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ABSTRACT 

Recent and historic events have demonstrated the European vulnerability to coastal floods. Larger 

and more extreme events in Asia and the Americas have shown the devastating effects that these 

low-frequency high-impact floods can have. In Europe this has given rise to a large integral research 

project RISC-KIT (Resilience Increasing Strategies for Coastlines toolKIT), that aims to develop a set of 

tools to reduce the coastal vulnerability. Part of this is an operational Early Warning System (EWS) 

for hot spot areas to which this thesis is a contribution.  

Coastlines with sandy shores (beaches and dunes) have a large response to these low-frequency high 

impact events (e.g. beach and dune erosion). Houses and infrastructure close to the shoreline are 

not only vulnerable to flooding but also to damage caused by overwash and coastal erosion. 

Furthermore, the pathways of floods in sandy areas are subject to morphological changes. Current 

flood hazard models do not incorporate morphological processes and are therefore not appropriate 

to model coastal hazards at sandy coastlines. A process based model such as XBeach is capable of 

modeling the coastal response in two dimensions (2D), however, coming at the cost of much longer 

computational runtimes making it not a very useful part of an EWS. 

A solution is found in utilizing a probabilistic model as a surrogate for a process based model. The 

probabilistic model is fed with data created with the process based model. The process based model 

essentially trains the probabilistic model allowing it to take over its function. More specifically a 

Bayesian Network (BN) has been trained to replace an XBeach model. BNs are generally graphical 

probabilistic models that have been successfully used in the past for a wide variety of purposes, 

including coastal modeling. In a BN the offshore boundary conditions, describing a storm (e.g. wave 

height and water level), and onshore hazard intensities (overwash and erosion) are treated as 

random variables and are connected through conditional dependencies. This has led to the main 

research question: 

How can Bayesian Networks be used as part of an early warning system for 

spatially varying coastal hazards at sandy coastlines? 

Praia de Faro, located in the south of Portugal, has been chosen as a case study site for this research. 

This small settlement is situated on top of a sandy barrier and is exposed to yearly recurring 

overwash events and has experienced damages to houses and infrastructure due to severe erosion 

of the coastline. In developing the concept for the case study site there are three main issues that 

had to be overcome: (1) A BN requires a lot of data to be trained well and the higher the complexity 

of a BN the more training data is required, (2) XBeach is a computationally expensive model posing a 

barrier to generating lots of training data and (3) there is no existing storm dataset that is large 

enough to train a BN with to be able to act instead of an XBeach model. 

The first issue is solved by setting up a BN with very low complexity. The constructed BN consists of 

six random variables and predicts overwash and coastal erosion based on inputs for the offshore 

wave height and water level of a storm and a location at Praia de Faro. The second issue has been 

solved by reducing the number of grid cells in the XBeach model to a quarter of the original size 

while still producing good results. The third problem has been solved by creating a synthetic dataset 

using a local storm dataset existing of recorded wave heights, periods, surge levels and storm 

durations. Copulas have been used to create bivariate distributions of the variables pairs, which 
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could then be used to sample a new, synthetic, dataset. The advantage of using the bivariate 

distributions is that the synthetic dataset mimics the characteristics of the original dataset and 

therefore includes the natural variability. Three hundred storms, sampled from the synthetic dataset, 

have been used to force an XBeach model that has been set up for Praia de Faro. Of each storm data 

is extracted from XBeach creating a dataset of cases. This dataset is fed into the BN, giving it 

knowledge to base future predictions on.  

The BN is tested by training it with 90% of the data and then testing how well it can predict the 

remaining 10% of the dataset. A number of test results give insight in the performance of the BN. 

The Mean Absolute Error (MAE) of the mode of the predictions are large for all hazard nodes. For 

the coastal erosion, overwash depth and overwash velocity the MAEs are respectively: 19 m, 0.4 m 

and 0.9 m/s, with standard deviations of, respectively, 27.5 m, 1.2m and 1.7 m/s. With respect to 

predicting coastal erosion and overwash as part of an EWS these errors are too large. However, only 

the mode of the prediction is considered for the MAE. The predictions are often bi-modal, creating 

very large errors. The bimodality has the result that the MAE often over or underestimates the real 

error of a single prediction and is therefore only an indicator of the overall performance. Other 

results indicate that where the BN is not very good at predicting the magnitude of erosion and 

overwash, it is good at predicting whether or not the erosion or overwash will affect the houses and 

infrastructure. 

Considering the research question, a BN is able to translate offshore storm boundary conditions to 

onshore hazard intensities. It can, however, only do this with relatively low complexity. It therefore 

loses a lot of spatial information that the process based model XBeach gives. The (large) natural 

variability that is seen in the storm dataset is passed on to the predictions of the BN, giving wide 

predictions. The BN in its current setup needs to be improved in order to be useful in an operational 

EWS. It will either need extra training data or increased complexity which implicitly also means more 

training data is needed. Proposed is to add an extra variable in the BN, the peak period of the waves, 

as this variable shows the least correlation with the wave height in the actual storm dataset.  
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1 INTRODUCTION 

Over the past decades a number of coastal floods have demonstrated the vulnerability of the coastal 

zone in Europe. Examples are the North Sea Flood of 1953 in the Netherlands, Belgium and the 

United Kingdom, the Ligurian Flash Floods of 2011 (in Italy), and the flooding of a part of France due 

to the storm Xynthia in 2010. Larger and more extreme events such as the hurricanes in the United 

States of America (Katrina 2004, and Sandy 2012) and Typhoons in Asia (Haiyan in 2013 and Nargis in 

2008) have shown the devastating effects of these low-frequency, high impact flood events. These 

recent historic events, climate change and an increase in economic and social activity in coastal and 

riverine areas have given rise for the European Union (EU) to issue a flood directive and for the 

United Nations (UN) to formulate the Hyogo Framework of Action (HFA). 

As an answer to the EU Flood directive and the HFA a large research project has been set up 

between universities, research institutions and municipal authorities across different member states 

of the EU. The project, abbreviated as RISC-KIT, aims to reduce risk and increase resilience of coastal 

zones against these low frequency, high impact meteorological events (Van Dongeren et al., 2014). 

The RISC-KIT project aims to achieve this goal by developing new methods tailored for the European 

coasts. This thesis contributes to the development of an Early Warning System (EWS) for flood 

events. The relevance of an EWS is supported by the UN who have identified it as key in reducing 

casualties and economic losses due to flood events (UNISDR, 2002). 

For coastlines with sandy shores (beaches and dunes) the response of the coastline to high impact 

events is very large (e.g. dune and beach erosion). Current flood hazard models do not include these 

morphological processes and are therefore not sufficient for these types of coastlines. Process based 

models such as XBeach are capable of modeling the coastal response but are not very useful as an 

EWS due to the long duration of the computations. 

A solution is found in utilizing a probabilistic model as a surrogate for a process based model. The 

probabilistic model is fed with data that is created with the process based model. This way the 

probabilistic model gains the same knowledge about the processes within the bounds that it is 

trained. More specifically a Bayesian Network (BN) will be created as a surrogate for an XBeach 

model. A BN is in essence a graphical probabilistic model consisting of random variables and 

conditional dependencies between these variables. The BN treats the hazard intensities (e.g. water 

levels and flow velocities) and the forcing (e.g. storm surge, wave heights and periods) as random 

variables. The conditional dependencies between the random variables can be determined by the 

BN if it is trained with enough data. The training data is produced with an XBeach model of the 

coastline. Since a BN is solely based on statistics its runtime is very low and therefore able to 

function as an EWS if trained well.  

As a case study site for the development and initial implementation the beach settlement of Faro, 

Praia de Faro, has been selected. Faro lies in the South of Portugal and is the regional capital of the 

Algarve, with its airport situated on the coastal lowlands. The region is a very important tourist 

destination and essential for the Portuguese economy. Praia de Faro itself is pestered by yearly 

recurring overwash events and has experienced damages to houses and infrastructure due to severe 

erosion of the coastline.   
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1.1 ORGANIZATION OF THE REPORT 

This report is structured following the research process. Parts of the report have been moved to the 

appendix to which is referred as appropriate. The problem definition and research question are 

defined in chapter 2 and preceded by a section with a section containing relevant background 

information to the subject. A coastal analysis of the case study site is presented in chapter 3. The 

development and implementation of the EWS, including the setup of the XBeach model and BN, are 

extensively described in chapter 4. In chapter 5 the predictive skill of the BN is analyzed and results 

are presented. The report is concluded with the conclusions and recommendations in chapters 6 and 

7.  
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2 PROBLEM DEFINITION 

In this chapter the research problem will be formulated in several steps. First a section with relevant 

background information is presented, followed by the significance of the research and the problem 

definition. The research question is delineated by setting a main objective which is hence specified in 

several sub objectives.  Lastly the research approach is presented. 

2.1 BACKGROUND INFORMATION 

2.1.1 RISC-KIT: RESILIENCE-INCREASING STRATEGIES FOR COASTS – TOOLKIT 

The EU-Flood directive of 2007 requires member states to create a flood risk management plan with 

the focus on prevention, protection and preparedness to be completed before the end of 2015. 

Within the directive flood risk is defined as “the combination of the probability of a flood event and 

the adverse consequences for human health, the environment, cultural heritage and economic 

activity associated with the event.” (EU, 2007) The Hyogo Framework for Action 2005-2015 from the 

UN Office for Disaster Risk Reduction (UNISDR) proposes 5 priority actions with the goal to increase 

resilience of nations against disasters, including floods. 

For the purpose of fulfilling the goals set by the EU Flood Directive and the HFA the project 

Resilience – Increasing Strategies for Coasts – toolKIT (RISC-KIT), has been set up in cooperation 

between several research institutions, universities and municipal authorities of different member 

states of the EU. The main objective of the RISC-KIT project is given below, as stated in Van 

Dongeren et al. (2014): 

“The main objective of Resilience-Increasing Strategies for Coasts – toolKIT (RISC-KIT) 

is to develop methods, tools and management approaches to reduce risk and increase 

resilience to low-frequency, high-impact hydro-meteorological events in the coastal 

zone. These products will enhance forecasting, prediction and early warning 

capabilities, improve the assessment of long-term coastal risk and optimise the mix of 

prevention, mitigation and preparedness measures.” 

This objective is further specified into seven subgoals. Number four and six of these goals govern the 

subject of the proposed thesis and are given below: 

“4. Development of an impact-oriented Early Warning and Decision Support System 

(EWS/DSS) for hot spot areas consisting of: i) a free-ware system to predict hazard 

intensities using coupled hydro-meteo and morphological models and ii) a Bayesian-

based Decision Support System which integrates hazards and socio-economic, cultural 

and environmental consequences;” 

“6. Application of CRAF and EWS/DSS tools at the case study sites to test the DRR 

plans for a combination of scenarios of climate-related hazard and socio-economic 

vulnerability change and demonstration of the operational mode;” 
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The Coastal Risk Assessment Framework 

(CRAF) and EWS/DSS are to be 

implemented at different spatial scales, 

as illustrated in the top panel of Figure 

2-1. The CRAF is to assess coastal areas 

at regional scales, in the order of 100km. 

The goal is to identify critical coastal 

areas, or hotspots, of high risk of spatial 

scale in the order of 10km.  

For these hotspots an EWS will be 

developed to deliver short-term 

forecasts and warnings. This tool will 

have to be constructed of generic 

components and must have 

functionality across European Coasts. 

For marine hazards, such as hurricanes 

and storms, it will have to consist of a 2 

dimensional model train that can 

compute from conditions at sea to 

hazard intensities on shore.  

The hazard intensities on shore can be 

related to the total expected impact 

when related to the receptor attributes. 

For this a Decision Support Tool (DST) 

will be developed, as illustrated in the 

bottom panel of Figure 2-1. 

The goal is to supply decision makers 

with a tool to gain quick insight into 

hazard intensities and impacts. 

 

 

  

Figure 2-1 Conceptual drawing of the CRAF (top panel), the EWS (middle 

panel) and the DSS (bottom panel) (Van Dongeren et al., 2014). 



Predicting Coastal Hazards with a Bayesian Network 

Chapter: Problem Definition  17 

2.1.2 COASTAL HAZARD MODELING 

In the modeling of flood hazards several steps have to be taken to get from the external forcing (i.e. 

a storm surge or high river discharge) to the impact (i.e. casualties and economic loss). In general 

these steps are divided between several computer models that are then coupled (the output of one, 

is the input of the other). The reason this type of modeling is not done in one large computational 

model has to do with the different spatial scales of the information. 

In case of a coastal flooding, the external forcing is generally a large storm or a tsunami. These 

natural phenomena are very large in size (order of magnitude of 200-1000km) and therefore require 

a model that spans over a large area. In such a model it is impractical to have a high resolution as 

this leads to a high computational time. Near the shore and on land the behavior of the flow of 

water is largely influenced by local effects such as topology and roughness and relatively high detail 

is required in the modeling. It is therefore practical to describe the different aspects in 

computational models at different scales. Figure 2-2 illustrates the typical different modeling steps 

at different spatial scales.  

 

At larger scales the hazard is described at relatively low resolution and with the shore as a boundary. 

The results of this (e.g. surge levels, flow velocities and waves) can be used to compute different 

local flooding scenarios. These local models often impose a breach of a barrier and then use the 

shallow water equations to calculate the propagation of the water into the hinterland, of which the 

elevation is known. Different scenarios are computed by imposing breaches at different or several 

locations. The outputs are hazard intensities such as temporally and spatially varying water levels, 

flow velocities and water level rise rates. These may then be used to estimate the impact by 

combining it with geographical oriented data such as population density, buildings and economic 

 

Figure 2-2 Spatial scales and characteristics of coastal hazard modeling, adopted from Van Verseveld (2014). 
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value. Since risk is defined as the product of probability and consequences, risk maps can be drawn 

up by determining the probability of a flood event.  

It should be noted that most flooding models are static in nature and neglect run up from waves and 

morphology. This assumption does not hold for sandy coasts when dune erosion and/or run-up play 

an important role as the morphological changes change the pathway of the flood. This is especially 

true for the first row of houses at the coastline; these are not flooded in a static model but are in 

fact damaged due to run up and dune erosion. In these cases, at micro scale, a model is required 

that takes into account flow as well as morphology. The disadvantage is that such a model will 

require more computation time as more processes are included. Two examples of models capable of 

this are Delft3D (when D-FLOW and D-MORPH are used) and XBeach. The model XBeach will be used 

in this research and is described in the next chapter. 

2.1.3 XBEACH 

XBeach is a two dimensional process based model that incorporates hydrodynamics and 

morphodynamics to compute the natural coastal response (including dune erosion, overwash and 

breaching) for hurricane and storm conditions. The model consists of formulations for short wave 

envelope propagation, non-stationary shallow water equations, sediment transport and bed update 

(Roelvink et al., 2010). 

The model has been developed for the purpose of modeling storm impacts on low-lying sandy coasts 

with significant alongshore variability. The variability may be caused by anthropogenic obstacles (e.g. 

inlets, revetments, sea walls) or have natural causes (e.g. shoals, dune height variations, or rip 

channels). The incorporation of avalanching1 and wave group forcing for swash motions is especially 

important for the process of dune erosion. This supplies sediment from the dunes to the swash and 

surf zone which is then transported seaward (Roelvink et al., 2009). 

McCall et al. (2010) performed a simulation of Santa Rosa Island (Florida, USA) under the condition 

of Hurricane Ivan (2004). By comparing pre- and post-storm data it was shown that XBeach is 

capable of simulating complex runup and inundation overwash over terrain with significant 

alongshore variability. 

In Vousdoukas et al. (2012) research has been conducted for the performance of XBeach for steeper 

slopes and consequently higher Iribarren numbers, on the Portuguese coast. The study shows that 

the default setup of XBeach can overestimate the effect of avalanching as well as the dune and 

beach-face erosion. It also showed to be most sensitive for the input parameters of the beach slope 

and the surf similarity parameter. 

 

 

 

                                                           
1 Avalanching is a process that occurs due to periodic undercutting of the dune profile by swash 
motions. As the profile steepens the slope of the dune becomes instable and slumps.  
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2.1.4 BAYESIAN NETWORKS 

A BN is a type of statistical model, typically a graphical probabilistic model. It represents a certain 

number of stochastic variables2 and the conditional dependencies3 between these variables. The BN 

is described in a probabilistic graph, as shown in Figure 2-3, in which the stochastic variables are 

represented in the nodes (circles) and the conditional dependencies on the edges (arrows). A BN is 

acyclic, which means that there is no path that starts at a certain node and can end up at the same 

node again. The relationship between two variables is based on Bayes rule: 

 

  
   

 

|
|

P B A P A
P AB

P B
   (1) 

In which,  |P AB  is the probability of A given B is true,  |P B A is the probability of B given A is 

true and  P A and  P B  are the individual probabilities of A and B. The nodes in the BN are 

possible variables within some system and the arrows indicate if the state of a variable has influence 

on the state of another variable. 

 

A good example to demonstrate a BN is found in Den Heijer et al. (2012) and was adopted from 

Pearl (1988). The network represents the distribution of five variables, P(B, E, A, C, R), as shown in, 

Figure 2-4. It relates the triggering of a household alarm to either a burglar or an earthquake (when 

living in an earthquake prone area). When the alarm rings a neighbor may call to inform you. When 

on your rush home you hear an earthquake report on the radio, the degree of confidence (or belief) 

that a burglary has triggered the alarm will now have decreased.  

                                                           
2 A stochastic variable, or random variable is a variable whose possible values are the outcomes of a 
random experiment (e.g. throwing a dice). The value the random variable takes on pertains to a 
certain chance, or probability. 
3 Consider Figure 2-3: The variables A and B are conditionally independent. Initially they do not affect 
each other, but do affect the occurring of event C. If event C occurs, the occurring of A will now 
affect the probability of B occurring and vice versa. 

 

Figure 2-3 Simple Bayesian Network 
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The BN is a computational tool to calculate probabilities of certain events (of the burglary) given 

evidence (the call and the radio report). When evidence is supplied, the network updates the 

probability of occurring of a certain event. The network has to be trained with either statistical data 

or expert judgment in order to establish the probability functions of the different variables.  For the 

previous example it would need data on the occurrences of burglaries and earthquakes in the area, 

as well as the reliability of the alarm. 

