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Abstract

In this work, possible solution to allow for scalable MATLAB deployment on big data
clusters through Spark without using the official MATLAB toolbox is introduced. Other
possible solutions that can be used for accelerating existing MATLAB code including
calling modules written by Graphics Processing Unit (GPU), and Python Pool with multi
processors are also investigated in this thesis. Among these approaches, Spark solu-
tion is achieved by accessing to PySpark through Python. Instead of using distributed
computing server of MATLAB that is necessary for the official Spark approach in the
newest version, our approach is low-cost, easy to set up, flexible and general enough
to handle changes, and enable for scaling up. All the solutions are analyzed for bot-
tlenecks based on their performance in initialization, memory transfer, data conversion
and computational throughput. Our analysis shows that initialization & memory transfer
for GPU, data conversion for Python/Pyspark when the data input or output have high
dimensions can be bottlenecks. For use case analysis, a medical image registration
MATLAB application using NCC was accelerated by multiple solutions. The results indi-
cate that GPU and PySpark using cluster have the best performance, which were 5.7x
and 7.8x faster than MATLAB with Pool performance. Based on the overall performance
of these solutions, a decision tree for the most optimal solution to choose is built for the
future research.
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Introduction 1
1.1 Context

In this digital era, people are exposed to an ever increasing amount and diversity of data,
both structured and unstructured. At the same time, tons of new data is generated daily
from all kinds of external sources. Camera recording resolution increased from HD, Full
HD, to now Ultra HD (4K), which requires new video encoding standards, for example
High Efficiency Video Coding (HEVC), which achieves significantly better compression
performance for high resolution video but results in extremely high computational com-
plexity [1]. An important application and emerging research area in image processing is
object tracking in video surveillance [2]. Tracking a target in a cluttered environment
is still challenging. The whole process includes object detection, classification, track-
ing and identifying the behavior. Another interesting topic that is becoming an active
field of research over recent years is image reconstruction, which refers to the process
of restoring missing or damaged areas in an image. [3] discusses the latest categories of
image reconstruction methods and several applications are illustrated.

Not only is the complexity of image processing increasing, the demands for rapid
response or high throughput also become important thanks to the amount of data.
Using high-throughput video compression technique as an example, a series of research
projects have been done on VLSI architecture design that presents superior performance
in parallelism-efficiency for specific algorithms [4] or image compression systems [5].

Among publications related to high-throughput image analysis in recent year, a big
part of them were related to medical imaging and biomedicine. Medical images usually
have higher dimensionality (usually 2D and 3D) compared to non-medical images, in
addition to an even bigger amount of data. Correspondingly, the algorithms used for the
analysis in this field are more complicated, making high performance computer aided
image processing techniques increasingly important. Some of these algorithms use state-
of-the-art pattern recognition technologies for image processing. Jafari et al. [6] show
an approach for the detection of brain tumor tissue in magnetic resonance images based
on genetic algorithms and support vector machines (SVMs). Sneha et al. [7] present
an algorithm for fusing computerized tomography (CT) and magnetic resonance (MR)
medical images using biologically inspired spiking neural network. A typical basic image
processing system contains the following three stages: acquisition, image processing
and description. In the first stage, biomedical images ar acquired by image modalities,
such as CT, magnetic resonance tomography (MRT), positron emission tomography
(PET), or ultrasound (US). The image processing stage can be further separated into
four steps, pre-processing, segmentation, registration, and diagnosis. Image denoising is
an important part of pre-processing because medical images encounter noise from various
number of sources caused by acquisition, storage and transmission. Pre-processing is
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2 CHAPTER 1. INTRODUCTION

followed by the segmentation step for detection of object boundaries(can be organs,
cells, vessels, etc.) and extracting the region of interest. Image registration is one of the
key steps in the whole system. It transforms different sets of data into one coordinate
system. If the data of two images is acquired by the same type of machine, then image
registration is to align images with each other. Or if the images show the same object
from different image modalities, time or viewpoints, then image registration can be used
to fuse the images together. Using existing databases, and classification algorithms, the
final diagnosis can be reached. The last stage of the whole image processing process is
the description of diagnosis, using visualization, plain text or tags.

MATLAB is one of the most widely used computational platforms for medical image
processing algorithms, which is one of the popular choices of companies. It provides a
bunch of functionality, built in tools and toolboxes in different fields. It is easy and quick
to develop a runnable application, which also can interfacing with programs written in
other languages, including C, C++, C#, Java, Fortran and Python. According to ana-
lytics from iDatalabs, the top two industries that use MATLAB are higher education and
computer software. Some other industries that have large segments of MATLAB cus-
tomers include hospital & health care providers, financial services, aerospace, automotive
and medical devices. There are more than 20,000 organizations or companies globally
that use MATLAB including Howard Hughes Medical Institute and Facebook. Of all
the companies that use MATLAB, 31% are small (<50 employees), 37% are medium-
sized and 27% are large (>1000 employees). To keep pace with cutting edge technology,
MATLAB also started including Spark scalability features as of their 2017a version.
However, MATLAB license is quiet high priced, and toolboxes are charged separately.
Running MATLAB on clusters requires a special license, and the price increases with
the size of the cluster. The minimum number of nodes in a cluster is 16. Due to the fact
that MATLAB is a scripting language, it runs slower than compiled languages. To use
multiprocessors in MATLAB to improve performance also needs an extra license [8].

Based on the characteristic of the target users and the algorithms itself, the amount of
scalability is different for each solution. For example, scalability is important for solutions
created by small companies interested in building a prototype to analyze massive amounts
of data quickly. Another example, is represented by the solution for those companies
that already use MATLAB and want to explore use cases that involve big data. The
former group would prefer a cheap, easy to use and test solution, while the latter one
may need a solution that can scale up, have high performance and is easy to maintain.

1.2 Challenges

MATLAB is a closed-source software, the source code is not shared publicly for users
to look at or change, just like a black box. The benefit of this closed-source model
is that MATLAB has sustained support, reliability and security which is preferred by
the research and development departments in companies. However, it also limits the
flexibility of MATLAB. This makes it challenging but important to customize the existing
MATLAB functions without affecting the core part of the platform. Also, the limited
flexibility causes extra effort when integrating MATLAB with clusters or calling other
modules. One of the problems will be sharing the variables between MATLAB and those
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clusters or processes. MATLAB protects variables it stores and generates from directly
being manipulated by hiding the physical memory address of the data from users. Beside
this, the success of MATLAB is also due to the ease of programming and due to the fact
that it does not require compiling the code.

Recently MATLAB enabled support for Spark. Those who want to update their
MATLAB version in order to use this new feature need to renew their license. In ad-
dition to the cost of renewing MATLAB, extra cost will be spend on the license that
is needed for the cluster. This expense is based on the number of nodes in the cluster,
and starts from 5072 euros. There is only one possible configuration for the cluster, all
nodes inside the cluster, both workers and the name node, need to install the MAT-
LAB Distributed Computing Server. In addition, for the client node that writes and
submits MATLAB applications, the Parallel Computing Toolbox is needed. It is also
highly recommends by MathWorks to install all MathWorks products because MATLAB
Distributed Computing Server cannot run the jobs whose code requires products that
are not installed. It can be more flexible if there is a way to map MATLAB code on a
cluster without MATLAB installed on the nodes.

In this thesis, we are aiming to provide solutions to enable low-cost open source tool
set to allow for scalable MATLAB deployment on big data clusters through Spark.

Debugging through MATLAB is also an issue. Users should receive the error messages
and oversee the ongoing processes in other processes directly from MATLAB. So there is
no need for users to switch to another IDE while debugging. Modification of accelerating
modules should be also done from MATLAB, this means our solutions should provide
interfaces to MATLAB and can be invoked in the same way as built-in function.

Different type of problems will benefit from specific acceleration methods. Also not
all situations are suitable for cluster scalability. Other solutions that can be taken into
account are multithreads and graphics processing unit (GPU) acceleration. MATLAB
also has its own implementations for these solutions included as part of extra toolboxes.
In the same way MATLAB integrates Spark, these official solutions also have restrictions
in functions or environments and are limited in usage. One of the challenges will be how
to sidestep these limitation and still provide improvement in performance.

1.3 Problem definition

In this thesis, we aim at providing some proof-of-concept solutions and implementations
that accelerate existing MATLAB code, with usage of multicore processors, GPU and
Apache Spark. Furthermore, we aim at comparing these solutions to inspect the bot-
tlenecks by executing a series of micro-kernels. Finally, the solutions are applied to an
image registration MATLAB application to observe the influence of these solutions on a
specific use-case.

Based on the challenges described in the previous section, we define the following
research questions to resolve those challenges:

• Is it possible to easily scale up existing MATLAB code on an Apache Spark cluster
using open source tools?
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• What applications suitable for a scalable MATLAB implementation, and what is
the overhead of scaling MATLAB code on Spark?

• What are the bottlenecks in terms of performance, memory and interconnect band-
width that limit the speedup gained from Spark scalability?

• What is the advantage of using open source tools to scale up MATLAB code in
comparison with the official MATLAB scalability solution? What are the advan-
tages and disadvantages?

1.4 Thesis outline

The remainder of the thesis will cover the following:

• Chapter 2. Background. This chapter will present important details regarding
the framework, tools and hardware that will be used in this thesis. A brief de-
scription is given on the MATLAB environment to be used in the thesis, Spark
framework and GPUs.

• Chapter 3. Use case analysis and alternative solutions. In this chapter, a
medical image analysis algorithm containing the registration process use case is
presented and analyzed. This chapter also includes a brief overview of past-to-
recent literature for image registration. Then it examines possible solutions for the
use case

• Chapter 4. Implementation and measurements. This chapter begins by a
discussion of the different solutions implementations in practice. Then it investi-
gates the overheads in each type of solutions. It includes time consumption during
initialization, memory copy, data conversion and computational throughput.

• Chapter 5. Discussion. In this chapter, we discuss the advantages and disadvan-
tages of each solution. A system level analysis is included in the final section of
this chapter.

• Chapter 6. Image analysis use case. This chapter begins by the implementation
of the use case using different solutions. Followed by a description and evaluation
of the result.

• Chapter 7. Conclusions and future research. In the last chapter, we will
provide a summary of the thesis and our solutions, as well as our view on the
future. Lastly, the questions in the problem definition part will be answered based
on the experiment outcomes.



Background 2
This chapter introduces relevant work in the literature related to the topic of this thesis.
First, the chapter starts with discussing the MATLAB platform (from MathWorks) and
continues with Apache Spark (used for cluster computing) in order to establish a link
between MATLAB and Spark.

2.1 MATLAB environment

MATLAB (matrix laboratory) is a matrix-based language designed for engineering and
scientific mathematical computations; it was developed by MathWorks in 1984. MAT-
LAB runs directly from the source scripting files (called m-files), creating the executable
code on-the-fly. It has optional add-on toolboxes for a wide range of engineering and
scientific applications such as image processing, signal processing, and machine learning.
It also provides interfaces to C/C++, Java, .NET, Python, SQL, Hadoop, and Microsoft
Excel [9].

2.1.1 History

MATLAB was originally written in C with libraries known as JACKPAC. In 2000, MAT-
LAB was rewritten to use a newer set of libraries for matrix manipulation, LAPACK [10].
LAPACK is a large, multi-author, Fortran library for numerical linear algebra that is
designed to exploit level 3 BLAS. BLAS stands for Basic Linear Algebra Subroutines,
which are routines that provide standard building blocks for performing basic vector
and matrix operations. Level 1 BLAS performs scalar, vector and vector-vector opera-
tions, Level 2 BLAS performs matrix-vector operations, and the Level 3 BLAS performs
matrix-matrix operations. LAPACK uses block algorithms, which operate on several
columns of a matrix at a time. On machines with high-speed cache memory, these block
operations can provide a significant speed advantage [11]. MATLAB with LAPACK
can offer the opportunity to use multithreading and multiprocessors for additional speed
enhancements.

2.1.2 Data types and storage

All numeric variables in MATLAB are stored by default as double-precision floating-
point values. Additional data types store text, integer or single-precision values, or a
combination of related data in a single variable.

All MATLAB variables are multidimensional arrays. To create an array, MATLAB
allocates a contiguous virtual block of memory and store the array in that block. If there
is a need to expand the array beyond the available contiguous memory of its original

5



6 CHAPTER 2. BACKGROUND

location, MATLAB has to search for a new contiguous location and copy the contents of
the original array, add the new elements and free the original memory. When MATLAB
performs an array copy, it only makes a copy of reference unless the content of the array
is changed, then MATLAB has to make a copy of the array and modify it.

When the data is too large to fit in memory, MATLAB enables one to create datastore.
A datastore is an object for reading a single file or a collection of files or data. It allows
you to read and process multiple files which have the same structure and formatting as
a single entity. When the file is too big, a datastore allows you to read and analyze data
from each file in smaller portions that do fit in memory.

The workspace contains variables that you create within (or import into) MATLAB
from data files or other programs. Workspace variables do not persist after you exit
MATLAB. However, a workspace can be preserved in your current working folder in a
compressed file with a .mat extension, called a MAT-file. This is available with a simple
”save” command.

2.1.3 Acceleration

There are plenty of ways to accelerating MATLAB algorithms and applications. This
varies from translating the scripted MATLAB code to C code or platform specific code,
using the Parallel Computing Toolbox to using in-app existing optimized algorithms.
Some of the methods like optimizing serial code using preallocation and vectorization
or package to C code are still running on the CPU. Since most of the computers or
processors nowadays have multicores, MATLAB by default runs some linear algebra and
numerical functions and those included in the Image Processing Toolbox multithreaded
since Release 2008a. MATLAB programs can also be executed on multiple MATLAB
computational engines on a single machine to execute applications in parallel, with the
Parallel Computing Toolbox.

However, as a general purpose processor, a CPU is not optimized for particular
computations. Sometimes it is more efficient and natural to take advantage of other
platforms or hardware for acceleration and scaling up. MATLAB provides interfaces
and toolboxes for the following hardware/platform (shown in Figure 2.1):

• Graphics processing Units (GPUs) are designed to do image processing jobs like
texture mapping, filtering and translation. MATLAB provides computations on
CUDA GPUs (only support NVIDIA GPUs) through the Parallel Computing Tool-
box.

• A digital signal processor (DSP) has an architecture optimized for digital signal
related operations, especially when processing quickly and repeatedly on a series
of data samples. MATLAB uses the DSP System Toolbox to design, simulate and
generate code for DSP.

• Field-programmable gate arrays (FPGAs) combines the advantages from general
purpose processors (GPPs) and application specific integrated circuits (ASICs). It
is more efficient than using GPPs in terms of power and performance and also
easier, cheaper and faster than developing in ASICs. With the HDL Coder and
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HDL Verifier in MATLAB, one can design and generate target-independent or
target-optimized HDL code for FPGAs.

