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ABSTRACT

Since the beginning of the new century, we are experiencing a renovated enthusiasm with respect to the
human conquest of Mars, that now represents the greatest challenge for space engineering. Before sending a
man to Mars, however, a number of technologies still need to be developed or improved. In this respect, entry,
descent and landing is one of the most crucial research fields. In particular, a manned mission requests that
a supply can be delivered within a short distance from a previously landed asset or inside a very tiny area. In
response to these needs, NASA addressed the so called pinpoint landing accuracy requirement. A mission that
satisfies this requirement shall be able to land its payload within 100 m from the nominal target.

A typical Mars entry, descent and landing mission consists of a hypersonic entry, a parachute deceleration
phase and a powered terminal descent. This architecture derives from the successful Viking mission launched
by NASA in 1975. The best landing accuracy up to now has been achieved by the Mars Science Laboratory mis-
sion, whose landing ellipse had a major axis of about 20 km. This was possible thanks to the implementation
of a novel guidance system for controlling the trajectory of the spacecraft during the entry phase. The residual
uncertainty is mainly due to navigation error, but also the atmospheric disturbances affecting the parachute
flight play a significant role. After Mars Science Laboratory mission, in fact, the parachute descent remains the
only unguided phase of a typical Mars entry, descent and landing mission.

Considering these, the objective of this research project is to understand whether a guidance system that
can control the horizontal position of the parachute-backshell-payload spacecraft during the descent in the at-
mosphere of Mars, using the thrust generated by the backshell thrusters, represents a performing and efficient
solution for compensating the disturbances affecting this flight phase and thus reducing the size of the final
landing ellipse on the surface of the Red Planet.

The advantage of having a system that autonomously follows a reference descent trajectory comes at the
cost of having on board a thrusters, fuel and a tank resulting in a non negligible additional mass and, most of
all, that the use of thrust perturbs the dynamic behaviour of the vehicle. Because of this, before to develop
a parachute descent guidance system, it is fundamental to understand how the parameters of the spacecraft
influence its stability characteristics. The first step of the research consisted in the development of a rigid body
model simulating the translational and attitude motion of the parachute-payload spacecraft. This model was
then linearised for a descent flight in steady-state conditions. The analysis of the eigenmotion of the system,
based on the study of its Jacobian matrix, highlighted the contrasting effect that the inertia and aerodynamic
properties of the vehicle have on its dynamics.

At this point a PD controller for stabilizing the horizontal position and velocity of the spacecraft around a
chosen reference equilibrium condition was designed, integrated with the available rigid body model and then
tuned for obtaining the desired response. The resulting closed-loop system was also linearised for a steady-
state descent flight. The analysis of its Jacobian yielded interesting information for understanding how the
control action influences the dynamics of the system.

After this preliminary phase, a new multibody model based on the Neustadt methodology was developed.
The response to gusts and turbulences obtained using this model, that simulates the relative motion of the
parachute, backshell and payload elements, was used to characterize with more accuracy the stability proper-
ties of the vehicle and to determine a configuration that is appropriate for the integration of the descent guid-
ance system. The final step consisted of evaluating the performance and efficiency of the closed-loop system
with respect to different aspects of the guided descent flight.

The results of the analysis are encouraging. They show that the open-loop system naturally tends to the ver-
tical flight condition at equilibrium velocity. In particular, the more the aerodynamic forces of the parachute are
relevant with respect to the inertia properties of the vehicle, the more stable the system will be. The introduc-
tion of the control action due to the guidance system in the dynamics of the system results in the stabilization
of its horizontal motion around a chosen position-velocity target. By adjusting the gains of the controller and
the lengths of the risers it is possible to optimise the response of the closed loop-system. The simulations show
that in a descent flight of about 60 s the system can compensate a horizontal position error up to 900 m with
approximately 8 kg of fuel.

v



vi ABSTRACT



CONTENTS

List of Symbols ix

List of Abbreviations xiii

1 Introduction 1

2 Mission Heritage 5

2.1 The Exploration of Mars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Landing Accuracy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Guided Descent Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Dynamic Stability & Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Mission and System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Flight Mechanics 15

3.1 Mathematical & Physical Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Reference Frames & Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Equations of Motion & External Forces. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Rigid Body Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Translational Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Rotational Equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Mars Pathfinder Model Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Multibody Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 The Neustadt Multibody Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Descent Spacecraft Multibody Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Mars Environment 39

4.1 Mars Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Mars Atmosphere Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2 Wind Gusts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.3 Atmospheric Turbulence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Mars Gravity Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Software Verification and Validation 45

5.1 Software Architecture and Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Units Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.2 Rigid Body Model Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.3 Multibody Model Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Rigid Body Open-Loop Stability 55

6.1 Dynamic Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.1 Equilibrium Points & Direct Method of Lyapunov . . . . . . . . . . . . . . . . . . . . . 55

vii



viii CONTENTS

6.1.2 Stability of Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1.3 Indirect Method of Lyapunov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.1 System Linearisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.2 Eigenmotion Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Rigid Body Closed-Loop Stability 69

7.1 Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.1 State and Output Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1.2 Controller Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1.3 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1.4 Parachute-Payload Horizontal Position Control . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2.1 System Linearisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2.2 Gain Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2.3 Eigenmotion Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8 Multibody System Performance 83

8.1 Open-Loop System Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.1.1 Response to Wind Gusts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.1.2 Response to Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2 Closed-Loop System Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2.1 Performance in Nominal Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2.2 Performance in Perturbed Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.2.3 GNC-System Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9 Conclusions and Recommendations 97