The structure of a BN has to be determined by the user, which may be a strength as non-existent 

links between variables will not be made. It is also a limitation as the structure of more complex 

networks may not be so straightforward. Another limitation is that the BN is not capable of making 

predictions outside the range of the training data. This will be of importance when using a BN in 

situations where the risk consists of low frequency events with high consequences. Little or no data 

are available when considering low frequency events such as a 1 in 10,000 year storm.  

2.1.4.1 APPLICATON OF BN’S 

BNs have a wide range of applicability and are subsequently used in many different fields. In 

literature many examples can be found ranging from traffic flow forecasting (Sun et al., 2006) to the 

diagnosis of breast cancer (Kahn et al., 1997). A more recent example is found in the thesis of Jäger 

(2013) where a BN is used to model the human influence on Safety.  

The use of BN’s has also proved their use in the field of coastal engineering and geology. Hapke & 

Plant (2010) show that a Bayesian approach is useful for predicting cliff erosion by linking the forcing 

variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to cliff erosion in a BN. 

Dune erosion volumes due to storm impact, as predicted by an empirical model, can also be 

reproduced by a BN as shown in Den Heijer et al. (2012). A BN has also been used to predict coastal 

vulnerability to sea level rise (Gutierrez et al., 2011) and van Verseveld et al. (2015) relates the 

onshore hazard intensities of hurricane sandy in a part of New York to damages using a BN. 

 

Figure 2-4 Example of a Bayesian Network of an alarm, triggered by either a burglary or earthquake 
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2.1.5 COPULAS 

Hydrological phenomena such as storms can be described by a set of random variables such as the 

significant wave height, surge level, storm duration and peak wave period. The random variables are 

all due to the same meteorological system and therefore related in one way or another. The 

interrelation between these variables has generally been described by classical bivariate 

distributions, such as the Gaussian, log-normal, gamma and extreme value distributions. This 

approach limits the individual behavior of the random variables to the same distribution, where this 

is not always the case. Copulas, however, are able to describe and model the interrelation between 

several random variables, and in the bivariate case, without the restriction of having to be of the 

same distribution (Genest & Favre, 2007, Schmidt, 2007). Just like marginal distributions can be fit to 

a random variable a copula can be ‘fit’ to describe the dependence between two or more random 

variables. Several copulas exist and can be tried to fit a dataset and tested on its goodness of fit. 

Once a copula is known it can be used to model an existing dataset to create a synthetic dataset that 

mimics the characteristics of the original data. 

 

In this research only the bivariate copulas will be used and the explanation is therefore restricted 

to this type. The mathematical description of a copula is described by Sklar’s theorem (Sklar 

1959) and states that every joint cumulative distribution function ( , )H x y  with marginal 

distributions (x)F  and ( )G y  can be written as: 

 

 H( , ) C{ (x), (y)}, ,x y F G x y   

WhereC : 2[0,1] [0,1]   is a 2-dimensional copula.  

The dependence structure between the two variables has to be described isolated from their 

marginal behavior. In order to do this the random variables first have to be transformed to 

uniformly distributed random variables. This is possible if the inverse of the cumulative 

distribution function of the marginal parametric distribution exists.  

If Z  is the cumulative distribution function of the random variable A then 1( )AA Z U and

(A)AU Z , where 1Z  denotes the generalized inverse of Z . The copula C now becomes: 

 1 1( , ) {F (u ), ( )}, u ,u [0,1]x y x yC x y H G u    

Four copulas will be considered: the Gaussian, Skew-t, Clayton and Frank. The last two belong to 

the class of Archimedean copulas. Each copula has different characteristics that can be used to 

better describe some given dataset. 

The Gaussian copula is given by:  

 1 1

1 2 1 2 1 2(u , ) { (u ), (u )}, u ,C u u

      
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2.2 SIGNIFICANCE OF THE RESEARCH 

This research will explore the possibility of creating an EWS for marine coastal hazards using a BN 

approach. The focus lies on populated coastal areas with sandy shores. The need for this research 

arises from the goals formulated in the HFA and the requirements formulated in the EU Flood 

Directive for the EU member states. Furthermore the UN have identified that EWS are key in 

reducing casualties and economic losses due to flood events in UNISDR (2002). 

A more general significance, other than a tool within the RISC-KIT project, can be found in the use of 

a BN as a surrogate for a morphological model. Such a network can be a powerful tool for decision 

makers and engineers in coastal zone management as it gives quick insight in the spatial variation of 

possible dangers. The development of this tool for the European coasts does not limit its use for 

other areas on the globe with similar coastlines. A proof of concept for the European coast allows for 

further exploration for other vulnerable coastlines. 

2.3 PROBLEM DEFINITION 

Current coastal hazard models are generally static in nature and use the shallow water equations for 

calculating the propagation of water into the hinterland. These models do not include the 

morphologic response of a coastline to high impact events such as large storms and hurricanes. For 

sandy shores with beaches and dunes the coastal response is non-negligible and influences the 

In which   is the bivariate normal distribution, with correlation ρ, and 1  is the inverse of the 

standard univariate normal distribution. 

The Archimedean copulas are constructed with a generator   :[0,1] [0, ]    and have the form: 

 1

1 2 1 2(u , ) [ (u ) (u )]C u      

Three copulas belonging to this class are Clayton, Frank and Gumbel, each has their own 

generator and properties, summarized in Table 2-1. 

Table 2-1 Archimedean copula: generator functions and tail dependence. 

Copula Generator for   Parameter Tail dependence 

Clayton 
1tx



 
 1    Lower 

Frank 
1

log
1

xe

e









 
  

 
    None 

Gumbel | log( ) |x   1   Upper 

The previously mentioned copulas can simulate tail dependence but are symmetrical in nature. 

The last copula that will be considered is the skew-t copula and does not have this limitation and 

thus allows for more heterogeneity in the data to be modeled. A detailed explanation of this 

copula can be found in Demarta & McNeil (2005) and an application in Jäger & Morales (2014). 
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pathway of a flood to the hinterland, changing the flood duration, extend and depth fields. Current 

models therefore underestimate or wrongly predict the hazard intensities and impact of the flood 

when used for these coastlines. 

A morphological model such as XBeach is capable of modeling the morphological response of the 

coastline due to storm events, see section 2.1.3. The model is capable of giving temporally and 

spatially varying output of hazard intensities such as flow velocity, water levels, water level rise rates, 

sedimentation and erosion. Rather than imposing a breach to model a breach is predicted by the 

morphological processes, also identifying weak spots. The model does not, however, link these 

hazard intensities to impact. The consequence of considering more processes (morphology) is an 

increase in the run time of the model. This poses a problem as weather forecasts are usually not very 

accurate until two or three days beforehand and are often only really reliable a day in advance. This 

makes the use of a morphological model as an EWS difficult as the runtime can easily become longer 

than a day, depending on the size and resolution of the model and the available computational 

power. 

As a solution the development of a BN is proposed as a surrogate that incorporates the knowledge 

of the morphological model XBeach but has a fraction of the runtime as it is only based on statistics 

and not on physical processes. One of the strong points of XBeach is that it has 2D functionality, 

meaning it can give insight in the spatial variability of a flood. Incorporating this in a BN can lead to 

large complexity (a large number of nodes and edges). This is a problem as the larger the complexity 

of a BN, the more training data it requires to function properly. Training data is acquired by running 

scenario’s in XBeach and uploading the in- and output into the BN. However, as previously stated 

running XBeach in 2D is computationally expensive and thereby limits the number of scenarios that 

can be run. 

2.4 RESEARCH QUESTION AND OBJECTIVES 

The insights obtained from the background information, significance and the problem definition 

have led to the following research question for this thesis: 

How can Bayesian Networks be used as part of an Early Warning System for 

spatially varying coastal hazards at sandy coastlines? 

This research question is delineated by setting the following main objective, which is then 

subdivided into 5 different parts:  

To quantify spatially varying coastal hazard intensities resulting from different 

forcing scenarios (e.g. storms) using a Bayesian Network.  

More specifically, to develop a BN that connects hydrodynamic near-shore boundary conditions to 

predict spatially varying overwash levels, flow velocities and coastline retreat at the case study site 

Praia de Faro, Southern Portugal. 

 This objective is divided into five sub objectives, namely: 

1. Development of a Bayesian Network that can act as a surrogate for a 2D XBeach model. 

2. Development of an XBeach model that generates suitable data for the Bayesian Network. 
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3. Investigate an efficient method for generating sufficient data for the Bayesian Network. 

4. Apply the Bayesian Network to the case study site of Praia de Faro on the Portuguese 

coastline. 

5. Evaluate the performance of the Bayesian Network with respect to its use as an EWS. 

2.5 RESEARCH APPROACH 

To answer the research question and reach the set goals the following steps are taken. (1) A general 

coastal analysis is performed of the study area with a focus to its response to high energy, low 

frequency events. A site is then chosen for which the EWS will be developed. (2) At a general level 

the modeling concept is already known; a BN will act as a surrogate for an XBeach model to be used 

as an EWS for coastal hazards. This is further developed and specified into a detailed concept in 

section 4.2. (3) The model concept is then implemented for the case study site by creating a storm 

dataset and an XBeach which are then used to create another dataset that on which the BN can be 

trained.  

The resulting BN is then extensively analyzed and evaluated with respect to its use as an EWS. The 

obtained insights are discussed in the conclusion and recommendations are given for further 

research and improvement of the modeling concept.  
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3 STUDY SITE ANALYSIS 

In order to model the situation at Praia de Faro correctly the characteristics of the coastal area need 

to be known. This will ensure that the right settings are used as well as enable qualitative and 

quantitative analysis of the modeling output. 

3.1 CLIMATOLOGY 

The Ria Formosa is located in the Algarve, in the south of Portugal, with a semi-arid climate. 

Summers are generally warm with an average maximum temperature of 29°C and winters are mild 

with an average minimum temperature of 10°C. The precipitation is negligible with around 400 to 

600 mm per year, of which most falls in the winter months. 

3.2 COASTAL GEOMORPHOLOGY 

The southern coast of Portugal can roughly be divided into two sections. The western part ranges 

from the towns of Sagres to Quarteira and consist mainly of a rocky coastline consisting of cliffs with 

beaches in between outcrops. The eastern part consists of the Ria Formosa, starting five kilometer 

east of Quarteira and continues up to the Spanish border. The Ria Formosa is a 50 km wide coastal 

lagoon enclosed by five sand barriers and two spits, shown in Figure 3-1. The lagoon consists of a 

complex system of channels, tidal flats and marshes. It has six inlets of which four are natural and 

two have been fixed with groynes. Illustrating the highly dynamic nature of the system is the recent 

opening of a seventh inlet due to the breaching of Barreta Island. It is, however, questionable if this 

inlet will remain open for a prolonged period. (Vousdoukas et al., 2012a) 

 

The location of the barrier system of Ria Formosa adjacent to a cliffed coast of moderate relief is 

atypical for a barrier system with tidal flats; generally such systems are found on coastal plains (large 

 

Figure 3-1 Image of the Ria Formosa, showing its location, the barriers, inlets and marshland. (Vousdoukas et al., 2012a) 

 



Predicting Coastal Hazards with a Bayesian Network 

Chapter: Study Site Analysis  26 

areas of low-lying land). The existence of this system is believed to be due to the presence of a 

shallow platform that is bounded by a relatively steep scarp on the inner continental shelf, visible in 

the bathymetry in Figure 3-1 (the steep slope indicated by the densely packed lines in front of 

Barreta and Culatra islands). Previously, in times of lower sea levels, this platform has been emerged. 

The theory is that as sea levels rose, the escarpment became a headland on which the shoreline 

began to pivot, allowing for the formation of spits. With further sea level rise the coastline retreated 

further and the spits became barriers with a tidal lagoon trapping sediment, to form tidal flats and 

marshland. At this point in time the barrier system is transgressing as a response to sea level rise. 

The evolution of the coastline is illustrated in Figure 3-2 (Pilkey et al. 1989). 

 

Praia de Faro is located on the Ancão Peninsula, in the westernmost part of the system, shown in 

Figure 3-3. The peninsula is northwest – southeast orientated and is a spit that receives sediment 

from upstream eroding cliffs and from the continental shelf (Pilkey et al., 1989). It continues until 

the Ancão inlet and is partially inhibited by the settlement of Praia de Faro. 

 

 

Figure 3-2 Evolution of the coastline in chronological order from A to D. (Pilkey et al., 1989) 

 

 

Figure 3-3 Praia de Faro, location and land use (Source: UAlg). 
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A typical cross-shore profile of a barrier island is shown in Figure 3-4, identifying all the different 

elements.  From the sea side to the land side several areas can be distinguished. The nearshore area 

contains the surf zone and migrating submerged sand bars. The sea meets the land at the steeper 

beach face which is followed by the gentler sloped berm. Behind the berm the vegetated coppice 

mounds and foredune begin, which are in turn followed by the back barrier and bay side consisting 

of marshland and tidal flats. 

 

The barrier of Praia de Faro shows the same features visible in Figure 3-4, where humans have not 

intervened. A large part of the peninsula is inhabited which has changed the natural configuration. In 

Figure 3-5 an aerial view of Praia de Faro is showing the barrier, the settlement of Praia de Faro and 

the access road connecting the barrier to the mainland. Directly east of the access road houses have 

been built on top of the dunes and directly face the berm of the beach. East of the access road 

buildings are located slightly less seaward and are protected by a single row of dune. At the access 

road there is a parking lot that extends from the backside of the barrier to the bermcrest. At the far 

side of the barrier (west of the access road), houses have been built by the local fisherman 

community directly behind the dunes. At this part of the barrier coppice mounds are also visible, 

indicating less human interference. The slope of the beach face at Praia de Faro is steep, typically 

above 10%, and ranges from 6% to 15%, categorizing the beach as intermediate to reflective 

(classification according to Wright & Short 1984). 

 

Figure 3-4 Typical cross section of a barrier island (Source: University of Texas) 
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3.3 WAVE CLIMATE 

The wave climate can be observed in Figure 3-6 and Figure 3-7. The wave climate is moderate to 

high, with an average significant wave height of 0.92 meters and average peak period of 8.2 seconds. 

The predominant wave direction is west – southwest (70%), with a fraction of the waves originating 

from the southeast (23%)  (Costa et al., 2001). 

The wave climate has a strong seasonal variability as can be seen in Figure 3-8. The average monthly 

significant wave height and peak period follow a similar pattern over the year; the winter months, 

starting in October and finishing at the end of April, know more energetic sea states as compared to 

calmer summer periods. The correlation between the wave height and the period is further 

illustrated in the tables in Figure 3-9. The table shows the probability of the joint occurrence, in any 

one year, of a certain significant wave height and a certain peak period for the southeast, west and 

southwest directions. Waves originating from the southeast generally have shorter periods, 

indicating a predominance of wind waves and little swell waves. The west and southwestern 

directions show a combination of shorter and longer periods, indicating a mix of both sea and swell 

waves. 

In general the state of the sea at a certain moment in time is described statistically by a wave 

spectrum. This treats the sea surface as a stochastic process; the waves that propagate over the sea 

surface are treated as random variables (a variable that cannot be predicted exactly), which together 

make up the total surface of the sea (the sea state) (Holthuijsen, 2007). The wave spectrum gives 

insight in the occurrence of certain wave heights and wave periods. 

An analysis of deep water wave data from the Portuguese west coast (Figueira da Foz, 90m depth) 

shows that 30% percent of the wave spectra are double peaked (Pires Silva & Sarmento, 1991). This 

indicates a sea state existing of both swell and wind waves as is also seen in Figure 3-9. Another 

analysis of sea spectra for the North Atlantic Ocean shows an occurrence of double peaked spectra 

 

Figure 3-5 Aerial view of Praia de Faro 
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of 40% for lower sea states (Guedes Soares, 1984). Both analyses conclude that for higher sea states 

(storms) the occurrence of double peaked spectra drops significantly. There has, however, not been 

any work done regarding the spectral distribution of the south coast of Portugal. 

 

 

 

 

Figure 3-6 Relative distribution of significant wave height (Hmo) and peak period (Tp)  (Costa et al., 2001). 

 

 

Figure 3-7 Wave rose distribution for measured data of the Faro Buoy (Almeida et al., 2011a). 

 

 

Figure 3-8 Monthly variation of average significant wave height and peak period (Costa et al., 2001). 
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3.4 STORM CLIMATE 

The Ria Formosa is prone to storms from the southwest and the southeast. The southwester’s are 

generated by a deep atmospheric low pressure system that follows a path more southerly than 

normal and normally occur between December and March. The southeaster’s are due to the 

occurrence of a strong Levante wind (a warm and strong easterly wind that develops in the West of 

the Mediterranean Sea) and occur from autumn until spring (October – May). The distribution for 

the number of storms per direction follows that of the average wave climate: approximately 70% of 

storms originate from the southwest and 30% from the southeast (Almeida et al., 2011a).  

Storms in the area are defined by a minimum significant wave height higher than 3 meters and with 

a minimum duration of 3 hours. Individual events are separated by a 30 hour interval between 

measurements of 3 meter significant wave height (Almeida et al., 2011a). 

Return periods for wave heights at the Ria Formosa are found in the report of Pires (1998), and are 

shown in Table 3-1. For the same return period the waves from the southwest are much higher than 

those originating from the southeast. This is in line with expectations and can be explained by 

looking at Figure 3-7. The fetch over which waves can be generated for the southeastern direction is 

limited where it is practically unlimited for the southwest. 

Table 3-1 Significant wave height for different return periods for waves per direction based on modelled data west of 

 Ria Formosa (Pires, 1998). 

