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Abstract

A mathematical model to predict excess fluid pressures in the earth crust leads to a
time-dependent diffusion equation for the pressure. Application of the finite element
method to this equation results in a large system of linear equations. Due to the
layered structure of the underground the permeability used in the diffusion equation
has large jumps, so the coefficient matrix has a large condition number of order
108. This leads to bad convergence of the ICCG method and a wrong termination
criterion. Combining ICCG with a deflation technique leads to a robust solution
method. A difficulty is the construction of the deflation vectors. In this paper we
present three different choices of the deflation vectors and compare them from a
theoretical point of view and from numerical experiments. This comparison shows
that the best deflation technique is based on algebraic deflation vectors.

Key words: deflation, IC preconditioned Conjugate Gradients, Poisson equation,
porous media, discontinuous coefficients

1 Introduction

One of the issues an oil company is interested in, is the fluid pressure history
and the temperature history in the earth surface. Knowledge of these quan-
tities can be of help in predicting the presence of oil and gas in reservoirs.
Moreover, the fluid pressure plays an important role in safety and environ-
mental aspects of drilling a well.

Mathematical models to predict fluid pressures in porous media in a geological
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time scale are all based on Darcy’s law ([1]) and the continuity equation.

The equations itself are three-dimensional, time-dependent, non-linear diffu-
sion equations. One of the characteristics of these equations is the dependence
of the diffusion parameter on the permeability. This permeability largely de-
pends on the type of material and may vary orders of magnitude. For example
the ratio in permeability between sandstone and shale may be of order 108.

To solve the diffusion equation we discretize in space by a finite element
method. The time dependence is solved by applying some implicit scheme
in combination with a suitable linearization. This all results in a large sparse
system of equations to be solved. Due to the three-dimensional nature of the
problem, it is necessary to solve these equations by some iterative method.

Unfortunately the large jumps in permeabilities result in very ill conditioned
matrices, and as a consequence a very slow convergence of classical iteration
methods like conjugate gradients (CG). Another serious problem is that even
if the reduction of the residual of the equation is large, still it may be possible
that no convergence to the true solution has been achieved. This makes the
choice of a suitable termination criterion a hard task.

In order to analyze this problem it is sufficient to study the following station-
ary linear diffusion equation:

—div(eVp) =0 on Q, (1)

with boundary conditions
p= f on 9Q" (Dirichlet) and g_p = g on 9" (Neumann),
n

where 9Q = 0QF U 9QYN. The fluid pressure and permeability are denoted
by p and o respectively. The domain {2 consists of a number of subdomains
in which o is constant. Two values for o are considered: o" = 1 for high-
permeability subdomains and ¢! = € for low-permeability subdomains (e.g.
the permeabilities ratio for shale and sandstone: € is of the order 1077 see [8]).
The subdomains are denoted by the disjoint sets €2;, i € {1, ..., k}, which are
such that: U¥_,Q; = Q and when ; N Q; # 0 then o; # ;. Note that in real
life applications, the permeability o is also varying in the subdomains.

In [8] this problem has been analyzed thoroughly. It is shown that the num-
ber of small eigenvalues of the large matrix is of the order of the number
of nodes in the domains with low-permeability. However, using an Incomplete
Cholesky (IC) preconditioner reduces this number considerably to the number
of high-permeability regions, completely enclosed by low-permeability regions
or boundaries with flux boundary conditions.

Based on this observation it is not difficult to create the eigenvectors corre-
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sponding to the small eigenvalues in the case of straight layers. It is then a
logical choice to improve the condition of the matrix considerably by project-
ing the solution onto the space perpendicular to the space spanned by these
eigenvectors. Effectively this means that all small eigenvalues will be replaced
by 0. Since the CG method is very suited to solve singular problems, provided
the right-hand side vector is in the correct space, effectively the condition of
the matrix with respect to the CG method is considerably improved.

