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Preface

This Master’s thesis is submitted in fulfillment of the requirements for the Degree of

Master of Science in the subject of mechanical engineering at the Faculty of Mechanical,

Maritime and Materials Engineering at Delft University of Technology.

The subject of the thesis flows naturally from the composition of my Master’s track

Solid and Fluid Mechanics, with a specialization in Optimization and Computational

Engineering. The problem definition and proposed ideas arise from a combination of

practices and methods employed in solid mechanics, optimization and fluid mechanics.

The field of solid mechanics and optimization are often associated with each other

and the combination of the two proves to be very fruitful, i.e. topology optimization. In

this thesis, fluid dynamics is thrown into the mix and together the fields create a trinity

that shows great potential. I am excited to present the results.

Haarlem April 18, 2012

Johannes T.B. Overvelde
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Chapter 1

Introduction

1.1 FEM-based topology optimization

This Master’s thesis is situated in the field of topology optimization. Topology

optimization is concerned with finding the optimal material layout, in which the

optimal layout is determined according to specific performance targets. The ma-

terial layout in various fields, such as solid mechanics, fluid dynamics and thermo-

dynamics can be optimized using topology optimization. Applications of topology

optimization are for example: satellite support structure designs that weigh less

than a specified mass, yet are strong enough to carry the instruments during

launch [1]; optimization of the mixing performance of laminar static mixers [2];

two-phase composites design having maximum thermal expansion, zero thermal

expansion, or negative thermal expansion [3]; optimization of the crashworthiness

of cars, where during impact the front of the car keeps a certain acceleration and

only a certain intrusion is reached [4].

The difference between the various topology optimization problems is the phys-

ical problem, i.e. the governing differential equations and boundary conditions.

The mathematical algorithms underlying the optimization of the layout are uni-

versal. Thus, two main components of topology optimization can be distinguished:

the physical problem and the optimization problem. The interaction between both

problems is illustrated in Fig. 1.1.

Although the mathematical optimization algorithms are universal and can be

applied to various physical fields, a variety of optimization methods has been

proposed in literature. At least three main methods can be identified: the density-

based homogenization method, the Evolutionary Structural Optimization (ESO)

method and the level-set method. These three methods are discussed next.

In 1988 Bendsøe and Kikuchi [5] introduced one of the first topology opti-
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Figure 1.1: The two components of topology optimization. The physical problem is solved
and forms the input for the optimization problem. In the optimization problem the shape is
adapted to better meet the performance targets. This cycle is repeated until the optimal design
is reached.

mization methods: the homogenization method. In the homogenization method

the design space1 is covered with cells that contain a microstructure. The shape

of this microstructure is parameterized such that the cell can represent various

compositions, from completely filled with material to completely empty. With

these cells the rather difficult topology optimization problem is simplified to a

sizing problem of the microstructural parameters, in which the parameters can

vary from cell to cell. However, for some objectives the homogenization method

may not result in plausible designs. The homogenization method often produces

layouts with infinitesimal holes, which make the design difficult to fabricate.

Some variations on the homogenization method have been proposed. Espe-

cially the Solid Isotropic Material with Penalization (SIMP) method has gained

wide-spread attention [6], [7]. The power of the SIMP method lies in its con-

ceptual and computational simplicity. In this method the presence of material is

given by the density of the cells, instead of the shape of the microstructure. By

varying the normalized cell density between zero and one, material can locally

be added or removed. Penalization of intermediate density is introduced in this

formulation in order to obtain manufacturable designs. However, numerical insta-

bilities, such as checkerboard patterns, mesh-dependencies and local minima can

occur in this method [8]. In order to prevent these problems, additional measures

should be incorporated in the method. For instance, checkerboard patterns can

be prevented by minimum length scale filters.

Another topology optimization method, called the ESO method, has been

proposed in 1993 by Xie and Steven [9]. This method is based on the gradual

removal of material to achieve an optimal design. In contrast to the SIMP method,

the design space contains only material with a normalized cell density of either

1The domain in which material can be present. Note that the final layout will always be contained
inside the design space.
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zero or one, and therefore intermediate density does not exist. However, the final

design is highly sensitive to the initial design space and the size of the underlying

cell structure [10].

The level-set method, proposed in 2000 by Sethian and Weigmann [11], tries

to overcome some of the aforementioned problems such as numerical instability

and intermediate density. This method describes the varying layout of the struc-

ture with a level-set function. Material can therefore also be gradually added

in the level-set method. The removal or addition of the material occurs near the

boundaries of the design, in which the tracking of boundaries is done by a level-set

algorithm. The addition of material makes the final design less sensitive to the

initial design and the underlying cell structure. However, intermediate density

may still exist near the boundary, depending on the numerical implementation.

The physical problem can be described in terms of a partial differential equa-

tion, or a set of partial differential equations. The solution to such equations is

often found by a numerical method, when the problem is too complex to solve

analytically. All aforementioned topology optimization methods have in common

that the governing equations of the physical problem are typically solved by the

same numerical technique, called the Finite Element Method (FEM). By use of

this method the complex partial differential equations are reduced to a set of

simple linear algebraic equations.

FEM is based on the discretization of the domain Ω and its boundary Γ by

a mesh. To create the mesh, nodes are distributed in the domain Ω and on its

boundary Γ. These nodes are connected with each other through elements. Thus,

the domain is discretized with a fixed interconnection between the nodes. As an

example, a triangular mesh of a two-dimensional domain is shown in Fig. 1.2a.

However, some difficulties arise when using a mesh. It is for instance difficult

to determine a good robust mesh, especially in three-dimensional domains [12].

Also, in large deformation and displacement problems, the mesh will deform and

become less reliable. Remeshing is used to solve this problem, although it is

computationally time consuming [13], [14]. Another problem for which standard

FEM is not well suited, is the propagation of cracks in solids [15].

1.2 Meshless method-based topology optimization

To overcome some difficulties that arise when using FEM, meshless discretization

techniques have been applied. These techniques are also called meshless methods.

3



Ω

Γ

(a) Typical FEM discretization

Ω

Γ

(b) Typical meshless method discretization

Figure 1.2: Typical FEM and meshless method discretization of a rectangular domain Ω and
its boundary Γ (black line). The domain is discretized using nodes (blue circles). For the FEM
discretization the element boundaries are in red. For the meshless method discretization the
boundary of the influence or local domain is given in red.

In these methods the simple linear algebraic equations are constructed entirely

in terms of nodes.2 These nodes have no fixed elements connecting each other,

in contrast the connections are simply formed between neighboring nodes. In

Fig. 1.2b a discretized rectangular domain Ω and its boundary Γ are shown. The

influence domain of nodes, which determines the connections between neighboring

nodes, is also shown.

One of the first meshless methods, called the Smoothed Particle Hydrodynam-

ics (SPH) method, was constructed in 1977 by Gingold and Monaghan [17] and

independently by Lucy [18]. This method was first created for modeling astrophys-

ical phenomena, and later to model fluid dynamic problems. The first attempt

to model solid mechanics (impact) problems was by Libersky [19] in 1993. The

SPH method is based on the strong form notation of partial differential equations

(hereafter: strong form) [20], [21]. The strong form in solid mechanics contains

second order derivatives, and therefore the discretization becomes troublesome.

Other methods were developed in the early 1990’s. These methods are based on

the weak form notation of partial differential equations (hereafter: weak form) [20],

[21]. For the weak form there is no necessity to discretize second order derivatives.

The first developed method based on the weak form, and mainly applied to solid

mechanics, is the Element-free Galerkin (EFG) method [12]. Although the EFG

method does not require a mesh to give relations between nodes, a background

mesh is necessary for the evaluation of the integrals present in the weak form.

2The term ‘node’ will be used throughout this thesis, although in some literature the terminology
‘particle’ is used instead [16], [17].
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More recently, in 1998, Atluri and Zhu proposed a different method called

the Meshless Local Petrov-Galerkin (MLPG) method, which is based on the local

weak form [22]. In this method, the integrals present in the local weak form are

evaluated on sub-domains, therefore no background mesh is needed.

The EFG and MLPG methods are some of the most common methods. Ob-

viously, these are not the only available meshless methods. A more complete

overview of meshless methods is provided in the work of Nguyen et al [14]. How-

ever, to limit the scope, this thesis focusses on the EFG and MLPG mixed collo-

cation method.

During the last decade, meshless methods have also been applied to discretize

and solve the physical problem in topology optimization. As a proof of concept,

various meshless methods have been applied to discretize the governing equations

of linear physical problems with the use of the SIMP method [23], [24], [25], [26],

ESO method [13] and the level-set method [27], [28], [29], [30], [31], [32]. The mesh-

less SIMP method has also been applied to intricate non-linear problems [33], [34],

[35], [36], elucidating the capabilities of meshless methods in topology optimiza-

tion. In principle, these meshless method-based topology optimization methods

have been introduced to increase the capabilities of topology optimization for use

in non-linear physical problems. In these topology optimization applications, the

meshless methods have been used as a direct replacement of FEM, in which the

nodal distribution remained unchanged during the optimization process.

1.3 Flow-inspired meshless method-based topology opti-

mization

A possible alternative to topology optimization methods based on regular nodal

distributions, might be generated from the field of fluid dynamics. In fluid dy-

namics, the governing partial differential equations are usually expressed in the

Eulerian form, i.e. at each coordinate in the problem domain Ω the fluid velocity

and density are tracked [37]. This approach works well for problems in which

the complete problem domain Ω consists of one type of fluid. However, for free

surface, multi-phase and mixing flows the Eulerian description of the fluid is un-

suitable. A Lagrangian form of the governing partial differential equations is more

compatible with these types of boundary flows [16].

New developments in discretization techniques depart from a Lagrangian for-

mulation of the governing equations. In the Lagrangian form, the fluid is modeled

5



Figure 1.3: Fluid flow around a moving propeller, found with the SPH method. The results
have been obtained by Femto Engineering [38].

as mass-containing nodes, which can move through the problem domain Ω. Since

the mass is fixed to these nodes, it is much simpler to combine fluids and multiple

phases. The meshless SPH method is often used, in order to solve the governing

partial differential equations in the Lagrangian form. Fig. 1.3 shows an instanta-

neous SPH image of a fluid flow.

Comparable to the Eulerian form in fluid dynamics, are the topology optimiza-

tion methods based on fixed and regular discretizations of the problem domain. In

these approaches, the presence of material is determined at every coordinate in the

design space. For the SIMP, ESO and level-set methods the amount of material

at every coordinate depends on the coordinate density, which can either take on

continuous or discrete values. In the Eulerian approach, this coordinate density

is mostly used as the design variable in the topology optimization problem.

This leaves open the possibility to investigate the opportunities of a flow-

inspired Lagrangian approach in topology optimization. Such a flow-inspired ap-

proach could result in a topology optimization method in which the density is

determined from the position of the mass-containing nodes. The design variable

for the Lagrangian approach is then not the density, but the nodal position. The

layout of the problem domain Ω could possibly be transformed by moving the

nodes through the design space. Although this approach has not been the subject

of discussion in literature, it could possibly provide in exciting new openings in

topology optimization.

6



Figure 1.4: Normalized density of two constructed nodal distributions illustrating the MNA
concept, where the nodes are depicted as the blue circles. Material (white area) exist around
the nodes, and no material is present at the black areas. Grey areas contain intermediate density.

The question is then:

What are the opportunities for a flow-inspired moving node approach in topology

optimization?

This thesis explores the possibility of a flow-inspired meshless method-based ap-

proach in topology optimization. By employing the position of the nodes as de-

sign variables in the topology optimization method, this approach could possibly

provide for exciting new opportunities in topology optimization. The topology

optimization problem then transforms into a flow-like problem, in which the ma-

terial moves to a more optimal distribution. An example of a change in layout

by the redistribution of nodes is shown in Fig. 1.4. This concept is comparable

to replacing the mesh in CFD by mass-containing nodes in an SPH setting. The

featuring characteristic of this newly proposed meshless method-based topology

optimization method is its moving node approach. Therefore, in this thesis this

newly proposed topology optimization method will be referred to as the Moving

Node Approach (hereafter: MNA).

1.4 Thesis structure

The focus of this thesis is the exploration of a flow-inspired topology optimization

method and the assessment of its potential. To highlight this newly proposed

method, only the optimization of the layout of well established and relatively sim-

ple physical problems is considered in this thesis. More specifically, the employed

physical problem is the two-dimensional linear elastic solid under force loading

7



(hereafter: linear elasticity problem).

Since the MNA method will be based on meshless methods, it is of key impor-

tance to dissect relevant characteristics of widely used meshless methods. To gain

better insight in meshless methods, two different meshless methods, respectively

the EFG and MLPG mixed collocation method, are investigated. Therefore, in

Chap. 2 the linear elasticity problem is discretized and an exemplary problem is

solved using these two meshless methods. Furthermore, a convergence study on

the accuracy of both meshless methods is performed.

In Chap. 3 the meshless method with the highest potential is tested further in

order to explore the effect of the nodal distribution on the accuracy of the solution

and on the material distribution. The favorable properties of the meshless method

that can be utilized in the formulation of the MNA in topology optimization are

determined from exemplary problems. Moreover, additional conditions on the

nodal distribution are determined.

Chap. 4 will choose and adapt an existing meshless method in order to solve the

physical problem and effectively be able to move the material layout in MNA. The

material distribution in the meshless method is altered by introducing a material

density defined by the nodal compaction. Moreover, in this chapter the favorable

characteristics of this material distribution are determined.

Finally, in Chap. 5 the observations and alterations from previous chapters are

applied to propose an MNA topology optimization algorithm. This algorithm is

then used to determine the optimal shape of some exemplary problems. Based on

these findings favorable characteristics of the MNA are derived.

8



Chapter 2

Meshless Methods

In this chapter meshless method-based discretization techniques are discussed.

To gain better insight in meshless methods, the workings of two distinct meshless

methods, respectively the EFG and MLPG mixed collocation method, are investi-

gated. Sec. 2.1 discusses the approximations methods used in meshless methods.

In Sec. 2.2 the linear elasticity problem is discretized using both the EFG and

MLPG mixed collocation method. Next, in Sec. 2.3 the aforementioned meshless

methods are applied to the exemplary problem of a two-dimensional cantilever

beam and the specific characteristics of both methods are discussed. Finally, in

Sec. 2.4 the favorable characteristics of meshless methods for the MNA in topology

optimization are discussed.

2.1 Approximation methods

Sec. 2.1 introduces approximation methods, which are at the base of most dis-

cretization techniques. It is essential to have a clear understanding of approxima-

tion methods, in order to be able to use meshless methods. Here, three different

approximation methods are discussed: FEM approximations (Sec. 2.1.1), kernel

approximations (Sec. 2.1.2) and Moving Least Squares (MLS) approximations

(Sec. 2.1.3). In order to provide insight in their workings, a general notation is

introduced as well as an exemplary problem in order to demonstrate how the

approximation methods function.

General notation

The three aforementioned approximation methods share a general notation which

is also used in FEM. A continuous scalar function u(x) and its derivative u,j(x) can

9



be approximated with a finite number of known scalar function values u(xI) = uI ,

where I = 1...n and n is the number of coordinates xI . These coordinates xI for

which the scalar function is known are called the nodes. Here, x is the vector

containing the coordinates xi for i = 1...l for a l-dimensional domain, and the

subscript , j is the notation for the derivative with respect to coordinate xj. At

each node I a shape function ϕI(x) is defined, in order to interpolate between

the known scalar values at each node uI and to find the approximated scalar

value and its derivative for all x. The weight of each shape function is given by

uI = u(xI), where the weight determines the contribution of each shape function

to the total approximation. The approximation of the continuous scalar function

u(x) is written as

u(x) ≈ uh(x) =
n∑
I=1

ϕI(x)uI (2.1)

and the approximation of the derivative u,j(x) equals

u,j(x) ≈ uh,j(x) =
n∑
I=1

ϕI,j(x)u
I , (2.2)

where ϕI(x) is the value of the shape function belonging to node I at coordinate

x, and ϕI,j(x) is the value of the derivative in direction xj of the shape function

from node I at coordinate x.

One-dimensional exemplary problem

Although the three approximation methods share a general notation, they dif-

fer in their shape functions. Sec. 2.1.1, Sec. 2.1.2 and Sec. 2.1.3 elaborate on

these distinctions. To exemplify these dissimilarities in the shape functions of the

approximations, the following one-dimensional problem is used.

The problem domain Ω is given by a line of length L = 10. The coordinates of

the domain are given by x. The boundary Γ is given by the outer left coordinate

x = 0 and the outer right coordinate x = L. At each coordinate a scalar function

u(x) and its derivative u,x(x) are respectively defined by

u(x) = − [L− x]2 + L2 +
L2

4
cos

[
6πx

L

]
(2.3)
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Figure 2.1: Scalar function u(x) and derivative of scalar function u,x(x) from Eq. 2.3 and Eq. 2.4.
The nodal values uI are also shown. The blue integers indicate the node numbers.

xI−1 xI xI+1

φI(x)

Figure 2.2: Shape function ϕI (red line) for node I. Node I and its neighboring nodes are
depicted as blue circles.

and

u,x(x) = 2 [L− x]− 6πL

4
sin

[
6πx

L

]
. (2.4)

The scalar function u(x) and its derivative u,x(x), can be approximated using the

values at a finite number of nodes. In the introduced one-dimensional problem,

the domain Ω is discretized by sixteen nodes, which are equally spaced. The scalar

function at each node is known, and is given by u(xI) = uI for I = 1...16. The

nodes, u(x) and u,x(x) are shown in Fig. 2.1.

2.1.1 FEM approximation

In order to create the shape function in FEM, connections between nodes need to

be assigned. The total collection of connections is also called the mesh. To mesh

the domain in the one-dimensional problem (shown in Fig. 2.1), neighboring nodes

need to be connected. This results in fifteen elements, where a single element is a

connection between two nodes.
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Figure 2.3: Approximation of the scalar function uh(x) and the derivative of the scalar function
uh
,x(x) from (2.3) and (2.4) with FEM.

Now that the mesh is assigned, the shape function of each node can be con-

stituted. The simplest shape function in FEM is the linear shape function. The

value of this shape function equals one at the corresponding node and zero at

other nodes. Linear interpolation is applied between the corresponding node and

the nodes that are connected through elements [21], [20]. Fig. 2.2 shows the linear

shape function used in FEM. Once the shape function for each node is known,

the derivative of each shape function can be determined by simple taking the

derivatives of the linear interpolation functions.

At this point, the scalar values uI , the shape functions ϕI(x) and the derivative

of the shape functions ϕI,x(x) are known for all nodes (I = 1...n). From Eq. 2.1

and Eq. 2.2 the approximation of uh(x) and uh,x(x) can be determined and are

shown in Fig. 2.4. The figure displays uh(xI) = uI , which is called the Kronecker

Delta property [39], [40], [41].1 The approximation of the scalar function uh(x)

closely follows the scalar function u(x). However, because the derivative of the

shape function is discontinuous, the approximation of the derivative of the scalar

function uh,x(x) is not very accurate. By increasing the number of nodes in the

mesh, the approximation of both uh(x) and uh,x(x) will become more accurate,

although discontinuities in the derivative will always exist. A solution to these

discontinuities is the use of higher order shape functions.

1Although this property applies to FEM, meshless methods do in general not share this characteristic.
This will be further discussed in Sec. 2.1.2 and Sec. 2.1.3.
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(a) Influence and support domain in FEM

ΩI Ωx
x

(b) Influence and support domain in meshless
methods

Figure 2.4: One-dimensional nodal distribution (circles) and their typical FEM and meshless
method shape functions. For the node indicated by the black dot, the influence domain ΩI is
shown. The support domain Ωx of coordinate x is also shown.

Local characteristic of FEM

A characteristic of the shape functions in FEM is their local influence. The shape

function ϕI(x) is only unequal to zero if x lies on an element connected to node

I. Fig. 2.2 shows this local influence for a one-dimensional case. For each node I

the influence domain ΩI is a sub-domain of the total domain Ω, where the shape

function ϕI(x) is unequal to zero. For FEM this domain ΩI is the area covered

by the elements connected to node I. Thus, there are n defined influence domains

ΩI in the total domain Ω. For each coordinate x, a support (or support domain)

is given by Ωx. The support Ωx of coordinate x consists of all nodes for which

the shape function is unequal to zero. Fig.2.4a shows the influence domain and

support domain for a one-dimensional FEM approximation.