9.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography 101



LIST OF SYMBOLS

Roman

a Speed of sound [m/s]
a Acceleration vector

[
m/s2

]
A Amplitude [varies]
A Jacobian matrix element [varies]
A Jacobian matrix [varies]
A State matrix [varies]
B Input matrix [varies]
c Response [varies]
C Output matrix [varies]
C Rotation matrix [−]
d Nominal length [m]
D Feedforward matrix [varies]
CD Drag coefficient [−]
CL Lift coefficient [−]
Cl Roll Moment coefficient [−]
Cm Pitch Moment coefficient [−]
Cn Yaw Moment coefficient [−]
CS Side force coefficient [−]
D Drag force [N]
D0 Parachute diameter [m]
E Energy [J]
f Function [varies]
f Multidimensional function [varies]
F Force vector [N]
g Gravitational acceleration

[
m/s2

]
g Gravitational acceleration vector

[
m/s2

]
h Altitude [m]
h Hinge position vector [m]
I Moment of inertia

[
kg/m2

]
I Identity matrix [−]
I Inertia tensor

[
kg/m2

]
Isp Thrust specific impulse [s]
k Parameter [varies]
k Elastic constant [N/m]
K Gain matrix [−]
Kd Derivative controller gain [−]
Ki Integral controller gain [−]
Kp Proportional controller gain [−]
l Double pendulum bar length [m]
L Length [m]
L Lift force [N]
L Position vector [m]
m Mass

[
kg

]
M Mach number [−]
M Moment [Nm]
M Moment vector [Nm]
Nsus Number of suspension lines [−]
O Origin of the reference frame [varies]
p Parachute porosity [−]

ix



x 0. LIST OF SYMBOLS

p Pressure
[
N/m2

]
P Period [s]
qdyn Dynamic pressure

[
N/m2

]
r Position vector [m]
R Radius [m]
R Universal gas constant

[
Jkg−1K−1

]
RM Mars equatorial radius [m]
S Side force [N]
Sref Reference surface

[
m2

]
t Time [s]
T Temperature [K]
T Thrust [N]
T Thrust vector [N]
T Translation vector [varies]
u Control vector [varies]
v Generic vector [−]
vλ Eigenvector [−]
V Lyapunov function [−]
V Velocity [m/s]
V Velocity vector [m/s]
W Weight vector [N]
x,y ,z x Cartesian position components [m]
x State vector [varies]
x̂ Unit vector [−]
X ,Y ,Z Reference frame axes [−]
y Output vector [varies]



xi

Greek

α Angle of attack
[
deg

]
α Generic angle

[
deg

]
β Sideslip angle

[
deg

]
γ Flight path angle

[
deg

]
γ Heat ratio capacity [−]
δ Latitude

[
deg

]
∆l Riser lengthening [m]
∆ht Gust transient size [m]
∆t Time fraction [s]
∆y Horizontal position error [m]
ε Average rate of dissipation of turbulent kinetic energy

[
m2/s3

]
ζ Damping factor [−]
η Kolmogorov length scale [m]
θ Attitude angle

[
deg

]
θ Pitch angle

[
deg

]
θ̈ Rotational acceleration vector

[
deg/s2

]
λ Eigenvalue [−]
λ Eigenvalue column vector [−]
µM Mars gravitational constant

[
m3/s2

]
ν Kinematic viscosity

[
m2/s

]
ρ Density

[
kg/m3

]
ρ Radial polar coordinate [m]
σ Bank angle

[
deg

]
σ Standard deviation [varies]
τ Longitude

[
deg

]
τη Kolmogorov time scale [s]
φ Roll angle

[
deg

]
Φ Suspension lines angle

[
deg

]
χ Heading angle

[
deg

]
ψ Yaw angle

[
deg

]
ω Frequency [Hz]
ωn Natural frequency [Hz]
ω Angular velocity vector

[
deg/s

]



xii 0. LIST OF SYMBOLS



LIST OF ABBREVIATIONS

AGAS Affordable Guided Airdrop System
AGU Airborne Guidance Unit
CARP Calculated Air Release Point
CEP Circular Error Probable
COM Centre Of Mass
COP Centre Of Pressure
CPU Central Processing Unit
DOF Degrees Of Freedom
DUT Delft University of Technology
EOM Equations Of Motion
EDL Entry, Descent and Landing
ESA European Space Agency
EMCD European Mars Climate Database
GCM General Circulation Models
GNC Guidance Navigation and Control
GPS Global Positioning System
IC Initial Conditions
IMU Inertial Measurement Unit
LTI Linear Time Invariant
MER Mars Exploration Rover
MIMO Multiple-Input Multiple-Output
MGP Mars Guided Parachute
MPF Mars PathFinder
MSc Master of Science
MSL Mars Science Laboratory
NASA National Aeronautics and Space Administration
PID Proportional Integral Derivative
PD Proportional Derivative
ROSCOSMOS Russian Agency for Aviation and Space
RSM Response Surface Method
RTG Radioisotope Thermal Generator
SISO Single-Input Single-Output
TRN Terrain Relative Navigation
UHF Ultra High Frequency
USSR Union of the Socialist Soviet Republics
USA United States of America

xiii



xiv 0. LIST OF ABBREVIATIONS



1
INTRODUCTION

In the last 60 years space-technology advancement has been impressive. In 1969 human kind has been able
to walk on another world, the Moon, and to safely come back home. From that moment on it was clear that
the destiny of our species was to colonise other planets. It is the duty of space engineers to make it possible the
conquest of the 21st century New World, Mars.

The first soft landing on the Red Planet, after many failed attempts, dates back to 19 June 1976 when the
NASA lander Viking touched down in Chryse Planitia. The main purpose of the Viking mission was not only to
increase the human knowledge of Mars, but also to validate a performing mission architecture that would have
served as a basis for future missions. This architecture consisted of a hypersonic entry, a parachute deceleration
phase and a powered terminal descent. Both these goals were fully achieved. Viking was followed by Mars
Pathfinder (MPF) and Mars Exploration Rover (MER), in which new landing concepts were tested.

