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ABSTRACT

The response in the stiffened plate due to slamming loading

is considered as superimposed vibration of both the whole

structure and local vibrations of the panel plating. The local

vibration in this case means the vibration of the plating panel

having sides on the girders and stiffeners.

To obtain an approximate solution of such a problem, the

energy method is used. Two theoretical analyses are developed

in order to get the whole vibration due to only the effect of

bending as well as the local vibration of the bottom plate due

to both effects of bending and stretching. In the local vibration

we discuss the problem such as anisotropic plate, in which the

bottom plate is considered as one special case.

The data available to design are also given in order to

decide the scantlings of a stiffened plate within the allowable

amount of stress, which will be dynamically determined by ex-

periment.
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NOMENCLATURE

DL- : number of side girders

:' number of stiffeners

ßz : time to reach FM

duration of loading

coefficient

coefficient

shearing strain of bottom plate

normal strain of bottom plate

shearing stress of bottom plate

- : time

Gj (J : normal stress of bottom plate

phase lag

shearing stress on the bottom plate of stiffened plate

shearing stress on the top plate of stiffened plate

normal stress on the bottom plate of stiffened plate in the
direction

normal stress on the bottom plate of stiffened plate in the
direction

normal stress on the top plate of stiffened plate in the
C direction



normal stress on the top plate of stiffened plate in the
direction

effective breadth

coefficient

JL : Poisson's ratio

i) : integer

J: mass per unit volume of the plate material

function of

function of time

coefficient concerning frequency

circular frequency

length of stiffened plate in the -Xc- direction

length of stiffened plate in the direction

length of bottom plate in the X direction

length of bottom plate in the 'f direction

AL : coefficient concerning deflection

B: coefficient concerning stress

C constant

coefficient concerning deflection

cross sectional area of pillar

iv



length of pillar

A1A0.,.1 A, cross sectional area of composite stiffener or
girder with the effective breadth at maximum
bending section

A1

i4: coefficient concerning displacement amplitude of the
' stiffened plate

3

D : plate stiffness, -

ELE, E"
/2(I,AJ)

V

modulus of elasticity characterizing anisotropic
plate

E : Young's modulus

: plate stiffness

F() slamming loading which is a function of t.

peak value of F(t)

1(z F,J') : basic function defined by Inglis

f4 f 99 (J9, : coefficient indicating the end fixities

frequency

normal function

Ç-)/ (') X, ,' : beam function

function of

normal function of stiffener

normal function of beam

modulus of elasticity in shear



acceleration due to gravity

thickness of the plate

thickness respectively, of the bottom or top plate

moment of inertia of side girder

moment of inertia of stiffener

vi

coefficient concernïng shape
of cross section

moment of inertia of central girder

% =1(z z)
geometrical moment of inertia of composite cross section
in stiffener with the effective breadth of the plate
about the axis through the centroid of that composite
cross section

centroid polar moment of inertia at the cross section
of stiffener

T' T'
moment of inertia of the unit element in the lengthwise
direction of the stiffener about axis through its center
of gravity perpendicular to lengthwise direction.

L, : integer

integer

K: coefficient

coefficient

I, ii

) iT.)



torsional moment

torsion constant

coefficient

constant concerning

K : constant concerning

L) LL.: load factor

mass per unit area of the plate

integer indicating the form of slamming loading

bending moment

vii

circular frequency of the fundamental mode

circular frequency of the or mode

fundamental frequency obtained by large deflection theory

number of side girders

number of stiffeners

) ) L weight of composite stiffener per unit length

'E1 : uniformly distributed weight per unit area

function of F(t)

function of

coefficient



viii

response factor

S¿) S : coefficient concerning end fixities

time

T : total kinetic energy

T : maximum kinetic energy of stiffened plate due to bending
of plate and stiffeners

maximum kinetic energy of stiffeners due to rotational
inertia in their lengthwise direction and inertia force
of rotation in the plane perpendicular to their length-
wise direction

T,T: period

T. : coefficient

iL, : displacement in the .t direction

displacement in the direction

initial velocity

strain energy due to bending

strain energy due to stretching

maximum strain energy effected by bending of both plate and
stiffeners

V: maximum strain energy in stiffeners effected by both shear-
2 ing force and torsion

total strain energy

'uJ : deflection of either bottom plate or stiffened plate



4J,(),1'Jk))1AiC*)) 1&J(-), 'L..J(*-): deflection function of t

displacement function of t

small variation of 'J

edge deflection of bottom plate

amplitude of edge vibration

direction of ship length

direction of ship beam

distance to neutral axis from the bottom plate

distance to neutral axis from the top plate
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I. INTRODUCTION

The structural response due to slamming loading in a plate

stiffened by girders and stiffeners is here obtained. The

response in the stiffened plate will be considered as superim-

posed vibrations of both total and local vibrations in which the

local vibration means the vibration due to the plating panel

having sides on the girders and stiffeners orthogonally crossing

each other.

We can, therefore, analyze this problem from two points of

view. One is the total vibration of the stiffened plate, and the

other is the local vibration of plating panel when all edges are

assumed to be clamped on the orthogonally crossed girders and

stiffeners. The data available for design may easily be given,

if we consider the case of an extreme condition such as each

total or local vibration has the maximum value on the same side.

Therefore the useful data will be obtained by the concept of ad-

ding the maximum value of the stiffened plate to that of plating

panel.

Two theoretical analyses are hereby developed, applying the

energy method in order to get the total vibration due to only

the effect of bending as well as the local vibration due to both

effects of bending and stretching. In the local vibration we

discuss the problem such as anisotropic plate, in which bottom

plate is considered as one special case.

Insofar as the vibration of plating panel due to only the

effect of bending is concerned, some work has been done by

1.
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*
Greenspoon [1] , and the comparison between theory and full-

scale data has also been obtained {2]

If the deflection resulting from a large response can no

longer be considered small when compared with the plate thick-

ness, the analysis of such a problem must be carried out giving

consideration to the effect of plate stretching in addition to

the effect of bending, as in the case of small deflection [3

For such a problem an anisotropic plate is chosen and solved

applying the energy method, even though the application of this

method requires considerable amount of computation Useful

curves and tables are also given in this paper by which. sc:antlings

of a stiffened plate may be decided within the allowable yielding

point which will be dynamically determined by experiment0

The numerical calculation is given to show how to decide

the plate thickness to withstand some slamming loading, applying

the step-by-step procedure after using curves and tables obtained

by computation

*
Numbers in brackets refer to the bibliography at the end of the
paper0
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II. THEORETICAL ANALYSES

In order to get the total response of a stiffened plate we

here discuss two kinds of problems applying the energy method:

one of which is the vibration of a stiffened plate and the other

the local vibration of bottom plate. The vibration of a stiffened

plate is easily carried out by considering only the effect due

to bending, but the local vibration of bottom plate is extensively

discussed with the anisotropic plate considering two effects

due to both bending and stretching. These two problems are

discussed below.