In [8] a method based on this projection, the deflated ICCG method (DICCG),
has been derived. For more general problems, however, the construction of the
eigenvectors corresponding to the small eigenvalues is not so simple. There-
fore an approximation of these "small” eigenvectors has been used to apply
the DICCG method. These approximate eigenvectors are equal to 0 or 1 in
regions with large permeabilities and more or less linear varying in regions
with small permeabilities. Application of the DICCG method results in very
fast convergence and also ensures that standard termination criteria can be
applied without possible dangers.

In a later work [9] we have shown that even if the projection vectors are
rather inaccurate in the small permeability region still the DICCG method
behaves almost as good as in the case of "exact” projection vectors. This re-
sulted in constructing the projection vectors by solving the original equation
in each small permeability region separately with a very modest accuracy.
This approach has already been successfully applied to other problems with a
comparable jump in the coefficients [3].

However, still this method is quite complicated. In the present paper we try
to further simplify the construction of the projection vectors. In first instance
this is done by merely making all projection vectors equal to zero in the small
permeability region. Hence the projection vectors consist of only numbers 0
and 1. Experiments show, that this method sometimes introduces other small
eigenvalues, and therefore is not suitable to get a well conditioned matrix.

In order to improve this behavior the set of projection vectors is extended in
such a way that for each subdomain we have a separate projection vector. This
vector is 1 in one subdomain and zero in all other subdomains. Of course the
use of extra projection vectors makes the projection more expensive, but the
simplicity of the projection vectors and the large number of zeros in it, make
the projection relatively cheap.

In this paper the two new approaches are compared with the old one using
approximate eigenvectors. It is shown that the first new approach leads to
good results in some cases but is not robust. The second method with the
larger number of projection vectors, appears to be very robust. Compared to
the method of approximate eigenvectors, an important advantage of the new
approach is that it can be applied, even if we have difficulty to decide which
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part of the region is high permeable and which one is low permeable. This is
especially the case if coefficients are varying in a somewhat continuous way.

Summary of the paper

In Section 2 the DICCG method and some of its properties are summarized.
The various deflation strategies are specified in Section 3. A theoretical com-
parison is given in Section 4.1, together with a numerical comparison presented
in Section 4.2. We end with some conclusions in Section 5.

2 The Deflated ICCG method

After a finite element discretization of (1) the linear system
Az =b

with A € R"™™ has to be solved. The coefficient matrix A is large, sparse,
symmetric, and positive definite. These properties motivates us to use the
Conjugate Gradient method combined with an Incomplete Cholesky decom-
position (ICCG). The Incomplete Cholesky factor is denoted by L. In [9],
Theorem 2.2 it is shown that the spectrum of the IC preconditioned matrix
L7'AL~T contains a small number of eigenvalues of order ¢ = ;’—,’1, whereas
the largest eigenvalue is of order one. This leads to slow convergence and a
termination criterion which is not reliable [8,9].

An error bound after £ iterations of the ICCG method is given by ([6], p.187):

ﬁ‘l)k , o)

|z — zgllp-1a0-7 < 2[| — 2ol p-1a4L-7 (m

An

= is the spectral condition number of L='AL™" and ||#||p-14p-7 =

(xTL*IAL*Tx)a. This bound is also slowly decreasing for increasing & when

k> 1.

where Kk =

From theory [2] and numerical experiments [8,9] it appears that Deflated ICCG
can be used to speed up the convergence considerably and to obtain a reliable
termination criterion. Below we summarize the DICCG method for ease of
reference.

