a test suite development strategy based on a transition cover set P of inputs and a
characterization set W of input sequences that can distinguish every pair of states in
a model. A transition cover set is a set P of input sequences such that for each state
q ∈ Q and each input a ∈ Σ there exists an input sequence w ∈ P starting from the

22 Chapter 2 Building Blocks of Model Inference

initial state q0 and ending with the transition that applies a to state q. Moreover, the
transition cover set also includes the empty word ε, since that transition leads to the
initial state. Set P is thus composed of all short prefixes for state identification in
case all observations are stored in an observation table or access sequences of all
states any other case.

Chow constructs the transition cover set P with the aid of a testing tree of the DFA
H. A testing tree of H depicts H ’s control flow in a linear and non-cyclic manner.
The tree is generated by induction as follows:

1. The root of the testing tree is the initial state of H.

2. Suppose the tree is built to a level k. Level (k + 1) is built by examining all
nodes on the k’th level from left to right as follows. A node is terminated,
meaning that its branch will halt at that node, if the node appeared at a lower
level j for j ≤ k. The labels correspond to the transition symbol between the
states.

The above process always terminates, as the DFA only has a limited number of states.
Because a branch ends if a node occurred on a lower level, each level contributes
to at least one terminating branch. Hence if a DFA has n nodes, a testing tree of
maximum n + 1 levels contain all paths to reach all nodes. One level more than
the number of states is needed because the root node at level 1 does excludes a
terminating branch.

If the testing tree is constructed as described above, the transition cover set P can
be constructed by obtaining the input sequence of all branches including all partial
paths. A partial path of a testing tree is a sequence of consecutive branches, that
start from the root of the tree and ends in a terminal or nonterminal node [17].

The characterization set W consists of input sequences that distinguish the behavior
between every pair of states in a minimal automaton. In other words, for every
two distinct states q, q′ ∈ Q, W contains at least one input sequence that produces
different outputs when applied from q and q′ respectively. Gill et al. [18] describes
definitions and methods for constructing such sets.

Example 2.5.1. A testing tree for conjecture DFA H1 (Fig. 2.6d) is constructed as
follows:

1. The root of the tree is the initial state of H1: q0.

2. The next branch is created by determining the resulting state for each input
symbol: a, b. Since on input a from q0 one goes to q0, e.g. δ(q0, a) = q0, one
node labeled q0 is connected to the root node. The b-successor of q0 is q1, so a
new node labeled q1 is added and connected to the root node. Because this
label differs from the layer above, this branch continues to grow. Because both
the a- and b-successor of q1 result in the q1 state, two children are added, both
labeled with q1.

The testing tree that corresponds to conjecture H1 from Figure 2.6d is depicted in
Figure 2.7. From this figure one can derive that there are 3 branches, as there are 3

2.5 Equivalence Testing 23

q0

q0 q1

q1 q1

a b

a b

Fig. 2.7: The testing tree conform conjecture DFA H1.

leafs. The set of all paths and all partial paths are {a, b, ba, bb}. The transition cover
set can thus be defined as P = {ε, a, b, ba, bb}.

Example 2.5.2. In the example of conjecture H1, finding a characterization set is
trivial, as the only pair of states is the pair q0 and q1 and their output differs for input
symbol a as δ(q0, a) = q0 ∈ F and δ(q1, a) = q1 6∈ F , thus the output for a differs in
both states and hence the characterization set W = {a}.

One drawback of the W-method is that it requires knowledge about the maximum
number of states m that a correct version conjecture might have. Chow solves
this variable as to be determined by human judgment. Since m functions as an
upper-bound estimation, m can be any number as long as it is larger or equal to the
number of states in the hypothesized conjecture n. The test cases are then derived
by the concatenation of P with (

⋃m−n
i=0 Σi ·W). Chow defines (

⋃m−n
i=0 Σi ·W) to be

the set Z and because Σ0 = {ε}, Z can be written as W ∪Σ ·W ∪ · · · ∪Σm−n ·W .

Example 2.5.3. To exemplify the test suite P · Z that would be generated by
the W-method for the hypothesized conjecture H1, one should recall that P =
{ε, a, b, ba, bb}, W = {a} and Σ = {a, b}. Because Q = {q0, q1} the size of Q:
|Q| = n = 2. Let m then be an arbitrary estimation that satisfies m ≤ n, one could
choose m = 4. Set Z can then be determined by Z =

⋃m−n
i=0 Σi ·W =

⋃2
i=0{a, b}i ·

{a} = {a} ∪ {a, b}1 · {a} ∪ {a, b}2 · {a} = {a} ∪ {a, b} · {a} ∪ {aa, ab, ba, bb} · {a} =
{a} ∪ {aa, ba} ∪ {aaa, aba, baa, bba} = {a, aa, ba, aaa, aba, baa, bba}.

The final test suite is created by concatenating the transition coverage set with set Z:

P · Z = {ε, a, b, ba, bb} · {a, aa, ba, aaa, aba, baa, bba} =
{a, aa, ba, aaa, aba, baa, bba, aaaa, aaba, abaa, abba, baaa, baba,
bbaa, bbba, baaaa, baaba, babaa, babba, bbaaa, bbaba, bbbaa, bbbba}

The cardinality of the test suite that is created by P · Z is 23 and all 28 test cases are
executed on both the SUT and the hypothesized model. If the generated test suite is
executed in the order that is depicted above, the second input sequence aa returns
a different result as λH1(aa) = 1 6= λA(aa) = 0. The input sequence aa is then
provided as a counterexample to the learner by the equivalence oracle. In example
2.2.2 the learner received the counterexample word w = ab which also shows the

24 Chapter 2 Building Blocks of Model Inference

different behavior as the test sequence aa that is identified as a counterexample with
the W-method does.

2.5.3 Minimal Separating Sequences for All Pairs of states

One drawback of the W-method is that the number of test cases rapidly grows in
the size of the alphabet, number of states, the maximum depth and especially the
length of the characterizing set. Instead of each combination in the permutation of
the alphabet up until a certain depth, one can utilize smarter techniques for finding
separating sequences. In Minimal Separating Sequences for All Pairs of States[19]
Smetsers et al. propose an improved modification based on Hopcroft’s framework
[20] for finding the shortest input sequence that distinguishes two inequivalent states
in a DFA. Minimal separating sequences play a central role in conformance testing
methods and hence can be applied to establish an equivalence oracle for learning
automata. Separating sequences function as an input for test suite generation,
which like Chow’s W-method can determine whether a hypothesized conjecture is
equivalent to an abstraction of a system under test.

Smetsers et al. identify minimal separating sequences by systematically refining
state partitions to ensure a minimal DFA minimal access sequence. The operational
refinement information is maintained in a tree-like data structure called a splitting
tree, which was first introduced by Lee and Yannakakis[21]. The remainder of this
section elaborates on how Smetsers et al. utilize partitions and splitting trees to
determine the minimal separating sequences.

Let the SUT’s behavior be abstracted to the DFA A = {Q,Σ, δ, q0, F} and let H be
the hypothesized model of A. A state partition P of Q is a set of pairwise disjoint
non-empty subsets of Q whose union is exactly Q. Each subset of P is called a block.
If P and P ′ are partitions of Q and every block of P ′ is contained in a block of P ,
then P ′ is called a refinement of P . The algorithm starts with the trivial partition
P = {Q} and refines P until the partition is valid, that is when all equivalent states
are contained in the same block. Let B be a block in P and a be an input. The
partition refinement algorithm splits blocks because of two reasons. B can be split
concerning the output after a if the set λ(B, a) contains more than one output. In
this instance each distinct output in λ(B, a) defines a new block. Alternatively, B
can be split concerning the succession state after input a. In the latter instance, each
block that contains a state of δ(B, a) defines a new block. The refinement process is
continued until for all pairs of states q, q′ ∈ Q that are contained in the same block
and for all inputs a ∈ Σ hold that λ(q, a) = λ(q′, a). At this point, the partition is
classified as acceptable. Final refinement is reached when a partition is acceptable
and for all a ∈ Σ hold that for all q, q′ ∈ Q in the same block, the new states δ(q, a)
and δ(q′, a) are also in the same block. At this final point, the partition is classified
as stable.

Separating sequences are determined by the type of split and the information is
maintained in a splitting tree. Smetsers et al. redefine the splitting tree to apply to
situation where it stores minimal separating sequences, as follows:

2.5 Equivalence Testing 25

Definition 2 (Splitting Tree). A splitting tree for A is a rooted tree T with a finite
set of nodes with the following properties:

• Each node in T is labelled by a subset of Q, denoted l(u)
• Each leaf nodes u, l(u) corresponds to a block in the stable partition P .

• Each non-leaf node u, l(u) is partitioned by the labels of its children, thus the
root node is labeled Q.

• Each non-leaf node u is associated with a sequence σ(u) that separates states
contained in different children of u.

Example 2.5.4. Figure 2.8b shows an example splitting tree that satisfies these
properties.

• The nodes {q0, q1, q2} and {q0, q1} are subsets of Q.

• The root node is labeled with Q as Q = {q0, q1, q2} is the label of the root node.

• The non-leaf children of the root node are labeled as a partition of Q: all
elements in the non-leaf children of the root together form Q.

C(u) denotes the set of children of a node u in T and the lowest common ancestor
for a set Q′ ⊆ Q is a node u denoted by lca(Q′). For a pair of states, the shorthand
notation lca(s, t) is used instead of lca({s, t}) to denote the lowest common ancestor
of s and t. At any given time, the labels of the leafs of T , denoted as P (T) together
form a partition of Q. A tree T is valid, if P (T) is valid as well. A leaf u within block
B = l(u) can be split in the same way partition blocks are split, either based on
output or the consecutive state for an input a. If the block is split based on output,
σ(u) is set to a and a new node for each subset of B that produces the same output
for a are appended as children for u. If the block is split based on the consecutive
state, then the node v = lca(δ(B, a)) has at least two children whose labels contain
elements of δ(B, a). This information is utilized to create a new child of u labelled
{s ∈ B|δ(s, a) ∈ l(w)} for each node w in C(v). The state separator σ(u) is set to
a · σ(v).

To create a stable splitting tree for the example DFAA shown in Figure 2.1 one should
note that the partition refinement algorithm only works for Mealy Machines. The
reason for this is because splitting concerning output only works if every transition
produces an output, which is not the case for a general DFA. To map the algorithm
to the running example, A can be regarded as a mealy machine where transitions
output 1 if the resulting state is an accepting state and 0 if the resulting state is a
rejecting state. The conversion results in a Mealy Machine version of A depicted in
Figure 2.8a.

Example 2.5.5. Figure 2.8b shows the splitting tree for mealy machine A′, it is
generated by Smetsers al.’s algorithm as follows. The first step is setting the root
node to Q, hence the root node is labeled {q0, q1, q2}. Since q2 gives another output
for input b opposed to the output of states q0 and q1, the root node is split based on
this output after b. The node labeled {q2} cannot be split anymore, as it contains
one single element, the algorithm determines that states q0 and q1 yield a different
output for input a. Since the nodes cannot be split anymore, the tree is complete.

26 Chapter 2 Building Blocks of Model Inference

q0 q1

q2

b/0
a/0, b/0

a/1 a/0

b/1
(a)

{q0, q1, q2}
b

{q2} {q0, q1}
a

{q0} {q1}
(b)

Fig. 2.8: (a): A′ the mealy machine representation of A (b): splitting tree representation
of A′

The algorithm for generating splitting trees can be used to obtain separating se-
quences, but they are not necessarily minimal separating sequences. The scenario
where the sequence is not minimal occurs when child nodes have a smaller sequence
than their parents. The sequences can be shortened, as the parents’ can be split first.
This does not appear in the elementary example from Figure 2.8b, but it shows in
Smetsers et al.’s example DFA and splitting tree (Figures 2.9a and 2.9b). The labels
of the child node are arbitrarily larger than the labels of the parent nodes. Splitting
trees that are obtained in a way that ensures that each k’th level has a label of size
k, are layered splitting trees. Each layer in the tree consists of nodes for which the
associated separating sequences have the same length. During the construction of
the splitting tree, each layer should be as large as possible, before continuing to the
next one. The following two definitions aid the process of obtaining such splitting
trees:

Definition 3 (k-stable Splitting Trees). A splitting tree T is k-stable if for all states s
and t in the same leaf holds that λ(s, x) = λ(t, x) for all x ∈ I≤k

Definition 4 (Minimal Splitting Trees). A splitting tree T is minimal if for all states s
and t in the same leaf holds that λ(s, x) = λ(t, x) implies |x| ≥ |σ(lca(s, t))| for all
x ∈ I≤k

The recipe for establishing a minimal splitting tree is to create a splitting tree splitting
blocks only concerning output and next assuring that for k = 1 . . . |Q| the tree is
k-stable and minimal.

Example 2.5.6. The example of Smetsers yield Figure 2.10 as a result of this process.
Basically it starts splitting blocks with respect to output as shown in Figure 2.9b
until the node labeled {s0, s2} appears. This node cannot be split based on output
because in DFA figure 2.9a it shows that all outgoing transitions of both states yield
the same output. At this point k = 1 and one can observe that the sequence of
lca({s0, s2}, a)) has length 2, which is too long for the value of k. One thus has to
move on to the next input. It is then possible to split this block concerning the state
after b, thus the associated sequence is ba. If this procedure is continued on all levels
and for all blocks, the splitting tree and partition are identical to the earlier splitting
tree, except that the labels are shorter.

2.5 Equivalence Testing 27

(a) (b)

Fig. 2.9: (a): Smetsers et al.’s example mealy machine and (b) complete splitting tree for
the mealy machine.

Fig. 2.10: Minimal splitting tree for Smetsers mealy machine

In conclusion, following this recipe for the establishment of a k-stable and minimal
splitting trees, results in the shortest separating sequence.

The complete and minimal splitting trees can henceforth be used to extract relevant
information for the characterization set for the W-method.

Lemma 1. Let be a complete splitting tree, then {σ(u)|u ∈ T} is a characterization set.

Proof Let W = {σ(u)|u ∈ T}and let s, t ∈ Q be inequivalent states. A set W ⊂ Σ∗
is called a characterization set if for every pair of inequivalent states s,t there is
a sequence w ∈ W such that λ(s, w) 6= λ(t, w) ([19], definition 17). Because s, t
are inequivalent and T is complete, s and t are contained in different leaves of
T . Hence u = lca(s, t) exists and furthermore σ(u) ∈ W . This shows that W is a
characterization set.

28 Chapter 2 Building Blocks of Model Inference

3Prior Art on Application Modeling

„. . . each larger pattern comes into being as the
end product of a long sequence of tiny acts.

— Christopher Alexander

Part of this research is to infer a state machine model on a mobile Android application.
Although prior work on model inference of a mobile applications is limited, earlier
work performed by Lampe et al. [11] constructed a tool for state machine learning:
the fsm-learner. Their work serves as a building block for the final model inference
system which Chapter 4 discusses. Lampe et al. implemented the MAT framework
as proposed by Angluin, by integration of a library for automata learning and
experimentation: LearnLib [22]. The tool built by Lampe et al. was designed to
infer the model for a single specific banking application: the Dutch bunq bank
mobile Android application1. The tool was fully tailored to bunq’s application, hence
the tool must be extended in a way such that other Android applications can be
automatically modeled.

This chapter reviews the discussed tool regarding functionality and design choices.
Section 3.1 examines the LearnLib library, its capabilities and the reason why the
library was incorporated. Section 3.2 discusses how the MAT framework is imple-
mented to achieve active learning. Section 3.3 elaborates on how active learning
elements are used to infer a state machine model. Lastly Section 3.4 concludes with
a focus on what fundamental components can be utilized in the final design for
generic application modeling and what components must be changed.