2-l. Vibration of a Stiffened Plate

If we choose, for instance, a double bottom as shown in Fig. 1,

the strain energy due to bending [3] [4] [5] is

(t)
= +f f(k )

+ M. 1AT &Y
¿

J_A4d ;y- l

+fo o
Yy,FENERS

3.

SiDE G-IRERS

Fig. 1 Double ottom



where

l'if : deflection

moment of inertia of side girder,

moment of inertia of stiffener,

moment of inertia of central girder,

thickness respectively, of the bottom or top plate

7 7: distance to neutral axis from the bottom or the top
' plate, respectively

ob : number of side girders,

¡3 : number of stiffeners,

Putting and if we assume that an infinitely

small variation 2T of the deflection-Tof the plate is produced

by applying the principle of virtual displacement, then the three

kinds of virtual work are obtained by the effects of inertia

force, elasticity force and external impulsive forceF(t)per unit

area of the plate, respectively, as given below:

The virtual work of
inertia force

The virtual work of
elasticity force -

/

distributed moment of inertia per unit length and

T(ßfl\
c&,) ) 2. 7

4.

-L
= -

I 17 1Jv)°
O c)

(»t': the mass per unit area of the plate)



5.

The virtual work of
impulsive force =si1j )J(X,)dXd (2)

or-.
= Ft) ( i ) ) j

Equating the entire virtual work, which is the sum of

three kinds of virtual work given in Eqs. (2), to zero we obtain

the equation of motion:

( - +F() ( (+,d=o
i (3)

Let us consider the case of all supported edges. We must

thus assume suitable expression iJ in order to satisfy the

following requirements; such as 1T must vanish at the boundary

and the bending moments along the boundary also vanish, moreover

2J is an even function of and as concluded from syrmnetry.

As the deflection has a rapidly converging series if we use the

double trigonometric series for Z and , only the first one

term of the series will be taken with sufficient accuracy.

Therefore we can find -"vr from Fig. I

= ___
1-

In Eq. (4) J(*-) is a time function which will be deter-

mined later. After substituting Eq. (4) for 'J into Eq. (1)

we have

(4)

; (5)



where

4 I
(6)

/ Q P' A)

Then the equation of motion Eq. (3) that 1,J() must satisfy

reduces to

I, F
(7)

in which is the circular frequency of the fundamental mode

of vibration and

7L__ 3K
'o

Let us assume that at the initial instant ..t 0 the plate

is at rest in its position of static equilibrium and the duration

of impact ¿ , moreover the relationship between f-) and

as shown in F,,q,2:

6.

F)

Fig. 2. Relation between/7)and

P)=F(hen O< <)6)

where t)n.- and t. are any integers

and is the peak value of Fí-)

j: - when

/

(8)
1MI(f)

when



-tr fF

function

The solution of Eq. (7), therefore, becomes

4+ h1 +
a/ -) E2 - 'a

of natural frequency

f R3J

/

,i_ ! (ft) ±
(ß'4?) ¿)o

'ill
2

m! (p! (ß) ± &-) 7(- (i--,» 0

2

ô (2-2)-.)!

which

(q)

is shown below:

'»t-;2j1-J ')

) +RJ

(kfl& ,ß<+4)

L'/ i
(Ie& +R(n_i)f )= (m-2y-/)/

(-ii ! (i-)J /
i:;O (v-v)! v

7.

(10)

L Th-21
/ ?L!

-f-

( (i-ß)J't v.0b (,i))! J

in which P is called the response factor and the value except

R in the right side indicates the static deflection. R is the

2

/



if=A,1 ()R)
in which 1? is given in Eq. (10), andA,,

and )(,)will be given later in

numerical calculation.

If we want more accurate value

we may use the series expression

containing higher modes of vibration:

SUPPORTED a.

Fig. 3 oundary Conditions

(12)

in which A) cL) will be given in numerical calculation and

RA. is the response factor. Including even number of ¿ or

given as follows:

8.

and if '?t and '' are odd numbers, R1 and R3 become

,=(-I)

(H-i (-)
if 2n and 1t. are even numbers they become

(,)T
! C

R for ')7L, 7L = 1, 2 and 3 is explicitly shown in Appendix

I. Similarly, in the case of both clamped sides and both support-

ed sides as shown in Fig. 3, we can easily obtain [6], [7]



2- 17-2V-I
' (

v=Ò

(
j1 )

*

2-

aó (*-)(-') !

Vo (?-2-V)! 'd

(P )]
)- V ?7-.V 2-

n?i
'in-2h--i

(4)
=o

L

( 2V» J
!

+

and if t?n and 'tare odd numbers, ìP,atidP3 become

R3 =(-'

o <

9.

(13)



if ?7t and '7t are even numbers they become

R=(-o1 /t)

R1)t

is shown in Appendix I for the th period.

Using Eq. (12) for Vf , stresses are thus given by

E4(r 1_1

4=

lo.

EZ(-r r-

o- EZ/2wT1 4r

7:= -2;
) -

where are normal stresses on the top and bottom

plates in t or direction and 7J are shear stresses on

the top and bottom plates.

Since the stresses are space derivatives of the deflection,

it may be concluded from Eqs. (12) and (14) that the dynamic

response, deflection or stress, is equal to the static deflection

or stress multiplied by the response factor. The maximum value

of the response factor R is known as the load factor and is

designated by L , hence we can determine the maximum value

of deflection or stress by using L as shown in numerical cal-

culation.

In general, only the first one term of series is enough to

calculate the deflection. Therefore in order to obtain the

maximum deflection quickly, it will be necessary for us just to



calculate the fundamental mode of vibration due to arbitrary

end fixities at the surrounding edges of the plate, after the

load factor was decided

2-2. Frequency of the Fundamental Mode of Vibration

in Stiffened Plate

In the vibration of the stiffened plate, the mode of vi-

bration can be expressed by the Fourier's double series whatever

mode it may be. If the plate supported at surrounding edges with

arbitrary end fixities in only one direction, say the direction

and simply supported in the other direction, say the .21 direction,

the mode 'ZJ of vibration is given by Inglis and Corlett [6] [7]

-x-=!
-(_=l

where is the function of time., is the basic function

defined by Inglis, and a is the length of one side in Lt

direction of the given rectangular plate. In Eq. (15) is

chosen to suit any end fixities and consists of a combination of

hyperbolic and trigonometric functions, for which design curves

for many cases must be prepared. Such curves were produced in

reference [7]. Another approach to the mode of vibration 1J ,

however, may be easily done by applying the deflection of a beam

due to the uniformly distributed loads with arbitrary end

condition, i.e.

li,

(15)



f() (t)

1:=o

=>> aoc0
£0

+ I)

()1

+(-I)(
]

'd°' , 3

(j+(- -2;()

(A_-+ß-2))

12.

where (jOn etc. are coefficients indicating the end fixities

(for example fMJ / for both ends B,, simply supported,

O for both ends fixed and û for one end

supported at A and another end fixed at B). The other condition

refers to the text book written by Vedeler t5]. The same is

satisfied for
Ç O- is the distance along 2. axis and -8- the

distance along axis. It is easily understood that Eq. (16)

contains only simple algebraic functions instead of hyperbolic

functions of Eq. (15); if sufficient accuracy is obtained by

application of Eq. (16), this equation can be used for the

calculation of frequency. Actually, so far as the fundamental

mode of vibration is concerned, the result will be quickly ob-

tained with sufficient accuracy, as shown later. In the case of

higher modes, however, the labor of calculation required seems



Fig. 4

Stiffened Plate

o

k

I

13,

the same. Therefore, for the primary calculation of the funda-

mental frequency in any local vibration of the ship's structure

or similar structures, the use of Eq. (16) will be quite con-

venient, and especially in case of a symmetrical boundary

condition.

