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Abstract

Gaussian processes (GPs) provide a power-
ful framework for extrapolation, interpolation,
and noise removal in regression and classifica-
tion. This paper considers constraining GPs
to arbitrarily-shaped domains with bound-
ary conditions. We solve a Fourier-like gen-
eralised harmonic feature representation of
the GP prior in the domain of interest, which
both constrains the GP and attains a low-
rank representation that is used for speeding
up inference. The method scales as O(nm2)
in prediction and O(m3) in hyperparameter
learning for regression, where n is the number
of data points and m the number of features.
Furthermore, we make use of the variational
approach to allow the method to deal with
non-Gaussian likelihoods. The experiments
cover both simulated and empirical data in
which the boundary conditions allow for in-
clusion of additional physical information.

1 INTRODUCTION

Gaussian processes (GPs, [24]) provide a widely ap-
plicable framework for probabilistic inference, where
the knowledge from a measurement model (likelihood)
and prior knowledge about latent functions can effec-
tively be combined. GPs are used, for example, in
robotics [3, 5, 7], spatial data analysis [16, 25], and
signal processing [6, 13, 22]. Many applications call
for including further information about the area or
domain of interest, such as boundary conditions along
some arbitrarily-shaped boundaries. Such constraints
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are often encountered in EEG/MEG brain data anal-
ysis (signals are constrained to the cortical surface),
in simultaneous localisation and mapping (SLAM) in
robotics (e.g., robots constrained by walls), in spatial
data analysis (e.g., fish constrained to the sea), or other
problems that clearly obey spatial boundaries.

Currently, the standard toolset for GPs does not include
many ways for imposing constraints from arbitrarily-
shaped boundaries. One way to include this infor-
mation is by introducing artificial measurements with
low or zero measurement noise along the boundary.
Contrary to such an artificial approach, we present
a method that naturally incorporates the presence of
boundary conditions for arbitrarily-shaped domains.

In previous work, box-type boundaries are typically
seen as a by-product of the approximation for allowing
powerful representations in terms of Fourier features [8,
9, 12, 14, 21, 26]. Typically the boundaries are chosen
‘far enough’ from the data not to affect the results, and
the main interest is in speeding up the prohibitiveO(n3)
scaling. We also address the computational burden,
but consider the presence of boundary conditions as
a useful feature rather than an unfortunate necessity.
One of the reasons that we can exploit the presence
of boundaries is that using our method it is possible
to define boundary conditions along any shape, as
illustrated in Fig. 1, rather than only along rectangular
or spherical domains as in previous work. Another line
of previous work are time-series motivated methods
(e.g., [29]) and the schemes included in the R-INLA
package [25]; for example [16] considers a powerful
tesselation approach and addresses the inference with
FEM solvers.

In GPs, apart from addressing the prohibitive compu-
tational scaling, another source of approximations are
non-Gaussian likelihoods, which do not allow for closed-
form inference. In this work, we use the variational
approach [28] to allow for inference in non-Gaussian
likelihoods. Similarly as in [9, 26], we focus on problems
with low-dimensional inputs.
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Figure 1: Random draws from Gaussian process priors constrained to 2D domains of various shapes. The process
goes to zero at the boundary (black line). The approach allows for non-convex and disconnected spaces. For each
domain, a random draw from a GP is shown and the assigned covariance function is shown next to the domain.
The scales are arbitrary and the color map is the same as in Fig. 3.

The contributions of this paper are two-fold: (i)We pro-
pose a novel approach to constrain GPs to arbitrarily-
shaped domains using generalised harmonic features by
extending the Hilbert space GP from [26]. (ii) We lever-
age the variational Fourier features approach from [9]
to allow for inference in non-Gaussian likelihoods in
the constrained domains.

The paper is structured as follows. Sec. 2 goes through
the necessary background in GPs and variational infer-
ence. Sec. 3 delivers the methodology for the harmonic
feature decomposition and the required inference for-
mulation. In Sec. 4 we consider both simulated data, a
standard classification test data set, and a new empiri-
cal example of a constrained Log-Gaussian Cox process
task. Finally, we conclude with a discussion.