Although the definition of these domains seems rather thorough for FEM,

meshless methods require a proper understanding of the influence domain ΩI of

node I and support domain Ωx of coordinate x. With this characteristic con-

cerning locality, the summation in Eq. 2.1 and Eq. 2.2 can in FEM be reduced

to

u(x) ≈ uh(x) =
k∑

J=1

ϕJ(x)uJ (2.5)

and

u,j(x) ≈ uh,j(x) =
k∑

J=1

ϕJ,j(x)u
J , (2.6)

where J = 1...k are the nodes in the support Ωx of coordinate x.
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2.1.2 Kernel approximation

In the previous discussed FEM approximation (Sec. 2.1.1) a mesh needs to be

assigned in order to be able to calculate the shape functions for each node. The

kernel approximation is an approximation method in which there is no mesh

required. The kernel approximation is used in the meshless method called the

SPH method, which was the first existing meshless method [17], [18]. A clear

description of the kernel approximation is given in the work of Liu and Liu [16].

Their work gives a thorough and clear description of the SPH method. Therefore

it is used as a guideline to explain the kernel approximation.

Basic approximation

A scalar function u(x) can be represented by the following integral notation:

u(x) =

∫
Ω

u(x′)δ(x− x′)dx′ with δ(x− x′) =

{
1 x = x′

0 x ̸= x′ . (2.7)

Here δ(x−x′) is called the Dirac delta function. Eq. 2.7 is an exact representation

of u(x). An approximation of the scalar function uh(x) can be found by smoothing

a finite number of known values u(xI) = uI , where I = 1...n. To be able to

smooth the known values in Eq. 2.7, the Dirac delta function is replaced by a

kernel function W (x− x′, d), and the integral is replaced by a summation of the

known scalar values uI . The approximation of u(x) is then

u(x) ≈ uh(x) =
n∑
I=1

W (x− xI , d)
mI

ρ(x)
uI , (2.8)

where mI is the a specified weight of each node, ρ(x) is the density at coordinate

x and d is a parameter specifying the size of the influence domain ΩI of the kernel

function. The properties of the kernel function will be discussed below. The

density ρ(x) is determined using the summation density approach, which equals

ρ(x) =
n∑
J=1

mJW (x− xJ , d). (2.9)

This approach specifies that the density at each coordinate is the weighted average

of mI . Eq. 2.8 can be rewritten in the general form (Eq. 2.1) that is used in
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approximation methods:

uh(x) =
n∑
I=1

ϕI(x)uI with ϕI(x) =
mIW (x− xI , d)∑n
J=1m

JW (x− xJ , d)
. (2.10)

The derivative of the approximation then becomes

uh,j(x) =
n∑
I=1

ϕI,j(x)u
I (2.11)

with

ϕI,j(x) =
mIW,j(x− xI , d)∑n
J=1m

JW (x− xJ , d)
− ϕI(x)

∑n
K=1m

KW,j(x− xK , d)∑n
J=1m

JW (x− xJ , d)
. (2.12)

Properties of the kernel function

For a accurate approximation uh(x) of the scalar function u(x), the kernel function

W (x− x′, d) should have three properties. The first property is defined by∫
Ω

W (x− x′, d)dx′ = 1, (2.13)

which is called the unity condition. It implies that integration of the kernel func-

tion should produce unity. The second property is called the compact condition.

For each node I an influence domain ΩI is defined. The weight function of node

I is zero outside this domain. This condition can be written as

W (x− xI , d) = 0 outside ΩI . (2.14)

Only for coordinates x that lie within the influence domain of node I, the scalar

value uI has an influence on the approximation. In accordance with this condition,

the summation in Eq. 2.11 is reduced to a summation over the nodes in the support

Ωx of coordinate x. The third and final property is the delta function condition:

lim
d→0

W (x− xI , d) = δ(x− x′). (2.15)

This condition ensures that for coordinates x closer to a node, the value of the

kernel function is higher. Moreover, for smaller influence domains ΩI , the kernel

function resembles the Dirac delta function more closely. According to Eq. 2.7 this

results in a better approximation. However, reducing the influence domain size d

is only possible if there are enough nodes in the support domain Ωx of coordinate
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x.

A normalized kernel function, that satisfies these aforementioned three condi-

tions, is the cubic spline weight function [14], [42], [43]:

W (x− xI , d) = W (r) = α


2
3
− 4r2 + 4r3 if 0 ≤ r ≤ 1

2
4
3
− 4r + 4r2 − 4

3
r3 if 1

2
≤ r ≤ 1

0 otherwise

. (2.16)

The derivative of the cubic spline weight function equals

W,r(r) = α


−8r + 12r2 if 0 ≤ r ≤ 1

2

−4 + 8r − 4r2 if 1
2
≤ r ≤ 1

0 otherwise

, (2.17)

where r is the normalized distance and α is a constant depending on the dimension

and shape of the kernel function. In general, α is chosen in such a way that the

unity condition from Eq. 2.13 is satisfied. However, because the summation den-

sity approach from Eq. 2.9 is used, the final approximation becomes independent

of α.

In a one-dimensional domain, the normalized distance r is chosen such that

r =
|x− xi|

d
. (2.18)

In accordance with this equation, the influence domain ΩI of node I is given by

−d ≤ xI ≤ d. A one-dimensional example of the cubic spline weight function

and its derivative, is shown in Fig. 2.5. Moreover, Fig. 2.4b shows the influence

domain and support domain for a one-dimensional Kernel approximation.

In a two-dimensional domain, the influence domain of a node can adopt any

shape. However, commonly used influence domains are circular or rectangular.

The kernel function for a circular influence domain ΩI is

W (x− xI , d) =W (r) (2.19)

and the derivative is

W,j(x− xI , d) = W,j(r) = w,r(r)r,j, (2.20)

where , j is the derivative with respect to the xj direction and r =
||x−xI||

d
. For a
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W,
r
(r)

xI−1 xI xI+1

d

(b) W,r(r)

Figure 2.5: A one-dimensional example of the spline kernel function and its derivative. The size
of the support domain is equals 2d.

rectangular influence domain ΩI the kernel function equals

W (x− xI , d) =W (r1, d1d)W (r2, d2d) (2.21)

and the derivatives equal

W,1(x− xI , d) =W,1(r1)W (r2) = W,r1(r1)r1,1W (r2) and

W,2(x− xI , d) =W (r1)W,2(r2) = W (r1)W,r2(r2)r2,2, (2.22)

where rj =
|xj−xIj |
djd

for j = 1, 2 and d1d and d2d are respectively the sizes of the

domain in the x1 and x2 direction. d1 and d2 are values determined from the

average node distance in de x1 and x2 direction. The size of the influence domain

ΩI alters when varying the parameter d.

An example of a problem domain Ω is shown in Fig. 2.6. In this figure both

circular and rectangular influence domains are shown. The size d of the rectangu-

lar domain should be chosen such that the total domain Ω is completely covered

by the sum of the local influence domains.

Solution to the one-dimensional exemplary problem

The kernel approximation is applied to the one-dimensional problem as shown

in Fig. 2.1. Because the kernel approximation is a meshless method, there is no

need for a mesh. Instead, the size d of the influence domain is provided for each

node. For simplicity, the influence domain is chosen to be similar for each node,

where d = 2. According to the approximation in Eq. 2.10, a weight m needs to be
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Ω

Γ

(a) Circular influence domains

Ω

Γ

(b) Rectangular influence domains

Figure 2.6: Example of a rectangular problem domain Ω and boundary Γ. The domain is
discretized with nodes (blue circles), each having an influence domain depicted in red.

assigned to each node. This weight is chosen to be the same for each node. The

cubic spline function from Eq. 2.16 is used as the weight function.

Next, the scalar function u(x) from Eq. 2.10 and its derivative u,x(x) from

Eq. 2.11 are approximated and shown in Fig. 2.7. This figure clearly shows that

the approximation of the scalar function u(x) is continuous, but does not satisfy

the Kronecker delta criterion i.e., uh(xI) ̸= uI . Although the approximation does

not satisfy this criterion, the approximation is still reasonably good. However,

near the boundaries of the domain Ω, the derivative of the approximation u,x(x)

is inaccurate. Since the derivative is often used in meshless methods, the accu-

racy of the approximation needs to be improved. In order to do so, an other

approximation method that reduces these inconsistencies near the boundaries is

explained in Sec. 2.1.3.

2.1.3 MLS approximation

The previously explained kernel approximation (Sec. 2.1.2) does not require a

mesh, however the derivative of the approximation shows inconsistencies near

the boundaries of the domain Ω. The MLS approximation is in fact, a more

general formulation of the kernel approximation, in which these inconsistencies

are reduced. Originally, the MLS approximation was created for fitting a smooth

curve through a set of points, but nowadays the most common application is

probably the meshless EFG method [14], [15], [12].
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Figure 2.7: Approximation of a scalar function u(x) and the derivative of the scalar function
u,x(x) with the kernel approximation. The size of the influence domain ΩI around each node is
specified by d = 2.

Basic approximation

A scalar function u(x) can be approximated with a finite number of n nodes, for

which the scalar value u(xI) = uI is known (in which I = 1...n). The approxima-

tion is defined by

u(x) ≈ uh(x) =
m∑
l=1

pl(x)al(x) = pT(x)a(x), (2.23)

where p(x) is a vector containing monomials, m is the number of monomials in

p(x) and a(x) is a vector containing m coefficients. Two examples of a monomial

basis p(x) are the linear basis

p(x) =
[
1 x

]T
1D m = 2

p(x) =
[
1 x y

]T
2D m = 3 (2.24)

and the quadratic basis

p(x) =
[
1 x x2

]T
1D m = 3

p(x) =
[
1 x y x2 y2 xy

]T
2D m = 6. (2.25)

To determine the coefficients in a(x), a weighted least square fit is performed

around coordinate x. The weighted least square fit is found by minimizing a
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weighted discrete L2 norm, in which the norm equals

J(x) =
k∑
I=1

W (x− xI , d)
[
pT(xI)a(x)− uI

]2
. (2.26)

Here, xI are the coordinates of the nodes and W (x− xI , d) is a kernel function.

The properties of the kernel function are discussed in detail in Sec. 2.1.2. Note

that the summation over all n nodes in domain Ω, can be reduced to a summation

over the k nodes in the support Ωx of coordinate x. This can be assumed since

the kernel function W (x − xI , d) has compact support. Eq. 2.26 is rewritten as

follows:

J(x) = [Pa(x)− u]T W (x) [Pa(x)− u] , (2.27)

with

u =

u1...
un

 , P =

p1(x1) · · · pm(x1)
...

. . .
...

p1(xn) · · · pm(xn)

 and

W (x) =


W (x− x1, d) 0 · · · 0

0 W (x− x2, d) · · · 0
...

...
. . .

...

0 0 · · · W (x− xn, d)

 . (2.28)

The values of the coefficients a(x) are found by minimizing the discrete L2

norm. The minimum is determined by taking the derivative of the functional

J(x) with respect to each term in a(x) and equal to zero i.e., ∂J(x)
∂al(x)

= 0 for

l = 1...m:

k∑
I=1

W (x− xI , d)2p(xI)
[
pT(xI)a(x)− uI

]
= 0 (2.29)

or

k∑
I=1

W (x− xI , d)p(xI)pT(xI)a(x) =
k∑
I=1

W (x− xI , d)p(xI)uI . (2.30)

Eq. 2.30 can be rewritten in matrix notation as

A(x)a(x) = B(x)u, (2.31)
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with

A(x) = P TW (x)P =
k∑
I=1

W (x− xI , d)p(xI)pT(xI) (2.32)

and

B(x) = P TW (x) =
k∑
I=1

W (x− xI , d)p(xI). (2.33)

The coefficients a(x) are found by solving Eq. 2.31 according to

a(x) = A−1(x)B(x)u. (2.34)

The approximation from Eq. 2.23 can be rewritten by substituting the vector

a(x) with Eq. 2.34. With the use of the general formulation for the approximation

(Eq. 2.1), Eq. 2.23 becomes

uh(x) = pT(x)A−1(x)B(x)u =
k∑
I=1

ϕI(x)uI , (2.35)

where the shape function ϕI(x) equals

ϕI(x) = pT(x)A−1(x)W (x− xI , d)p(xI)

= cT(x)W (x− xI , d)p(xI) (2.36)

with

c(x) = A−1(x)p(x). (2.37)

The derivative u,j(x) of a scalar function u(x) is found according to Eq. 2.2.

Thus, in the MLS approximation it is only necessary to take the derivative of the

shape function from Eq. 2.36, which equals

ϕI,j(x) = cT,j(x)W (x− xI , d)p(xI) + cT(x)W,j(x− xI , d)p(xI) (2.38)

with

c,j(x) =
[
A−1

]
,j
(x)p(x) +A−1(x)p,j(x)

= −A−1(x)A,j(x)A
−1(x)p(x) +A−1(x)p,j(x)

= −A−1(x) [A,j(x)c(x) + p,j(x)] , (2.39)
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in which the derivative of the kernel function can be calculated analytically (see

Sec. 2.1.2) and the derivative of p(x) is simply a vector containing the derivative

of each individual term.

Similarity between MLS and kernel approximation

As mentioned before, the MLS approximation is a more general formulation of

the kernel approximation. However, the formulations of the shape functions given

in Eq. 2.10 and Eq. 2.36 apparently do not match. In one particular case, the

formulation of the shape function in the MLS and kernel approximation coincide.

This is explained below, starting from the MLS shape function.

Consider the monomial vector p(x) to contain a constant i.e., p(x) = 1.

Eq. 2.36 is then written as

ϕI(x) = pT(x)A−1(x)W (x− xI , d)p(xI) = A−1(x)W (x− xI , d). (2.40)

Next, Eq. 2.32 can be written as

A(x) =
k∑

J=1

W (x− xJ , d)p(xJ)pT(xJ) =
k∑

J=1

W (x− xJ , d). (2.41)

When combining these two equations, this results in

ϕI(x) =
W (x− xI , d)∑k
J=1W (x− xJ , d)

. (2.42)

The shape function in the kernel approximation (Eq. 2.10) has previously been

defined as

ϕI(x) =
mIW (x− xI , d)∑k
J=1m

JW (x− xJ , d)
. (2.43)

The formulation of the MLS shape function and kernel shape function in Eq. 2.42

and Eq. 2.43 coincide when the weight m for each node equals one. In conclusion,

the simplest form of the MLS approximation is the kernel approximation. The

MLS approximation provides more consistent results when increasing the number

of terms in the monomial vector p(x).

Solution to the one-dimensional exemplary problem

The MLS approximation is used to approximate the scalar function u(x) and its

derivative u,x(x) from Fig. 2.1. Although no mesh is required, the size d of the
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Figure 2.8: MLS shape function ϕI for the center node I = 8 for d = 2, 3, 4 and shape functions
ϕI for all nodes, i.e. I = 1...16, and d = 2.

influence domain of the kernel function has to be given. This size will affect the

accuracy of the approximation. Therefore, the approximation from Eq. 2.3 is

compared for different sizes d = 2, 3, 4. The choice of monomials in p(x) also

affects the approximation, therefore a linear and quadratic basis are compared

as well. The cubic spline weight function is chosen as the kernel function (see

Sec. 2.1.2).

First, the shape function corresponding to the center node I = 8 is shown in

Fig. 2.8 for d = 2, 3, 4 and a linear monomial basis. The shape function for each

node is also given, with d = 2. Since the number of nodes decreases near the

boundary, the values of the shape function increase near the boundary.

By the use of the shape functions and their derivatives, the scalar function

Eq. 2.3 and its derivative Eq. 2.4 are approximated with a discrete number of

nodes according to Eq. 2.35. The approximations of the scalar function and its

derivative are shown in Fig. 2.9a and Fig. 2.9b, with d = 2, 3, 4 and a linear

basis. In Fig. 2.9c and Fig. 2.9d the approximations of the scalar function and

its derivative are shown, with d = 3 and a linear or quadratic basis. Note that

for the MLS approximation, the Kronecker delta criterion uh(xi) = ui does not

hold. This can be seen in Fig. 2.9a and Fig. 2.9c, where the approximation does

not intersect the scalar values at the nodes.

2.2 Discretization of the linear elasticity problem

This section introduces two meshless methods, which are based on the MLS ap-

proximation (Sec. 2.1.3). The MLS approximation is utilized to discretize the

governing equations for a linear elastic two-dimensional solid. However, there are
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Figure 2.9: The approximation of the scalar function u(x) and its derivative uh
,x(x) with the

MLS approximation. Both functions are given in Eq. 2.3 and Eq. 2.4. The domain is discretized
with sixteen equally spaced nodes, and the approximation is calculated for different meshless
parameters d and monomial basis p.

24



several forms of these linear elastic equations, and this is exactly where the two

meshless methods differ from each other. Sec. 2.2.1 discusses the EFG method,

developed by Belytschko et al. [12]. This method is based on the weak form

of the linear elastic equations and requires a background mesh for the integra-

tion. Sec. 2.2.2 discusses the more recent MLPG method, developed by Atluri

and Zhu [40], [22]. The MLPG framework is based on a local weak form of

the linear elastic equations. To avoid integration, the mixed collocation form is

adopted [41], [39].

2.2.1 EFG method

The EFG method was proposed in 1994 by Belytschko et al. [12]. The formulation

of the EFG method has undergone some slight changes in order to be suitable for

multiple applications [14], [15], [13], [44]. In the EFG method, the linear elastic

equations are discretized by utilizing the MLS approximation. In this section, first

the linear elastic equations and the weak form on which the EFG method will be

applied are recalled. Second, the linear elastic equations are discretized using

the EFG method. The enforcement of essential boundary conditions is discussed

next. Finally, the evaluation of the integrals present in the discretized equations

is discussed.

Linear elastic equations

The governing equations for a linear elastic solid, which occupies a domain Ω

bounded by Γ, are given by
LTσ + b = 0 in Ω

σn = t̄ on Γt

u = ū on Γu

, (2.44)

where L is the differential operator, σ is the stress vector, b is the body force

vector, n is the normal vector on boundary Γt, t̄ is the prescribed traction on

boundary Γt, u is the displacement vector and ū is the prescribed displacement

on boundary Γu. In two dimensions the vectors and matrices are

u =

[
u1(x)

u2(x)

]
, σ =

σ11(x)σ22(x)

σ12(x)

 , b =

[
b1(x)

b2(x)

]
, ū =

[
ū1(x)

ū2(x)

]
, t̄ =

[
t̄1(x)

t̄2(x)

]
,
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n =

[
n̄1(x)

n̄2(x)

]
and L =

∂/∂x1 0

0 ∂/∂x2

∂/∂x2 ∂/∂x1,

 (2.45)

where x =
[
x1 x2

]T
. For a two-dimensional linear isotropic plain stress material,

the constitutive equations are

σ = Dϵ with D =
E

1− ν2

1 ν 0

ν 1 0

0 0 1

 and ϵ = Lu, (2.46)

where ϵ is the strain in the material, D is a matrix containing the material

properties, E is the Young’s modulus and ν is the Poisson’s ratio.2

The EFG method is based on the weak form of Eq. 2.44, which can be found

by applying the principle of minimal potential energy [20]. The weak form is

determined by multiplying the linear elasticity equations with a test function v

and integrating this multiplication over the problem domain Ω:∫
Ω

{vTLTσ + vTb}dΩ = 0 (2.47)

or ∫
Ω

[Lδu]TD [Lu] dΩ−
∫
Ω

δuTbdΩ−
∫
Γt

δuTt̄dΓ = 0, (2.48)

where in the EFG method the test function v is chosen to be similar to the

displacement u and δu corresponds to infinitesimal variations of the displacement.

Discretization of the weak form

An approximation of the displacement u is found by discretizing Eq. 2.47 with

the MLS approximation (Sec. 2.1.3). With the use of the general formulation for

the shape functions (Eq. 2.1), the approximation of the displacement is written

as

u =

[
u1(x)

u2(x)

]
≈

[
uh1(x)

uh2(x)

]
=

[∑k
I=1 ϕ

I(x)ûhI1∑k
I=1 ϕ

I(x)ûhI2

]
=

k∑
I=1

ΦIûhI

2Further in the text the two-dimensional linear isotropic plain stress linear elasticity equations will be
referred to as the linear elasticity equations.
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=

[
ϕ1(x) 0 . . . ϕk(x) 0

0 ϕ1(x) . . . 0 ϕk(x)

]

ûh11
ûh12
...

ûhk1
ûhk2

 = Φûh, (2.49)

with

ΦI =

[
ϕI(x) 0

0 ϕI(x)

]
and ûhI =

[
ûhI1
ûhI2

]
. (2.50)

Here, ûh is the vector containing the approximated nodal displacement ûhIi (for

i = 1, 2 and I = 1...k) and Φ is the matrix containing all shape functions at x of

the nodes within the support domain Ωx. In the MLS approximation the shape

functions are given by Eq. 2.36.3 Similarly, the infinitesimal displacement δu is

approximated according to

δu ≈
k∑
I=1

ΦIδûhI with δûhI =


δûh11
δûh12
...