During these years also other countries invested in Mars EDL technology. In particular, ESA launched its
first lander Beagle 2 in 2003, and Schiaparelli in 2016, as part of project ExoMars. The former touched down
on Mars, but a failure of the solar panels obstructed any communication. The latter, instead, was not able to
properly decelerate in the Martian atmosphere and impacted at high velocity on the surface.

All these missions were not designed for achieving high target accuracy at touchdown. In fact, as Figure 1.1
shows, the semi-major axis of the landing ellipses ranged from 140 km for Viking to 75 km for MER, and, as sug-
gested by Portigliotti et al. [2010], was of the same order of magnitude also for Schiaparelli. After the first Mars
missions, however, the objective of landing the first man on Mars as well as new scientific needs triggered the
development of new technologies to ensure the capability to deliver a large cargo close to a previously landed
asset or in a specific spot within a hazardous Martian region. For responding to this need, NASA addressed the
so called pinpoint landing accuracy requirement, requesting that a payload can be landed within 100 m from
its desired target. The first effort in this direction is represented by the launch of the Mars Science Laboratory
(MSL) mission in 2011. In fact, thanks to the implementation of an autonomous guidance and control system
for the hypersonic entry phase and to the development of a high performance descent system, the 900 kg rover
Curiosity could be delivered inside a 10 km semi-major axis landing ellipse.

Even if MSL represented a significant advancement in Mars EDL technology, pinpoint landing accuracy is
still far from being reached. According to Brand et al. [2004], the size of the landing ellipse on Mars depends on
many factors that affect with variable magnitude the performance of one or more phases of the EDL sequence.
These can be grouped into three areas: unknown variations of the Martian environment, errors due to impre-
cise knowledge of the interactions between the spacecraft and the Mars environment and errors of the GNC
system. EDL engineering research mostly focuses on this last aspect. There exist a number of studies, such
as Cheng-Chih [2006] and Wolf et al. [2011], that offer a survey of possible solutions for improving the design
of EDL GNC systems to achieve better landing accuracy. These include more accurate navigation units based
on orbital images and optical sensors and improved guidance an control strategies for the entry and powered
descent phases. External perturbations during the entry phase and navigation error represent indeed the main
source to landing inaccuracy. Terminal descent thrusters, instead, are already equipped on the vehicle for haz-
ard avoidance and final deceleration purposes. The additional amount of control authority that they guarantee
can eventually be also used for reducing the accumulated landing error.

Even if navigation and entry and terminal descent guidance are at the centre of current Mars EDL research
efforts, there are also other topics whose result could be beneficial for landing accuracy. In particular, during

1



2 1. INTRODUCTION

Figure 1.1: Improvements of landing accuracy for NASA Mars mission. Image credit: NASA/JPL

the parachute phase the vehicle is subjected gusts and atmospheric turbulence and the landing dispersion
increases due to the presence of winds. Wolf et al. [2005] suggest that a system for guiding the spacecraft during
this phase could compensate for the wind drift effect and significantly contribute to the reduction of the final
landing ellipse. The final objective of the present study is then to determine the benefits that such a system can
yield with respect to the landing accuracy problem on Mars. The question that arises is:

Can a guidance system for controlling the spacecraft parachute descent trajectory represent a per-
forming and efficient solution for increasing the landing accuracy on Mars?

To respond to this question, however, first the disturbances affecting the parachute descent phase have to be
analysed. The question is:

Q1. What are the most relevant external disturbances during the parachute descent on Mars?

With this information it is now possible to determine some characteristics that the spacecraft should have.
In particular, Wolf et al. [2005] introduces two possible solutions for the purpose of a guiding the spacecraft
during the parachute descent on Mars. One consists of exploiting a steerable parachute for gliding in the de-
sired direction while the other is based on the use of thrusters that can push the spacecraft towards the target.
While the former approach is already used for military applications on Earth and some studies for adapting
it to Mars delivery already exist, the potentialities of the latter concept have never been investigated. These
considerations suggest the question:

Q2. What actuators are more appropriate for controlling the spacecraft descent trajectory on Mars and what
guidance strategy could be more performing?

The results that we will obtain at the end of the study will be particularly influenced by the model that has been
adopted for simulating the dynamics of the parachute-payload spacecraft. With respect to this aspect we want
to know:

Q3. What are the key characteristics of modelling the spacecraft as a rigid body or a multibody system? When are
the differences between these two approaches significant?

The motion of the parachute-payload spacecraft is characterized by some key parameters. It is important to
know how these influence its dynamic stability properties and how they can be modified before to integrate the
guidance system with the vehicle. Also, it is interesting to determine how the key parameters of the guidance
system influence its response. In summary, the question is:
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Q4. How do the the key system parameters determine the dynamic properties of the parachute-payload space-
craft in both the cases of passive and guided descent?

Once the information for responding to the previous questions is available, the performance of the parachute
guided descent concept can be evaluated:

Q5. How much control authority can the designed guided descent system yield and what target accuracy it can
achieve? How is the system performance influenced in case of external perturbations?

Clearly, the possibility to actively control the descent trajectory comes at a price. In particular, what is impor-
tant to determine is:

Q6. What are the disadvantages of controlling the parachute descent spacecraft trajectory with the designed
system?

Finally, it has to be considered that the guidance system that has been implemented interacts with real naviga-
tion and control subsystems. This suggests the question:

Q7. How is the guided descent system influenced by the performance of the navigation and control subsystems
of the spacecraft?

The main research question and the corresponding sub-questions will be used as a guideline throughout the
research projects. The following report layout has also been designed according to the research questions.