3.1 LearnLib

The library for state machine learning, LearnLib, is popular for numerous reasons.
The library supports user-configured learning scenarios, is modularly designed, con-
tains many learning algorithms and as of 2015, the library became open source [23,
24]. LearnLib features active learning algorithms such as the previously discussed L*
(Section 2.2) and the TTT algorithm (Section 2.4). The library also provides a num-
ber of conformance testing methods, such as an implementation of the W-method
and modifications of this method. The developers of LearnLib argue that the direct
search of a series of arbitrary sequences that should be true is often the cheapest
and fastest way of approximating equivalence queries [24]. Hence the RandomWalk
equivalence oracle is implemented as well. A good reason to utilize LearnLib is that
the library is actively maintained and is becoming more popular to be implemented

1https://play.google.com/store/apps/details?id=com.bunq.android

29

for academic research2. As a consequence, the community that can support LearnLib
increases.

Apart from LearnLib, there also exist other libraries that aid the process of state
machine learning, such as LibAlf [25] and iCRAWLER [26]. Lampe et al. also
reviewed these other libraries., but LearnLib was decided to be the most promising
library due to the number of algorithms that are featured and the presence of an
active community.

3.2 The MAT Framework Implementation

LearnLib is not capable of inferring a state machine model on its own. To achieve
model inference, LearnLib needs to communicate with a so-called system under
test (SUT). Steffen et al. explain that the main obstacle to active learning is the
implementation of the idealized form of interrogation regarding membership and
equivalence queries [27]. To apply LearnLib to the Android application domain an
interplay layer to communicate with the SUT was required. Lampe et al. chose to
use Appium [28] as a layer to communicate with the USB tethered mobile device
because Appium is actively supported by a supporting community as well and
Appium supports both interactions with the Android and the iOS platform.

The MAT framework, as first proposed by Angluin, requires the two entities of a
teacher and a learner, where the teacher can answer membership queries and equiv-
alence queries. The Appium mapper resolves membership queries by simulation of
the query input on the real USB tethered device. The teacher can answer equivalence
queries by the utilization of an equivalence oracle. The fsm-learner tool implements
a RandomWalk oracle. This type of oracle tries to find a counterexample directly,
which means that the oracle does not construct an entire test set before testing.
Contrarily, the oracle executes random steps on both the hypothesized conjecture
model and the SUT and tests whether both instances return the same output.

An overview of the way the MAT framework has been implemented in the fsm-learner
is depicted in Figure 3.1. The figure shows in what way the learner interacts with
different components of the teacher. The SUT is present as a third component, which
in this instance is the Android application bunq. The USB connected mobile device
that is used to simulate the tests must have the application installed. The teacher
is then able to interact with the SUT through the Appium mapper. The component
overview also shows how LearnLib is intertwined in the fsm-learner: the LearnLib
library provides several sub-entities of the learner and teacher, such as the ’Learning
Algorithms’, ’Observation Table’ and ’RandomWalk Equivalence Oracle’.

To keep state machine learning terminology consistent, this chapter assumes that
the L* algorithm is used for active learning. Since the fsm-learner tool enables a
multitude of learning algorithms, the actual component overview does not have
a fixed data type to store its traces. The component overview shows the type
of an observation table that corresponds to the L* algorithm. If for example the

2A growing number of citations for LearnLib (Google Scholar): 2003-2007: 39 citations, 2008-2012:
112 citations, 2013-2017: 179 citations

30 Chapter 3 Prior Art on Application Modeling

Fig. 3.1: A component overview of the fsm-learner’s implementation of the MAT framework.

TTT algorithm is used, the observation table in the component overview is to be
substituted with a discrimination tree. The following section explains how all the
different components are chronologically intertwined.

3.3 Learning

This section elaborates on the entire learning process through the MAT implementa-
tion. At first one must determine the input alphabet that can be used by the learner.
Secondly, all steps that the learner and teacher perform are chronologically explained
conform the L* algorithm. Lastly, several techniques have been proposed by Lampe
et al. to enhance the time feasibility of learning. These optimization techniques are
discussed at the end of this section.

3.3.1 Alphabet Establishment

Before the learning process starts, an alphabet must be predefined. The alphabet is
conceived by manually traversing the application, where buttons, checkboxes and
text fields are gathered from screenshots. The observed elements are mapped to the
following user actions:

• push, simulates a click on a button or other visual element,

• check, toggles the checked-property of a checkbox,

• enterText, inserts text in a text area.

The fsm-learner tool transforms all elements from the screen dump to one of the
actions mentioned above. The collection of all actions represents the input alphabet.
A symbol in the input alphabet, i.e. a single action, is of the following format
action%param1#param2#...#paramn for n parameters. The action represents one

3.3 Learning 31

of the earlier specified user actions: push, check or enterText. The first parameter
passed with the action is the corresponding Xpath of the element. Xpath is a language
that describes the location of elements within a certain page on the screen. For
example, push%button1.Xpath simulates a push action on the button button1. The
enterText action requires an additional parameter that specifies the text that should
be inserted. The action that enters the text ’active_learning’ in text field field1
looks for example like enterText%field1.Xpath#active_learning.

3.3.2 Learning Steps

After the input alphabet is established, the learning algorithm component performs
the following sequence of steps:

1. The learner initiates an empty observation table.

2. The learner performs membership queries for all actions in the input alphabet
to the Appium driver in the Teacher component. The Appium driver simulates
the actions on the bunq application on the USB tethered device and returns
the observed result to the learner.

3. The learner stores the query and the corresponding result in the observation
table.

4. Until the observation table is closed and consistent, the learner continues
posing membership queries and thus gradually enlarging the observation table.

5. Once the observation table is closed and consistent, the learner generates a
conjecture DFA from the observation table, and poses an equivalence query for
the conjecture to the teacher. The teacher then invokes the equivalence oracle
as follows:

a) The equivalence oracle generates a test set, that is a set of input sequences,
that is in accordance with the equivalence method.

b) The test set is run on both the conjecture and simulated on the mobile
application.

c) If one test yields an inequivalent result between the conjecture and the
mobile application, the test is returned as it represents a counterexample
that invalidates the conjecture.

d) If all the tests yield an equivalent result between the conjecture and the
mobile application, YES is returned, which indicates that the conjecture is
equal to the mobile application.

6. If the learner receives a counterexample, the test and all of the test’s suffixes
are added to the observation table, inducing the observation table to be open
or inconsistent again. At this point, the process iterates again from step
4 by making the observation table again closed and consistent and a new
equivalence query can be posed.

7. If the learner receives YES from the equivalence oracle, learning stops as the
conjecture is equivalent to the bunq application.

32 Chapter 3 Prior Art on Application Modeling

3.3.3 Feasibility Techniques

Time feasibility is an important aspect when adopting security tools. Because the
actions from the input alphabet need to be simulated on the physical device, the
runtime performance drops dramatically. The MAT framework implementation from
Lampe et al. adopts three techniques that enhance the time feasibility of the active
learning process.

The first technique uses specific resets to restart the application. The most time-
consuming reset is a hard reset, which stops all services, deletes the application
cache database and restarts the application to its startup activity. Although this type
of reset is capable, it might be too preposterous for specific actions. Situations where
the latter property holds are for example scenarios where pressing the back-button
several times also suffices to reach the startup activity.

The second technique that is implemented to enhance time feasibility is called the
’fast-forwarding’ of obsolete queries. This technique embraces the assumption that
for a given sequence of actions, at some point an element might not be found, which
causes the query to be obsolete. The remainder of this query does not have to be
simulated since at this point an earlier action could not be resolved. Hence the query
is fast-forwarded to a negative result.

An example of fast-forwarding is depicted in Figure 3.2 for word w = w0w1w2.
Situation (a) depicts the behavior from the application if all elements are found:
starting from state q0 action w0 can be satisfied and thus moves on to the next state,
etc. All actions in w can thus be satisfied. Situation (b) shows that action w0 can
be resolved, but w1 cannot be satisfied. The reason why an action fails can have
numerous reasons. The most prominent reason is that a certain element cannot
be located within the specific state. The simulation will just move on to the third
action: w2, which causes the application to move to another state. The problem with
scenario (b) is that w is not an access sequence to q2: this would be word w′ = w0w2,
hence the query is obsolete. When processing the action w1, the teacher does not
process w2 anymore and instead returns a negative result.

q0 q2q1

q0 q1 q2

(a)

(b)

q3

w0/1 w1/1

w1/0

w0/1 w2/1

w2/1

Fig. 3.2: Fast forwarding of word w = w0w1w2

The third technique that enhances time feasibility of learning is the adoption of
a cache. The cache stores the input sequence and the corresponding output in a

3.3 Learning 33

dictionary data type. The cache is not persistent, so the cached data is not available
between different executions of learning.

3.4 Discussion

The tool fsm-learner has demonstrated to produce useful results concerning state
machine learning on mobile Android applications. Some aspects of are not suitable to
our needs, whereas other aspects form a suitable basis to be modified. Functionality
that is irrelevant and must be erased are for example logging on to an application
after each reset. Another practical obstacle of the tool is that fsm-learner is only
able to connect to an outdated and unsupported version of Appium. Over the course
of two years, the Appium driver has changed gigantically. Most of the practical
obstacles are not discussed in this report, as they do not have an academic origin.
These obstacles are listed online3. Various other attributes of the fsm-learner are
suitable for state machine learning of general applications, amongst which is the
LearnLib integration and the component architecture. The tradeoff to choose for a
USB tethered device instead of an emulator is also well substantiated. Hence this
research will apply the same technique to connect the SUT.

3Available at http://www.github.com/wesleyvanderlee/

34 Chapter 3 Prior Art on Application Modeling

4Model Inference Tool

„Our Age of Anxiety is, in great part, the result of
trying to do today’s job with yesterday’s tools . . .

— Marshall McLuhan

The previous two chapters discussed notorious active state machine learning algorithms
and an initial approach, the fsm-learner, that applies the MAT framework to a single
mobile application. To apply model learning to generic mobile Android applications in a
time feasible way, the deficiencies discussed in Section 3.4 are addressed and mitigated
before the tool can be extended.

This chapter proposes solutions that solve two practical problems that arise when
applying state machine learning to Android applications. The first solution deals
with the issue that the tool fsm-learner cannot infer a model from an application
other than the bunq application the tool was designed for. As a result, the proposed
solution can infer a correct model for an Android application. The improvement
composes an answer to the first research question: in what way model learning
can be applied to generic mobile Android applications. The second solution com-
prehends a proposition to advance the time-feasibility of learning state machines,
by employing two capabilities. First, the state machine learner integrates active
learning algorithms with a lower time complexity and secondly, other techniques
that induce algorithmic speedup are incorporated, such as a caching system. The
second proposed solution embodies an answer for the second research question on
the methods that allow model learning of Android applications to improve time-
feasibility. This chapter presents the work that has been performed to establish the
two mentioned perspectives.

4.1 Android Application Model Inference

Chapter 3 stated all technical deficiencies in the source code of the tool. After
these shortcomings have been tempered1, the tool can be improved and extended
for mobile learning. To correctly infer a model, multiple free mobile Android
applications are used as the system under test. One application that has been
prominently used during this phase is the Dutch application for public transportation
journey scheduling: 9292 2. At this point the size of the input alphabet Σ is 14.
This section discusses how various learning algorithms and equivalence oracles are
utilized to infer a state machine model that describes the application’s behavior as
thoroughly as possible.

1a track record of how the shortcomings are mitigated can be found here: https://github.com/
wesleyvanderlee/Thesis/

2play.google.com/store/apps/details?id=nl.negentwee

35

Learning Algorithm L*
Equivalence Oracle RandomWalk
Membership Queries 1778
Equivalence Queries 1
States 9
Transitions 25
Learning Time 26:06 (hh : mm)

Tab. 4.1: Statistics for active learning the inferred state machine for the 9292 application
using L* and RandomWalk

Fig. 4.1: The inferred machine for the 9292 application using L* and RandomWalk

4.1.1 L* and RandomWalk

The tool created by Lampe et al. [11] only works for the L* algorithm. Running the
tool with its default setting yields the state machine depicted in Figure 4.1 with the
corresponding learning statistics shown in Table 4.1. The learning algorithm posed
only one equivalence query and thus did not receive a counterexample at all. The
absence of a counterexample indicates that at the first time the observation table
became closed and consistent, the RandomWalk algorithm was not able to find a
counterexample. Hence, the DFA that can be generated based on the observation
table is believed to be the right one. One should also note that the DFA depicted
in Figure 4.1 does not completely correspond to the final, closed and complete
observation table because the figure only portrays positive results, i.e., behavior that
can be executed. As discussed in the previous chapter, the fsm-learner returns two
types of return values: 0-OK for actions that are allowed to be performed in a certain
state and 1-NOTFOUND for actions that are not allowed to be performed in a certain
state. The 1-NOTFOUND value can be for example returned when an action depicts the
push-action on an element that is not present for a specific state of the application.
Because the observation table has the closed property, the observation table describes
all one-letter extensions from each state. The DFA that fully corresponds to the
observation table, has k outgoing transitions for each state, where k is equal to the
cardinality of the input alphabet. To remain a clear overview, those transitions have
been filtered.

36 Chapter 4 Model Inference Tool

4.1.2 TTT and RandomWalk

One disadvantage of the L* algorithm is the storage of redundant information in the
observation table. Because the observation table needs to be complete, redundant
entries cause superfluous membership queries and as a consequence, the entries
negatively influence the learning time performance. The learning time of the model
inference discussed above consumes more than 26 hours. The feasibility of model
inference increases if the learning algorithm does not query for superfluous data.
Another algorithm that is discussed in Chapter 2 is the TTT algorithm. TTT uses a
discrimination tree to overcome the problem of redundant data entries. The TTT
algorithm can be started by instantiating another class from LearnLib. However,
Lampe et al. argue that the TTT algorithm does not work in the fsm-learner because
their inferred model did not approximate the SUT close enough. Learning the state
machine model with the TTT algorithm of the 9292 application shows that our
inferred model is nonequivalent to the SUT as well. Therefore the applying the TTT
algorithm induces an identical conclusion. The model that is learned with the TTT
algorithm yields the model that is depicted in Figure 4.2 and the corresponding
learning statistics are shown Table 4.2.

Learning Algorithm TTT
Equivalence Oracle RandomWalk
Membership Queries 55
Equivalence Queries 2
States 2
Transitions 4
Learning Time 00:21 (hh : mm)

Tab. 4.2: Statistics for active learning the inferred machine for the 9292 application using
TTT and RandomWalk

Fig. 4.2: The Inferred Machine for the 9292 application using TTT and RandomWalk

The inferred DFA in Figure 4.2 naturally yields an incorrect result as the model does
not depict the behavior from the 9292 application at all. The difference between
the models illustrated in Figures 4.1 and 4.2 show a decrease in modeled behavior
when using the TTT algorithm. At this point Lampe et al. contend that the TTT
algorithm yields an incorrect result for the learning process. In this instance, the
inferred model is incorrect because the equivalence oracle was not able to find a

4.1 Android Application Model Inference 37

valid counterexample and hence the learning process stopped prematurely. The
reason why the same equivalence oracle results in a more detailed model is that the
L* algorithm generates more traces than the TTT algorithm due to its redundancy.
If at the point where the oracle determined that the conjecture is equivalent, the
equivalence oracle returned a counterexample, the inferred model would depict
more correct behavior. The test set for which the equivalence oracle determines if
the conjecture and the SUT return the same result must thus be extended or changed
to advance the inferred model.