• Some problems are so complicated that they take hours or more of computation.
To run these computationally intensive programs simultaneously, MATLAB Dis-
tributed Computing Server and Parallel Computing Toolbox are the solutions to
scale up MATLAB programs from single computer to all resources in clusters and
cloud computing services. MATLAB Distributed Computing Server supports both
built-in cluster job scheduler and commonly used third-party schedulers like Mi-
crosoft Windows HPC Server and IBM Platform LSF. If one wants to scale up the
applications to the cloud, there are multiple options based on factors like maximum
number of workers needed or the cloud service provider, which can be checked on
the following web page [12].

• MATLAB provides the MATLAB Distributed Computing Server and MATLAB
Compiler for processing big data that does not fit in memory of a desktop or cluster.
This includes accessing data from Hadoop Distributed File System (HDFS) and
running algorithms on Apache Spark or HDFS. However, both Hadoop and Spark
are supported only on Linux recently. MATLAB Compiler support for MATLAB
objects for Hadoop integration was added in features in version 6.0 (R2015a). The
datastore: Tall Arrays which is used to work with out-of-memory data was first
introduced in version 6.3 (product R2016b), as well as the support of Spark.

Figure 2.1: MATLAB code acceleration using hardware optimization and scalability
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2.1.4 Integration with other languages

MATLAB also provides two-way integration with other programming languages [13],
including:

• Calling MATLAB from another language

• Calling libraries written in another language from MATLAB

• Converting MATLAB code to C/C++ code

• Packaging MATLAB programs

Different languages are supported from different MATLAB release version. JAVA
integration has been available since Release 12 (MATLAB 6.0). Since Release 12, MAT-
LAB has been always shipped with a bundled JAVA engine (JAVA Virtual Machine or
JVM). Python integration was first added in version MATLAB 2014b.

One way to accomplish that is to use MATLAB from within another programming
environment via a MATLAB Engine API. Engine programs are standalone programs.
These programs communicate with a separate MATLAB process via pipes, on UNIX sys-
tems, and through a Microsoft Component Object Model (COM) interface, on Microsoft
Windows systems. MATLAB provides a library of functions that allows you to start and
end the MATLAB process, send data to and from MATLAB, and send commands to
be processed in MATLAB. When using APIs, one can use MATLAB commands within
another programming language without starting a desktop session. Since it only links to
a smaller engine library, it can work faster. MATLAB provides Engine APIs for C/C++,
Fortran, Java, Python, COM components and applications, as shown in Figure 2.2. It is
useful in automating tasks and in applications where MATLAB is an equally privileged,
equipotent participant in the application.

Figure 2.2: MATLAB Engine based approaches
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On the other hand, MATLAB can also call functions and objects in another pro-
gramming language within MALTAB. This is more straight forward compared to using
MATLAB from other languages. The way to call functions from different languages is
quite consistent. First step is to make sure the path for functions, classes, or objects is
available to MATLAB. The next step is to load the library/function/class/objects. After
loading them, you can request information about library functions and call them directly
from the MATLAB command line. Those imported packages use lazy loading, so they
are only loaded into memory when actually needed. When they are no longer need them,
they can be unloaded from memory to release that part of the memory. The tricky part,
however, occurs in data passing between MATLAB and a function in other languages.
For example, automatic-type conversion occurs only when passing data from MATLAB
to Java, but only partially on the reverse path. Another important observation to re-
member is how the data passes between MATLAB and other languages. According to
the book Undocumented Secrets of MATLAB-Java Programming [14], all data passed
from MATLAB to Java except for object references are passed by value, whereas all
objects (nonprimitive types) returned from Java are passed by reference. Which means
if the Java function wants to modify MATLAB data, the MATLAB data should be en-
cased in a Java reference using MATLAB’s javaArray function. MATLAB ships with
its own JVM software, which is fully supported by MATLAB. This JVM is only used to
enable MATLAB to access Java classes, not to act as an internal Java interpreter. For
this reason, some components might not work or some methods (typically used by event
callback actions) cannot be directly accessed from MATLAB.

Figure 2.3: Calling Libraries Written in Another Language From MATLAB

For those who want to share the MATLAB functionality royalty-free with people who
do not have MATLAB installed, or want to deploy MATLAB as software components
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(that can be integrated into web and enterprise systems), it is possible to leverage the
power of MATLAB Runtime and MATLAB Compiler SDK, which is shown in Figure 2.4.
Before integrate MATLAB functions into external applications, those functions need to
be compiled (into a library or an installer) to platform specific shared libraries for the
target language using MATLAB Compiler SDK. This compiled code can be installed
(with the installer got from last step) or integrated (you get a binary package the target
language from last step) to other applications. To run this part of code, one need
MATLAB Runtime. The MATLAB Runtime is a standalone set of shared libraries that
enables the execution of compiled MATLAB applications or components on computers
that do not have MATLAB installed. During the execution, MATLAB Compiler SDK
uses APIs to initialize the MATLAB Runtime, load the compiled MATLAB functions
into the MATLAB Runtime, and manage data that is passed between the target language
code and the MATLAB Runtime.

Figure 2.4: Packaging MATLAB Programs as Software Components

For those environments which are not suitable for MATLAB Runtime, such as em-
bedded system, MATLAB also offers MATLAB Coder to generate standalone readable
and portable C and C++ code from your MATLAB code (Figure 2.5). The generated
code can also be integrated as source code, static libraries, or dynamic libraries.

2.2 Spark framework

Spark is built with Scala and runs on JVM. It is an open-source and generalized cluster
computing framework centered on a data structure called the resilient distributed dataset
(RDD) for distributed data processing using in-memory data caching.
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Figure 2.5: Converting MATLAB Code to C/C++

2.2.1 Spark architecture

The architecture of Spark is shown in Figure 2.6. Spark Core is the foundation of the
Spark framework, it contains all the basic functionality including distributed tasks dis-
patching, scheduling, fault recovery, and memory management. Spark Core is exposed
to users through application programming interfaces (APIs). Spark (version 2.2.0) pro-
vides APIs in Scala, Java, Python, and R. There are also libraries/modules provided
by Apache Spark for some specific uses. Those libraries including Streaming for pro-
cessing real-time data streams, Spark SQL, Datasets, DataFrames for structured data
and relational queries, MLlib for machine learning, and GraphX for graph processing.
As a cluster computing framework, Apache Spark needs a cluster manager as well as a
distributed storage system. Spark has its own simple cluster manager: Standalone, it
is a basic cluster manager included with Spark that makes it easy and fast to set up a
cluster. It can also be deployed on Hadoop YARN and Apache Mesos. For distributed
storage, Aparch Spark provides more flexible choices [15] like Hadoop Distributed File
System (HDFS), MapR File System (MapR-FS), Cassandra, OpenStack Swift, Amazon
S3, Kudu or custom storage. Spark also supports a pseudo-distributed local mode which
aims for developing and testing, where distributed storage can be replaced by the local
file system. In this mode, Spark is run on a single machine with one executor per CPU
core.
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Figure 2.6: Spark architecture

2.2.2 Spark RDD

The most important abstraction in Spark architecture is resilient distributed dataset
(RDD) which is the key for in-memory computations on large clusters while being fault-
tolerant. RDDs are immutable, partitioned collections of elements that can be operated
on in parallel. The data is split into partitions and stored in memory or disk across a
cluster of machines. Those partitions are the units of parallelism. There are two general
types of operations allowed on an RDD:

• Transformations, that transform (e.g. map, filter, join, etc.) RDDs into new
RDDs. Each transformation needs personalization with user-defined behavior (i.e.
personalized by a function applied on elements of the collection stored in the RDD)

• Actions, which return a value to the driver program after running a computation
on the dataset.

RDD is lazy evaluated, which means the data inside RDD is not available or transformed
until an action is executed that triggers the execution. Data stored inside RDDs is stored
in memory as much (size) and long (time) as possible, but can also be stored persistently
into storage like disk. When designing the computation on Spark, one needs to always
consider the balance between the data distribution and data locality, which contributes
to the time consumption of parallel computation and data transformation across the
network by means of RDD shuffling.
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2.2.3 Spark execution

Spark uses a master/slave architecture. It has one central coordinator (driver) that
communicates with many distributed workers (executors). The driver and each of the
executors run in their own Java processes. The Spark execution process is shown in
Figure 2.7.

Code

SparkContext

Spark driver application 

Cluster Manager

Worker nodes

Cache

TaskTask

Executor

Figure 2.7: Spark execution process

To run Spark on a cluster, the first step of is to create a SparkContext from the
Spark driver application. A SparkContext is the core part in Spark that manages the
connections to the clusters like Hadoop YARN, Apache Mesos, or standalone, and coor-
dinates running processes on the clusters. In order to create a SparkContext one should
first create a SparkConf which contains properties of the SparkContext, such as deploy-
ment environment (as master URL), memory size used by executors, and application
name. After the SparkContext is created, it can help to get current status of Spark
applications, set configuration like default logging level, create distributed entities (e.g.
RDDs, accumulators and broadcast variables), access Spark services (e.g. TaskSched-
uler, BlockManager, ShuffleManager and SchedulerBackends), and run or cancel jobs
through DAGScheduler [16].

Once the SparkContext is connected to cluster managers, Spark is able to request
resources from cluster managers (currently only CPU and memory are resources that
can be requested). It is the cluster manager responsibility to launch Spark executors
in the cluster. Executors are worker nodes processes in charge of running individual
tasks in a given Spark job. Usually one node in a cluster is one worker, and it holds
many executors for many applications (standalone cluster manager, only allows one
executor per worker process on each physical machine). The workers are in charge
of communicating the cluster manager the availability of their resources. Next, the
SparkContext sends the application code (defined by JAR or Python files passed to
SparkContext) to the executors. Finally, it sends tasks to the executors to run. Executors
run the tasks and save the results, or send the result back to the driver.

2.2.4 Spark vs Hadoop

MATLAB Compiler support for Hadoop integration started since R2015a and for Spark
since R2016b, both of MATLAB integration required the Linux operating systems. Both
Spark and Hadoop provide tools to carry out common big data related tasks. They have
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the following main differences:

• Hadoop is a framework which consists of both data storage (HDFS), a distributed
processing (YARN), and a processing component called MapReduce.

Spark is a fast and general computing engine for Hadoop data. It does not have its
own distributed storage mechanism, which means that it needs to be run on one of
the existing distributed storage systems like HDFS or S3, if a scalable file system
is needed. For this reason, it is more fitting to compare Spark with MapReduce
rather than with the entire Hadoop system.

• Spark was released 3 years after Hadoop was initially released, it uses different
architectural and implementation than Hadoop used. Hash-mased aggregation in
Spark is more efficient than sort-based aggregation in MapReduce for word-count
like workloads. MapReduces execution model is more efficient for shuffling data
than Spark, thus making Sort run faster on Spark [17].

• Spark uses in-memory engine. It can also use disk for reusable data, or data
which doesn’t fit into memory. While MapReduce is a disk-bound batch processing
engine, MapReduce operates in steps between each iteration. First, the results
have to be written to the cluster, then the updated data has to be read from the
cluster for the next computation. Spark stores most of the data into RAM. This
reduces the amount of time for writing and reading, and thus can complete the
full processing procedure in near real-time. As a result, for iterative algorithms
for machine learning or other computations with subsequent iterations, Spark is a
better choice than MapReduce.

• Hadoop and Spark use different fault tolerance strategy. In MapReduce, there is a
JobTracker that keeps tracking TaskTrackers by receiving heartbeat periodically.
If one TaskTracker is considered to have failed, the JobTracker will reschedule all
pending and in progress tasks to other TaskTrarckers.

Spark uses RDDs. Instead of storing the data, RDDs log the transformations, so
called RDD lineage graph. If any partition of an RDD is lost or damaged due to
node failures, it will automatically be recomputed using the transformations that
originally created it.

To summarize, MapReduce and Spark can both process batch and iterative jobs. MapRe-
duce has better performance for sorting. Spark has more advantages for real-time pro-
cessing, computations that have several iterations like graph processing, and iterative
machine learning algorithms.

2.3 Graphics processing unit

A graphics processing unit (GPU) is a specialized electronic circuit that has massively
parallel architecture, this makes them more efficient than general-purpose processor for
some compute-intensive algorithms that need to handling multiple tasks in parallel.
GPUs are now used for rapid mathematical calculations, generally using in rendering
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images. NVIDIA, AMD, Intel and ARM are some of the major companies that make
GPUs products.

General-purpose computing on graphics processing units (GPGPU) is a methodology
that allows programmers using GPUs to perform general purpose computing, which are
traditionally handled by the CPU. Algorithms that are data parallel and throughput
intensive are suited to GPGPU.

Comparing with a central processing unit (CPU), a GPU has more cores that can
handle multiple threads simultaneously, but with less cache memory and registers, and
slower clock speed, which makes it less powerful for individual serial tasks than a
CPU. There is a considerable amount of literature on GPU acceleration used in medical
field, including image processing [18] and alignment or mapping of genomics sequencing
data [19] [20] [21] [22] [23].

Usually GPU-accelerated computing needs the cooperation with CPU, those
compute-intensive portions of the application is accelerated on GPU while the remainder
of the codes still runs on the CPU.

2.3.1 Compute Unified Device Architecture (CUDA)

CUDA (Compute Unified Device Architecture) is a parallel computing platform and
programming model invented by NVIDIA. It works with all Nvidia GPUs from the G8x
series onwards, including GeForce, Quadro and the Tesla line.

It comes with CUDA Toolkit, a complete environment for building scalable GPU-
accelerated applications in C, C++, Fortran and Python for CUDA-enabled GPU. It
provides libraries, compiler directives, and extensions to industry-standard programming
languages (C, C++ and Fortran). It also supports other computational interfaces like
OpenCL and OpenGL. The core of CUDA are three abstractions: a hierarchy of thread
groups, shared memories, and barrier synchronization.

2.3.2 Execution flow

In a CUDA application, the Host refers to the execution environment that initially
invoked CUDA, typically the thread running on a system’s CPU processor. And the
Device refers to the GPUs. And the piece of data parallel C function that is executed by
blocks of threads in device is called a kernel. The CUDA programming model assumes
that CUDA threads execute on the physically separate device to the host who runs the
C program, so the serial code on the host and the parallel kernel on the GPU can be
executed simultaneously. The model also assumes that both the host and the device
maintain their own separate memory spaces in DRAM, referred to as host memory and
device memory. Therefore programmer need to manage both of the memory spaces,
including allocation, deallocation on both side as well as data transfer between host and
device memory. The execution flow of CUDA program is shown in Figure 2.8. During
the runtime, the host first copy data from host memory to device memory, then the host
instructs the process to GPU, after kernels are finished on GPU, it copies the result from
the device back to the host.
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Figure 2.8: CUDA processing flow. From Example of CUDA processing flow, Wikipedia,
https://en.wikipedia.org/wiki/CUDA, [Online; accessed 24-July-2017 ]

2.3.3 Thread hierarchy

As we mentioned before, kernel is executed by threads. From programming view, those
threads are given a unique thread ID (threadIdx), the thread ID is a three-component
vector, so the threads can form a one-dimensional, two-dimensional, or three-dimensional
block of threads, called a thread block. Thread blocks also has a three-component
vector as its id, can also organized into a one-dimensional, two-dimensional, or three-
dimensional grid of thread blocks.