Mean 
direction (°) 

Return period (year) 

5 10 25 50 100 

232 (SW) 5.7 m 6.4 m 7.4 m 8.1 m 8.8 m 

128 (SE) 4.4 m 4.6 m 4.8 m 5.0 m 5.1 m 

 

Figure 3-9 Joint distribution of significant wave height (hm0) and peak period (Tp) per direction at Faro (Costa et al., 2001). 
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A relationship between the significant wave height and the peak period has been estimated by 

Rodrigues et al. (2012). A linear regression on wave, tide and storm data in the period from 1997 to 

2007 for storms originating from the west and southwest, results in: 4 

 0.834 6.565p sT H     (2) 

In which, 

Tp = peak period    (s)  

Hs  = significant wave height  (m) 

This relation can be used to calculate wave periods accompanying the wave heights from Table 3-1. 

It can also be used to calculate the deep water wave length, which allows the wave steepness to be 

derived. The equation for the wave steepness is: 

 
2

2s s
p

p p

H H
S

L gT


    (3) 

In which, 

Sp = significant wave steepness  (-) 

Lp = deep water wave length (m) 

Hs  = significant wave height  (m) 

Tp  = peak period    (s) 

g = gravity = 9.81    (m/s2) 

Using equations (2) and (3) the wave heights from Table 3-1, wave periods and wave steepness are 

derived for the different return periods, shown in Table 3-2. 

Table 3-2 Wave steepness and period estimated using the findings of (Rodrigues et al., 2012) 

and (Pires, 1998). 

Return period (years) Hs (m) Tp (s) Steepness (-) 

5 5,7 11,3 0,0285 

10 6,4 11,9 0,0289 

25 7,4 12,7 0,0292 

50 8,1 13,3 0,0292 

100 8,8 13,9 0,0292 

3.5 STORM GROUPS 

After the occurrence of a storm the beach needs time to recover to its original state after it has been 

partially eroded. This period of time is referred to as the beach recovery period. If the frequency of 

storms is high enough it may happen that another storm takes place during the beach recover 

period. This enhances the impact of the storm and the two events cannot be treated as individual 

                                                           
4 It should be noted that the relation between the significant wave height and peak period in 
Rodrigues et al. (2012)  shows a large scatter for wave heights  < 4,5m, but shows a good fit for 
waves > 5m. 
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events, as the first storm influences the impact of the second storm. If one or more storms occur in 

succession, within the beach recovery period, a storm group is born. The significance of storm 

groups is accentuated by the fact that two small storms, of relatively short return periods in short 

succession, can have a much larger effect than one large individual storm, with a high return period. 

For the Portuguese west coast the erosion due to a storm group with a return period of one year can 

cause the same amount of erosion as a single storm with a return period of nine years (Ferreira, 

2006). 

3.6 EXTREME WATER LEVELS 

Increased water levels associated with storms are roughly due to two meteorological factors: the 

increase in water levels due to low atmospheric pressure in the eye of a storm and the setup of 

water induced by wind blowing the water in the direction of the shore. Another important factor 

that determines the height of the storm surge is the size of the coastal shelf. The Ria Formosa has a 

relatively short coastal shelf, as can be seen in Figure 3-7, causing the storm surge level to be 

relatively low. 

Analysis of the joint occurrence of storm wave height and surge level (or residual water level) shows 

a positive correlation, shown in the left panel of Figure 3-10; higher wave heights are associated with 

higher water levels. Further analysis includes the North Atlantic Oscillation5 (NAO), shown in the 

center and right panels of Figure 3-10. Two observations are made: (1) higher wave heights are 

associated with a negative NAO index as well as higher surge levels and (2) for a positive NAO index 

wave height greater than 4 m do not occur and surge levels are similarly low (Plomaritis et al., 2015). 

 

A relationship between the storm surge and the significant wave height is determined by Rodrigues 

et al. (2012) with linear regression on wave, tide and storm data in the period from 1997 to 2007 for 

storms originating from the west and southwest, resulting in: 

                                                           
5 The North Atlantic Oscillation is a climatic phenomenon in the North Atlantic Ocean and describes 
the fluctuation between two semi –permanent pressure zones in the Atlantic Ocean: the Icelandic 
low and the Azores High. A positive index (NAO+) indicates a high pressure different between the 
two zones. Conversely a negative index (NAO-) indicates a relatively small pressure difference. 

 

Figure 3-10 Left panel: Joint occurrence of storm wave heights and residual means sea level. Centre and right panel: Joint 

probability distribution of storm wave heights and residual sea level during NAO > 1.5 and NAO < –1.5. Color scale indicates 

probability of occurrence (Plomaritis et al., 2015). 
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 0.111 0.175sS H     (4) 

In which, 

S = storm surge   (m)  

Hs  = significant wave height  (m) 

In Almeida et al. (2012) a similar analysis has been performed on the same dataset. This analysis, 

however, includes all directions, resulting in a similar relation between the surge and wave height: 

 0.1029 0.1544sS H     (5) 

Rodrigues et al. (2012) uses the relationship between surge levels and wave heights (equation (4)) to 

estimate return periods for surge levels by coupling them to the return periods found for wave 

heights in Pires (1998) (Table 3-1). In Table 3-3 both the relations found by Rodrigues et al. (2012) 

and Almeida et al. (2012) are used to determine surge levels for different return periods. The 

differences between the estimated surge levels are small and thus in agreement with each other. 

Table 3-3 Return periods for surge levels and significant wave height (Hs).(Pires, 1998) & 

 (Rodrigues et al., 2012) & (Almeida et al., 2012). 

Return Period (year) Hs (m) Surge (m) 

 
Pires Almeida et al. 2012 Rodrigues et al. 2012 

5 5.7 0.43 0.46 

10 6.4 0.50 0.54 

25 7.4 0.61 0.65 

50 8.1 0.68 0.72 

100 8.8 0.75 0.80 

The increase in water level due to the storm surge is not very high when compared to the magnitude 

of the tide in the area. The tide at Praia de Faro is semi-diurnal and the average range (with respect 

to mean sea level) for neap and spring tide is 1.3 and 2.8 meters respectively. However, ranges of 

3.5 meters can be reached. When comparing the water levels of the tide to the surge, the tide is the 

dominant factor. This means that the storm surge is only important if it occurs jointly with a high 

tidal elevation. 

An analysis of extreme water levels, including tide and surge levels, has been performed in Carrasco 

et al. (2012). A data set from the Huelva tide gauge for the period 1996 – 2011 was used (60 km east 

of Praia de Faro) to create a probability density function of the extreme water levels, shown in 

Figure 3-11. Water levels for several return periods have been determined and are shown in Table 

3-4. 
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Table 3-4 Return periods for extreme water levels based on the Huelva tide  

gauge (Carrasco et al., 2012). 

Return period (years) Water level (m above MSL) 

5 2.30 

10 2.39 

25 2.40 

50 2.43 

100 2.48 

 

Due to the absence of any large rivers and negligible precipitation in the area the total water level 

can be assumed to consist solely of the tidal elevation and the storm surge. Using the storm surge 

levels from Table 3-3 and the water levels from Table 3-4 a rough estimate for the extreme tidal 

elevation can be obtained, shown in Table 3-5. The tidal elevation for increasing return periods 

shows a decreasing trend. This may be due to the fit of the regression line on the data; a slight tilt in 

the fit would give a different trend.  

Table 3-5 Estimation of the extreme tidal elevation. 

Return 
Period  
(year) 

Hs (m) Surge, RSL (m) 
WL (m above 

MSL) 
Maximum Tidal level  

(m above MSL) 

 
Pires Almeida Rodrigues Carrasco 

Carrasco – 
Almeida 

Carrasco – 
Rodrigues 

5 5.7 0.43 0.46 2.30 1.87 1.84 

10 6.4 0.50 0.54 2.39 1.89 1.85 

25 7.4 0.61 0.65 2.40 1.79 1.75 

50 8.1 0.68 0.72 2.43 1.75 1.71 

100 8.8 0.75 0.80 2.48 1.73 1.68 

 

 

 

Figure 3-11 Lognormal distribution fitted to annual maximum water levels from the Huelva tide gauge (Carrasco et al., 2012). 
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3.7 MORPHODYNAMICS 

Coastal morphodynamics describes the interaction between the coastal system and the environment. 

It concerns the external hydrodynamic forcing (waves, currents and tides) drive the processes that 

cause sediment transport. Sediment transport causes morphological change, which in its turn 

changes the processes that drive the sediment transport. This feedback loop is the main cause for 

complexity in coastal evolution (Masselink & Hughes, 2003). 

Considering the morphodynamics of a coastal system, time scale is important. When considering the 

long term, the equilibrium state is governed by the prevailing average environmental conditions (e.g. 

average wave height and direction, tidal currents and sea level rise). Short term events such as 

storms generally do not dominate the equilibrium of a coastline, but can have large local effects such 

as overwash or the breaching of a barrier. On long term scales many storms do have influence on 

the shaping and reshaping of barrier islands. This research concerns the effects of storms and 

therefore the long term morphodynamics will only be described concisely. 

The main sources of sand for the area are from the continental shelf and cliff erosion (Pilkey et al., 

1989). The net long-shore transport in the area is typically from west to east and ranges from 10,000 

to 40,000 m3/year according to Almeida et al., (2011b), however a recent report shows that the 

long-shore transport should be in the order of 100,000 m3/year (GTL, 2014). Considering the Ancão 

peninsula, the urbanized dunes tend to erode at the central and western parts, where the non-

urbanized dunes tend to accrete at the eastern part (Vousdoukas et al., 2011). The Ancão inlet 

channel is migrating eastward, with the direction of the littoral drift, at increasing rates (Vila-Concejo 

et al., 2002).  

The morphologic response of barriers during storms is described by four regimes, defined by 

(Sallenger, 2000), and as shown in Figure 3-12. In the swash regime wave runup is restricted to the 

beach. Sand is transported offshore and is stored in offshore bars. This sand is naturally returned to 

the beach during periods of calmer weather following the storm. In the collision regime part of the 

dune is eroded and transported offshore. This erosion is considered as a semi-permanent change to 

the dune. During an overwash event the wave runup exceeds the crest of the dune and sand is 

transported landwards, contributing to the transgression of the barrier. When the water level 

reaches a level higher than the crest of the dune the barrier may be inundated, transporting large 

amounts of sediment landwards (Sallenger, 2000). 

 

 

Figure 3-12 Impact scales on barrier according to Sallenger (2000) (source: USGS). 
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The main coastal hazard for the Ancão Peninsula is that of overwash and dune erosion in the 

collision regime. In  Rodrigues et al. (2012) a vulnerability map of Praia de Faro is presented 

concerning overwash events for storms with different return periods, shown in Figure 3-13. 

Especially the areas where urbanization has destroyed the dunes and thereby lowered the elevation 

are susceptible to overwash events. This will be elaborated further in the next section. 

 

3.8 COASTAL VULNERABILITY 

Continuing on the previous section the main hazards for Praia de Faro are those of erosion in the 

collision regime and overwash. The frequency of these events is quite high, with the expectation of 

approximately one overwash event per year (Almeida et al., 2012). 

In Almeida et al. (2012) two methods have been used to establish thresholds for storms that cause 

damages due to overwash and coastline retreat. Thresholds have been identified using (1) historic 

records of storm impact on the coastline and the associated hydrodynamic conditions and (2) by 

performing calculations to determine extreme runup for the local bathymetry. With respect to 

thresholds determined by the first method the events can be divided into several groups: (1) single 

storms from the southwest, (2) single storms from the southeast, (3) storm groups from the 

southwest, and (4) storm groups from the southeast. The thresholds found for each category are 

shown in Table 3-6, as well as their return periods. A large finding is the difference in magnitude of 

 

Figure 3-13 Representation of collision and overwash regimes vulnerability for  5, 10 and 25 year return period storms. The 

seaward line represents collision potential and the landward line the overwash potential. Top: eastern part of the Ancão peninsula. 

Centre: middle part of Praia de Faro. Bottom: western part of Praia de Faro. Vulnerability is shown in red, orange and yellow: 

respectively 5, 10 and 25 year return periods (Rodrigues et al., 2012). 
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the storms from the different origins that impact the coastline. A storm from the southeast has to be 

significantly larger for a similar impact of a smaller storm from the southwest. This is due to the 

cuspate shape of the Ria Formosa. Waves from the southeast lose energy due to diffraction around 

the tip of the Ria Formosa and attack the beach at an oblique angle, causing lower runup.  

Table 3-6 Thresholds for storms causing damage at Praia de Faro (Almeida et al., 2012). 

Description 
Threshold Return period 

(years) Hs Duration (days) # of storms 

SW ± 4.7 2 days - 3.1 

SE ± 6 2 days - 40 

SW group > 3.5 < 2 days 2 1.7 

SE group > 3.9 1 days 3 40 

Overwash calculated according to the scale of Sallenger (2000) with use of the equation proposed in 

Holman (1986) for R2 (the runup level exceeded 2% of the time) give correct predictions for 91% of 

the historic cases.  For five cross-shore sections (Figure A-1) these calculations have been performed 

of which the determined thresholds are displayed in Figure A-2 . These calculations show the spatial 

variability that can also be seen in Figure 3-13, of the previous section. The most vulnerable areas 

are those where the dune has been destroyed by the settlement and the first barrier after the beach 

face are the local houses (Almeida et al., 2012). 

Having larger consequences but a lower probability, another danger is the breaching of the barrier 

(or the creation of an inlet). The Ria Formosa has seen several natural inlet formations over the past 

century. However, for Praia de Faro this is not considered as an imminent threat at this moment. 

The most vulnerable part of Praia de Faro is the parking lot at the entrance road of Praia de Faro. 

The reason for this is threefold: (1) the elevation of the sea wall is one of the lowest points on the 

barrier, (2) the berm of the beach at this point is very thin because the parking lot is built more 

seaward than most other structures and (3) under some storm conditions the beach is not scarped, 

instead a ramp is formed enhancing runup and overwash. An additional danger is that the access 

road situated at the parking lot is also the only road off the barrier. 
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4 DEVELOPMENT EARLY WARNING SYSTEM 

This chapter describes the development of the EWS. First the general concept of the model will be 

explained and its different elements. This is followed by the setup and development of each element.  

4.1 MODEL TRAIN 

A model train is a set of models in which information is passed from one model to another. The 

different models describe different aspects and operate at different information levels. A model 

train is often used for coastal hazard modeling as described in section 2.1.2.  

For the case study site five different models are used to propagate a storm from the largest scale to 

the smallest scale at three different spatial scales (Figure 4-1 & Figure 4-2). These models are the 

basis of the Early Warning System of which the last part is subject to this research. The largest scale 

is the Gulf of Cadiz, seen in the top left panel of Figure 4-2. For this area two models have been 

made, a Delft3D6 model that calculates water levels, and a SWAN7 model that calculates wave 

propagation. The large scale models generate the boundary conditions for the models on the 

intermediate scales of the Ria Formosa and the Ancão Peninsula (the right panel of Figure 4-2). The 

water levels and wave spectra that are derived from the intermediate scale can be used to force an 

XBeach model for the smallest scale: Praia de Faro, seen in the bottom left panel. The XBeach model 

uses both the water level and the wave spectra to calculate morphological changes to the coastline.  

 

                                                           
6 http://oss.deltares.nl/web/delft3d 
7 http://swanmodel.sourceforge.net/ 

 

Figure 4-1 Scheme of the model train for Praia de Faro. 
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4.2 GENERAL MODEL APPROACH 

The general concept has been touched upon in previous chapters. In essence a statistical model will 

be used to act as a surrogate for a process based coastal morphodynamic model. The reason for this 

is that the process based model has long run times and requires expert knowledge to set up and 

interpret, where the statistical model works nearly instantaneous and requires much less expertise 

to use.  

More specifically a BN will be fed by and later substitute an XBeach model; both are described in 

chapters 2.1.3 and 2.1.4. The XBeach model is able to translate offshore marine boundary conditions 

(water levels, wave heights, wave periods, etc.) to onshore hydrodynamic conditions and 

morphological changes on the coastline (the local hazard intensities). As output of the model the 

near-shore and onshore hazard intensities can be requested. The XBeach model can be forced with a 

range of storms, described by different offshore boundary conditions, resulting in a range of onshore 

local hazard intensities. These boundary conditions can be derived from outer models at the -20 

meter depth contour line described in the previous section. When multiple runs are done a dataset 

of cases can be created of the in- and output combinations of each individual run. One case then 

holds the information of one run. This dataset in which each case describes an individual storm can 

then be used to set up a BN. 

The BN consists of nodes and arcs as explained previously. The nodes hold information about the 

individual variables of the dataset and the arcs indicate dependencies between the individual 

 

Figure 4-2 Locations of the different scale models. Top left: Gulf of Cadiz, Delft3D & SWAN. Top right: Ria Formosa, Delft3d & 

SWAN. Bottom left: Praia de Faro, XBeach. 
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variables. When the nodes and arcs are set up the network can be trained with the dataset, giving 

the network knowledge. 

As described in chapter 2.3, there are two large issues with this concept: (1) XBeach has long run 

times making it hard to create a large dataset and (2) a BN generally needs a lot of data to be well 

trained and increasingly so for higher complexity (more nodes and interrelations). Another issue (3) 

is that there is no large existing storm dataset that can be used to force XBeach and thereby create a 

dataset to train the BN. This dataset will thus have to be created. These three issues will be 

addressed in this chapter.  

The first issue is tackled by reducing the number of grid cells of the XBeach model to a minimum and 

thereby reducing the necessary runtime of an individual storm. The second issue is addressed by 

reducing the complexity. The solution for this is found in the analysis of the coastal system, where 

many of the boundary conditions that describe a storm show significant correlation. The correlation 

is found between the significant wave height, peak period, storm duration and storm surge level. 

There is also correlation with the direction of the storm but in this research only storms from the 

southwest are considered.8 The correlation between the variables makes it possible to group all of 

them into two nodes in the BN: the significant wave height and the maximum water level. The only 

independent variables that are left are now the water level variation due to the tide and the 

significant wave height. The last issue is solved by creating a synthetic dataset based on a smaller 

existing dataset of historical storms using copulas. The steps that have to be taken in the 

development are shown in Figure 4-3. 