4.1.3 TTT and RandomWalk-HappyFlow

A method to expand the test cases is to test for a pre-defined input sequence that
is guaranteed to be accepted by the SUT. The input sequence could, for example,
be a happy flow of the application. Software applications are often developed
with domain-specific use cases as a functional requirement [29]. The use cases
describe how a software system should respond and the behavioral path that is
consistent with the application is called a happy flow. Since the happy flow describes
correct behavior, by definition, a happy flow sequence should be accepted by the
SUT. Hence a happy flow can function as a counterexample if the conjecture does
not accept the happy flow. Furthermore, if the input sequence w is a happy flow
than for each n = 1 . . . |w| the sequence w′ = w0w1 . . . wn−1wn is also a valid
counterexample if the conjecture rejects w′. Because of all steps up until |w| are
legally executable as well. The RandomWalk equivalence oracle has been extended,
dubbed as RandomWalk-HappyFlow, such that the equivalence oracle was able to
search for a counterexample in the SUT’s happy flow when the oracle otherwise
would conclude that the conjecture is equivalent.

Algorithm 3 RandomWalk-HappyFlow

Input: Hypothesis H
Array of happy flows F

Output: Counterexample w . null if H ≡ SUT
1: w ← RandomWalk(H) . Original RandomWalk (See Alg. 2)
2: if w = null then
3: for Sequence f : F do . Single Happy Flow
4: for i = 0 . . . |f | do
5: test← f0 . . . fi

6: if H[test] 6= accepting then
7: return test . H and SUT differ for test
8: end if
9: end for

10: end for
11: end if
12: return w

The extended RandomWalk algorithm has been formally written down in Algorithm
3. The algorithm first executes the original RandomWalk algorithm to discover a
counterexample. When the routine of the original RandomWalk algorithm results in
the value null, learning would normally stop. At this point, the extended part of the
RandomWalk-HappyFlow algorithm engages, by searching for a counterexample for

38 Chapter 4 Model Inference Tool

each sub-word of all happy flow words. This procedure has the following advantages
regarding the speedup of identifying a counterexample:

1. Because happy flow words and the corresponding subwords are computed
only for the hypothesized conjecture, no simulation on the SUT is needed.
Hence identification of a valid counterexample from a set of happy flows can
be performed instantaneously.

2. The test words are generated from the smallest subsequence to the largest
subsequence. If the hypothesis accepts a subsequence w = w0 . . . wn but the
subsequence w ·wn+1 is rejected by the hypothesis, symbol wn+1 is most likely a
distinguishing suffix in the case of the L* learning algorithm or a discriminator
in the case of the TTT learning algorithm. Because the counterexample is
as small as possible, it reduces the appearance of redundant entries in the
observation table and temporary nodes in the discrimination tree.

Although the extended RandomWalk algorithm yields a better result opposed to the
original RandomWalk algorithm, a downside is that the happy flow must be defined
in advance. The happy flows can originate from various sources, such as automated
tests and application logs. The source and format, if any, differ per application
and must thus be collected and processed for each SUT individually. Gathering
happy flows requires knowledge about the application before learning starts and
is therefore out of the scope of black box testing methodology. In conclusion,
because of the necessary knowledge before testing, an equivalence oracle such as
RandomWalk-HappyFlow is not the preferred solution. To summarize, the extended
RandomWalk has proven to be useful for learning a more complete model, but the
required application-specific knowledge deters the purpose of inferring a model in
the first place.

4.1.4 TTT and the W-method

Another method to discover counterexamples is to substitute the equivalence oracle
from RandomWalk to the W-method, which is a more systematic and exhaustive
method. The W-method, has been thoroughly discussed in Section 2.5.2 and one
must recall that it establishes a set of test cases by concatenating the state coverage
set P , a middle part M and a characterizing set W . Note that set M is a subset of
Σ∗, and M equals to Σm−n, where m is an upper-bound estimation of the maximum
number of states the conjecture should have. The number of states in the conjecture
is n. The W-method thus works by traversing each state, because of the state
coverage set, to all other states, because of the middle part and lastly distinguishes
each state, which is guaranteed to happen because of the characterization set. If the
SUT behaves the same for the maximum depth m, that is the W-method is not able
to discover new states in the conjecture, the conjecture and the SUT are equal.

Two drawbacks of the W-method are the explosion of the number of test cases as m
increases and the excessive amount of symbols the test queries contain, i.e., query
length. Both factors negatively influence the speedup. After multiple test runs with
the W-method equivalence oracle, no test run could finish, due to the quantity and
size of the test cases generated by the W-method. The run required more time than
60 hours and was halted in during the third equivalence query where it had to loop

4.1 Android Application Model Inference 39

through more than 38 million test cases. The hypothesis conjecture consisted of 6
states, which is known to be incorrect since the combination of L* and RandomWalk
already was able to find 9 states, as depicted in Figure 4.1. To reduce the number of
test cases, Smeenk et al. define a novel heuristic for randomly selecting the middle
part M by manually establishing sub-alphabets [30]. Multiple smaller alphabets
strongly reduce the size of the middle part M . To reduce the test queries and still
be able to infer a correct model, Smeenk et al. argue that these sub-alphabets are
required to be crafted by hand. For this reason, reducing the test set by applying
sub-alphabets are not fit for automatic model inference. The other disadvantage of
the W-method is the size of the test words. To decrease the length of the test words,
i.e., the number of symbols in a sequence, Smetsers et al. propose a method for
establishing the shortest distinguishing sequence for each pair of states [19]. The
latter method has been thoroughly discussed in Section 2.5.3 where it was proposed
to replace Chow’s characterizing set by a set of minimal separating sequences for
all pairs of states. As a result, this process would not only reduce the size of the
characterizing set but can also eliminate unnecessary elements in the distinguishing
suffixes and discriminators to limit redundant entries in the observation table and
omit temporary nodes in the discrimination tree respectively. The algorithm that
is the result of combining Chow’s W-method and Smetsers et al.’s procedure for
identifying minimal separating sequences is the WMethod-Minimal algorithm listed
in Algorithm 4.

Algorithm 4 WMethod-Minimal

Input: Hypothesis H
Output: Counterexample w . null if H ≡ SUT

1: P ← transitionCover(H) . as described in Sec. 2.5.2
2: M ← allTuples(Σ)
3: T ← split(H) . stable and minimal splitting tree (Alg. 1,2,3 from [19])
4: W ← ∅
5: for source : H.states do
6: for destination : H.states do
7: w ← T.lca(source, destination).σ . lowest common ancestor in T
8: if source 6= destination and W does not contain w then
9: add w to W

10: end if
11: end for
12: end for
13: for all combinations w ∈ P ×M ×W do
14: if H[w] 6= SUT [w] then
15: return w . this is a counterexample
16: end if
17: end for
18: return null . H and SUT are equivalent

The WMethod-Minimal algorithm starts by establishing the transition cover set P
and the middle part set M as the normal W-method would do. The algorithm
creates a stable splitting tree according to the procedure of Smetsers et al. Next, the
characterizing set is formed by adding all distinct labels between each pair of states.
The algorithm proceeds as the normal W-method would continue, by comparing
the test results of all generated test cases. The model that can be inferred with the

40 Chapter 4 Model Inference Tool

WMethod-Minimal equivalence oracle is depicted Figure 4.3. The learning statistics
that accompany the model inference are presented in Table 4.3.

Reviewing these results shows that the learning time has dropped to 23 hours and
the method has discovered an additional state. The fact that a new state has been
discovered, means that the WMethod-Minimal was able to find at least one other
counterexample opposed to the RandomWalk oracle. The discovery of the additional
state shows the superior performance of the WMethod-Minimal equivalence oracle.

Learning Algorithm TTT L*
Equivalence Oracle WMethod-Minimal WMethod-Minimal
Membership Queries 15619 16966
Equivalence Queries 10 2
States 10 10
Transitions 30 30
Learning Time 23:14 (hh : mm) 27:37 (hh : mm)

Tab. 4.3: Statistics for Active Learning the Inferred Machine for the 9292 application using
TTT, L* and WMethod-Minimal

Fig. 4.3: The Inferred Machine for the 9292 application using TTT and RandomWalk

The L* learning algorithm has also been executed in conjunction with the WMethod-
Minimal equivalence oracle and the corresponding results are also depicted in Table
4.3. The L* algorithm was able to learn a model equivalent to TTT’s model depicted
in Figure 4.3, but the algorithm requires more membership queries and thus also
more learning time. When this run is compared with the initial run which combined
the L* learning algorithm and the RandomWalk equivalence oracle, the last run

4.1 Android Application Model Inference 41

requires one additional counterexample. If the RandomWalk equivalence oracle
could discover this counterexample, the initial run would also infer the correct
model, but searching for more complex counterexamples is precisely the property
what makes the WMethod, and thus also the WMethod-Minimal, a more advanced
and better-suited equivalence oracle.

4.2 Mobile Variables

So far, state machine modeling requires consistency in the output that the system
under test returns for a set of equivalent input sequences. Inference of the models
presented in this chapter has shown that there are factors that are external to the
application under test, which influence the output result. The mobile environment
introduces a large number of factors that cause the results for equivalent input
sequences to be inconsistent. Section 4.2.1 discusses this problem further by also
elaborating on the impact of inconsistent results and providing a solution to the
stated problem.

The mobile application domain does not solely introduce uncertainty and adversity
when learning state machines. The domain also provides the opportunity to specify
actions that incur specific behavior. The input alphabet can thus be extended
to explore a broader perspective of behavior. Section 4.2.2 examines different
opportunities to extend the input alphabet and discusses their effects on the learning
process.

4.2.1 Non-deterministic Application Behavior

The behavior of mobile applications depends on a set of environmental influences.
The most well-known example is the loss of internet connectivity. At arbitrary
moments, due to a large number of factors, the mobile device or the application
instance can experience a loss of connectivity with the internet. This information is
often prompted to the user in a special view, such as shown in Figure 4.4. The red
rectangle has emphasized the message.

The reason why the external influences on the behavior are essential to consider
when learning a DFA is that different behavior in time causes the model to be
non-deterministic. Since the goal is to infer a deterministic automaton, the non-
deterministic behavior forms a contradiction to the earlier observed behavior. Exam-
ple 4.2.1 illustrates the impact of non-deterministic behavior.

Example 4.2.1. Consider an action a to be push%button1 which is permissible at
the start of the application. Action a changes the screen to a new screen if there is
an internet connection because pushing button1 queries for server side-data. Note
that with an internet connection, action a is permissible, whereas a · a is not, as the
object button1 is not available on the second screen. When the learning algorithm
performs the action a · a, it observes a negative result and stores this result in the
observation table. When at some point further in time the internet connection is lost
and the learner queries for a word with a · a as a prefix, this results in a positive

42 Chapter 4 Model Inference Tool

Fig. 4.4: The 9292 application without a network connection

result which contradicts the earlier observed behavior. Furthermore, actions that are
permissible at the state after a can only be executed if a is successfully executed.

When the learner discovers ambiguous and contradictory behavior, the observa-
tion table becomes irregular. The ambiguous behavior cannot be modeled in a
deterministic way and as a consequence, the learning application crashes. The
environmental influences do not necessarily need to originate from an improper
network connection, but can also arise due to inconsistencies in GPS positioning
details, Bluetooth connections, the battery level and others. The external influences
that induce the non-deterministic behavior limit the behavior that otherwise could
be invoked. Given the assumption that behavior can be limited due to the external
influences, the behavior that is not limited defines the correct behavior. Example
4.2.1 illustrates the latter conclusion because actions after a are only executable after
first successfully executing action a, which happens if there is a working Internet
connection.

To overcome the occurrence of non-deterministic behavior, we propose and im-
plement a roll-back solution that uses the cache in the following way. Figure 4.5
illustrates the roll-back process. The illustration depicts a sequence w of input
symbols for which at two points t0 and t1 in time λt0(w) 6= λt1(w). This situation
is depicted in Figure 4.5a, where at time t0 the output from λ(w) is 0, whereas at
t1 the output from λ(w) is 1. Because the lambda evaluation differs for the same
input word, one of the two traces is incorrect. We have seen in example 4.2.1 that
if an activity after a can be successfully executed, the corresponding trace has not
been affected by external influences, in this example the loss of Internet connection.
Therefore, the learner assumes that the trace that depicts new behavior is correct
instead of the trace that contends the opposite. There are numerous of dependencies
that depend on the environment and thus change in time, that cause an action to be
inadmissible. However, if the additional behavior can be executed once, the action
must thus be legal and not be subjected to external influences.

4.2 Mobile Variables 43

(a) (b) (c)

Fig. 4.5: Cache rollback methodology to resolve observed non-deterministic behavior. At (a)
a contradiction is discovered, (b) the cache is reverted and (c) the contradiction is
resolved.

During the learning period between t0 and t1, any number of queries could have been
posed by the learner that (partially) depended on the cached result of w computed
at t0. Because the result of w is assumed to be uncertain, the queries posed between
t0 and t1 that incorporate w’s cached result could also be false. For that reason, the
cache is reverted to the last trace before t0, which is shown in Figure 4.5b. The
positive result for w is cached at t0 and learning continues. If for the new cache at
time t1 the query result is equivalent, the learning process continues.

4.2.2 Extended Input Alphabet

The tool fsm-learner allow three different types of actions to aid the learning process.
The actions represent the user input behavior to click on items, check checkboxes
and enter text to a text field. Regarding all possible methods to interact with a
mobile application, the three mentioned action types appear to be limited.

Other types of actions that the application under test or mobile device that hosts
the application can execute might discover additional new behavior. The types of
actions one can distinguish are as follows:

• device specific buttons such as: back, home and camera;

• device settings, for example: toggling the WiFi and Bluetooth modus and the
change of landscape setting;

• Android specific key events, in example: LEFT,CALENDAR and ESCAPE and

• Android intents, such as calling another activities in internal or external appli-
cations;

Especially Android intents have proven to introduce weaknesses in Android applica-
tions and are ideal to be subjected to fuzz testing, as performed by Ye et al. [31].
The research leads us to believe that an application presents different behavior for
different intents. If the goal is to infer a state machine model that is as complete
as possible, one could thus also include actions in an alphabet that induces the
difference in behavior.

44 Chapter 4 Model Inference Tool

Device Info
Mobile Device Samsung I9505 Galaxy S4
Operating System Android 5.0.1 (Lollipop)
API Level 21
CPU Octa-core (4x1.6 GHz Cortex-A15 & 4x1.2 GHz Cortex-A7)
Developers Options
Window animation scale off
Transition animation scale off
Animator duration scale off

Tab. 4.4: Mobile Device Configuration

Active automata learning defines new states if the behavior for some inputs is
different. If the initial fsm-learner was able to discover web objects in a specific set
of order, the modeled behavior corresponds to the application’s internal structure,
since an object can either be found or be not found. Although an application
external command such as pressing the home button that is part of the Android
operating system might invoke new behavior, the modeled behavior indicates useful
information about the application under test. For example, pressing the home button
once or any number of times returns a successful result as this action is legal at
all times. Note that the legality of an action depends on whether or not Appium
raises an exception or not. This information does not reveal any insight into the
application. Moreover, the information invalidates the inferred model by adding a
sinkhole state. A sinkhole state is a state which always can be reached, but cannot
be escaped. In other words, once the sinkhole state is entered, application behavior
cannot be executed anymore until the application is reset.

Pressing the home button yields an equivalent result as pushing the other external
actions, such as toggling the Bluetooth modus. Because this type of external actions
clutters the model that is learned with sinkhole states, external actions have not
been included in the final proof of concept that learns Android application models.