When it comes to hardware, an entire grid is handled by a single GPU chip. Inside
the GPU, there are a collection streaming Multiprocessors (SMs), each SM has its own:
control units, registers, execution pipelines, caches and a group of CUDA Cores. Each
thread defined in the CUDA program, is executed by a core, and each block is executed
by one SM (more than one blocks can be executed concurrently when block’s memory
allows). And the maximum threads that a SM can handles is represented as warp size.

Figure 2.9 shows the thread hierarchy of thread groups of CUDA,

2.3.4 Memory hierarchy

Threads can read and write data from register and different types of memory, different
memory are differ in the access latency and scope. The memory hierarchy of CUDA is
shown in Figure 2.10.

First all, each thread has its own registers and local memory. The scope of registers
is thread local. Access to registers is the fastest, but the number of registers is limited
for each block, and the variables in the registers only available during the life as the

https://en.wikipedia.org/wiki/CUDA
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Figure 2.9: Grid of Thread Blocks. From Grid of Thread Blocks, http://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.htm, [Online; accessed 24-July-2017 ]

thread.

Local memory is used for whatever does not fit into register, it is also private for
each thread but has the same access latency as global memory, which means very slow.
Variables in the local memory also has the same lifetime as the thread.

Shared memory enables threads belonging to the same block exchange the variables
and has low access latency (about 100 times faster than global memory). Shared memory
has a lifetime of the block. While using shared memory, one needs to pay attention to
the bank conflict, to make sure that no thread can read the part of that shared memory
while another thread is writing to it.

Global memory is open to all threads, which makes it has high latency. However
it has large memory space for variables. It has the lifetime as the whole application.
Global memory can be modified and accessed by host using C-functions like cudaMemcp,
cudaMalloc or cudaFree.

Constant memory can also be read from all threads. There is only a limited amount of
constant memory can be declared (64KB). And the variable inside the constant memory
can not be modified by kernels, therefore, immutable. Also it shares the same memory
banks as global memory, so it is still slow, however, it is faster than global memory since
variable inside the constant memory is cached and immutable. The lifetime of constant
memory is the same as global memory (application).

Texture memory is also read-only memory spaces that can be reached by all threads.
It is stored in device memory and cached in texture cache. Comparing with global
memory and constant memory, it is optimized for 2D spatial locality,

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.htm
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.htm
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Figure 2.10: CUDA Memory Architecture. From CUDA Memory Model, Jeremiah
van Oosten, https://www.3dgep.com/cuda-memory-model/, [Online; accessed 24-July-
2017 ]

2.3.5 Synchronization in CUDA

Threads within the same block can access to shared memory and can be explicitly syn-
chronized by calling syncthreads(). syncthreads() function acts as a barrier, when it
is called, execution will not continue until all the threads have their job finished.

There is no direct function to synchronize between blocks. If one need the data inside
global memory share with blocks, one can create own mutexes using the atomic functions
provided by CUDA Toolkit.

2.3.6 Integrate with MATLAB

There are several ways to combine both the convenience of using MATLAB and the per-
formance acceleration utilizing GPUs. For example, some popular used image processing
functions like fft and filter are already GPU-enabled. There are also two possibilities for
more advanced use if one wants to implement their own algorithm on GPU and inte-
grate it to MATLAB. To integrate the GPU kernel into the existing MATLAB software,
the code written in C for controlling the GPU has to be adapted. One is to create an
executable kernel from CU or PTX (parallel thread execution) files, and run that kernel
on a GPU from MATLAB, another one is to run MEX-files with CUDA code and have
a single entry point.

https://www.3dgep.com/cuda-memory-model/
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In order to use kernel to do GPU accelerate, first need to compile a PTX File from
a CU file in command line. With the CU file and PTX file. you can create a CUDAK-
ernel object in MATLAB that can be used to evaluate the kernel. The CUDAKernel
functionality was introduced in R2011b in Parallel Computing Toolbox.

Calling MEX-files to achieve higher performance is a more challenging task. A MEX
file is a type of file that provides an interface between MATLAB or Octave and functions
written in C, C++ or Fortran. When compiled, MEX files are dynamically loaded and
allow external functions to be invoked from within MATLAB or Octave as if they were
built-in functions. If it is pure CPP or C file, can use mex command in MATLAB to
build the MEX file and call it like a MATLAB function. Since we need to build a MEX
from CUDA files. We need to use mexcuda command instead of mex command and also
modify the code. After we finish the CU coding and debugging, we need to add an entry
point for it, known as mexFunction. So that the CUDA code in the MEX-file is conform
to the CUDA runtime API. Function mxInitGPU should be called in the beginning of
mexFunction to ensure that the MathWorks GPU API is initialized properly.

The mexFunction, like the entry point in most coding language, has a number of
inputs and the pointers to inputs as arguments. It also receives a number of expected
output and array of pointers to the expected output as arguments. Inside the mexfunc-
tion, the number of MEX file input and output arguments as well as the type of these
arguments are verified. This gateway routine requires mxArray (which is a C language
opaque type of MATLAB arrays) for both input and output parameters. This means
that we need to create a mxArray pointer that will later be populated with the result
data we get later. The kernel of computational routine has no difference from normal
CU file. After defining the entry point for CUDA, it is possible run mexcuda command
from MATLAB command line. Mexcuda was introduced in version R2015b. It is an ex-
tension of MEX function which can use NVIDIAs nvcc compiler to compile a MEX-file
containing the CUDA code.

In order to compile CUDA code, it is necessary to first install the CUDA toolkit ver-
sion which is consistent with the ToolkitVersion property of the GPUDevice object. By
default, MATLAB stores all numeric variables as double-precision floating-point values.
It is recommended to cast the numeric variables in the MATLAB side to single-precision
using single command, or use double for variables in CU file.

To set the Visual Studio environment for debugging, one needs to specify the option
for mexCUDA command as -G, this makes it possible to step through kernel code line
by line in one of NVIDIA’s debugging applications (NSight or cuda-gdb) by generating
debug information for device code. Then open the source CU file in Microsoft Visual
Studio and add breakpoints, go to Studio → TOOLS → Attach to Process in Visual
Studio, select the running MATLAB process, transport as GPU Debugger, Qualifier as
your Debugger set in NVDIA Nsight Monitor, finally from MATLAB, run the MEX-
function. The program will run until it hits the breakpoint and pause.

Although using MEX file is more work than using CUDAKernel to integrate CUDA
code with MATLAB, there are some reasons for choosing the MEX-file approach.

• MEX-files can interact with host-side libraries, such as the NVIDIA Performance
Primitives (NPP) or CUFFT libraries, and can also contain calls from the host to
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functions in the CUDA runtime library.

• MEX-files can analyze the size of the input and allocate memory of a different
size, or launch grids of a different size, from C or C++ code. In comparison,
MATLAB code that calls CUDAKernel objects must preallocate output memory
and determine the grid size.

2.4 Link between MATLAB, Spark and native

In order to use MATLAB functions from a C/C++ program, it is possible to use MAT-
LAB as a computation engine. To call C/C++ function from MATLAB, one can build
MEX files and use the filename as function name. Such a function can be called from
the MATLAB command line as if they were built-in functions.

The situation is similar for Python. MATLAB also provides an engine for Python.
Using this engine, one can call any MATLAB function directly and return the results
to Python. It is easier to call the Python module from MATLAB than call C functions
from MATLAB, since all you need is to include the path of the module to the Python
search path. Subsequently, the functions inside the imported module can be used inside
MATLAB. There is a third way to link MATLAB with Python, which is connecting the
MATLAB Engine for Python to a shared MATLAB session that is already running on
the local machine. If there is no running session already active, a new MATLAB session
will be started. If you started with converting the MATLAB session being used now
to a shared session from a command line in MATLAB, and connect the Python to the
session with the same ID of the MATLAB process, the variables can be modified, (new
variables added and deleted) from both sides through the MATLAB workspace.
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This chapter begins with an overview of image registration algorithms discussed in the
literature. Second part will focus on alternative implementation platforms that have been
used in research. This section investigates which platforms the use case can be applied
on, and analyzes the previous work that has been done. The last section discusses the
comparison of the possible solutions and chooses some of them to implement in the next
chapter.

3.1 Image registration algorithms

Image registration has been one of the major areas of research in the medical imaging
community for decades in addition to the another area of image segmentation. As an
important role in image processing, the task of registration is to align two or more images
that are taken differently in time, in angles, or from different modalities. In this area,
a broad range of techniques has been developed that can aim for a particular type of
data and requirements. Most of the registration processes include algorithms to examine
the spatial difference caused by scaling, rotations or movements, and compensate the
difference. In this section, some of the widely used image registration algorithms for
medical images are discussed.

One of the widely accepted classification of image registration methods is single-
modality and multi-modality. The differences between these two classes are whether the
images to be registered are acquired by the same type of imaging equipment or different
ones; multi-modality image registration is often used in medical imaging. Back to the
year 1997, F. Maes et al. [24] reported on a new approach for multi-modality medical
image registration by maximizing mutual information.

Image registration techniques can be classified into intensity-based or feature-based
methods. Intensity-based registration techniques use intensity patterns as metrics. One
example of such metrics is raw pixel values; thus these techniques can reach high accuracy.
Feature-based registration techniques, on the other hand, use image features to find
correspondence. These features include points, edges, contours, or surfaces. One of the
biggest advantage of using features is that they can also be used for multi-modality
registration. However, comparing with intensity-based methods, they are less robust,
because they usually contain extra stages to define and extract features from images,
which can introduce errors for the registration process that cannot be recovered in later
stages.

A basic image registration process consists the following four steps: In the first step,
features are selected and extracted for feature-based methods or images are transformed
(scaling, rotating, shearing, etc.) for intensity-based methods. The second step is mea-
surement. In this step, metrics are used to measure the similarity or differences between

21
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images. Single-modality methods usually compare spatial location of images, and multi-
modality methods usually use mutual information to determine statistical dependence
or use correlation ratio for functional dependence of images. Some widely used similarity
measures [25] [26] [27] include Mutual Information (MI), Cross Correlation (CC), Sum
of Squared Difference (SSD) and absolute difference. The third step is optimization.
In this step, a spatial transformation model is defined based on the expected relation-
ship between the images, and a serial optimization algorithms are executed to find the
optimum parameters that can best align the two images by maximizing the similarity
metrics. The final step is image transformation. The sensed image is transformed by
mapping transformation functions (rotations, translations, interpolation). For some re-
cursive image registration processes, this step can also include re-sampling for the next
iteration.

One of the key feature of the process is similarity metrics which give quantitative
evaluation of the similarity between two image or two regions of images. There are
no similarity metrics that perform the best for all situations, these metrics are usually
appropriated for particular applications.

For intensity-based registration, as we mentioned before, multi-modality medical im-
age registration usually use MI. This is because it is invariant to an arbitrary re-mapping
of pixel intensity values, which are caused by different sensors. MI is based on informa-
tion theory concepts, and make use of a joint probability distribution (trivially extended
by Shannon entropy) built from image histogram. It measures how much knowing one
image reduces uncertainty about the other, and maximized when two images are aligned.
In [28], the author described image similarity measures within a formal mathematical
metric framework, and outlined the most popular image (dis)similarity measures that
inspect the intensity probability distribution of the images, and reformulation of these
measures as metrics. The measures include joint entropy, MI, empirical normalized mu-
tual information (NMI), and symmetric uncertainty coefficient (SUC).

For intensity-based registration of images in the same modality, image similarity
measures that use CC, sum of squared intensity differences and ratio image uniformity
are commonly used. The classical representative of these intensity-based methods is
the normalized CC (NCC) and its modifications. The similarity between window pairs
from the sensed and reference images is measured by NCC algorithm, and the maximum
is achieved as the corresponding ones. These correlation-like registration methods can
align two images with only translation, or even with more complicated deformations
like slight rotation and scaling. The main two drawbacks for these methods are the
flatness of the similarity measure maxima (occurs when the images are too similar) and
high computational complexity [27]. The maxima can be sharpened by preprocessing
or by using the edge or vector correlation. Despite these drawbacks, NCC is in use for
some applications, due to the easy hardware implementation and potential for real-time
applications.

Feature-based registration is recommended for images that contain rich detail and
enough distinctive parts. By detecting the correspondence between pairs of points in
images, a geometrical transformation can be determined. Mostly used feature types are
region features, line feature and point features. To extract these features individually
from both images, feature detection methods like Harris Corner Detector (multi-scale
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Harris), SIFT (Scale Invariant Features Transform), Canny edge detector or Wavelet
based feature detection are used. Once the features are detected, the next step will be
matching the correspondence features. In this step, methods used in intensity-based
registration can be also applied here like CC and MI methods.

It is also possible to combine both feature-based and intensity-based methods. [29]
suggests a method for registration of multi-modal and temporal images of the retina
using a combined feature-based and statistics-based method.

For reasons of space, algorithms used in transformation, optimization and resampling
are not addressed in this thesis. These algorithms are discussed in [27] and [25]. In
general, registration methods are iterative, and the optimizer checks for a stop condition.
If there is no stop condition, the optimizer adjusts the transformation matrix to begin
the next iteration.

Image registration is still one of the most important steps in medical image processing.
It can be used in a series of stages of medical care, diagnosis, treatment, and monitor-
ing disease progression. The applications involving registration include computer-aided
diagnosis [30], computer-integrated neurosurgery modeling [31], and surgical navigation
and assisted surgery [30].

3.2 Alternative implementation platforms

One of the famous open-source image processing programs is ImageJ. It is a pure Java
application released in 1997 that provides extensibility via Java plugins and recordable
macros. It can be run as an online applet, a downloadable application, or on any com-
puter with a Java 5 or later virtual machine. The image processing operations can be
executed in parallel on multi cores.

Based on ImageJ, a distribution called Fiji was released [32] in 2011. Fiji supports
scripting, through appropriate interpreter plugin, scripts can access Fiji’s extensive algo-
rithm libraries that implement advanced image analysis techniques in Java. The scripting
languages it supports include (Jython, Clojure, Javascript, JRuby and Beanshell). How-
ever, many image-analysis solutions available for Fiji can be only used under Fuji and
do not have a comparable alternative in other platforms.

In [33], a generic framework for medical image registration is built. This framework
is implemented in the C++ programming language. It is specifically built for the MeVis-
Lab rapid prototyping software which is a multi-platform software that includes image
processing and visualization modules.