δûhk1
δûhk2

 . (2.51)

The derivative of the displacement Lu is approximated as

Lu ≈ LΦûh =

∂/∂x1 0

0 ∂/∂x2

∂/∂x2 ∂/∂x1

[
ϕ1(x) 0 . . . ϕk(x) 0

0 ϕ1(x) . . . 0 ϕk(x)

]

ûh11
ûh12
...

ûhk1
ûhk2



=

ϕ1
,1(x) 0 . . . ϕk,1(x) 0

0 ϕ1
,2(x) . . . 0 ϕk,2(x)

ϕ1
,2(x) ϕ1

,1(x) . . . ϕk,2(x) ϕk,1(x)



ûh11
ûh12
...

ûhk1
ûhk2


3The formulation of the MLS approximation from Eq. 2.36 is slightly altered, i.e. uI

i is replaced with
ûhI
i . The approximation in the EFG method is not based on smoothing the exact nodal displacement,

but it smoothes an approximated nodal displacement, which is found by solving a set of equations.
Since the Kronecker delta criterion uI

i = uhI
i does not hold, the approximated displacement values uhI

i

are replaced with approximated virtual nodal values ûhI
i .
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=Bûh =
k∑
I=1

BIûhI , (2.52)

with

BI =

ϕI,1(x) 0

0 ϕI,2(x)

ϕI,2(x) ϕI,1(x)

 , (2.53)

where BI is the strain-displacement matrix of node I at coordinate x.

The approximation of the individual elements from Eq. 2.47 is now known,

and the next step is to combine these elements. Using Eq. 2.52 and Eq. 2.54 the

first term in Eq. 2.48 becomes

∫
Ω

δ [Lu]TD [Lu] dΩ =

∫
Ω

[
k∑
I=1

BIδûhI

]T

D

[
k∑

J=1

BJ ûhJ

]
dΩ

=

∫
Ω

k∑
I=1

k∑
J=1

[
δûhI

]T [{
BI

}T
DBJ

]
ûhJdΩ

=
k∑
I=1

k∑
J=1

[
δûhI

]T [∫
Ω

{
BI

}T
DBJdΩ

]
ûhJ . (2.54)

Until this point, the summation is according to a local numbering within the

support domain of each coordinate. From this stage, a global numbering system

is adopted, in which the nodes in the global domain Ω are denoted by the numbers

I = 1...n. With the global numbering, Eq. 2.54 can be rewritten as∫
Ω

δ [Lu]TD [Lu] dΩ =
n∑
I=1

n∑
J=1

[
δûhI

]T
KIJ ûhJ

=
{
δÛh

}T

KÛh, (2.55)

where

KIJ =

∫
Ω

[
BI

]T
DBJdΩ, K =

K11 . . . K1n

...
. . .

...

Kn1 . . . Knn

 and
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Ûh =


û1h1
û1h2
...

ûnh1
ûnh2

 . (2.56)

KIJ and K are often called respectively the nodal and global stiffness matrix.

The second term in Eq. 2.48 can be rewritten as

∫
Ω

δuTbdΩ =

∫
Ω

[
k∑
I=1

ΦIδûhI

]T

bdΩ =
k∑
I=1

[
δûhI

]T ∫
Ω

[
ΦI

]T
bdΩ

=
k∑
I=1

[
δûhI

]T
F I
b =

[
δÛh

]T
Fb, (2.57)

where

F I
b =

∫
Ω

[
ΦI

]T
bdΩ and Fb =

F
1
b
...

F n
b

 . (2.58)

The force vectors F I
b and Fb are consecutively called the nodal body force vector

and the body force vector. Similarly as in Eq. 2.57, the third term in Eq. 2.48

can be replaced by∫
Γt

δuTt̄dΩ =
n∑
I=1

[
δûhI

]T
F I
t =

[
δÛh

]T
Ft, (2.59)

where the force vector F I
t is often called the nodal traction vector and Ft is often

called the traction force vector, equal to

F I
t =

∫
Γt

[
ΦI

]T
t̄dΩ and Ft =

F
1
t
...

F n
t

 . (2.60)

The Galerkin weak form in Eq. 2.48 can be rewritten by substituting Eq. 2.54,

Eq. 2.57 and 2.59. The discretized formulation of Eq. 2.48 is then given by[
δÛh

]T
KÛh −

[
δÛh

]T
F b −

[
δÛh

]T
F t = 0
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[
δÛh

]T [
KÛh − Fb − Ft

]
= 0, (2.61)

in which δuT can be chosen arbitrary. Then the following condition holds

KÛh = F , (2.62)

where F = Fb+Ft is the global force vector. Eq. 2.62 is the well-known discretized

form of the linear elasticity problem. The displacements Ûh can be obtained

from this equation. Moreover, the approximated strain and stress can then be

determined by

ϵh(x) =
k∑

J=1

BJ ûhJ (2.63)

and

σh(x) =
k∑

J=1

DBJ ûhJ . (2.64)

There are two large differences between FEM and the EFG method, namely

the formulation of the shape functions, and the lack of the Kronecker delta crite-

rion. Because the Kronecker delta criterion is not met, the displacement vector

Ûh contains the approximated virtual nodal displacement. The actual nodal dis-

placement can be found by substituting the virtual nodal displacement in Eq. 2.1

and Eq. 2.2. Moreover, the essential boundary conditions (displacement boundary

conditions) cannot be applied directly to the global stiffness matrix K, because

Eq. 2.62 is expressed in the virtual nodal displacement. A solution to this last

problem is provided next.

Enforcement of essential boundary conditions

The enforcement of the essential boundary conditions in the EFG method is not

as simple as in FEM. This is because the Kronecker delta criterion does not hold

for the MLS shape functions used in the EFG method and because Eq. 2.62 is

expressed in terms of the virtual nodal displacement. To overcome this problem,

the essential boundary conditions are enforced using the Lagrange multipliers

method [14], [12].

By adding two extra terms in the weak form (Eq. 2.48), the essential boundary

conditions can be taken into account. The constrained weak form, which takes
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into account these essential boundary conditions, equals∫
Ω

[Lu]T D [Lu] dΩ−
∫
Ω

uTbdΩ−
∫
Γt

uTt̄dΓ

−
∫
Γu

δλT [u− ū] dΓ−
∫
Γu

δuTλdΓ = 0. (2.65)

Discretization of the constrained weak form is similar to discretization of the

weak form (Eq. 2.48). However, the two extra terms corresponding to the La-

grange multipliers method also need to be approximated. First, the displacement

u is approximated according to Eq. 2.49. Second, the Lagrange multipliers λ and

δλ are approximated along the boundary Γu. The approximation of the Lagrange

multipliers is given by

λ ≈

[
λh1
λh2

]
=

kb∑
K=1

NKλ̂hK (2.66)

δλ ≈

[
δλh1
δλh2

]
=

kb∑
K=1

NKδλ̂hK , (2.67)

in which

NK =

[
NK(x) 0

0 NK(x)

]
and λ̂hK =

[
λ̂hK1
λ̂hK2

]
. (2.68)

Here x ∈ Γu, kb is the number of nodes on the boundary in the support domain

Ωx of coordinate x, NK(x) is the value of the shape function of boundary node

K at x, λ̂hK = λ̂(xK) and δλ̂hK = δλ̂(xK).4 Third and last, the two extra terms

in Eq. 2.65 are rewritten with the approximations for u, δu, λ and δλ, resulting

in

−
∫
Γu

δλT [u− ū] dΓ =−
∫
Γu

[
kb∑
K=1

NKδλ̂hK

]T [
k∑
I=1

ΦIûhI

]
dΓ

+

∫
Γu

[
kb∑
K=1

NKδλ̂hK

]T

ūdΓ

=−
kb∑
K=1

k∑
I=1

[
δλ̂hK

]T [∫
Γu

{
NK

}T
ΦIdΓ

]
ûhI

4The EFG shape functions can be used for NK(x), however in this thesis FEM is used for the boundary
shape functions [12].
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+

kb∑
K=1

[
δλ̂hK

]T [∫
Γu

{
NK

}T
ūdΓ

]

=

nb∑
K=1

n∑
I=1

[
δλ̂hK

]T
GKIûhI −

kb∑
K=1

[
δλ̂hK

]T
qK

=
[
δΛ̂h

]T
GTÛh −

[
δΛ̂h

]T
Q (2.69)

and

−
∫
Γu

δuTλdΓ = −
∫
Γu

[
k∑
I=1

ΦIδûhI

]T [
kb∑
K=1

NKλ̂hK

]
dΓ

= −
k∑
I=1

kb∑
K=1

[
δûhI

]T [∫
Γu

{
ΦI

}T
NKdΓ

]
λ̂hK

=
k∑
I=1

kb∑
K=1

[
δûhI

]T
GIKλ̂hK =

[
δÛh

]T
GΛ̂h, (2.70)

in which

Λ̂h =


λ̂h11
λ̂h12
...

λ̂hnb
1

λ̂hnb
2

 , GIK = −
∫
Γu

[
ΦI

]T
NKdΓ, qK = −

∫
Γu

[
NK

]T
ūdΓ,

G =

G11 . . . G1nb

...
. . .

...

Gn1 . . . Gnnb

 and Q =


q11
q21
...

qnb
1

qnb
2

 . (2.71)

Eq. 2.65 can be approximated by the use of Eq. 2.69 and Eq. 2.70 as[
δÛh

]T [
KÛh +GΛ̂h − Fb − Ft

]
+
[
δΛ̂h

]T [
GTÛh −Q

]
= 0. (2.72)

δUh and δλ̂ can be chosen arbitrary, resulting in the following set of equations[
K G

GT 0

][
Ûh

Λ̂h

]
=

[
F

Q

]
. (2.73)
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Ω

Γ

Figure 2.10: An example of a typical problem domain Ω, enclosed by its boundary Γ, the black
line. The domain is discretized with nodes (blue circles). A background mesh is defined for
integration of the governing equations. The background mesh is constructed of rectangular cells
(dashed black lines), each having four integration points (green dots).

Integration

In the final constrained discretized weak form (Eq. 2.73), the integrals have to be

evaluated. In order to calculate these integrals, a numerical integration scheme

called Gauss quadrature is used [15], [20], [21]. Gauss quadrature can numeri-

cally find an approximation of the integral by accumulating the weighted value

at integration points. The position of these integration points are placed by a

background mesh. Although this background mesh is easier to construct than a

typical FEM mesh, it still requires the formation of a cell structure. A detailed

explanation of the weights and positions of the integration points within a rect-

angular cell is given in App. A. In Fig. 2.10 a typical background mesh is shown,

with rectangular cells and four integration points in each cell. This figure demon-

strates that the background mesh does not have to follow the boundary Ω of the

domain.

2.2.2 MLPG mixed collocation method

In 1998, Atluri and Zhu proposed a different method called the Meshless Local

Petrov-Galerkin (MLPG) method, which is based on the local weak form [40], [22].

Similar to the EFG method, the MLPG method is based on the MLS approxi-

mation. In MLPG, the integrals present in the local weak form are evaluated on

sub-domains, therefore no background mesh is needed. Furthermore, the mixed

collocation form was introduced [41], [39] to avoid integration. In this section,

the MLPG mixed collocation form is explained. First, the local weak form is

introduced. Second, the linear elasticity equations are discretized. Last, the ap-
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plication of the traction and displacement boundary conditions are discussed.

Linear elasticity problem

The MLPG mixed collocation method is derived by using the weak formulation

of the linear elasticity problem (Eq. 2.44) [39], [40], [41], [45]. Different from the

EFG method, the test functions are chosen equal to the Dirac delta function, not

the displacement:∫
Ω

{vTLTσ + vTb}dΩ =

∫
Ω

{δTLTσ + δTb}dΩ = 0. (2.74)

The integral is evaluated over n non-overlapping sub-domains Ωs, where these

sub-domains cover the complete domain Ω, leading to

LTσ(xI) + b(xI) = 0 for I = 1...n, (2.75)

in which

δ =

[
δ(x− xI)

δ(x− xI)

]
. (2.76)

Discretization of the weak form

First, the virtual nodal values in the MLS approximation are expressed in the

approximated nodal values. Consider a continuous scalar function s(x). The

approximation of the scalar function with the MLS approximation at the nodal

coordinates is given by

sh(xI) = shI =
n∑
J=1

ϕJ(xI)ŝhJ for I = 1...n. (2.77)

The equation above can be reorganized in a matrix-vector multiplication:

Φŝh = sh, (2.78)

where

Φ =

ϕ
1(x1) . . . ϕn(x1)
...

. . .
...

ϕ1(xn) . . . ϕn(xn)

 , ŝh =

ŝ
h1

...

ŝhn

 , and sh =

s
h1

...

shn

 . (2.79)
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The virtual nodal values of the scalar function are then

ŝhij = Rshij, with R = Φ−1. (2.80)

The approximated scalar value at coordinate x then equals

sh(x) =
n∑
J=1

n∑
K=1

ϕJ(x)RJKshKij =
n∑

K=1

ψK(x)shKij , (2.81)

in which

ψK(x) =
n∑
J=1

ϕJ(x)RJK . (2.82)

With the approximation expressed in the nodal values, the local weak form

from Eq. 2.75 can be discretized as

n∑
K=1

{BIK}TσhK + b(xI) = 0, (2.83)

where

BIK =

ψK,1 (xI) 0

0 ψK,2 (x
I)

ψK,2 (x
I) ψK,1 (x

I)

 and σhK =

σhK11σhK22
σhK12

 =

σh11(xK)σh22(x
K)

σh12(x
K)

 . (2.84)

Because I = 1...n, Eq. 2.83 gives 2n independent equations with 3n unknowns.

Since there are not enough equations to solve the problem, the stress is expressed

in the displacement using the constitutive equations from Eq. 2.46. The stress

vector at coordinate xK can be written as

σhK =
n∑
J=1

DBKJuhJ . (2.85)

The displacement is approximated with the MLS approximation expressed in

the actual nodal values (Eq. 2.81). Using this equation, the local discretized linear

elasticity equations can be rewritten as

n∑
J=1

n∑
K=1

{BIK}TDBKJuhJ =
n∑
J=1

KIJuhJ = −b(xI), (2.86)
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with

KIJ =
n∑

K=1

{BIK}TDBKJ . (2.87)

All terms of the linear elasticity equations can be organized in the global stiffness

matrix K. The final linear equations that have to be solved are

KUh = F , (2.88)

in which

K =

K
11 . . . K1n

...
. . .

...

Kn1 . . . Knn

 , Uh =

u
h1

...

uhn

 , and F =

−b(x1)
...

−b(xn)

 . (2.89)

The equations above can be simplified by separating the stiffness matrix in two

parts:

K = KsT . (2.90)

This leads to the following two relations:

Ksσ
h = F (2.91)

and

σh = TUh, (2.92)

with

σh =

σ
h1

...

σhn

 , Ks =

{B
11}T . . . {B1n}T
...

. . .
...

{Bn1}T . . . {Bnn}T

 and

T =

DB11 . . . DB1n

...
. . .

...

DBn1 . . . DBnn

 . (2.93)
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Enforcement of traction boundary conditions

The traction boundary conditions are enforced at each node that lies on the trac-

tion boundary. At these nodes the following boundary conditions should hold:

nKσhK = t̄K for K = 1...kt, (2.94)

in which kt are the number of nodes on the traction boundary and

σhK =

σhK11σhK22
σhK12

 , nK =

[
nK1 0 nK2
0 nK2 nK1

]
and t̄K =

[
t̄K1
t̄K2

]
. (2.95)

A penalty approach is used, such that Eq. 2.88 satisfies the traction boundary

conditions [23], [39]. First, the stress vectors σhK for each node on the traction

boundary are combined in one vector σ1:

σ1 =

σ
h1

...

σhkt

 . (2.96)

The stress vectors for the other nodes, not lying on the traction boundary, are

combined in a different vector σ2. With the combined stress vector σ1, the traction

boundary conditions can be combined in a set of equations, according to

ntσ1 = t̄t, (2.97)

in which

nt =

n
1 0

. . .

0 nkt

 and t̄t =

 t̄1

...

t̄kt

 . (2.98)

Next, with the vectors σ1 and σ2, Eq. 2.91 can be separated according to

K1
sσ1 +K2

sσ2 = F , (2.99)

in which K1
s and K2

s are parts of Ks belonging to σ1 and σ2, respectively. Fur-

thermore, Eq. 2.92 can be separated in a similar manner, resulting in

σ1 = T1U
h (2.100)
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and

σ2 = T2U
h, (2.101)

in which T 1 and T 2 are parts of T belonging to σ1 and σ2, respectively. In order

to enforce the traction boundary conditions, Eq. 2.97 is first multiplied with a

penalty αnT
t , and then added to Eq. 2.100:

σ1 + αnT
t ntσ1 = T1U

h + αnT
t t̄t. (2.102)

This equation can be rewritten in

σ1 = {I + αnT
t nt}−1{T1U

h + αnT
t t̄t}

= Q{T1U
h + αnT

t t̄t}
= QT1U

h + αQnT
t t̄t, (2.103)

with I a unit matrix and

Q = {I + αnT
t nt}−1. (2.104)

Finally, Eq. 2.101 and Eq. 2.103 are substituted in Eq. 2.99, resulting in

{K1
sQT1 +K2

sT2}Uh = F − αQnT
t t̄t. (2.105)

This equation can be rewritten in the well-known form

KtU
h = Ft, (2.106)

with

Kt = K1
sQT1 +K2

sT2 and Ft = F − αQnT
t t̄t. (2.107)

Enforcement of displacement boundary conditions

Since the discretized linear elasticity equations are expressed in the nodal dis-

placement values, the essential boundary conditions can be applied similarly to

FEM. Eq. 2.88 can be separated in two parts, a known part and an unknown part,

according to [
Ka Kb

Kc Kd

][
Uh
a

Ub

]
=

[
Fa

Fb

]
, (2.108)

where Uh
a is the unknown displacement and Uh

b is the known displacement at the

displacement boundary. The displacements on the boundary can then be imposed
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Figure 2.11: Two-dimensional cantilever beam problem with height D and length L. The beam
is subjected to a displacement boundary condition on the left side and a traction boundary
condition on the right side.

according to

KaU
h
a = Fa −KbU

h
b . (2.109)

When also dealing with traction boundary conditions, Eq. 2.88 should be replaced

with Eq. 2.106. Then, K and F are replaced by Kt and Ft, respectively.

2.3 Exemplary problem

In Sec. 2.2 two meshless methods have been discussed, namely the EFG method

and the MLPG mixed collocation method. They were applied to discretize the

linear elasticity problem. In this section the two meshless methods are compared

by applying them to the relatively simple exemplary problem of a two-dimensional

cantilever beam. Furthermore, a convergence study is performed on parameters

that influence the accuracy.

2.3.1 Two-dimensional cantilever beam

The two-dimensional cantilever beam problem (hereafter: cantilever beam) is de-

ployed to test the EFG and the MLPG mixed collocation method on the accuracy

of their solutions. A cantilever beam is subjected to a transverse load at the right

end, and fixed to the wall at the left end, as shown in Fig. 2.11. Here, D is the

height and L is the length of the beam. The transverse load at the right end of

the beam is a downward parabolic traction, defined by

t̄ =

[
0

− P
2I

[
D2

4
− y2

]] , with I =
D3

12
, (2.110)
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where P is the maximum value of the traction on the right end, and I is the

moment of inertia of the beam. Assuming plane stress conditions, the exact

solution for the displacement and stress in the beam can be determined analyti-

cally [39], [12]:

ua1(x) =
Px2
6EI

[
{6L− 3x1}x1 + {2 + ν}{x22 −

D2

4
}
]

(2.111)

ua2(x) = − P

6EI

[
3νx22{L− x1}+ {4 + 5ν}D

2x1
4

+ {3L− x1}x21
]
. (2.112)

Here, ua1(x) and u
a
2(x) respectively are the displacements in the x1 and x2 direc-

tion. The analytical solution for the stress in the beam equals

σa11(x) =
P [L− x1]x2

I
(2.113)

σa21(x) = 0 (2.114)

σa12(x) = − P

2I

[
D2

4
− x22

]
, (2.115)

in which E is the Young’s modulus, ν is the Poisson’s ratio and the superscript a

signifies an analytical value. Further investigation of this exemplary problem with

meshless methods is done with the following model constants: D = 12, L = 48,

P = 0.1, E = 1 and ν = 0.3. The essential boundary conditions are prescribed

according to the analytical solution at the left boundary of the cantilever beam

u1(x1 = 0,−1/2D ≤ x2 ≤ 1/2D) and u2(x1 = 0,−1/2D ≤ x2 ≤ 1/2D).5

2.3.2 EFG and MLPG mixed collocation solutions

To solve the cantilever beam problem, the problem domain Ω is discretized us-

ing both the EFG and MLPG mixed collocation method. The stress and strain

are obtained using a regular nodal distribution, as shown in Fig. 2.12. The inte-

gration cells and integration points are only used in the EFG method. Tab. 2.1

gives parameters, and their value, which are used in the EFG and MLPG mixed

collocation method.