Chapter 2 introduces the exploration of the Red Planet and the problem of the landing accuracy that has
driven the evolution of the technology of Mars EDL missions. In here, the possibility to realise a guidance and
control system for the parachute descent phase that can help reducing the size of the final landing ellipse is dis-
cussed. Also, some existing concepts related to this topic are presented to determine whether their characteris-
tics are appropriate for use on Mars. After this, the importance of the stability properties of parachute-payload
systems and the influence that the dynamic model used has on the results of the analysis are also mentioned.
The chapter is concluded by the description of the reference mission and vehicle, and the mission and system
requirements that will drive the study.

The mathematical and physical background, including frame transformations, coordinate systems and
other general concepts at the basis of flight dynamic studies, is presented in Chapter 3. This part is followed by
the definition of a rigid-body model and, later, a multibody model based on the methodology of Neustadt et al.
[1967], both describing the motion of the parachute-backshell-payload MPF reference vehicle. In Chapter 4 the
characteristic environment of Mars, in which the EDL reference mission takes place, is described and modelled.
In particular, it will focus on the atmospheric phenomena, such as winds, gusts and atmospheric turbulence,
that are encountered in the planetary boundary layer and that have a significant effect on the trajectory and
attitude dynamics of the spacecraft during its descent.

Chapter 5 describes instead the tools used during the project and the software architecture for implement-
ing the models developed in Chapter 3 and integrated with the environment description from Chapter 4. Also,
it documents their verification and validation.

The analysis phase starts in Chapter 6. Here, the rigid body model is linearised and its dynamic stability
characteristics are studied analytically, according to classical stability theory, for the case of a steady-state de-
scent flight. Chapter 7 introduces the parachute descent guidance system to be integrated with the models of
the MPF reference spacecraft. The dynamic properties of the resulting closed-loop system are then analytically
evaluated similarly to what has already been done in the previous chapter for the open-loop case.

Chapter 8 evaluates the response to gust and atmospheric turbulence of the MPF reference vehicle mod-
elled as a multibody system. The aim is to determine its dynamic stability properties and an appropriate con-
figuration for the implementation of the guidance system that can still guarantee robustness in presence of
external disturbances. The chapter is concluded by the evaluation of the closed-loop system performance with
respect to different aspects of the mission. Finally, Chapter 9 sums up the all the relevant information gathered
during the project and gives a concise replies to the research questions stated earlier. Also, it includes some
recommendations for continuing the research.
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2
MISSION HERITAGE

In 1960, the first mission to Mars was launched by the Soviet Union, failing already at launch. From that
moment on, many other missions were launched both by USSR and USA. The first successful flyby of the Red
Planet was performed in 1969 by the American probe Mariner 6, while the Mariner 9 was capable of entering
Mars orbit in 1971. Nevertheless, all of the landing attempts had failed, until the Americans launched the Viking
missions in 1975.

In this chapter, first the most significant Mars EDL missions will be reviewed in Section 2.1 with the aim to
understand what are their key characteristics and what advancements they brought to space technology. After
this, in Section 2.2 the landing accuracy problem, already introduced in Chapter 1, will be discussed in more
detail. This part is followed by the presentation of some autonomous descent concepts either for Earth or Mars
use in Section 2.3. Section 2.4 discusses the importance of dynamic stability for parachute-payload vehicles
and gives a brief overview of the available approaches for modelling the dynamics of these systems. Section 2.5
concludes the chapter with the description of a reference mission and vehicle and a collection of requirements
that, togehter with research question, will serve as a guideline during the project.

2.1. THE EXPLORATION OF MARS

The Viking 1 & 2 spacecraft were launched from Cape Canaveral, both by means of a Titan-IIIE rocket.
These probes consisted of an orbiter and a lander. Viking 1 touchdown, in 1976, represented the first soft Mars
landing. All the following Mars missions, not only by NASA, referred to this one both in terms of mission profile
and spacecraft design.

The objective of the Viking mission was to increase the human knowledge of the Martian environment,
with particular focus on its possibility to support life. This could be done by means of orbital observations
and direct measurements realised by the lander, whose instrumentation had been designed for acquiring data
about biology, geology, meteorology and atmosphere, during the descent phase and after landing.

The Viking lander was protected by an aeroshell during the hypersonic entry phase and landed on three
shock absorbing legs. Power was supplied by two Radioisotope Thermal Generators (RTG) and data trans-
fer was guaranteed by an Ultra High Frequency (UHF) antenna pointing the orbiter and a safe-mode omni-
directional S-band antenna to directly communicate with the Earth in case of signal losses. The lander had
hydrazine engines dedicated to deorbit and landing operations, while a large parachute ensured deceleration
and stability during the descent phase. Data were acquired by means of radar altimeter, Inertial Measurement
Unit (IMU) and a four-beam Doppler radar. The total mass of the spacecraft at entry was 1185 kg, while the
lander had a wet mass of 663 kg.

The mission consisted of a cruise phase followed by the separation between the orbiter and the lander, that
at this point enters hypersonic flight. The navigation goal in this phase was to converge to an accurate estima-
tion of the altitude prior to reach 6000 m, where the spacecraft velocity was around 250 m/s (corresponding to a
Mach number M ≈1.2) and the main parachute opened. This was a 16.2 m diameter disk-gap-band parachute,
made of Dacron and weighting 50 kg. It was deployed with a mortar that caused a transient variation in angular
rates to be taken into account not to lose the altitude correct estimation. During the parachute descent the
payload, standing at a distance of 30 m from the aerodecelerator, performed a roll manoeuvre intended to find
the best orientation for the scientific operations after landing. The parachute was finally released at an altitude

5
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Figure 2.1: Viking mission entry, descent and landing sequence [Holmberg et al., 1980].

of 1400 m and a velocity of 54 m/s. At this moment the terminal descent engines were ignited for the final
deceleration to achieve a soft touchdown.

More detailed information about Viking lander system design can be found in Ball et al. [2007], while an
accurate description of the EDL operations, whose architecture represents the reference for all the subsequent
Mars landing missions, is included in Holmberg et al. [1980].