[34] introduced a pure web-based, interactive, extensible, 2D and 3D medical im-
age processing and visualization application. For web-user-interface, a combination of
JavaScript with AJAX technology is used. For advanced features like 3D visualization,
an advanced version of the client application with a Java Applet is developed. The serve
runs the main engine of the software for image processing functionalities. It contains
ITK library (a well-known C++ open source library designed to cover many medical
image processing routines) and code generator (for generating most of the codes of the
higher layers of the application). For developing the visualization algorithm, the VTK
library is used, which is a visualization toolkit.
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Vemula et al. [35] developed the Hadoop Image Processing Framework, which pro-
vides a Hadoop-based library to support large-scale image processing. This solution
grouped small image files from image datasets into image bundle file to solve the prob-
lem that HDFS has to handle small file storage. The framework uses Java and algorithms
are highly parallelized thanks to MapReduce.

In September of 2016, researchers in Southern Illinois University Edwardsville pub-
lished an open source software package CVIPtools that is available in three variants: a)
CVIPtools Graphical User Interface, b) CVIPtools C library and c) CVIPtools MAT-
LAB toolbox [36]. The algorithms code layer is written in standard C. To extend the
functionality of CVIPtools to MATLAB, these image processing functions have been
ported to MATLAB by writing wrapper functions for CVIPtools library functions using
MEX feature of MATLAB. It currently consists of 117 functions covering different ar-
eas of image analysis and computer vision such as image geometry, segmentation, edge
detection, transform filters, spatial filters, morphological filters, arithmetic and logical
operations, and image histogram operations. However, it is not dedicated to medical
image processing, and image registration is not included in the toolbox.

Back to earlier years, Mittal et al. addressed in 2008 that FPGAs could be an efficient
and promising platform for image processing due to their high computational density, low
cost, and optimization [37]. Later in 2013, Chiuchisan [38] implemented the one of the
first low-level FPGA-based image processing platforms. This platform is a FPGA-based
real-time configurable system consisting of image processing low-level operators that
focuses on medical images enhancement, like contrast filter, brightness filter, inverting
filter and pseudo-color filter. It used Verilog HDL for reconfigurable architectures.

Beside the above implementation, another widely used platform for image processing
is GPU. [39] published in 2013 presents an overview of the work done on GPU accelerated
medical image processing, which includes the most commonly used algorithms in medical
imaging (image registration, image segmentation and image denoising) and algorithms
that are specific to individual modalities. An open source multi-platform library called
GpuCV is presented in [40]. It is a framework for image processing and computer vision,
which is an extension of Intel OpenCV library.

3.3 Comparison of alternative solutions

As a conclusion of previous work, alternative solutions of image processing platforms are
compared in this section.

In the collections of open source toolkits, software platforms or libraries, the most
popular languages used are Java and C++. Some of the image processing algorithms
on these platforms are run in parallel on multi cores. Depending on the platform and
distribution, it is not possible to compare the performances of image processing solutions
across multiple platforms.

MATLAB has its own toolbox for image processing, with requires an added license.
One way to use the open source libraries mentioned above in combination with MATLAB
is to wrap the functions using the MEX feature of MATLAB. The MATLAB with library
solution only consists of a few functions that use C++ libraries, and did not offer an
interface for plug in or user-defined functions.
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These libraries are also used in other platforms like web-based or Hadoop in the algo-
rithm layer. The challenge of web-based solutions is the visualization of 3D images. And
the connection of higher layer language used for web service with lower layer language
for image processing algorithm. The advantage of Hadoop solution is the scalability.
However the learning curve for using Hadoop is one of the drawback. Another problem
for using Hadoop is that HDFS is not designed to handle small file storage, like images.

FPGA solution can be powerful and low cost, but is now only used for limited low-
level image operations because the coding language limits the possibility of user-defined
algorithms.

GPU is a popular and mature solution for medical image processing algorithms.
There is also a library that is an extension of OpenCV for easy implementation. However,
the performance of this solution highly depends on the hardware and algorithm itself.
To extend the existing library with new GPU accelerated functions can be also complex.

Based on this comparison, several solutions are to be considered for testing and
evaluation in this thesis, including the MATLAB Toolbox with GPU, MATLAB with
Python, and MATLAB with Spark. This is due to the following reasons: MATLAB
is a cross platform software that has been widely used in the industry and education
It uses a scripting language that is similar to Python. This decreases the difficulty
for the user to implement extra functions in Python to extend the library. There is
already an integration of C++ with MATLAB, however there is no solution with GPUs
yet. Considering the excellent performance of GPUs and the existing library for usage.
We also choose it as one of the solutions. The cluster solution provides scalability and
fault tolerance features. Although MATLAB includes cluster functions within an extra
toolbox, there is no image processing library and the toolbox is at the high end of license
cost. Thus we also consider it as a potential solution to figure out how it can be integrated
into MATLAB.
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Implementation and
measurements 4
In the previous chapter, we listed out alternative solutions that have been used for image
processing platforms, and chose several solutions from them to test in this thesis. These
solutions are the MATLAB Toolbox with GPU, MATLAB with Python and MATLAB
with Spark. These solutions will have differences in the way that they are integrated
with MATLAB, as well as their performance. For the developers, it will be helpful to
estimate the performance and bottlenecks before they decide which acceleration methods
to implement for their applications. Based on this, this chapter is concerned with testing
the selected solutions and evaluating them using various metrics.

Many situations should be considered when performing the evaluation. We have
identified the following metrics as relevant for the evaluation process:

• Initialization—This metric evaluates the overhead induced by initialization of
calling GPU and Spark from MATLAB. This includes the time for MATLAB to
import the libraries needed for running extra modules in other languages, essential
packages needed for python to use Spark and the configuration time of the cluster
for PySpark.

• Memory transfer—This metric describes the overhead used when passing data
by value to external functions. Data in MATLAB can be passed either as object
handles or by value. In the first way, only the handle is copied, both the original
and copied handles refer to the same physical location. In the second way, the
actual value is copied to a new address. Because this copied value is independent
from the original one, the modification on the copy will not influence the original
data. When one uses the javaArray function or creates a Python object using a
constructor in MATLAB to encase data, this data is passed by reference.

• Data conversion—When passing MATLAB data as arguments to external func-
tions written in another programming language, MATLAB converts the data into
types that best represent the data to that language. This can be done either auto-
matically or manually. In a similar way, data transferred back to MATLAB needs
to be converted back to a standard MATLAB data type for further computations.
We call the time needed to carry out this conversion as the data conversion time.

• Computational throughput—For this metric, we compared the computational
throughput of GPU, Spark and Python when working with MATLAB. We picked
one computationally intensive kernel to represent the computing difference of these
solutions.

Aside from the above-mentioned metrics, other factors such as network overhead,
disk access time, and number of processing units also influence the computational time;
these metrics are not discussed in this thesis.

27
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4.1 Experimental setup

The initialization and computational throughput metrics are measured by time in sec-
onds. Memory transfer and data conversion are measured by throughput in Megabytes
per second.

While measuring the time from MATLAB, one can choose any of the following tools:
profile, timeit, tic/toc, and cputime. These tools either return CPU time or wall-clock
time. CPU time is the time actually spent by the CPU executing the method code; it
sums the CPU time across all threads. Wall time is the real-world time elapsed between
method entry and method exit. If there are other threads/processes concurrently running
on the system, they can affect the results. Among the MATLAB functions, timeit and
tic/toc return both wall-clock time. The Timeit function calls the specified function
multiple times, and returns the median of the measurements. Tic/toc is usually used
when measuring first-time cost or small portion of code as part of a complete function.
Cputime returns cpu time while the profile function returns more information like call
time. For time measurements in this thesis, we used tic/toc for measuring the first-time
cost and either tic/toc or timeit for the rest measurements.

For the purpose of benchmarking those metrics, several use cases have been defined:
initialization micro-kernels, data copy micro-kernels, as well as computationally intensive
kernels for GPU and Spark. For kernels executed on MATLAB, CUDA and Spark
(pseudo-cluster mode on local machine), we use local single node (laptop computer), the
setup is presented in Table 4.1. The table also lists the specifications of the GPU used
to evaluate kernels that use GPU.

The software and applications used for developing, debugging or executing on the
local single node are listed in Table 4.2.

Some kernels were executed on multiple nodes to test the scalable capabilities of
deployment on a Spark cluster environment. The hardware and software specifications
for the cluster used to carry out these measurements are given in Table 4.3.

4.2 Initialization

In this section, we measure the initialization time needed to start executing functions
using two different tool flows. The first tool flow shows the initialization time for execut-
ing functions from MATLAB and then accelerated on GPU. The second tool flow shows
the initialization time for deploying MATLAB functions through PySpark on a Spark
environment.

In order to measure the initialization time for MATLAB and GPU, we invoke a CUDA
function, which does nothing but initializing MATLAB GPU library using mexFunction
and returning success or failure which make sure that the GPU device is known to MAT-
LAB. The duration for starting the GPU inside the mexFunction and from MATLAB is
shown in Figure 4.1a.

It is shown in the figure that the first iteration takes the most amount of time,
which represents the warm up time for the GPU. After that, the cost is almost zero for
subsequent iterations. This is expected, since the first iteration consumes much time in
initialization.
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Table 4.1: Local single node setup used for MATLAB, CUDA and local Spark code

Component Specification

Host specifications

Operating system Microsoft Windows 8.1

System type x64-based PC

Processor Intel(R) Core(TM) i7-4700MQ CPU

# of cores 4

# of threads 8

Processor base frequency 2.40 GHz 2400MHz

Installed physical memory (RAM) 8.00 GB

Cache 6 MB SmartCache

Max memory bandwidth 25.6 GB/s

GPU specifications

CUDA device number 1

Device Quadro K1100M

CUDA Driver Version / Runtime Version 7.5/7.5

CUDA Capability Major/Minor version number 3

Total amount of global memory 2048MB

Multiprocessor number 2

CUDA Cores/MP number 2 (Multiprocessors) *192 = 384

GPU Max Clock rate 706 MHz

Memory Clock Rate 1400 Mhz

Memory Bus Width 128 bit

Maximum Texture Dimension Size (x,y,z)
1D=(65536) 2D=(65536, 65536),
3D=(4096, 4096, 4096)

Total amount of constant memory 65536

Total amount of shared memory per block 49152

Total amount of registers available per block 65536

Warp size 32

Maximum number of threads per multiprocessor 2048

Maximum number of threads per block 1024

For PySpark, we test the time of creating a SparkContext. Only one SparkContext
can be active per JVM. When there is already a SparkContext running, one can access it
using the getOrCreate function, or stop it and start a new SparkContext. SparkContext
is usually stopped once a job is completed. For testing, we start or get a SparkContext
in every iterations. And we measure time for both creating and getting the context from
MATLAB and Python, as shown in Figure 4.1b.
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Table 4.2: Software and applications setup for local single node

MATLAB deployment

MATLAB version 64-Bit R2016a

GPU deployment

CUDA driver CUDART

CUDA driver version 7.5

CUDA runtime version 7.5

Build/debug tool Visual Studio 2013

Spark deployment

Spark version Spark 2.0.1 built for Hadoop 2.7.3

Scala version 2.11.8

Java version 64-Bit Server VM, Java1.8.0 101

Java vendor Oracle Corporation

Python 3.5.2

Hadoop version Hadoop-2.7.3

Build/debug tool
JetBrain PyCharm 2016.2.3(64),
Windows Command Line

Table 4.3: Hardware and software specifications for the cluster

Component Specification

Cluster configuration 4 + 1 nodes & 2 sockets per node

Node model IBM 8246-L2T

CPU
IBM Power 7 8-cores, 4 threads/core,
3.6GHz, 64 MB L3 Cache

RAM 128 GB

Operating System CentOS Linux 7

Spark deployment Spark v2.1.1 with YARN, Hadoop 2.5.1

4.3 Memory copy

To measure the memory transfer, we copy an array and a matrix from MATLAB to GPU
and from MATLAB to Python, and measure the transfer throughput (MB/s). We use
the array and matrix as examples of frequently used data structures in MATLAB.

4.3.1 MATLAB to GPU

There are at least two ways to copy an array or a matrix from MATLAB to GPU. One
way is to use gpuArray to copy the array from CPU to GPU in MATLAB and return an
object, then pass this gpuArray object to the mexFunction. To copy array from GPU
back to CPU, one can then use the gather function. The problem is that MATLAB
does not have the functionality to clean the memory allocated for GPU, which means
one needs to reset the GPU device and clear its memory periodically, which takes 7.1s
on average. The other way to copy the array or matrix from MATLAB to the GPU
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Figure 4.1: Initialization time for GPU and PySpark

is by directly passing MATLAB 1D or 2D arrays on CPU to mexFunction. Inside this
function, the array is copied to GPU using cudaMalloc and cudaMemcpy (for 1D arrays),
or cudaMallocPitch and cudaMemcpy2D (for 2D arrays). This way of copying data is
more difficult to use than the first one, but allows more control on the data, like binding
texture on it, and more importantly, it allows the memory on GPU to be easily freed
after being used.

The throughput also affected by the format of the data we copy. To show the differ-
ence, we use the same total amount of data to be copied as a one-dimensional array and
two-dimensional matrices for testing. For example, we compare the throughput between
a 1x4 array and a 2x2 matrix. It is easy for MATLAB to create a 2D or higher dimen-
sional array and copy to GPU automatically using the first method. Compared to this
MATLAB built-in function, the second method needs to adjust the function from cud-
aMemcp to cudaMemcp2D and has to deal with pitchBytes while allocating the memory.
The throughput of the data is shown in Figure 4.2a.

4.3.2 MATLAB to Python

When it comes to data transfer from MATLAB to Python, there are three approaches
to perform this transfer. The first approach is to transfer data by handle objects, which
are reference types of Python objects in MATLAB. The second approach is to transfer
by copying data to Python, and then copy back to MATLAB. This approach works for
MATLAB data types that can be mapped to Python data types automatically [41]. Since
MATLAB only supports 1xN vector mapping, data transfer of 2D matrices is not sup-
ported and it is therefore not discussed for the data copy approach. The third approach
is to use the MATLAB engine in Python to handle MATLAB data types. However,
calling a Python module that includes the MATLAB engine library from MATLAB it-
self will cause an initialization error of the MATLAB engine. For this reason, we only
consider the first two approaches in this thesis. In the first approach, data is transferred
by reference. The transfer time is near to zero. In the second approach, we measure the
time to transfer 1D array between MATLAB to Python by directly passing MATLAB
arrays as a parameter of the Python function. The result returned from Python is in the
form of a Python array handle object, which can be copied and converted to a MATLAB
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array using double function in MATLAB. The throughput of these two steps together is
shown in Figure 4.2b. The figure shows the transfer throughput of the copy for different
1D array sizes. The results indicate that the throughput is relatively constant at around
9 GBytes/second, with a slight increase for smaller array sizes.
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Figure 4.2: Memory copy kernel

4.4 Data conversion

As we mentioned in the previous section, one way to transfer data between MATLAB and
Python is using handle objects. Building a Python handle object is actually a process
that passes data to a Python constructor (can be user defined or built in data type like
a list or tuple). Although data transfer time is almost zero because it only passes a
reference, the data usually needs to be further converted to equivalent MATLAB data
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types. In this section, we measure the time for data conversion that is needed before
and after transferring 1D and 2D arrays between MATLAB and Python.