2 BACKGROUND

Gaussian processes (GPs, [24]) are typically used as
non-parametric priors over unknown functions, f(x),
and connected through a likelihood to some obser-
vations y. For a set of input–output pairs D =
{(xi, yi)}ni=1, we can write the model as

f(x) ∼ GP(m(x), κ(x,x′)), y | f ∼
n∏
i=1

p(yi | f(xi)).

(1)
Here, the likelihood factorises over the observations.
Furthermore, m(x) denotes an arbitrary prior mean
function and κ(x,x′) a covariance (kernel) function.

Without loss of generality we will here forth restrict
the presentation to zero-mean GP priors.

A covariance function is said to be stationary if it can
be written as κ(x,x′) , κ(x − x′) = κ(r). Exam-
ples of stationary covariance functions are the squared
exponential (SE) and Matérn kernels given by

κSE(r) = σ2
f exp

(
− ‖r‖

2

2`2

)
, (2)

κMat.(r) = σ2
f

21−ν

Γ(ν)

(√
2ν‖r‖
`

)ν
Kν

(√
2ν‖r‖
`

)
, (3)

where σ2
f and ` are magnitude and lengthscale (hyper)

parameters, respectively. Kν(·) is the modified Bessel
function. Compared to the squared exponential ker-
nel, the Matérn kernel has an additional smoothness
parameter ν. Characteristics for the various degrees of
smoothness, can be seen in Fig. 1.

GP models have two drawbacks. The first is the pro-
hibitive computational complexity which scales cubi-
cally in the number of data points. The other is the
fact that the solution to a GP model is only available in
closed form if the likelihood is Gaussian. In this special
case yi = f(xi) + εi, εi ∼ N(0, σ2

n), the predictive mean
and variance of the model functions at an unseen test
input x? can be written out in closed form as

E[f(x?)] = kT
? (K + σ2

nIn)−1y,

V[f(x?)] = k(x?,x?)− kT
? (K + σ2

n In)−1k?,
(4)
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where Ki,j = κ(xi,xj) and k?,i = κ(x?,xi), i, j =
1, 2, . . . , n. Maximising the log marginal likelihood is
typically employed for finding suitable hyperparame-
ter values. That means minimising the negative log
marginal likelihood w.r.t. θ:

− log p(y |θ,D) =
1

2
log |Kθ + σ2

n In|

+
1

2
yT(Kθ + σ2

n In)−1y +
n

2
log(2π). (5)

Both Eqs. (4) and (5) show the problem with naïve GP
regression as both the calculation of the determinant
and the matrix inverse scale as O(n3).

2.1 Fourier Bases for GPs

A strategy to deal with the issue of computational
complexity in GPs, is to, instead of working with the
full covariance matrix, work with an approximation of
it. If an eigenvalue decomposition of the covariance
matrix would be available, a reduced-rank approxima-
tion K ≈ ΦΛΦT could be made, where Λ is a diagonal
matrix of the leading m eigenvalues of K and Φ is the
matrix of the corresponding orthonormal eigenvectors.
However, computing the eigenvalue decomposition is
also of computational complexity O(n3). One way to
obtain an approximate eigenvalue decomposition in the
case of stationary kernels has been presented in [26]. It
solves the eigendecomposition of the Laplace operator
subject to Dirichlet boundary conditions on a certain
domain Ω as{

−∇2φj(x) = λ2
jφj(x), x ∈ Ω,

φj(x) = 0, x ∈ ∂Ω.
(6)

The eigenfunctions φj and eigenvalues λj of the Laplace
operator can be computed in closed-form for certain
shapes of regular domains such as rectangles, circles,
and spheres, see [26]. The approximation of the co-
variance function now relies on the Fourier duality of
spectral densities and covariance functions, known as
the Wiener–Khintchin theorem:

s(ω) = F{k(r)} =

∫
κ(r)e−iωTr dr, (7)

κ(r) = F−1{s(ω)} =
1

(2π)d

∫
s(ω)eiωTr dω. (8)

This theorem relies on Bochner’s theorem [2], which
tells us that any continuous positive definite function,
such as a covariance function, can be represented as
the Fourier transform of a positive measure. If this
measure has a density, it is known as the spectral den-
sity s(ω) , s(‖ω‖) of the covariance function. Under
our convention of the Fourier transform, the spectral

density corresponding to the squared exponential and
Matérn covariance functions are

sSE(ω) = σ2
f (2π`2)

d/2 exp

(
−1

2
ω2`2

)
, (9)

sMat.(ω) = σ2
f

Γ(ν + d/2)