Let us define the projection P by

P=1-AZ(ZTAZ)'Z", Z ¢ R™™,
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where Z = [2...zp,] has rank m. The space span{zi, ..., z, } is denoted as the
deflation subspace. Since x = (I — PT)x + PTx and because

(I—Pa=2(Z"AZ) ' Z"Aw = Z(ZVAZ)™' 27,

can easily be computed, only P72 has to be computed by iterations. Using
the identity APT = PA we can solve the deflated system

PAZ = Pb, (3)

for Z using ICCG and premultiply # by PT to obtain P”x. The algorithm to
solve (3) is [8]:

DICCG

j =0, 7y = Pro, pp =2 = L7 L™y;
while ||7}||> > accuracy do
Y — g . — (f'— 2 — )
j=i+ L0y = G
Tj = Tj_1 + Q;py;
fj = ’fj—l — O[jPApj;
—7-Tr-1s. 735 — _(%2) .
4 =L L7 B = ooy
pj+1 = zj + Bipj;
end while

When we choose zy, ..., 2, equal to the eigenvectors corresponding to the small-
est eigenvalues it follows that the convergence of DICCG depends on the ef-
fective condition number

An
Feff =\~

m+1 ‘
A drawback of this approach is that it costs much work to compute these
eigenvectors. Therefore an approximation is proposed in the literature [8,2,9],
which is cheap to compute and leads to a comparable convergence behavior.
In the following sections we present two other choices for the deflation vectors
and compare them with respect to applicability, amount of work, and memory
requirements.

3 Choice of deflation vectors

In this section three different choices for the deflation vectors are defined:

e deflation vectors, based on the system of equations,



e algebraic deflation vectors restricted to high-permeability domains, and
e algebraic deflation vectors.

To construct the deflation vectors the subdomains are ordered as follows:

Definition 1 The high-permeability subdomains are numbered first: §;, i €
{_1, ..o, K"} Furthermore the first k* high-permeability subdomains are such that
QN o0P = @, 1€ {1, . ks}

In words: the first £ subdomains are highly permeable and their boundaries
do not contain a part of the Dirichlet boundary.

For all deflation methods the permeability may be variable. It can be a func-
tion of space and we may even replace the permeability by a full Cartesian
permeability tensor that is a function of space.

3.1 Deflation vectors based on the system of equations

The minimum number of deflation vectors is equal to k°. The deflation vectors
based on the system of equations are defined as [9]:

Definition 2 The vectors z; fori € {1,...,k°} are such that:

e zi=1onQand 2, =0 on Q;,j #£i,j € {1,...,k"},
e z; satisfies the finite element discretization of the equation:

—div(o;V2z) =0 0on 5 € {"+1,....k}, (4)

where Dirichlet boundary conditions are used at the interfaces ( 02, N Q)
and homogeneous Dirichlet and Neumann boundary conditions are used at
outer boundaries (z; =0 on Q; NOQP and 22 =0 on Q; N OQN ).

Note that the deflation vectors are independent of the permeabilities ratio e.
In the low-permeability domains the vectors z; can also be interpreted as a
solution of (1) with Dirichlet boundary conditions equal to 1 for 0Q; and equal
to 0 for 9,7 #14,7 € {1,...,k"}.

In the remainder of this paper the matrix Z of this choice is denoted by Zpp,s.
From theory and numerical experiments [9] it appears that the convergence
behavior of DICCG using the physical deflation vectors is independent of e.

It appears that the DICCG method is not sensitive to large perturbations
of the deflation vectors in the low-permeability domains. To explain this we
summarize the perturbation results given in [9]. For a typical example the
smallest eigenvalue of the preconditioned matrix is of the order 107, whereas
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after deflation the smallest eigenvalue is equal to 107!, When the deflation
vectors are changed with an order 1 perturbation in the low-permeability
domains the smallest eigenvalue after deflation becomes 1072, This suggests
that taking the deflation vectors zero in the low-permeability domains leads
to a suitable deflation operator. This choice is defined in the following section.

3.2 Algebraic deflation vectors restricted to high-permeability domains

The algebraic deflation vectors, which are only nonzero on high-permeability
domains, are defined as:

Definition 3 The vectors z; for i € {1,....k*} are such that: z; = 1 on Q;
and z; =0 on Q;,7 #14,5 € {1, ..., k}.