In MATLAB, 1D array is casted to py.list or py.tuple manually. This reference is
then passed to a Python function which do nothing and return the same reference to
MATLAB. MATLAB then has to use the cell function to put the list or tuple into a cell
array. Then use cellfun to extract the values of the cells and group them into a numerical
array again.

Interpreting 2D arrays in MATLAB needs more steps since MATLAB only supports
converting 1xN vectors to Python data types. In order to make a 1xN vector that
represents a 2D array, we can convert an MxN matrix into a 1xM cell array (using
num2cell or mat2cell), where each cell contains a column of the matrix. After running
the Python module (which does not perform any processing and returns the same value
back), the result is in the form of a Python Tuple of Python Arrays. The first two steps
are the same as those for the 1D array, which are the cell and cellfunc. After these two
steps, the result becomes a cell array of MATLAB double arrays. The final step is using
a cell2mat function to reform the nested MATLAB array to a matrix again.

Both 1D and 2D array data conversion throughput is shown in Figure 4.3.
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4.5 Computational throughput

Computationally intensive kernels should have the following characteristics: little data
transfer time, little communication and synchronize time, little data allocate time, and
a lot of computation time. To be more specific, little data transfer time means: as little
data as possible to transfer between GPU and CPU, and between local and HDFS or
RDD. Little communication and synchronize time means: little inter-GPU communica-
tion between multiple GPUs, few barrier synchronization in a single block of GPU. Little
shuffling and broadcasting in Spark application. Little shuffling means: limited usage of
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reduceByKey/groupByKey/sortByKey, repartition, and so on.
Little data allocate time means allocate less space and few times on GPU, and few

chances to cache data in disk in Spark.
The computationally intensive kernel we picked finally is to calculate the number of

primes less than or equal to x, and this is usually represented as pi(x).
Prime numbers are special in cryptography. Some important algorithms such as RSA

make use of the fact that prime factorization of large numbers takes a long time.
Early in the 3rd century BC, an ancient Greek mathematician called Eratosthenes

created a simple algorithm called The Sieve of Eratosthenes for finding all prime num-
bers up to a specified integer. It is a simple and efficient way to find out small prime
numbers. However, it is not efficient for larger number. The bit complexity of the al-
gorithm is O(n(log n)(log log n)) bit operations with a memory requirement of O(n).
This algorithm will need a lot of barrier synchronization. In order to distribute the
algorithm and reduce the communication, we design a kernel to test the primality of a
single number individually concurrently, and collect the number of prime numbers from
all threads/nodes in the last step. The primality test we used was Fermat primality test.

Fermat primality test is based on Fermat’s (Little) Theorem: If p is a prime and if a
is any integer, then

ap ≡ a (mod p) (4.1)

In particular, if p does not divide a, then

ap−1 ≡ 1 (mod p) (4.2)

Unlike the Sieve of Eratosthenes, the Fermat primality test is only a probabilistic
test to determine whether a number is a probable prime. If a number is prime, it will
definitely pass the Fermat primality test, but there are still some composite numbers
(called pseudoprimes) that can satisfy the primality condition. The chances of a pseudo-
primes is quite low, (21,853 pseudoprimes base two comparing to 1,091,987,405 primes
under 25,000,000,000), and the larger n is, the more likely (on average) that a probable
prime (PRP) test is correct [42].

To implement this, for each n bigger than 1, we choose a that is also bigger than 1
and calculate ap modulo p. If the result is not a, then p is composite. If the result is a,
then p might be prime, and p is called a weak probable prime base a (or just an a-PRP).
However, during the implementation, it will cause overflow to store the result of ap−1.
The solution for this is to use the multiplication property of modular arithmetic:

(a ∗ b) mod p = ((a mod p) ∗ (b mod p)) mod p (4.3)

We made ap mod p into p iterations, where each iteration i does the calculation:

(ai) mod p = ((ai−1 mod p) ∗ (a mod p)) mod p (4.4)

the result can be then stored without overflow because it will be always smaller than p.
However there is another problem which is related to workload balance. Large num-

bers need more iterations to test 4.1 than small numbers. Also, in order to increase the
correctness of primilaty, we use a list of prime numbers as bases (a). When a number
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is prime or pseudoprimes, it needs to perform the modulo iterations using each base
number. On the other hand, those composite numbers that can be detected by base two
can skip the rest base numbers. When we try to distribute a list of testing number on a
cluster or on GPU, if we use the default partitioner like hash partitioner, the thread or
node that gets the chunk with the largest numbers needs the longest time for processing.
If we assume each computation of 4.4 costs t time, and there are n base numbers, the
chance of a random integer x being prime is about 1/ log(x), and we assume that if it
is a composite number, it only needs one base number to confirm it is not prime. The
estimated time t for primilaty test for a random integer x will be:

t = (1− 1/ log(x)) ∗ x ∗ t + 1/ log(x) ∗ x ∗ t ∗ n = x ∗ t ∗ (1 + (n− 1)/ log(x)) (4.5)

Since n is always the same, when the number grows large, the 4.5 is approaching
x∗ t. So for the large number in the experiment, we made the sum of the number to test
is almost equal for each thread or node. However for small numbers, other partitioning
methods will be more efficient.

To profile CUDA applications, we use NVIDIA Visual Profiler that comes with
NVIDIA Nsight. It is a cross-platform performance profiling tool that can be integrated
into Microsoft Visual Studio or Eclipse. We used the timeline to trace the CUDA activity
occurring on both CPU and GPU to make sure that the most time consuming part is
the computational part on GPU. Spark also has web UIs to monitor Spark applications
visually. We profile the spark kernel locally before we launch it on the cluster.

The result of execution time of this computationally intensive kernel with different
approaches are shown in Figure 4.4. The x-axis is x of pi(x), and y-axis is time (s)
in log scale. We measure the execution time for the same kernel using only MATLAB,
MATLAB with C acceleration, MATLAB with CUDA acceleration, MATLAB calling
same functional python module locally (which in the graph is python on local machine),
MATLAB calling the same function using PySpark locally using all 8 threads (PySpark
local[*] on local machine in the graph), MATLAB calling the same function using PyS-
park on power7 using all 64 threads (PySpark local[*] Power7 in the graph), as well as
MATLAB calling the same function using PySpark on power7 cluster using 4 nodes and
all 4*64 = 256 threads (PySpark Yarn Power7 cluster in the graph). For MATLAB and
python on the local machine, these two approaches, we only tested till pi(50000), since
the time cost became larger and local machine stop working.

From the graph we can see that a pure python implementation is slower than MAT-
LAB, and the difference becomes larger as the number grows. Then comes the PySpark
local[*] on the local machine, which uses 8 threads. This solution is faster than MAT-
LAB and pure python approaches, while it is slower than the other approaches. C and
CUDA approaches are fast especially when the number is small; C is slower than CUDA
when the number increases. PySpark on a single Power7 node and on Power7 clusters is
slow in the beginning. PySpark on a single Power7 node is slightly faster than C locally
when the number is larger than 55000. PySpark on the Power7 cluster is also slow in
the beginning, but the increase in its time consumption is the slowest among all other
systems. For larger x numbers and data sets, this implementation represents the fastest
solution among all approaches. We further tested this PySpark solution executed on the
single Power7 node and on the Power7 cluster for even larger numbers of x. Figure 4.5 is
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Figure 4.4: Execution time of computationally intensive kernel with different approaches

a continuation of Figure 4.4 for larger x-axis values. shows that the single node spent 4x
more time than the cluster solution. This indicates that our PySpark approach enables
easy scalability of MATLAB code on a large computation cluster.
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In this chapter, we will focus on studying and discussing the performance we got from
the previous chapter. Each section aims at one aspect that corresponds to the metrics we
measured in previous chapter: Initialization, Memory transfer, Data conversion, Com-
putational throughput. We will use the experience and information we got to explain the
results we had. By studying and discussing the result, we can identify the bottlenecks
and have more accurate estimation about the performance challenges.

5.1 Initialization

Figure 4.1a shows the measurement of initialization time on GPU. It recorded the initial-
ization time for the first 16 iterations. There are two curves in the this figure. The blue
curve shows the initialization time measured from Mex (written in C), and the orange
one describes the same time but measured from MATLAB. The initialization time starts
with a long duration of about 8.5 seconds at the first iteration, and drops immediately
to nearly zero and stays constant starting from the second iterations.

Figure 4.1b illustrates the initialization time for PySpark on the local machine. There
are four curves in this figure. The blue curve shows the time duration when a SparkCon-
text is created, measured from Python side. The red curve deals with the time it takes
to stop and delete a SparkContext, measured from the Python side. The grey curve is
the sum of the previous two stages, from the Python side. The yellow curve is the time
duration of creating + stopping the SparkContext measured from the MATLAB side.
The yellow curve has a similar trend as the initialization time on GPU. The longest
time taken to create and stop a SparkContext is in the first iteration; it takes in total
3 seconds. After which the curve is stable around 0.5 for the following iterations. The
blue curve and red curve give more insights about creating and stopping the context.
They show that creating a SparkContext contributes to the peak at the first iteration,
then it drops to almost 0. This is because only the first time a new Java Platform SE
binary process is created and a SparkContext is actually created, for the following iter-
ations, it uses the same context. Although the user-defined instance that creates or gets
the SparkContext is stopped by Python automatically, the JVM does not stop running,
the new SparkContext object will still bind to this running JVM. However, if one tried
to stop the JVM manually by clearing the SparkContext object from MATLAB, the
Java SE binary process will be stopped. From MATLAB, it is not possible to create a
new SparkContext again, since this returns an error when trying to connect to the Java
server when starting java gateway. Also, Spark (including PySpark) is not designed to
handle multiple contexts in a single application, which means we cannot have multiple
SparkContexts in the same JVM process.
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5.2 Memory transfer

Figure 4.2a illustrates the memory copy throughput for 1D and 2D arrays between
MATLAB and GPU. The figure describes how the throughput is related with the size of
the array. As we mentioned in Chapter 4, there are two different approaches to achieve
this. One is to use the built-in function gpuArray provided by MATLAB to copy the
array from CPU and GPU, which is represented as the first method. The other one is
using the traditional way: cudaMalloc and cudaMemcpy to copy array from CPU to
GPU manually. Figure 4.2a shows that all of the four curves have similar start values
between 250 and 300, and then grow logarithmically. When the data size is 14 MB, the
throughput reaches 1100 MB/s.

Both methods show no difference in the graphs, which means MATLAB implements
the gpuArray copy using the same way as the second method. Throughput curves of 2D
array and 1D array are also similar. The logarithmic trend is because of the following:
for small transfer size, there is a constant overhead, then it increases linearly.

This figure indicates that there is no efficiency difference between the first method
and the second method. However, for easy functional program, it is recommended to
use the MATLAB built-in GPU array. It is the same in terms of time consumption,
but much easier for implementation. The performance of memory transfers between the
CPU and GPU depends on many factors, including the size of the transfer and type of
system motherboard used.

For memory copy between MATLAB and Python, the throughput starts from a high
point around 1300 MB/s, it drops down to 1000 MB/s when the data size is 3 MB, after
that, it stays stable.

It is because for the small size of data, the profile is not accurate. After that the
curve becomes stable.

5.3 data conversion

Figure 4.3 shows the measurement of data conversion throughput for 1D and 2D arrays
between MATLAB and Python. The figure describes the way the throughput changes
as a function of data size. The throughput of a 2D array data convention starts with a
low point around 90 MB/s, which stays the same value till 2 MB. From 2 MB till 4 MB,
the throughput increases till 140 MB/s. The throughput stabilizes at 140 MB/s until
the data size reaches 8 MB. The curve drops to 130 MB/s when the data size is 8 MB,
and increases gradually again till 160 MB/s at 12 MB. Then the throughput stays the
same again till 16 MB.

From the previous chapter, we already know that the common parts of data conver-
sion for both 1D and 2D are cell and cellfunc. For the 1D array, on average, the cell
function takes 58% of total time to split all numbers into separate cells, and cellfun takes
36.6% which applies double to each cell.

For 2D array, the transition of matrix and cell arrays involves num2cell and cell2mat.
For a matrix A with dimension m×n, the first step num2cell(A,2)’ will split the contents
of A into separate cells and result a 1-by-m cell array, where each cell contains a 1-by-n
row of A. After copy back from python, the result is a Python tuple with Python array
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inside. Applying cell function will turn it into 1-by-m cell array of python array. And
because the python array is inside each cell, so we need to use cellfun to applies the
function (double) to the contents of each cell of cell array C. It turns out to be 1 ×m
cell array and in each cell is 1xn MATLAB double array. The last step is using cell2mat
to recreate the matrix again.

From profiler in MATLAB, we got the results: The num2cell function has a start
up time of around 0.22s, after that it increases slowly as m is increase, because it will
generate more cells.

cell array that converts Python sequence type to a MATLAB cell array also extends
with m, even slower than num2cell.

cellfun applies the function to the contents of each cell of cell array, one cell at a time,
and without order. The function itself which convert a Python Array to MATLAB array
of double (which are same format) does not take any time (constant, less than 0.01). In
this case, the cell number affects the time consumption of cellfun greatly (about four
times as much as cell function and three times as much as num2cell function) thanks to
the iterations, and the cellfun time is proportionate to cell number.

cell2mat converts a cell array into an ordinary array. Similar to num2cell, also
proportional to cell number, and less time consuming comparing to all of the above
functions.

So, according to the analysis of all the steps that needed during data conversion.
We can say the fewer cells, which is m in a matrix A with dimension m × n,the less
time it needs for data conversion involving in the before and after calling Python kernel.
Actually, we also tried, for same size of data, the time costs for data conversion of an
array that all number in one cell is 280 times faster than the one with each number a
cell.

The stable or decrease in the throughput of 2D arrays is a result of increasing in cell
number (for example at 8 MB, is because 7MB is a 896x1024 matrix, 8MB is a 1024x1024
matrix) and keep still in the second dimension which is the size of each cell. When the
cell number is constant, the throughput increases when cell number increases (2MB to
4MB and 8MB to 14MB).

This figure indicates that we should try to implement our data structures in a way
that avoids many cells (like high dimension), so as to avoid applying the same function
on each cell one by one to ensure a higher throughput of data conversion.

5.4 Computational throughput

Figure 4.4 illustrates the computational consumption using different approaches: MAT-
LAB, C, Python, Pyspark locally, Pyspark on one Power7 node and Pyspark on a cluster.
The computationally intensive algorithm we used is finding the number of primes less
than x using A-PRP. The figure describes how time consumption (in log 10 base) is
related with the number x.