In calculation of frequency of the stiffened plate, the

Rayleigh-Ritz method is applied, yielding a frequency somewhat

larger than the correct one. We assiine first the mode of vi-

bration 'kf using Eq. (16)

r= (17)

and we shall start from the simplest case (A)

(A) With one pair of stiffeners and one uniformly distributed

load.

X



V1 .2J
o

Ík
L ?rI

Jdz

(18)

+ i a;$*1 z

Where are the geometrical moments of inertia of the

composite cross section in each stiffener with the effective

breadth of the plate about the axis through the centroid of that

composite cross section. X is measured at the cross section of

the maximum bending moment in the lengthwise direction.

vl= (L

14.

The maximum potential energy effected by bending of both

the plate and two stiffeners, considering the effective breadth

as defined by Schade [8] [9], is

means the deflection due to bending only in the stiffener.yA.is

Poisson's ratio and D== 2
in which is Yonng's modulus

¡2(i-,41.)

and lj., is the thickness of the plate. Neglecting the effect

of warping, the maximum potential energy in stiffeners effected

by both shearing force and torsion is



v=.

/I_
o o

+L o

T)

2 2.r1 (Pz)
d

+7
o X. ,.

L.

15.

(19)

'I
where Gç- is the modulus of elasticity in shear. is a

numerical factor, depending on the shape of the cross section,

and always less than 1.2 as calculated by Watanabe [lOi. A is

the cross-sectional area of each composite stiffener with the

effective breadth at the maximum bending section. is the

torsion constant and for the circular section is the polar

moment of inertia generally designated as J. For other sections

refers to the text book by Seely [111 as an example. In

our case, however, the center of torsion is located at the cross

point of a stiffener with the plate, hence, the modification oft'

should be done by shifting the centroid of the cross-section to

that cross point. Therefore, the total maximum potential energy

stored during vibration by this stiffened plate is given by adding

V,... to 1/ already obtained above.

(20)



v==

'2cti)
c

ò-t2J
,)

On the other hand, the maximum kinetic energy of this stiffened

plate due to bending of the plate and stiffeners is

((i ,)\l

t) '+2(ì

++íI1

4
T- LJi )] dt

)Fj

16,

According to the textbook written by Timoshenko [l2] the

effect due to shearing force in th.e beam is only l.37 compared

to that due to bending even though the wave length of the

vibration is ten times as large as the depth of the beam, and

that due to torsion is always less than that due to shearing

force. So far as the lowest mode of vibration is concerned,

as in our present case, those effects of shearing force and

torsion on the total maximin potential energy which are

designated as may be neglected, and the total maximum

potential energy Vis approximately represented by only 4
given by Eq. (18) after changing

which yields

(22)



where IAÎC is the mass per unit area of the plate.

are the weights of composite stiffeners per unit length which

means the stiffener considered with the effective breadth of

the plate.

The maximum kinetic energy of stiffeners due to rotational

inertia in their lengthwise direction and inertia force of

rotation in the plane perpendicular to their lengthwise

direction is

2r /f&)

.1

i

±

17.

(23)

where is the moment of inertia of the unit element in the

lengthwise direction of the stiffener about axis through its

center of gravity perpendicular to the lengthwise direction.

is the centroid polar moment of inertia of the cross-

section, and in this case the centroid is located at the cross

point of the stiffener with the p1ate

The maximum kinetic energy due to one uniformly distributed

weight per unit area is

(24)

k) ,1t



4- 7/

°f1 ¡fr]/ ¡
',I '/

4-

18.

To get the total kinetic energy the amount of energy stored

due to rotational inertia and inertia force of rotation which

was designated as '71. should be discussed further. The effect

of rotational inertia is about 1/3.2 in comparison with that

of shearing force, according to the text book by Timoshenko

[12] also, when the wave length is ten times as large as the

depth of the beam. The effect due to the inertia force of

rotation is always less than that due to rotational inertia.

Therefore, the total kinetic energy T is represented by

adding '7 to

Assuming no loss in energy occurs, 6iis given by equating the

maximum kinetic energy to the maximum potential energy designated

as T of Eq. (25) or f of Eq. (20) respectively:

Io 7a
2

/ L&)] Lt
J

According to the Ray1eigh-Ritz method [12], if Eq. (16) is

taken for jÇ67)then it is only necessary to determine the



-_)iri such a manner as to make

the right member of Eq. (26) a minimum.. In this way we arrive

at a system of equations such as

r
(()\2

00

2

P1-

iìvJ]= o,
O ,10

(27)

wh.ch are linear with respect to the constants .

equating the determinant of these equations to zero the

frequencies of various modes of vibration can be approximately

calculated.. The accuracy of the Ritz method was discussed by

Tomotika [13].

The discussion explained above is further expanded to the

general case (s).
/

() A plate having 1 stiffeners with scantlings,
'f.

A parallel to the direction and girders

with scantlings,)4)
'I

parallel to .)

direction together with S uniformi; distributed loads,

and, incidentally, supported by '7L.- pillars having the cross

sectional area and length

19.



Adding the effect due to pillars to the maximum strain

energy Eq. (21), we have

D 1Íb1 LxÍ(x
i0 t( 2) 2

- r 2
'-

iI ¡2fcx
Ib ( 2

0

Í
r )

(ftz
z2A 2 )±2(1/A);)

The equation corresponding to Eq (27) therefore, in this case

is

)C

Lj2

E LLI(

27
2 2j

j

rd+ [(x,
d

1r

+
z -e--[))+>E

Jo

20.

(28)

(29)

=0
(30)

And the maximum kinetic energy is

L ?- )OjO



21.