Γ(ν)

2dπd/2(2ν)ν

`2ν

(
2ν

`2
+ ω2

)− 2ν+d
2

(10)

where d is the dimensionality of the input x. The
covariance function can now be approximated as [26]

κ(x,x′) ≈
m∑
j=1

s(λj)φj(x)φj(x
′) = ΦΛΦT, (11)

where

Φi =
(
φ1(xi), φ2(xi), . . . , φm(xi)

)
, (12)

Λ = diag (s(λ1), s(λ2), . . . , s(λm)), (13)

for i = 1, 2, . . . , n. Similarly, we define Φ? as vectors
evaluated at the prediction input location x?. For
Gaussian likelihoods, the prediction Eqs. (4) can now
be rewritten in terms of the approximation as

E[f(x?)] ≈ Φ?(Φ
TΦ + σ2

nΛ−1)−1ΦTy,

V[f(x?)] ≈ σ2
n Φ?(Φ

TΦ + σ2
nΛ−1)−1ΦT

? .
(14)

For this model, the expression for evaluating the nega-
tive log marginal likelihood function for hyperparame-
ter optimisation can be written as

− log p(y |θ,D) =
1

2
(n−m) log σ2

n +
1

2

m∑
j=1

[Λθ]j,j

+
1

2
log |σ2

nΛ−1
θ + ΦTΦ|+ n

2
log(2π)

+
1

2σ2
n

[
yTy − yTΦ(σ2

nΛ−1
θ + ΦTΦ)−1Φy

]
, (15)

where the only remaining dependency on the covariance
function hyperparameters is in the diagonal matrix Λ
defined through the spectral density.

Since the basis functions Φ do not depend on the
hyperparameters, the product ΦTΦ can be computed
once, at order O(nm2), after which evaluating the
likelihood is only ofO(m3). However, the previous work
in [26] does not deal with non-Gaussian likelihoods.
We will therefore review some standard methods to
do this in Sec. 2.2. In Sec. 3 we will then extend on
the approach presented in this section and present a
method that allows us to also deal with non-Gaussian
likelihoods.

2.2 Variational Gaussian Processes for
General Likelihoods

Non-Gaussian likelihoods can be handled using varia-
tional approaches (see, e.g., [4]) in which the posterior
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is approximated by selecting the optimal distribution
from a fixed family. Optimality is usually defined
through the Kullback–Leibler divergence defined as
(with slight abuse of notation, see also [18])

KL[q(f(x)) ‖ p(f(x) |y)] =

Eq(f(x)) [log q(f(x))− log p(f(x) |y)] . (16)

The variational GP approach has extensively been
used in combination with inducing inputs and has
recently also been combined with Fourier-based ap-
proximations [9]. In the following, we will give a short
overview required for the next section, more informa-
tion can for instance be found in [17]. To find a family
of approximating distributions q(f(x)), typically a set
of inducing (pseudo) inputs Z = {zj}mj=1 is introduced,
where m < n. The values of the function at Z are
denoted by u = {uj}mj=1. Since f(x) and u are jointly
Gaussian, it is possible to write the function f(x) con-
ditioned on the values u as

f(x) |u ∼ GP
(
ku(x)TK−1

uu u,

κ(x,x′)− ku(x)TK−1
uu ku(x′)

)
. (17)

The joint approximation for the posterior is
q(u) q(f(x) |u). We therefore must also choose some
approximate posterior distribution q(u), whose exact
form will depend on the likelihood p(y | f(x)). This
can be done by minimising the Kullback–Leibler diver-
gence (16). Expanding the true posterior using Bayes’
rule, (16) can be written as

KL [q(f(x)) ‖ p(f(x) |y)]

= −Eq(f(x))

[
log

p(y | f(x)) p(f(x))

q(f(x))

]
+ log p(y)

, −ELBO + log p(y) . (18)

Minimising the Kullback–Leibler objective is therefore
equivalent to maximising the Evidence Lower Bound
(ELBO).