After this first successful landing NASA decreased the budget dedicated to Mars exploration to focus on
the Space Shuttle program. Mars Pathfinder (MPF) was the second Mars landing mission by NASA and was
launched in 1996, about 20 years after Viking. The purpose of the 584 kg (wet mass) lander was to take mea-
surements in the Ares Vallis, a particularly rocky area on the red planet. The parachute was similar to the one
used for Viking but had a wider band for increased stability and, since it could resist to a dynamic pressure
up to 703 N/m2, was opened at higher altitude and velocity, respectively 9.4 km and 400 m/s according to the
mission reconstruction by Braun et al. [1997], about 80 s prior to landing. During the descent phase the lander
was lowered and distanced from the backshell by means of a 20 m bridle, so that the touchdown subsystem,
an airbag, had enough space for inflation. At a velocity of 65 m/s the engines on the backshell were ignited to
provide further deceleration and the payload (lander+airbags) was released. The parachute was dragged away
by the residual thrust of the backshell engines1. The interested reader is referred to Spencer and Braun [1996]
and Braun et al. [1997] for in depth data about the mission. An interesting aspect of the MPF vehicle is that,
for the terminal part of its parachute descent, it was characterized by a three body configuration, depicted in
Figure 2.2, consisting of the parachute, providing drag force, the backshell, that produces thrust upwards, and
the payload, whose weight had to be balanced.

1The EDL sequence for MPF has been reconstructed according to Mars Pathfinder, Entry,Descent and Landing, accessible at http://
mars.nasa.gov/MPF/mpf/edl/edl1.html. Last accessed: 13/01/2018

http://mars.nasa.gov/MPF/mpf/edl/edl1.html
http://mars.nasa.gov/MPF/mpf/edl/edl1.html
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Figure 15.  EDL Model at Start of Simulation Figure 16.  EDL Model During Final Descent

Figure 17 shows the time histories and Fourier amplitude plots of the accelerations
measured by the on-board science accelerometers from parachute deployment to airbag
inflation. The corresponding time histories and Fourier amplitude plots of the accelerations
from the EDL reconstruction simulation are illustrated in Figure 18.  Excellent agreement in
frequency response is observed between the Fourier amplitude plots of Figures 17 and 18,
except in the Z-acceleration. In the EDL model, the stiffness values of the parachute risers
and the lander bridles are artificially reduced to improve the numerical convergence and to
reduce simulation time. As a result, the EDL model is more flexible than the flight system
along the Z-axis.  However, this is not critical for predicting the performance of the EDL
system during terminal descent.

In general, a good comparison in time history response is also observed between
the actual flight accelerometer data and the simulated accelerations, particularly after the
lander separation, which occurred at approximately 39 s after parachute deployment.
Shortly after parachute deployment, it is seen that the simulated accelerations are different
from the flight data and damp out much faster. The difference observed could be minimized
by better modeling the parachute opening dynamics and by reducing the damping in the
model.  The ÒbeatÓ phenomenon in the simulated accelerations is due to a 2 rpm spin

Figure 2.2: Mars Pathfinder terminal descent configuration [Spencer et al., 1999].

An analogous EDL sequence, reconstructed in Desai and Knocke [2004], as well as the 3-body chain-like
configuration and the touchdown airbag system of MPF were successfully employed also in 2004 to land the
rovers Spirit and Opportunity, both part of the Mars Exploration Rover (MER) program. According to Witkowski
et al. [2005], in that period a dust storm in the predicted target area on Mars had caused the air density to
increase so that the dynamic pressure at the deployment of the main parachute was significantly higher with
respect to all previous missions. Nevertheless, the parachute had been further reinforced since Mars Pathfinder
and could bear a dynamic pressure at deployment of 900 N/m2, as was shown by post launch tests2. The
absence of failures was an additional proof that the Viking derived parachute design and mission architecture
were absolutely reliable, reasons why actual Mars landing missions still refer to it.

Until the first years of the new millennium, the main purpose of Mars landing missions had been to ac-
quire generic scientific data about the planet. Viking, MPF and MER missions were characterized by a landing
accuracy in the order of 100 km, that is enough if the interest area is large. In the new century, however, the
scientific community directed its attention towards very specific features of the planet and to the next step in
space exploration, the first man on Mars. These objectives require, amongst others, the capability to precisely
deliver a cargo and, especially, to land close to a previously landed asset or within a very tiny area. For these
applications a landing accuracy in the order of 10-100 m, namely a pinpoint landing accuracy, is needed.

As will be explained in more detail in Section 2.2 the size of the final landing ellipse is determined by many
errors sources. Up to the present moment the better landing accuracy has been achieved by Mars Science Lab-
oratory mission. This mission, whose EDL sequence details are available from Striepe et al. [2006], Karlgaard
et al. [2012] and Cruz et al. [2014], represented an evolution with respect to all previous NASA missions. The
MSL spacecraft, in fact, was equipped with a GNC system capable of counteracting the landing site dispersions,
mainly variations in the density of the upper atmosphere and displacements in the initial entry conditions, af-
fecting the delivery accuracy of this hypersonic entry. Thanks to this approach the Curiosity rover was landed
in 2012 with an accuracy in the order of 10 km, paving the way for future precision landing missions3.