A satisfactory approximation for the frequency of the

fundamental mode of vibration will be obtained by taking Eq

(16) for the mode of vibration f(z, . We may call the

frequency the first approximate one only if the first term of

Eq. (16) is chosen, the second approximate one if the first

two terms of Eq. (16) are chosen, and so on. Determination of

the first approximate frequency is the same as the Rayleigh's

method which means to equate two maximwn energies, potential of

kinetic, to each other. Only the first term of Eq (16) is

chosen in this paper to obtain the frequency of the lowest

mode of vibration, because a sufficiently accurate result will

be obtained for the stiffened plate as shown in numerical

calculation, i.e.

û

= -
+

)2

: )4z)( ±(fB-2fA)(+2 34 b
/ (31)



After substituting Eq. (31) for f) into Eq (30) ¡JQ

is obtained:

z_ E2' i /b2 S2 &2
Sfz 2-- 5\

PO f2b2\/2-») ( Si b2 s s')
ir

j_ 2' i S i b
-f -i- __. I

SI S' -ß3b2 5SI ira!

/S/5
/

/ o5 f ) + 7 ± , ( f5) +

2282)ß

+ f2f2 fAB

2
7

22.

L £'4Pf( ¿4]

'-JYi

s

X [1+
¡& rf(X)J2

S(
±5

,

(32)

Therefore, the frequency is

f= 2
(33)

where

s=/ /40( 3O

2
- q4



( k"( JÇ2

Ft-i i'' }Z'

-% 2)(+ )8+1 -2 )+2( -29
()7

4 I 27)'()

23.

7

± (f4 -J -2)(-2f/)}()+ -2 + /) 2 (

2 / 3'(f -2+/)()-JA.(b ), (34)

Similarly another case is discussed here in (C).

(C) A plate having equally spaced stiffeners with equal

scantlings parallel to axis and girders parallel to

ì axis, together with ¿ web stiffeners and j large girders

parallel to or X axis, respectively as shown in Fig. 5.

If there are many stiffeners and girders together with a

few web stiffeners and large girders, the effects due to web

stiffeners arid large girders are only added to those of stiffeners

or equally spaced girders after substituting the following rela

tions used by Svennerud [l4 into Eq. (32) we can get
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(3 )

Here, or ¡lib is the moment of inertia of web stiffeners or

large girders considered with the effective breadth of the plate

at the section of the maximum bending moment, and or

is the weight per unit length for each web stiffener or

large girder considered with the effective breadth of the plate.

The last case is given for the double bottom of a ship as

shown in (D).

(D) Double bottom of ship.

The double bottom considered as the composite structures of
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both top and bottom plates as many cross stiffeners was discussed

by Schade and Vedeler, and the strain energy was given as the

orthotropic plate. In such a structure, a shear lag must be

considered (as was discussed already by Anderson [15] in the air-

craft structure), because it has the tendency to decrease the

frequency considerably.

So far as the double bottom is concerned, however, it may

not be necessary to consider the effect of shear lag. Before

going into the discussion about the frequency of the lowest mode

of vibration the following assumptions are clearly made:

The double bottom has a uniformly distributed weight

and load per unit area.

The weights of the individual masses of machinery are

uniformly distributed over their bases.

The structure is regular and parallel stiffeners are

identical.

The strain energy obtained by Vedeler [5] will be used and

for the maximum strain energy it becomes
rE f / ¿ I ¿

( (,
)2
+ 2/A - (x ) .)

2 Jo 1 L
z ) p 2 ) / -/

IzJ_ L b ItH 6'2 Jz

(37)

where and so on are already explained in Eq. (1).
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The maximum kinetic energy stored by the double bottom,

machinery and pillars is

(38)

where f. is the uniform load per unit area of double bottom,

is the weight of the pillar at points and ile

are already defined. The energy due to pillars in this

case is different from that of the case (C), because in the case

of double bottom all pillars are supported by the plate which

means the effects of pillars on the plate are only considered as

the energy stored by the concentrated weights of pillars them-

selves.

After equating Eqs. (37) and (38) is found to be

5 b
Z Z

S / 2/J 4 2
E ,

2

-x b2 ( / ¡ / ¿X

ro
, FFk +

/ 5' s,Sí

(39)
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where 5, 5, 5.3 , or 5', 5.', 5 are already given

¡rL Eq. (34).

In order to demonstrate the use of the formulas obtained

above, the following example is given to be amenable to the

practical calculation.

Example lPlate simply supported at all sides, with no

load or pillars.

In this case, from Eq. (16) the end fixities are:

§A =-f==
Cj24 f= i , from Eq. (34) we have

/ 3

s1s 3O

24

Therefore, after substituting these values for 5 into

Eq. (32) becomes

z_ D / f / b2 /2X24 3o2
- zz

(
2 t b2) 3/ 2 j

When Ob
).747 ¡ D

c

When b='5-
2J.34LZJ p

úz ]R



If however, the double series of trigonometric function is chosen

as the mode of vibration as shown in the textbook by Timoshenko

[12]., we have

hZ D-4-/I I

rø
b2

Hence, when J73Y2JP
which is O.O4267 less than

the first result above, When b =1,5 O which

is 0.04727e less than the second result above,,

2-3. Local Vibration of a Bottom Plate

We discuss here the general problem such as a plating panel

having three planes of symmetry with respect to its elastic

properties, in which the bottom plate is considered as one

special case.

Considering both effects due to bending and stretching)the

total strain energy V of a plating panel OOK (Fige 6) is

stretching of the plate.

IL

in which Vb is the strain energy

due to bending nd V one due to

i'

S1EE CTJRDER

±

a0

29.

Fig0 6 Double Bottom

v== v \Ç (40)

o o-



We now assne the following relations between stress and

strain components for a case of plane stress in the -plane:

where iz / /z / = /2
and

- J
I

¿

x= EE±E"

j

which reduces to

a.0VEJj ;+

E" E
E2_ EE
E E;c
P2 EE

r9-

30,

(41)

by taking these planes of symmetry as the coordinate planes) in

which c3 5, ?: stress; ¿ ¿ strain; E EE','&:co-

efficient characterizing the elastic properties of a material.