The displacement and stress are first obtained with the EFGmethod (Eq. 2.73).

The solution for the displacement uh1(x) and uh2(x) is shown in Fig. 2.13a and

Fig. 2.13b. The approximation of the stress can then be obtained from the approx-

imated displacement according to Eq. 2.64, and is shown in Fig. 2.13c, Fig. 2.13d

5Since meshless methods cannot deal with point loads correctly, the essential boundary condition is
prescribed on the left edge of the beam.
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Figure 2.12: Discretization of the domain and boundary of the cantilever beam. The discretized
domain consists of nodes (blue circles) and integration cells (black dashed lines). These integra-
tion cells contain integration points (green dots). Moreover, the red dots denote the boundary
integration points.

Table 2.1: EFG and MLPG mixed collocation method parameters.

EFG MLPG

Nodes in x1 direction n1 = 10 n1 = 10
Nodes in x2 direction n2 = 10 n2 = 10

Influence domain shape rectangular rectangular
Average nodal distance in x1 direction d1 = L/[n1 − 1] d1 = L/[n1 − 1]
Average nodal distance in x2 direction d2 = D/[n2 − 1] d2 = D/[n2 − 1]

Local influence domain size d = 2.5 d = 1.15
Size of monomial basis 2 (linear) 2 (linear)

Integration cells in x1 direction m1 = 9 n/a
Integration cells in x2 direction m2 = 9 n/a

Integration points per cell ng = 4 n/a
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Figure 2.13: Displacement and stress in the cantilever beam for a regular nodal distribution,
found with the EFG method.
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and Fig. 2.13e. The solution found with the EFG method corresponds well to the

analytical solution, although some light numerical oscillations are present in the

approximation of σh22(x) and σ
h
12(x).

The displacement and stress are also approximated with the MLPG mixed

collocation method (2.109). The displacements uh1(x) and uh2(x) are shown in

Fig. 2.14a and Fig. 2.14b. The stress can be derived from the approximated dis-

placement according to Eq. 2.92. σh11(x), σ
h
22(x) and σ

h
12(x) are shown respectively

in Fig. 2.14c, Fig. 2.14d and Fig. 2.14e. Similar results as for the EFG method

are obtained, although the oscillations in the stress are reduced.

The error norm can assist in a qualitative comparison between both meshless

methods. The error norm is a scalar quantity and is determined by calculating

the relative error between the elastic energy of the approximated solution and

analytical solution. It is given by

||E|| =
[∫

Ω
1
2
{ϵh(x)− ϵa(x)}T{σh(x)− σa(x)}dΩ

]1/2[∫
Ω

1
2
{ϵa(x)}T{σa(x)}dΩ

]1/2 , (2.116)

where a value of 0 corresponds to a perfect fit and a value of one corresponds to

an error of 100 %.6 For the EFG method, the error norm equals ||E|| = 0.0164 or

1.64%. The error norm in the MLPG mixed collocation method is ||E|| = 0.0483

or a 4.83% error in the energy. Thus, for the parameter values in Tab. 2.1, the error

norm in the MLPG mixed collocation method is a factor three higher. However,

a different choice in parameter values might influence the accuracy. This will be

investigated next.

2.3.3 Influence of discretization parameters

In this section the convergence of the EFG and MLPG mixed collocation solution

is investigated, by varying the values of the parameters used in the discretizations.

In the EFG and MLPG mixed collocation method, the following parameters can

be altered: the nodal position, the number of nodes, the nodal influence domain

and the monomial basis. Furthermore, the precision of the numerical integration

can be changed in the EFG method. The convergence of the accuracy of the

approximated solution is defined by the error norm according to Eq. 2.116.

First, the influence of the number of nodes is considered. The number of nodes

6In the EFG method the integral in this equation is evaluated with the existing background mesh. Since
no background mesh is present in the MLPG mixed collocation method, integration is done by nodal
integration. In nodal integration, each node represents part of the volume and the integral can then
be replaced by a summation

∫
s(x)dΩ =

∑n
I=1 s(x

I)dV .
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Figure 2.14: Displacement and stress in the cantilever beam for a regular nodal distribution,
found with the MLPG mixed collocation method.
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Figure 2.15: Convergence study on the accuracy of the EFG and MLPG mixed collocation
method. The error norm is calculated for a varying number of nodes, specific domain size d,
order of the monomial basis and number of integration points.
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n1 in the x1 direction is equal to the number of nodes n2 in the x2 direction. The

convergence of the solution with respect to the number of nodes is shown in

Fig. 2.15a. For an increasing number of nodes, the fault in the approximated so-

lution decreases for both the EFG and the MLPG mixed collocation method. The

EFG method shows the best convergence for all number of nodes. For instance,

the error norm for a discretization with 250 nodes is 5 times lower for the EFG

method. Even for a discretization with only a few nodes, the EFG method shows

good results. Moreover, an even or uneven number of nodes has a large effect on

the accuracy of the MLPG mixed collocation method.

Second, the convergence study with respect on the nodal influence domain

is performed. The simplest approach for altering the influence domains is to

vary its size, which can be achieved by varying the nodal influence domain size

d. In Fig. 2.15b the effect of the size on the error norm is shown. Both meshless

methods show different behavior. For low values of d, the MLPGmixed collocation

method shows the best convergence. However, this method quickly becomes less

accurate when increasing the domain size. In contrast, the EFG method shows an

improvement in convergence for a larger domain size. Overall, the EFG method

is more accurate than the MLPG mixed collocation method.

Third, the error norm is determined for different orders of the monomial basis.

Orders one until three are considered, where an order of one corresponds to a con-

stant basis, two to a linear basis and three to a quadratic basis. The convergence

results are shown in Fig. 2.15c. Note that a quadratic basis in the MLPG mixed

collocation method results in a singular system. This is caused by the small nodal

influence domain. For the EFG and MLPG mixed collocation method, the error

norm of the constant basis is much higher than the convergence of the other bases

(almost ten times). Furthermore, the difference between the linear and quadratic

basis in the EFG method is small.

Last, the error norm is calculated for the EFG method with a different number

of integration points. The number of integration points in each cell is chosen to be

equal to 4, 9, 16 and 25. The error norm is given in Fig. 2.15d. This figure clarifies

that the number of integration points does not greatly influence the convergence

of the solution. However, for a more complicated problem the convergence might

be more dependent on the number of integration points.

So far, a regular nodal distribution has been used in the discretization. How-

ever, an unlimited number of irregular nodal distributions can be constructed.

A complete chapter (Chap. 3) focusses on the effect of the nodal distribution

on accuracy and material distribution. For this reason, the effect of the nodal
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distribution on the accuracy will not be investigated in this section.

2.4 Characteristics of meshless methods for the MNA

In this chapter, the EFG and MLPG mixed collocation methods have been dis-

cussed and applied to the cantilever beam problem. More insight in the char-

acteristics of both methods has been gained by a convergence study. Since the

meshless methods will be used for the discretization in the Moving Node Approach

in topology optimization, these characteristics are essential and discussed in this

section. The favorable characteristics are derived from the EFG and MLPG mixed

collocation method.

In general, the EFG method is more precise than the MLPG mixed collocation

method. However, the MLPG mixed collocation method shows optimal perfor-

mance for small nodal influence domains. This reduces the computational costs of

this method. In contrast, larger nodal influence domains result in more accurate

solutions in the EFG method.

Although this characteristic causes higher computational costs, it also provides

for higher flexibility in the nodal distribution. I.e. the nodes can be moved more

freely through the problem domain, without creating holes. Thus, in the EFG

method the nodal distribution does not have to be regular. In contrast, the

nodal distribution in the MLPG mixed collocation is not flexible. Since the nodal

influence domains are small, perturbations in the position of the nodes result in

gaps in the problem domain.

The MNA is based on the redistribution of mass containing nodes. This nodal

movement requires flexibility of the underlying meshless method. For this reason,

the size of the nodal domain should not be too small.

Therefore, a requirement for the MNA should be:

The meshless method should be accurate for relatively large nodal influence do-

mains.
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Chapter 3

Effect of the nodal distribution in

the EFG method

In order to find the optimal layout of the problem domain with the MNA in

topology optimization, the nodes present in the underlying meshless method are

redistributed. These changes in the nodal position will affect not only the layout

of the problem domain, but also the accuracy of the solution to the physical

problem. In this chapter the effect of the nodal distribution on the accuracy and

on the material distribution will be investigated.

For the cantilever beam problem, discussed in Chap. 2, the EFG method

showed the highest potential. This is mainly due to the accurate results for

relatively large nodal influence domains. The large size of the domains allows in

a flexible distribution of nodes. Therefore, the effect of the nodal distribution will

be tested on the EFG method.

First, the effect of the nodal position on the accuracy will be investigated in

Sec. 3.1. Random nodal distributions are considered in two exemplary linear elas-

ticity problems and from these a global effect on the accuracy of the EFG method

can be determined. Moreover, local effects of the nodal distribution determined

in the underlying MLS approximation are investigated.

Second, in Sec. 3.2 the influence of the nodal distribution on the material layout

will be examined. In principle, only material is present at coordinates in which

the support domain contains nodes. By considering various problem domains, the

relation between nodal distribution and material distribution can be established.
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3.1 Effect of the nodal distributions on accuracy

In this section, the effect of the nodal distribution on the accuracy of approxi-

mations will be investigated. By comparing various nodal distributions, a more

tangible understanding of the influence of the nodal position is attained. This

exploration is performed for the EFG method in two steps. First, in Sec. 3.1.1

the global precision of the solution to two linear elastic exemplary problems is

determined for various random nodal distributions. Second, the accuracy of the

MLS approximation is investigated for locally changing nodal distributions in

Sec. 3.1.2. All tests performed in this section have a homogeneous material dis-

tribution in common. So, only the effect of the nodal position on the precision of

the discretization is considered in this section.

3.1.1 Global effect of nodal distribution

In this part, the global effect of randomly distributed nodes is determined. With

the help of two scalar quantities, a tangible understanding of the sensitivity of the

discretization to the nodal distribution can be expressed and compared.

The first scalar quantity is the error norm (Eq. 2.116), which has already been

used in Sec. 2.3. It expresses the relative difference in elastic energy between the

numerical and analytical solution. Since only exemplary problems are considered

for which the analytical solution is known, the error norm can be determined.

The second scalar quantity is the compliance of the structure:

C = F TÛh, (3.1)

where C is the compliance, F is the vector containing the nodal force (Eq. 2.62)

and Ûh is the approximated nodal displacement vector. There are two main

reasons for using the compliance. First, the compliance can be interpreted as

the inverse of the global stiffness of the structure. In FEM, larger mesh sizes

often lead to stiffening. Similarly, in meshless methods the compliance can be

used for understanding the effect of the nodal distributions. Second, particular

topology optimization methods focus on the minimization of the compliance. By

investigating the effect of the nodal distribution on the compliance, the effect of

an optimization algorithm on the nodal movement can be determined.

The effect of the nodal distribution on the error norm (Eq. 2.116) and the

compliance (Eq. 3.1) are discussed for two exemplary problems with similar do-

mains: the uniaxial beam and the cantilever beam. The domain of these problems

is shown in Fig. 4.6. The difference between these two problems is the traction
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Figure 3.1: Problem domain and boundary conditions for the uniaxial and cantilever beam
exemplary problems.

boundary condition. For the uniaxial beam, the traction vector t̄ equals

t̄ =

[
P

0

]
. (3.2)

The traction vector t̄ for the cantilever beam is

t̄ =

[
0

− P
2I

[
D2

4
− y2

]] with I =
D3

12
, (3.3)

where P is the characteristic pressure. In Sec. 2.3 the analytical solution for the

displacement and stress of the cantilever beam problem has already been given

(Eq. 2.111 and Eq. 2.113). The analytical solution is also known for the uniaxial

beam problem:

ua1(x) =
Px1
E

and ua2(x) = −νPx2
E

(3.4)

σa11(x) = P, σa22(x) = 0 and σa12(x) = 0, (3.5)

where ua1(x) and u
a
2(x) respectively are the analytical displacement in the x1 and

x2 direction, E is the Young’s modulus and ν is the Poisson’s ratio.1

Further investigation of these two exemplary problem with meshless meth-

ods is done with the same model constants as in Sec. 2.3: D = 12, L = 48,

P = 0.1, E = 1 and ν = 0.3. The essential boundary conditions are prescribed

according to the analytical solution at the left boundary of the cantilever beam

u1(x1 = 0,−1/2D ≤ x2 ≤ 1/2D) and u2(x1 = 0,−1/2D ≤ x2 ≤ 1/2D).

1Note that the solution for the uniaxial loaded beam only contains constant terms for the stress and
linear terms for the displacement, where the solution to the cantilever beam problem has quadratic
terms for the stress and cubic terms for the displacement. Approximation of the stress and displacement
in the uniaxial beam is easier than in the cantilever beam.
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Table 3.1: Parameters used in the EFG method for the uniaxial and cantilever beam exemplary
problems.

Nodes in x1 direction n1 = 10
Nodes in x2 direction n2 = 10

Influence domain shape rectangular
Average nodal distance in x1 direction d1 = L/[n1 − 1]
Average nodal distance in x2 direction d2 = D/[n2 − 1]

Local influence domain size d = 2.5
Size of monomial basis 2 (linear)

Integration cells in x1 direction m1 = 9
Integration cells in x2 direction m2 = 9

Integration points per cell ng = 4

Both exemplary problems are discretized with the EFG method according to the

parameters in Tab. 3.1. Various nodal distributions are considered, generated in

three manners: regular, random and semi-random nodal distributions.

The nodes in the regular nodal distribution are positioned on a rectangular

grid. This distribution is shown in Fig. 3.2a and has been used in Sec. 2.3 to solve

the cantilever beam problem.

The random distribution is created by randomly placing nodes inside the prob-

lem domain. An infinite number of random distributions is possible and a sample

can be found in Fig. 3.2b. However, only nodal distributions for which the sum of

the nodal influence domains cover the complete problem domain are considered.

The results for the error norm and compliance will be represented by a probability

distribution. By performing 5000 simulations of random nodal distribution, the

shape of the probability distribution can be obtained [46].

The semi-random nodal distribution is a combination of the regular and ran-

dom distribution. The nodes are first placed on a regular rectangular grid, but

then randomly perturbed. The maximum size of the random perturbation equals

drndx, in which dx is the distance between nodes in the regular distribution.

In this study, two semi-random distributions with drn = 0.1 and drn = 1 are

considered. Of each, one sample is shown in Fig. 3.2c and Fig. 3.2d. 5000 sam-

ples of the semi-random nodal distributions are considered to find the probability

distributions of the error norm and compliance.

Uniaxial beam problem

First, the displacement and stress in the uniaxial beam are determined for a

regular nodal distribution. The results are shown in Fig. 3.3. The results for
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Figure 3.2: Various nodal distributions for the discretization of the problem domain as shown
in Fig. 4.6.
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both the displacement and stress are in agreement with the analytical solution,

which can be clearly seen in Fig. 3.3, and can also be derived from the error norm

||E|| = 7.3·10−4 ≈ 0.073%. Fig. 3.3c clarifies that the largest error occurs near the

boundaries on which the traction and essential boundary conditions are applied.

Moreover, an oscillation in the stress is observed in Fig. 3.3c and Fig. 3.3d. This

oscillation is non-physical and therefore results from the discretization method.

Second, the probability distributions for the error norm and compliance of

the random and semi-random nodal distributions are determined, and shown in

Fig. 3.4.2 For comparison, the error norm and compliance for the regular dis-

tribution are represented by the red dashed lines and the green line denotes the

analytical compliance, which equals

Ca =
P 2LD

E
. (3.6)

Fig. 3.4a shows that a random distribution of nodes decreases the accuracy.

Large values of the error norm are observed, with a mean (hereafter: M) of 0.056

and a standard deviation (hereafter: S) of 0.018. Similarly, a random nodal

distribution decreases the accuracy of the approximated compliance. For the

5000 samples, the approximated compliance is always larger than the analytical

compliance. From the error norm and compliance distributions (Fig. 3.4) it can

be derived that it is unlikely to reach an error norm and compliance which are

lower than in the regular distribution.

Similar results are obtained for the semi-random nodal distribution with drn =

1 (Fig. 3.4b). However, the error norm is lower (M = 0.028 and S = 0.0080) and

the compliance for the semi-random distribution with drn = 1 shows a smaller

deviation from the regular distribution and the analytical solution.

For the semi-random distribution with drn = 0.1, a slightly different result is

found, shown in Fig. 3.4c. Although the error norm for this nodal distribution

(M = 0.0033 and S = 7.7 · 10−4) is still higher than for the regular distribution

(7.3 · 10−4), for some samples the compliance is lower.

Cantilever beam problem

Previous analysis of the uniaxial beam problem is repeated on the cantilever beam

problem. The approximated displacement and stress in the cantilever beam have

already been shown in Sec. 2.3. The probability distributions for the error norm

and compliance of the random and semi-random distributions and they are shown

2The displacement and stress for two random nodal distribution samples are shown in App. B in Fig. B.1.
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Figure 3.3: Approximated displacement and stress for the uniaxial beam problem, found with
the EFG method.
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Figure 3.4: Probability distributions for the error norm and compliance of the uniaxial beam
problem, determined for various nodal distributions. The blue bars denote the results obtained
with the random nodal distributions, the red line denotes the results found with the regular
nodal distribution and the green dashed line gives the analytical value of the compliance.
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in Fig. 3.5. Moreover, the compliance and error norm for the regular distribution

and the compliance for the analytical solution are shown, in which the analytical

compliance for the cantilever beam equals

Ca =
D3P 2

72EI2
{ [4 + 5ν]D2L

4
+ 2L3}. (3.7)

In Fig. 3.5a the error norm and compliance distributions are given for the ran-

dom nodal distribution.3 A large error norm is found (M = 0.53 and S = 0.076).

Similarly, the compliance greatly differs from the compliance obtained with the

regular nodal distribution and the analytical compliance. For the 5000 samples,

the approximated compliance is always lower than the analytical compliance.

Thus, the beam stiffens for nodes that are randomly distributed.

Similar results are obtained for the semi-random distribution characterized by

drn = 1, shown in Fig. 3.5b. Compared to the random distribution, the error

norm is halved (M = 0.28 and S = 0.035).

However, for the semi-random distribution with drn = 0.1 (Fig. 3.5c) a dif-

ference arises in comparison to the previous two random distributions. Although

the error norm (M = 0.031 and S = 0.0041) is always higher than for the regular

distribution (0.0164), for some samples the compliance is higher. For these sam-

ples, the compliance corresponds better to the analytical compliance. However,

since the error norm of the semi-random distribution is always higher than the

error norm of the regular distribution, the increase in compliance is a numerical

oscillation.

Comparison of the uniaxial and cantilever beam

For the uniaxial beam problem, Fig. 3.4 suggests that the error norm and compli-

ance are related. This relation is confirmed by plotting the values of each sample

of the error norm versus the compliance. This result in 5000 points, which are dis-

tributed along a curve, as shown in Fig. 3.6b. The curve shows that an increase

in the error norm results in an increase in the compliance. This figure shows

that the semi-random distributions are special cases of the random distribution,

i.e. the samples for the random nodal distribution and the two semi-random nodal

distributions are in different sections along the same curve.

Similarly, a relation between the error norm and compliance can be discovered

for the cantilever beam problem. For each sample, the compliance is plotted versus

the error norm, as shown in Fig. 3.6b. Clearly, these two scalar quantities are

3The displacement and stress for two random nodal distribution samples are shown in App. B in Fig. B.2.
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Figure 3.5: Probability distributions for the error norm and compliance of the cantilever beam
problem, obtained with various nodal distributions. The blue bars denote the results obtained
with the random nodal distributions, the red line denotes the results found with the regular
nodal distribution and the green dashed line gives the analytical value of the compliance.
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Figure 3.6: The relation between the error norm and the compliance of the uniaxial and can-
tilever beam problem. Each dot in the graph represents a sample of a nodal distribution. Here,
the dark blue dots are the random distributed samples, the green dots represent the semi-random
distribution with drn = 1 and the light blue dots represent the semi-random distribution with
drn = 0.1.

interlinked. However, a difference in interdependence is observed when comparing

the results for the cantilever beam with the results of the uniaxial beam (Fig. 3.6a).