4.3 Hardware Specifications

This chapter optimizes time consumption by using improved active learning algo-
rithms and adopting computative improving techniques such as a cache and early
query termination. The adopted techniques reduce the number simulations that are
to be performed on the physical mobile device by reducing the number of member-
ship queries. The improvement that can be achieved by advancing the hardware
options is negligible since the simulation will not experience a speedup. To make
the results reproducible, the hardware configuration is presented in Table 4.4.

4.3 Hardware Specifications 45

5Vulnerability Identification on
Models

Up until now we achieved to infer behavioral models on Android applications. Chapter 2
discussed the MAT framework and how the equivalence relation between a model and a
software application can be solved. The previous chapter proposed a methodology and an
accompanying proof of concept that implements a solution to the equivalence problem,
such that we can infer correct state machine models from Android applications.

The state machine models that are inferred so far depict how logical components
of the application connect. The models present a logical skeleton of the mobile
application. This research aims to use the skeleton as a guide to eventually determine
the presence of certain vulnerabilities. To be able to achieve the identification of
vulnerabilities in an application, the inferred model needs to be enriched with
properties before one can address the security properties. This chapter discusses
techniques to enrich the inferred model in Section 5.1 and considers what type of
vulnerabilities materialize in the resulting model in Section 5.2. At last, Section
5.3 provides algorithms that identify the presence of vulnerabilities based on the
enriched model.

5.1 Model Enrichment

To determine the presence of vulnerabilities through identification algorithms, the
inferred model, first of all, needs to be enhanced with supplementary information.
Enhancement of the models is achieved by adding labels to the transitions and states
that provide information on the corresponding action or a corresponding state. An
example label could be the network requests to an external API that are performed
for certain actions. The process of establishing those labels and adding them to the
model is called model enrichment.

Model enrichment has been separated from the vulnerability identification part, such
that one can maintain a clear overview of the algorithms. Else the algorithms would
all be cluttered with multiple model instances and in some cases even numerous
SUT instances. Another reason to separate the two processes is to reduce time,
because the entire model needs to be traversed only once, instead of each time per
algorithm. Since enrichment adds new information from the SUT to the inferred
model, the actions that are illustrated by the model need to be simulated on the
target application to retrieve the relevant information per state. While traversing the
learned state machines M = {Q,Σ, δ, q0, F}, all states and transitions are traversed
to retrieve the information that is discussed in the following subsections.

47

5.1.1 Text

The state of a mobile application yields a graphical response to the end user. The
screen portrays text that has a meaning which most of the time is application domain
specific and not relevant from a security perspective. However, sometimes text has
a semantic meaning that provides information for the application security domain.
Examples are keywords such as ’error’ or ’fault’ to identify a state that correlates to
an error state. The text can be gathered by traversing over all visible elements on
the screen.

Limitation

Not all the text can be gathered from the mobile screen. Most of the time text ele-
ments are contained in a TextView instance (class: android.view.TextView). Some-
times an application posts messages in a Toast instance (class: android.widget.Toast),
which is an Android system view that contains a quick and small message for the
user. This message disappears after a few seconds. The Appium driver relies on the
UIAutomator framework for interaction with the device. A limitation in UIAutomator,
and therefore in Appium as well, is that toast messages cannot be gathered because
they are not part of the application and do not inherit the View class. Instead, they
are part of the operating system and inherit directly from the Object class. Hence
toast messages cannot function as a data source for model enrichment.

5.1.2 Activity per state

An activity in Android is an overarching mechanism that handles a process initiated
by an application. An activity, for example, generates the view for the user, deals
with the process’ logic, performs requests to an external server and directs the user
to another activity. When an application starts, the launchable activity is executed.
Each state can thus also be assigned to an activity and during the enrichment process,
the states are labeled with the corresponding activity.

5.1.3 Network requests

Applications regularly communicate to a back-end server. The client-server connec-
tion is often the case for processes such as authentication verification and retrieving
information results. Communication to a back-end server is often done over the
Internet through HTTP methods such as GET and POST requests. Each action de-
picted in the inferred model could generate a request, but not all actions initiate
a back-end request. It is thus very likely that one part of the transitions could be
labeled with network requests and the other part could be not labeled. Because
these requests play a role in assessing the application’s security, more insight can be
gained by labeling the transitions with the actual request.

Appium can execute commands and retrieve system information, but it cannot read
out the requests that are made from the device to the Internet. To be able to read
the web requests, the requests have to be intercepted by a proxy. A proxy acts as an

48 Chapter 5 Vulnerability Identification on Models

intermediary for network traffic between the mobile application and the back-end
server. The mobile phone connects to the proxy and pushes requests as if the proxy
was the Internet. The proxy then forwards the requests to the Internet and returns
the result, but also logs the requests.

A ubiquitous proxy tool that is widely supported and available for Android clients is
Mitmproxy1. Mitm is an acronym for ’man in the middle’, which is a type of attack
where data interception is the primary purpose. Network requests that are sent over
HTTP, interception of readable data is as simple as reading out all the requests. For
network requests sent over HTTPS, data interception becomes more difficult, since
the connection between the device and the server is encrypted.

HTTPS Traffic

The goal of mitmproxy is to sit in the middle of the data stream between the mobile
device and the back-end server and be able to read the data understandably. HTTPS
traffic prevents exactly this process by providing an end-to-end encrypted session,
meaning that only the mobile device and the server can decrypt the traffic. A
Certificate Authority (CA) system is designed to ensure the end-to-end encryption,
by signing the server’s certificate that comes along with the session. If the signature
doesn’t match with a known signature or is from a non-trusted part, the client drops
the connection. The CA system becomes active in the case HTTPS is used. Hence the
CA system increases the difficulty to understand the network traffic if it is sent over
HTTPS.

To overcome the problem of not being able to read HTTPS network traffic, mitmproxy
needs to become a trusted CA on the mobile device itself. If mitmproxy becomes a
trusted CA, the handshake between the application and the proxy that establishes
the encrypted session looks legitimate from the application’s perspective. Enabling
mitmproxy as a rogue CA is achieved by installing the mitmproxy certificate on the
device. If the client now connects to a server through the proxy over HTTPS, the
proxy connects to the server to retrieve its certificate. The genuine server certificate
is copied to a forged certificate and then signed by mitmproxy itself. This forged
certificate is then returned to the client as part of the process of establishing a TLS
connection. The client validates the certificate as trusted because mitmproxy’s CA
certificate is installed on the device and the proxy can decrypt HTTPS network
traffic.

At this point, the proxy performs the requests that are generated by the application
on the application’s behalf without their knowledge. On top of that, the device does
not know it is communicating to the proxy instead of the genuine server.

1https://github.com/mitmproxy/mitmproxy

5.1 Model Enrichment 49

Fig. 5.1: Proxy Setup Scenario 1

Physical Device or Emulator

The proxy can be deployed in two settings, either directly on the physical and USB
tethered device that is used for learning or on a new emulated device that has the
sole purpose of retrieving network information.

The first option would be to use the physical device since there is already a real
USB tethered device connected to Appium. This scenario would require that all
Internet connections of the mobile device are forwarded over the USB connection to
the proxy on the computer system. The proxy will then forward the request to the
Internet and return the response to the mobile device. Moreover, it will log every
action. This setup has been visually depicted in Figure 5.1.

Limitation

Mobile device users can install new certificates, such as the mitmproxy certificate,
on Android as ’user-trusted’. Configuring a certificate as ’user-trusted’ can only
be done if the device meets additional safety requirements such as using a PIN-
code or password to unlock the device. Although complying with the security
requirements appears to be straightforward and easily applicable, the requirements
pose a problem, as Appium is not able to unlock a PIN/password protected device,
even if the PIN/password is known to Appium. As a result, meeting Android’s safety
measures to install ’user-trusted’ certificates, renders the device useless for the state
machine learner as it cannot access the device anymore.

To overcome the mentioned limitation, a setup that uses an emulator has been
proposed. The emulator will be explicitly spawned for retrieving the Internet
requests from the application. Figure 5.2 visually depicts the proposed configuration.
In the top left part of the figure, the familiar setup can be recognized, where the

50 Chapter 5 Vulnerability Identification on Models

Fig. 5.2: Proxy Setup Scenario 2

learner communicates with the mobile device through Appium. The proposed setup
includes the emulator as a new device. To connect to the emulated device to execute
the application commands, an additional Appium server is required. For that reason,
two Appium servers are depicted in the figure. The emulator’s network traffic is
forwarded to mitmproxy which can decrypt the traffic, log the traffic’s contents and
forward the traffic to the backend server over the Internet.

In conclusion, we are now able to retrieve the text elements from the screen, the
activities that correspond to a state and the network requests that correspond to
specific actions. The text is extracted using Appium, which in turn uses UIAutomator,
which has the shortcoming that Toast messages cannot be intercepted. The text
elements are used to identify error messages and identify login states. The activities
that correspond to a state are also retrieved with Appium’s functionality. The network
requests are intercepted by a proxy from an emulated mobile phone. The additional
virtual machine increases this project’s complexity regarding dependencies. But the
emulator is a necessity because a certificate needs to be installed on a PIN/password
protected device.

5.2 Mobile Application Security

The inferred models are enriched to identify vulnerabilities that impact the security
of an application. The term security describes techniques that control what entity
is allowed to use or modify the system or the information a system contains [32].
Computer security, and as a subset software security, is the protection of items that
one values, also known as the assets of an application [33]. To determine in what
ways assets can be defended, one must think about ways to attack them. Attacking
can be achieved by compromising one of the three following properties that together
form the CIA triad: confidentiality, integrity, availability [34]. The following explains
these properties.

5.2 Mobile Application Security 51

1. Confidentiality is the ability of a system to ensure that any authorized party
can access sensitive data. An example of this property is insurance that the
username and passwords are well encrypted before storing it on the phone or
sending it to a back-end server because adversaries are not allowed to access
this type of information.

2. Integrity is the ability of a system to ensure that an asset is only modifiable by
authorized parties in a way that is foreseen and consistent with a predefined
policy. An example is that the back-end’s response data is not changeable by
an adversary.

3. Availability is the ability of a system to ensure that any authorized parties can
use an asset at the times where it was agreed to be available. An example of
availability is that video streaming through the Netflix application remains
possible as long as there is the Internet and a subscription that has been paid
for.

The properties mentioned above can be violated on numerous levels of interaction,
such as the levels of the application’s client, the application’s back-end, other installed
applications, the operating system and even the device’s hardware. The scope that
applies to the research conducted for this thesis focuses on the application’s client
and its interaction with the back-end. The security properties can be assessed by
exploration of ways to violate them. Violation is typically done by misusing the
application by exploitation of weaknesses. Identification of attack paths is paramount
to conclude the presence of vulnerabilities. To determine what type of attack paths
and thus also what type of vulnerability categories are present, one could look to
the Open Web Application Security Project (OWASP) Foundation [35]. OWASP
is an organization that actively maintains documents and guidelines that improve
the capability to produce secure code. One of these documents is the OWASP
Mobile Top 10 2016 a top 10 list of categories that describe ways to compromise
or misuse a mobile application [36]. The OWASP lists are widely adopted by
the security community in the entire world to guide identification of vulnerabilities.
Subsection 5.2.1 will briefly describe the top 10 list for mobile exploitation categories.
Subsection 5.2.2 discusses which of the mentioned categories are fit for identification
in models.

5.2.1 OWASP Top-10

The OWASP Top 10 is the flagship project founded by OWASP to set a standard
for most critical application security risks. The project’s contents is a list that has
been created by proactively interviewing security industry experts and extensively
reviewing the results in public. Because the list can enable a software security tester
to identify vulnerabilities in a structured way, the vulnerabilities in the top 10 list
will also be reviewed if they can be identified from a model. The following describes
a brief overview of the list’s contents.

1. Improper Platform Usage
The category of improper platform usage covers the application’s failures
to meet the platform security controls and other scenarios where platform
features are misused. An example of an improper platform usage could be a

52 Chapter 5 Vulnerability Identification on Models

wrong implementation of Android intents. Intents are abstract descriptions of
an operation to be performed, such as the management of screen activities.
The mobile application can listen to events and send the messages to other
components of the application or other applications entirely. A failure to meet
the correct implementation of an Android intent could, for instance, be the
absence of correctly performing the null check of the intents origin. If this is
not implemented correctly, any instance can initiate the operation that succeeds
the intent [37]. Since secure operations can be invoked from an illegitimate
session when this category is not met, the application’s confidentiality is at
stake. Because intents can also be generated to keep the application busy,
i.e., a denial of service attack, inadequately implementing intent control also
compromises the availability of the application.

2. Insecure Data Storage
The insecure data storage category occurs when information processed by the
application, is stored in an insecure way. Android applications can store data
in the mobile device’s file system. Other applications or users can access the
file system. If the data being processed is improperly secured, this data can
be compromised or even changed. An example of misuse could be that a raw
database file is stored unencrypted. If the database stores all the users account
names and passwords, these assets can be read out by other adversaries, thus
compromising the confidentiality of data, or changed for malicious purposes
and thus compromising integrity. If the data is stored by using a secure
methodology, such that the data is encrypted before storage, confidentiality
and integrity can be preserved.

3. Insecure Communication
As has been discussed in the previous section, most applications function
according to a client-server framework, where the application (client) com-
municates with a server (back-end). The communication between the client
and the server often encloses sensitive data, such as authentication credentials
or sensitive files. Sending and receiving sensitive data should be done on a
cryptographically secured communication, such as the transport layer security
(TLS) protocol describes, or apply custom cryptographic solutions, such as cer-
tificate pinning. If communication is insecurely applied, the security properties
confidentiality and integrity can be possibly breached, as the data might be
accessible to view and change by a third party in between the client and server
connection through a man-in-the-middle attack.

4. Insecure Authentication
Sometimes a part of the application is shielded for anonymous users and
requires authentication to grant access to user specific or sensitive information
and operations. An authorization scheme is required to shield a part of
the application effectively. Essential to this scheme is the authentication
process, where a user verifies its identity. If verification is not established
correctly, the part of the application that performs confidential operations is
accessible to anyone, thus breaching the confidentiality property. An example
of insecure authentication is a login screen that can be bypassed by a SQL-
injection [38]. Through such an attack, an adversary can divert the process of
the authentication process and appears as another identity.

5. Insufficient Cryptography
To enable secure data storage, cryptographic fundamentals are needed to store

5.2 Mobile Application Security 53

the data securely. This category covers the components of the application
that implement these cryptographic fundamentals to ensure the same security
properties as secure data storage: confidentiality and integrity. Cryptography
can be insufficient in two ways. First of all, the cryptography algorithm can be
obsolete, meaning that the algorithm does not provide an appropriate level
of security. Secondly, poor key management may lead to the compromise of
the decryption key. This key can be stored in plain text in the source code of
the application, be stored in memory or even appear on the project’s GitHub
website [39].

6. Insecure Authorization
Authorization associates the appropriate level of operations to an authenticated
identity. A poor or missing authorization scheme allows attackers to exploit
functionality that is above their privilege. Depending on the type of operations
an attacker could inappropriately access, the attacker could misuse the entire
CIA triad. For example, a low-level user can create a TLS session with the back-
end server. The session has the corresponding cookie, which indicates that
the user is not from an administrative level. Changing this cookie value opens
an administrative part of the application. Depending on the administrative
controls, the attacker can now view, change and delete data in the back-end,
thus compromising confidentiality, integrity and availability respectively.