We factor p(f(x)) = p(u) p(f |u) p(f | f ,u) with

p(u) = N (0, Kuu) ,

p(f |u) = N
(
KfuK−1

uu u, Kff −KfuK−1
uu KT

fu

)
,

p(f(x) | f ,u) = GP (m?(x), κ?(x,x′)) , (19)

where m?(x) and k?(x,x′) are the usual Gaussian pro-
cess conditional mean and variance, conditioned on
both f and u. The approximate posterior process can
be factored similarly as

q(f |u) = N
(
KfuK−1

uu u, Kff −KfuK−1
uu KT

fu

)
,

q(f(x) | f ,u) = GP (m?(x), κ?(x,x′)) . (20)

Since the two processes p(f(x)) and q(f(x)) are the
same except for p(u) and q(u), the ELBO (18) simpli-
fies to

ELBO = Eq(u)q(f |u)

[
log p(y | f)

]
− Eq(u)

[
log

q(u)

p(u)

]
. (21)

It is possible to show that the distribution q̂(u) that
maximises the ELBO is given by

log q̂(u) = Eq(f |u) [log p(y | f)]+log p(u)+const. (22)

This distribution is intractable for general likelihoods,
but can be approximated using a Gaussian distribu-
tion [11]. Maximising the ELBO then corresponds to
optimising over the mean and the covariance of this
Gaussian. If the approximating Gaussian distribution
q(u) has mean m and covariance Σ, then the entire
approximating process is a GP, with

q(f(x)) =

∫
q(u) q(f(x) |u) du

= GP
(
ku(x)TK−1

uu m, κ(x,x′)+

ku(x)T(K−1
uu ΣK−1

uu −K−1
uu )ku(x′)

)
. (23)

For the special case where the data-likelihood
p(yi | f(xi)) is Gaussian with noise-variance σ2

n, the
optimal distribution for q(u) is given by [10]

q̂(u) = N
(
m̂, Σ̂

)
,

Σ̂ = [K−1
uu + σ−2

n K−1
uu KufK

T
ufK

−1
uu ]−1,

m̂ = σ−2
n Σ̂K−1

uu Kufy,

(24)

and the ELBO at this optimal point is

ELBO (q) = log N
(
y | 0, KfuK−1

uu Kuf + σ2
nI
)

− 1

2
σ−2

n tr
(
Kff −KfuK−1

uu Kuf

)
. (25)

3 METHODS

In this paper, the main interest is in including boundary
conditions in the standard GP model (1) resulting in

f(x) ∼ GP(0, κ(x,x′)),

s.t. f(x) = 0, x ∈ ∂Ω,

y | f ∼
n∏
i=1

p(yi | f(xi)),

(26)

where Ω ⊂ Rd is the domain of interest and ∂Ω denotes
its boundary. This means that a priori we assume
the GP to be generated by a GP prior with station-
ary covariance function κ(x,x′) with the additional
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Figure 2: Example domain for which we can numeri-
cally compute the harmonic basis functions using the
sparse stencil matrix.

constraints of smoothly attaining the given boundary
constraint. Thus the effective covariance function in
the domain-aware GP prior is highly non-stationary.

Note that without loss of generality we can change the
boundary constraint to be constant. Other boundary
conditions, such as Neumann conditions (derivative
going to zero at boundary) can also be included. Since
we no longer assume a rectangular or spherical domain,
it is no longer possible, like in Sec. 2.1, to compute the
eigendecomposition of the Laplace operator in closed
form. In this section we will now first discuss how to
compute the harmonic features numerically. We will
then discuss how the variational approach from Sec. 2.2
can be used to handle non-Gaussian likelihoods.

3.1 Computing the Harmonic Features

Instead of computing the eigendecomposition of the
Laplace operator in closed form as in Sec. 2.1, we solve
the eigendecomposition numerically. We first turn our
domain of interest into a grid mask (e.g., in Fig. 2 we
use a 162×162 grid). We then approximate the Lapla-
cian using a 9-point finite difference approximation
with step size h (determined by the physical size of the

domain) as

−∇2u(x1, x2)

≈ 1
h2

[
2
3u(x1+h,x2)+ 2

3u(x1−h,x2)+ 2
3u(x1,x2+h)

+ 2
3u(x1,x2−h)+ 1

3u(x1+h,x2+h)+ 1
3u(x1+h,x2−h)

+ 1
3u(x1−h,x2+h)+ 1

3u(x1−h,x2−h)− 10
3 u(x1,x2)

]
. (27)

This operation can be written as an operation by a
sparse stencil matrix S. By letting this stencil matrix
only work on locations that are inside the domain Ω, the
boundary conditions can naturally be included. Let us
consider an irregularly-shaped domain Ω, for instance
the one displayed in Fig. 2a. This results in a stencil
matrix (of size 1622×1622) with the sparsity pattern
displayed in Fig. 2b. The number of non-zero entries
in this stencil matrix is 65,596 which corresponds to
∼1%� of the elements.