The matrix Z resulting from this choice is denoted as Zyg min-

3.3 Algebraic deflation vectors

In [2] deflation is used to accelerate a domain decomposition algorithm. The
number of algebraic deflation vectors is equal to k. The vectors are defined as:

Definition 4 The vectors z; fori € {1,...,k} are such that: z; = 1 on ; and
zi=0o0nQ,,j#1,7€{l,..,k}.

The matrix Z resulting from this choice is denoted as Z,;,. For simple prob-
lems discretized with finite volumes it appears that the convergence behavior
of DICCG is also independent of € [2]. In this paper this is confirmed for com-
plicated problems using a finite element discretization.

In the following section we compare the various choices for the deflation vec-
tors.

4 Comparison of the various choices

In this section we compare the choices for the deflation vectors as specified in
Section 3. In Section 4.1 we give a theoretical comparison, and in Section 4.2
the deflation strategies are used to solve a finite element discretization of a
number of Poisson problems.
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4.1 A theoretical comparison

A comparison is given of the phys, alg_min and alg choices of the deflation vec-
tors with respect to: construction, convergence, required memory and amount
of work. At the end of this section we summarize our results.

Construction

The construction of Zig min and Zg, is straightforward, whereas for the con-
struction of Z,,s a number of small subproblems has to be solved. An advan-
tage of the latter choice is that the space spanned by {zi, ...z, } is close to the
eigenspace corresponding to the small eigenvalues. This relation is not valid
for the other deflation strategies.

An advantage of Z,, is that all subdomains are treated in the same way. This
is in contrast with both other choices, where the high- and low-permeability
domains play a different role. This is a drawback for the phys and alg-min
approach, because in practical applications with a variable permeability in
the subdomains it is not always possible to distinguish the high- and low-
permeability domains. The same holds if there are more permeability con-
stants oy, 09, 03, ... instead of ¢! and o”.

Convergence

It is hard to give theoretical bounds on the convergence speed. Therefore we
include a number of typical test problems in the next section to compare the
convergence numerically.

For the choice Z,p,s it has been proven in [9] that the span of the defla-
tion vectors is close to the eigenspace corresponding to the small eigenvalues.
Therefore one expects that the convergence is related to k.rr = AAT”, which is
confirmed by numerical experiments. |

In [2] it is shown that the convergence behavior of the deflated ICCG method
with {21, ..., 2k }ay as deflation vectors is independent of the jumps in the per-
meability.

For the choice Z,i4 min the convergence is strongly related to the perturbation
behavior of Z,,s. This is a point of current research.

Parallelization

All deflation strategies can be combined with parallel computing. However,
since the deflation vectors of the alg_min and alg choice are restricted to one
subdomain these choices are somewhat easier to parallelize than the phys de-
flation vectors. For a parallel implementation of Z,, we refer to [7,2].

Work and memory
From the definitions given in Section 3 it appears that the deflation vectors
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are sparse, because they are zero everywhere, except on {2;. For the choice
phys the vectors are also non-zero on its neighboring subdomains.

From the definition of P:
P=1-AZE'Z" with E=Z"AZ, (5)

it follows that the determination of Pv requires a number of inner products
and vector updates with z; and Az;. Note that the vector Az; is less sparse
than z;. Some fill-in occurs at the grid points connected to the domain where z;
is non-zero. In the following we define N; as the number of non-zero elements
of the vector Az;, for 1 < ¢ < m. The values of N; and m are different for the
various deflation strategies. To illustrate this we give a typical example at the
end of this section.

From (5) it follows that the vectors z; and Az; should be stored in memory

m

This requires 2 ) N; memory positions. Matrix element F;; is only non-zero
i=1

if the union of the support of 2; and Az; is not empty, so the matrix F is

sparse. Therefore we do not use £~ ! but compute the Cholesky factor of E.
Since m < n we neglect the amount of memory to store E and its Cholesky
factor.