The graph shows that, for this computationally intensive kernel, a pure Python im-
plementation has the slowest runtime, then is pure MATLAB kernel. Both of these two
implementations start with a high point around 16 seconds and end up with 400 seconds
when x reaches 50000. The third curve counting from the top is Pyspark on local laptop



40 CHAPTER 5. DISCUSSION

using all the threads. Which starts with the same point with 16 seconds, but increase
slower than the previous two solutions. For x = 100000, the time needed is 519. The
third curve is Pyspark on Power7 cluster, as it takes the longest time to finish compu-
tation when x is 10000; it uses 20 seconds. However, it increases also the slowest, AS it
takes 46 seconds for the largest number. The next curve is local PySpark on one Power7
node. It has similar shape as the one running on local laptop, but faster. It starts with
6.6 seconds for the smallest x and 86 for the largest x. The rest two curves are C and
CUDA running on local laptop. They are two fastest solutions for x smaller than 40000,
in between, CUDA is faster. Both of them begin with 1.2 seconds, C curve ends up with
95 seconds and CUDA one ends up with 61 seconds at the end.

Python and MATLAB are not fast languages. Both of them are scripting language,
so that they do not require an explicit compilation step. Also they use dynamic typing.
So it is possible to bind a name to objects of different types during the execution. Both
of them are just-in-time compilation. In the case of memory and optimization, MATLAB
and Python both offer automatic memory management.

If want use Parallel Computing on a multicore processor in MATLAB, one has to
establish a parallel pool of several workers with a Parallel Computing Toolbox license.

Similar to Python, the official Python distribution includes multiprocessing package
which is similar to threading module. However, creating multiple processes and exchang-
ing or synchronization between processes using this package is cumbersome. Another
solution to parallelization in Python is use Pool package which provides a pool similar
to what MATLAB does.

However MATLAB 7.4 (R2007a) from most linear algebra and numerical functions
are automatically execute on multiple threads in a single MATLAB session. While in
Python, one also needs to explicitly use a package for multithreading. It aims at more
advanced programmers.

C is a lower level language, since it is compiled to relatively optimized native code
before execution. Compared with MATLAB that uses just-in-time (JIT) compiler, it is
faster. It also gives full control of memory allocation. Although MATLAB can automat-
ically execute some linear algebra multi-threads, in order to processed a specific function
in parallel, one needs to control it in C-Mex functions directly. Otherwise, MATLAB
code is parallelized using multi processors. However, with C, one can multithread the
code by using pthreads or OpenMP.

GPU provides highly parallel, multithreaded solutions for various programs. It is
most suitable for problems that have large data sets and can use a data-parallel model,
and also those problems that have a high arithmetic intensity (more arithmetic operations
compared to memory transfer operations).

The limitation of GPU is copying data between host computer and GPU device.
Another limitation is the memory access latency because of the limited cache memory
and registers, slower clock speed than CPU. But these latencies can be hidden by high
calculation throughput because of high data parallelization. GPU or CPU, which one is
faster has higher computation throughput largely really depends on the algorithms.

Compared with acceleration using GPU, Spark needs more time to start up, more
robust as it can recover from faults automatically. This is the reason why all the curves
using PySpark in Figure 4.4 are slow at the beginning. Since PySpark uses as many



5.5. SYSTEM LEVEL ANALYSIS 41

Table 5.1: Comparison of the different approaches at the system level

Approaches
Bottlenecks

Initialization Memory transfer Data conversion Computational throughput
MATLAB x
C x (large amount of data)
CUDA x x
Python x (high dimension) x
Pyspark x (high dimension) x (small amount of data)

worker threads as logical cores on the machines, it is faster than the python solution
using single thread.

Both GPU and Spark are working on solving problems in parallel. GPU cores are
more designed for image rendering, and it has more simple ALUs comparing to CPU.
Spark depends on the type of nodes in the cluster, which can be heterogeneous. Using
Spark, one can estimate the time after scale up easily. Storage can be scaled up too.
Spark needs more energy, and costs more.

Scalable, high-throughput, fault-tolerant stream processing of live data streams on
GPU is under developed and still in a theoretic stage, but it can be done in Spark easily.
Spark can integrate with other applications. GPU processors cannot.

Figure 4.5 illustrates the scale up of this computationally intensive kernel on spark
cluster when the x continuously increases from 100000 to 500000. According the algo-
rithm itself, the time consumption to calculate pi(x) is proportional to x2, so the curves
in the graph are quadratic function curves. We can see that the same application lasts
1/4 of the time finally when the number of workers increases 4 times.

5.5 System level analysis

Table 5.1 shows a comparison of the different approaches at the system level. MATLAB
is not optimized for fast performance. It usually has computational bottlenecks when
dealing with complex and large problems.

MATLAB is partly written in C. Therefore, integrating MATLAB with C does not
need time for data copying since it only uses pointers. It also does not require time for
data initialization. However, as the complexity of the problem increases, writing the
program becomes more difficult. The performance of the program is also limited by the
number of cores.

Using a GPU is more preferable when solving computationally intensive problems
like deep learning and pattern recognition. It has great performance when solving image
related problems. However, it is more difficult from the programmer to design the
program in such a way that it makes full use of the multiple cores in the GPU. Compared
with a CPU, it does not have powerful ALUs, no virtual addressing, and no interrupts.
These differences also limit GPU usage, since it cannot be used for general purposes.
It can also not perform good to solve real time streaming of input. While it may be
possible to use both CPU and GPU to solve different parts of one task, utilizing each
of them on the parts where they are most suitable. One should also consider the time
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needed for initialization and memory transfer between CPU and GPU.
Python is also not a language optimized for speed. In addition, for a high dimension

array, it introduce data conversion bottlenecks when calling Python or PySpark from
MATLAB. PySpark, compared to other languages, is easy to use for code parallelization.
However since it is designed to work in a cluster, using it for a simple task with a small
amount of data will still have a large overhead. Still, if one avoids some time consuming
functions (like shuffle) between all RDDs, PySpark can have the best performance.



Image analysis use case 6
In this chapter, a real world image analysis use case is implemented in MATLAB and
accelerated through different platforms. The use case we picked is medical image regis-
tration. This chapter begins by the overview of this user case. Then, implementations of
acceleration using GPU and Spark are represented. Later in this chapter we will include
the results and discussion based on the acquired result. Some conclusions are drawn at
the end of the chapter.

6.1 Image registration

From the image registration algorithms presented in Chapter 3, a single-modality
intensity-based method using Normalized Cross Correlation (NCC) was picked to be
implemented as our use case. It is a simple, but computationally intensive registration
algorithm, which realigns two images after displacement.

The data used in this use case was obtained from MATLAB file exchange [43]. It
is a folder which contains MR images of the brain. There are 20 different DICOM files
in this folder. One of the MR images is read into the MATLAB workspace as a fixed
image (so-called source image) for registration. For the moving images, we use the same
image but with displacement. In real life, there is a continuous and an unavoidable
movement caused by patients, devices or doctors. We use a range of movement to
represent the possible field of movement of the patient. This range is related to the
accuracy of devices, operations from doctors, and movement of internal organs. In
this chapter, window size or Rwindow represents the maximum of displacement in all
directions (two directions for 2D). To simulate the movement, random numbers are
generated within [−Rwindow, Rwindow] for each direction as displacement. By shifting
fixed images according to the randomly generated numbers in both directions, we can
generate countless moving images randomly. The functionality of our use case application
is to read in moving images, compare them with the fixed image by applying the image
registration algorithm, and finally apply the correction.

Image registration processing starts with segmentation that creates a grid to divide
the whole fixed image evenly to small pieces. Based on the size of the image and density of
the grid, coordinates of joint points created by each two crossing grid lines are returned.
After checking each joint point and deleting those empty points (which do not have
color), we can get a reduced list of joint points that may have information.

For each joint point in the reduced list from a fixed image, a window is generated
surrounding a joint point (yellow area in both images) which indicates the possible range
of displacement of this joint point. In order to find the matching point from moving image
within yellow area, for each coordinate inside window of the moving image (test point),
we applied NCC to compare regions of images that surrounding joint point and test point

43
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joint point

window size

test point

(a) Fixed image

test point

block size

(b) Moving image

Figure 6.1: Illustration of block selection in image registration

(indicate as red area in the fixed image and blue area in the moving image); the region
size is defined by block size. The NCC algorithm returns the similarity between the joint
point and test point. Within all the test points inside the window range, the one that has
the highest NCC result is the one matched to the joint point the most. The coordinate
difference between joint point and the matching test points is the displacement between
original image and moving image at this joint point. The same procedure was carried
out on all joint points. Because image registration can be followed by other processing
like outline rejection or deformation, knowing only the average displacement from all
nodes is not enough. For this reason, for each joint point, we store both the coordinates
of the matching test point, and NCC result. This image registration algorithm between
two images is computationally intensive, and the time consumption is proportional to
the product of number of test points, window size squared, and block size squared.

The next step is to handle a bunch of pictures using the same algorithm or build an
image registration stream processing pipeline. In this thesis we use the first solution.
While handling a bunch of pictures, there are two different scale of parallelization. The
first one is parallelization in image level, which means each image can be processed
separately. The other scale is pixel level within each image, since every joint point is
independent. We can use either one or combination of both of these two solutions, which
depends on the platform.

In the following sections, the parts done in different platforms are described.

6.2 MATLAB implementation

MATLAB implementation can be divided further into two parts. The first part is ex-
ecuted by all the approaches. This part includes image pre-processing part and post-
processing part of whole process. Before any image analysis can be applied on the DI-
COM (a standard for storing and transmitting medical images enabling the integration



6.3. GPU IMPLEMENTATION 45

of medical imaging devices) images, these images should be converted into MATLAB
matrix, or format like PNG or JPEG that can be manipulated by other language such
as C or Python. A DICOM data object usually consists of a number of attributes, and
these attributes may further contain multiple frames for storing multi dimensional data.
DICOM images also use three different data element encoding schemes. These all make
transforming a DICOM object a complex job. There are some application available on
the Internet to do this job, however they are bulky, installation needed and hard to be
integrated with MATLAB. We opted for DICOMread function from MATLAB Image
Processing Toolbox because it can be directly used and hide the implementation part
from user. DICOMread function returns an M-by-N array for a single-frame gray scale
image, or an M-by-N-by-3 array for a single-frame true-color image. Multi-frame images
are always transformed to 4-D arrays. The testing data downloaded are 2D MRI images
of brains, which are stored in a MATLAB workspace as 256*256 int16 arrays by default
after transformation. The post processing part that executed in MATLAB can be differ
from image registration strategies. This part can be an outlier rejection using restriction,
image translation or rotation, or image display. In order to simplify the experiment, we
get the overall displacement by averaging all the difference of inlier matching points
of two images. Shift the whole moving image, and display the differences between the
shifted moving image and original fixed image.

The other part to be done in MATLAB is the implementation of image registration
algorithms on a bunch of images using NCC. Once the algorithm on a single image is
complete and tested, we parallelize it on multiple images using multi cores. In order to
exploit multi cores from MATLAB, a license for Parallel Computing Toolbox is necessary.
This toolbox allows users to create parallel pool on local machine and process images
on workers in pool. In MATLAB preferences settings, one can set the preferred number
of workers. For the local laptop in this experiment, the worker number is a maximum
of 4. The easiest way to modify the registration function from processing single image
to a bunch of images is replacing for-loop by parfor-loop. Corresponding to two
parallelization scales, the iterations can be applied on images or on all joint points.
Due to the fact that MATLAB does not allow nested parfor loops, it is not possible to
combine both types of parallelization. During our testing, we found out both types of
parallelization have similar performance. In this thesis, we iterated through images and
assign them to workers in the pool.

6.3 GPU implementation

An alternative solution with less time-consuming, though more complicated, is inte-
grating with GPU. It is well known that GPU is superior in image processing. Taking
the measurement result from Chapter 4 into consideration, we expected a much better
performance than the MATLAB solution.

Once pre-processing was done in MATLAB, joint points coordinates, fixed image
and moving image (in 2D arrays) were passed from MATLAB to CUDA using point-
ers. These parameters were further copied from CPU to GPU, and images were stored
in texture memory. We implemented a kernel that computes correlation coefficient of
two regions of images in CUDA language. This kernel is executed on GPU with exe-
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cution configuration <<< numBlocks, threadsPerBlock >>>. Here the numberBlocks
equals to the number of joint points, and the threadsPerBlock is a 2D array of size
(2 ∗Rwindow + 1, 2 ∗Rwindow + 1). This means, each block takes charge of the similarity
comparison of all NCC computations relate to one joint point from the fixed image.
Within the block, each thread represents one test point from the moving image within
window range. The kernel invocation by thread aims to get the correlation coefficient
of the block surrounded by the joint point and the block surrounded by the test point
(red and blue area in 6.1). After all threads within one block finishing kernel compu-
tation, the correlation coefficients of all points inside the window area (yellow area) are
known. As soon as these steps have been carried out, the largest coefficient within the
window area as well as the coordinates of corresponding points needed to be figured
out. One solution is to maintain a shared largest NCC value and shared struct for
point coordinates inside block. Each thread compares the value and replaces the value
and struct with its own value if it has a larger NCC value. Here race conditions can
occur, which means one thread attempts to compare the currently largest NCC value
while another thread is writing. An alternative, though with high overheads is atomic
operation. The atomic operation is guaranteed to be performed without interference
from other threads. The most suitable built-in one here is atomicMax. However, in our
case, comparing NCC value and replacing coordinates needed to be carried out with-
out interference. Two consequent atomic operations together cannot be treated as one
non-splittable atomic operation. Therefore, a lock should be used. CUDA library does
not provide a ready-to-use mechanism or class for lock. Because it will lower down the
computational throughput greatly, which is against the design of GPU. However, user
can still implement it by defining a global shared value as a lock, and atomicCAS to lock
or atomicExch to unlock. This will sacrifice a lot of performance, because the lock need
to be a global parameter, which brings writing and reading overhead. Also, when one
thread takes the lock, other threads are keep waiting and do nothing.

A better way to do this is to use parallel reduction. After all threads finish compu-
tation. They store the results along with their global coordinates as a structure object
inside pre-allocated block shared memory. Within each thread block, a sequential ad-
dressing parallel reduction kernel like below (6.1) is executed.

1 f o r ( unsigned i n t s = maxId1D / 2 ; s >= 1 ; s = s / 2)
{

3 i f ( ( id1D < s ) && ( ( id1D + s )<maxId1D) )
{

5 reduce point max(& c o r r o f b l o c k [ id1D ] , &c o r r o f b l o c k [ id1D + s ] ) ;
}

7 sync th r ead s ( ) ;
}

Listing 6.1: Parallel reduction

The results got from reduction kernel in each block represent the information of the point
that matches with joint point the most. The NCC value and coordinators are further
gathered together along with results of other joint points from other blocks to group a
final result. This result is transferred back to CPU, and the pointer of which will be
passed to MATLAB.
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6.4 Python and Spark

As mentioned before, MATLAB does not support Scala and R language. Between Java
and Python, we opted for Python and therefore PySpark due to similarity between
Python and MATLAB, which can shorten the time for development.