We form the stencil corresponding to the domain of
interest and solve them largest, real eigenvalues λ2

j and
the corresponding eigenvectors φj(x) of the stencil ma-
trix using a Krylov–Schur algorithm [15, 27]. The im-
plementation is part of ARPACK (https://www.caam.
rice.edu/software/ARPACK/) and callable in Matlab
as eigs and in Python through scipy.sparse.linalg.eigs.
The first 25 harmonic basis functions of the example
domain from Fig. 2a are shown in Fig. 2c.

Note that using a Taylor expansion of the different
terms in (27), it can be shown that in (27) we actually
compute −∇2u(x1, x2) − h2

12∇
4u(x1, x2) + O(h4). Ig-

noring these higher order terms, the eigenvalue problem
that is being solved is therefore instead

−∇2u(x1, x2)− h2

12
∇4u(x1, x2) = λ2u(x1, x2). (28)

The eigenvalues can be corrected for this as

λ̄2
j = 2λ2

j

/√
1 +

λ2
jh

2

3 + 1 . (29)

3.2 Variational Harmonic Features

The variational approach from Sec. 2.2 can be used for
variational inference in a model in which the Fourier fea-
tures are either computed in closed-form as in Sec. 2.1
or numerically as in Sec. 3.1. The harmonic features
will hereby play a similar role as the inducing points in
Sec. 2.2. Assume that our function values are defined
in terms of our features as f(x) = Φ(x)u and that
the prior over these features is p(u) = N(0,Λ), where
Φ(x) and Λ are defined in (12) and (13), respectively.
Similar to (17), the function values and inducing inputs
are then jointly Gaussian. We will now follow a similar
approach to the one taken in Sec. 2.2 and approximate

https://www.caam.rice.edu/software/ARPACK/
https://www.caam.rice.edu/software/ARPACK/
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Figure 3: Example results for the regression example in a star-shaped domain. The boundary (black line) enforces
the process to go to zero. The black crosses are the training inputs. In the comparison methods, the red crosses
are the noise-free boundary measurements. In (c), the white dots are the inducing inputs. Even in this simple
example, (c) and (d) have difficulties predicting the left-side arm.

the posterior by minimising the Kullback–Leibler di-
vergence. Hence, we are again interested in computing
the posterior q(u) that maximises the ELBO defined
in (21).

For the special case of a Gaussian likelihood, the pos-
terior q(u) is again given by (24). Using the relation
that for our model Kuu = Λ and Kfu = ΦΛ, we can
write the posterior q(u) as

q̂(u) = N
(
m̂, Σ̂

)
, Σ̂ = [Λ−1 + σ−2

n ΦTΦ]−1,

m̂ = σ−2
n Σ̂ΛΦTy. (30)

Using the relation f(x) = Φ(x)u, the posterior over
the function values f is therefore given by

f ∼ N
(
m̂f , Σ̂f

)
, Σ̂f = Φ[Λ−1 + σ−2

n ΦTΦ]−1ΦT,

m̂f = σ−2
n ΦΣ̂fΦ

Ty. (31)

Note that these equations exactly correspond to (14)
presented in Sec. 2.1 if these are used to predict on
x. Using this relation between the methods, it is now
possible to use the variational inference scheme from
Sec. 2.2 together with the harmonic features derived in
Sec. 3.1 to do inference in the model (26) for arbitrary
boundary conditions and general likelihoods.

4 EXPERIMENTS

We include three different experiments showing the
properties of our method. The first example is a simu-
lation study that compares our method to alternative
solutions in a regression setup. The second example
considers the banana classification dataset with a hard
decision boundary. The third example is a new empiri-
cal example of modelling tick bite density.

The methods in Sec. 3 were implemented in both Math-
works Matlab and Python. The codes for replicating
them are available at https://github.com/AaltoML/

boundary-gp. We leveraged the GP machinery avail-
able in TensorFlow [1] and GPflow [19]. GPflow was
also used for the comparison methods.