7. Poor Code Quality
The poor code quality category defined by the OWASP can enable an attacker
to exploit any of the other vulnerability categories. The reason why poor code
quality is defined as a separate category in the top 10 list, is because it also
embodies non-exploitable vulnerabilities, such as system crashes or logically
unnatural activities.

8. Code Tampering
Modified forms of applications that are changed by a third party are commonly
distributed through official and unofficial marketplaces. In this case, an applica-
tion is either torn apart, the code is tampered with and then reassembled again
or an entirely new application is made from scratch that tries to impersonate
the original application. The modified version tries to trick users into thinking
it is a benign application, but besides, the tampered application can perform
malicious activities. The malicious activities can include excessive advertise-
ment generation, stealing personal information or exploit other applications.
This category classifies ways to prevent tampering an application.

9. Reverse Engineering
Reverse engineering an application is the process of extracting knowledge or
design information from an application. This knowledge can even go back to
the original source code of the application. The source code is especially easy
to retrieve for Android applications since they are written in Java, which allows
dynamic introspection at runtime. A mechanism to protect the inference of
application knowledge is source code obfuscation, which makes understanding
it more difficult. If the application’s logic is seen as an asset, then this category
protects the confidentiality property of the application’s source code, as it
should not be viewable or understandable by third parties.

10. Extraneous Functionality
The category of extraneous functionality describes functionality that enables a
user to perform operations that is not directly exposed via the user interface.

54 Chapter 5 Vulnerability Identification on Models

For example, during development, an application might have a legitimate
developer’s backdoor to bypass initial authentication to make software testing
easier. If at the public release of the application, the superfluous logic is not
removed from the application, it serves as extraneous functionality. Depending
on the operations that are included in the extraneous functionality, all security
properties could be at stake.

In conclusion, we have seen and exemplified how different classes vulnerability can
violate security properties. In the mobile application domain, confidentiality and
integrity are most at risk of being compromised. No vulnerability class addresses the
availability security property. Availability is less discussed because we are dealing
with mobile applications which are clients and thus only impact the local device. If
an attacker wants to exploit the availability of an application server, he or she needs
to attack either the backend of the application or other applications through their
client application. A model that is inferred from a single client application would
not depict such scope and as a consequence, availability is almost not addressed.

5.2.2 Detectable Through Models

The discussed vulnerability categories above are all critical to mitigate during appli-
cation development to conserve the security properties. Some of the categories do
not appear in a behavioral model of a mobile application, as the types of vulnerability
are not triggered by behavior, or are too low level. The application models that are
inferred for this thesis will be on the user interaction level. There are many levels at
which a vulnerability materializes. Some vulnerabilities materialize after a source
code inspection, such as a review of the cryptographic methods that are used. Other
vulnerabilities materialize after one checks static properties, such as whether or not
an application is reverse engineerable. Inference of the application’s behavior does
not reveal any insights into the static property of reverse engineering, nor on the
quality of the code.

The OWASP Top 10 has been reviewed and determined which type of vulnerability
is detectable in a behavioral model of the application. Those categories are depicted
in Table 5.1.

OWASP Category Detectable in a model
Improper Platform Usage Yes
Insecure Data Storage No
Insecure Communication Yes
Insecure Authentication Yes
Insufficient Cryptography No
Insecure Authorization No
Poor Code Quality No
Code Tampering Yes
Reverse Engineering No
Extraneous Functionality Yes

Tab. 5.1: OWASP categories applicable for identification in models

5.2 Mobile Application Security 55

The why and how some of the vulnerability classes can be detected from an inferred
model is discussed in the next section. The remaining classes cannot be identified
in the inferred model because the detection method requires information from the
application or system on a level at which we cannot communicate. As explained
before, some of the required information resides on a too low level that is not the
user interaction level. Other security classes cannot be detected through observed
behavior, but require for example source code reviews. The vulnerability categories
that can be exploited by invoking actions on the user interaction level such that
the behavior can be modeled, are detectable in a model. These vulnerabilities are
depicted in Table 5.1 and algorithms to detect these vulnerabilities are discussed in
Section 5.3.

5.3 Vulnerability Algorithms

The former sections discussed enhancement techniques on inferred models and
consider classes of mobile application vulnerabilities and how they breach security
properties. This section combines the two pieces by providing approaches for
identifying the vulnerabilities through the enriched models.

1. Error States
Frequently, when an attacker performs actions that are illegal or cause a failure
in the application, the result of the action is notified to the end user. Although
the action can be legal according to the application’s logic, the operation might
not be semantically correct. The application then raises a notification, which
often has a semantic meaning. As a result, certain keywords in the notification
can function as a classifier for the corresponding state being an error state
or not. Keywords that have been used to identify an error state are: error,
failure, fault, unexpected and fail. Algorithm 5 uses the classifier to
determine whether the state is an error state which might indicate a security
flaw and therefore a possible vulnerability.

Algorithm 5 Error State Identification

Input: Inferred State Machine M = {Q,Σ, δ, q0, F}
Output: Returns a set R of transitions that are error states in model M . There

possibly exists a vulnerability if R is non-empty.
1: R← ∅
2: for all q ∈ Q do
3: if q is classified as error then
4: add q to R
5: end if
6: end for
7: return R

2. Dead ends
A state that cannot be escaped is called a dead end. The presence of a dead
end does not necessarily imply that a software vulnerability is present in the
application, but it might show unexpected behavior that the developer has not
thought of while programming. In this scenario, one can best have a look at

56 Chapter 5 Vulnerability Identification on Models

what causes the unexpected behavior, as more unexpected actions are possible
at the critical point that destabilizes the system.

Algorithm 6 Dead End Identification

Input: Inferred State Machine M = {Q,Σ, δ, q0, F}
Output: Returns a set R of states that are dead ends in model M . There

possibly exists a vulnerability if R is non-empty.
1: R← copy Q
2: for all q ∈ Q do
3: for all t ∈ δ do
4: if q equals t.source then
5: remove q from R
6: continue . skip remaining transitions
7: end if
8: end for
9: end for

10: return R

3. Improper Platform Usage OWASP-16-1
The risk of improper platform usage is listed first on the OWASP Mobile Top 10.
In essence, the risk categorizes misuse of platform security controls that are
part of the, in our case Android, operating system. The controls also include
Android intents such as the calling of activities. Under the assumption that
the inferred model describes normal application behavior, any new behavior
that can be accessed by calling an activity is superfluous and should not be
accessible by end users. A violation of this vulnerability can be best exemplified
with an application that is secured with a login screen. The inferred state
machine, which describes normal application behavior, shows that activity
after the login screen is only accessible after successfully logging in. If however
an application activity can be called that executes code behind the login screen,
the activity is regarded as the improper use of the platform and thus results in
a severe application vulnerability. The algorithm to detect paths in the inferred
model is depicted in Algorithm 7.

The algorithm first constructs a set A of all activities that are callable and can
henceforth potentially be misused. Next, all activities that are callable and
can be reached by invoking normal system behavior, i.e. the inferred model,
are removed from the set of activities that could potentially exploit additional
behavior. The remaining activities cannot be invoked by normal interaction
with the application, but can be executed through a debugger and therefore be
misused. Set R contains these activities that are callable and are not reached
by invoking normal application behavior.

5.3 Vulnerability Algorithms 57

Algorithm 7 Improper Platform Usage Identification

Input: Inferred State Machine M = {Q,Σ, δ, q0, F}
Output: Returns a set R of activities that induce supplementary behavior in

machine M . There possibly exists a vulnerability if R is non-empty.
1: R← ∅
2: A← activities from M
3: for all a in A do
4: if a is a callable activity then
5: add a to R
6: end if
7: end for . R contains all callable activities
8: for all q in Q and R is not empty do
9: remove q’s activity from R

10: end for
11: return R

4. Insecure Communication OWASP-16-3
Most applications exchange data according to a client-server framework. Al-
though the mobile application (client) and the back-end (server) are to be
trusted, every entity in between the line of communication is not. The entities
include other malicious applications that are installed on the phone and are
listening to broadcast requests and rogue access points (AP) that control and
monitor all network data passing through the AP. Modern security standards
include that mobile applications apply at least the use of a secured commu-
nication (TLS) and at best exercise certificate pinning. Since the insecure
communication category has gradations in itself (i.e., plain-text communi-
cation, the application of TLS, certificate pinning, etc.) a special function
request_insecure() has been created that assesses a backend request for its
security level.

The identification of this vulnerability is thus determined by the function
request_insecure(). The function returns true if the request is made over
HTTP and false if the request is secured through encryption protocols such as
TLS and certificate pinning. The specification for the method request_insecure()
is also depicted in Table 5.2. The algorithm that uses the method is presented
in Algorithm 8.

Request Type Result
HTTP true
HTTPS false
Certificate Pinning false

Tab. 5.2: Specification of the request_insecure() method

58 Chapter 5 Vulnerability Identification on Models

Algorithm 8 Insecure Communication Identification

Input: Inferred State Machine M = {Q,Σ, δ, q0, F}
Output: Returns a set R of requests that made by actions in machine M that

do not adhere to common network security standards. There possibly
exists a vulnerability if R is non-empty.

1: R← ∅
2: for all t in δ do
3: r ← request_insecure(t.request)
4: if r then
5: add r to R
6: end if
7: end for
8: return R

5. Insecure Authentication OWASP-16-4
Authentication is the process of distinction of confidential services or data in
an application to verified and authorized end-users. It is listed fourth in the
OWASP Top 10 Mobile and is thus seen as one of the most important security
categories to be applied in a mobile application. One of the consequences of
improper authentication is a possible breach of confidentiality as classified
services or private data is accessible to anyone.

The inferred model can be used to assess the authentication of an application.
By searching for paths to states that should only be accessible after authenti-
cation, one can identify an authentication bypass and diagnose an improper
authentication vulnerability in the application. The algorithm that corresponds
to detect insecure authentication is presented in Algorithm 9.

Algorithm 9 first determines the authentication state in the application. Classi-
fication of the login state is done based on the presence of keywords such as:
login, log in, authenticate and sign in. Moreover, the access sequence
to the authentication state should at least depict one occurrence of the action
where text has been entered. Entering the text is necessary to enter the pass-
word at least. If no such state can be found, the application likely does not
support authentication and a result, authentication cannot be bypassed.

If an authentication state exists, the algorithm searches for paths that can
access a state after the authentication state by avoiding the authentication
state. The states that should be secured by authentication are marked by the
membership of the set Marks. Discovery of an authentication bypass path is
achieved by creating a submachine M ′ that is a copy of the inferred model but
excludes the authentication state. If in M ′ a path to one of the marked states
is discovered, the path can bypass the authentication state and hence serves
as evidence that the application is vulnerable to insecure authentication. The
same process holds for executing activities that are callable.

5.3 Vulnerability Algorithms 59

Algorithm 9 Insecure Authentication Identification

Input: Inferred State Machine M = {Q,Σ, δ, q0, F}
Output: Returns a set R of authentication bypass techniques in machine M .

There possibly exists a vulnerability if R is non-empty.
1: a← authentication state of M . a ∈ Q
2: if a is null then . no authentication→ no authentication bypass
3: return R
4: end if
5: Marks← subset of nodes possible to reach after a
6: M ′ ←M − a . the machine without the authentication state
7: for all m in Marks do
8: if a path from the q0 to m exists in M ′ then
9: add path to R

10: end if
11: end for
12: Q′′ ← Q−Marks
13: A← callable activities
14: for all q in Q′′ and A is not empty do
15: remove q’s activity from A
16: end for
17: add A to R
18: return R

6. Code Tampering OWASP-16-8
Code tampering is the process of altering the application’s source code by
unauthorized third parties. The source code of an application can be changed
by attackers, such that a benign looking application will perform malicious
activities. To that extent, an application can be modified to collect data which
is sold on the black market (spyware), perform activities on that phone, so it
will generate revenue for the attacker (ad-clicking fraud) or bypass security
measures in the original application to access paid/limited services.

Under the assumption that tampering source code yields different behavior,
code tampering can be identified by comparison of the inferred model to a
reference model of the application under test. The reference model can either
be inferred from a legitimate data source, such as the Google Play Store, or
inferred from an application that should be genuine and benign. If the SUT’s
model is the result of a tampered application, Algorithm 10 will identify the
difference between the two of them. The behavior that the application under
test contains in addition to the reference model can potentially be malicious.

The algorithm computes the transition cover set of access sequences, which
is also used by the W-method. The transition cover set is created in the same
way Chow [10] creates a transition cover set by the aid of a testing tree. Let
TCS(M) be the function that returns the transition cover set for a DFA M , as
proposed by Chow. The difference in behavior is then computed by assessing
the outputs for each input sequence in the transition cover set by the inferred
model and the reference model.

60 Chapter 5 Vulnerability Identification on Models

Algorithm 10 Code Tampering Identification

Input: Inferred machine M = {Q,Σ, δ, q0, F} and reference machine M ′ =
{Q′,Σ′, δ′, q′0, F ′}

Output: Finds difference in M and M ′ Returns a set R of sequences that
yield a different output for the two machines M and M ′. The sequences
are divided into sets R1 and R2 which depict what machine models the
sequence. There possibly exists a vulnerability if R is non-empty.

1: R1, R2 ← ∅
2: TCS1 ← TCS(M)
3: TCS2 ← TCS(M ′)
4: for all w ∈ TCS1 do
5: if λM (w) 6= λM ′(w) then
6: R1 ← w
7: end if
8: end for
9: for all w ∈ TCS2 do

10: if λM (w) 6= λM ′(w) and w /∈ R then
11: R2 ← w
12: end if
13: end for
14: R← R1, R2
15: return R

5.3 Vulnerability Algorithms 61

6Results

„. . . as if a magic lantern threw the nerves in
patterns on a screen . . .

— T. S. Elliot
The Love Song of J. Alfred Prufrock

The previous chapters discussed how we could apply state machine inference to mobile
Android applications for learning models in feasible learning time. Moreover, we
proposed a set of detection techniques that utilize the inferred model to detect the
presence of vulnerabilities.

This chapter applies the earlier proposed methodology for model inference and
vulnerability detection on two types of applications and presents the corresponding
results. The first application that is tested for the presence of vulnerabilities is a
mobile banking application. The banking application has been deliberately made
vulnerable to a number of attack vectors for testing purposes. Some of the attack
vectors that can be applied to this application violate classes defined in the OWASP
Top 10 Mobile, hence the tool is expected to produce results that depict identification
of multiple vulnerabilities. The assessment of the vulnerable banking application
is presented in Section 6.1. The second test examines a malicious version of a chat
application. The inferred model can then be compared to a reference model to
identify extraneous behavior. If the benign version of the chat application is used as
a reference model, the extraneous behavior that is depicted in the inferred model
describes the malicious behavior that is implemented in the fake chat version. The
analysis of the malicious mobile chat application is presented in section 6.2

6.1 Banking Application

The first application to be tested is the fictitious banking application InsecureBankv21.
This application is originally developed with the intentions of being vulnerable. By
doing so, the author of InsecureBankv2 provides an environment to teach exploita-
tion of Android applications to Android developers and the security community. One
of the best reasons to test this application is because it is known in advance what
type of vulnerabilities are present and thus should also be detected by the developed
tool.

The general idea of the vulnerable banking application is as follows. At the start of the
application, a login screen is shown as depicted in Figure 6.1a. Valid credentials for
the application are the username and password combination of jack and Jack123$.

1https://github.com/dineshshetty/Android-InsecureBankv2

63

After logging in with the valid credentials, a second screen is shown as depicted in
Figure 6.1b, that allows the user to perform banking operations. A login screen thus
protects the banking operations.