6.4.1 Python implementation

First we implemented the same image registration function for single moving image to
fixed one in Python. Coding in Python is almost the same as in MATLAB. The function
accepts images, and point list as Python lists from MATLAB, and returns a P × 3
(P is number of list points) Python list, which can be further converted to matrix in
MATLAB.

There are at least two ways to scale up one image to batch of image. One is se-
quentially iterative through all images delivered from MATLAB, the other one is using
multiprocessing package in Python to enable multiple processors to work on different
images at the same time, similar to the Pool feature in MATLAB.

However, MATLAB returns license manager error -1 and license.dat file error, if
a Python module that uses multiprocessing package is called from MATLAB. The li-
cense.dat is created during the installation of the license manager on the license server,
and is used when installing MATLAB on network clients. The error happens because
using the ’multiprocessing’ Python module from MATLAB is not a supported workflow.

So although we measure both solutions, with and without multiprocessing module,
only the one without Pool and can be actually called directly from MATLAB now. The
reason we included both is because this workflow could be fixed in the future or there is
a way to bypass the error.

Multiprocessing package supports spawning processes, which allows the Python pro-
gram to work in parallel. It offers both local and remote concurrency, and because it is
process level parallel, it sidesteps the inefficiency caused by Global Interpreter Lock while
using multi-threads. It provides two classes of multiprocessing: Pool and Process class.
Pool class allocates only executing processes in memory while Process class allocates all
the tasks in memory. When there are big amount of images, it is recommended to use
pool.

Comparing with MATLAB, Python multiprocessing package provides handy and
useful methods to build complex functions. Like join method, which blocks the calling
thread until the process whose join method is called terminates or until the optional
timeout occurs. Lock method that can be used for atomic operation. It can launch
multiple evaluations asynchronously on multiple processors, which is better suited for
parallelization. Those methods with async in their function name will return an Asyn-
cResult object immediately. By calling get method from the result object, the program
can retrieve the results whenever is needed. And when the results are ready, it will
invoke the callback function. The disadvantage is that the results those async functions
return are not ordered. So we will not use these functions inside our use case.
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6.4.2 PySpark implementation

Depending on the setting, Spark can run with multi-processing and multi-threads. To use
Spark, the official way is to use the Distributed Computing Server Toolbox and Compiler
Toolbox from MATLAB to access data from HDFS or run algorithms on Spark. This
feature can be only run on top of Linux system, and was only included recently.

Starting from Spark 2.0, the entry point to a Spark execution environment like spark
shell changed from SparkContext to SparkSession. SparkSession provides a single point
of entry to interact with Spark without setting SparkConf, SparkContext or SQLContex.
It also makes it easier to use DataFrame and Dataset APIs. However, now DataFrame
works better with Scala and very limited with Java or Python. For this reason, in the
application, we continue using RDD.

For the PySpark version of application, each image is one record in RDD, and the
collection of images are partitioned and distributed across nodes in a cluster. We define
a list for storing images and a method that appends image to the list. Each time when
the method is invoked in MATLAB, an image is transfered from MATLAB to python,
and appended to the list. After all images needed to be processed are stored in the list,
from MATLAB, one can start the image registration progress. It will create or reuse
a SparkSession with configuration, distribute all the images in distributed storage, and
map the image registration function which is the same as the one we used in Python
version, on each image. After finishing all stages, results are gathered and transferred
back to client node automatically and return to MATLAB. We also tried appending a
image directly to an existing RDD or DataFrame by creating a single DataFrame or
single RDD for the new image and use the union function to merge the new one with
existing one. However, this is a transformation thus it is lazy evaluated, and it takes
much more time than parallelize the batch of images in one time.

6.4.2.1 Client mode or cluster mode

According to the official website, there are two deployment modes that can be used to
launch Spark applications on YARN. One is cluster mode and the other one is client
mode.

In cluster mode, the Spark driver runs inside an application master process, and the
client can go away after initiating the application. This mode is suitable for client node
that does not have strong computational ability or wants to do something else which may
cause bottleneck while running the spark application. It is also good for those clients
that are not same physically co-located with cluster workers, because it minimizes the
latency caused by network between driver and executors. In client mode, the driver runs
directly in the client process, and separated from application master. This mode allows
to make full use of cores on the local machine. It is also suitable for running from Spark
Shell because input and output of the application is attached to the console directly. It
is also recommended for the users to submit applications from a gateway machine that
is physically co-located with worker machines, then use client mode.

The use cases of this thesis were only executed in client mode on yarn cluster. How-
ever, in real application, both modes can happen. To design an application using yarn
cluster mode, one can have a thread on local pc for managing the images. It will send a
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signal to another thread after the number of images reaches a threshold, or time runs out.
After receiving the signal, another thread will submit these images to HDFS directly or
send them to one of the node in side cluster, then initiate and start the application.

6.4.2.2 Configurations on Yarn

While running applications on clusters, configurations and custom properties for the
cluster can have big impact on performance. Some example for these basic configurations
include number of executors, cores for each executor, and memory allocated for each
executor. These configurations or properties can be set when submitting the Spark
application through Spark Shell or creating a creating a SparkContext or SparkSession
inside the application.

Before doing tests using default or random settings, it is important to estimate the
optimal settings with analysis of the data size of the problem and property of client nodes.
For example, in this use case, each image (256x256 int32) costs 256 KB for storage. This
means, to store 500 images, at least 125 MB of empty space is needed. This information
is important while setting Java heap size of Application Master (AM) as well as number
of cores on node. When running with client mode, without specifying spark executor
cores, yarn will only use one core for each executor by default. The number of cores to
use for the YARN AM is also one for client mode. The number of executors is by default
set to 2. Since the client node we used for thesis is also a HPC node in yarn cluster,
which is the same type as other executor nodes, the setting can be roughly the same.

While processing a image set with 500 images during the experiment, the peak perfor-
mance occurred when using 8 cores per executor. When the number of images increased
to 600 images, which was 150 MB in total, it had better performance with only 2 cores
per executor. It is always recommended to use less than 5 cores per executor especially
if the application includes frequently read or write from HDFS, because too many cores
per executor can affect the read and write throughput to HDFS. However, this number
should also not be set too low. With only one core per executor, we will not be able
running multiple tasks in the same JVM and gain the speed up. Also, with only one
core per executor, broadcasting variables needs to be replicated in each core. After the
right amount of cores for each executor is decided, number of executors per node can be
calculated by diving total number of cores per node minus one (leave 1 core per node for
Yarn daemons) by number of cores per executor. Amount of memory to use per executor
process can be figured out by calculation [44]

(Memnode − 1024MB)/(Nexe + 1) ∗ 0.6 ∗ 0.9

Memnode is yarn.nodemanager.resource.memory (in MB) and (Nexe represents number
of executer per node. Those two decimals numbers inside the equation are default values
of spark.storage.memoryFraction and spark.storage.safetyFraction. Number of partition
of RDD can be simply set equal to number of cores in the cluster.
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6.5 Implementation result

Both hardware and software set up for this user case were the same as those we used in
Chapter 4.

6.5.1 Performance analysis

In order to analyze the performance of different approaches, they were set up to process
bunches of images with different amount. The result represents the relationship between
number of images and execution time. The block size, grid size and window size for image
registration algorithm were kept fixed, these parameters were picked by maximizing the
performance of MATLAB solution. For each setting (combination of approach and the
number of images), the measurements were executed 3 times and toke the average.
The settings with same image amount were tested together, so that the processors had
similar occupancies when idle. After each experiment, the memory and caches used for
storing images and internal variables were freed up partially to avoid memory allocate
error caused by lack of space. Preparing for new cache store also helps to improve
performance. These free-up procedures were taken charge by each programming language
automatically if is possible. Memory assigned for variables in CUDA, C needed to be
freed up manually. Python and PySpark have own automatic garbage collection or cache
cleaner, at the same time, users can also force garbage collector to release unreferenced
memory. MATLAB, had officially no user-defined heap memory until version 7. From
version 7, MATLAB has heap both in form of nested functions (closures) and handle
objects. Using the clear command will synchronously all variables from the current
workspace and free up the space by releasing them from system memory.

In Chapter 4 we already discussed about initialization time, memory transfer time
and data conversion time for each solution. These extra times are also considered and
partly included inside the use cases.

For initialization time, only the start time after warming up was included in measure-
ments. Before measuring any solutions, a small example of data was feed to solutions
in order to warm up and load the necessary library. SparkContext in PySpark was de-
stroyed automatically after job is completes and the program exits. If MATLAB is not
closed, although new SparkContext was created each time when starting a new setting
of test, the initialization time for it after first time warm up was much shorter than the
application executing time and therefore can be neglected, according to the conclusion
from Chapter 4; this time was included inside overall time measuring. While calling
modules written in CUDA and Python, initialization time was also included for these
two acceleration measurements after warming up using small data. Comparing with
other solutions, MATLAB costs much longer time (20 seconds for starting a pool with 4
workers) to start a pool. After the first time of creating a new pool, the pool is standby
and costs no extra time for reusing for a period. After 30 minutes idle time (can be
customized in setting), the pool shuts down and is deleted by MATLAB. Then it needs
20 seconds again to create a new pool. Despite the fact that initializing MATLAB pool
affects performance more severe than other solutions (especially for real time problems),
it can be easily avoided by changing setting or keeping pool busy every 30 minutes.
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Because of this reason, we did not include the initialization time of MATLAB pool.

Time consumption for memory transferring was an important part of measurements,
this included image copying between CPU and GPU, storing images in node using PyS-
park, sending images and collecting results between MATLAB and PySpark or Python.

Since we only executed the use case application in client mode on yarn cluster, the
overhead caused by network access time was basically related to the cluster structure.
It has more stable performance when applying different settings comparing to running
with cluster mode. To avoid using cluster mode from outside the cluster, clients can also
connect to nodes in the cluster to submit application, command and data, then start
work in client mode. In this situation, data transmission is influenced by network traffic,
physical location and etc. It would be easier to start MATLAB in one of the nodes
inside the yarn cluster and use client mode. Unfortunately, MATLAB can not installed
on Power7 machine in the cluster we used. To simulate the case that there is one node
with MATLAB installed inside cluster to do the pre-processing part, we generated a
bunch of images on one of the node, transformed them into the same format (MATLAB
matrix) as output after DICOMread function, and use them as the input for the PySpark
image registration algorithm.

For PySpark and Python, the time cost of memory copy between MATLAB and
Python, as well as data type conversion for input and results of image processing module
can be estimated from the local node. This part was also embodied into the final time
consumption.

Figure 6.3 presents the actual results and estimate results for the use case with vari-
eties of accelerating methods. There are in total nine nearly straight curves in this figure.
Each curve demonstrates the relation between number of images been processed and time
consumption of one approach. Five solid curves represent measurements from the local
machine, they are image registration approaches using MATLAB with Pool, Python
with Pool, PySpark in pseudo-cluster, Python without Pool, and GPU. Three of the
four dashed curves describe measurements executed on yarn cluster or on a single HPC
node inside the cluster. These tests include approaches using Python with Pool, PySpark
local mode(pseudo-cluster) as well as Yarn client cluster mode. These three test sets are
represented in the graph as Cluster-Python+Pool(estimate), Cluster-PySpark(pseudo-
cluster)(estimate) and Cluster-PySpark(Yarn)(estimate). There is another dotted curve
in the figure called Cluster MATLAB. This curve was created by scaling up the PySpark
pseudo-cluster mode curve on cluster, using the same proportion of the time cost of local
PySpark pseudo-cluster mode curve to local MATLAB mode.

There are some similarities between the results of our use case and the results showed
in Figure 4.4. Among the tests on the local machine, Python without pool solution had
the slowest performance. It is followed by MATLAB with pool solution. Local PySpark
pseudo-cluster mode performed similar to Python with Pool solution, and required less
than half of the time needed by Python without pool to complete the execution. As
previously shown in the Figure 4.4, here too, accelerating using GPU is the fastest
solution with a big margin. Among all the three dash lines which represent running
on HPC single node or HPC cluster, the green one refers to PySpark on Yarn cluster
has the best performance. It is slightly faster than using GPU on local machine. The
other two curves are still faster than all the solutions except for the one using GPU on
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local machine. The order of the performance of these three solutions is the same as the
solutions using the same acceleration approaches on the single machine. It is because
HPC node in cluster has faster computational power than local machine. The local
machine used in this use case has 4 cores; 2 threads per core, that is 8 logical cores in
total. Each HPC in the cluster has 16 sockets, one core per socket thus 16 cores. Each
core has 4 threads, that is 64 logical cores. It also has 2 Non-uniform memory access
(NUMA), processors number 0 to 31 share memory use the first NUMA, and the rest 32
processors use the second one.

If we focus on the first two lines in the Figure 6.3(Local-MATLAB+Pool and Local-
Python(no Pool)), Python solution without pool is only two times slower than MATLAB
with pool. MATLAB pool can assign work to maximum 4 workers instead of 8 workers,
because Parallel Computing Toolbox used for pool considers only real cores, not hyper-
threaded cores. From the hardware side, it is because there is usually only one floating
point unit per pair of hyperthreads. MATLAB uses floating point almost everywhere,
it stores by default all numeric values as double-precision floating point, and has tones
of numerical intensive algorithms optimized for floating point. Due to these reasons, it
is decided to keep maximum number of computational threads equal to the number of
computational core, so that each thread can has a floating point unit. From the software
side, whether using hyperthreads can bring benefit or not also depends on the algorithm
itself.

Now we take PySpark in pseudo cluster mode and Python with multiprocessors these
two curves also into consideration. Despite the fact that they are both multi-threads or
multi-processors solutions using the same laptop, the performance is different from each
other. Pool in Python is processor-based parallelism, local computer has 4 nodes, as
expected, the performance is three times better than Python without pool, and less
than two times faster than MATLAB pool solution. PySpark pseudo cluster mode is
a non-distributed single-JVM deployment mode. Driver, executors and master are in
the same single JVM. It is executed with local[*] configuration, which uses as many
threads as the number of processors available to the Java virtual machine (by calling
Runtime.getRuntime.availableProcessors()). This means PySpark pseudo cluster mode
runs with 8 threads; equals to logical cores. Contrary to expectations that it should be 2
times faster than the Python solution that uses 4 nodes, it is actually slightly slower than
the multiprocessor solution. This probably because the image registration application
itself can not benefit from hyperthreading. Hyperthreading only gives benefits when the
application has delays caused by cache misses, complex control, data hazards, or etc.
However the image registration use case implemented is high parallelized, does not con-
tain pending time or conplex control loops. That is why the PySpark with pseudo-cluster
mode has similar performance as the processor-based parallelism solution rather than
2 times faster. The reason why the PySpark solution is even slightly slower than the
Python solution with multiprocessors, is probably due to the extra time for execution
of JVM and the time introduced for spawning of all those execution components needed
for PySpark including driver, executors and master. Another factor for execution time
difference is the difference in time consumption for data conversion. Converting ma-
trix between Python and MATLAB takes 0.0037 seconds per image on average, while
converting matrix between PySpark and MATLAB takes 0.0088 seconds per image on



6.5. IMPLEMENTATION RESULT 53

average, that is nearly 2.5 times in time difference. When the the number of images to
be processed increases a lot, data conversion could be a bottleneck for PySpark solution.
For example, when applying image registration application on 800 images using PySpark
with yarn cluster, 15% of overall time consumption is data conversion.