 

                                                           
8 Storms from the southeast are smaller in size due to the limited fetch and have already been 
diffracted around the tip of the Ria Formosa before they reach the case study site making them 
much less destructive 

 

Figure 4-3 General model approach. 
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4.2.1 MODELING OF A STORM 

Over the duration of a storm there is always a variance in the significant wave height, period and 

water levels. The actual course of a storm is unknown and therefore an assumption needs to be 

made. Generally speaking, a storm increases and decreases in strength over time. To mimic this 

behavior the course of a storm is modeled in a triangular way; the wave height and surge increase at 

a constant rate until the peak is reached and then decreases again at a constant rate. This is 

illustrated in the top panel of Figure 4-4. In this the significant wave height and surge levels are 

assumed to follow the same pattern without a lag. The peak period is linked to the wave height by 

assuming a constant steepness over the course of the storm. 

The water level during a storm is in Praia de Faro for a large part determined by the tide. Because it 

cannot be predicted which tidal signal will occur during any given storm in the future several signals 

will be considered. The tide is modeled as a sinus with constant amplitude and a semi-diurnal period 

(M2, 12 hours and 25 minutes). Different signals are created by using three different amplitudes, a 

low, medium and high amplitude of 1, 1.25 and 1.5 meters. As the phase of the tide is also unknown 

each storm will be run with a tide starting in a random phase (bottom panel of Figure 4-4). The total 

water level is then made up out of the surge level and the tidal elevation. Because of this the highest 

water level during the storm does not necessarily occur at the moment the surge reaches its highest 

level as could also happen during a real storm. 

 

  

 

Figure 4-4 Modeling of a storm. Top panel: wave height and surge level. Bottom panel: tidal signal. 
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4.3 SYNTHETIC DATASET DEVELOPMENT 

This chapter will cover the creation of the synthetic storm dataset that is needed to train the BN. The 

creation of the synthetic storms follows a statistical approach using copulas to generate a dataset 

that is representative of reality. Another, easier, method of obtaining a synthetic storm dataset is by 

using linear regression lines of the available datasets. This method excludes the natural variation 

that is seen in the data and is therefore not preferred. 

Actual data of storms that have occurred in the region are used to create copulas between individual 

variables. These copulas bear the pattern of the actual data and can be used to sample new data 

points from. These new data points form the set of synthetic storms that will be used to train the BN. 

There are three main steps that have to be taken to produce the synthetic dataset that will be 

treated in the following sections: 

1. Fit marginal distributions to the measured data points. 

2. Fit different copulas to each pair of variables, using the marginal distributions. 

3. Sample from the copula to obtain the synthetic data. 

The dataset will be created for the range of storms with a significant wave height of at least 3 meters 

to a maximum of 8.8 meters. Based on expert knowledge storms with a lower than 3 meter 

significant wave height have no significant impact. Storms with a significant wave height of 8.8 

meters have a return period of once every 100 years, which is the locally the preferred safety level.  

4.3.1 AVAILABLE DATA 

There are two datasets available for the region concerning storm events, to be named the surge 

dataset and the duration dataset. Both datasets have been supplied by the University of the Algarve. 

The first dataset, the “surge dataset”, covers a period of ten years and includes wave and surge data 

from June 1997 until June 2007. The wave data have been recorded by the Instituto Hidrográfico de 

Portugal with a directional wave-rider buoy, placed offshore at 93 meters depth near Praia de Faro. 

The wave buoy records 20 min every 3 hours, except during storms when it records every half an 

hour. Storms have been selected by peak over threshold analysis with a threshold of 3 meters. Only 

storms originating from the western quadrant (180°-270°) have been included in the dataset. Storm 

surge levels have been obtained from a nearby Spanish network of tide gauges, some 80km east of 

the study area. (Rodrigues et al., 2012) 

The second dataset, the “duration dataset”, is based on the Faro wave buoy (see Figure B-8) and 

consists of a 20 year wave record from January 1993 until December 2013. Waves are recorded 

every 3 hours for 20 minutes to give a significant wave height. A peak over threshold analysis with a 

threshold of 2.5 meters identifies individual storms. Storms separated with less than 24 hours are 

grouped together in the dataset and the total duration of individual storms has also been included.  

Both datasets contain information about the dependency between the significant wave height and 

the peak period. The “duration dataset” dataset covers a longer time period, including the period of 

the “surge dataset”, and will therefore be used to evaluate the dependency between the significant 
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wave height and the peak period. The “duration dataset” is further used for the relation between 

the wave height and the storm duration. The “surge dataset” is only used to determine the relation 

between the wave height and the storm surge levels. The raw data points of the surge and duration 

dataset are shown in Figure 4-5 and Figure 4-6. The three plots show a significant correlation 

between each variable, but also show a large scatter. It is important that these characteristics are 

also exhibited by the synthetic dataset.  

 

 

 

 

  

 

Figure 4-5 Surge dataset: storm surge and significant wave heights for individual storm events. 

 

Figure 4-6 Duration dataset: storm duration and peak period for individual storms plotted against the significant wave height. 
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4.3.2 MARGINAL DISTRIBUTION FITTING 

The first step in obtaining a synthetic dataset that mimics the properties of the measured dataset is 

to look at the individual variables separately. The marginal distribution is the probability distribution 

that describes a single variable. In this case there are two sets of random variables: the two datasets 

described in the previous section: surge & duration. The individual variables in the sets are the 

significant wave height, the peak period, the storm duration and the surge level. 

For each variable several distributions have been fit and ranked according to the Akaike information 

criterion (AIC).9 The top ranked distributions are shown in Table 4-1, for an overview of all fitted 

distribution types and their ranking is referred to appendix C.1. The best fit for the surge is a 

generalized extreme value distribution. This, however, allows the variable to reach values smaller 

than zero, indicating that a negative surge is possible which does not make sense. The second 

ranked distribution for the surge is a Weibull distribution, which does not allow the variable to reach 

values below zero, and is therefore the preferred distribution. 

Table 4-1 Best marginal distribution fits according to the Akaike information criterion. 

Variable Best fit distribution Used distribution 

Hs (duration) Generalized Pareto Generalized Pareto 

Tp (duration) Lognormal Lognormal 

Duration Exponential Exponential 

Hs (surge) Generalized Pareto Generalized Pareto 

Surge Generalized extreme value Weibull 

To visualize the fit of the distributions the empirical cumulative distribution function (ECDF) and the 

parametric cumulative distribution function (CDF) can be compared. The parametric cumulative 

distribution function uses the formulation of a certain distribution type (e.g. Generalized Pareto) and 

shows the probability of a certain value of the random variable. The ECDF estimates the underlying 

CDF of the points in the dataset. It makes steps of 1/n in which n is the number of data points. In 

Figure 4-7 the ECDF and CDF for the significant wave height of the duration dataset is shown. For the 

marginal distribution fits of each of the variables and their respective parameters is referred to 

appendix C.1. These plots give an extra, visual, check on top of the AIC, concluded is that all 

distributions are well estimated by the chosen parametric distributions and that no anomalies are 

seen. 

                                                           
9 There are more criteria available to rank the fit of different probability distributions on a dataset. 
The choice to use the AIC is based on its use in Corbella & Stretch (2013) that follows a similar 
approach. 
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4.3.3 COPULA FITTING 

This chapter will explain how the different copulas are fit to the variable pairs. Three variable pairs 

have been identified for which a copula needs to be fit: 

1. Significant wave height and the storm duration (Hs – Duration) 

2. Significant wave height and the storm surge level (Hs – Surge) 

3. Significant wave height and the peak period (Hs – Tp) 

For the 1st and the 2rd pair four copulas are tried: Gaussian, Clayton, Frank and Gumbel. An 

additional copula has been fit for the 3rd pair, the skew-t copula, as the dependency displays certain 

skewness. 

The first step in fitting the copulas is to transform the marginal distributions of the variables to 

uniform distributions by using their respective CDFs, as explained in section 2.1.5. The 

transformation is supposed to return uniformly distributed variables, which can be visually checked 

with a histogram. Figure 4-8 shows a scatterplot and histogram of the transformed variables 

duration D  and significant wave height sH . The histograms show that the transformed variables 

are not fully uniformly distributed, but uniform enough. This is explained by the fact that a limited 

amount of data points are available (in the order of 100 points). If more data points are available a 

better fit for the parametric distribution could be reached and thereby a more uniform distribution 

for the transformed variables. The scatterplot indicates the dependence structure of the random 

variables, isolated from their marginal behavior. This is the behavior that the copula will try to mimic. 

For plots of the other variables is referred to appendix C.2. 

 

Figure 4-7 ECDF and CDF for the significant wave height of the duration data set. 
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The second step in fitting the copulas is determining their parameters. The parameters are based on 

the rank correlation, Spearman’s rho, between the variables is determined by: 
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For which i i id x y  and x  x and y  are the ranked variables (wave height and duration) and n  

the size of the sample. 

The association between Spearman’s rho and the copula parameters has been determined using the 

Matlab statistics toolbox for each variable pair. Using the same Matlab toolbox samples have been 

created for each copula. In Figure 4-9 the same scatter plot as in Figure 4-8 is shown for the variable 

pair D  and sH , now including 10,000 samples of the four copulas. For the copula fits of the other 

variable pairs is referred to 8C.2. Each copula shows a slightly different behavior in trying to mimic 

the original dataset. For example, consider the Clayton and Gumbel copulas, seen in the right panels 

in Figure 4-9. These copulas show opposing tail dependencies; the Clayton copula has a 

concentration of points in the bottom left corner that fans out towards the top right where the 

Gumbel copula shows the opposite.  

 

Figure 4-8 Scatterplot of the uniformly distributed variables of Hs and Duration. 
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For the variable pair significant wave height sH  and peak period pT  an extra copula is fit: the skew-

t copula, for which the fit is shown in Figure 4-10. The variable pair s pH T  shows skewness in the 

scatterplot leaving the bottom right corner empty. This occurs due to the physical process of wave 

breaking; when the wavelength becomes too short with respect to the wave height a wave breaks. 

As the wave length and period are related this is reflected in the dataset. The copula describing the 

dataset therefore needs to mimic this behavior. 

 

Figure 4-9 Different copulas fit to the Hs and Duration dataset. The red dots indicate the original dataset and the yellow dots the 

data points generated with the copula. 
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Other than looking at the scatter plot of Figure 4-10, the goodness of fit is judged with two methods: 

one numerically and one visually as done in Jäger & Morales (2014).  

The numerical method is based on the Cramer von Mises (CvM) statistical test and the results of are 

summarized in Table 4-2. The test is relative, meaning that the scores can only be compared within 

the variable pair. A lower test score indicates a better performance of the copula fit. 

Table 4-2 Cramor von Mises test results for each copula and variable pair. 

Copula Hs - Duration Hs – Surge Hs – Tp 

Clayton 1.1137 1.6256 1.6256 

Frank 1.4905 1.2669 1.2669 

Gaussian 1.0852 1.1930 1.1930 

Gumbel 1.3927 0.9756 0.9756 

Skew-t - - 1.0083 

The visual test compares the copula fits to the actual data in the quadrants of the scatterplots. For 

this the intervals [0,0.25] [0.75,1] , 2[0.75,1] , 2[0.75,1] and [0.75,1] [0,0.25] are considered 

(top right, top left, bottom right and bottom left, respectively). At the intervals is looked at the 

conditional probability for, in this case, |( )
sp HP T . So for the top right quadrant the markers show 

the probability that pT q  given that sH q , where q rangers from 0.75 to 1. The result is seen in 

Figure 4-11. The plots can be interpreted as following: if the conditional CDF of the copula is above 

the original data points (▽ ) it is overestimating and if it is underneath it is underestimating (in the 

respective quadrant). 

 

Figure 4-10 Skew-t copula fit for the wave height and peak period. 
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Based on the CvM and the visual test the Gaussian copula is chosen for the sH D  variable pair 

and the Gumbel copula for the sH S variable pair (Table 4-2, Figure C-10 and Figure C-11 in 

appendix C.2.). For the 
s pH T variable pair the Gumbel copula shows a slightly better performance 

than the other copulas according to the CvM test.10 However, when looking at the Gumbel fit (+) in 

the quadrants in Figure 4-11, it is not performing so well when comparing it to the skew-t copula. 

Gumbel underestimates in the top left panel, and highly overestimates in the top and bottom right 

panels. The skew-t copula may overall not have a better fit than the Gumbel copula, but performs 

better in the extremes and better models the physical process of wave breaking. For these reasons 

the skew-t copula is chosen to model the 
s pH T  variable pair. The parameters for the copulas are: 

1. sH D : Gumbel,  0.8814   

2. sH S :  Gaussian,  1.4621    

3. 
s pH T :  Skew-t,   0.71  , 5v  , 1 0.9  , 2 0   

 

                                                           
10 Prezado leitor, Muito obrigado por ler isso! Ganhou uma cerveja! Assino, o autor. 

 

Figure 4-11 Comparison of conditional probabilities for |
p s

T H  on the intervals[0,0.25] [0.75,1] , 
2

[0.75,1] ,
2

[0.75,1] and 

[0.75,1] [0,0.25] (top left, top right, bottom left and bottom right respectfully). 
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4.3.4 SAMPLING FROM THE COPULAS 

One million points are generated with each copula to generate a large synthetic dataset. These 

points are uniformly distributed on the interval [0,1] and need to be transformed to usable values. 

This is done with the marginal distribution functions of the variables; by applying the inverse of the 

CDF to the variable (see section 2.1.5). 

The result is shown in Figure 4-12, the blue dots are the original dataset and the orange dots the one 

million synthetic events. Since the BN needs to be trained evenly over the whole range of possible 

storms, a uniformly distributed set of storms is chosen on the interval [3 ,8.8 ]m m  significant wave 

height from the one million synthetic events to be run in XBeach: the dark orange dots in Figure 4-12. 

 

 

 

  

 

Figure 4-12 Synthetic dataset for the variable pairs: D
s

H ,
s

H S  and
s p

H T . 
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4.4 XBEACH  

The local storm conditions and morphological changes are determined with the process based 

model XBeach (Deltares, 2015). The setup of the model, the calibration efforts and the efforts done 

to speed up the model are discussed in detail in appendix B. In this section an overview will be given 

of the most important aspects of the XBeach modeling.  

4.4.1 TOPOGRAPHY AND BATHYMETRY 

Topographic and bathymetric information has been provided by the University of The Algarve. 

Information from the summer of 2009 is available for a stretch of 8 kilometers on the Ancão 

peninsula. It consists of bathymetric cross sections of the wet areas and a LIDAR of the dry area. The 

LIDAR gives an accuracy of 2 by 2 meters. 

An overview of the available topography and bathymetry is given in Figure 4-13. The area of interest 

has a total width of 1 kilometer and is centered on the entrance road and parking lot. The red box 

indicates the research area. Another important location that lies within the red box is a former video 

monitoring station that has been used to collect data during a number of storms. This dataset will be 

used for calibrating the model. 

 

 

Figure 4-13 Available LIDAR and bathymetric data and location of research area. 
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4.4.2  GRID 

The XBeach model setup is a balance between several sometimes contradicting requirements. The 

most important requirements that have to be dealt with are listed here. 

 The depth at the offshore boundary has to be sufficiently large for the assumption of 

intermediate depth for long wave propagation to hold. 

 The width of the domain has to be determined so as to minimize the effect of the shadow 

zone.  

 The grid resolution at the shoreline has to be fine enough to model the beach face and dune 

erosion and overwash.  

 The total number of grid cells should be kept at a minimum to reduce the runtime.  

 In case of varying grid cell sizes the transition between two cells has to be smooth enough to 

prevent numerical instabilities.  

First the grid is set up for which the grid cell sizes have to be small enough to give detailed 

information about dune and beach face erosion as well as overwash events. However, the total 

number of grid cells needs to be kept at a minimum to reduce the total runtime of a model.  

To do this the grid cells are varied in the alongshore and cross shore directions to have the highest 

level of detail only in the area of interest. The model is centered on the area of interest and 

therefore the grid cells are finest in the center of the grid. In the cross shore direction the grid cells 

vary from 0.65 at the beach face to 30 meters offshore. Alongshore they are varied from 5 meters in 

the center, around the parking lot, to 20 meters at the edges. The total number of grid cells is 154 x 

229 = 35266. 

 

 

Figure 4-14 XBeach grid setup:. (max dx = 30m, min dx = 6.5m, max dy = 20m, min dy = 5m. The y direction is alongshore and the x 

direction is cross-shore pointing towards the shoreline. 

 

 



Predicting Coastal Hazards with a Bayesian Network 

Chapter: Development Early Warning System  54 

Each grid point is filled with topographic and bathymetric information. The grid has been extended 

seawards to a depth of 20 meters, to fulfill the deep water assumption. For this it reaches 2 km in 

the cross shore direction. Alongshore the model spans 1.3 km and is centered on the parking lot and 

includes the video monitoring station: the most vulnerable part of Praia de Faro. The row of dunes 

and a part of the land behind it is included to monitor the onshore effects of the storms.  

The waves considered for this model enter the domain at an angle creating the shadow zone 

indicated in Figure 4-15Figure 4-14. This zone contains less wave energy because waves can only 

enter the domain at the offshore boundary. The results at the shoreline are therefore distorted and 

have to be neglected from the output.  

 

4.4.3  HYDRODYNAMICS 

There are different options to supply XBeach with wave boundary conditions, ranging from 

stationary conditions to time varying two-dimensional wave spectra. The wave conditions supplied 

are deep-water waves and have to be supplied at the offshore boundary. Since there is no available 

spectral analysis for the sea state in the south of Portugal a JONSWAP spectrum is assumed. 

A wave spectrum is a statistical description of the sea state as a density spectrum of the frequencies 

of the waves (Figure 4-16). The JONSWAP spectrum is a type of spectrum that assumes that the sea 

state is not yet fully in equilibrium with the wind. This assumption means that the fetch and duration 

that the wind blows is limited, which is often true. The JONSWAP spectrum has one peak; this means 

that a mixed sea state (more than one peak) cannot be properly represented and is thus a limitation. 