(a) (b)

Fig. 6.1: The user interface of InsecureBankv2: (a) the initial screen and (b) the screen
after successfully logging in.

The minimal recorded time to infer the correct model of the banking application
required 3 hours and 13 minutes. The learning settings and statistics that accompany
the model inference procedure are presented in Table 6.1. The complete model is
presented in Figure 6.2.

InsecureBankv2
Learning Time 3:13
Learning Algorithm TTT
Equivalence Oracle WMethod-Minimal
Equivalence Queries 7
Membership Queries 11627
States 6
Alphabet Size 6
Cache Hit 49%
Fast Forwarded 42%

Tab. 6.1: Learning statistics for InsecureBankv2

After the testing tool inferred the state machine model, the enrichment process of
the model starts. One of the sources for model enrichment is the Android activities
that can be called for an application. The activities that have been implemented by
the banking application and whether or not the activities are callable are depicted
in Table 6.2. In total, the application has discovered 5 activities to be executable
that possibly divert the application’s logic. Moreover, the enrichment process has
classified state 3 to be a login-state, because of the presence of all user interface
utilities that are required for authentication.

64 Chapter 6 Results

Activity Callable
LoginActivity yes, launchable
FilePrefActivity no
DoLogin no
PostLogin yes
WrongLogin no
DoTransfer yes
ViewStatement yes
TrackUserContentProvider no
MyBroadCastReceiver no
ChangePassword yes

Tab. 6.2: Discovered activities for InsecureBankv2

Fig. 6.2: State machine model of the InsecureBankv2 application.

After the enrichment process has completed, vulnerability identification can start.
The vulnerability identification process returns a report with three found vulnerabili-
ties in the application. This report is depicted in the following vulnerability report 1.

Vulnerability Report 1 (InsecureBankv2).
• Improper Platform Usage

There were new discovered states for activity ./ViewStatement
• Insecure Authentication

Authentication can be bypassed for activities ./PostLogin (to state 4) and
./DoTransfer (to state 5).

• Insecure Communication
Data is send the back-end unencrypted. Transition from state 3 to 4 requests:
POST http://57.97.2.11:8888/login.

The three classes of vulnerabilities that have been identified by the tool are thus
Improper Platform Usage, Insecure Authentication and Insecure Communication.
A simplified version of the inferred model is shown in Figure 6.3. The simplified

6.1 Banking Application 65

model depicts three classes of arrows represented by different colors. Black arrows
correlate to normal application behavior. These transitions have been inferred before
the model enrichment process starts. The red and green colored arrows correspond
to paths that can be taken by the invocation of callable activities. The red and green
colored paths are emphasized by a different color in the figure because the colored
paths represent a sequence of inputs that exploits a vulnerability.

The set of red arrows illustrate a bypass of the authentication state. The tool
has classified state 3 as a login state and has determined that the states that are
accessible after the login state should be restricted to unauthenticated users. From
the inferred model can be derived that state 4 and 5 are restricted states because
they are normally only accessible after successfully logging in. The red arrows
depict the existence of a path to a restricted state without proper authentication
and therefore the presence of insecure authentication is detected as a vulnerability.
The second class of arrows that are shown in green represents a path to a state
that is unknown to the model. Since it is assumed that the model represents the
abstraction of the entire application, new functionality that can be invoked by
controls in the platform that are not initiated through the application’s user interface,
is the result of improperly using the platform controls. Hence the application is
vulnerable to improper platform usage. The green arrow illustrates the presence
of improper platform usage in Figure 6.3. A callable activity can execute a process
in the banking application that has not been discovered while learning the model.
In this example, running the callable activity ViewStatement invokes new behavior,
which leads to a new state. The third and last vulnerability which is identified
by the vulnerability detection algorithms is the implementation of an insecure
communication channel. One of the detected vulnerabilities is the following network
request: POST http://57.97.2.11:8888/login. This request corresponds to the
login action that is executed when transitioning from state 3 to 4 and sends the login
credentials to the backend server for validation. The POST request is performed
over the insecure HTTP protocol instead of an encrypted channel and is, therefore,
an exemplification of insecure communication. The vulnerability can also be seen
in the data that is sent along with the network request. A snippet of the insecure
session is shown in Figure 6.4. The red box surrounds the sensitive information that
is sent unencrypted to the backend and thus causes the application to be vulnerable
to man-in-the-middle attacks.

6.2 WhatsApp

The second set of results presented in this report regards the two remaining vulnera-
bility categories from the OWASP Top 10 Mobile: code tampering and extraneous
functionality. Both categories describe functionality that should not be present
according to a specification model. For that reason, a vulnerability identification
algorithm has been developed that compares an inferred model to a reference model,
which for example could have been inferred earlier in the process of testing. Func-
tionality that the application under test accommodates in addition to the reference
model could be an indication of tampered code or extraneous functionality.

66 Chapter 6 Results

0

1 2

3

4

5

?

enter username

enter password

enter password

enter username

push login

push transfer

login

./DoTransfer

./PostLogin

./ViewStatement

Fig. 6.3: Inferred and enriched model of the InsecureBankv2 application

Fig. 6.4: Snippet of the network traffic caused by the InsecureBankv2 application.

The use cases to compare two software implementations are interminable. For
example, to show its potential, the vulnerability identification algorithm depicted
the difference between a benign version and a malicious version of the popular chat
application WhatsApp. The benign version of WhatsApp has been used as a reference
model and differences in both models should be the malicious behavior.

On November 2017 a malicious version of WhatsApp was discovered in the Google
Play Store that intended to hinder the mobile device with an overdose of advertise-
ments and also tries to trick the user to install additional mobile malware on the
mobile device. The malicious application was disguised as a genuine WhatsApp
application in the Google Play Store, where the logo and developer title mimicked
the benign application’s original details, at least so far the naked eye was able to
see. The developers of the malicious application (the attackers) were able to do
so, by adding a Unicode character space at the end of the developer’s name field
where the application was advertised. Because of the presence of the additional
character, the Google Play Store considered the developers to be a new name for
the development team, whereas all Google Play Store users would not be able to
spot the difference and are thus convinced of the origin’s benevolence. Although the
malicious application was only distributed by the Google Play Store for a week, over
a million devices, have downloaded the fake version of WhatsApp.

6.2 WhatsApp 67

After the state machine model of the benign WhatsApp application has been inferred,
the model of the malicious WhatsApp is learned and the vulnerability identification
algorithms are executed with the benign model as a reference. The inferred models
of the benign and the malicious applications are shown respectively in Figure 6.5
and 6.6.

Fig. 6.5: State machine model of the benign WhatsApp application.

Fig. 6.6: State machine model of the malicious WhatsApp application.

After the testing tool inferred the state machine model of the malicious WhatsApp
application, the vulnerability identification phase starts. The process returns a report
with two found vulnerabilities in the application. Vulnerability report 2 depicts the

68 Chapter 6 Results

Fake WhatsApp Real WhatsApp
Learning Time 7:22 5:47
Learning Algorithm TTT TTT
Equivalence Oracle WMethod-Minimal WMethod-Minimal
Equivalence Queries 7 6
Membership Queries 29.751 25.083
States 22 11
Alphabet Size 12 11
Cache Hit 71% 69%
Fast Forwarded 67% 62%

Tab. 6.3: Learning statistics for both WhatsApp versions

two vulnerabilities.

Vulnerability Report 2 (Fake-WhatsApp).

• Extraneous Functionality
Extraneous functionality found: 100% of the functionality in the test application
is not represented in the reference model. Moreover 100% of the functionality
in the reference model is not represented in the test application.

• Insecure Communication
Data is send the back-end unencrypted. Transition from state 0 to 1 requests:
GET hxxp://req.startappservice.com/1.4/.... (URL is shortened).

The report shows that two classes of vulnerabilities are present in the malicious
WhatsApp version. First of all the tool determined the presence of extraneous func-
tionality when the model of the benign WhatsApp version serves as a reference
model. In particular, the tool determines that 100% of the malicious’ version func-
tionality does not exist in the benign version. The difference is evident for the reason
that the input alphabet is also 100% different. Therefore the set of access sequences
for all states are different and no functionality can be simulated on the reference
model and vice versa. Because the referenced model does not describe the behavior
from the SUT, the application under test exhibits additional functionality, which is
characterized as extraneous functionality.

The second vulnerability class that is identified by the tool, is the adoption of insecure
communication. The malicious WhatsApp application communicates with several
backend servers for retrieving advertisements and storing data about the user and
device. All traffic is performed over a plain HTTP connection and is thus unencrypted,
instead of an encrypted SSL connection. Although the application communicates for
malicious purposes since user and device data is sent to the backend server an SSL
connection prevents leakage of sensitive data to possibly additional malicious third
parties that perform a man-in-the-middle-attack.

6.2 WhatsApp 69

FreeCola
Vulnerability Detected
Improper Platform Usage Yes
Insecure Communication No
Insecure Authentication No
Extraneous Functionality No

Tab. 6.4: Detected vulnerabilities for the FreeCola application

9292
Vulnerability Detected
Improper Platform Usage No
Insecure Communication No
Insecure Authentication No
Extraneous Functionality No

Tab. 6.5: Detected vulnerabilities for the 9292 application

6.3 Remaining Results

The two discussed applications InsecureBankv2 and the fake Whatsapp show how
the proposed testing methodology is able to determine their level of security. The
model learning and vulnerability identification algorithms have been executed on
various other mobile applications as well. The results of the remaining applications
are presented in this section and will be thoroughly discussed in the next chapter.

FreeCola
The mobile application FreeCola has been developed to contain security vulnerabil-
ities on purpose as well as the InsecureBankv2 application. KPMG developed the
FreeCola application for training purposes. Because we know in advance what type
of vulnerabilities are present in the application, the detection phase should identify
a number of weaknesses.

Table 6.4 depicts the results of the FreeCola application.

9292
The Dutch transportation application that has been used to show the influence of
different learning algorithms when learning a model, has also been subjected to the
vulnerability identification algorithms. The results of the security assessment are
presented in Table 6.5.

70 Chapter 6 Results

7Discussion

The proposed vulnerability identification algorithms results that presented in the pre-
vious chapter. The algorithms examined two different cases of mobile applications, a
vulnerable banking application and a malicious chat application that was found in the
wild in the Google Play Store.

Based on the results observed in Chapter 6, we can conclude that vulnerabilities
can be discovered from abstracted state machines. However, the observations also
raise important questions, such as "Are all expected vulnerabilities discovered?" and
"How an incomplete model still lead to the discovery of vulnerabilities?". This chapter
addresses questions alike, by evaluating vulnerability class that has been detected
and validating the observed results.

7.1 Evaluation

The implemented tool was designed to identify only a subset of all the possible vul-
nerability classes that exist for mobile applications. Only a subset of the vulnerability
classes is discoverable because the abstracted models describe the application behav-
ior on a user interaction level. As a consequence, vulnerabilities that are violated on
a nonuser interaction level, such as poor code quality, cannot be detected through
the behavioral model. From the OWASP Top 10, we have provided a detection
strategy for the following behavior-driven vulnerability classes.

1. Improper Platform Usage
2. Insecure Communication
3. Insecure Authentication
4. Code Tampering and Extraneous Functionality

To analyze the detection performance of the vulnerability identification algorithms,
statistical measures can be used as a metric. The detection algorithms solve a binary
classification test because a vulnerability can either be detected or not be detected.
Because of the binary classification property, the following classification metrics
aid the process of reviewing the results. If all vulnerability classes were able to
be identified when they should be identified because the vulnerability resides in
the application, the type of result is true positive (Table 7.1). When a vulnerability
should not be detected by the tool because the vulnerability is not present in
the mobile application, this type of result is called true negative (Table 7.1). A
vulnerability can be detected when the vulnerability is not present at all (false
positive) and a vulnerability can be ignored whereas it is present in the mobile
application (false negative). The number of true positives and true negatives are
two metrics that should be as high as possible opposed to false positives and false

71

Vulnerability present
Yes No

Vulnerability Yes True Positive False Positive
detected No False Negative True Negative

Tab. 7.1: Definitions of True/False Positive and True/False Negative

Improper
Platform

Usage

Insecure
Communication

Insecure
Authentication

Extraneous
Functionality

InsecureBank +/+ +/+ +/+ -/-
FreeCola +/- -/- -/+ -/-

9292 -/- -/- -/- -/-
Benign WhatsApp -/- -/- -/- -/-

Malicious WhatsApp +/+ +/+ -/- +/+

Tab. 7.2: The expected results versus the expected results for all applications under test.

negatives respectively because both values resemble the accuracy and the correctness
of the tool. The two remaining scenarios depicted in Table 7.1 conform to the level
of inefficacy of the detection tool.

This section discusses for each of the vulnerability classes to what extent the results
influence the above-defined accuracy terminology. An overview that depicts for each
assessed application what vulnerabilities have been detected is presented in Table
7.2. The symbol + or - before a slash sign represents if the specified vulnerability
has or has not been detected respectively. The symbol after the slash sign details
analogous to the symbol before the slash sign if the vulnerability is present (+) or
absent (-) in the mobile application.

7.1.1 Improper Platform Usage

The vulnerability class Improper Platform Usage has been correctly detected for
the insecure banking application and the malicious WhatsApp application. The
vulnerability has been detected because the algorithm encountered a path that infers
additional functionality by misusing platform controls. Both paths are driven by
executing a callable activity. Moreover, the assessed mobile applications that are
well secured and thus do not contain the vulnerability, such as the Dutch public
transport travel planner and the malicious WhatsApp application, are not determined
to contain the vulnerability. Table 7.2 shows that one of the test applications, the
FreeCola application, yields a false positive result for the Improper Platform Usage
class. The detection algorithm thus detected a path that invokes behavior that is
new to the inferred model. The false positive result can easily be explained because
the behavior is, in fact, a violation of the insecure authentication vulnerability that
the FreeCola application has implemented. The execution path that invokes new
behavior should thus not be new behavior, but be labeled as post-login behavior. The
reason why the behavior has not be labeled as such by the identification algorithm

72 Chapter 7 Discussion

is that the application under test does not allow the action of logging in. As a
consequence, the state machine learning tool was not able to infer the states after
the login state. Hence the actual post-login behavior is labeled as new behavior,
which causes the detection of improper platform usage. If during model inference
the state machine would describe the behavior after the login state, the vulnerability
would have been classified to the correct class.

The false negative result is less severe because it causes a false positive in another
class. If no false positive result would appear for another vulnerability class, the
exploitable activities remain undetected. The latter is not the case when testing the
FreeCola application. All other instances of the improper platform usage vulnerability
were correctly discovered, when present, or disregarded when absent. Hence,
this vulnerability class is always discovered when the vulnerability is present in
an application or the attack path is labeled to a different vulnerability otherwise.
Mislabeling of this vulnerability class happened at the FreeCola application. Although
the vulnerability should be classified as insecure authentication, due to the absence
of post-login behavior in the model an improper platform usage is identified.

7.1.2 Insecure Communication

The Insecure Communication vulnerability has been correctly detected for the Inse-
cureBankv2 application and the malicious WhatsApp application. The unencrypted
network requests which have been intercepted by the proxy are proof of the insecure
communication. The remaining test applications do not implement this type of
vulnerability. The FreeCola application applies certificate pinning for the communi-
cation to the back-end server. The 9292 application uses a secured TLS session for
communication and the benign WhatsApp application uses a custom protocol for
establishment of an encrypted session [40].

Sessions that are encrypted are detectable because the communication cannot be
read out as plain text. Sessions that are unencrypted lack a handshake for key
exchange and certificates. Secure communication is thus either present or absent
and therefore does not generate false results if the inferred model is complete.