4.1 Benchmarking

We consider a simulated setup where we choose a star-
shaped domain of unit width and a Dirichlet bound-
ary condition enforcing the process to be zero at the
boundary. We simulate 10 data sets which obey the as-
sumption of the process going to zero at the boundary,
observe n = 100 uniformly random input locations in
the domain (black crosses in Fig. 3), and add Gaussian
noise to the measurements.

As a baseline, we solve the GP regression problem
naïvely by including a number of noise-free observa-
tions along the boundary. We use 73 points along
the boundary (red crosses in Fig. 3) which are con-
sidered as normal measurements in the GP regression
problem, but with a noise scale of zero. We compare
our approach to two general-purpose schemes for rank-
reduced GP regression: The (gold-standard) Fully inde-
pendent training conditional (FITC) method (see [23])
and Variational Fourier features (VFF, [9]). With the
expectation that increasing the number of inducing
points should improve every method, we applied 4 to
100 inducing points/features. For all models, we used a
Gaussian process prior with a Matérn (ν = 3/2) covari-
ance function. In the FULL, FITC, and our method
the standard non-separable covariance function was
used, while VFF decomposed the covariance function
to a product of two Matérns over the different input
dimensions. This Kronecker structure in VFF needs
less inducing features, and including too many fea-
tures leads to instability in evaluation of the model,
as previously discussed in [9] (thus m = 100 is not
included for VFF). For FITC and VFF, the noise-free
inputs were problematic for hyperparameter and induc-
ing input location optimisation, resulting in numerical

https://github.com/AaltoML/boundary-gp
https://github.com/AaltoML/boundary-gp
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Figure 4: The effect of increasing the number of in-
ducing inputs/features in the star-shaped domain re-
gression study. The curves show the mean absolute
error (± std/min/max) in predictive mean compared
to the results of the FULL GP model with noise-free
observations along the boundary.

instability. These problems were not encountered in
the FULL and proposed model. For a fair comparison
of representative power, we hence fixed the hyperpa-
rameters (σ2

f = 1, ` = 0.1, σ2
n = 0.12) for all models

and chose the inducing input locations for FITC by
k-means clustering.

Fig. 3 shows the predictive mean for one of the data
sets with the four different methods (m = 64). The
naïve FULL GP with the noise-free observations clearly
best agrees with the proposed method that can directly
use the boundary information as part of the GP prior.
FITC and VFF do a fair job but differ even visually
from the results in (a)–(b). Clear differences can be
seen in the blue middle part and in the left arm.

For a quantitative evaluation, we compared estimates
for all ten data sets and a differing number of inducing
inputs/features. Fig. 4 shows the effect of increasing
the number of inducing inputs/features and reports the
mean absolute error (MAE) for the predictive mean
compared to the results of the FULL GP. The results
show that including the boundary information directly
has clear benefits. The same conclusion can be drawn
from analysis of the marginal log-likelihoods and the
predictive marginal variance estimates. In terms of
computation time, our model is on par with VFF, with
additional computational saving in evaluation of the
marginal likelihood. Furthermore, the noise-free bound-
ary measurements bring additional computational bur-
den to the general-purpose schemes, while our model
considers the boundary directly.

4.2 Banana Classification Dataset

We consider the banana classification dataset (see [11])
with a hard decision boundary. We perform variational
classification using a Gaussian approximation to the
posterior q(u) and optimise the ELBO with respect
to the mean and variance of the approximation. We
expect that increasing the number of harmonic features
leads to an improved approximation; the variational
framework guarantees that more inducing variables
is monotonically better [28]. However, this does not
necessarily hold due to the restriction on q(u).

Fig. 5 shows the two classes in the banana data set
with red and blue markers. The pre-defined hard deci-
sion boundary is the solid black boundary enclosing all
the data. It indicates the boundary outside of which
the data does not play a role and at which there is
absolute uncertainty of the correct class. We use a
Bernoulli likelihood and a Matérn (ν = 5/2) kernel
for the GP prior. We train the hyperparameters of
the model jointly with the variational approximation.
Fig. 5 shows the classification model outcomes with
different numbers of inducing harmonic features. The
black lines are the decision boundaries, which clearly
improve with the increasing number of features.