A mixed sea state consists of sea waves and swell, both of which may have significantly different 

 

Figure 4-15 XBeach model setup showing the most important locations, the wave direction and shadow zone. 
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periods and directions. In this setup the boundary conditions have been supplied as hourly one-

dimensional (JONSWAP) wave spectra. (Holthuijsen, 2007) 

 

Water level boundary conditions in XBeach, similar to the waves, can also be defined stationary or 

varying in time. Water boundary conditions can be used to impose a tide and surge on the model. 

For the modeling of storms at Praia de Faro it is important to include these, as there is a significant 

variation in the water level, especially due to the tide and less due to storm surge. The tidal level and 

the storm surge are added together to give one water level for each time step as described in the 

beginning of this chapter. 

4.4.4 CALIBRATION EFFORTS 

Calibration of the XBeach model is necessary to ensure the results obtained are reliable and of high 

enough accuracy. The required outputs of the model are the coastline erosion and the occurrence 

and magnitude of overwash events. These physical processes occur around the beach and dune face 

and the calibration of the model is therefore focused on this area. This section does not treat the 

steps taken in the calibration but rather focusses on the issues faced during the calibration. The 

calibration itself is elaborated in appendix B.4. 

The calibration is performed using a dataset that covers a number of high energy events in the 

period December 2009 until January 2010. During this period wave and tidal data have been 

collected by offshore measuring stations and topographic data have been collected for a small area 

at the beach using a video monitoring station. 

The area over which topographic information has been collected is very small compared to the 

computational grid described previously (±100 m wide). Furthermore the area only covers the dry 

part of the beach. This limits the calibration to a small area within the computational grid and also to 

the upper part of the cross-shore profile. This makes calibration difficult for two reasons: (1) the 

model cannot be run on the measured initial profiles as they are only available for a very small 

region and (2) there is no information on the ‘wet’ cross-shore profile so that the performance of the 

 

Figure 4-16 Shape of the JONSWAP spectrum. The energy is given in the vertical axis and the frequency of the wave on the 

horizontal axis. (Holthuijsen, 2007) 
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model for this area cannot be checked. The dry profiles do, however, give good insight in the height 

of the run-up due to storms. 

The hydrodynamics conditions are well described but lack any information about the shape of the 

wave spectrum. An assumption therefore has to be made about the shape of the spectrum which is 

an issue as the response of the beach is sensitive to the shape. For example: a very narrow spectrum 

enhances the groupiness of the waves and thereby the forcing of the infragravity waves. A larger 

forcing of infragravity waves will result in higher runup values. A spectrum with two peaks means 

that there is a mixed sea state containing swell and wind waves. Swell waves have higher periods 

and therefore carry more energy resulting in a higher impact. These things are unknown and 

therefore an issue for the calibration.  

Due to these reasons it was not possible to fully calibrate the XBeach model. However, the 

calibration settings should be in the correct order of magnitude. 

4.4.5 RUNTIME REDUCTION 

The XBeach model has to be run for all storms of the synthetic dataset. Currently this means that the 

model has to be run 300 times (100 storms were picked from the synthetic data set that have to be 

run for the three tidal amplitudes), making it desirable to reduce the runtime. Two options are used 

to create a reduction in the runtime: (1) use the internal morphological acceleration factor and (2) 

reduce the number of grid cells of the model setup.  

The morphological acceleration factor in XBeach can be triggered with the keyword morfac.  This 

option decouples the hydrodynamical and morphological time in the model. Setting morfac = 10 

results in 10 times more erosion and sedimentation for a given time step. To obtain the same results 

as without the morfac option the model run time is shorten by a factor ten. (Roelvink et al., 2010) 

The grid size of the original model has been reduced to reduce the run time of XBeach. The grid size 

has been approximately divided by 2, 4 and 8 in the along shore direction (Table 4-3 & Figure 4-17). 

The cross shore direction has not been reduced as a reduction in the cell sizes here will result in 

losing the necessary detail to model the beach and dune erosion, or lose the shape of the profiles 

completely.  

Table 4-3 Number of grid cells of the courser grids. 

Model X cells Y cells 

Original 229 154 

/2 229 77 

/4 229 39 

/8 229 20 
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The coarser models are tested with three storms events (B, D and E as described in appendix 

B.48B.4). The grid with 1/8 times the grid cells of the original immediately has been discarded as the 

large differences between the cross shore and alongshore cell sizes resulted in numerical instabilities 

in XBeach causing runs to crash. 

The results for the final sedimentation and erosion of the original model have been compared to the 

final results of the courser models. The comparison has been done using a Brier skill score between 0 

and 1, for which 1 is the best score (Table 4-4) (van Rijn et al., 2003). 
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  (7) 

In which ,b cz =computed bed level of the courser grid, ,obz = is the computed bed level of the original 

grid, ,ibz is the initial bed level and ...  indicates averaging over the considered grid points. Only the 

morphological active zone has been used for the comparison to prevent bias in the skill score due to 

the fact that large parts of the cross sections (at large depth or behind the dunes) do not change at 

all. Since the brier skill score results are excellent the most course grid is chosen as the final grid. 

 

 

Figure 4-17 Courser grids. Top left: original. Top right: original/2. Bottom left: original/4. Bottom right: original/8. 
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Table 4-4 Brier skill scores for the courser grids, for events B, D and E. 

Model Event Brier skill score (0 to 1, 1 is best) 

2 B 0.9715 

2 D 0.9811 

2 E 0.9696 

4 B 0.9599 

4 D 0.9726 

4 E 0.9712 

4.5 BAYESIAN NETWORK DEVELOPMENT 

The BN is a computational tool to describe a system in a probabilistic way. The system consists of 

variables and dependencies. The relation between variables in a system comes from prior 

knowledge about the system. In this case the system has to describe the effect of a storm on the 

coastline of Praia de Faro. The general configuration of the system is therefore relatively 

straightforward and shown in Figure 4-18. 

The intensity of coastal hazards at a certain stretch of coastline is determined by the intensity of the 

storm and the local characteristics of the coastline. A storm is described by offshore boundary 

conditions, as treated in the previous section. The local hazards have been identified as overwash 

and coastal erosion. Where overwash causes damage due to salt water flooding houses and streets 

and coastal erosion may undermine the foundation of the local structures. This study focusses on 

the link from offshore storm conditions to onshore hazard intensities and does not incorporate the 

link to damages. This link has been research before and can be found in van Verseveld et al. (2015). 
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Setting up a BN roughly consists of two steps: (1) setting up the structure by identifying the variables 

that need to be included in the network and the dependencies between the variables and (2) 

training the network with cases (a dataset). 

4.5.1 STRUCTURE OF THE BAYESIAN NETWORK 

As explained in previous sections, the structure of the BN consists of nodes and arcs. The nodes 

contain the individual variables and the arcs describe the dependencies. Each node is subdivided 

into bins that indicate the state of the variable and may be discrete or continuous and should cover 

the full range of the dataset.  

The hazard intensities are grouped into two variables: the maximum offshore wave height and water 

level that occur during the peak of the storm. The coastal hazards are divided into coastline retreat 

(changed to coastal buffer in the next section) and overwash, where the overwash is defined both as 

a water depth and flow velocity. The overwash depth is defined as the water depth between the 

current bathymetry and water level. The coastline retreat and overwash depth are measured in 

meters and the overwash velocity in meters per second. The locations are grouped into one node, 

where the different areas will be included as discrete bins. The maximum wave height and maximum 

 

Figure 4-18 Relation between offshore boundary conditions, local hazard intensities and the case study site characteristics. 
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water level during a storm have been identified as the storm boundary conditions. The water level 

includes the tidal level and the storm surge and the wave height includes the other storm 

parameters (duration and peak period) through the copulas. One may argue that another arc is 

needed from the wave height to the maximum water level since the surge is included in both 

variables and they are therefore no longer independent. This is true, however, there is no real gain 

from adding this node since both variables are conditioned-on when using the network. 

Furthermore, the boundary conditions are defined offshore, meaning that the water depth does not 

influence the maximum wave height. 

 

4.5.2 CREATING CASES FOR THE BAYESIAN NETWORK 

The in- and output of the storm run in XBeach are used to generate the cases that are needed to 

train the BN. Information is needed to satisfy all the individual nodes: 

Input: 

 Locations at Praia de Faro. 

 Maximum water level 

 Maximum significant wave height 

Output: 

 Coastline retreat 

 Maximum overwash depth  

 Maximum overwash velocity 

 

Figure 4-19 BN structure, showing the variables and dependencies in nodes and arcs. 
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The stretch of coastline that is modeled in XBeach varies in the lateral direction. There height of the 

dunes and land varies as well as the distance at which houses and infrastructure are built from the 

sea. Because of the inhomogeneity the coastline should be separated into areas with similar coastal 

response. The western part of Praia de Faro consists of a row of dunes in front of the houses, that is 

a higher than in the rest of the peninsula. The parking lot in the central part of Praia de Faro is the 

lowest lying area where there is no row of dunes left between the sea and the infrastructure. In the 

east houses are partially build on top and behind a row of dunes that is slightly lower than in the 

eastern part. 

 

The maximum water level is obtained from the input file that specifies the water levels at the 

offshore boundary. These water levels are a combination of the tidal signal and the surge. A water 

level needs to be defined that is normative for the storm. The assumption is made that joint 

occurrence of the highest waves and water levels during the peak of the storm are normative for the 

effect of the storm on the coastline. The peak of the storm is then defined as a percentage of the 

total duration of the storm in which the highest conditions occur. The maximum water level and 

wave height are then extracted that occurs during this time.  

Since the peak of the storm is arbitrarily defined as a percentage of time that the storm intensity is 

highest, several percentages are evaluated, namely 10%, 15%, 20%, 25% and 30%. Resulting in five 

different sets of training data for the BN that will be evaluated for the best performance. Figure 4-21 

illustrates that for a different definition of the duration of the peak of the storm a different 

maximum water level may be obtained. The effect of the choice for a certain duration of the peak of 

the storm will most likely only have an effect on storms with a shorter duration. If the tide is semi-

diurnal and the duration of the peak of the storm is less than 12 hours, than it is possible that the 

 

Figure 4-20 Locations specified for the Bayesian Network. 

 



Predicting Coastal Hazards with a Bayesian Network 

Chapter: Development Early Warning System  62 

highest tidal level does not coincide with the highest wave and surge levels. The shorter this period, 

the larger the chance becomes that this happens. Oppositely so for larger storms in which at least 

one full tidal cycle occurs during the peak of the storm.

 

Different houses and infrastructure are located at varying distances from the sea. A good indication 

of the hazard due to coastline retreat for a certain area is the number of meters of coastline left 

untouched until the first structure. Rather than indicating the coastline erosion, a better indication is 

thus specified as a buffer. In Figure 4-22 two plots are shown of different parts of Praia de Faro. The 

plots show the locations of buildings and infrastructure, the XBeach grid and a plot of the total 

sedimentation and erosion that occurred due to an arbitrary storm. The pink dots are the grid points 

that are closest to either a house or infrastructure. The buffer is then deduced per cross section by 

calculating the distance between the pink dots and the first grid cell that indicates erosion. The 

smallest distance is then chosen to be normative for an entire area.  

 

Figure 4-21 Definition of the peak of the storm, zoomed in on Figure 4-4. 
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Overwash is an event that occurs during a very short period of time. To record it output has to be 

generated for water levels and flow velocities at very high frequency. Recording this output at high 

frequencies is problematic as it generates very large data files, quickly filling up the storage space of 

a computer or hard drive. To solve this problem output is only generated for 19 points, rather than 

for the full grid, at intervals of 2 seconds. The 19 points are strategically located on the highest point 

of the dune of the cross-section it is on. If any water level and flow velocity is recorded at these 

points it can only be due to overwash or inundation. As we know that the water level will not exceed 

the top of the dunes during the storms that are modeled, it must be due to an overwash event. The 

output locations are indicated in Figure 4-23. 

 

 

Figure 4-22 Locations of points to which the coastline retreat is measured based on the location of the structues. 

 

 

Figure 4-23 Overwash output points in XBeach. 
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4.5.3 DISCRETIZATION OF THE BAYESIAN NETWORK  

There are different ways to go about discretizing the random variables in the BN. All methods, 

however, have to balance a number of competing interests. A heuristic method is explored. 

1. The bin sizes have to be narrow enough to provide forecast utility to the end user. 

2. The bin sizes have to be wide enough to contain enough data to satisfy the joint probability 

tables. 

3. Since the BN comes at the end of a model train of which the water level and wave height is 

used for as the input of the BN, the bins sizes of these input variables have to be wider than 

the expected error in their prediction. 

4. The edges should preferably be rounded to either the nearest integer, half or tenth. 

Continuous random variables can be described with a probability density function (PDF). The area 

underneath the probability density function is described with its integral: the CDF. When a random 

variable is discretized into bins, its probability density function is also discrete and becomes a 

probability mass function (PMF). For the probability mass function to give a good description of the 

behavior of the variable the bin sizes should not be too large such that large changes in its shape are 

lost in the size of the bin. To get a feeling for the right bin sizes one can look at the empirical 

cumulative density function (ECDF) of the discrete random variable to find near linear sections.  

Large changes in the shape of the ECDF should also appear in the shape of the PMF. 

Another aspect is that the dependence between variables is not constant over the range of values 

that a variable can take; as soon as a variable is conditioned on the distributions for other variables 

change and so do their ECDFs. The discretization should in theory be done such that the 

interdependence is maximized. This is not checked by looking at the individual ECDF’s and as such 

the followed method is an approximation of a good discretization. 

The ECDFs and the PMFs of the input and the output variables of the XBeach simulations are shown 

in Figure 4-24. The PMFs are shown with 10 bins of equal size for each variable. From this figure can 

be seen that the variables show large differences in their distributions and therefore should be 

treated individually. The resulting discretization is shown in Figure 4-25, and elaborated below. 

The water level has very little data up to the 1 meter point (top left panel, Figure 4-24). The bins 

before this point contain very little data and will satisfy only few joint distribution tables in the BN. It 

makes sense to group the low water levels up to a certain threshold and have smaller bins for the 

larger water levels. Starting around 0.5 meter the shape of the ECDF is starting to change so this 

value is chosen as the threshold. Furthermore, bin sizes larger than 0.5 meter do not make a lot of 

sense since the expected error in the prediction of the water level from the overlying model train is 

expected to be in this range. 

The wave height is uniformly distributed between 3 meters and 8.8 meters. The bin width is 

determined at 1 meter, with bins spanning from 3 to 9 meter, to absorb any small errors in the 

prediction of the wave height (from the preceding model train) and for ease of use for the end user.  

The distribution of the coastal buffer shows that a large part of the dataset is focused at the edge of 

the spectrum (middle left panel, Figure 4-24). In this initial discretization these are captured in a bin 
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with a width of 10 meters. The ECDF, however, indicates that most of the information may be 

captured in a much smaller bin size, to increase the accuracy for this part of the network. This bin 

spans from -65 to -60 meter, indicating that all dry parts of the XBeach model are actually affected. 

The improved discretization is seen in the middle left panel of Figure 4-25. 

Similar to the coastal buffer variable, the overwash variables also have a lot of information focused 

at the edge of the spectrum (middle right and bottom left panels, Figure 4-24). The reason for this is 

that for a large part of the modeled storms no overwash occurs and the values in the most left bins 

are zero. To capture these zero values and distinguish no overwash from overwash a bin is created 

with edges 0 to 0.1 (see Figure 4-25 for the result). 

The overwash water level variable also contains a very little amount of data for a depth larger than 3 

meters. To satisfy the joint probability tables and since any overwash larger than this depth is not 

very interesting to the end user anyhow, they are grouped together into one bin. 

The resulting discretization is shown in Figure 4-25 and summarized in Table 4-5. Observed is that 

the new discretization follows the changes in the ECDF much better than before, meaning that less 

information is lost in the discretization. 
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Figure 4-24 Empirical cumulative density functions and probability mass functions for the initial state of the random variables in 

the Bayesian Network. 
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Table 4-5 Edges of the bins of the discretization of the random variables. 

Variable  Bin edges 

Water level  -1 0.5 1 1.5 2 2.5     

Wave height  3 4 5 6 7 8 9    

Coastal buffer  -65 -60 -50 -40 -30 -20 -10 0 10 >20 

Overwash water level  0 0.1 0.5 1 1.5 2 2.5 >3   

Overwash velocity  0 0.1 0.5 1.4 2.3 3.2 4.1 >5   

 

 

 

Figure 4-25 Empirical cumulative density functions and probability mass functions for the initial state of the random variables in 

the Bayesian Network for optimized bin sizes.  
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4.5.4 TRAINING THE BAYESIAN NETWORK 

The BN is implemented using the software package Netica (Norsys, 2013).  

Prior to training the network with data the marginal distributions are seeded with uniform 

distributions.  This means that the poorly trained parts of the network will return a uniform 

distribution as a result, rather than giving a zero probability. For example if a node consists of two 

bins and is not supplied with any information the BN will give each bin an equal probability: fifty-fifty. 

The effect of this is that a poorly trained network will have a relatively large rest probability in the 

less likely states and in reverse a well-trained network will have small “rest probabilities” in the less 

likely states. 

The nodes and arcs are setup conform the previous sections and trained with the dataset that is 

extracted from the results of the XBeach model runs. A total of 900 cases are supplied to the 

network, 300 for each location and 100 storms per tidal signal (amplitudes 1, 1.25 and 1.5). There 

are, however, 5 different dataset to train the networks with, depending on the definition of the peak 

of the storm, to be evaluated in the next section. The network trained with the peak of the storm 

defined as 10% of the duration is shown in Figure 4-26, for the other networks is referred to 

appendix D8D. 

 

   

 

Figure 4-26 Bayesian Network for Praia de Faro, trained with all cases for the peak of the storm duration of 10%. 
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5 RESULTS 

In this chapter is first explained how a BN can be tested and how its performance can be measured. 

The results are then presented for different aspects: the overall performance, the performance of 

different networks, the performance over the range of predictions and the value of a prediction. 