The uniaxial beam shows an increase in compliance when the error norm increases.

3.1.2 Local effect of the nodal position in the MLS approximation

The previous analysis showed the large influence of the nodal distribution on the

accuracy of the approximation with the EFG method and that the most accurate

solution to the uniaxial and cantilever beam problem is obtained with a regular

nodal distribution. In order to gain better insight in the origin of this influence,

the effect of local changes in a regular nodal distribution is explored. Furthermore,

the complexity of the approximation is reduced by performing the analysis on the

MLS approximation underlying the EFG method.

In Sec 2.1, a one dimensional function was approximated using MLS. Here, a

similar example will be used, given by the scalar function

u(x) = x3 − x

2
(3.8)

and the derivative of the scalar function

u,x(x) = 3x2 − 1

2
, (3.9)

in which 0 ≤ x ≤ 1. In Fig. 3.7 the approximations uh(x) and uh,x(x) are shown for

58



0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

Nodes

uI

u(x)

uh(x)

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

 

 

Nodes
u

,x
(x)

u
,x
h (x)

Figure 3.7: MLS approximation uh(x) and uh
,x(x) of Eq. 3.8 and Eq. 3.9 with n regular dis-

tributed nodes.

Table 3.2: Parameters used for the approximation with the MLS method.

Nodes n = 11
Local influence domain size d = 2.5

Size of monomial basis 2 (linear)

the parameters given in Tab. 3.2. Fig. 3.7 shows that the MLS approximations

for both the function and its derivative are fairly accurate, although a deviation

occurs for the derivative near the right boundary.

Three tests on the accuracy of the approximation will be performed in this

section: the effect of the nodal influence domain size, the effect of a local increase

in the nodal compaction and the effect of a difference in the nodal compaction

between two areas.

The accuracy of the approximation is quantified by the following scalar:

||u|| =

[∫ 1

0
{uh − u}2dx

]1/2
[∫ 1

0
u2dx

]1/2 , (3.10)

where the ||u|| gives the relative difference between the integral of the approxi-

mation and the considered function (Eq. 3.8). Similarly, the error for the approx-

imation of the derivative is defined as

||u,x|| =

[∫ 1

0
{uh,x − u,x}2dx

]1/2
[∫ 1

0
u2,xdx

]1/2 . (3.11)

The integrals in ||u|| and ||u,x|| are evaluated with Gauss quadrature, in which ten
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integration cells are used. To determine the precision of the numerical integration,

two and eight integration points in each cell are considered separately.

Effect of nodal influence domain size

Prior to exploring the effect of the position of the nodes on the approximation,

the effect of the nodal influence domain size d on the accuracy is examined.

The size of the influence domain is varied between d = 1.1 and d = 5.5. For

these sizes, the errors, as defined in Eq. 3.10 and Eq. 3.11, are shown in Fig. 3.8a

and Fig. 3.8b. Only small dissimilarities are observed for the two integration

configurations. The accuracy of the approximation ||u|| decreases for larger values
of d. The error of the derivative of the function ||u,x|| shows a minimum at the

influence domain size d = 1.9.

To explain this behavior, the approximation with a small influence domain

d = 1.1 is considered first and is shown in Fig. 3.8c. The approximation to

the function uh is very accurate. However, the small influence domain makes

the approximation highly variable. This adaptability causes the approximation

to become very precise in the neighborhood of nodes, but reduces the accuracy

between the nodes. This effect is clearly shown by the approximation of the

derivative u,x, which shows an incremental behavior.

In contrast, a large influence domain d = 5.5 results in a smooth approxima-

tion of uh and uh,x, which is shown in Fig. 3.8d. Both uh and uh,x do not accurately

approximate the nodal values. Larger values of the nodal influence domain smooth

the approximations uh and uh,x further. In extreme, this effect results in approxi-

mations consisting only of terms that are included in the monomial basis p and its

derivative p,x. The resulting MLS approximation then becomes a normal Least

Squares fit. This is illustrated in Fig. 3.9, in which the monomial basis consists

of a constant and a linear term, and the size of the influence domain is equal to

d = 250.

Effect of local increase in nodal compaction

Now that the effect of the nodal influence domain size on the accuracy of the MLS

approximation has been explored, the next step is to examine the effect of local

changes in the nodal compaction. One extra node is added to the problem domain

at different positions, and for each of the configurations the errors ||u|| and ||u,x||
are determined. The position of the node is denoted by dx, which is the distance

from the node to the left boundary.
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(c) d = 1.1
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(d) d = 5.5

Figure 3.8: The accuracy of the MLS approximation for different nodal influence domain sizes
d. The approximations uh and uh

,x are for d = 1.1 and d = 5.5.
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Figure 3.9: The approximations uh and uh
,x for d = 250.

The values obtained for the errors ||u|| and ||u,x|| are shown in Fig. 3.10a and

Fig. 3.10a. First, these figures clearly show that adding an extra node does not

necessarily result in a higher accuracy. The approximation of the derivative uh

depends greatly on the position of the extra node. In Fig. 3.10a, almost all nodal

positions dx result in lower accuracy. To explain this effect, the two different

positions of the extra node, the approximations uh and uh,x are shown in Fig. 3.10c

and Fig. 3.10d. The precision of uh for the two different nodal distributions

increases locally around the coordinates of the extra node. This has the negative

effect that uh,x shows oscillations and is thus not approximated correctly.

These oscillations makes the numerical integration more difficult. This effect

is shown Fig. 3.10a and Fig. 3.10a, in which the integration of ||u,x|| depends on
the number of integration points in each cell.

Effect of divergence in nodal compaction between two areas

The previous test shows that a local change in nodal compaction does not neces-

sarily result in a better approximation. The change in accuracy, caused by varying

the nodal compaction for the approximations uh and uh,x, is further explored here.

By locally increasing the nodal compaction further than in the previous test, the

effect of a discrete change in nodal compaction is investigated.

In order to introduce the increment in the nodal compaction, the domain is

split into two. The number of nodes in the right part of the problem domain

remains the same (five nodes), while the number of nodes in the left halve of the

problem domain is increased to numbers between five and forty nodes. The error

(Eq. 3.10 and Eq. 3.11) is calculated separately for both halves.

The result for the errors ||u|| and ||u,x|| are shown in Fig. 3.11a and Fig. 3.11b.

First, note that there is a large difference between the numerical integration for
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(c) Example dx = 0.25
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(d) Example dx = 0.75

Figure 3.10: Change in accuracy of the MLS approximation by locally adding an extra node.
The approximations uh and uh

,x are given for two positions of the extra node and dx represents
the distance between the position of the extra node and the left boundary.
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(c) 15 nodes on the left
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(d) 40 nodes on the left

Figure 3.11: Change in accuracy of the MLS approximation by divergence in nodal compaction
between two areas. The approximations uh and uh

,x are given for two values of the nodal
compaction on the left side: 15 nodes and 40 nodes.
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two and eight integration points. Although this error does not influence the results

of the MLS approximation, it will influence the results of the EFG method.

Second, Fig. 3.11b shows that both uh and uh,x depend on the nodal compaction

on the left part of the domain. Overall, ||u|| decreases and ||u,x|| increases when
there are more nodes in the domain. This error increase is caused by an oscillation

in the approximation of the derivative. In Fig. 3.11c this oscillation is shown for

fifteen nodes on the left side and in Fig. 3.11d for forty nodes. For these two nodal

distributions, the approximation of uh is only slightly affected.

3.2 Effect of the nodal position on the material distribu-

tion

So far only domains with homogeneously distributed material have been consid-

ered, i.e. the distribution of nodes was chosen such that at each coordinate x in

the problem domain the support domain Ωx contained enough nodes. In the MNA

the problem domain is altered by changing the position of the nodes. Therefore,

it is necessary to gain a clear understanding of the influence of the nodal position

on the distribution of material. Moreover, so far the background mesh in the EFG

method always coincided with the problem domain. However, for curved bound-

aries in topology optimization the background mesh will not exactly coincide with

the problem domain.

In this section, the influence of the nodal position on the material distribution is

discussed first. Second, the accuracy of the solution to the uniaxial and cantilever

beam problems are determined for problem domains that do not coincide with the

background mesh.

3.2.1 Complexly shaped material distribution

Part of a problem domain Ω and part of its boundary Γ are shown in Fig. 4.6. The

boundary Γ is used to distribute nodes inside the problem domain. However, in

most problems the boundary is not exactly known, and will be determined from

the nodes. In this section the boundary following from the nodal distribution will

be discussed. Note that the boundary of the problem domain does not coincide

with the boundary of the rectangular integration cells (black dashed lines) and

thus some of the integration cells, completely or partly, fall outside the problem

domain Ω.

Material is distributed at a coordinate x inside the problem domain when

two conditions are fulfilled. First, the coordinate must lie within an integration
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Ω

Γ

Figure 3.12: Example of a problem domain Ω enclosed by its boundary Γ that does not coincide
with the background mesh. Here, the blue circles are the nodes, the blue lines are the boundaries
of the nodal influence domain, the dashes black lines are the boundaries of the integration cells
and the green dots are the integration points. The red line corresponds with the material domain
and the dashed red line is the discrete boundary of the material domain.

cell. Second, the coordinate must have a node in its support domain.4 When the

domain boundary Γ is not exactly covered by the boundary of integration cells,

these two conditions result in a distribution of material that does not coincide

with the problem domain.

This effect is shown in Fig. 3.12. For some coordinates outside the problem

domain Ω, the two conditions are fulfilled. This results in a shift of the boundary

from the original position (black line) to the red line. If integration would be

exact, all coordinates within the red boundary are covered by material and all

coordinates outside the red boundary do not contain any material. However,

since integration is done numerically, another shift of the boundary occurs.

A typical background mesh is shown in Fig. 3.12, in which the integration cells

contain one integration point. For all integration points within the red bound-

ary, the shape functions can be determined and material is distributed. Since

the integration points represent part of the complete area, the real boundary of

the problem domain becomes discrete, following the boundary of the integration

4This condition holds for a monomial basis p containing only one term. If the monomial basis contains
more than one term, the support domain should contain more nodes.
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Figure 3.13: Example of a problem domain Ω enclosed by its boundary Γ. The bright green dots
are the active integration points, the light green dots are the inactive integration points, the
dashed black lines are the boundaries of the integration cell and the blue circles are the nodes.

points.5 This boundary is depicted in Fig. 3.12 by the red dashed line. Fig. 3.13

shows the final material distribution Ω enclosed by the boundary Γ. Only the

shape functions for the bright green integration points are unequal to zero.

Actually, the aforementioned second conditions should be taken more strict.

More terms in the monomial basis p increase the number of nodes that should

be present inside the support domain of each coordinate x. When considering

the MLS approximation, matrix A(x) has to be inverted to find the coefficients

a(x)(see Eq. 2.34). The size of A(x) is given by the number of monomials in p.

There should be enough nodes in the support domain of x to prevent the A(x)

from being singular.

In further study, only the integration points with a non-singular A(x) matrix

are taken into account. Thus, depending on the order of the monomial basis and

the size of the influence domain d, the boundary of the material distribution is

either closer or further away from the boundary of the preferred problem domain.

5This representation of the discrete boundary can only be visualized for the case of one integration
point, because integration with Gauss Quadrature with one integration cell can only evaluate constant
functions. For higher order Gauss Integration the discreteness of the integration still exists, but it
can’t be shown as a discrete boundary as in Fig. 3.12.
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Figure 3.14: The problem domain in the uniaxial beam for various configurations of the back-
ground mesh, given by 0 ≤ dy ≤ Dmesh −D or 0 ≤ dy ≤ 8.

Table 3.3: Parameters for the uniaxial beam, used in the EFG method.

Nodes in x1 direction n1 = 10
Nodes in x2 direction n2 = 10

Influence domain shape rectangular
Average nodal distance in x1 direction d1 = L/[n1 − 1]
Average nodal distance in x2 direction d2 = D/[n2 − 1]

Local influence domain size d = 2.5
Size of monomial basis 2 (linear)

Integration cells in x1 direction m1 = 9
Integration cells in x2 direction m2 = 27

Boundary integration cells in x2 direction m2 = 9
Integration points per cell ng = 4

3.2.2 Material distribution exemplary problem

In this section, the effect caused by non-coinciding material and problem domain

is illustrated by use of an exemplary problem. Different configurations between

the nodes and background mesh are considered. For these configurations the error

norm and compliance are determined and compared.

The problem domain as shown in Fig. 4.6 is considered in this section. The

model constants are D = 4, L = 48, E = 1 and ν = 0.3. The different con-

figurations of the discretization are constructed by moving the problem domain

vertically through a fixed background mesh with a height of Dmesh = 12. These

configurations are shown in Fig. 3.14, in which the distance with respect to the

lower boundary of the integration cells is given by 0 ≤ dy ≤ Dmesh − D or

0 ≤ dy ≤ 8.

The problem domain is discretized with a regular nodal distribution. In con-
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Figure 3.15: Discretization of the problem domain with non-coinciding background mesh.
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trast to the internal integration points, the boundary integration points are fixated

to the problem domain. Unless otherwise noted, the parameters used to solve the

uniaxial beam problem are given in Tab. 3.3. The discretization is shown in

Fig. 3.15a for dy = 0 and dy = 2. The black line represents the boundary of the

problem domain, which is filled with nodes represented by the blue circles. The

bright green dots are the active internal integration points, the lighter green dots

are the inactive integration points and the red points are the boundary integration

points. The material distribution in Fig. 3.15a is given by the active integration

points. Clearly, these integration points lie outside the problem domain. This

results in a volume increase. A normalized volume is calculated by dividing the

volume of the material distribution by the volume of the original problem domain.

To determine the influence of the background mesh position on the material

distribution, the results for the uniaxial beam are obtained for 0 ≤ dy ≤ 8. In

Fig. 3.16 the error norm, compliance and normalized volume are depicted in blue.6

The analytical value for the compliance is given by the green dashed line. The

results show a normalized volume greater than one, which results in a compliance

lower than the analytical compliance. Moreover, two other effects can be identi-

fied. The first is an oscillatory behavior of the error norm and compliance. This

effect is caused by the interaction between the fixed equally spaced integration

cells and the non-coinciding problem boundary. Moving the problem domain con-

tinuously for 0 ≤ dy ≤ 8, results in a material domain that changes discontinuous

(shown as the normalized volume in Fig. 3.16). This also results in a discontinuous

change in the compliance and the error norm. The second effect is observed when

the problem domain is close to the top and bottom boundaries of the background

mesh. At these positions the material is reduced, since less integration points are

present at these boundaries.

To let the material domain fit more closely to the problem domain, the dis-

cretization of the problem domain can be improved by manually deactivating the

integration points outside the problem domain. Two samples of these arrange-

ments are shown in Fig. 3.15b. In Fig. 3.16 the results are shown (in red) when

only considering the integration points inside the problem domain.7 For these

arrangements, the normalized volume equals one.8 Moreover, a lower error norm

is observed and the compliance corresponds better to the analytical compliance.

6The displacement and stress for dy = 0, 4, 4.1 are shown in App. B in Fig. B.3.
7The displacement and stress for dy = 0, 4, 4.1 are shown in App. B in Fig. B.4.
8The volume stays constant since each time a new integration point enters the problem domain at the
top, another integration cells leaves the problem domain at the bottom. This does not necessarily have
to be the case, and a different size of integration cells could change the normalized volume with the
position dy.
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Figure 3.16: Compliance and error norm for various configurations of the problem domain and
background mesh. These configuration are given by 0 ≤ dy ≤ Dmesh − D or 0 ≤ dy ≤ 8 and
shown in Fig. 3.14. Moreover, the blue lines denote the results obtained by considering integra-
tion points inside the nodal influence domains, and the red lines denote the results obtained by
only considering the integration points inside the problem domain.

71



3.3 Requirements for the MNA

In Sec. 3.1.1 the effect of nodal distributions on the accuracy of the EFG method

has been investigated. Distributing the nodes randomly, results in inaccurate ap-

proximations. Furthermore, for the MLS approximation (Sec. 3.1.2) local changes

in the nodal compaction cause oscillations in the approximation of the derivative.

These oscillations also influence the solutions obtained with the EFG method for

irregular nodal distribution.

To find the optimal layout with the MNA in topology optimization, the nodes

will be moved through the domain. It is likely that the movement of the nodes,

results in an irregular nodal distribution. For example, consider a topology opti-

mization of a cantilever beam, in which the domain volume should be halved and

the compliance should be minimized. According to Fig. 3.5 it is possible to redis-

tribute the nodes and lower the compliance, while maintaining the same volume.

However, this low compliance corresponds to a highly inaccurate solution of the

cantilever beam problem and should be avoided.

To overcome the problems caused by an irregular nodal distribution, a requirement

for the MNA should be:

The nodes used in the discretization of the EFG method should remain equally

spaced.

The effect of the nodal distribution on the material distribution has also been

examined. There are some difficulties in the representation of material. First,

Sec. 3.2 showed that various nodal distributions can result in the same material

distribution. Nodes which lie close to the boundaries of the background mesh

or are enclosed by other nodes, do not influence the material domain. More-

over, Sec. 3.2 showed that near boundaries of the problem domain material is

distributed, while no nodes are present. This is caused by an interaction between

the integration points from the background mesh and the nodal influence domains.

The same interaction also results in a discrete material distribution.

These problems are mainly caused by the MLS approximation and the numer-

ical integration. In the approximation, the sum of the shape functions equals one

inside the nodal influence domains. If a coordinate does not lie inside any nodal

influence domain, all shape functions are zero. Therefore the material distribu-

tion is discontinuous, i.e. either material exists or it does not exist. The shape

of this discontinuous material distribution is therefore not influenced by internal
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nodes, and only material near boundaries can be added or removed by changing

the nodal position.

In the MNA these aforementioned problems in the material distribution should

be avoided. A possible approach to solve these problems is to let the density of

the material depend on the nodal compaction. The material distribution then

becomes directly related to the nodal position, also for internal nodes. Moreover,

the discrete nature of the material boundary can be softened by changing the

density of the material continuously. Since the compaction of nodes decreases

near boundaries, the material density decreases too.

Therefore, the following question arises:

Does the material distribution become more suited for the MNA by directly relating

the material density to the compaction of the nodal distribution?
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Chapter 4

Material distribution defined by

nodal compaction

In Chap. 3 two difficulties have been identified for the discretization of structures

with the EFG method. The first difficulty is the decrease in accuracy of the EFG

method for irregular nodal distributions (see Sec. 3.1). In the current EFG method

formulation, internal nodes can be displaced without changing the material distri-

bution. However, these differences in the nodal distribution affect the accuracy of

the discretization. The second difficulty arises in the discretization of complexly

shaped structures (see Sec. 3.2). For these discretizations, an interaction between

the background mesh and the nodal influence domains results in a discontinuous

material distribution. Moreover, in the material distribution relatively large ar-

eas do not contain nodes, decreasing the solution accuracy. These two problems

can be avoided for the discretization of regular material domains by using regular

nodal distributions and by fitting the background mesh to the problem domain.

However, complex material domains and irregular nodal distributions are likely

to occur in the MNA in topology optimization. Therefore, a different approach

needs to be applied in the MNA.

In order to solve the above-mentioned problems, this chapter introduces a con-

tinuous material density that depends on the nodal compaction. Applying this

material density to the EFG method results in a material distribution without dis-

continuities. Moreover, the material density introduces a direct coupling between

the nodal position and the shape, i.e. displacing nodes will result in changes of the

shape. This chapter comprises the discussion and evaluation of the material den-

sity that depends on the nodal compaction. Sec. 4.1 describes the material density

based on the nodal compaction. In this section the constant density material dis-

tribution (hereafter: original material distribution) is replaced with a material
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distribution in which the density is based on the nodal compaction (hereafter:

nodal compaction material distribution). In Sec. 4.2 the nodal compaction ma-

terial distribution is evaluated by solving several exemplary problems with fixed

nodal distributions. With these simulations the characteristics and performance

of this material distribution can be compared to the original material distribution.

Furthermore, Sec. 4.3 explores disparities in behavior of the structure for varia-

tions in the nodal distribution. These differences are expressed as the sensitivity

of the compliance to changes in the nodal position (hereafter: compliance sensi-

tivity). The underlying cause of the variations in behavior are then derived from

the compliance sensitivity. Finally, the possibilities for applying the nodal com-

paction material distribution in the MNA in topology optimization are discussed

in Sec. 4.4.