With respect to the amount of work we distinguish two parts: the construction
of the deflation vectors, computing Az; and the Cholesky factor of E, and the
application of P to a vector. The first part is done only once, whereas the
second part is used in every iteration. To quantify the amount of work we use
Ayow Which is equal to the average number of non-zero elements in the rows

of A.

The amount of work for the construction of Z,ig ;min and Z,, is negligible. To
construct Z,uys one has to solve a number of subproblems. In general it is hard
to quantify this amount of work, which is denoted by C'ons,p,s. Furthermore
an efficient implementation of this part can be complex. The evaluation of Az;

costs 24, Y. N; flops. For the computation of E approximately F,., >, N;
i=1 i=1

flops are reqﬁired, where FE,.,, is equal to the average number of non-zero
elements in the rows of E. The amount of work to factorize F is negligible.

In every iteration the deflation operator is used. The calculation of Pv is done

m
in three steps. In the first step w = Z7v is calculated, which requires 2 3. N;
i=1

flops in inner products. The amount of flops of the second step s = E~'w is

insignificant. In the final step another 2 ff N; flops are needed to form
i=1
Pv=(I-AZE'Z v =v — (AZ)s.
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Sparseness

Before we illustrate these estimates with an example we note that there is an-
other drawback of the phys deflation method. One can have applications where
N; =~ n for the phys deflation vectors, which makes DICCG unattractive. An
example of this: assume that the domain €2 consists of a low-permeability sub-
domain which contains k* subdomains with a high permeability. In [9] it is
shown that using a drop tolerance ¢ and ignoring all elements of the projection
vectors less than  makes DICCG feasible again.

Example

We consider the following characteristic configuration: €2 is a rectangular do-
main, which consists of 2k° plain layers of equal thickness with alternating
low- and high-permeability layers (see Figure 1). We assume that every layer

Ql low—permeability
Q . .
2 high—permeability
Q s .
2k° -1 low—permeability
Q. s . .
2K high—permeability

Fig. 1. A problem with 2k° plain layers of equal thickness

contains the same number of grid points: 575 Furthermore we assume Arow =9

and E,,, = 3. In Table 1 the number of deflation vectors m, the number of
non-zero elements of Az;: N;, and the memory to store z; and Az; are given. It
appears that the extra amount of memory is small with respect to the memory
(13n) needed for the ICCG algorithm.

Table 1
The value of m, IV;, and the required memory for the various deflation strategies

choice m | N; | required memory
phys k* 23,?5 3n
alg-min | k° | 55 n
alg 2k° | ops 2n

The amount of work needed to construct the projection operator P is given
in Table 2. From this table we see that the work to construct P is comparable
to the work to construct the IC preconditioner. Numerical experiments with
Zphys in [9] have shown that the construction time for large grids is small with



respect to the solution time.

Table 2

Work to construct operator P
choice work work with Ao =9, Erow = 3
phys Consphys + 3n(Apow + %Emw) Consphys + 31.5n
alg_min n(Arow + %Emw) 10.5n
alg 20 Arons + L Brou) 21n

Finally the amount of work per ICCG iteration is equal to

matvec + prevec + vector updates = total,

18n + 18n + 10n = 46n.

The extra amount of work per iteration to include deflation is given in Table 3.
Comparing these numbers it follows that the extra amount of work to include
deflation is small with respect to the costs of one ICCG iteration.

Table 3
Work to include deflation

choice ‘ phys alg-min alg

work ‘ 6n 2n 4n

Summary

From the theoretical comparison we conclude that alg deflation is more flexible
than phys and alg_min. The convergence of DICCG for phys and alg deflation
is independent of the contrast of the permeability, so the methods are robust.
The alg_min deflation is the cheapest method with respect to construction,
memory and work per iteration.

To investigate the convergence behavior of the various methods we report
numerical experiments in the next section.