Then we have

¿Z.0

10L D2)* D )2±2D2 z±
4D

6ri
: plate thickness,

(43)

rxJdx (44)
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Putting ¿if ¿J1(t)f(L1) as before, and using the equivalent

equation of motion to Eq. ( 3):

-1' 6 Ft)ij Jzì (45)

We can get the equation of motion which must satisfy

Let us solve the case of ali supported edges0 We must then

assume suitable expressions for the displacements and

of the directions and . , respectively, and W , in order

to satisfy the following requirements; such as the all displace

ments ¿2. , and LJ must vanish at the boundary and the

bending moments along the boundary also vanish, moreover W

is an even function of and as concluded from symmetry,

whereas ¿2. and are odd functions of and , re-

spectively. From the practical purposes of initial design, only

the first term of the double trigonometric series will be taken

with sufficient accuracy, because the deflection has a rapidly

converging series0 Therefore we can find ¿2 , and i!ìT

from Fig. 6 as

- - F,1(t)

- /L
T

(46)



where

¿2&0Tf4' +- + 2 (Dt2D1)])

-7= K2

in which if the elastic properties of the material of plate are

considered as seme in ail directions we have

t r_
E - / 2C/)

320

In Eqs0 (46) U11(-1 and W1) are time functions which

will be determined later,

By the fact that the impulsive load does not work when ¿L,,,(

or varies, the following two relations are obtained by

using the principle of virtual works:

-o
JT1 (47)

Hence, after having solutions of ,, , and ZAY,, which

satisfy both Eq0 (45) and Eq0 (47)Ñ and by substituting these

values for u,, , 2J, and f, into Eq. (46) we can obtain ail

displacements and k from which stress and

strain are easily determined0

Now let us return to calculate Eq0 (42) by using ¿r of Eq0 (46)

Thus we have

(50)



from which

E3 E3 E3=
= /2(1 2) D D, /2 CI

2) i R 24Ci)

In such a case )< becomes

Kb
Jz_

2 2g

Using the following relations between strain and displacement

components of the large deflection:

Et

E
i(J\22J

Ix

and expressions of Eq. (46)

Eq. (44)

, we can find from

- E
{7t

/ E 97T4a0 E" 7T ( jr4
V - 2 (z5 a e? ' / E/ 6

7T2Z0+
/ ) , (I) ('*

E" ifa c
/

3 E 3 c0JJ
+

(53)

±* JJ

for ¿2 and 21

)
)7Z 7[Z

C;r

33.



___
/ 4aE)

Therefore we can find the total energy V from Eq. (40) by

substituting Eqs. (48), and (54) for V , and V

respectively.

Substituting V thus obtained into Eqs. (47), we have

*,2J,2+ 'ZtH(t) t

-W(t)-i- 5(t)-k31,L,,() O,

from which and are obtained:

U11(t) - -

?,1,t) 1v-ZJ()

where
i

r : positive number

,,

Z 3a F

&Tr 7j2(

- 3='(E±&)&

i E(2aTç2 E"OTT2 & 7T2

(1L1ìi[2 &p
'2t; 40)?t

34.

(54)

(55)

(56)

(57)

-



From Eqs. (46) and thus become

i 427T)
AA

&

27Ttj- ff;- -
L

¿; 2(t) A

where

+K- Ez'4[11T4
2CA

3CA.0

E 3cL+

E,,
FI

crrcL0
+

C;T -ir
3 Ey 3t

+ (+E 40b)

E" 7T' Gr 7T4
/29&?r E'

34a.

lo (- 7TzO.,

E: 3:

(58)

Using Eqs. (54) and (56), we can also obtain

- K5' (t),
(59)

&1T2
(60)

t'- J
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The strain energy V is now expressed from Eqs. (40), (48) and

(59) as

y = (61)

After substituting Eq. (61) for V into Eq. (45), we have

m' Ld Ä (2 kJ -4- O)
(62)

from which the equation of motion that 2J,,c,t) must satisfy re-O

duces to

g kil + p01ct
(63)

in which p_. /kc
I

and is the deflection at the center of the plate in the

case of small deflection, Since from the practical point of

view o', may be considered as a small factor, we can first apply

the method of successive approximation to the case of Eq. (63)

when o in order to obtain 2j, (,t) and the circular fre-

quency p of free vibration so as to satisfy ,



-
at the instant

Thus we have

,Ct)

3r)
- /Z A3 + t 32)3iT(424f& /743ft

t2OA5ft-4-\7P)) (64)

32
/2ß 5/2'°

as shown in appendix II.

The first equation of Eq. (64) shows that J,t) is the sum of

terms effected due to initial velocities u-, y
o/S and

324 (32)2pg
respectively.

(32)3p/2

Returning to Eq. (63), in the case of impact the magnitude

of the velocity increase is found from the equations:

c1tr= 0c/L,'1
\32pJ

ç32)z pB)

3Jt,3j)3J2J

t=o.

36.

(65)
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in which each of (/3)iS some magnitude of impulsive load

per unit mass of the plate produced by ¿ô

The deflection of the plate corresponding to each velocity of

Eq. (65) at the instant t when each velocity is communicated

at the instant 7 , may be calculated by using Eq. (64). It is

seen from of Eq. (64) that, for instance, by reason of the

initial velocity ,r the deflection at any instant t is

Hence the velocities v- and so on communicated at the instant

' to the plate produces a deflection of the plate cì at the

instant t given by

-

+ 3p(t-)
(66)

+ P )- I 74 B(t-) +2 f(t-)

- A; 7P(L)J

Let us assi.nne that at the initial instant o the

plate is at rest in its position of static equilibrium and

the duration of impace L



Then substituting relations:

(67)

into the following equation obtained from Eq. (64)

3d(po)2pa32p;o
25P'2

f

37.

(68)

/

where 32/21 j
+2 2I 2+IJJ

and assuming the relationship between and slamming pulse

F(t) as shown in Fig. 2:

/ 6 o <t <

/FM t 1"

O w-ev i<t,

where rrt and n are any integers and FM is the peak value of

we have



and

38.

/d21
32p' L4'-'

t

Q
t1'1 7T2

After substituting p value determined above into the first

three terms of Eq. (66) and using the relations given by Eqs. (65)

and (67):

32J'1 I

525 4

a
(32) p'2 -,

we can find Z(L)in Eq. (72) when . (See Appendix III).

Eq. (72) is the generalized approximate solution in the case of

large deflection. Also we can find another two similar equations

which correspond to both when ,< and

Two examples are given for the cases of small and large

deflections of a bottom plate.

3(1 -) 3(1 - (1 -
41-z + 4i3 4)*4-



2za)
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Example 2 - Small deflection of a bottom plate

Suppose, for example, that all edges of the plate will be

given a simple harmonic motion having the period 2rìy

and phase lag
c

2Je = ¿4,L4l (2X E) (73)

in the vertical direction as the motion of ship ori the sea.

Then measuring deflection ¿2t): of the plate from its equili-

brium position when 2J.= , the corresponding deflection to all

edges will be zJ,,c-2Y(t). Thus the equation of motion

becomes from Eq. (63) neglecting c'&- term

(74)

/FnJ 7ff2/2 (
(76)

from which we have

î(t) - 0t) + (75)

Eq. (75) is the equation of forced vibration having magnitude of

After substituting ,t

instead of into Eq. (71),, and using the maximum static

deflection

c1T.1 /(fi /F,-1

p2 9/7/.2pZ ìïV(' /)21we have from Eqs. (46) and (66):



where R is the response factor as shown below
(2

(-2V)/ (p0t) R,J R2
729.'