4.3 Tick Bite Density Estimation

Ticks are small arachnids, typically 3–5 mm long. They
are external parasites that live by feeding on blood typ-
ically of mammals and birds. Because of this, they
may carry diseases that affect humans and other ani-
mals. To monitor the spread of ticks and of the diseases
they might carry, many countries ask people to report
tick bites. One such platforms is https://tekenradar.nl
which is an initiative of the National Institute for Public
Health and the Environment and Wageningen Univer-
sity, and collects data about tick bites in the Nether-
lands. The data is accessible online, and we used data
of tick bites collected by this platform during the first
9 months of 2018. The 4,446 data points are scattered
over the country as shown in Fig. 6.

We use this data to model the tick density and exploit
physical prior knowledge that ticks only live on land.
The boundaries of our domain reflect this knowledge
by assuming that the tick density is zero at sea, in the
large lake in the middle of the country and in various
rivers and lakes in the country. The area outside the
domain in Fig. 6 is shown in white. We model the
tick density using the number of ticks in a grid of
roughly n = 15,000 points and a Poisson likelihood
in a Log-Gaussian Cox process model [20]. We used
a Matérn (ν = 3/2) covariance function, and we train
the hyperparameters of the model jointly with the
variational approximation. The results are shown in

https://tekenradar.nl
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(a) m = 4 (b) m = 8 (c) m = 16 (d) m = 32 (e) m = 64

Figure 5: The effect of increasing the number of inducing features for the banana classification dataset with a
hard decision boundary. In each pane, the coloured points represent training data and the decision boundaries
are black lines. The outermost line is the pre-defined hard decision boundary.
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Figure 6: Predicted density of tick bites per square
kilometre around the Netherlands. The map is 400 km
wide and the sea, rivers, and lakes (in white) are con-
straining the domain. The data (reported tick bites)
are shown by the black dots, and they are modelled as
a Log-Gaussian Cox process (Poisson likelihood).

Fig. 6, where the colour indicates the intensity tick
bites per square kilometre. As can be seen, this density
explains the data well. For the eigendecomposition we
used m = 256 and a grid size of 200×200.

5 DISCUSSION AND CONCLUSION

We have considered the problem of including physical
knowledge about spatial constraints in GP inference.
A numerical computation of the harmonic features of
the GP prior allows us to specify boundary conditions
on arbitrary shapes while at the same time attaining
a low-rank representation that is used for speeding
up inference. By approximating the posterior using

variational inference, it is possible to use our method
for non-Gaussian likelihoods.

We have illustrated the efficacy of our method using
both simulated and experimental data, with both Gaus-
sian and non-Gaussian likelihoods. For the proposed
method, there is a fixed setup cost for each new kind of
domain, after which the method is as fast as the Hilbert
GP (and thus slightly faster than VFF). In Sec. 4.1
(m = 100) the setup cost was 4.9±0.1 s, and for the ba-
nana example (Sec. 4.2 for m = 64) the setup cost was
10.3±0.4 s. After the preparation cost, the computation
time for the actual GP inference is fast. Evaluating the
marginal likelihood (or doing GP prediction) in Sec. 4.1
takes 0.23 s when we have increased the number of
observations to n = 10,000 for the numbers to make
more practical sense. If the variational approximation
is used, most time is spent in the optimiser—as seen in
the experiment in Sec. 4.3, where the setup cost was in
the range of some hundred seconds, but the optimiser
ran for 25 min. This would, of course, be the same for
all methods using the variational approximation.

The examples that we have presented only consider
two-dimensional input domains. Higher-dimensional
domains can, however, be considered in similar fash-
ion as in [9]. Although the number of required basis
functions grows exponentially in the input dimension-
ality d, Kronecker products and sums across the input
dimensions have previously been used to address this
problem. Throughout the paper we have focussed on
using Dirichlet boundary conditions. The method can,
however, be extended to be used with other boundary
conditions, such as Neumann conditions.

The main merit of our approach is that due to its sim-
ple and straightforward formulation, it can easily be
extended or used in larger-scale systems. For exam-
ple, the approach can be extended to spatio-temporal
analysis or be used in frameworks for simultaneous
localisation and mapping (SLAM). The codes are avail-
able at https://github.com/AaltoML/boundary-gp.

https://github.com/AaltoML/boundary-gp
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