4.2 A numerical comparison

In this section numerical experiments are presented using ICCG and DICCG
with various deflation techniques. We compare the efficiency and the reliability
of these methods starting with a simple layered problem and ending with a
realistic three dimensional problem used in the oil industry.

x1



4.2.1 A layered problem

A two dimensional Poisson equation,
—div(eVp) =0, (6)

with p the pressure and o the permeability is considered in a layered region. For
the boundary conditions we make the following assumptions. At the earth’s
surface the excess pressure is prescribed. When the pressure field is required
in some reservoir it is not practical to calculate the pressure in every position
of the earth’s crust. Therefore the domain of interest is restricted artificially.
We assume that the lowest layer is bounded by an impermeable layer, so there
is no flux through this boundary. The artificial vertical boundaries are taken
at a sealing fault, or far away from the reservoir. Again a zero flux condition
is a reasonable assumption at these boundaries. For the physical background
of this problem we refer to Chapter 12 of [4].

For our model problem we assume that ¢ in sandstone is equal to 1 and o
in shale is equal to 10~7. Furthermore the Dirichlet boundary condition at
the earth’s surface is set equal to 1. The solution of equation (6) with these
boundary conditions is of course p = 1, but if we start with a random vector,
our linear solver will not notice the difference with a real problem. It is also
possible to use p = 0 as starting vector. For most of the methods this has only
marginal effects, except for the alg deflation technique, where the solution
is found in one of two iterations, since the initial error is in the span of the
deflation vectors.

Equation (6) is discretized by a standard finite element method. In each layer
10 elements in the horizontal and 5 elements in the vertical direction are used.
This results in a system of linear equations to be solved, which will be denoted
by Az = b. In our first experiment we have solved this problem on a rectan-
gular domain with 7 straight layers (Figure 2), using ICCG and DICCG with
the deflation strategies as introduced in Section 3.

Figure 3 shows the norm of the true error. Note that all the versions of DICCG
lead to a faster convergence than ICCG. We have not included CPU time
measurements, since the alg_min and alg deflation methods are not yet im-
plemented in an optimized way. In [9] a comparison of CPU times of ICCG and
DICCG(phys) has been given, which shows that DICCG is much faster than
ICCG. Taking into account the results given in Table 3 we expect that the
same holds for the other deflation vectors. The convergence behavior of phys
and alg is more or less the same, whereas the convergence with the alg_min
vectors is slower.

In Table 4 we also give the smallest nonzero eigenvalues of the deflated, precon-
ditioned matrix. Since the effective condition number is a good indication of
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earth surface

sandstone

shale

sandstone

shale

sandstone

shale

sandstone

Fig. 2. Artificial configuration with 7 straight layers
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\ — no deflation
phys deflation

- — alg_min deflation

- - alg deflation

40

10"

10

20 30 50
number of iterations

Fig. 3. The true error for a configuration with 7 straight layers

the initial convergence rate (compare Equation (2)), these results correspond
well with the convergence results as shown in Figure 3.
Table 4

The smallest nonzero eigenvalue of the deflated, preconditioned matrix
choice ‘ ICCG phys alg_min alg

Amin ‘9.3-10*7 1.6-1001 15-1072 38-10!

4.2.2 A skewed layered problem with variable permeabilities

In this section we solve Equation (6) on a geometry with 7 skewed layers.
Furthermore the permeability is variable and depends on the depth. The con-
figuration is given in Figure 4, whereas an indication of the permeability is
given in Figure 5. Note that it is arbitrary for some of the layers to define
them as shale or sandstone since the permeability varies orders of magnitude
in some layers.
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earth surface
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shale
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shale
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Fig. 4. The geometry of the skewed layers Fig. 5. The permeability

We use as stopping criterion:
1M~ 72 < A |2k |2, (7)

where M~' = LT L is the Incomplete Cholesky decomposition and ), is esti-
mated from the (D)ICCG parameters [5,8]. If the estimate of A, is accurate
it is easy to show that if (7) holds the true error satisfies the inequality

[ = |2

<e€
[l2

Using (7) as termination criterion we present the number of iterations and the
true relative error in Table 5. From this table it appears that the termination
criterion is reasonable for the phys and alg deflation, but it is not sharp for
ICCG and the alg-min deflation. For this problem the alg deflation method
leads to the smallest number of iterations.