4.1 Material density based on the nodal compaction

In this section, a continuous material density depending on the nodal compaction

is introduced in order to overcome some of the difficulties arising when describing

irregular material distributions with the EFG method. A typical meshless method

in which the material density is continuous and depends on the nodal compaction

is the SPH method [16]. Similarly, this approach can be applied to introduce a

continuous material density in the EFG method. The SPH method is based on

the kernel approximation (see Sec. 2.1.2), in which the density is expressed as

ρ(x) =
n∑
I=1

mIW (x− xI , dρ), (4.1)

where n is the number of nodes, W is a kernel function, mI is a mass belonging

to node I and dρ characterizes the size of the support domain Ωx of x. Following

from this equation a fixed amount of mass mI is distributed around each node I

according to the shape and size of the kernel function.

Fig. 4.1 shows the density distributions for a one-dimensional regular nodal

distribution with dρ = 1, 1.25, 1.5, 1.75, 2, 2.25. In these examples the cubic spline

weight function (Eq. 2.16) is used and the nodal mass equalsmI = dn = L/(n−1),

where dn is the distance between nodes.1 From the same figure the influence of

the domain size dρ on the density distribution can be determined by comparing

1This choice of the mass results in a normalized density. The normalized density has an average value
of one in regions with regular distributed nodes and has a density of zero for regions without nodes.
Intermediate densities are present near outer nodes and can also be present between internal nodes.
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(f) dρ = 2.25

Figure 4.1: One-dimensional examples of the material density for a regular nodal distribution.
The blue circles denote the nodal positions, the red lines denote the kernel functions, the black
line denotes the density.

the various density distributions. The density oscillates for smaller values of dρ.

Moreover, only small areas with nonzero density exist near the outer nodes. In

contrast, larger values of dρ give a smoother density distribution, resulting in

larger areas with nonzero density near the outer nodes.

Fig. 4.2 shows examples of density distributions for a two-dimensional square

nodal distribution. In these examples, the density has been normalized using a

nodal mass is mI = dn1dn2. Here, dn1 and dn2 is the distance between nodes in

the x1 and x2 direction, respectively. Similar oscillating and smoothing effects to

those in the one-dimensional examples of the density distribution can be observed

(Fig. 4.1).

When using the nodal compaction material distribution in the EFG method,

the total mass of the structure equals

mtot =

∫
Ω

ρ(x)dΩ =
n∑
I=1

mI , (4.2)

which follows from the unity conditions of the kernel function (Eq. 2.13) and

the constant nodal mass mI . This is the exact value of the total mass. However,

numerical integration of the density in the EFG method could result in a variations

of the total mass.
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Figure 4.2: Two-dimensional examples of the material density for a regular nodal distribution.
The blue circles denote the nodal positions and the grey contours the density.
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The nodal compaction material distribution is introduced in the EFG method

by scaling the stiffness of the material with the normalized density:

Eρ(x) = ρ(x)E, (4.3)

in which E is the constant Young’s modulus of the original material distribution

and Eρ(x) is the scaled Young’s modulus in the nodal compaction material dis-

tribution. By replacing E with Eρ(x) in the EFG method, the Young’s modulus

becomes dependent on the nodal compaction.

Note that the nodal influence domain size d used in the MLS approximation

does not need to be the same as the nodal influence domain size dρ. However, to

ensure a continuous density distribution in the neighborhood of outer nodes, dρ

should be smaller than d. Moreover, dρ should be chosen small enough such thatA

in the MLS approximation (Eq. 2.32) does not become singular. Although, using

values of dρ that are too small will lead to oscillations in the density distribution.

So far using 2.5 ≤ d ≤ 3.5 provided the most favorable characteristics of the EFG

method. Therefore, following from the above-mentioned bounds to dρ, choosing

dρ = 1.5 for further investigation seems reasonable.

4.2 Characteristics of regular nodal distributions

The nodal compaction material distribution has been introduced in Sec. 4.1 to

provide for a substitution of the original material distribution. Difficulties aris-

ing from the original material distribution are hopefully reduced or avoided by

this substitute. However, at this point the full potential of the nodal compaction

material distribution is not exactly known. Therefore, the performance and gen-

eral characteristics of the EFG method comprising the nodal compaction material

distribution is investigated in this section. To increase insight in the nodal com-

paction material distribution, this first investigation comprises only regular nodal

distributions.

The further investigation of the nodal compaction material distribution is

based on the two-dimensional cantilever beam exemplary problem, and consists

of three parts. First, in Sec. 4.2.1 the displacement and stress in the cantilever

beam are compared for the original and nodal compaction material distribution.

The general characteristics of the EFG method comprising the nodal compaction

material distribution can be determined from this first exploration. Second, in

Sec. 4.2.2 the influence of the background mesh position relative to the nodal

positions is investigated. Again, the displacement and stress in the cantilever
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beam are compared for the nodal compaction and original material distribution.

These results provide insight in the influence of the background mesh on the ma-

terial distribution. Third, a study is performed in Sec. 4.2.3 on the influence of

the nodal positions on the material distribution. In principle the nodal positions

define the shape. However, non-physical coupling between nodes caused by the

large nodal influence domains might occur. Therefore, various nodal distributions

with differences in the nodal positions are examined. Again, the investigation is

performed based on an exemplary problem.

For all three aforementioned studies, the performance of the EFG method com-

prising the nodal compaction material distribution is derived from the compliance

C and the total mass mtot. Here, the total mass of the structure is determined

from numerically integrating the density at the Gauss integration points.

4.2.1 General characteristics

In this section a study is performed on the general characteristics of the EFG

method comprising the nodal compaction material distribution. The dissimilari-

ties between the original and nodal compaction material distribution are obtained

by comparing the solutions of an exemplary problem. From these differences

the general characteristics of the nodal compaction material distribution can be

derived.

Similar to previous studies, the cantilever beam problem is used as the ex-

emplary problem. The problem domain and background mesh for the cantilever

beam are shown in Fig. 4.3b, with model constants D = 1, L = 1, E = 1 and

ν = 0.3. The left edge of the problem domain is fixed and on the right edge a con-

stant downward traction P = 0.1 is applied. The problem domain is discretized

with a regular nodal distribution, such that the internal normalized density is

approximately one. The left and right edge of the problem domain are discretized

with boundary integration cells. The discretization parameters of the nodal distri-

bution and the background mesh are given in Tab. 4.1. For these parameters the

nodes and integration points are shown in Fig. 4.3b. Here, the background mesh

has been chosen large enough such that the nodal influence domains do not cross

the global boundary of the background mesh (hereafter: semi-infinite background

mesh). Although the nodal distribution is regular, the combination between this

background mesh and nodal distribution captures the essence of the discretization

of complexly shaped domains, i.e. the non-coincidence of the background mesh

with the nodal distribution. Therefore, the investigation of these regular material

distributions also provide insight in more complexly material distributions.
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(a) Model

−L/2  0   L/2

−D/2

 0  

 D/2

(b) Discretization

Figure 4.3: Problem domain and background mesh of a typical cantilever beam problem. By
translating the background mesh according to d1 and d2 and by rotating the background mesh
according to β the influence of the position of the background mesh on the solution to the
cantilever beam problem can be investigated. The problem domain is discretized with nodes
(blue circles) and integration points (green and red dots).

Table 4.1: EFG method parameters.

Nodes in x1 direction n1 = 10
Nodes in x2 direction n2 = 10

Influence domain shape rectangular
Average nodal distance in x1 direction dn1 = L/[n1 − 1]
Average nodal distance in x2 direction dn2 = D/[n2 − 1]

Local influence domain size d = 3.5
Density influence domain size dρ = 1.5

Nodal mass per node mI = dn1dn2

Size of monomial basis 2 (linear)
Size background cell in x1 direction dm1 = dn1

Size background mesh in x2 direction dm2 = dn2

Integration points per cell 4
Number of boundary cells along left and right edge 9
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Figure 4.4: Density and nodal distributions for the cantilever beam problem (Fig. 4.3). The
blue circles denote the nodes and the grey contours the density.

First, the normalized density of the original and nodal compaction material

distributions are shown in Fig. 4.4. Since a semi-infinite background mesh is used,

additional mass is distributed near the outer nodes. In these regions the original

material distribution deviates the most from the nodal compaction material dis-

tribution. This difference also appears in the total mass of the structures, which

equals 2.42 and 1.24 for the original and nodal compaction material distribution

respectively. The dissimilarity between the density distributions results in vari-

ations in the compliance. For the original material distribution the compliance

equals 0.035 and for the nodal compaction material distribution the compliance

equals 0.055.

Second, the displacement and stress in the cantilever beam for both material

distributions are shown in Fig. 4.5 and Fig. 4.6. For these distributions, the dis-

placement of the cantilever beam has the same profile. However, the difference

in total mass results in a large variation in the the magnitude of the displace-

ment. Moreover, the solution of the original material distribution shows erratic

stress peaks near the outer nodes. In contrast, the stress near outer nodes in the

nodal compaction material distribution reduces to zero, which is the result of the

decrease in density.

The outcome of the considered exemplary problem shows that the accuracy

of the solution deteriorates in areas without nodes. Since the density in the

nodal compaction material distribution is reduced in these areas, the influence of

these areas on the accuracy is also decreased. Therefore, the nodal compaction

material distribution provides for an effective method of increasing the accuracy of

the solution for complexly shaped domains, provided that the nodal distribution
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is regular.

4.2.2 Changes in the background mesh position

Previous sections showed that the nodal compaction material distribution reduces

the material density in areas without nodes. This reduces the erratic stress peaks

present in the solution occurring when using the original material distribution.

In this section the study on the performance of the nodal compaction material

distribution is continued by investigating the influence of the background mesh on

the solution. In principle, this influence should not appear in the material distri-

bution, since it is purely a numerical artifact. However, Sec. 3.2.2 showed that the

background mesh causes discontinuities in the material distribution. Therefore,

displacement of the background mesh resulted in discontinuous behavior of the

solution. The nodal compaction material distribution has been introduced to re-

duce these problems. However, this material distribution should be further tested

to determine its full potential. Therefore, this section explores the influence of

displacements in the background mesh relative to the nodal position when using

the nodal compaction material distribution. The results are compared to results

obtained when using the original material distribution.

The aforementioned investigation is performed on the same cantilever beam

problem as in Sec. 4.2.1. This relatively simple problem will provide enough

insight in the workings of the nodal compaction material distribution. For the

cantilever beam problem, the changes in compliance and mass are determined

for a translation of the background mesh by a distance2 of 0 ≤ d1 ≤ dn1 and

0 ≤ d2 ≤ dn2 and a rotation of the background mesh to an angle3 0 ≤ β ≤ π/4.

The mass and compliance for these translations and rotations are shown in

Fig. 4.7. In this figure the mass and compliance have been normalized with the

mass and compliance of the initial configuration (d1 = d2 = β = 0). For the

original material distribution, the mass changes discontinuously when rotating

the background mesh (Fig. 4.7c),4 resulting in a compliance discontinuity when

an integration point is added or removed from the material domain. Similarly,

discontinuities arise in the compliance for translations of the background mesh.

2Because the background mesh is periodic, larger values of the translation d1 and d2 give the same
results.

3Since the size of the cells of the background mesh, the size of the problem domain and the distance
between the nodes in both directions are equal, larger values for the angle β give the same result.

4This discontinuity is not found for the translation of the background mesh (Fig. 4.7a and Fig. 4.7b).
The mass is constant because the number of integration points is constant. Each time an integration
points leaves the material domain on one side, a different integration points enters the material domain
on the opposite side. However, a different choice in background mesh size could result in discontinuities
in the mass.
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Figure 4.5: Displacement and stress in the cantilever beam for a regular nodal distribution,
found with the EFG method comprising the original material distribution.
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Figure 4.6: Displacement and stress in the cantilever beam for a regular nodal distribution,
found with the EFG method comprising the nodal compaction material distribution.
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(a) 0 ≤ d1 ≤ dm1, d2 = 0 and β = 0
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(b) d1 = 0, 0 ≤ d2 ≤ dm2 and β = 0
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(c) d1 = 0, d2 = 0 and 0 ≤ β ≤ π/4

Figure 4.7: Mass and compliance of the cantilever beam for various positions of the background
mesh relative to the nodal distribution. The background mesh is translated by d1 and d2 and
rotated by β according to Fig. 4.3.
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(b) Compliance for 6.98/500π ≤ β ≤ 7.02/500π

Figure 4.8: Closeup of the artificial stiffening in the cantilever beam problem (Fig. 4.3), occurring
for specific background mesh angles β.

In contrast, the nodal compaction material distribution does not show these dis-

continuities in the mass and the compliance, as shown in Fig. 4.7. However, both

quantities are slightly affected (changes in the mass and compliance less than 1%)

by the position and angle of the background mesh.

Furthermore, for some angles of the background mesh the original material

distribution shows an unexpected effect. The compliance decreases drastically

while maintaining approximately the same mass. For instance, for β = 7/500π

compared to β = 0 the compliance decreases more than five times. To determine

the origins of this effect, the background mesh and nodal configuration for β =

7/500π are shown in Fig. 4.8a. It appears that for this angle a diagonal alignment

exists between the integration points and the nodes. This alignment introduces

an artificial numerical increase in stiffness. Fig. 4.8b shows that the decrease

in compliance occurs for more angles around β = 7/500π, however the range is

relatively small. For these problematic angles, the nodal compaction material

distribution does not show any artificial stiffening.

The results obtained for the considered exemplary problem show that the

discontinuities occurring in the EFG method comprising the original material

distribution are circumvented by use of the nodal compaction material distribu-

tion. Furthermore, the unexpected stiffening effect does not occur in the nodal

compaction material distribution, which probably results from the smooth de-

scription of the density. Therefore, the nodal compaction material distribution

is better suited for the description of complexly shaped structures. However, the

influence of the regularity of the nodal distribution should also be investigated to

substantiate this argument.
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(a) Model
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(b) Discretization

Figure 4.9: Problem domain and background mesh of the exemplary problem used for the
exploration of the effects occurring when displacing the nodes relative to each other. The
discretization of the problem domain is done by nodes (blue circles) and integration points
(green and red dots).

4.2.3 Relative displacement of nodes

The previous section investigated the effect of the position of the background mesh

relative to the nodal distribution. Another influence on the solution accuracy can

come from the position of the nodes relative to each other. In Sec. 3.1 the effect of

the nodal distribution on the accuracy of the EFG method has been investigated.

It has been shown that the nodal distribution can influence the solution without

changing the material distribution. In contrast, when using the nodal compaction

material distribution in the EFG method, the shape of the material is directly

related to the nodal distribution. To deepen the understanding of this relation,

this section investigates the influence of altering the regular nodal distribution.

The exploration is performed based on the exemplary problem shown in Fig. 4.9.

The problem domain is fixed on the left edge and loaded with a downward trac-

tion P on the right edge. By varying d2, the two parts of the problem domain on

the left side can be separated, creating a variation in the material distribution.

The discretization parameters are given in Tab. 4.2 and the model constants are

D = 5dn2, W = 7dn1, L = 2, E = 1 and ν = 0.3. Fig. 4.9b shows the dis-

cretization of the problem domain. Similarly to previous section, the results of

the exemplary problem are the compliance and mass. These two quantities are

normalized by the compliance and mass of the initial configuration (d2 = 0), given
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Table 4.2: EFG method parameters.

Number of nodes n = 270
Influence domain shape rectangular

Average nodal distance in x1 direction dn1 = 2/19
Average nodal distance in x2 direction dn2 = 2/19

Local influence domain size d = 3.5
Density influence domain size dρ = 1.5

Nodal mass per node mI = dn1dn2

Size of monomial basis 2 (linear)
Size background cell in x1 direction dm1 = dn1

Size background mesh in x2 direction dm2 = dn2

Integration points per cell 4
Number of boundary cells along left edge 8

Number of boundary cells along right edge 19
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Figure 4.10: Mass and compliance for various nodal displacements for the problem as depicted
in Fig. 4.3. In order to achieve the separation of the material domains, part of nodes is moved
up by a value of d2.

by mtot = 4.95 and C = 0.65 for the original material distribution and mtot = 2.99

and C = 1.32 for the nodal compaction material distribution.

Next, the normalized mass and compliance are obtained for 0 ≤ d2 ≤ 20/19,

shown in Fig. 4.10.5 Besides the initial disparity in mass between both material

distributions, the original material distribution shows an increase in total mass

when the two parts are separated. For the same material distribution, moving

part of the nodes upwards results in a stiffer structure. Moreover, additional stiff-

ening of the structure results form the increase in mass. This stiffening occurs

discontinuous, resulting from the discontinuity in the original material distribu-

tion.
5For both material distributions, the displacement and stress for d2 = 0, 5/19, 10/19, 20/19 are shown
in App. B in Fig. B.5, Fig. B.6, Fig. B.7 and Fig. B.8, respectively.
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Figure 4.11: Density distribution (grey contour) near the boundaries of the separated material
domains. The influence domain (red line) of a node (red circle) close to the gap reaches over
the zero density area, resulting in a coupling between separate parts of the structure.

In contrast to the original material distribution, the mass and compliance

for the nodal compaction material distribution behave continuously. Only slight

oscillations appear in the mass, thus the total mass is approximately conserved.

Moreover, the compliance increases for 0.3 < d2 < 0.4. In principle, this increase

should not occur, since separation of the two parts results in a stiffer structure.

The behavior of the compliance can be explained by considering a nodal influence

domain of a node close to the created gap, as shown in Fig. 4.11. The nodal

influence domain reaches over the region with zero density, resulting in a coupling

between the material on both sides of the gap. Thus, the two parts of the structure

are not detached as the density suggests.

A possible solution to this problem is to use dρ = d. As a consequence, the

nodal influence domain d will never cover a region with zero density. For an ac-

curate solution, d should be chosen relatively large. Therefore, dρ also becomes

relatively large, resulting in very smooth density distributions with large inter-

mediate density areas near the outer nodes (Fig. 4.1). Moreover, when choosing

dρ = d, only a constant monomial basis can be used to prevent matrix A in

the MLS approximation from becoming singular. This constant monomial basis

reduces the accuracy of the solution.

To determine the effect of using dρ = d and a constant monomial basis, the

mass and compliance are shown in Fig. 4.12. In the same figure, the mass and

compliance are shown when using dρ = 1.5, d = 3.5 and a linear monomial

basis. The increase in compliance does not exist when dρ = d. Some small

oscillations are still present in the compliance, probably resulting from a relative

change in position of the background mesh to the nodal distribution. Moreover,

the oscillation in the total mass is smaller for dρ = d, since the density distribution
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Figure 4.12: Mass and compliance for various displacements of the nodal distributions as de-
picted in Fig. 4.3. In order to achieve a separation between two material domains, part of the
nodes is moved up by a value of d2.

is smoother and thus integration of the density becomes easier.

4.3 Compliance sensitivity

In Sec. 4.2.3 the performance and characteristics of the EFG method comprising

the nodal compaction material distribution have been investigated. From various

exemplary problems the quality of the solutions has been compared to the origi-

nal material distribution. In general, the nodal compaction material distribution

showed favorable characteristics. For instance, this distribution circumvented dis-

continuities in the material distribution. Furthermore, at coordinates with few

neighboring nodes the density is decreased, removing the erratic stress peaks in

these areas. However, these tests have been performed on regular distributed

nodal distributions. Therefore these tests do not include the influence of irregular

nodal distributions on the EFG accuracy, which proved to be a problem in the

original material distribution (Sec. 3.1).This section investigates the influence of

the nodal position on the EFG accuracy.

Displacing the nodes in the nodal compaction material distribution affects the

EFG solution in two ways. First, as was shown in Sec. 3.1 the nodal position

influences the quality of the discretization. This is an unfavorable effect, since

previous analysis showed that irregular nodal distributions decrease the accuracy

of the solution. Second, the nodal position influences the shape, since the density

depends on the nodal position. Repeating the random nodal distribution tests

from Sec. 3.1.1 will not clearly demonstrate the separate contributions of both

effects. Instead, a different approach to determine the influence of the nodal

position is used in this section.
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So far, the global behavior of the structure has been expressed by the com-

pliance. By determining the derivative of the compliance to the nodal position

(hereafter: compliance sensitivity), the influence of nodal displacements on the

compliance is found. The compliance sensitivity can be expressed as

∂C

∂xIi
or C,Ii, (4.4)

where C is the compliance, xIi is the coordinate of node I in direction i, I =

1...n and i = 1, 2 in two dimensions. From the compliance sensitivity it can be

determined that the dependency of the solution is due to changes in the shape or

due to the quality of the discretization. Determining the separate contributions

of both effects can be done by calculating the compliance sensitivity with two

methods. First, in Sec. 4.3.1 the compliance sensitivity is determined by the

Finite Differences method [20]. With this method, the compliance sensitivity

consists of both the contributions from the change in shape and the quality of

the discretization. For this method, the original and nodal compaction material

distribution are compared. Second, in Sec. 4.3.2 the compliance sensitivity is

determined analytically, in which the contribution of the discretization quality

is neglected. This compliance sensitivity then only represents the effect of the

nodal position on the shape. Only the nodal compaction material distribution

is considered for this method, since the material density in the original material

distribution is constant.