?x\(I 2t
J C-

(M -2g)!=o (Th-2\)/ RI

IP' 2)){ )4J=o

Pz

CoS Ct-
Mt
z V\I

? »!
R- '-2)I m f (t-4)

2
9 -nl!(-J) (-2V-I)J (p 4) 27ìRJ '-rH ro (tr)

2
, 21/ 31

7,t) 2

-2V)! (4 (I-(3)J fo(t -p4) (J)(7VI)o4ú-J.

* R] t R2
and

p2/21 ---«
2

fo fo'
if m and n are odd ntmbes, R and R become

1

R== (-I)4H ,4_'

(2-I)J

yo

)2 (t4
if rn and n are even ntrnbers they become

R=(_1)z

= o

R3=()2
i oE4)

40.

(77)



Since the stresses are space derivatives of the deflection,

it may be concluded from Eq. (76) that the dynamic response,

deflection or stress, is equal to the static deflection or stress

multiplied by the response factor. The maximum value of the

response factor R is known as the load factor and is designated

by L. If we want more accurate value we may use the series

expression containing higher modes of vibration:

bo/Fi> 2
y2( j\

O e

in which L will be obtained from Eqs. (77) for each natural

frequency , which is expressed by instead

of

Also if we use from Eq. (46)

41.

--
e-0/r>
t2)

'

o

the moments and stresses are easily given by

(79)

2L (78)
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¡j ?j2iJ- d arí
M=DÓ-M)

O

r- (û14
uvd.

-e:-

Example 3 - Large deflection of a bottom plate neglecting

of Eq. (72), we have in the case of '?7L==7Z=/

1k1

where

'J(*)= (ëAA)

3
H3c& l

3i

42.

3
Qô

- (37 + (39) (3p)é

0< k <ßz

(80)

chere h is the plate thickness (81)

20k3 5f± - 3ek]
(82)



/ e( -t) + C- ú-ß) -(& 2

-
, ('- -g() a (ii)]

-3p(a ('-

a1 + ìR (-fl) 3e Cß (t#)
/

43.

1

"

-F

i Zi-ß)
, (e(* (R*-ß -sq'

,( ) (-& +Q 2(3/fl4) e(k4) - __

rL
p,(-t5 (1(e (,-)) (ú- (2)



+(3'3-)+ (i-J

= pI ( 1) fl) (* -

Ú-r
(3 (e4 3&) +- (ße(-8) ' e]

1' e(-) * e(t-) e ('-ß) -

+ ce e ('-fi) - p (iJ

j (t) 4 (-ß) / (Ffi) - 4) (ip]

44.

(82)
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3
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!

V=o

4I' ¿t- /

(-2)I
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Similarly, we may obtain the deflections in any case of edge

conditions by employing the beam functions already applied For

instance, in the case of all clamped edges [16], assuming the

de flee tion:

-r=

where X co-/- - (4
,i I

YC4'Cod

andc,3 are given in numerical calculation,

we can obtain the equation of motion that must satisfy

46.

in which aL is given by assuming approximately
'WL'1::L0

equal to that of all supported edges; -= 0JFó and

D / I

Therefore, if we use FM , we can get the same ex-

pressions as Eq. (72) for the solution of Eq. (85). The maximum

deflections are graphically represented later for one special

case in order to show the effect due to the plate stretching

under increase of slamming load. The same tendency also may be

given for the maximum stresses which will happen at the middle

(83)

(84)

()±(*)*Ç=) (85)



of the long sides.

Since stresses due to stretching are easily given from

Eqs. (41), (53) and (58) using W of Eq. (82), total stresses are

obtained by adding stresses or stretching to those in Eq. (81)

of bending.

In the case of all supported edges, if all edges of the

plate have a simple haimonic motion of Eq. (73), we can find from

Eq. (72)

= (f+) [-r EJ
+ I

3A,
H- J3Qf5f' )

47,

(86)

by neglecting the effect of the edge motion to the third term

when compared with the second term in the left side of Eq. (63).

F(') of Eq. (86) is given in appendix III. And next, in

order to apply the results obtained above explicitly, we would

like to discuss in the following section the response of a

double bottom having two sides supported and the other two

sides clamped.



III. Numerical Calculation

As the stiffened plate, we use the double bottom, as

shown in Fig. 7., of the same size as that given by Corlett

[7], so that comparison can easily be carried out. We assume

the double bottom to be supported on both sides and clamped

on both ends, moreover, all the sides of bottom plate are

clamped along the cross-stiffened boundaries. As one special

case the loading condition is assumed as follows:

Total area of the double bottom is subjected to slamming

loading such as /= /psi, =and ¿\ ==O.02 sec, and

on some bottom plate around the central girder the slamming

loading such as psi, and /=O.O2 sec

is acting.

48.
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Before starting discussion with this example, we would

like to prepare useful curves by Eq. (39), in order to get

first fundamental frequencies easily by using these curves.

For the sake of convenience, curves are plotted for two

different boundary conditions such as:

All clamped sides, and

Both ends clamped and both sides simply supported, or

both sides clamped and both ends simply supported.

The ratios of width and length are 3, 2, 1, 2/3 and 1/2. For

each ratio, different combinations of the value or are

chosen to produce separate curves on 30 sheets from Fig. 8 to

Fig. 37 by which first fundamental frequencies may be easily ob-

tained in the practical uses. In each figure the curves are plot

ted with as ordinate and
A

The curves in Fig. 8-37 are plotted only for the case having

machinery and no pillars,, but they can be used to a case having

machinery and pillars and also one having pillars and no

machinery. For the case having machinery and pillars, we may

simply add the term which governs the effect of pillars

/ 14lr rh öf mhnvv

50.

as abscissa.

and then

use this sum instead of '-' For the case having pillars

» '/ J 4JJ

-i: ; T" - - -'

1' -(J 7s.-
2.

and no machinery we may simpl; use the va]1 ,4 / '5T2ri1L,J'J.L

instead of . And the case of 1F - corresponds

to that having neither machinery nor pillar.

In Table i the values of are shown, corresponding to

given in column . In the case ofthe ratios of Ja%



iE',j tio3
obtained by extrapolation or by

corresponding to

the value of JaJft
as shown in Column

corresponding value of can be
AZ

extending the curves to the point

- 2.2782 x on the abscissa, where

51.

is also equal to 7O7 of that on

f Table 1.
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Values ofJ for /O in the case of both

sides fixed and both ends fixed are given in Table 2, which

corresponds to S= and

In Table 3 we show the case of both sides fixed but both

ends supported, which corresponds to

<3J ç 5/
) 'i

J2

1

3O
) 3_

/

Also in Table 4 we show the case of both sides supported

and both ends clamped, which corresponds to

I

) ' /o5

/ 3/ ,- /=
30 - = j_

I -

Let us now explain how to use

of for the case of

with all clamped sides.