5.1 METHOD OF TESTING THE BAYESIAN NETWORK 

The purpose of the BN is to provide a decision maker with a tool to take justified action. The main 

question is then whether or not the outcome of the BN can be trusted, or more specifically: what is 

the quality of a prediction of the BN? The Netica software package provides several tools to analyze 

the BN. The basis of the analysis is to test the trained network with cases to see how well the 

predictions of the BN agree with actual cases. To test the different networks they are trained with 90% 

of the data and tested with the remaining 10%, chosen randomly. Since the nodes of interest are the 

hazard indicators (coastal erosion, overwash depth and velocity) the network has to be tested on the 

prediction of these nodes. The test works as follows: 

The coastal hazard nodes are treated as unobserved nodes (coastal buffer, overwash depth and 

velocity), this means that Netica does not know their values during its inference. This is intuitive 

since prior to a storm these effects are unknown, but the boundary conditions of the storm are 

known and so are the different areas. A case file is entered into Netica, who will use the three 

observed variables (water level, wave height and location) to make a prediction for the three 

unobserved variables by conditioning on the known variables. It will do this for all case files that are 

entered for the test and produce several test results in the following four flavors (Norsys, 2015): 11 

1. Confusion matrix 

The confusion matrix compares the predicted states of each unobserved node in the BN to the 

actual state of the node that is being tested. The most likely state in the BN is chosen as the 

prediction value and entered in the confusion matrix. If the BN is performing well then the numbers 

along the diagonal will be large compared to the others. 

2. Testing real value 

Several values are calculated that give insight in the performance of the prediction of a certain node. 

a. Mean absolute error (MAE) and the root mean square error (RMSE), defined as: 

1

1
MAE

n

i i

i

f y
n 

   , and 2

1

1
( )

n

i i

i

RMSE f y
n 

  . In which if  is the mode of 

the prediction and iy  is the actual value and n are the number of cases for which 

the BN is being evaluated. The MAE gives the average of the absolute errors where 

the RMSE gives the average of the root of the squares of the errors. 

                                                           
11 Since the case file entered does contain the actual values for the unobserved nodes, tests can be 
done to see if the BN is able to predict these values well. 
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b. 
Standard deviation

Mean absolute error
: It is assumed that the error is normally distributed. Dividing 

the standard deviation by the mean absolute error gives a percentage. This 

percentage makes it possible to compare the performance of different nodes.  

c. Confidence intervals: Another good indication of the performance of a node is by 

looking at the confidence intervals. A confidence interval indicates a certain 

percentage of the sample to be within that interval. They are often expressed in 

standard deviations, where one, two and three standard deviations indicate the 

confidence intervals of approximately 68%, 95% and 99.7%. These are the standard 

deviations of the mean absolute error. The confidence interval then counts for the 

mode of the prediction, giving the range of values the state of a variable may take 

with a certain level of confidence.  

3. Scoring rules 

Several scoring rules are used to describe the performance of the BN. The reason for using several 

methods is that when they are in agreement it gives more solid proof of the performance. 
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in which ciP  is the probability predicted for the correct state of the i -th case and n  

is the number of cases being tested. The logarithmic loss is calculated by giving a 

score to the most likely prediction. For example: if the prediction of the most likely 

state is 75% and it is the correct state it would receive a score of log(0.75) 0.29   

but if the prediction proved incorrect it would receive the score

log(1 0.75) 1.39   . The average of all cases is taken, producing a value between 

zero and infinity. The goal is to minimize this score. 

b. Quadratic loss (Brier skill) 2
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predicted for the correct state, jP  is the probability predicted for state j  and k  is 

the number of states. The quadratic loss score also gives a score to a prediction and 

is (in this form) rated between zero and two, with zero being the best score. 12 

c. Spherical payoff 
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, in which ciP is the probability predicted for 

the correct state, jP  is the probability predicted for state j  and k  is the number of 

states. The spherical payoff is scored between zero and one with one being the best 

score.  

4. Calibration table 

The calibration table links the belief of a certain state to the percentage that the actual outcome was 

in that specific state. It therefore indicates whether or not the belief of a certain state is appropriate, 

                                                           
12 Not that this differs from the more well-known Brier skill score that is scored between 0 and 1.  
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or well calibrated. The table gives the belief of a variable in one column and the percentage of times 

the actual value was in that state in the adjacent column. Since this is very ambiguous an example is 

given: 

Consider a part of Table 5-6, for the coastal buffer node, shown below in Table 5-1. The belief 

columns indicate a range of beliefs (or predictions) in percentages for a certain state (in this case -65 

to -60 m). These predictions are based on the 90% of the cases on which the network is trained. The 

actual columns give the percentage of times the actual outcome was in this state of the tested 10% 

of the cases, while the belief of the adjacent column occurred. So for all tested cases that caused a 

belief between 10% and 40% for the state -65 to -60 m, 54.2% of the time the actual value of the 

tested cases fell within this bin. This does not mean that 54.2% of all tested cases fall within this bin, 

this only counts for cases that have caused a belief of 10% to 40% for this state. 

Table 5-1 Part of a calibration table for the coastal buffer node, for illustrative purposes. The belief column indicates a range of 

predictions of a state and the actual columns indicate the percentage of times the actual number occurred when the prediction was in 

the range of the belief column. 

Coastal buffer 
Belief 

(%) 
Actual 

(%) 
Belief 

(%) 
Actual 

(%) 
Belief 

(%) 
Actual 

(%) 
Belief 

(%) 
Actual 

(%) 
-65 to -60 0-10: 0 10-40: 54.2 40-60: 82.6 60-80: 100 

5.2 PREDICTIVE SKILL OF THE BAYESIAN NETWORK 

To get an overview of the performance of the BN it will be evaluated from different angles. The 

overall predictive skill will be looked at as well as the predictions over the range of the variables, 

since some parts of the network may perform better than others. The five different definitions for 

the peak of the storm will also be evaluated simultaneously. All these together should give an idea of 

the value of a prediction made by the BN.  

5.2.1 OVERALL PERFORMANCE 

The overall predictive skill is determined by the results of the confusion matrix and the skill score 

ratings. Since the confusion matrix for a tested node is rather large and there are three nodes per 

network and five tested nodes they are not given. Instead a set of values are given that summarize 

the outcomes of the confusion matrices. 

The scoring rules used are the Log Loss, the Quadratic Loss and the Spherical Payoff, as described in 

section 5.1. The results of all scoring rules for each tested node and all networks are shown in Table 

5-2.13 

Table 5-2 Scoring rule results for all tested nodes and BNs. The numbers in the top row indicate the definition of the peak of the storm 

duration (10%, 15%, etc.). 

Coastal buffer 10% 15% 20% 25% 30% 

Log loss 1.073 1.046 1.046 0.9987 0.9987 

Quad loss (brier skill) 0.4631 0.453 0.4529 0.4382 0.4382 

                                                           
13 As a reminder: Log loss is scored from 0 to infinity where 0 is best, quadratic loss is scored from 0 
to 2 where 0 is best and spherical payoff is scored from 0 to 1 where 1 is best. 
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Spherical payoff 0.7425 0.7492 0.7478 0.7649 0.7649 

Overwash depth 
     

Log loss 1.347 1.351 1.362 1.36 1.36 

Quad loss (brier skill) 0.656 0.6647 0.6738 0.6735 0.6735 

Spherical payoff 0.5776 0.5761 0.5708 0.5678 0.5678 

Overwash velocity 
     

Log loss 1.327 1.348 1.346 1.345 1.345 

Quad loss (brier skill) 0.6154 0.6293 0.6335 0.6332 0.6332 

Spherical payoff 0.6093 0.6005 0.6014 0.5987 0.5987 

The overall results are a spherical payoff score above 0.5, a quadratic loss lower than 1 and a Log 

loss between 1 and 1.35. These results indicate that the performance is definitely not flawless and 

predictions have to be looked at with care. The magnitude of the errors of the prediction can be 

observed by looking at the real test values and the results from the confusion matrix (Table 5-3). 

First observed are the absolute errors. The mode of the coastal buffer has a mean absolute error and 

root mean square error of around 20 meters, indicating that the mean error of a prediction is plus or 

minus 20 meters off. With the bin size being 10 meters this basically comes down to the prediction 

being off by 2 bins on average. For the overwash depth this value is about 0.4 to 0.5 m, which is the 

same size of one bin (0.5 m). This is the same for the overwash velocity where the MAE and the 

RMSE are in the order of 0.8 to 1 m and the bin size is 0.9 m/s. 

Table 5-3 Real value test and confusion matrix results for the tested node and for each BN. The numbers in the top row indicate the 

definition of the peak of the storm duration (10%, 15%, etc.). 

Coastal buffer 10% 15% 20% 25% 30% 

MAE (m) 18.96 18.76 18.87 18.74 18.74 

Standard deviation (m) 27.86 27.54 27.62 27.52 27.52 

Std. dev. / MAE 1.47 1.47 1.46 1.47 1.47 

RMSE (m) 20.76 20.62 20.85 20.95 20.95 

Error rate 30% 26.67% 30% 25.56% 25.56% 

Overwash depth 
     

MAE (m) 0.4312 0.4144 0.4131 0.3953 0.3953 

Standard deviation (m) 1.206 1.172 1.174 1.151 1.151 

Std. dev. / MAE 2.80 2.83 2.84 2.91 2.91 

RMSE (m) 0.5356 0.5132 0.5198 0.503 0.503 

Error rate 62.22% 57.78% 55.56% 55.56% 55.56% 

Overwash velocity 
     

MAE (m/s) 0.8153 0.8203 0.8284 0.8903 0.8903 

Standard deviation (m) 1.664 1.642 1.651 1.795 1.795 

Std. dev. / MAE 2.04 2.00 1.99 2.02 2.02 

RMSE (m/s) 1.001 1.006 1.02 1.007 1.007 

Error rate 48.89% 48.89% 48.89% 48.89% 48.89% 

Assuming that the errors in the predictions are normally distributed, another indication of the error 

is its standard deviation. The standard deviation is a measure of the spread that can be expected of 
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the error in a prediction. This spread is often described with a confidence interval which is related to 

the standard deviation by the 68% – 95% – 99.7% confidence rule for respectively one – two – three 

standard deviations. Basically, 68% of the outcomes will lie within one standard deviation of the 

mean and likewise. The confidence intervals obtained are given in Table 5-4. The confidence 

intervals for all nodes are large when considering the use of the BN. 

Table 5-4 Confidence intervals for the mode of the prediction of each node. 

Node \ confidence interval 68% 95% 99.7% 

Coastal buffer (m) 27.5 55 82.5 

Overwash depth (m) 1.2 2.4 3.6 

Overwash velocity (m/s) 1.7 3.4 5.1 

5.2.2 PERFORMANCE OF DIFFERENT NETWORKS 

When considering the performance of the different tested networks most changes are incremental; 

several trends are however observed. The first is that the scoring rule results (Table 5-3) of the 

coastal buffer node changes for the better as the duration of the peak of the storm increases from 

10% to 30%, while they change for the worse for the overwash depth and velocity. This can be 

explained by the following the combination between the water level and the significant wave height. 

By increasing the length of the peak of the storm the weight of the water level as compared to the 

wave height is increased in determining the coastal hazards. This is because when a length of the 

peak of the storm is chosen, it also chooses a combination of wave height and water level that 

defines the coastal hazards. The highest wave height however is always included in this definition 

but the highest occurring water level may not be. By increasing the duration of the peak of the storm 

a higher or at least as high water level is obtained. The new combination now defines the coastal 

hazard, in which the water level is now relatively more important.  The predictions for the coastal 

erosion become better as the highest water level is included, indicating that this is a more important 

factor than the maximum wave height. Reversely so the quality of the prediction for the overwash 

decreases as the peak of the storm duration is increased. This is because for the overwash the 

combination of the two variables is more important; the water level and wave height that occur at 

the same time govern the overwash, a time lag distorts the prediction. 

Another observation is the trend in the error rate in combination with the relative standard 

deviation (Std. dev. / MAE, Table 5-3). For the coastal buffer the error rate is decreasing and the 

relative standard deviation stays the same, indicating an increase in the performance, which is in line 

with the better scoring rule results. The overwash depth also shows a decrease in the error rate but 

at the same time has an increase in the relative standard deviation; the state with the highest belief 

is more often correct than before but the spread in the error is larger. There is no observed change 

for the overwash velocity, but there is an increase in the relative standard deviation, which is also in 

line with the trend in the results of the scoring rules. 

A possible explanation for the relatively better performance of the coastal buffer node is that most 

of the results of the XBeach modeling indicate a coastal buffer in the -60 to -65 bin. The results of 

the overwash have a much larger spread and are therefore predicted with less belief; it is harder to 
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predict the correct bin within the node. This makes it relatively easy to perform better for the 

coastal buffer node. 

5.2.3 PERFOMANCE OVER THE RANGE OF PREDICTIONS 

A more in depth performance of the individual nodes is obtained by looking at their respective 

calibration tables. The calibration table, as explained in the beginning of this chapter, gives the belief 

of a certain state (based on the 90% trained data) and the percentage of times the actual outcome 

was in that state (based on the 10% tested data). Insight is gained over which parts of the node are 

better calibrated than others, as well as insight into over- or underestimation. Two tables are 

considered, Table 5-5 and Table 5-6, respectively: the overall calibration table that gives the total 

calibration of a node and the calibration tables that give the calibration for each bin within a node. 

For the latter the probability ranges change for the different states. This is done by Netica to ensure 

a certain minimum degree of accuracy; the bin sizes adapt to have a minimum number of cases 

falling in them.  

Table 5-5 Overall calibration of the three coastal hazard nodes. The top row gives the belief as a percentage and the values in the table 

indicate the actual occurrence as a percentage. Green: well calibrated. Yellow: mediocre calibrated. Red: Poor calibrated. 

Node \ Belief (%) 0-5: 5-10: 10-15: 15-20: 20-30: 30-40: 40-60: 60-100: 

Coastal buffer 0.19  3.13 7.5 35 28.6 59.3 82.6 100 

Overwash depth 0.35  2.27 15.5 35.1 31.1 45.5 33.3 61.1 

Overwash velocity 0.415 2.96 15.9 18.2 27.5 36.4 63.3 77.8 

The overall calibration table (Table 5-5) has the ranges of predicted values in the top row and the 

actual occurred percentages for those predictions filling the table. The color scales indicate the 

calibration, green if the actual percentage falls within the predicted ranges, yellow if it falls just 

outside the predicted bounds and red if the actual occurrence differs greatly from the predictions.  

Several observations are made from this table. The coastal buffer is the least well calibrated and has 

the tendency to underestimate cases (the actual occurrence percentage is higher than the belief). 

The overwash depth is badly calibrated in the mid-range of the belief and well calibrated if the belief 

reaches the extremes. Lastly the overwash velocity is overall best calibrated, increasingly so as the 

belief increases. 

Table 5-6 Calibration tables for the nodes coastal buffer, overwash depth and overwash velocity. The belief of a bin is compared to the 

actual percentage of the occurrence. Green: well calibrated. Yellow: mediocre calibrated. Red: Poor calibrated. 

Coastal buffer 
Belief 

(%) 
Actual 

(%) 
Belief 

(%) 
Actual 

(%) 
Belief 

(%) 
Actual 

(%) 
Belief 

(%) 
Actual 

(%) 
-65 to -60 0-10: 0 10-40: 54.2 40-60: 82.6 60-80: 100 

-60 to -50 0-5: 1.67 5-10: 0 
    

-50 to -40 0-5: 0 5-10: 6.67 10-100: 20 
  

-40 to -30 0-5: 0 5-10: 0 10-100: 0 
  

-30 to -20 0-5: 0 5-15: 0 
    

-20 to -10 0-5: 0 5-10: 5.88 10-100: 0 
  

-10 to 0 0-5: 0 5-15: 0 15-30: 40 30-100: 28.6 

0 to 10 0-5: 0 5-30: 25 30-100: 66.7 
  

10 to 20 0-5: 0 5-30: 9.52 30-100: 50 
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20 to 45 0-5: 0 5-100: 13.3 
    

Overwash depth        

0 to 0.1 0-5: 0 5-15: 0 15-50: 41.7 50-100: 71.4 

0.1 to 0.5 0-5: 0 5-10: 11.1 10-20: 25 20-100: 35.7 

0.5 to 1 0-5: 0 5-10: 0 10-30: 34.8 30-50: 26.3 

1 to 1.5 0-10: 2.78 10-20: 16 20-40: 37.9 
  

1.5 to 2 0-5: 3.85 5-15: 4 15-40: 44.4 40-100: 50 

2 to 2.5 0-5: 0 5-10: 0 10-50: 30.8 
  

2.5 to 3 0-5: 0 5-10: 0 10-100: 45.5 
  

3 to 8 0-5: 0 5-10: 0 10-100: 0 
  

Overwash velocity        

0 to 0.1 0-5: 0 5-15: 0 15-50: 41.7 50-100: 71.4 

0.1 to 0.5 0-5: 0 5-10: 4.17 10-100: 28.6 
  

0.5 to 1.4 0-5: 0 5-10: 5 10-30: 5.26 
  

1.4 to 2.3 0-5: 2.94 5-10: 0 10-15: 25 15-100: 33.3 

2.3 to 3.2 0-5: 0 5-10: 0 10-30: 20 30-100: 0 

3.2 to 4.1 0-10: 7.41 10-20: 22.5 20-40: 47.6 40-100: 100 

4.1 to 5 0-10: 0 10-20: 4.55 20-50: 46.7 50-100: 85.7 

5 to 7 0-5: 0 5-10: 0 10-40: 26.3 40-100: 75 

A number of observations can be made from the calibration tables of the individual nodes (Table 

5-6). The coastal buffer node holds most of its information in the states -65 to -60 and in the range 

from 0 to 45. The bad calibration for the states in between seems understandable since there is 

hardly any data to calibrate this part. The underestimation (actual occurrence is higher than the 

predictions) seen in the overall calibration table for this node can be attributed to a single bin: -65 to 

-60. For the ‘dry’ part of the node (for storms that do not erode the coastline to the first buildings) 

from 0 to 45 it is actually well calibrated. The overwash depth performs well as soon as the belief for 

a state is higher than 10-20%, for any lower beliefs the calibration is generally poor. The overwash 

depth and velocity perform well in predicting that a storm has no overwash, but are not very well 

calibrated when predicting the magnitude of an overwash event.  