Although both Python with multiprocessors and MATLAB with pool solutions spawn
four workers, the MATLAB solution is much slower than the Python solution. This is
because workers assigned by MATLAB run with lower capacity. MATLAB has auto-
matic balance mechanism, after activating all four workers, the total CPU capacity keeps
around 70% for this use case. In contrast, when running Python with pool solution, CPU
capacity is 100% for most of the time.

When comparing the performance running on a HPC with the one running on the
local laptop, running the applications on the HPC take on average half the time needed
to run the same applications on the local laptop. Considering the number of physical
cores (local computer has 4 cores and HPC node has 16 cores), and the clock speed
of cores (local computer cores run with 2.4 GHz process frequency and cores in HPC
node run with 3.5 GHz process frequency), it was expected that the application will take
less than 1/4 the time using the laptop. However the performance did not reach the
expectation. This can be due to the following reasons: first of all, the architecture of
processors for these two platforms are different. Local laptop uses x64-bases i7 processor
which is based on Haswell architecture, and the HPC is equipped with ppc64 architecture
cores. ppc64 is an identifier to refer to the target architecture for applications optimized
for 64-bit big-endian PowerPC and Power Architecture processors. The difference in
architecture can cause the performance differences. Additionally, each HPC node has
16 sockets and 2 NUMAs, there is a lot latency for communications between CPUs,
especially between two CPUs that access to different NUMA. Another interesting finding
is accelerating by GPU on the local laptop achieves similar performance to accelerating
using PySpark on a 4 nodes cluster. At the same time, these two solutions are around
13 times faster than Python without pool, 6 times faster than MATLAB with Pool, and
nearly 4 times faster than Python with Pool on local machine. The performance of GPU
usually depends on both warp size and compute capability. And the compute capability
decides whether memory transfers and instruction dispatch are grouped by warp or half-
warp. In our case, as a high mid range video card, the compute capability of Quadro
K1100M type of GPU is 3.0, which means both memory transfer and instruction dispatch
are grouped by 32. This sounds like a big advantage in acceleration by parallelization.
However based on the following reasons: lower peak FLOPs, weaker ALUs, lower memory
bandwidth, smaller caches size per core comparing with CPU, and bottleneck caused by
data transferring between CPU and GPU, GPU will not get ideal acceleration (near 32
times faster than Python without pool). GPU is suitable for problems that handle large
amount of data with relatively simple operations, but not appropriate for performing
complex algorithms, algorithms have interrupts, or algorithms have no data parallelized.
GPU is ideal for this use case image registration application. That is why it could be
almost as fast as PySpark solution on a cluster with 4 nodes with 16*4=64 physical
cores, and only 13 times faster than single thread local computer.

PySpark using cluster is 4 times faster than PySpark with pseudo-cluster at begin-
ning, but gradually turns to be 3 times faster when the data size increases. While scaling
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up the cluster, the overhead caused by communication between nodes and heads in the
cluster needs also to be considered.

6.5.2 Cost analysis and programming difficulties

Another angle to compare these methods can be from economics perspective, but the
cost for building a Spark cluster varies from plan to plan. However, for each solution
we used, there is one common part of the overall cost that is unavoidable and can be
determined. This cost is the cost for MATLAB licenses. In this part of the thesis, we
compare the sum of the cost of licenses for all necessary toolboxes and MATLAB itself
for all the solutions.

Price of MATLAB licenses depend on the using purpose which can be one of the
standard, education, student or home. Here we compare the price for standard MATLAB
licenses. Table 6.1 lists the MATLAB toolboxes required for each solution, along with
their perpetual license price. An annual license price for a toolbox usually equals to the
price of a perpetual license divided by 2.5.

All the solutions in this table need licenses for MATLAB software and for Image
Processing Toolbox. The second one is used to read in DICOM images and store them as
matrix in MATLAB. Among all the toolboxes listed in this table, MATLAB Distributed
Computing Server toolbox costs the most: it costs more than 5072. This toolbox is
necessary for MATLAB programs and Simulink models to be excuted on top of computer
clusters, clouds, and grids. This price depends on worker quantity. It starts from 317
per unit for 16 32 worker and requires a minimum quantity of 16 workers.

When running applications on Spark or Hadoop clusters, the official solution requires
MATLAB Compiler to create and execute compiled MATLAB applications against clus-
ters. Which is the second most expensive toolbox inside this table. These two costs also
make the price for MATLAB with Spark through official way considerable higher com-
paring to other solutions. In the official solution, user designs a MATLAB application
that applies a particular function on data using Spark. Instead of calling Spark functions
directly from MATLAB, user needs to create another file to specify Spark properties, to
create SparkConf objects, SparkContext objects, and RDD objects, and pass the func-
tion handle of the desired function to a flatMap method. Then MATLAB compiler is
needed to generate a executable file. The configuration of Spark cluster is similar to di-
rectly using Spark through Java or Python, however user can code directly in MATLAB
and map the function on data against Spark without rewriting it into other languages.
The performance using the official MATLAB Spark solution is expected similar or even
slightly better than our solution that running PySpark through Python, because official
MATLAB solution probably uses Spark Java API to implement the interface between
MATLAB and Spark.

When it comes to programming difficulties, coding in Python is more or less the
same as coding in MATLAB. Using multiprocessing package for using pool in Python is
also comparable to using pool in MATLAB. PySpark is more difficult to learn and use,
it requires the knowledge for both cluster and data storage like HDFS. It also requires
experience from users to configure the cluster and to decide which cluster manager to
use. The difficult part would be the Spark application optimization, debugging the
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Solution Products that need Price In Total

MATLAB with parallel Pool
MATLAB
Parallel Computing Toolbox
Image Processing Toolbox

2000
1000
1000

4000

MATLAB with GPU
MATLAB
Parallel Computing Toolbox
Image Processing Toolbox

2000
1000
1000

4000

MATLAB with C or Python
MATLAB
Image Processing Toolbox

2000
1000

3000

MATLAB with Hadoop and Spark
(official)

MATLAB
MATLAB Distributed Computing Server
MATLAB Compiler
Image Processing Toolbox
Parallel Computing Toolbox

2000
>=5072
4000
1000
1000

>=13072

MATLAB with Hadoop and Spark
(through Python)

MATLAB
Image Processing Toolbox

2000
1000

3000

Table 6.1: Cost for different solutions

application and logging the activities. GPU programming can be a little bit frustrating
even with C or CPP programming background. The complicated part is debugging GPU
program and the entry point for connecting with MATLAB.

6.5.3 Conclusion

In conclusion, for the image registration use case, the fastest solutions are MATLAB with
GPU on single machine and MATLAB accelerated using Spark on the yarn cluster. The
solution using GPU costs 1000 euro extra for toolbox license. On the other hand, building
a Spark cluster can be even more expensive. The cheapest but also efficient solutions are
MATLAB calling Python module using multiprocessors or MATLAB calling PySpark
psuedo-cluster mode on the local laptop. They both only require a basic MATLAB
license and a license for Image Processing Toolbox, and the whole application can run
locally. However the performance of these two solutions is based on the number of
processors of local laptop. In order to achieve a better result, a high end computer is
necessary. The solution that can be scaled up and also with good performance for a large
amount of data is accelerating using Spark. The official way to do it from MATLAB
using MATLAB toolboxes is at least 4 times more financially expensive than the proposed
solution through the Python module.

The strategy to choose the right solutions is explained in Figure 6.2: If the application
needs to process a large amount of data, or may be scaled up in the future, MATLAB
with PySpark would be the best choice. This is also true if the solution needs to be robust
against power failures. To estimate the needed number of nodes, one can first measure
the local mode performance on one of the nodes, compare the performance with what you
want to get, and use that to make an estimate of the total number of the required nodes.
If the application has data parallel features, especially image processing applications, a
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Need to scale up,
huge amount of data

yes no

MATLAB with
PySpark using cluster

Image processing
or data parallel
compute problem

yes no

MATLAB with GPU

MATLAB with
Python pool or PyS-
park psuedo-cluster

Figure 6.2: Decision tree for solutions

GPU would be a more suitable solution. If it is not ideal to accelerate through GPU,
possible alternatives are using Python with multiprocessors or PySpark psuedo-cluster
locally. These two methods speed up the application by exploiting multi-processors.

6.6 Further improvement

In this section, we list some improvements that can help increase performance.
As mentioned in the beginning of this chapter, it was not possible to call the Python

module using pool from MATLAB due to limitations in the workflow. However, there is a
feasible way to bypass this problem according to MATLAB experts. Using this method,
we can achieve performance that is superior to the PySpark psuedo-cluster mode.

One of the features that can be included in the future is to automate the workflow
with pipelines. This is useful for streaming data or data that changes quickly. For such
a scenario, one can look into cudaStream library for GPU, sklearn package for Python,
and streaming module for PySpark.

For the solution that uses GPU, some extra acceleration can be gained by paral-
lelization using both GPU and CPU to hide the bottleneck of GPU-CPU data copy.
For example, at the same time an image is being processed on GPU, the next image is
copied from CPU to GPU. The sequential addressing parallel reduction algorithm used
in the use case can be modified again since only half of the threads were used in the first
iteration.

For the PySpark solution, we still need to find out the way to store data from MAT-
LAB directly to RDD or HDFS without using an extra toolbox. It is also worth trying
to combine C or CUDA with Spark. One feasible way that already proved possible is
wrapping C file to .so file, and submit this file (with the flag –py-files) with PySpark file
that invoke the C function together. This can gain appreciable acceleration. Using a
cluster solution with C was 2.5 times faster than using only a Spark cluster (167 seconds
compared to 423 seconds).
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Conclusions and future
research 7
7.1 Conclusions

This thesis has investigated possible solutions to accelerating existing MATLAB code, by
calling modules written by GPU, Spark and Python Pool with multi processors. These
solutions have been analyzed for bottlenecks based on their performance in initialization,
memory transfer, data conversion and computational throughput. The solutions were
compared with each other and with MATLAB official solutions which include MATLAB
Pool and MATLAB cluster.

MATLAB is one of the most popular choices for commercial and educational organi-
zations. It provides a bunch of functionality and toolboxes, which makes it convenient to
build a prototype. It is widely used in industries including higher education, computer
software and hospital & health care. At the same time, MATLAB keeps updating and
releasing toolboxes for the latest features like Spark support. However, MATLAB also
has the following problems: First, except for matrix related computations, MATLAB
applications are slow compared with other languages like Java or C. Second, MATLAB
provides extra useful functions by adding extra toolboxes at an extra cost, or updating
to new version. For teaching purposes or building prototypes in small companies, this
is not necessary. Also, advanced programming in MATLAB like using Spark and call-
ing C, can be still complex for users. We considered to design several ways to improve
MATLAB code and compare the final performance with original MATLAB solutions.

In this direction, we have proposed several ways that can be used for accelerating the
MATLAB application. Respectively, MATLAB integrated with GPU, C, Python and
PySpark. All these approaches are compiled or wrapped so that they can be invoked
from MATLAB directly to replace the original function. Among these approaches, we
allow access to PySpark through Python instead of using the newest MATLAB version
and distributed computing server that are necessary for the official Spark approach.
Four metrics are tested on these solutions to identify bottlenecks. These are initializa-
tion, memory transfer, data conversion and computational throughput. Our measure-
ments demonstrated that initialization & memory transfer for GPU, data conversion for
Python/Pyspark when the data input or output have high dimensions can be bottlenecks.
For testing the computational throughput, a computationally intensive kernel (finding
the number of primes less than x using A-PRP) was used. When input data size was
small, Pyspark had large overhead, C and CUDA were the best choices, respectively 4.9x
and 7.6x faster than MATLAB. When the data size increased, MATLAB using Pool has
almost the same performance as PySpark running in psueudo-cluster mode. PySpark on
a cluster had the best performance, which can be 12x faster than MATLAB with Pool.
Locally, the CUDA solution was still the best, which was 8.8x faster.

Based on the results obtained, a medical image registration MATLAB application
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using NCC was accelerated by multiple solutions. This implementation further indicates
the overall performance of these solutions when it comes to real medical image processing
application. Considering this use case, GPU and PySpark using cluster had the best
performance, which were 5.7x and 7.8x faster than MATLAB with Pool performance,
respectively. A decision tree for the most optimal solution to chose was obtained based
on the results, which can be used for choosing the right accelerated kernel in future
platform implementations. One possible application of our research would be a library
that can provide acceleration for MATLAB. Such a library would detect the type of the
MATLAB code and application, and automatically choose the best solution under that
circumstance.

Returning to the questions posed at the beginning of this thesis, it is now possible
to state the following answers:

• It is possible to scale up existing MATLAB code on an Apache Spark, with little
effort, using open source tools. The extra work needed here is to rewrite the code
part that needed to be executed on Spark in Python.

• In general the applications that can benefit from scalable cluster are suitable for
a scalable MATLAB implementation. The overhead of scaling MATLAB code on
Spark will be the initialization time to start the cluster and the data conversion
between MATLAB and PySpark. The initialization time from MATLAB on local
laptop machine to start pseudo-cluster PySpark with all available threads takes 3
seconds, while starting a pool with same amount of threads using MATLAB Pool
is 20 seconds.

• The bottlenecks that limit the speedup gained from Spark scalability is the data
conversion when the input or output data are more than one dimension, and the
network connection between local node and the cluster when they are not physically
co-located.

• One the advantages of using open source tools to scale up MATLAB code in com-
parison with the official MATLAB scalability solution is reducing the cost for the
license. More importantly is the flexibility of the code that run on the cluster. The
official MATLAB scalability solution uses MATLAB compiler to compile the code
into an executable file, which is difficult for further acceleration. It also limited
the possibility to use libraries. However, with open source tools, we can further
improve the performance for example using GPU or C on cluster. One of the dis-
advantage will be rewriting the code into Python and PySpark, and the extra piece
of code to convert the data type between MATLAB and Python.

7.2 Future perspectives

To future our research, we intend to implement a wrapper outside the existing CUDA
library so that they can be directly invoked in MATLAB. Taken the similarity of MAT-
LAB and Python code, another research will be carried on which focus on the automatic
Python code generator. This can be further used in PySpark code generation, after
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setting up the cluster configuration by the user manually. To minimize the time con-
sumption of data conversion in Python and PySpark solution, further work needs to be
done in order to share the data between Python and MATLAB more efficiently. [45]
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