In these years, also the younger European space program dedicated some effort to Mars exploration. The
first European mission to Mars, Mars Express, was launched in 2003 within the same launch window as MER.
The mission, whose limited budget was mainly provided by the British Government and ESA, included an or-
biter and a small lander, Beagle 2. The capsule design for this lander was derived from the previously flown
Cassini/Huygens mission. At the end of the hypersonic phase a disk-gap-band pilot parachute was fired us-

2Mars Exploration Rover mission overview is accessible at http://mars.nasa.gov/mer/home/.Last accessed 13/01/2018.
3Further data about Mars Science Laboratory mission is accessible at http://mars.nasa.gov/msl/. Last accessed 13/01/2018.

http://mars.nasa.gov/mer/home/
http://mars.nasa.gov/msl/
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Figure 2.3: Schiaparelli entry, descent and landing sequence. Image credit: ESA

ing a mortar to stabilize and reduce velocity from M ≈1.5 to subsonic. At M ≈0.6 the main ringsail parachute,
whose design is explained in Northey [2003], was deployed to provide maximum deceleration. Thanks to the
small dimensions of the lander, the kinetic energy at the end of the parachute phase was low, so that an airbag
system was enough for absorbing it. However, the communications with the Beagle 2 lander were lost just after
touchdown, together with a lot of significant data. Still, the know-how acquired by ESA engineers during the
mission design phase has been fundamental for the coming projects and strongly influenced the development
of the following Schiaparelli lander.

ExoMars is an ESA/ROSCOSMOS program for the exploration of Mars. The first Exomars mission was
launched in 2016 with the purpose to study some geological and biological features of Mars. Beside this, the
spacecraft was equipped with the lander Schiaparelli, whose objective was to serve as a technology demonstra-
tor for analysing several aspects of a Mars surface mission, prior to the launch of a second Mars EDL mission
around 2020. The Schiaparelli mission layout is described by Bayle et al. [2016]. The parachute system to de-
celerate this vehicle during the descent phase was designed to be deployed in supersonic conditions. It could
stand a maximum dynamic pressure of 910 N/m2 and mach number of 2.1. The deployment conditions were
met after the hypersonic phase when the velocity was around 500 m/s at approximately 7000 m over the pre-
dicted landing site, the Meridiani planum. When the drag acceleration corresponding to this interface was
sensed, the pilot chute was fired by a mortar. This was a 12 m diameter disk-gap-band parachute, featuring
36 gores and a porosity of 22.4%. According to Lingard et al. [2009], the main aerodecelerator, deployed by the
pilot, was instead a 20◦ conical ringslot parachute with a diameter of 25.5 m and 20% porosity, flying 28.5 m
behind the probe. The pilot chute drag coefficient CD was around 0.6, while the main had 0.53. In addition to
this, after the deployment sequence, taking up to 3 s, the 50 kg heat-shield had to be separated and the lander,
characterized by a high CD , was uncovered. The initial driving requirement for this subsystem was that it was
supposed to reduce the velocity of the 450 kg lander to 75 m/s when the altitude over the ellipsoid reached
4000 m.

Unfortunately, also Schiaparelli was lost during the EDL operations in 2016. Nielsen [2016] states that this
was due to a combination of events including a flaw in the flight software and a problem in merging the data
coming from different sensors. Up to now ESA has not been able to successfully land on Mars, but precision
landing was also not a main concern for Beagle 2 and Schiaparelli, whose landing ellipse size was still in the
order of 100 km.
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2.2. THE LANDING ACCURACY PROBLEM

According to Brand et al. [2004], Mars landing missions can be divided into 4 classes depending on their
objective and performance. Missions like Viking, Mars Pathfinder and ExoMars, whose EDL system key re-
quirement was the capability to land a non-massive payload softly on the Red Planet, represent the first class
of Mars landing missions. Their landing accuracy requirements were loose, in the order of 100 km. Mars Explo-
ration Rover missions served to further prove that the Viking-derived mission architecture was robust. From
that moment on the NASA Mars Exploration Program invested a lot of effort in GNC technologies for precise
landing. Mars Science Laboratory was initially designed to achieve a 25×20 km landing ellipse, with the major
axis oriented in the approach direction. According to Mendeck and Craig McGrew [2014], the final confidence
landing area for the 900 kg Curiosity rover, also considering the event of strong wind, was a 19.1×6.9 km ellipse
in the Gale Crater region. This was the first second class Mars landing mission and represents the current state
of the art for Mars EDL technology. The third and fourth class missions are characterized, respectively, by the
achievement of pinpoint landing accuracy and the capability to land the first man on Mars. In this respect,
Mars Science Laboratory can be considered as a starting point for the development of the technologies needed
for future missions and will be used in this section as a reference to understand how the landing site dispersion
accumulates during the EDL mission phases.

Mars Science Laboratory was launched in October 2011 from Cape Canaveral, Florida, on board an Atlas V-
541 rocket. After an 8 months interplanetary cruise it arrived in the Martian system at the beginning of August
2012. The EDL sequence was initiated on the 6th of that month, when the lander, after separation from the
Centaur cruise stage, was placed on a Mars reentry orbit.

The hypersonic entry phase started when the vehicle intersected the upper atmosphere boundary, sensed
by means of the IMU that integrates acceleration starting several hours before entry operations. At this point
a landing site dispersion had already grown during the cruise due to navigation errors in this phase, so that
the atmospheric entry position and velocity were affected by a significant uncertainty. MSL was the first Mars
landing mission that implemented a guidance and control system for the entry phase. Its objective was to get
rid of delivery uncertainties at atmospheric entry, caused by manoeuvre execution errors and orbit determina-
tion uncertainties during the interplanetary trajectory, as well as uncertainties caused by density anomalies in
the atmosphere and errors in the definition of the aerodynamic coefficients. The bank-angle control authority
to compensate for these uncertainties was guaranteed by the capability to change the position of the centre
of mass of the capsule by means of auxiliary mass ejections. After a prebank phase, where the bank angle was
ground-commanded, the entry guidance algorithm started to work autonomously. The bank angle magnitude
was modified to minimize predicted downrange error at parachute deployment and bank reversals were ex-
ecuted to handle crossrange error. After this range control phase, during which both peak heating and peak
loading occurred, the guidance algorithm was set to maximize the parachute deploy altitude and minimize
residual crossrange error. The heading alignment phase ended when the parachute deployment sequence was
initiated, at approximately an altitude of 10 km.