From Table 2 we find

J
J8.5xiô7

Then from Table i we can get

IZ=/3iio7x
o7=

rr 2)78i/iò

83.

the curves to get the value

'i-l. 1.8xl03 and
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From the curve

L x i
-

00X10

We, therefore, can obtain by interpolation

53x/û7
678z-'

87,

1tE
=/8400/o

J,.a1J

On the other hand we may easily obtain, by connecting both

points of 18.51 x and 12.957 x lO7 with reasonable curve

corresponding to lO and 2.2782 x 10 on the abscissa

Now let us return to the problem of the double bottom hay-

ing the scantlings and material characteristics as already

given in Fig. 7.

In this case there is neither machinery nor pillar, hence

Jc
From the curves of Fig. (32) and Fig. (34) we have

J Á1t
j-gu2 =/g,0010



3.025 X

3.530 X

3.18 x l0

3.13 x l0

4 -

2

i

2

i

2

2.725 x lO7 1

J=3KIo7xÏx I /Ì?I,CPIo.- C337,

88.

or = 19.968 cps

From Eqs (10) and Appendix I we may obtain the relation

between load factor and time ratio , as shown in Fig. 39
1

with Fig. 38, after substituting '»i I'

2 i

i i

2 2/3

2 2/3

i 2/3

i 2/3

Applying interpolation

1.830 1.478

to above data we

(0.830+0.478) 7

0. 8433

can obtain

(3.025 2 O.45)x 10 = 3.317 X

(3.18 + 0.35 0.83) 10 = 3.470 X

(2.725 + 0.405 x 0.83) x = 3.061 x

(3.06l+ 0.409 x 0.478) x lO7 = 3.256 x 10

which reduces



Fig. 38 Relation between
Slamming Loading
and Time

Therefore, the load factor L,,

in which

Inglis and

2 3

TIME R/rO

89.

Fig. 39 Relation between Load
Factor and Time Ratio

becomes 1.00 corresponding to

Then the maximum value of deflection 4f becomes from Eq.

L (87)

where if = 1,2,3 [61 [71

A
E

j2 (88)

is the basic function given by

* The third term in bracket is revised from the paper already
published. [7]

T
= 0.02 x 19.968 = 0.39936, because of ¿\ = 0.02 sec in this

case.

o
z
(ME

q- 5



1) =T cjß O9iISA

-ccj/
is the solution of cosLßÀ co = / (89)

- a f z) (d))d

()42

and so on will appear in Table 5 for L = l»3.

After substituting all data into then we have

0.94758)

which reduces

it= 0.94758 x 1.00 x L6165 = 1.53174 in

90.



TABLE 5 VALUES OF THE COEFFICIENTS AVAILABLE FOR A,

91,

518.53 3,799 14,620

z=Q-Q
±Z=o?o.'

0.845 0 0.365

T 1.0178 0.99922 1.000034

4.73004 7.8540 10.9956

13.12 47 99

1.6165 0 1.4059

1.2374 0 1.4226

+4.9222
-4.9222

+1.2150
-1.2150

27.6846 171.9969 £LF,

7)1
see Fig 40

2.0356 2.0001

cAz)
r
o,k

45.542 241,818



92.

Using Eqs. (11), (87) and (14) we can obtain stresses approximately

together with the values given in Table 5 and Fig.

40, assuming 2,= l.5

Fig. 40 FUNCTION

We have maximum normal stress at =o and

-= I!329.! PSI) )) 32.3 psi

and at the center

PSI

o± 344I7 PI on bottom and top plates.

Other stresses are shown in Table 6.

The maximum deflection in the case of all supported sides is

also given in Table 6. The method of calculation is now explained
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and

/

/03(91P *±j a1

94.

briefly. Using Eq. (39) we have po = 314.76 rad/sec which

reduces 50.09 cps and T = 00l996 sec. Hence L,, becomes

1.5 using = - 1.002, we have then the maximum value

of -lAr at the center of the plate from Eq. (9) by inserting L,,

instead of R: 1T= 2.2635

If we use Eq. (12) in the above case, higher accuracy will

be expected than that by Eq. (11).

Eq. (12) now reduces

A L {(z)]
1 2

taking until = 3 because of rapid convergency.

Using Table 5 we have

0.94758, 0.003244, 0.008280,

A33= 0.000966

In order to get the load factors L, we have to calculate

frequencies by using following formulas [7].

-n-i K.

1

Is (')±
(I-,

* The third term in bracket is revised from the paper already
published [7].

(90)

(91)

(92)



where
1ra.Li /3)

Jo

After substituting all data and values given in Table 5

into the equation of tS , frequencies f. are determined by

putting 5E. Qí.Ç O

= 17.939 cps, 94.5223 cps, = 68.513 cps

and = 131.38 cps,

Therefore load factors are now obtained from Fig. 39

corresponding to each period such as

L,1= 0.98) L,3= 1ml) L31= 1.4 and L33= 1.1

Then becomes, using again Table 5 for

L1, - 4/3 L,3[]A3, L3i[zj
A33 L33 [)J

= 0.94758 x 0.98 x 1.6165-0.00828 x 1.1 x 1.6165 + 0.003246

x 1.4 x 1.4059 - 0.000966 x 1,1 x 1.4059 = 1.49121 inches.

95.

which reduce

= 0.02 x 17.939 = 0.35878T
= 0.02 x 94.522 = 1.8904

173

- 0.02 x 68.513 = 1.3702

= 0.02 x 131.38 = 2.6276
T33



=> ) y

fla i

in which X. has the saine meaning as and

X = - c -
'

(L4 -
4N

= O& -('-]
1-o

96,

(94)

(93)

We can obtain stresses by using Eqs. (12) and (14) together with

the values and given in Table 5 and Fig.

40. We have maximum normal stresses at 21 =C?) a. and

41
ci Q.

= 33,643.5 psi, Çí= -33,643.5 psi

and at the center

O. = 25,041.0 21209.0 psi on bottom and top

plates. Other stresses are shown in Table 6.

Comparing both methods, the results given by the author's

method show good accuracy as practical purpose, and moreover the

response of a stiffened plate having any kind of boundary conditions

is rapidly determined. The centrai normal stress thus obtained is

superimposed to that of the bottom plate.

Now, let us obtain the deflection and stress of the bottom

plate with all sides clamped. [See Fig. 7] As in the case

of all supported sides, we can easily obtain the deflection

equivalent to Eq. ( 79):



X. "( values are given in Table 7 [1].t-, Ì
Therefore maximum normal stresses are obtained by Eq. (80):

Ì_) (95)

in which

1a0

+ L - cx ±xH=D( fiz)
i,3» =/- / ddJ

FfiXY .)L1_ .1d /

)

The natural frequency of any bottom plate

Fig. 6 is given by the general formula [1].

f k/Jzrjj,'
which reduces for mild steel

97.

shown in

(96)

1' JVS
Y=1 ')-

dir

;f= 9730_K cps, (1a should be measured in inches)

(97)



98.

after substituting = 30 x io6 psi, ,Á'L= 0.3 andf=k
In Eq. (97), K is given in Table 7 for the case of all clamped

sides. Then from Eq. (93) the maximum deflection 'ii,Ç which

appears at the center of the plate is approximately given by

L,A2LA3 L3+AL]
(98)

where A,) / A3 and are tabulated in Table 7 and L,LL3
and Lq. are load factors for modes corresponding to , ,L\2

A3 and A4- to be read off in Fig. 39.