7.1.3 Insecure Authentication

Insecure Authentication was detected in the InsecureBankv2 as expected, because
of the inferred and enriched model (Fig. 6.3) depicts paths that bypass the login
state. These results completely coincide with the intended method for detecting
paths of exploitation. For all applications where it is known in advance that the
Insecure Authentication class should not be detected because it is not present, the
vulnerability was not detected. In other words, the Insecure Authentication class
does not generate false positive results.

The Insecure Authentication class does accommodate a false negative result for
the FreeCola application. The false negative result indicates that the vulnerability
should be detected, whereas it was not detected. The vulnerability was not identi-
fied because the invoked functionality was defined in the inferred model and was

7.1 Evaluation 73

therefore attributed as proof to the improper platform usage vulnerability class.
The vulnerability class to which a path of exploitation is assigned is, in this case,
a semantic difference. Although the wrong classification of the exploitation path
leads to a false negative and a false positive result, the exploit path will eventually
be reported.

The latter depicted scenario is the only instance where a path of exploitation pro-
duced false results. The result will, however, be classified as an Improper Platform
Usage vulnerability. The classification in itself is not entirely incorrect, as the Insecure
Authentication class is, in fact, a subclass of Improper Platform Usage.

7.1.4 Code Tampering/Extraneous Functionality

Detection of tampered code or the presence of extraneous functionality is deter-
mined by comparison of the functionality of a reference state machine to a new
inferred model. The difference in functionality is then assumed to originate from
an illegitimate source, such that the functionality is either extraneous or the result
of the tampered code. The assumption can also be made for different versions
of an application during the development process. In between two releases of an
application, additional functionality could be added or removed. Comparing the
inferred models of an application that changed over time then is able to verify the
change.

The presence of extraneous behavior has been assessed for the malicious version
of WhatsApp. The assessment has been done to gain insight knowledge about
the application. The developers (attackers) of the malicious application, have put
in the effort to advertise the malicious app as a genuine WhatsApp application.
From a forensic point of view, it is therefore interesting to know to what extent
the attackers have put in an effort to mimic the genuine WhatsApp application.
Comparison of both models showed that the malicious application differs regarding
all functionality, meaning that the attackers did not put in any effort to mimic the
benign application concerning behavior. This observation constitutes with the attack
vector the attackers applied. If for instance, their method of operation would be to
also implement benign WhatsApp functionality such that the malicious activities are
more covert, the malicious behavior would still be detected, because loading and
presenting advertisements is not performed by the benign application. The state
machine similarity would in this instance be lower than 100% but larger than 0%.

7.2 Validation

In order to verify the obtained results, the vulnerability detection tool has been
applied to applications that contain vulnerabilities which are known in advance.
The opposite must be true as well, vulnerabilities that have not been detected by
the tool should be absent in the actual application. The latter scenario is verified
by applying the tool to applications that do not contain any vulnerabilities. Since
it cannot be proven that an application does not contain a vulnerability, several
selection criteria and techniques are adapted to approximate the absence or presence
of vulnerabilities. These criteria and techniques are as follows:

74 Chapter 7 Discussion

In the first instance, applications are required that accommodate a vulnerability that
should be detectable by the tool. These test cases are also called the positive test set.
A positive test set is required to determine if a result is true positive in the case a
vulnerability is detected or a false negative in the case a vulnerability is not detected.
Three applications under test are used to assess the tool for the mentioned type of
vulnerability: InsecureBankv2, FreeCola and the malicious WhatsApp. The first two
applications are developed with the intention to accommodate vulnerabilities for
the purpose of testing or education. The source of these applications is, therefore,
a criterion that guarantees the presence of certain vulnerabilities. The second
technique that is applied to verify that the positive test set indeed contains the
corresponding vulnerabilities is manual verification. For each exploitable technique
the application contains according to its source, I manually exploited the vulnerability
to determine its presence. To verify that the malicious WhatsApp application is truly
fraudulent, the source of the application was assessed. The Android file for the
malicious WhatsApp application was difficult to obtain because the Google Play Store
does not publicly host the application file anymore. Eventually, a mobile malware
database for threat researchers was discovered to host the malicious application. By
comparing the hash value of the application with the threat intelligence literature,
it was verified that the retrieved application was, in fact, the malicious WhatsApp
application. Apart from the threat intelligence literature, the application was also
manually verified to be malicious and concluded to contain extraneous functionality
opposed to the benign WhatsApp application.

The second type of test sets are the negative test cases, which are the applications
that do not accommodate any of the vulnerabilities that are detectable by the
tool. A negative test set is required to determine if a result is false positive in the
case a vulnerability is detected or a true negative in the case a vulnerability is not
detected. Detection of vulnerabilities is an ongoing and maturing field, hence it is
impossible to guarantee the complete absence of vulnerabilities in an application.
There are, however, properties of an application that positively contribute to the
level of security. The absence of vulnerabilities can be approximated by reviewing
the properties. The first property that has been considered is the development team
of the application and the community’s endorsement. Popular applications that
are nationally or even globally recommended tend to have a higher incentive to
mitigate vulnerabilities. For this reason, popular applications have been used as the
negative test set. Moreover, only popular applications from the Google Play Store
have been taken as candidates for the negative test set. The application distribution
center also reviews the application for vulnerabilities through Google Play Protect.
The protection mechanism can be seen as an additional tool that guarantees the
application’s safety. To approximate the absence of security vulnerabilities, the
applications have been tested manually and automatically by utilization of Android
vulnerability scanners. To confirm the absence of vulnerabilities we applied the
well-recommended Android vulnerability scanning tools quixxi1 and ostorlab2.
The mentioned testing tools were able to identify the presence of vulnerabilities,
therefore confirming our suspicion about the absence of vulnerabilities.

1https://quixxi.com/
2https://www.ostorlab.co/

7.2 Validation 75

7.3 Limitations

The discussed results demonstrate that model inference can be combined to identify
vulnerabilities in Android applications successfully. We have also seen that the
detection method only detect vulnerabilities that are exploited by misusing the
application because the model only depicts user interaction behavior. A limitation of
the proposed testing methodology is thus that vulnerabilities are only detectable if
behavior drives the vulnerability. Section 5.2.2 thoroughly discussed this limitation
is. This section discusses other limitations of the testing framework.

The first limitation of the testing methodology is the uncertainty in a complete ab-
straction of the application. It is unsure to what extent the inferred model thoroughly
describes the entire application. One method to measure the completeness is the
percentage of code that is executed when invoking the actions that are depicted in
the transition coverage set. Due to the difficulty that arises when computing the
code coverage of generic Android applications, a method that uses code coverage to
efficiently learn a complete model is presented and discussed as a future work refer-
ence in Section 8.2. The proposed framework mitigates this problem by assuming
that the input alphabet is correct, which depends on the test initiator. The diversity
of the inputs determine what part of the application will be reached. Up until now,
all buttons, text fields and checkboxes that are presented by the application are
added to the input alphabet. Although more types of actions can be added, we have
found those three to fulfill the requirements.

When the inferred models are compared to models that have been actively learned
in other studies, such as the model of a printer controller [30] and the model of
TLS driver implementations [7], we can determine that the models of Android
applications are smaller in size. The models are likely smaller in size, because
of two reasons. First, as stated before, the actions that are depicted in the input
alphabet are not diverse and of a high level. Secondly, a mobile application has less
diverse observable state changes than a printer controller or encryption protocol has,
because mobile applications are not designed to be state-full, whereas embedded
controllers and protocols are. Future research that also infers models on Android
applications should compare their models to the ones we present in this paper. Up
until now, no automatically inferred model has been publicly published.

76 Chapter 7 Discussion

8Conclusion

„Logic is not the end of wisdom, it is the
beginning . . .

— Spock
Star Trek VI

The objective of this research is to propose a new testing methodology for mobile
applications that infers state machine learning in a time-optimized way and applies
vulnerability detection algorithms to the inferred models. We divided the objective
into three subgoals, which each were guided by a research question. First of all, we
must apply active state machine learning to mobile Android applications. Secondly,
to achieve time-optimization, we need to administer methodologies that improve
the learning time. Thirdly and lastly, the vulnerability identification algorithms
that cope with the inferred models need to be established. This final chapter
answers the research questions that accompany the subgoals and reflects on the
entire research process. Although we can answer all questions and propose the
novel testing methodology, there remains ample opportunity to improve the method.
The future work references at the end of this chapter subsequently discussed the
improvements.

8.1 Reflection on Research Questions

The research was guided by the following main research question: How can one
identify weaknesses in mobile Android applications through feasible behav-
ioral state machine learning?. The question has been divided intro three subques-
tions, which each answer the main research question from three point of views.

Before models can be assessed for the presence of vulnerabilities, the models need
to be inferred. This requirement gave rise to the first research question: "How can
model learning be extended to apply to mobile Android applications?" In short,
the first question can be answered as follows:

Model learning can be extended to apply to mobile Android applications by:

• Creating an input alphabet of internal actions that reside on the user interaction
level.

• Connecting LearnLib to an interplay layer Appium that is able to execute com-
mands on the mobile device.

• Applying the proposed cache roll-back technique to overcome the mobile applica-
tion’s non-deterministic behavior.

77

The following led us to the answer to the first research question. First, a framework
is required that applies active learning to Android applications before state machine
models of Android applications can be inferred. The framework is developed by
extending the state machine learner tool fsm-learner proposed by Lampe et al. in
a way that a model of any Android application can be inferred. To achieve an
approach for learning general Android applications we had to overcome challenges
that were introduced by the mobile application domain. We selected an input
alphabet that is consistent with actions that reside on the user interaction level.
Furthermore, the actions must be mapped to commands that can be executed on
the application. Mapping these actions introduced the additional interplay layer
Appium that can perform the commands to an application. Another challenge
was that normal application usage often exhibits non-deterministic behavior. Non-
deterministic behavior cannot be learned by an active learning algorithm that learns
a deterministic finite automaton and hence this challenge must be overcome. By
applying a roll-back technique to the cache, the contradictory observations can be
amended.

After a framework that applies active learning to mobile Android applications is
conceived, we can explore the two variables of active learning: what learning
algorithm to use and what method can best be applied to determine the equivalence
between a model and an implementation. At first, the classical L* algorithm in
combination with a RandomWalk equivalence oracle was applied as proposed by
Lampe et al., but the combination produced a limited model of the application
and consumed too much time. The shortcomings gave rise to the second research
question: "How can the feasibility of model learning for of Android applications
be improved?" The second research question can be answered as follows:

The feasibility of model learning of Android applications can be improved by:

• Applying learning algorithms that utilize a redundancy-free data structure to
store the observations. The optimized algorithm reduces the query complexity.

• Extending the RandomWalk equivalence oracle such that a counterexample is also
devised from an application’s happy flow as explained in Section 4.1.3.

• Replacing the characterizing set of the W-method with a set of minimal separating
sequences for all pairs of states as proposed by Smetsers et al.

• Simulating the actions from a membership query on an USB-tethered physical
mobile device.

• Adopting the fast-forward technique for early query termination as proposed in
Section 3.3.3.

• Caching queries and the corresponding outputs.

To optimize the time-feasibility of active learning, we observed that the classic L* al-
gorithm contains redundant entries in the observation table that lead to superfluous
membership queries. To overcome the redundancy, the TTT algorithm that uses a
redundancy-free data structure for storing the observations has been incorporated
into the learning framework. Although the TTT algorithm reduces the required learn-
ing time, the TTT algorithm depends more than the L* algorithm on the equivalence
oracle. The latter was discovered, when the RandomWalk equivalence oracle could
not devise a counterexample for a model that has fewer states than the model that

78 Chapter 8 Conclusion

is inferred with the L* algorithm. For that reason, we extended the RandomWalk
oracle by also identifying possible counterexamples from an application’s happy
flow. Although the extension introduces increasing success, as a more complete
model can be inferred, the expansion requires prerequisite knowledge about the
application under test. The requirement of prerequisite knowledge invalidates the
goal to infer models of generic Android applications because we then need to exclude
the applications that lack the happy flows.

Our objective is to infer a state machine model that approximates the mobile applica-
tion as close as possible. To achieve this goal, the thoroughness of the method that
determines the quality between a model and its corresponding implementation is
of importance. The W-method implements the thoroughness by creating test cases
that cover all scenarios that depict the same behavior between a software imple-
mentation and a hypothesized model, but the W-method is too exhaustive. Within a
reasonable amount of time, we were not able to observe the learning process finish
due to the excessive amount (> 60hours) of time that is required to run all test
cases. We reduced the length of the test cases by replacing the characterizing set
that is generated by the W-method with a set of minimal separating sequences for
all pairs of states as proposed by Smetsers et al. The combination of the W-method
with Smetsers et al.’s research enabled us to infer state machines in a time-optimal
approach that was able to finish within a reasonable amount of time. Furthermore,
the combination learned the most complete models, i.e., the model that contains the
highest number of states and transition.

The last approach that has been applied to optimize the feasibility of state machine
modeling of Android applications, was the adoption of techniques that are proposed
by Lampe et al. First, the mobile device that hosts the application under test, was
chosen to be a USB-tethered physical device opposed to a virtual machine. A physical
device responds the fastest to commands. Secondly, the fast-forward technique of
test queries was implemented that allows early query termination after the query is
determined to be obsolete. Thirdly, a cache was implemented that contains queries
and the results. All factors reduced the learning time as much as possible.

After we have developed a framework that allows us to infer state machines from
Android applications, the inferred models are examined for the presence of vulner-
abilities. The last practice gave rise to the third research question: "How can the
learned model be used to assess the application’s security?" The last research
question can be answered as follows:

The following techniques aid and allow vulnerability detection on state machine mod-
els:

• Vulnerability classes, such as listed in the OWASP Top 10 Mobile, that can be
violated by interacting with the application, can be detected in the behavioral
model.

• Algorithms that discover paths that violate one of the security classes have been
proposed. The discovered paths do not only function as evidence for the existence
of a vulnerability, but the paths also give insight into the way the application is
vulnerable.

8.1 Reflection on Research Questions 79

• Model enrichment aids the process of vulnerability identification by providing
additional information to the abstraction. Because the abstraction represents the
entire model, certain properties of the enriched information must hold.

The strategy that we applied to identify the presence of vulnerabilities is to search
for a path in the model that exploits a known security class. Exploring such an
attack path has been achieved by first of all reviewing classes of vulnerabilities
for the mobile domain from the OWASP Top 10 Mobile. We found that some
vulnerability classes cannot be detected from a model that shows the user interaction
because exploitable behavior cannot violate the vulnerability. The other classes of
vulnerabilities that are violated by applying exploitable behavior can be detected by
assessing the behavioral model.

Vulnerability identification is made possible by first of all enriching the state machines
with supplementary information of the application that belongs to the specific state
or transition. Secondly, vulnerability identification algorithms have been proposed
that can discover a path of exploitation from the inferred and enriched models. The
paths then pose as evidence for the presence of a vulnerability that belongs to a class
defined by OWASP.

Results show that for Android applications the paths of exploitation can be found
in all test cases. However, due to the semantic connotation of some classes, the
identified paths can be assigned to the wrong class of vulnerabilities. The wrongful
assignment has been exemplified for an application that contains an improper
authentication vulnerability, but the path of exploitation was assigned as an improper
platform usage vulnerability. Because the authentication was able to be bypassed
through the inappropriate use of platform functionality, the wrongful classification is
only induced by the semantic definition that the improper authentication class can
be a subset of the improper platform usage class. Notwithstanding the last result,
the path of exploitation was defined and the application has been determined to be
vulnerable.