To successfully deploy the parachute it was requested that the altitude was higher than 6 km, the Mach
number within 1.1 and 2.3 and the dynamic pressure lower than 750 Pa. The design goal for the entry guidance
and control system consisted of meeting these conditions within 10 km from the nominal parachute deploy-
ment position. Indeed, despite the implementation of a guidance system for the hypersonic entry, the position-
velocity knowledge error at atmospheric entry caused by cruise navigation uncertainties, used to grow during
the hypersonic phase, this being mainly due to the growth of the IMU integration error. As a result both the
altitude and horizontal position uncertainties at deployment were in the order of ≈3 km (3σ).

In addition to navigation uncertainties, during the parachute phase the vehicle is subjected to the distur-
bances caused by the atmosphere of Mars, in particular winds. The wind drift is indeed the dominant source
of uncertainty between the parachute deployment and the terminal descent thrusters ignition. It eventually
causes the vehicle to drift up to a few km away from the reference trajectory, thus significantly contributing to
the final landing error.

The parachute descent phase ends when the terminal descent thrusters are ignited, at an altitude of ≈1 km
and a speed lower than 100 m/s. The purpose of this last phase is to decelerate the payload to achieve a soft
touchdown. For an unguided parachute phase, following an MSL-like guided hypersonic entry, the delivery
uncertainty at engine ignition can be seen as the sum of the uncertainty at parachute deployment due to nav-
igation errors that accumulates during cruise, entry and descent phases and uncertainty caused by wind drift.
According to Baker et al. [2014], the terminal descent system of MSL, that can rely on much more accurate nav-
igation units with respect to those available for previous mission phases, ensures a control authority to correct
for up to 50 m altitude error and to counteract the dispersions that affect this phase. Also, thanks to hazard
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Figure 2.4: AGAS 2000 concept of operations [Jorgensen and Hickey, 2005].

avoidance system improvement, a small amount of additional control authority over the horizontal position
could be guaranteed. It is clear, however, that the terminal descent GNC system cannot significantly reduce the
landing inaccuracy that has been accumulated up to this point.

After the development of a GNC system for the hypersonic entry phase on the MSL spacecraft, the only
EDL phase that remains unguided is the parachute deceleration. Considering these, a guidance and control
system that can contrast wind disturbance during this phase and eventually reduce the overall position error
at terminal descent thrusters ignition, could represent an efficient solution for improving the final landing
accuracy on Mars.

2.3. GUIDED DESCENT CONCEPTS

Pinpoint landing accuracy is not exclusively a space-related requirement. In the military field such a capa-
bility is fundamental, for example, to deliver supplies to surrounded troops or to land provisions within a small
area. This is why military engineers, from the US army in particular, started to study concepts for a guided
descent long before this topic became interesting for EDL engineers.

Nowadays paratroopers use the parafoil to accurately land on a target. By djusting the length of the risers
to modify the shape of the wing, the airman is able to control the direction and magnitude of the aerody-
namic forces. One such example is the DRAGONFLY concept, introduced in Benney et al. [2005] that exploits a
guidance logic as well as actuators and CPU to autonomously control the length of the risers and, in turn, the
parafoil, taking into account the position of the landing site and the descent conditions. According to Hattis
et al. [2000], the Airborne Guidance Unit (AGU), containing sensors, a computer and actuators, using Global
Positioning System (GPS) and IMU measurements, guides the parafoil from the deployment altitude to landing
within 100 m from the target and can be adapted for several mission scenarios, always ensuring good perfor-
mance. Clearly, many other autonomous systems have been developed and extensively tested until now, but
all of them rely on the same working principle and are pretty similar.

Despite several advantages that the parafoil has when compared to the parachute, it is less robust and must
always be guided somehow. In addition to this, when landing with a parafoil a residual horizontal velocity,
even in absence of wind, has to be taken into account. This can be unfavourable for some applications. Finally,
not only a parafoil dissipates energy less efficiently with respect to a parachute, but also it costs more, resists
a lower dynamic pressure at deployment and can suffer from inflation problems. Finally, the deceleration
requirements for a Mars EDL mission coupled with the low atmosphere density would result in a parafoil with
prohibitive dimensions. The solution of using a parafoil to control the descent on Mars is thus discarded.

Parachute systems are in general more appropriate if the objective is to decelerate a high speed payload.
They maintain the first place in the field of military and space deliveries and are still object of research and
optimisation. The Affordable Guided Airdrop System 2000 (AGAS 2000) is a US military project to achieve high
accuracy payload delivery using a simple and affordable system. The AGAS 2000 system, whose concept of op-
erations in depicted in Figure 2.4, consists of a flat circular cargo parachute and a GNC unit. This unit includes
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actuators that directly control the length of the risers and is analogous to the one used for the previously cited
DRAGONFLY. As suggested by Dellicker et al. [2003] Differently from the parafoil, a circular parachute does not
have a fixed heading axis, so that, if properly inclined, can glide in every direction. However, while a parafoil
can be released from an airplane within a very wide area around the target, the AGAS 2000 system is designed
to only counteract the dispersions caused by the errors in wind estimations and in the effective aircraft release
position. In fact, the Calculated Air Release Point (CARP), together with the nominal trajectory, are computed
according to the pre-flight wind predictions. The guidance logic receives in input the GPS estimated position
and controls the parachute inclination, i.e., the drag force vector, with the objective to remain within 30 m from
the nominal trajectory. The low control authority that AGAS 2000 guarantees, implies that the final achievable
landing accuracy strongly depends on the accuracy at release and, most of all, on the accuracy of wind esti-
mates. This is why, according to the data of Jorgensen and Hickey [2005], the Circular Error Probable (CEP),
that is a sort of landing ellipse, increases from 211 m to 38 m when a wind probe in the landing site area is
available.