For the two methods, an exemplary problem is used to quantify the compliance

sensitivity. The problem domain and background mesh for this exemplary problem

are shown in Fig. 4.13a. The model constants are D = 1, L = 1, E = 1 and ν =

0.3. The left edge of the problem domain is fixed and the center part of the right

edge with length 1/5D is loaded with a downward traction. The parameters used

for the discretization are given in Tab. 4.3, and the corresponding discretization

is shown in Fig. 4.13b.

4.3.1 Finite Difference compliance sensitivity

In order to determine the compliance sensitivity C,Ii numerically, the Finite Dif-

ference method can be applied:

∂C

∂xIi
=
C(xIi + di)− C

di
, (4.5)
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(a) Model
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(b) Discretization

Figure 4.13: Problem domain and background mesh of the exemplary problem used for quan-
tifying the compliance sensitivity. The discretization of the problem domain is done by nodes
(blue circles) and integration points (green and red dots).

Table 4.3: EFG method parameters.

Number of nodes in x1 direction n1 = 10
Number of nodes in x2 direction n2 = 10

Influence domain shape rectangular
Average nodal distance in x1 direction dn1 = L/(n1 − 1)
Average nodal distance in x2 direction dn2 = D/(n2 − 1)

Local influence domain size d = 3.5
Density influence domain size dρ = 3.5

Nodal mass per node mI = dn1dn2

Size of monomial basis 1 (constant)
Size background cell in x1 direction dm1 = dn1

Size background mesh in x2 direction dm2 = dn2

Integration points per cell 4
Number of boundary cells along left edge 9

Number of boundary cells along right edge 9
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in which C(xIi + di) is the compliance for a displacement di of node I and di is

the step size in direction xi.
6 For each node in the discretization of the problem

domain in Fig. 4.13b, the compliance sensitivity is determined in the x1 and

x2 direction. Since each node has a influence on the compliance in the x1 and

x2 direction, the compliance sensitivity can be visualized by a vector plot. The

compliance sensitivity is shown by this vector plot in Fig. 4.14 for the original and

nodal compaction material distribution. The green lines in the vector plot start

at the corresponding nodal coordinate and point in the direction of decreasing

compliance.7

The vector plots show that for both material distributions the direction of the

vectors of the outer nodes oscillates. Moreover, the compliance is more sensitive

to changes in the nodal positions along the boundary than internally. However,

for the nodal compaction material distribution, the sensitivity along the boundary

is much smaller and the internal compliance sensitivity is much larger than for

the original material distribution. This last difference is more clearly shown for

the central sixteen nodes in Fig. 4.14c and Fig. 4.14d.

The dissimilarities between the compliance sensitivity of the original and nodal

compaction material distribution are caused by the differences in density. The

magnitude of the compliance sensitivity in the original material distribution purely

results from a change in the discretization. For the nodal compaction material

distribution the nodal positions both influence the quality of the discretization

and the material density. Thus, the introduction of a material density depending

on the nodal compaction results in a compliance which is sensitive to the shape of

the structure. However, some numerical artifacts still result in oscillations of the

compliance sensitivity. To isolate the contribution of the nodal position on the

material density, next section discusses an analytical approach for the compliance

sensitivity.

4.3.2 Analytical compliance sensitivity

The compliance sensitivity to the shape of the structure can be determined by

merely considering the influence of the nodal position on the density distribu-

tion. However, this investigation can not be performed with the numerical Finite

Differences method used in previous section. In order to remove the compliance

sensitivity due to the discretization quality, the nodal sensitivity of the density

6The magnitude of the step size is determined from a convergence study with various sizes of di. For
the example from Fig. 4.13 a value of di = dni/1000 is used.

7In the vector plot, the magnitude of the vectors are scaled by a factor s to improve the visibility.
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(a) Original material distribution s = 70
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(b) Nodal compaction material distribution s =
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Figure 4.14: Vector plot of the compliance sensitivity for changes in the nodal positions. The
green lines in the vector plot start at the corresponding nodal coordinate and point in the
direction of decreasing compliance. To improve visibility the magnitude of the vectors are
scaled by a factor s.
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distribution is derived analytically. In this derivation the influence of the nodal

position on the discretization quality is neglected. The derivation is given next,

followed by the results obtained with this method for the exemplary problem in

Fig. 4.13.

The compliance is given by

C = F TÛh. (4.6)

The nodal position sensitivity is then

∂C

∂xIi
=
∂F T

∂xIi
Ûh + F T∂Û

h

∂xIi
. (4.7)

Since the force vector F does not depend on the material density, its derivative

is neglected:
∂C

∂xIi
= F T∂Û

h

∂xIi
= {Ûh}TKT∂Û

h

∂xIi
. (4.8)

The stiffness matrix K can be written as a sum of all the integration point con-

tributions according to

K =

ni∑
K=1

ρ(xK)KK
e , (4.9)

in which

KK
e =

n∑
I=1

n∑
J=1

[
BI

]T
DBJJK , (4.10)

ni is the number of integration points and JK is a constant belonging to the

integration point. Here, the Young’s Modulus has been replaced with a Young’s

modulus depending on the nodal position (Eq.4.3). Eq. 4.8 then becomes

∂C

∂xIi
= {Ûh}T

ni∑
K=1

ρ(xK){KK
e }T∂Û

h

∂xIi
. (4.11)

In order to determine the derivative of the displacement vector Ûh consider

KÛh = F , (4.12)

for which the following derivative holds:

∂K

∂xIi
Ûh +K

∂Ûh

∂xIi
=
∂F

∂xIi
= 0, (4.13)
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Figure 4.15: The compliance sensitivities for the original material distribution when only taking
into account the influence of the nodal position on the density distribution. The green lines
in the vector plot start at the corresponding nodal coordinate and point in the direction of
decreasing compliance. The vectors are scaled according to s = 1000.

or
∂{

∑ni

K=1 ρ(x
K)KK

e }
∂xIi

Ûh +

ni∑
K=1

ρ(xK)KK
e

∂Ûh

∂xIi
= 0. (4.14)

The stiffness matrix KK
e is independent of the density and is therefore neglected:

∂{
∑ni

K=1 ρ(x
K)}

∂xIi
Ûh +

ni∑
K=1

ρ(xK)
∂Ûh

∂xIi
= 0, (4.15)

or

∂Ûh

∂xIi
= −

ni∑
K=1

∂{ρ(xK)}
∂xIi

ρ(xK)
Ûh. (4.16)

Combining Eq. 4.16 and Eq. 4.11 results in the compliance sensitivity with only

the contribution due to influence of the nodal position on the shape:

∂C

∂xIi
= −{Ûh}T

ni∑
K=1

[
KK

e

]T ∂ρ(xK)
∂xIi

Ûh, (4.17)

in which
∂ρ(xK)

∂xIi
=

n∑
J=1

∂W (xK − xJ , dρ)

∂xIi
mJ . (4.18)

For each node used to discretize the problem domain in Fig. 4.13a, the com-

pliance sensitivity is determined in the x1 and x2 direction. The compliance

sensitivity is shown by a vector plot in Fig. 4.15. No oscillations are present in

the sensitivity. Actually, these results have a relevant physical significance. The
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sensitivity vectors point in the direction of decreasing compliance. Comparing

these results to the results of previous section (Sec. 4.3.1) relativizes the contri-

butions to the compliance sensitivity. Thus showing the major influence of the

discretization on the solution accuracy.

4.4 Nodal compaction material distribution in the MNA

In this chapter the nodal compaction material distribution has been introduced

to resolve some problems with the original material distribution. These prob-

lems are mainly caused by the discontinuous material distribution, arising from

the interaction between the nodal influence domains and the background mesh.

Since the material distribution in the nodal compaction material distribution is

continuous, the quality of the EFG solution for complexly shaped structures is

increased. This improvement is a prerequisite for the MNA in topology optimiza-

tion to function. With the nodal compaction material distribution the shape is

directly related to the nodal distribution. The nodal positions can then be used

as the design variables in topology optimization to alter the layout.

The relation between the nodal position and the shape also results in a com-

pliance sensitivity that depends on the material distribution. This sensitivity can

be used to direct the nodes towards a decrease in compliance. However, the com-

pliance sensitivity also depends on the quality of the discretization. According

to this dependency the accuracy of the EFG method is lower for irregular nodal

distributions. Therefore, the possibility of node redistribution is limited. When

neglecting the contribution of the discretization quality on the compliance sensi-

tivity, the resulting sensitivity only depends on the shape of the structure. This

compliance sensitivity behaves predictable and can therefore be used to direct

the nodes towards the optimal shape. An additional requirement for the nodal

positions is necessary in order to take advantage of this predictable compliance

sensitivity. This requirement should result in regular nodal distributions during

the optimization process to maintain the quality of the discretization. .

To take advantage of the predictable compliance sensitivity the following require-

ment should hold:

The nodes should remain regularly spaced.

Furthermore, although the introduction of the nodal compaction material distri-
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bution improved the possibility for the description of complexly shaped domains,

for these shapes the large nodal influence domain can cause additional coupling

between separated structural parts. In the MNA this additional coupling can re-

sult in artificial stiffening and therefore introduces non-physical coupling between

the nodes. Therefore, the large nodal influence domains could affect the conver-

gence to the real optimal structural layout in the MNA. However, the full effects

of the nodal influence domains could best be explored in a topology optimization

setting.
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Chapter 5

The MNA in topology

optimization

Recapitulating the previous two chapters, in Chap. 3 the influence of the nodal

position on the accuracy of the EFG discretization has been investigated. The

most accurate results were obtained with regular nodal distributions. Moreover,

the capability of the EFG method to discretize irregular shaped structures proved

to be difficult. One difficulty is the presence of discontinuities in the material dis-

tribution caused by the interaction between the background mesh and the nodal

distribution. Because of these difficulties, the nodal positions in this original ma-

terial distribution are not suitable as design variables in topology optimization.

In Chap. 4 the nodal compaction material distribution has been introduced to

improve the capability of the EFG method to discretize irregular shaped struc-

tures and to remove the discontinuities present in the solution. In this material

distribution the density depends on the nodal compaction, resulting in a material

distribution which is sensitive to the nodal positions.

The above-mentioned changes to the EFG method create opportunities for a

flow-inspired topology optimization method. This chapter explores the possibili-

ties of such an approach in topology optimization by using the nodal positions as

design variables. In order to determine the full potential of the MNA in topology

optimization, it would be ideal to explore and test its workings thoroughly. Nev-

ertheless, for a first exploration of the potential of the MNA a basic but effective

research suffices. Therefore, the research performed in this chapter comprises the

proposition and testing of a fairly simple MNA algorithm. Based on the previous

chapters, Sec. 5.1 proposes an MNA optimization algorithm, which includes three

additional requirements. The optimization algorithm is tested by three exemplary

problems in Sec. 5.2. With these findings, the characteristics and opportunities
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of the MNA are discussed in Sec. 5.3.

5.1 An MNA topology optimization algorithm

In order to investigate the characteristics of the MNA in topology optimization,

a transparent MNA optimization algorithm is proposed in this section. This

algorithm is based on the meshless EFG method (see Chap. 2). Furthermore,

some previously discussed difficulties in the original EFG method formulation are

reduced by using the nodal compaction material distribution (see Chap. 4).

The quality of the structure can be expressed by the compliance. By changing

the shape of the structure, the compliance of the structure can be altered. The

optimal layout of the structure is defined as the layout with the lowest compli-

ance. In order to determine additional requirements for the MNA in topology

optimization, a discussion on general characteristics of such an approach follows.

In the MNA the shape of the structure is altered by changing the position of

mass containing nodes. Since the mass is constant for each node, the total mass

of the structure does not change during the design optimization process. There-

fore, the total mass of the structure does not have to be constrained.

An algorithm for the displacement of nodes towards the optimal layout of the

structure is introduced in Sec. 5.1.3. In this algorithm, the nodes are displaced

in the direction of the compliance sensitivity in order to find the optimal lay-

out. However, Sec. 4.3 showed that compliance sensitivity is affected by the EFG

discretization. Moreover, irregular nodal distributions introduce inaccuracies in

the EFG formulation. One possible solution to circumvent these problems is to

use two types of nodes by decoupling the discretization function (hereafter: dis-

cretization nodes) and the mass distribution function (hereafter: mass nodes).

The accuracy of the discretization can be preserved by fixating the discretization

nodes, while the shape of the structure can be altered by displacing the mass

nodes. This decoupling will be applied in the proposed MNA and is therefore

further discussed in Sec. 5.1.2.

Since the material density depends only on the nodal compaction, normalized

densities can occur with a value higher than one. In practice, these densities

are difficult to fabricate and should therefore be avoided. This can be achieved

by using an asymptotic function for the density. A typical asymptotic density

function is discussed in Sec. 5.1.3.

The combination of these aforementioned elements forms an MNA meshless
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method-based topology optimization algorithm. Note that this section is merely

concerned with the possibility of such an approach and is not necessarily concerned

with determining the best possible MNA topology optimization algorithm. In

the remainder of this section the three above-mentioned additional requirements

for the MNA in topology optimization are discussed. The requirements are: an

algorithm for the nodal movement, decoupling of the discretization and the mass

distribution function and the asymptotic density function.

5.1.1 Nodal movement

The first additional requirement for the MNA in topology optimization is an

algorithm that provides the nodal movement. In this section a fairly simple and

transparent algorithm is proposed. When using the nodal compaction material

distribution (see Sec. 4.1), the structural layout is defined by the nodal positions.

The layout can be altered by displacing the nodes. When moving the nodes in the

direction of the compliance sensitivity (see Sec. 4.3), the compliance will probably

decrease. Therefore, each node is accelerated in the direction of the compliance

sensitivity. The flow-inspired optimization algorithm can then be described by

the following differential equation:

∂2xIi (t)

∂t2
− c

∂xIi (t)

∂t
=
∂C(xIi (t))

∂xIi (t)
for I = 1...n and i = 1, 2, (5.1)

in which t indicates the time and c is a velocity damping constant. This equation

can be rewritten as

∂vIi (t)

∂t
= cvIi (t) +

∂C(xIi (t))

∂xIi (t)
for I = 1...n and i = 1, 2, (5.2)

where vIi (t) is the velocity of node I in direction xi, defined by

vIi (t) =
∂xIi (t)

∂t
. (5.3)

In order to solve Eq. 5.2, the equation is discretized with the numerical Euler

Forward method [20], which results in

vIi (t
k+1) = vIi (t

k) + ∆t{cvIi (tk) +
∂C(xIi (t

k))

∂xIi (t
k)

} for I = 1...n and i = 1, 2.

(5.4)

Here, ∆t is the size of the time step, tk is the current time step and tk+1 corresponds

to the subsequent time step. The nodal positions after each time step are updated
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according to

xIi (t
k+1) = xIi (t

k) + ∆tvIi (t
k+1) for I = 1...n and i = 1, 2. (5.5)

The velocity damping constant should be limited to 0 ≤ c ≤ 1 in order to

avoid divergence of the nodal velocities. Moreover, a damping constant with a

value close to one will result in smooth flows and global oscillations in the mass

flow. In contrast, low values of the damping constant result in highly adaptive

nodal movement and local oscillations in the mass flow. In order to increase

the convergence rate of the proposed nodal movement algorithm, the compliance

sensitivity can be scaled according to

Cs
,Ii =

C,Ii√
{C,I1}2 + {C,I2}2

for I = 1...n and i = 1, 2, (5.6)

where Cs
,Ii is the scaled compliance sensitivity of node I in direction xi.

5.1.2 Decoupling of discretization and mass distribution functions

The second additional requirement for the MNA in topology optimization is the

decoupling of the discretization and mass distribution functions of the nodes. So

far, the discretization function and mass distribution function have been per-

formed by the same nodes (hereafter: coupled nodes). In order to maintain the

accuracy of the EFG method, the nodes should be regularly spaced. However,

since the nodes are displaced in the MNA, irregular nodal distributions are likely

to occur. These nodal distributions lower the accuracy of the EFG method.

To circumvent the influence of the nodal positions on the EFG formulation,

the discretization function and the mass distribution function can be decoupled by

introducing two types of nodes: discretization nodes and mass nodes (hereafter:

decoupled nodes). The accuracy of the discretization can be preserved by fixat-

ing the discretization nodes, while the shape of the structure can be altered by

displacing the mass nodes. Since only the density is affected by the displacement

of the mass nodes, the exact compliance sensitivity is given by Eq. 4.17.

For the decoupled nodes, the linear elasticity equations can be solved more pre-

cisely for irregular shapes. However, only mass can be distributed in regions that

contain discretization nodes. Therefore, the discretization nodes have to cover the

complete domain in which material is distributed. In topology optimization, this

domain is often referred to as the design space. It is likely that the discretization

nodes will cover regions with zero density (regions without mass nodes), resulting
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in a singular stiffness matrix. To prevent this singularity, a minimum density is

assigned to the complete design space, independent of the presence of mass nodes.

The minimum density is introduced in the density from Eq. 4.1 according to

ρ(x) = ρmin + {1− ρmin}
n∑
I=1

mIW (x− xI , dρ), (5.7)

in which ρmin is the minimum density. ρmin should be small enough to reduce the

influence of this additional density on the material distribution. However, ρmin

should be large enough to avoid a singular stiffness matrix.

Decoupling the two nodal functions could also have negative effects on the

EFG discretization. Sec. 4.2.3 discussed problems that have been caused by the

relatively large nodal influence domain. These problems are probably aggravated

for the decoupled nodes. Discretization nodes will be present in regions with low

density (regions without mass nodes), introducing additional coupling between

regions separated by a low material density region. This additional coupling will

affect the optimization process and thus the final optimized shape. However, since

this decoupling provides for an effective manner to reduce the problems arising

from irregular nodal distributions, decoupling is still applied in the proposed MNA

algorithm.

5.1.3 Asymptotic density function

The final additional requirement for the MNA in topology optimization is the

asymptotic density function, which is explained in this section. The material den-

sity from Eq. 4.1 depends on the nodal compaction. In this material distribution,

the normalized densities can become larger than one in areas with high nodal

compaction, resulting in material densities which are difficult to fabricate. An

asymptotic function for the density is introduced to limit the maximum normal-

ized density:

ρas(ρ(x)) =
aρ(x)

{ρ(x)}b + a
, (5.8)

with
∂ρas(ρ(x))

∂ρ(x)
=
a{1− n}{ρ(x)}b + c2

[{ρ(x)}b + a]2
. (5.9)

Here, ρas(ρ(x)) is the asymptotic density function and a and b are constants that

define the shape of the asymptotic function.
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Figure 5.1: The asymptotic density function used in the MNA topology optimization algorithm.
This density function is applied in order to limit the value of the normalized material density
to one.

The constants a and b are chosen such that

ρas(ρ(x) = ρm) = 1 and
∂ρas(ρ(x) = ρm)

∂ρ(x)
= 0, (5.10)

where ρm is the value of ρ(x) for which ρas(ρ(x)) equals one and is at a maximum.

The constants can then be expressed in terms of ρm according to

b =
1

ρm − 1
+ 1, (5.11)

a =
{ρm}b

ρm − 1
. (5.12)

The asymptotic density function ρas is shown in Fig. 5.1 for ρm = 1.1. The

compliance sensitivity from Eq. 4.17 changes when using this asymptotic density

function. The correct sensitivity can be found by replacing the derivative of the

density from Eq. 4.1 by the derivative of the asymptotic density function, which

equals
∂ρas(xK)

∂xIi
=
∂ρas(ρ(xK))

∂ρ(xK)

∂ρ(xK)

∂xIi
. (5.13)

The asymptotic density function provides for an effective method to exclude

normalized material densities with a value larger than one. Moreover, no con-

straints have to be applied to the nodal positions when using this asymptotic

function. Therefore, the resulting material description depends continuously on

the nodal position. This provides for favorable properties that can be utilized in

the MNA.
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Figure 5.2: Design space and boundary conditions for the topology optimization exemplary
problems.

Table 5.1: EFG method parameters.

Lower res. Higher res.