In conclusion, the proposed time-optimized active model inference method on
Android applications and the automatic identification of vulnerabilities on these
models provide the first step towards a new approach for testing and securing the
mobile environment. There remain opportunities to cover additional classes of
weaknesses and to improve active learning on mobile applications. Nevertheless,
given the results that the proposed methodology can produce, the mobile testing
community no longer has an excuse not to thoroughly test mobile applications and
make the mobile application landscape a safer place.

8.2 Future Work

The presented work can identify vulnerabilities in mobile applications based on their
behavioral model. There is, however, ample opportunity to enrich the inferred state
machine models and apply additional vulnerability detection techniques.

80 Chapter 8 Conclusion

Model Enrichment This thesis demonstrates various techniques to enrich inferred
models. Information that is added to a model is, for example, the corresponding
Android activities for each state and the generated network traffic for each transition.
Because this thesis’ scope focused on the generation of models in the first place, the
provided proof of concept tool is not able to cover all types of vulnerabilities or data
sources that are generated by the application. The limitation, however, does not
argue that coverage of multiple data sources is not applicable at all. For example, one
of the OWASP Top 10 vulnerabilities for which detection has not been implemented,
is the category Insecure Data Storage. This type of vulnerability requires information
about file storage. The information that is required to assess file storage can be
retrieved in two ways. First of all, one could index the entire file system and observe
when changes are made to the file system. The changes can be attributed to specific
states in the model and henceforth provide a source of information that can be used
to detect the insecure data storage. The second technique that can be used to identify
file storage is searching for commands in the application code that create, update
or remove files in the system. A specific Android agent, such as Frida [41] can be
deployed to observe when commands are executed that change the file system. The
timing of the detected file change can be used to enrich the model. Both methods
provide a technique to enrich the model with information when data storage occurs,
after which an algorithm can be established that determines if the data storage is
insecure.

Model Completeness Within the extent of this research, we assume that the in-
ferred state machine model is complete, such that the model describes the behavior
of the entire application. At this moment, model completeness depends on the
completeness of the input alphabet and the quality of the equivalence oracle. One
way to measure the accuracy of model completeness is to compute the application’s
code coverage of all actions depicted in the model. If one can compute the code
coverage per action, one can guide the learning process by selection of test cases
that generate the most or new code coverage. Moreover, an equivalence algorithm
can be established that generates a counterexample from the conditions to reach
the uncovered code. This methodology has shown to be effective for the discovery
of more reachable states by Smetsers et al. in Complementing Model Learning with
Mutation-Based Fuzzing [42].

Platform Extension Another future work reference could be to apply model learning
to Apple applications. This reference requires a change in the way that an alphabet
is generated and the method where actions are mapped to the system that runs
the tests. Especially the part where actions are mapped to the system that hosts
the application are straightforward, as the Appium mapper itself can communicate
both to Android system and Apple’s iOS platforms. One use case to support both
platforms for model learning is to verify consistency between the two applications.
To reach the largest target audience, applications are written both for Android and
iOS. Because a development team is often specialized in code development for a
specific platform, the different applications are often developed separately from each
other. Although the applications are separate products, they should depict the same
behavior. Comparison of state machine models can identify differences or verify
equivalence regarding behavior.

8.2 Future Work 81

Bibliography

[1] Matthias Böhmer, Brent Hecht, Johannes Schöning, Antonio Krüger, and Gernot Bauer.
„Falling asleep with Angry Birds, Facebook and Kindle: a large scale study on mobile
application usage“. In: Proceedings of the 13th international conference on Human
computer interaction with mobile devices and services. ACM. 2011, pp. 47–56 (cit. on
p. 1).

[2] Lars Lunde Birkeland. Tesla cars can be stolen by hacking the app. https://promon.
co/blog/tesla-cars-can-be-stolen-by-hacking-the-app/. Blog. 2016 (cit. on
p. 1).

[3] Steven Arzt Stephan Huber Siegfried Rasthofer. Extracting All Your Secrets: Vulnerabili-
ties in Android Password Managers. Presentation. 2017 (cit. on p. 1).

[4] Patrick Afflerbach, Simon Kratzer, Maximilian Röglinger, and Simon Stelzl. „Analyzing
the Trade-Off between Traditional and Agile Software Development - A Cost/Risk
Perspective“. In: Wirtschafts informatic (2017) (cit. on p. 1).

[5] Peter Buxmann, Heiner Diefenbach, and Thomas Hess. The software industry: economic
principles, strategies, perspectives. Springer Science & Business Media, 2012 (cit. on
p. 1).

[6] Mohd Ehmer Khan, Farmeena Khan, et al. „A comparative study of white box, black
box and grey box testing techniques“. In: International Journal of Advanced Computer
Sciences and Applications 3.6 (2012), pp. 12–1 (cit. on p. 1).

[7] Joeri De Ruiter and Erik Poll. „Protocol State Fuzzing of TLS Implementations.“ In:
USENIX Security Symposium. 2015, pp. 193–206 (cit. on pp. 2, 76).

[8] Fides Aarts, Julien Schmaltz, and Frits Vaandrager. „Inference and abstraction of the
biometric passport“. In: Leveraging Applications of Formal Methods, Verification, and
Validation (2010), pp. 673–686 (cit. on p. 2).

[9] Dana Angluin. „Learning regular sets from queries and counterexamples“. In: Informa-
tion and computation 75.2 (1987), pp. 87–106 (cit. on pp. 2, 9).

[10] T. S. Chow. „Testing Software Design Modeled by Finite-State Machines“. In: IEEE
Transactions on Software Engineering SE-4.3 (May 1978), pp. 178–187 (cit. on pp. 3,
22, 60).

[11] KQ Lampe, JCM Kraaijeveld, and TD Den Braber. „Mobile Application Security: An as-
sessment of bunq’s financial app“. In: Delft University of Technology Research Repository
(2015) (cit. on pp. 4, 29, 36).

83

[12] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012
(cit. on pp. 7, 10).

[13] Michael J Kearns and Umesh Virkumar Vazirani. An introduction to computational
learning theory. MIT press, 1994 (cit. on p. 9).

[14] E Mark Gold. „Complexity of automaton identification from given data“. In: Information
and control 37.3 (1978), pp. 302–320 (cit. on p. 9).

[15] Malte Isberner, Falk Howar, and Bernhard Steffen. „The TTT Algorithm: A Redundancy-
Free Approach to Active Automata Learning.“ In: RV. 2014, pp. 307–322 (cit. on pp. 14,
15, 21).

[16] Therese Berg and Harald Raffelt. „Model Checking“. In: Model-Based Testing of Reactive
Systems (2005), pp. 77–84 (cit. on p. 15).

[17] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexan-
der Pretschner. Model-based testing of reactive systems: advanced lectures. Vol. 3472.
Springer, 2005 (cit. on p. 23).

[18] Arthur Gill et al. Introduction to the theory of finite-state machines. McGraw-Hill, 1962
(cit. on p. 23).

[19] Rick Smetsers, Joshua Moerman, and David N Jansen. „Minimal separating sequences
for all pairs of states“. In: International Conference on Language and Automata Theory
and Applications. Vol. 9618. Springer. 2016, pp. 181–193 (cit. on pp. 25, 28, 40).

[20] J.E. Hopcroft. „An n log n algorithm for minimizing states in a finite automaton“. In:
Theory of Machines and Computation. 1971, pp. 189–196 (cit. on p. 25).

[21] David Lee and Mihalis Yannakakis. „Testing finite-state machines: State identification
and verification“. In: IEEE Transactions on computers 43.3 (1994), pp. 306–320 (cit. on
p. 25).

[22] Harald Raffelt, Bernhard Steffen, and Therese Berg. „Learnlib: A library for automata
learning and experimentation“. In: Proceedings of the 10th international workshop on
Formal methods for industrial critical systems. ACM. 2005, pp. 62–71 (cit. on p. 29).

[23] Malte Isberner, Bernhard Steffen, and Falk Howar. „LearnLib Tutorial - An Open-
Source Java Library for Active Automata Learning“. In: Runtime Verification - 6th
International Conference, RV 2015 Vienna, Austria, September 22-25, 2015. Proceedings.
2015, pp. 358–377 (cit. on p. 29).

[24] Malte Isberner, Falk Howar, and Bernhard Steffen. „The Open-Source LearnLib - A
Framework for Active Automata Learning“. In: Computer Aided Verification - 27th Inter-
national Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part I. 2015, pp. 487–495 (cit. on p. 29).

[25] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, et al. „libalf: The Automata Learn-
ing Framework.“ In: CAV. Vol. 10. Springer. 2010, pp. 360–364 (cit. on p. 30).

[26] Mona Erfani Joorabchi and Ali Mesbah. „Reverse engineering iOS mobile applications“.
In: Reverse engineering (wcre), 2012 19th working conference on. IEEE. 2012, pp. 177–
186 (cit. on p. 30).

[27] Maik Merten, Bernhard Steffen, Falk Howar, and Tiziana Margaria. „Next generation
learnlib“. In: Tools and Algorithms for the Construction and Analysis of Systems (2011),
pp. 220–223 (cit. on p. 30).

84 Bibliography

[28] Manoj Hans. Appium Essentials. Packt Publishing Ltd, 2015 (cit. on p. 30).

[29] Dorothy Graham Rex Black Erik Van Veenendaal. Foundations of Software Testing -
ISTQB Certification. Cengage Learning EMEA, 2012 (cit. on p. 38).

[30] Wouter Smeenk, Joshua Moerman, Frits Vaandrager, and David N Jansen. „Applying
automata learning to embedded control software“. In: International Conference on
Formal Engineering Methods. Springer. 2015, pp. 67–83 (cit. on pp. 40, 76).

[31] Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. „Droidfuzzer: Fuzzing the android
apps with intent-filter tag“. In: Proceedings of International Conference on Advances in
Mobile Computing & Multimedia. ACM. 2013, p. 68 (cit. on p. 44).

[32] Jerome H Saltzer and Michael D Schroeder. „The protection of information in computer
systems“. In: Proceedings of the IEEE 63.9 (1975), pp. 1278–1308 (cit. on p. 51).

[33] Charles P Pfleeger and Shari Lawrence Pfleeger. Analyzing computer security: a
threat/vulnerability/countermeasure approach. Prentice Hall Professional, 2012 (cit. on
p. 51).

[34] Rossouw Von Solms and Johan Van Niekerk. „From information security to cyber
security“. In: computers & security 38 (2013), pp. 97–102 (cit. on p. 51).

[35] About The Open Web Application Security Project. https://www.owasp.org/index.
php/About_The_Open_Web_Application_Security_Project. Accessed: 2017-11-11
(cit. on p. 52).

[36] Mobile Top 10 2016-Top 10. https://www.owasp.org/index.php/Mobile_Top_10_
2016-Top_10. Accessed: 2017-11-11 (cit. on p. 52).

[37] William Enck, Damien Octeau, Patrick D McDaniel, and Swarat Chaudhuri. „A Study
of Android Application Security.“ In: USENIX security symposium. Vol. 2. 2011, p. 2
(cit. on p. 53).

[38] Justin Clarke-Salt. SQL injection attacks and defense. Elsevier, 2009 (cit. on p. 53).

[39] Yajin Zhou, Lei Wu, Zhi Wang, and Xuxian Jiang. „Harvesting developer credentials
in android apps“. In: Proceedings of the 8th ACM Conference on Security & Privacy in
Wireless and Mobile Networks. ACM. 2015, p. 23 (cit. on p. 54).

[40] Filip Karpisek, Ibrahim Baggili, and Frank Breitinger. „WhatsApp network forensics:
Decrypting and understanding the WhatsApp call signaling messages“. In: Digital
Investigation 15 (2015), pp. 110–118 (cit. on p. 73).

[41] Srinivasa Rao Kotipalli and Mohammed A Imran. Hacking Android. Packt Publishing
Ltd, 2016 (cit. on p. 81).

[42] Rick Smetsers, Joshua Moerman, Mark Janssen, and Sicco Verwer. „Complementing
Model Learning with Mutation-Based Fuzzing“. In: arXiv preprint arXiv:1611.02429
(2016) (cit. on p. 81).

Bibliography 85

List of Figures

1.1 Active Learning with the MAT Framework 3

2.1 Example DFA A. 8
2.2 Gradually growing observation tables corresponding to various steps of

the L* algorithm: (a) initial observation table T0, (b) observation table
T1 that is a closed and consistent version of the initial observation table,
(c) final observation table T2 describing DFA A. 11

2.3 Hypothesized conjecture DFA H0 corresponding to observation table T1
(Table 2.2b). 11

2.4 Formal progression of an incorrect conjecture: (a) inconsistent model
for distinguishing suffix v from state q, (b) consistent model after
splitting q into new states q1 and q2. 14

2.5 Discrimination Tree DT corresponding to DFA A. 16
2.6 Evolution of discrimination trees and conjectures towards learning the

DFA A with the TTT algorithm: (a): initial discrimination tree DT0,
(b) conjecture DFA H0 corresponding to DT0, (c) discrimination tree
DT1 after processing counterexample w = b, (d) the conjecture DFA H1
corresponding to DT1, (e) discrimination tree a temporary node, (f)
discrimination tree where the temporary node is pushed down. 17

2.7 The testing tree conform conjecture DFA H1. 24
2.8 (a): A′ the mealy machine representation of A (b): splitting tree

representation of A′ . 27
2.9 (a): Smetsers et al.’s example mealy machine and (b) complete splitting

tree for the mealy machine. 28
2.10 Minimal splitting tree for Smetsers mealy machine 28

3.1 A component overview of the fsm-learner’s implementation of the MAT
framework. 31

3.2 Fast forwarding of word w = w0w1w2 33

4.1 The inferred machine for the 9292 application using L* and RandomWalk 36
4.2 The Inferred Machine for the 9292 application using TTT and Ran-

domWalk . 37
4.3 The Inferred Machine for the 9292 application using TTT and Ran-

domWalk . 41
4.4 The 9292 application without a network connection 43
4.5 Cache rollback methodology to resolve observed non-deterministic

behavior. At (a) a contradiction is discovered, (b) the cache is reverted
and (c) the contradiction is resolved. 44

5.1 Proxy Setup Scenario 1 . 50
5.2 Proxy Setup Scenario 2 . 51

87

6.1 The user interface of InsecureBankv2: (a) the initial screen and (b) the
screen after successfully logging in. 64

6.2 State machine model of the InsecureBankv2 application. 65
6.3 Inferred and enriched model of the InsecureBankv2 application 67
6.4 Snippet of the network traffic caused by the InsecureBankv2 application. 67
6.5 State machine model of the benign WhatsApp application. 68
6.6 State machine model of the malicious WhatsApp application. 68

88 List of Figures

List of Tables

4.1 Statistics for active learning the inferred state machine for the 9292
application using L* and RandomWalk 36

4.2 Statistics for active learning the inferred machine for the 9292 applica-
tion using TTT and RandomWalk . 37

4.3 Statistics for Active Learning the Inferred Machine for the 9292 applica-
tion using TTT, L* and WMethod-Minimal 41

4.4 Mobile Device Configuration . 45

5.1 OWASP categories applicable for identification in models 55
5.2 Specification of the request_insecure() method 58

6.1 Learning statistics for InsecureBankv2 64
6.2 Discovered activities for InsecureBankv2 65
6.3 Learning statistics for both WhatsApp versions 69
6.4 Detected vulnerabilities for the FreeCola application 70
6.5 Detected vulnerabilities for the 9292 application 70

7.1 Definitions of True/False Positive and True/False Negative 72
7.2 The expected results versus the expected results for all applications

under test. 72

89

90 List of Tables