5.3 VALUE OF A PREDICTION 

One of the main questions that arise from the prediction of the BN is: how should a prediction be 

interpreted and valued? There is no single answer to this question. This section evaluates a 

possibility of how this can be done. Two predictions are examined and their results analyzed. For this 

the BN trained with all data will be considered with the definition of the peak of the storm of 25% of 

the duration. 

Two predictions for the coastal buffer node are shown in Figure 5-1, for two different conditioning 

sets. The prediction on the left shows a bimodal distribution (two peaks) where the one on the left 

has one very pronounced peak. 

The mean absolute error (MAE) and its standard deviation, calculated in the previous section, give 

the overall error for the node. These values say that on mean average the error of the prediction of 

the most likely state is 18.7 m with a standard deviation of 27.5 m, for all the tested cases. This is a 

rather large error and an even larger standard deviation, giving very large confidence intervals. The 
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magnitude of the MAE can be explained when considering the bimodal prediction on the left in 

Figure 5-1. If the actual value is not in the most likely state (-65 to -60 m) then it is probably in in the 

-10 to 0 state, giving an error of about 60 meters in the prediction. The most likely state in the right 

panel has a belief 19% higher than that of the left panel and shows a distribution with only one 

mode. It seems unreasonable to use the same MAE for both predictions, in fact the errors in the 

predictions change for every combination of input variables. For these cases the MAE is likely to 

underestimate the error in the left panel and overestimate the error in the right panel. 

Physically the two modes for the coastal buffer node indicate that either the dune is breached and 

all of the hinterland is affected, or that the barrier is not breached and that only part of the dune is 

eroded. 

 

Another way to look at the predictions of the BN is by considering the distributions, in this case the 

probability mass functions. The probability mass function itself can also be used to determine 

exceedance probabilities. The exceedance probability is the chance that a value is beyond a certain 

threshold value. The probability is by calculating the area underneath the curve of the PDF, beyond 

the threshold, as indicated in Figure 5-2. For the probability mass functions that the BN gives these 

values can also be calculated. As an example the 10% exceedance value for the coastal buffer node is 

calculated by linear interpolation for the left prediction in Figure 5-2: 

 
60 65

(1 ) 65 (1 0.9) 63.9
0.45

Bin size
x Bin edge confidence m

Bin belief

 
           (8) 

 

Figure 5-1 Prediction for the coastal buffer node for two different sets of conditioning on the water level, wave height and location. 
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In Figure 5-3 the predictions for the overwash nodes are shown. The MAE’s for these nodes are, 0.4 

m for the overwash depth and 0.9 m/s for the overwash velocity, with standard deviations of 1.15 m 

and 1.8 m/s (Table 5-3). Since the distributions obtained for these predictions generally have a single 

mode, this number is much more representative of the error that can be expected for any given 

prediction. Also for these nodes, however, exceedance probabilities can be determined for each 

individual prediction.  

 

 

  

 

Figure 5-2 Schematic probability density distribution with exceedance probability. 

 

 

Figure 5-3 Prediction for the overwash nodes for two different sets of conditioning on the water level, wave height and location. 
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6 CONCLUSIONS 

This study investigated the development of a surrogate for the coastal morphodynamic part of an 

Early Warning System (EWS) for marine coastal hazards using a Bayesian Network (BN). For this Praia 

de Faro, located in the south of Portugal, has been selected as a case study site for the application of 

the concept. The aim of the BN was to predict onshore hazard intensities given offshore storm 

boundary conditions.  

To develop the modeling concept several steps have been taken. The case study site has been 

thoroughly analyzed with a focus on the coastal response to high energy, low frequency events. 

Based on this analysis a site has been chosen for the implementation of the EWS. The 

implementation on the chosen site consisted of five steps: (1) creating a synthetic storm dataset, (2) 

setting up an XBeach model for the selected site, (3) setting up a BN, (4) training the BN and (5) 

evaluating the BN. 

The main research question was: How can Bayesian Networks be used as part of an Early Warning 

System for spatially varying coastal hazards at sandy coastlines? This question has been delineated 

by setting a main objective, to quantify spatially varying coastal hazard intensities resulting from 

different forcing scenarios (e.g. storms) using a Bayesian Network, and five sub objectives. The 

conclusions drawn during the development of the EWS will be given with respect to the set of five 

sub objectives. 

1. Development of a Bayesian Network that can act as a surrogate for a 2D XBeach model. 

A 2D XBeach model is capable of translating offshore storm boundary conditions to near shore 

hydrodynamics and morphological change; it gives insight in the response of the coastline to a storm. 

Since it works in two dimensions the spatial variability of coastal hazards can be extracted. The BN 

therefore has to translate offshore boundary conditions to onshore hazard indicators, including 

spatial variability. This had to be achieved with the knowledge that higher complexity results in a 

higher demand for training data and has led to a BN with as little complexity as possible. The 

complexity has been reduced by using the physical correlations between the significant wave height, 

peak period, storm duration and storm surge levels. The BN only uses the offshore maximum 

significant wave height and water level that occur during a storm to predict the coastline erosion 

and overwash intensities. The spatial variability has been included by identifying three areas based 

on their similar elevation and structures. The resulting BN, with low complexity, makes it easier to 

train the network as less data is necessary, coming at the cost of losing a lot of information produced 

with the XBeach model. For this reason only storms with a similar course can be included; a storm 

with two peaks would currently not fit the model.  

2. Development of an XBeach model that generates suitable data for the Bayesian Network. 

The XBeach model for Praia de Faro has been created using bathymetric data from the summer of 

2007. The grid of the model has been setup following the basic rules as laid out in the XBeach 

manual. The waves in XBeach have been modeled using a wave spectrum. Since no spectral analysis 

of the waves is available for the South of Portugal a JONSWAP spectrum has been assumed. This has 

two consequences: (1) Mixed sea states, consisting of both swell and wind waves, cannot be 

properly represented. (2) It is unsure if this type of spectrum describes a storm well for this region 
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since it assumes that the sea state is not yet fully in equilibrium with the wind. For the short storm 

durations this assumption may be valid, however, as the storm duration increases this may become 

invalid, especially considering the large possible fetch over the Atlantic Ocean. For the results of the 

modeling this means that a spectrum containing both swell and waves will cause overwash much 

sooner than a spectrum containing only wind waves.  

The XBeach model could not be calibrated well due to the limited dataset that was available for it. 

Measured profiles were only available for a very small section of the grid and only above mean sea 

level. For this reason the model could not be run on the initial profiles nor calibrated for the wet 

section of the profiles. Furthermore the response of the coastline to the storms that have been used 

for the calibration was limited; no real overwash or major dune erosion is observed. Many of the 

storms run for the BN are much larger causing large overwashes and dune erosion in the XBeach 

model. The effects of these storms seem exaggerated and are passes on to the BN which predicts 

very large coastal erosion and overwash for the larger storms.  

The combination of the assumption for the spectrum and the lack of field data to calibrate XBeach 

for extreme conditions means that the results are less trustworthy for these events. 

3. Investigate an efficient method for generating sufficient data for the Bayesian Network. 

One of the main issues of this research is that the data needed to train the BN is produced with 

XBeach. A BN needs a lot of data to be trained well and XBeach has high computational times. On 

top of this overwash had to be extracted from the XBeach simulations, posing a difficulty since 

overwash events occur in a very short period of time. To record overwash, water levels and flow 

velocities have to be recorded at very high frequencies, creating large data files that quickly fill up 

storage space. To reduce the runtime of XBeach two options have been used: (1) the internal 

morphological acceleration option and (2) a reduction in the number of cross shore profiles in the 

grid. It was found that the detailed grid could be reduced to a fourth of the total number of grid cells. 

A further reduction caused numerical instabilities within the XBeach model causing simulations to 

crash. The results of the coarser grid were very similar to the results obtained with the original grid; 

a comparison of the two with the Brier skill score (scored from 0 to 1, where 1 is best) gave a score 

of 0.97. An added advantage of the reduced grid size is that less output is generated and so reducing 

the demand for storage space. Overwash has been measured at only 19 locations, set on top of the 

dune crest, at which output has been extracted every 2 seconds. This sufficiently reduced the 

generated data while still obtaining the necessary output to observe overwash events.  

4. Apply the Bayesian Network to the case study site of Praia de Faro on the Portuguese 

coastline. 

A part of applying the modeling concept to Praia de Faro is covered by setting up an XBeach model 

for the area. However, the XBeach model needs to be run with a set of storms to train the BN. The 

local storm dataset that was available did not contain enough storms and did not cover the range of 

storms necessary to train the BN. This is a universal problem as storm datasets are often limited to a 

few decades and the EWS has to be trained for storm with a return period of at least once in 100 

years. Furthermore these datasets will never contain the necessary amount of storms needed to 

train a BN. This problem has been solved by creating a synthetic dataset, based on the existing local 

storm dataset. The variables of the local dataset have been used to create copulas that describe 
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their inter-relations. With these copulas new data points can be sampled that bear the same 

characteristics as the parent dataset. 

The advantage of using this method over using, for example linear regression lines, is that the 

natural variability is incorporated in the synthetic dataset and thus in the BN. A limitation is that a 

large variability will make it harder to train a BN as the predictions will also show this variability; 

ultimately leading to a higher demand for training data (so more storms need to be run). In other 

words including the variability means the model is a closer representation of reality, however 

making it hard to model. 

5. Evaluate the performance of the Bayesian Network with respect to its use as an EWS. 

The evaluation of the performance of the BN has been focused on the method of testing and 

determining the performance of a BN in a general sense. A comparison between the predictions of 

the BN and expected outcomes for storms at Praia de Faro, based on literature, has been excluded. 

The reason for this is that the XBeach model results are not realistic enough to make a good 

comparison and justify any conclusion based on it. 

Five different BNs have been created based on the extraction of the maximum occurring water level 

and wave height from the peak of the storm from XBeach to be used as input for the BN. The peak of 

the storm has been varied between 10% and 30% of the total duration of the storm. The BNs have 

been evaluated by training them with 90% of the data and testing them with the remaining 10%. A 

number of test results have been considered that give insight into the performance of the BNs on 

different levels. For this each hazard node has been considered individually. 

Based on the skill score tests (log loss, quadratic loss and spherical payoff), the overall performance 

of the different networks is very similar and can be described as decent but definitely not flawless. 

However, without a benchmark these numbers are hard to interpret and the absolute errors give 

more insight. The errors in the predictions of the three hazard nodes, coastal buffer, overwash depth 

and overwash velocity, have a MAE (mean absolute error) of respectively 19 m, 0.4 m and 0.9 m/s, 

with standard deviations of, respectively, 27.5 m, 1.2m and 1.7 m/s. The 90% confidence intervals 

are therefore 55 m, 2.4 m and 3.4 m/s. With respect to predicting coastal erosion and overwash 

these errors and confidence intervals are very large, and could be considered too large for its use as 

an EWS. However, the results of the calibration table have shown that the overwash nodes are not 

very accurate in predicting the magnitude of an overwash but are good at predicting whether or not 

overwash will occur. These errors are caused by two effects: (1) for the coastal buffer the predictions 

often consists of a distribution with two modes, causing very large mean errors and accompanying 

standard deviations and (2) the large spread that is seen in the synthetic storm dataset is translated 

to the BN, giving a large spread in the predictions. In conclusion, the BN either needs more training 

data to make better predictions or more complexity (more nodes and smaller bins) needs to be 

added, also implying a need for more training data. Furthermore, when the value of an individual 

prediction is considered it is better to use the given probability mass function than the calculated 

MAE. The MAE can over or under predict the error for an individual prediction and should only be 

used as a general performance indicator. A note also has to be made on the way the BN is tested; by 

training it with 90% and testing it with the remaining 10%. If the remaining 10% is an ‘unlucky’ 

sample in the sense that it does not reflect the other 90% well, it will negatively influence the 

performance results. 
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Lastly, the test results for the different BNs indicate that as the definition of the duration of the peak 

of the storm is increased that the prediction for coastal erosion is improved and of the overwash 

intensity is worsened. By increasing the duration of the peak of the storm, the possible time lag 

between the combination of the highest water level and wave height is increased. This indicates that 

for the coastal erosion node the occurrence of the highest water level is more important than its 

joint occurrence with the highest wave height for the total amount of erosion. However, for the 

overwash intensity the time lag between the two distorts the prediction as this process is governed 

by the joint occurrence of the wave height and water level and so the predictions worsen as the 

definition of the peak of the storm increases. 
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7 RECOMMENDATIONS 

There have been many degrees of freedom within the development of the EWS. These degrees of 

freedom have meant that a number of decision and assumptions have had to be made to develop 

and implement the modeling concept. As this is a pilot study there are many aspects that can be 

improved and optimized of which 6 major improvements are recommended here. 

1. The large spread that is observed in the predictions is the direct result of the large spread 

that is seen in the synthetic dataset. The spread in the synthetic dataset cannot be reduced 

as this would give a false representation of reality. Two recommendations are therefore 

including more detail in the BN, by adding an extra boundary condition node or decrease the 

size of the bins, and simulating more storms. Suggested is that the best node to add for this 

case study site is the peak period. The reasons being that the surge is already included in the 

water level node and the duration shows a much higher correlation to the significant wave 

height than the peak period for the local storm dataset (Figure C-6). 

2. In the setting up of the BN the structure has been relatively straight forward. However, the 

discretization of the individual nodes is not. Currently a heuristic method is used that 

considers the prior distributions. It would be better to discretize the network such that the 

interdependencies between variables are maximized. For this algorithms can be used such 

as the CAIM (class-attribute interdependence maximization) algorithm (Kurgan & Cios, 2004). 

3. Currently the BN uses the water level, wave height and location to make a prediction for the 

onshore hazard intensities. Another option would be to consider the highest expected runup 

per location based on a runup formula. The expected runup for each individual storm can be 

calculated using the time series of the wave height and water level. The advantage is that 

always the simultaneously occurring water level and wave height are considered. 

Disadvantages are that the BN becomes less transparent for the end user, since the water 

level and wave height nodes would be grouped into a runup node, and that prior to a 

prediction a calculation over the full time series of a storm needs to be performed. 

4. A major step toward attaining an operational EWS is making sure that the results of the 

XBeach model can be trusted. For this the local model needs to be well calibrated and the 

modeling of a storm needs to be correct. In the modeling of storms two important 

assumptions have been made that need to be verified. These are the usage of a JONSWAP 

spectrum for the wave input and the triangular shape of the course of a storm. 

5. The modeling concept in its current form has been developed based on the conditions at 

Praia de Faro. For validation purposes the same concept should be applied to another case 

study site with varying conditions and hazards to gain more insight in the general 

applicability. 

6. Ultimately the prediction of hazards in the BN should be coupled so that expected damages 

and possibly loss of life are also predicted. This could be incorporated with risk reduction 

measures such as evacuation, removal of houses or the placement of sand bags. To 

accomplish this, hazards need to be predicted at a higher level of detail. The course grid of 

XBeach does not allow extraction of data at this level of detail; however this could be 

obtained by, for example, interpolation of the results. For this the data extraction from 

XBeach needs to be further researched.  
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A COASTAL VULNERABILITY 

 

Figure A-1 Locations of the cross sections for which runup calculations have been made to determine storm impact thresholds. (Almeida 

et al., 2012)

 

Figure A-2 Thresholds for storm impacts with varying period and wave height (surge levels are coupled to wave heights). Black 

represents overwash regime, grey collision regime and white swash regime. (Almeida et al., 2012) 
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B XBEACH SETUP 

B.1 Topography and Bathymetry 

Topographic and bathymetric information has been provided by the University of The Algarve. 

Information from the summer of 2007 is available for a stretch of 8 kilometers on the Ancão 

peninsula. It consists of bathymetric cross sections of the wet areas and a LIDAR of the dry area. The 

LIDAR gives an accuracy of 2 by 2 meters.  

An overview of the available topography and bathymetry is given in Figure B-1. The area of interest 

has a total with of 1 kilometer and is centered on the entrance road and parking lot, as indicated by 

the red box.  Another important location is a former video monitoring station of which the data will 

be used for calibrating the model which also falls within this model domain. 

 

B.2  Grid Setup 

A grid is defined based on several, sometimes contradicting, requirements that will be explained in 

this paragraph. The most important factors are listed below. 

 

Figure B-1 Available lidar data and location of research area. 
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 The depth at the offshore boundary has to be sufficiently large for the assumption of deep 

water for wave propagation to hold. 

The waves supplied as input for XBeach are deep-water waves, meaning that the water depth has 

negligible influence on their propagation. If the depth at the offshore boundary is not large enough 

for this assumption to hold then the waves should have deformed before they entered the domain. 

It is therefore important that the depth is large enough so that the waves may deform within the 

XBeach model. Generally for XBeach models this depth is chosen at 20 meters. 

 The width of the domain has to be determined according to the effect of the shadow zone. 

Waves enter the grid only at the offshore boundary, and not at the lateral boundaries. When waves 

enter the domain at an angle a triangular shadow zone will be formed with much less wave energy, 

as illustrated in Figure B-2: the light grey area is the shadow zone for waves entering the domain at 

an angle of 220 degrees (nautical). It is important that this zone does not affect the area of interest, 

as it will distort the results.  

 

 The grid resolution at the shoreline has to be fine enough to model the beach face and dune 

erosion and overwash. 

 

Figure B-2 Shadow zone in XBeach due to oblique wave attack. 
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The purpose of this model is to give results concerning coastline retreat and overwash events. The 

shape of the beach face and dune should therefore be well incorporated in the model. Changes to 

this area are desired output and also affect the run-up and overwash. The grid size around this area 

is therefore chosen at approximately 0.65 meters. 

 The total amount of grid cells should be kept at a minimum to reduce the runtime. 

The runtime of XBeach largely depends on the amount of grid cells in the grid. More grid cells simply 

mean more calculations per time step and should therefore be kept at a minimum.  

 In case of varying grid cell sizes the transition between two cells has to be smooth enough to 

prevent numerical instabilities. 