Table 5

The number of iterations and in brackets the true relative error
choice e =102 e=10"*
ICCG | 171 (2.8-1077) | 183 (2.2-1077)
phys 66 (1.2-107%) | 81 (1.5-107")
alg-min | 116 (9.4-107%) | 118 (9.5-1077)
alg 57 (1.1-107°) | 74 (2.0-1077)

A closer look at the estimated and true error shows that the termination
criterion is not reliable for ICCG [8] and the alg-min deflation (see Figure 6).
Finally the smallest eigenvalue of PM 'A with alg_min deflation is as small
as that of M 1A. So for this problem the alg_min strategy has the same bad
properties as I[CCG.

Xiv

. . . . . . .
sandstone 10° 107 10° 10° 10 107 107 107 10°

10*



10

107 v

- - residual

'min
—— estimated error
— true error
!

0 20 40 60 80 100 120
number of iterations

10
Fig. 6. The norm of the true and estimated error using the alg-min vectors

4.2.3 A problem with many high-permeability inclusions

We consider a 3 layer problem, where the shale layer contains 8 sandstone
inclusions (see Figure 7). The resulting linear system is again solved with the

earth surface

sandstone

sandstone

Fig. 7. A problem with 8 sandstone inclusions in the shale layer

ICCG and the DICCG iteration methods. In Figure 8 the norm of the true
error is given. The convergence behavior of the iterative methods is comparable
to that observed in Section 4.2.1 for a straight layer problem. In the initial
iterates the norm of the true error for the alg method is considerably smaller
than that of the other deflation methods. For this problem the alg method is
clearly the best method.
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Fig. 8. The error for a problem with 8 sandstone inclusions in the shale layer

4.2.4  An oil flow problem

Finally we apply the iterative methods to a more realistic three dimensional
problem which is used to simulate the flow of oil and gas in a reservoir. The
geometry and the permeabilities are given in Figure 9.

Composition Permeability
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Shale 10

AN

4
\NRRRAN

| NRRRR

‘\‘\‘\‘{§\
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Y

Sandstone

750

Shale

1260 700

Fig. 9. The geometry of the oil flow problem

The same termination criterion is used as in Section 4.2.2. It appears that the
termination criterion is reliable for all deflation strategies, but not for ICCG.
The results given in Table 6 show that the number of iterations is the same for
ICCG and alg-min, and phys and alg. The latter methods are clearly more
efficient than the first ones, especially for a practical accuracy (e = 1072).
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Table 6
The number of iterations and in brackets the true relative error

choice e=10"2 e=10"*

ICCG | 46 (1.2-107%) | 55 (9.8-1077)

phys 15 (1.2-1073) | 30 (2.9-1079)
alg_min | 45 (5.2-1073) | 55 (2.7-10°°)
alg 15 (1.4-1073) | 30 (5.5-1079)

5 Conclusions

For elliptic problems with large jumps in the coefficients the ICCG method is
not robust. Combining ICCG with a deflation technique can give an efficient
and robust solver depending on the choice of the deflation vectors. In this
paper we consider the phys, alg-min and alg deflation strategies. From the
theoretical and numerical comparisons we made the following conclusions:

e The Deflated ICCG method with deflation vectors based on the system of
equations (phys) is robust for all considered examples, also for problems
which do not satisfy the assumption that high-permeability domains are
contained in low-permeability domains.

e The alg-min strategy leads for some problems to good results, however for
other problems the method fails. So this method is not robust.

e The alg deflation method is robust and in most of our applications it is the
most efficient method.

Our final conclusion is that DICCG with alg deflation vectors is the method
of choice for elliptic problems with discontinuous coefficients.
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