The maximum tensile or compression stress occurs at the

middle of the long side in the direction of the short side; and

there is a tensile stress on the surface at the edge where the

slamming loading is applied,and on the contrary, a compressive

stress on the inside 8uXface, In both the amount of maximum

stress is approximately given from Eq. (95)

o,= (99)

where 2, /3 and are tabulated in Table 7 and

L, L L-. and L are load factors to be read off in Fig. 39.1,3
As shown later, the maximum local response of bottom plate happens

immediately after passing the peak value of slamming load. On

the other hand)the maximum response of double bottom is induced
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at much more delayed time, so that we need not consider the

superimposed condition in the case of slamming phenomena of

the double bottom. Hence the scantlings of the bottom plate

may be determined separately without consideration of the

behavior of double bottom.

The problem is now to decide the thickness when the

plate 28" x 183" is subjected to a triangular slamming load

having maximum = 60 psi of 0.02 sec duration as shown in

Fig. 38. We here assume the maximum dynamic yielding point of

'max = 60 x lO3 psi, Then by choosing two kinds of thick

ness 3/4" and 1" we repeat the following procedure:

Compute the natural frequency (cps) by Eq. (97)

Insert this to obtain the period T for that mode

For a given slamming loading in Fig. 38 calculate

etc, and use the curve in Fig. 39 to determine

the load factor

Compute ÇJ' by Eq. (99) using Table 7.
max

Applying interpolation to above two values or using Fig. 41,

42, and 43, we can approximately determine

0.913"

Finally <'is obtained from Eq. (98) by inserting 0.913"

as

= 0.09V'

From these values, the deflection becomes 10.627e when compared

with the thickness, and it will be therefore expected that the
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effect due to stretching is negligible.

In order to show this phenomena, the ratio of the maxi-

mum deflection due to both effects with the maximum deflection

due to only bending effect is now computed as the function of

Fvi from Eq. (82) by choosing 1/4", 1/2" and 1" under

the above slamming loading condition: m=2/and= 002
sec, with arbitrary That relation is given in Fig. 44

and it shows the effect due to stretching is very small when

0.913". Incidentally the maximum local response happens

at = 0.012 sec. on the bottom plate.

In order to design the double bottom, therefore, it is only

necessary to consider the maximum stress of bottom plate. How-

ever, the deflection of a double bottom becomes totally larger

after impulse due to slamming loading; for instance, in the above

case Table 6 shows that the maximum deflection reaches about

1.532" when the plate thickness 0.913", after passing the

local peak value 0.097" on bottom plate.
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IV CONCLUSIONS

Results obtained in this paper are summerized as follows:

Applying the energy method, the structural response to

slamming loading in a stiffened plate is obtained.

Two theoretical analyses are obtained both for the stiffened

plate and the anisotropic plate, in which only the effect due to

bending is taken into consideration for the former, but on the

contrary both effects due to bending and stretching are considered

for the latter. However, the small deflection theory can be

approximately applied to both cases of the double bottom and

the bottom plate, with good accuracy.

Taking the double bottom as an example, the application of

theoretical results to practical purpose is numerically carried

out.

Judging from the results obtained by computation we can gen-

erally conclude for design of a double bottom that insofar as

the dynamic response due to slamming loading is concerned it is

only necessary to consider the maximum stress of bottom plate

due to bending.

In order to get maximum deflection and stress on the bottom

plate under any kind of loading, Eqs. (98) and (99) are used to-

gether with Table 7 after computing load factor by the response

factor equation in Appendix I.

Also, on the double bottom, in order to get the maximum

deflection at the center and the maximum stress along boundaries

under any kind of loading, Eqs. (11), (87) and (14) are used
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together with Table 5 and Fig. 40 after computing load factor

by the response factor equation in Appendix I.

If we can decide the allowable yielding point dynamically

by experiment, curves and tables obtained in this paper are all

available to design purpose of the double bottom.

In order to apply our procedure to the other parts constructed

by much thinner plates than the bottom plate, the curves such as

Fig. 41 must be prepared previously under reasonable combinations

of and 7Z.. following the form of impulsive loading, since

the effect due to stretching becomes not negligible when

compared with that of bending.
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Method of successive approximation [12] is applied to solve

the equation

±}±-JkJ=O
Take the series:

= ± -

which contain higher powers of the small quantity 7<. In

these series W0, W1, W2, - - - are unknown functions of time t,

p is the frequency, which will be determined later, and C1, C2 -

are constants which will be chosen so as to eliminate condition

of resonance. By increasing the number of terms in Eq0 (101)

we can calculate as many successive approximations as we desIre0

In the following discussion we limit our calculations by omit-

ting all the terms containing cx'. in a power higher than the

third. Substituting Eq. (101) into Eq. (100) we obtain

*
(102)

Q.

After making the indicated algebraic operations and neglecting

all the terms containing o(, in a power higher than the third,

we can have the following system of equations since each factor

for each of the four powers of cL' must be zero:

o

'7rt= -
- C-C'2J -

(103)

= - CÇ- - , t) 3 3



To eliminate the condition of resonance we will choose the

constant C, so as to make the first term on the right side of

the equation equal to zero0 Then

C,f 37J3

and we find

r3

-( +
V 3p.

122.

Assuming that at the initial instant, t=0, we have -i'iJ= 0,

and substituting for of Eq. (101), we obtain

=
e

e (104)
=77

Again, since these equations must hold for any magnitude of

, we have

kÇ(òJ= 1i RíÇ i

1AJ)O, (105)

Considering the first of Eq. (103) and the corresponding initial

conditions represented by the first row of Eq. (105) we find

- pk
(106)

Substituting this first approximation into the right side of

the second of Eq. (103) we obtain

(107)

(108)
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33

Thus

3b - 3p
(109)

To obtain the third approximation we substitute the expressions

Eqs. (106), (108) and (109) into the right side of the third of

Eq. (103) and obtain

,,- -- L'3/2_
j5

3217

Again, to eliminate the condition of resonance, we put

C
Z

123.

The general solution for W1 then becomes

c+ct 3

To satisfy the initial conditions given by the second row of

Eq. (105), we put

(110)

Then the general solution for W becomes

(112)

by using the constants of integration determined so as to

satisfy the third row of Eq0 (105),

Substituting the expressions for W0. W W2 C1 and C2

in the last of Eq. (103), and proceeding as before, we obtain



the fourth approximation
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Thus we finally obtain from Eq. (101)
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Eq. (72)

and

F() of Eq. (86)
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