Varying grid cell sizes are favorable as it allows the grid to be detailed in areas of interest and less 

detailed in other areas. However, large differences between neighboring grid cells give rise to 

numerical instabilities in XBeach, causing runs to fail or output to reach unrealistic values. This 

translates to a small cross shore grid cell size at the beach face, in this case around 0.65 meters, and 

a large grid cell size at the offshore boundary of about 30 meters. In the long shore the grid size can 

also be varied to focus on the area of interest purchased. In the center, at the location of the parking 

lot and video monitoring station the grid is 5 meters wide, varying to a maximum of 20 meters at the 

edges (Figure B-3). 

 

 

 

Figure B-3 XBeach grid setup:. (max dx = 30m, min dx = 6.5m, max dy = 20m, min dy = 5m 
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B.2.1 Model Domain 

The coordinate system of XBeach is defined as shown in Figure B-4.The y-axis has to be oriented 

approximately parallel to the coastline and the x-axis perpendicular to the coastline. Waves enter 

the model at the offshore boundary, labeled as front. The coordinates can be either supplied in 

world coordinates or in a local coordinate system for which an origin (xori, yori) and rotation (alfa) 

have to be given. 

 

For the setup of the grid the world coordinate system is chosen, which has to be metric. The raw 

topographic data have been supplied in the spherical coordinate system WGS83 and have been 

converted to the metric UTM29 coordinate system. The main wave direction considered is the 

southwest. The orientation of the coastline is from northwest to southeast so that the shadow zone 

is very small. This final grid is shown in Figure B-7, indicating the main wave direction, shadow zone 

and most important locations. 

 

Figure B-4 Coordinate system of XBeach 
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The supplied topographic data include a large berm, which is generally present during summer. This 

berm has large influence on the total amount of runup, limiting coastline erosion and overwash. 

Since the berm is not present during the winter season, in which most storms occur, it is removed 

from the profile.  

The berm is removed by substituting it with a straight line from the point at which the profile is 1,5 

meter above the mean sea level until 10 grid cells forward of the top of the dune. The final 

difference in volume at the beach is approximated to be 260 m3. The result of the removal of the 

berm is shown in Figure B-6 and Figure B-7. It can be seen that most of the sand is redistributed 

along the topography, rather than being completely removed, which is important for the total 

sediment budgets. 

 

Figure B-5 XBeach model setup showing the most important locations, the wave direction and shadow zone. 
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Figure B-6 Cross sections of the topography with and without a berm at the beach face. 

 

 

Figure B-7 Difference plot between the bathymetry with and without the berm at the beach. Axis are grid cells; the colors indicate 

change in depth. 
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B.3 Waves 

There are different options to supply XBeach with wave boundary conditions, ranging from 

stationary conditions to time varying two-dimensional wave spectra. The wave conditions supplied 

are deep-water waves and have to be supplied at the offshore boundary.  

To specify a JONSWAP spectrum for as a boundary condition for XBeach a file has to be created 

containing the parameters for the wave spectra for each individual hour. The parameters that have 

to be given are: 

 Hs, the significant wave height (m) 

 Tp, the peak period (s) 

 Mainang, the main direction of the waves (°) 

 s, the directional spreading coefficient:   
 

  
   (-)  , in which σ is the directional 

spreading. 

 Gammajsp, the peak enhancement factor of the JONSWAP expression (-) 

 Duration, in this case an hour, specified in seconds.  

Since there is no available spectral analysis of the sea state in the south of Portugal the default value 

of the peak enhancement factor has been used for the shape of the JONSWAP spectrum (3.3). The 

directional spreading coefficient has been set to 20, resulting in a directional spreading of 0.31 

radians (or 17.7 degrees).  

B.4  Calibration 

To perform well the XBeach model has to be calibrated to include the effects of the local conditions. 

Preceding this research, efforts have been made at the University of The Algarve to calibrate a 2D 

XBeach model for Praia de Faro. These settings are unpublished and will be described in the next 

section. For further calibration a dataset is available from a research concerning beach 

morphological changes during consecutive storms at Praia de Faro. Although the usability of the 

dataset is not very high for calibration purposes it has been used as such. The dataset and calibration 

efforts are treated in the following sections.  

B.4.1 Preceding Calibration Efforts 

Preceding this research there have been calibration efforts for an XBeach model at Praia de Faro. 

These efforts have led to a number of settings that deviate from the XBeach defaults and are 

summarized in Table B-1. Furthermore there are new and improved default settings for XBeach, 

referred to as the WTI settings, which are also yet unpublished. These settings are summarized in 

Table B-2.  
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Table B-1 XBeach settings of preceding calibration efforts 

Parameter Value Units Description 

D50 0.005 m D50 grain size per grain type 

D90 0.002 m D90 grain size per grain type 

bedfriction Manning - Bed friction formulation 

bedfriccoef 0.02 s/m1/3 Bed friction coefficient 

delta 0.1 - Fraction of wave height to add to water depth 

Table B-2 XBeach WTI settings 

Parameter Value Units Description 

cf 0.001 - Friction coefficient flow 

gammax 2.364 - Maximum ratio wave height to water depth 

beta 0.138 - Breaker slope coefficient in roller model 

wetslp 0.260 - Critical avalanching slope under water (dz/dx and dz/dy) 

alpha 1.262 - Wave dissipation coefficient in Roelvink formulation 

facSK 0.375 - Calibration factor time averaged flows due to wave 
skewness 

facAs 0.123 - Calibration factor time averaged flows due to wave 
asymmetry 

gamma 0.541 - Breaker parameter in Baldock or Roelvink formulation 

B.4.2 Dataset 

The dataset available consists of two parts; beach profiles obtained from time stack images and 

hourly offshore storm conditions. The data have been collected during a series of storms over the 

period December 2009 – January 2010, in which several storm occurred. The wave data originates 

from a wave buoy at 93 meters depth from the Portuguese Hydrographic Institute (Figure B-8). The 

topographic data are collected from a video station located on top of a roof of a building facing the 

beach at Praia de Faro (Figure B-9). Images have been acquired every hour for 10 minutes, during 

daylight. Tidal data have also been collected using a pressure transducer that has been deployed at 

14 meters depth offshore of the study area. (Vousdoukas et al., 2012a)  

 

 

Figure B-8 Map of the southern region of Portugal, showing the location of the wave buoy and the location of the study site. 

(Vousdoukas et al., 2012a) 
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The hydrodynamics conditions during the study period are displayed in Figure B-11. In the period six 

separate events are identified labeled A through F, with a significant wave height of 2 meters or 

higher. The changes in the beach profile above MSL have been measured for these 6 events and are 

summarized in Table B-3. 

 

 

 

Figure B-9 Map of the study site showing the location of the video monitoring station and the topographic survey grid. (Vousdoukas 

et al., 2012a) 

 

 

Figure B-10 Hydrodynamic conditions collected by the Hydrographic Institute during the period December 2009 - January 2010. 

(Vousdoukas et al., 2012a) 
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Table B-3 Erosion volumes per event. dV is the difference between the post and pre storm sediment volumes above MSL. 

Event dV (m3/m) 

A -14 

B -9 

C -2.5 

D -13 

E -13 

F -1 

B.4.3 Calibration Efforts 

The calibration efforts have been focused on two aspects, the erosion volumes and the shape of the 

beach profile. The calibration on the erosion volumes has been done for three selected events: B, D 

and E. The calibration on the shape of the beach profile (including runup) has been focused at event 

B. This choice is made since this event has the shortest duration and therefore more XBeach runs 

can be performed in the least amount of time.  

Calibration for the erosion volumes can be done by tweaking the calibration factors of the wave 

asymmetry and skewness in XBeach (keywords: facAs and facSK). They are accounted for in the 

advection-diffusion equation in XBeach by influencing a velocity component

( )a Sk k As s rmsu f S f A u  . For a detailed description is referred to the XBeach manual. In essence 

the higher the value for au   the higher the onshore sediment transport. Nine iterations have been 

performed on storms B, D and E to establish the best set of asymmetry and skewness calibration 

factors. The storms have been run using the time series from Figure B-10. The waves have been 

modeled using a JONSWAP spectrum with gamma = 3.3 and a directional spreading coefficient of 10.  

The values used for facAs and facSk for the iterations are shown in Table B-4. For three cross 

sections of the XBeach model that are located in the same area in which the change in the beach 

volumes have been measured the change in volume above MSL have been determined. The results 

are shown below in figures Figure B-11, Figure B-12 and Figure B-13. From these results the 

calibration values of iteration 2 are thought to give the best fit and these will be used for further 

calibration.  

Table B-4 Calibration values used for the facAs adn facSk for the iterations. 

Iteration facas facsk 

1 0.4 0.2 

2 0.4 0.3 

3 0.4 0.4 

4 0.5 0.2 

5 0.5 0.3 

6 0.5 0.4 

7 0.6 0.2 

8 0.6 0.3 

9 0.6 0.4 
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Figure B-11 Erosion volumes for three cross sections at the video monitoring station for event B. The horizontal line indicates the 

measured erosion volume. 

 

 

Figure B-12 Erosion volumes for three cross sections at the video monitoring station for event D. The horizontal line indicates the 

measured erosion volume. 
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The measured profiles from the area show that there is no scarping during the storm. XBeach 

however, does induce a scarp under the given conditions, see Figure B-14. As soon as the scarp is 

formed it starts to limit the maximum runup and thereby limits the beach face erosion to the 

location of the scarp. Without a scarp waves could cause higher runup and the beach face would be 

eroded up to a higher level. To limit the formation of the scarp and to increase the runup levels 

several things can be adjust in XBeach.  

 

Figure B-13 Erosion volumes for three cross sections at the video monitoring station for event E. The horizontal line indicates the 

measured erosion volume. 
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The scarp formation is the effect of the avalanching algorithm used in XBeach. The avalanching 

algorithm causes slumping of sand from the dune to the foreshore during storm erosion. Since wet 

sand is more prone to slumping than dry sand a critical slope is defined for both with the keywords 

wetslp and dryslp. The criteria that determines if sand should be treated as dry or wet is controlled 

with the keyword hswitch. It defines a minimum water level needed for sand to be treated as wet. 

The default values are: wetslp = 0.3, dryslp = 1 and hswitch  = 0.1 m. To decrease the scarp formation 

the default values have been lowered. The effect is visual but does not prevent the scarp formation 

from occurring.  

Another factor that can influence the total runup is the wave groupiness. If the groupiness of the 

waves is higher the forcing due to infragravity waves is also larger. When specifying the wave input 

one factor that has to be given is the directional spreading coefficient, s. Higher directional 

spreading can smoothen the groupiness and therefore lead to lower runup heights. The directional 

spreading coefficient is inversely proportional to the directional spreading and therefore a higher 

value causes more runup. The default value is 10, giving a directional spreading of 24.4 degrees. 

Initially the surge levels during the storm had not been added in the modeling since these were very 

small. These have been added later to see the effect on the runup, and as will be seen later the 

runup is only a little higher.  

Since there is no research on the shape of the wave spectrum for this part of the Portuguese 

coastline the effect of using a JONSWAP spectrum with a gamma of 3.3 is observed by modeling the 

Xynthia storm of 2010. From a larger SWAN model for the area full 2D spectra are extracted at the 

 

Figure B-14 Measured and modeled profiles for iteration 2, event B. A scarp is formed by XBeach that is not seen in the measured 

profiles. 
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location of the offshore boundary of the XBeach model. The model is forced with these wave spectra 

as well as with JONSWAP wave spectra. 

In the table below an overview is given of all combinations that have been run in XBeach. The 

resulting profiles are also given in the following figures. 

Table B-5 Calibration values for iterations 10 to 15 and the Xynthia model runs. 

Iteration avalanching wetslp dryslp hswitch surge s 

10 no 0.1 1 0.1 no 10 

11 yes 0.1 0.5 0.1 no 10 

12 yes 0.1 0.5 0.05 no 10 

13 yes 0.1 0.5 0.05 yes 10 

14 yes 0.1 0.5 0.05 yes 20 

15 yes 0.1 0.5 0.05 yes 30 

xynthia-
2D swan 

yes 0.1 0.5 0.05 yes 10 

xynthia-
JONSWAP 

yes 0.1 0.5 0.05 yes 10 

 

 

Figure B-15 Measured and modeled profiles for iteration 2, event B. 
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Figure B-16 Measured and modeled profiles for iteration 10, event B. 

 

 

Figure B-17 Measured and modeled profiles for iteration 11, event B. 
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Figure B-18 Measured and modeled profiles for iteration 13, event B. 

 

 

Figure B-19 Measured and modeled profiles for iteration 14, event B. 
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Figure B-20 Measured and modeled profiles for iteration 15, event B. 

 

 

Figure B-21Measured and modeled profiles for Xynthia. 
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B.4.4 Final Calibration Settings 

The final calibration settings have been determined based on the previous section and based on the 

expert judgment of the developers of XBeach. The settings are summarized in Table B-6. 

Table B-6 Final calibration settings of XBeach. 

Parameter Value Units Description 

D50 0.005 m D50 grain size per grain type 

D90 0.002 m D90 grain size per grain type 

bedfriction Manning - Bed friction formulation 

bedfriccoef 0.02 s/m1/3 Bed friction coefficient 

delta 0.1 - Fraction of wave height to add to water depth 

cf 0.001 - Friction coefficient flow 

gammax 2.364 - Maximum ratio wave height to water depth 

beta 0.138 - Breaker slope coefficient in roller model 

alpha 1.262 - Wave dissipation coefficient in Roelvink formulation 

facSK 0.3 - Calibration factor time averaged flows due to wave 
skewness 

facAs 0.4 - Calibration factor time averaged flows due to wave 
asymmetry 

gamma 0.541 - Breaker parameter in Baldock or Roelvink formulation 

dryslp 1 - Critical avalanching slope above water. 

wetslp 0.1 - Critical avalanching slope under water. 

hswitch 0.05 m Water level at which is switched from wetslp to dryslp. 

s 20 - Directional spreading coefficient 
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C SYNTHETIC DATASET 

C.1  Marginal Distribution Fitting 

The ranking of the marginal distributions that have been fit to the individual variables are listed in 

Table C-1, the values in the table are determined using the Akaike information criterion. In Table C-2 

the parameters of the chosen marginal distributions are given. Furthermore the plots of the 

parametric and empirical CDFs are shown in the figures below.  

Table C-1 Ranking of the fitted marginal distributions according to the Akaike information criterion. 

Distribution Hs (duration) Tp Duration Hs (surge) Surge 

Exponential 521,28 787,04 1037,95 397,05 -60,83 

Extreme value 365,18 588,50 1280,71 259,03 -28,80 

Gamma 288,39 557,33 - 197,82 -94,76 

Generalized extreme value 265,59 558,54 1055,90 162,76 -96,94 

Generalized Pareto 237,92 561,06 1038,15 147,31 -81,63 

Logistic 302,54 569,62 1146,91 204,01 -91,14 

Loglogistic 284,83 563,99 - 187,93 -90,83 

Lognormal' 281,29 556,84 - 191,18 -78,24 

nakagami 297,13 559,09 - 205,38 -95,12 

Normal 308,03 563,39 1176,28 213,72 -80,41 

Rayleigh 383,45 648,17 - 291,85 -95,87 

Rician 307,16 563,00 - 213,28 -93,87 

Tlocationscale 303,81 565,39 1125,77 197,28 -92,07 

Weibull 318,24 566,73 - 227,26 -95,87 

 

Table C-2 Parameter values of the used marginal distributions 

Variable Used distribution Parameters 

Hs (duration) Generalized Pareto k = -0.1514 sigma = 1.1732 theta = 2.5 

Tp (duration) Lognormal mu = 2.3829 sigma = 0.2481  

Duration Exponential mu = 33.2522   

Hs (surge) Generalized Pareto k = -0.0166 sigma = 0.8674 theta = 3.5 

Surge Weibull A = 0.2841 B = 1.7900  
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Figure C-1ECDF and CDF for the storm duration. 

 

 

Figure C-2 ECDF and CDF for the significant wave height of the duration data set. 
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Figure C-3 ECDF and CDF for the peak period of the storms. 

 

 

Figure C-4 ECDF and CDF for the storm duration. 
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Figure C-5 ECDF and CDF for the storm surge levels. 
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C.2  Copula fitting Figures 

 

 

 

Figure C-6 Scatter plots of the uniformly distributed variable pairs. 

 

 

Figure C-7 Different copulas fit to the Hs and Duration dataset. The red dots indicate the original dataset and the yellow dots the 

data points generated with the copula. 
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Figure C-8 Different copulas fit to the Hs and Surge dataset. The red dots indicate the original dataset and the yellow dots the data 

points generated with the copula. 

 

 

 

Figure C-9 Different copulas fit to the Hs and peak period dataset. The red dots indicate the original dataset and the yellow dots the 

data points generated with the copula. 
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Figure C-10 Comparison of conditional probabilities for |
s

D H  on the intervals[0,0.25] [0.75,1] , 
2

[0.75,1] ,
2

[0.75,1] and 

[0.75,1] [0,0.25] (top left, top right, bottom left and bottom right respectively). 

 

 

 

 

Figure C-11 Comparison of conditional probabilities for |
s

S H  on the intervals[0,0.25] [0.75,1] , 
2

[0.75,1] ,
2

[0.75,1] and 

[0.75,1] [0,0.25] (top left, top right, bottom left and bottom right respectively). 
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Figure C-12 Comparison of conditional probabilities for |
p s

T H  on the intervals[0,0.25] [0.75,1] , 
2

[0.75,1] ,
2

[0.75,1] and 

[0.75,1] [0,0.25] (top left, top right, bottom left and bottom right respectively). 
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D BAYESIAN NETWORKS 

 

 

 

Figure D-1 Bayesian Network for Praia de Faro, trained with all cases for the peak of the storm duration of 15%. 

 

 

Figure D-2 Bayesian Network for Praia de Faro, trained with all cases for the peak of the storm duration of 20%. 
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Figure D-3  Bayesian Network for Praia de Faro, trained with all cases for the peak of the storm duration of 25%. 

 

 

Figure D-4  Bayesian Network for Praia de Faro, trained with all cases for the peak of the storm duration of 30%. 
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