Number of cells in x1 direction m1 = 9L 2m1

Number of cells in x2 direction m2 = 9D 2m2

Number of discretization nodes in x1 direction m1 + 1 2m1 + 1
Number of discretization nodes in x2 direction m2 + 1 2m2 + 1

Nodal influence domain shape rectangular rectangular
Nodal influence domain size d 2.5 2.5

Size of monomial basis 2 (linear) 2 (linear)
Integration points per cell 4 4

Number of boundary cells along left edge m2 2m2

Number of boundary cells along right edge m2 2m2

5.2 MNA topology optimization exemplary problems

To determine the feasibility of the MNA topology optimization algorithm pro-

posed in Sec. 5.1, the MNA algorithm is used to find the optimal shape of a two-

dimensional cantilever beam. The design space of the beam is shown in Fig. 5.2,

where the design space is the domain in which material can be distributed. Three

design spaces with varying size are considered: L = 1 and D = 2; L = 2 and

D = 1; L = 3 and D = 1. The remaining model constants are E = 1 and ν = 0.3.

Moreover, the left edge of the design space is fixed and on the center part of the

right edge with size 1/5D a downward traction P = 0.1 is applied. The design

space is discretized using the parameters from Tab. 5.1.

The initial material distribution in the design space is defined by the positions

of the mass node. For the three varying design spaces, mass nodes are distributed

in the center region with width L and height 1/3D. The properties and posi-

tions of these mass nodes are given by the parameters in Tab. 5.2. Each node is

initially randomly perturbed to avoid unstable optimization paths. Furthermore,

the time step equals ∆t0 = L/m1, which is small enough to avoid instabilities in
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Table 5.2: Initial density distribution parameters

Lower res. Higher res.

Number of mass nodes in x1 dir. 9L 18L
Number of mass nodes in x2 dir. 3D 6D
Initial nodal distance in x1 dir. L/(9L− 1) L/(18L− 1)
Initial nodal distance in x2 dir. D/(3D − 1) D/(6D − 1)

Influence domain shape rectangular rectangular
Local influence domain size dρ 1.5 1.5

Nodal mass mI L/(9L− 1)D/(3D − 1) L/(18L− 1))D/(6D − 1)
Minimal density ρmin 10−6 10−6

the nodal movement. The optimized shape will be affected by the detail of the

nodal distributions and the background mesh. In order to investigate this effect,

two various nodal distribution and background mesh resolutions are considered:

a lower resolution and a higher resolution. For the design space with size L = 1

and D = 2 Fig. 5.3 shows the lower and higher resolution. The total mass mtot

varies for the lower and higher resolution. Therefore comparison of the lower and

higher resolutions is not straightforward. From the results of the optimization

process only general characteristics of the MNA topology optimization method

can be observed.

Some density distributions obtained during the optimization process of the

design space with size D = 2 and L = 1 are shown in Fig. 5.4.1 The density

distributions are given for tk with k = 1, 25, 50, 100, 200 for both the lower and

higher resolution. The results show that the structure flows to a different layout,

finally reaching an equilibrium. Interestingly, the nodes do not leave the design

space and remain approximately equally spaced. The total mass of the structure

during the optimization process is shown in Fig. 5.5a. In this figure the total

mass has been normalized by the sum of the nodal masses (
∑n

I=1m
I). During the

optimization process, the asymptotic density function results in a converging nor-

malized mass towards a value lower than one. The total mass is also reduced when

nodes are close to the boundary of the design space, which explains the higher

normalized mass of the higher resolution. The compliance of the structure during

the optimization process is also shown in Fig. 5.5a. The compliance converges

to a value lower than the initial compliance. Assuming that the linear elasticity

equations are solved accurately with the EFG method, an improved structure has

been found with the MNA.

Similar results are obtained for the structural optimization using the design

1For these density distributions the displacement and stress are shown in App. B in Fig. B.9.
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−L/2  0   L/2
−D/2

 0  

 D/2

(a) Lower resolution

−L/2  0   L/2
−D/2

 0  

 D/2

(b) Higher resolution

Figure 5.3: Mass nodes, discretization nodes, background mesh and boundary integration points
for the design space from Fig. 5.2 with L = 1 and D = 2. The blue circles correspond to the
mass nodes, the cyan circles correspond to the discretization nodes, the green dots denote
the integration points and the red dots denote the boundary integration points. The specific
parameters of the discretization and the initial mass distribution are given in Tab. 5.1 and
Tab. 5.2.

107



 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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(b) Higher resolution

Figure 5.4: Density distributions during optimization process of a cantilever beam with the
design space and boundary conditions as depicted in Fig. 5.2. The size of the design space is equal
to D = 2 and L = 1 and the density distribution is shown at time tk with k = 1, 25, 50, 100, 200.
The grey contour corresponds to the density and the blue nodes to the mass nodes. Both a
lower and higher resolution for the discretization nodal distribution and the background mesh
are considered, given by the parameters from Tab. 5.1 and Tab. 5.2.
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(b) L = 2 and D = 1
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(c) L = 3 and D = 1

Figure 5.5: Normalized mass and compliance during the optimization of the design space from
Fig. 5.2. k corresponds to the time step according to tk.
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Figure 5.6: Density distributions during optimization process of a cantilever beam with the
design space and boundary conditions as depicted in Fig. 5.2. The size of the design space is equal
to D = 1 and L = 2 and the density distribution is shown at time tk with k = 1, 25, 50, 100, 200.
The grey contour corresponds to the density and the blue nodes to the mass nodes. Both a
lower and higher resolution for the discretization nodal distribution and the background mesh
are considered, given by the parameters from Tab. 5.1 and Tab. 5.2.
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Figure 5.7: Density distributions during optimization process of a cantilever beam with the
design space and boundary conditions as depicted in Fig. 5.2. The size of the design space is equal
to D = 1 and L = 3 and the density distribution is shown at time tk with k = 1, 25, 50, 100, 200.
The grey contour corresponds to the density and the blue nodes to the mass nodes. Both a
lower and higher resolution for the discretization nodal distribution and the background mesh
are considered, given by the parameters from Tab. 5.1 and Tab. 5.2.
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spaces with size L = 2 and D = 1 and L = 3 and D = 1. Again, both a

lower and higher discretization resolution have been used. For both design spaces,

five density distributions obtained during the optimization process are shown in

Fig. 5.6 and Fig. 5.7.2 In both examples, the optimization process converges

to an equilibrium nodal distribution. The shapes from these optimized nodal

distributions shows some variations compared to the optimized shape of the design

space with size L = 1 and D = 2. For instance, thin nodal arrays are present

in the final optimized shape. These nodal arrays correspond to thin structural

members. Furthermore, during the optimization process some nodes flow outside

the design space. However, these nodes always return to the design space because

of the compliance sensitivity. This can be explained by considering the total mass

and compliance of the structure during the optimization process, as shown in

Fig. 5.5b and Fig. 5.5c respectively. The total mass reduces when nodes leave

the design space, which results in a reduction of the compliance. Therefore, the

compliance sensitivity will direct the nodes back towards the design space. For

some of the density distribution in Fig. 5.6 and Fig. 5.7, mass nodes appear to

be disconnected from the other mass nodes. However, these nodes are in fact

not disconnected. The relative large nodal influence domain present in the EFG

formulation causes a coupling between nodes in relative large areas. This coupling

can even occur between discretization nodes separated by low density regions (see

Sec. 4.2.3), introducing additional non-physical stiffness in the structure. Based

on the aforementioned findings, the general characteristics of the MNA in topology

optimization are discussed in Sec. 5.3.

5.3 Characteristics of the MNA

In the previous sections of this chapter, an MNA optimization algorithm has been

proposed and tested. For three exemplary problems a stiffer structure has been

found with this flow-inspired topology optimization algorithm. Thus it has been

shown that with a reasonably simple optimization algorithm a fixed amount of

mass can be redistributed to increase the stiffness of a structure. In the pro-

posed MNA algorithm the mass flows to a more optimal layout, resulting in a

very intuitive and transparent optimization process. Although there is room for

improvement of this algorithm, interesting characteristics of the MNA in topol-

ogy optimization can be derived from the results obtained in Sec. 5.2. Next, a

2For the density distributions of the design space with size L = 2 and D = 1 the displacement and
stress are shown in App. B in Fig. B.10.

112



discussion of these characteristics follows.

One of the interesting characteristics of the MNA is the conservation of mass.

In the MNA, the shape is altered by displacing nodes with a fixed amount of mass.

This provides for a topology optimization method in which no mass constraint

has to be applied. The mass of the initial unimproved structure is therefore equal

to the optimized structural mass. However, in the proposed optimization algo-

rithm this is not completely true. The total mass decreases when nodal influence

domains intersect the boundary of the design space. Moreover, the asymptotic

density function causes a reduction in mass in areas with a high nodal compaction.

Though, these two effects only cause a reduction in mass and therefore no con-

straint for the maximum mass has to be applied.

Another interesting characteristic of the MNA is the relative low number of

required design variables. In the MNA, the mass distribution is directly linked

to the nodal distribution, i.e. mass is distributed in areas which contain mass

nodes. Therefore, design variables are only present in mass containing areas.

This characteristic can reduce the computational cost of the sensitivity analysis,

especially for large structures with low mass. These structures are often comprised

of thin members. Since the mass of these structures is relatively low, the shape

can be expressed by a low number of design variables. This could therefore result

in a more efficient optimization process.

The proposed MNA algorithm also contains some problems. For instance,

inaccuracies arise from the relatively large nodal influence domains in the EFG

method. These inaccuracies are caused by the additional non-physical coupling

between discretization nodes. This reduces the possibility of the EFG method to

accurately describe highly irregular shapes. Therefore, these problems affect the

optimization process in the MNA.

Furthermore, the redistribution of mass is highly path dependent, i.e. the shape

can only be altered at the structural boundaries. For instance, this could pose

a problem for the formation of new members in the structure or the redistribu-

tion of mass between two opposite sides of the design space. Problems are also

present in the material density. In principle, to improve the manufacturability of

the structure, the optimized material distribution should only contain normalized

densities with a value of zero or one. In the MNA algorithm normalized densities

are limited to values between zero and one. However, intermediate densities can

still exist. These intermediate densities should merely be a tool to reduce the

discontinuities of the shape of the structure during the optimization process and

should not be present in the final solution.

113



In conclusion, the MNA in topology optimization shows interesting character-

istics, especially the conservation of mass and the low number of required design

variables are positive characteristics. Further research should be performed to

improve this topology optimization approach and discover its full potential.
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Summary

In this thesis the possibility of a flow-inspired Meshless Method based topology

optimization method is explored. More specific, an investigation is carried out to

the possibility of using the position of the nodes from the meshless EFG method

as design variables in topology optimization.

In order to determine the possibility of using the nodal positions as design

variables, the influence of variations in the nodal distribution on the EFG method

accuracy is investigated. It turned out that the solution to the governing equa-

tions obtained with the EFG method is highly sensitive to nodal displacements.

The most accurate results are obtained for regularly spaced nodal distributions.

Moreover, the relation between the nodal distribution and the material distribu-

tion is investigated. The discretization of irregular shapes, often encountered in

topology optimization, proves difficult. The difficulties arise from discontinuities

in the material distribution and the occurrence of large material domains without

nodes. These complications are mainly caused by the interaction between the

nodal influence domains and the fixed background mesh.

The above-mentioned difficulties are avoided by the introduction of a material

density that depends on the nodal compaction. Although the fixed background

mesh is still present in this material distribution, the shape of the structure can

be altered continuously. Moreover, with this material description the layout of the

structure becomes sensitive to changes in the nodal position. This sensitivity can

be utilized to alter the shape towards an optimal layout. However, the influence

of the nodal position on the EFG method accuracy remains a problem.

Finally, a fairly simple Moving Node Approach (hereafter: MNA) topology

optimization algorithm is proposed. In this proposed algorithm the influence

of the nodal position on the EFG method is circumvented by using two types

of nodes. One node type deals with the discretization of the linear elasticity

equations and the other node type deals with the distribution of mass. In order

to reach the optimal layout, each mass node is accelerated along the compliance

sensitivity.
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When applying this MNA algorithm to find the optimal shape of some ex-

emplary problems, a few issues arise during the optimization process due to the

large nodal influence domains. However, feasible optimal structural layouts are

obtained. The resulting mass flow towards the optimal layout leads to a very in-

tuitive and transparent optimization process. The most relevant characteristics of

the proposed algorithm are the constant total mass and the relatively low number

of required design variables.

This thesis shows the possibilities and difficulties arising in the MNA in topol-

ogy optimization. The nodal positions can in principle be used as the design vari-

ables in order to obtain the optimal structural layout. However, more research

needs to be conducted to further substantiate this argument.
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Outlook

In light of the research objective of this thesis and considering that it is an initial

exploration, recommendations and suggestions for future research are presented

in this section.

Algorithm validation

It is crucial to further validate the topology optimization results obtained by us-

ing the MNA algorithm. The accuracy of the optimized shapes obtained with

the MNA can be validated by comparing the shapes with shapes obtained with

other topology optimization methods. Using this comparative approach it can

be determined if the proposed MNA algorithm really reaches the optimal shape.

Similarly, the convergence of the MNA can be compared with other already ex-

isting topology optimization methods.

Algorithm improvement

An improvement to the current MNA algorithm may be provided by replacing the

EFG method with FEM. So far, the discretization nodes have been fixated during

the optimization process, to solve problems concerning the discretization quality.

This fixed discretization can therefore be replaced with FEM, possibly solving

the problems arising from the large nodal influence domains and decreasing the

calculation time. The FEM-based MNA will still have the same interesting prop-

erties as the EFG-based MNA, i.e. the conservation of mass and the low number

of required design variables.

Expansion of capabilities

It would be very valuable to expand the capabilities of the MNA. In the current

algorithm, the nodal mass is distributed around the nodes according to fixed nodal

influence domain shapes. Instead, the shape and size of these influence domains

can be altered to provide for other design variables in the optimization algorithm.

For instance, the influence domains can take the shape of thin members. The

design variables are then the position of the node, rotation of the node, thickness
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and length of the influence domain. The resulting optimization algorithm is a

combination between shape and topology optimization. If successful, this method

could considerably reduce the number of design variables and increase the manu-

facturability of the optimized shape.

MNA in practise

In practise, the MNA is a very intuitive and transparent topology optimization

method. When transposed into workable software, the MNA could be used as a

teaching tool to visualize topology optimization. During the optimization pro-

cess such a tool would allow for interaction with the mass flow, establishing an

insightful experience.
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Appendix

A Gauss quadrature

Gauss quadrature is used to evaluate an integral numerically. Only the values at

certain points along the integration interval, or integration points, are required

to evaluate the integration numerically. For one dimension the integration I with

interval limits x1, x2 can be rewritten in a more general form [21]:

I =

∫ x=x2

x=x1

f(x)dx =

∫ ξ=1

ξ=−1

f

(
1

2
[1− ξ]x1 +

1

2
[1 + ξ]x2

)
x2 − x1

2
dξ =

∫ 1

−1

ϕ(ξ)dξ,

(5.14)

where

x =
1

2
[1− ξ]x1 +

1

2
[1 + ξ]x2. (5.15)

Numerical integration of I can be estimated with

I =

∫ 1

−1

ϕ(ξ)dξ =
n∑
I=1

W IϕI , (5.16)

in which n is the number of integration points and W I is the weight at the in-

tegration point I. The location of the integration points depends on the number

of integration points n. Similarly, the weight of each integration point depends

on the number of integration points n. These locations and weights are given in

Tab. 5.3 for different values of n.

In two dimensions, numerically evaluating the integral in a rectangular domain

can be performed similarly. The integral I with limits x1, x2 in x direction and

limits y1, y2 in y direction can be rewritten as

I =

∫ x=x2

x=x1

∫ y=y2

y=y1

f(x, y)dydx =

∫ ξ=1

ξ=−1

∫ ψ=1

ψ=−1

f (x, y)
x2 − x1

2

y2 − y1
2

dψdξ

=

∫ 1

−1

∫ 1

−1

ϕ(ξ, ψ)dψdξ, (5.17)
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Table 5.3: Location and weights of n integration points for Gauss quadrature in one dimension

Order n Location Int. Point Weigh factors

1 0 2

2 ±1/
√
3 1

3 ±
√

3/5 5/9
0 8/9

4 ±
√

[3− 2
√

6/5]/7 [18 +
√
30]/36

±
√

[3 + 2
√

6/5]/7 [18−
√
30]/36

5 ±[1/3]
√

5− 2
√
10/7 [322 + 13

√
70]/900

±[1/3]
√

5 + 2
√
10/7 [322− 13

√
70]/900

0 128/225

where

x =
1

2
[1− ξ]x1 +

1

2
[1 + ξ]x2

y =
1

2
[1− ψ]y1 +

1

2
[1 + ψ]y2. (5.18)

Numerical integration of the I can be estimated with

I =

∫ 1

−1

∫ 1

−1

ϕ(ξ, ψ)dψdξ =
n∑
i=1

n∑
j=1

WiWjϕij, (5.19)

in which the weights Wi and Wj can be found in Tab. 5.3 and ϕij is the value at

corresponding integration point.
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B Displacement and stress results

In this chapter of the appendix displacement and stress results are shown for

simulation performed in Chap. 3, Chap. 4 and Chap. 5. In these chapters series

of simulations have been performed in order to investigate the behavior of the

EFG method under different circumstances. For most of these simulation only

the compliance C, error norm ||E|| and mass mtot have been shown in various

figures. However, underlying these three scalar quantities are the EFG solutions

of the linear elastic equations. For completeness, some of the displacement and

stress solutions obtained with the EFG method are presented in this section. To

reduce the number of figures, only the magnitude of the displacement um and the

Von Mises stress σvm are shown, defined by

um =
√
u21 + u22, (5.20)

and

σvm =
√
σ2
11 − σ11σ22 + σ2

22 + 3σ2
12. (5.21)

Further interpretation of the displacement and stress results is left to the reader.
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(a) Sample 1: C = 5.79 and ||E|| = 0.059
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Figure B.1: Respectively, the discretization, um and σvm for two samples of the uniaxial beam
problem with random nodal distributions discussed in Sec. 3.1.1. The problem is described in
Fig. 4.6 and solved with the EFG method according to the parameters in Tab. 3.3.
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(b) Sample 2: C = 1.37 and ||E|| = 0.67

Figure B.2: Respectively, the discretization, um and σvm for two samples of the cantilever beam
problem with random nodal distributions discussed in Sec. 3.1.1. The problem is described in
Fig. 4.6 and solved with the EFG method according to the parameters in Tab. 3.3.
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Figure B.3: Displacement and stress results for three samples of the problem described in
Sec. 3.2.2, in which all integration cells inside the nodal influence domain are taken into ac-
count. The problem is described in Fig. 3.14 and solved with the EFG method according to the
parameters in Tab. 3.3.
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Figure B.4: Displacement and stress results for three samples of the problem described in
Sec. 3.2.2, in which only the integration cells inside the problem domain are taken into ac-
count. The problem is described in Fig. 3.14 and solved with the EFG method according to the
parameters in Tab. 3.3.
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Figure B.5: Displacement and stress results for one samples of the problem described in
Sec. 3.2.2, in which part of the nodes is moved up by a value of d2 = 0. The problem is
described in Fig. 4.9 and solved with the EFG method according to the parameters in Tab. 4.2.
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Figure B.6: Displacement and stress results for one samples of the problem described in
Sec. 3.2.2, in which part of the nodes is moved up by a value of d2 = 5/19. The problem is
described in Fig. 4.9 and solved with the EFG method according to the parameters in Tab. 4.2.
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Figure B.7: Displacement and stress results for one samples of the problem described in
Sec. 3.2.2, in which part of the nodes is moved up by a value of d2 = 10/19. The problem is
described in Fig. 4.9 and solved with the EFG method according to the parameters in Tab. 4.2.
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Figure B.8: Displacement and stress results for one samples of the problem described in
Sec. 3.2.2, in which part of the nodes is moved up by a value of d2 = 20/19. The problem is
described in Fig. 4.9 and solved with the EFG method according to the parameters in Tab. 4.2.
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Figure B.9: Displacement and stress during optimization process of a cantilever beam with the
design space and boundary conditions as depicted in Fig. 5.2 (Sec. 5.2). The size of the design
space is equal toD = 2 and L = 1 and the results are shown at time tk with k = 1, 25, 50, 100, 200.
A higher resolution for the discretization nodal distribution and the background mesh is con-
sidered, given by the parameters from Tab. 5.1 and Tab. 5.2.
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Figure B.10: Displacement and stress during optimization process of a cantilever beam with the
design space and boundary conditions as depicted in Fig. 5.2 (Sec. 5.2). The size of the design
space is equal toD = 1 and L = 2 and the results are shown at time tk with k = 1, 25, 50, 100, 200.
A higher resolution for the discretization nodal distribution and the background mesh is con-
sidered, given by the parameters from Tab. 5.1 and Tab. 5.2.
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