This parachute descent mission scenario on Mars, described earlier, is similar to what AGAS 2000 is sup-
posed to do in an Earth environment. Mars Guided Parachute (MGP) program aims at proving that the technol-
ogy developed for AGAS 2000 can successfully be adapted to operate on Mars for improving landing accuracy.
The system, adapted for Mars landing, uses a ringsail parachute because a disk-gap-band one would not be
capable of gliding. Also, the ringsail has already been used in Beagle 2 mission. According to the paper of
McKinney and Lowry [2009], simulations and tests in a Mars relevant environment (low density atmosphere)
proved this configuration is performing, even if a more accurate development is needed.

The MGP program represents a possible solution for realizing a guidance system for the parachute descent
on Mars with the aim reducing the size of the landing ellipse. The control force for this concept is the aero-
dynamic force generated by the parachute, whose vertical and horizontal components are adjusted to control,
respectively, the vertical and horizontal motion of the vehicle. So, for example, if local wind has a vertical com-
ponent pointing upwards that has to be compensated for, the canopy has to be inclined to reduce the vertical
component of the aerodynamic force, but, in the meanwhile, a horizontal component is generated and the
parachute glides even in case horizontal wind is absent. Furthermore, the actuation based on the control of
the length of the risers has never flown in a space environment and the responsiveness could be too low if the
control has to be realized in a ≈ 60 s parachute descent phase. Also, as for AGAS 2000, MGP guarantees a limited
amount of control authority that is enough only for compensating the wind drift effect.

At this point, one could think to implement a guidance and control system for parachute descent based
on propulsive actuators, i.e., thrusters. This is a technology that has already been extensively used for Mars
landing and could ensure a very high level of reliability and performance. In particular, the idea on which the
present research is based is to evaluate whether the use of thrusters installed on the backshell of the vehicle
can be used efficiently for guidance and control purposes during the parachute descent.

2.4. DYNAMIC STABILITY & MODELLING

A typical descent spacecraft consists of a parachute and payload connected by means of an elastic riser.
Eventually, as Figure 2.2 shows for the MPF vehicle, a backshell can be present between them. In general,
this configuration is rotationally symmetric around the axis that passes through the centres of mass of these
elements. The hinges between the risers and the parachute, backshell and payload bodies can be considered
as spherical connections. They constrain the horizontal and vertical relative motion of the rigid elements but
allow their relative rotation. A parachute-payload system is thus non-rigid and its stability properties, that
depend on many parameters including the parachute size and type, the mass of the payload and the distances
between these element, are fundamental for the mission success. In fact, if the system oscillates too much,
then it is possible, for example, that a certain feature on the surface of Mars exits from the field of view of an
optical sensor or that a hardware component gets damaged due too large horizontal accelerations. Also, the
terminal descent thrusters ignition requires that the vehicle is stable.

The objective of the parachute descent flight then is not only to dissipate energy, but also to stabilize the
vehicle before the landing phase. In particular, it is desirable that the descent vehicle can damp dangerous
oscillations due to the parachute mortar firing and inflation, that it can withstand the impact of atmospheric
perturbations such as gusts and turbulences and that it can rapidly converge to the equilibrium vertical flight
condition. In addition to this, the dynamic behaviour of the vehicle will be heavily influenced by the descent
guidance system that will later be developed and integrated on it. To modify the spacecraft design for adapting
it to the presence of this new subsystem, first the influence of the system parameters on its stability properties
need to be investigated in detail.
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Considering these, the analysis of the stability behaviour of parachute-payload systems will represent one
of the main topics of the present project, together with the development and evaluation of the guided descent
concept. For these purposes, however, a model that can simulate the dynamics of the system is needed. This
model will influence significantly the results of the study and thus its choice has to be reasoned.

There exist 2 classical ways to determine the EOM that describe a dynamical system. These are the Newton-
mechanics and Lagrangian-mechanics based methods. One of the main differences between these approaches
lies in the way the constraint forces are considered and in how the structure of the system is mathematically
modelled. The Newton-based approach, for example, provides a great insight into the EOM but it requires that
all the constraint forces, that are present in case of non-rigid systems, are determined explicitly. On the other
hand, by applying Lagrange mechanics one does not need to care about the constraint forces because they are
already included in the EOM. In this case, in fact, the EOM with respect to any set of generalized coordinates can
be analytically derived from the expression of an energy-like function associated to the system, the Lagrangian.
However, determining the Lagrangian can sometimes be cumbersome. Also, the Newton mechanics-based ap-
proach, in case of systems with simple geometry, is much more straightforward with respect to the Lagrange
one and it represents the best choice for the analysis of the dynamics of rigid body systems. Some pioneer-
ing studies focusing on the stability of parachute-payload systems, such as Helmut and Lawrence Jr. [1965],
Heinrich and Haak [1971] and Hume [1973], exploited models based on classical mechanics.

When higher fidelity is required and the number of interconnected bodies and Degrees Of Freedom (DOF)
of the system increase, then the task of determining the EOM using either Newton or Lagrange methods in-
creases accordingly. Because of this, in the last decades new procedures for handling the dynamics of complex
mechanical systems have been developed. By applying a multibody formalism, the user is no more concerned
with the constraint forces, as with the Newton method, nor with the definition of an expression for the en-
ergy associated to the system, as happens when dealing with Lagrange mechanics. Generally, he only has to
deal with matrices that define the configuration of the multibody and force vectors. The EOM for the system
are obtained automatically by manipulating these elements. Some examples of parachute-payload multibody
models characterized by a large number of DOF include Ibrahim and Engdahl [1974], Fallon [1991], Doherr
and Schilling [1991] and Abdulkadir [2011]. Other models, specifically developed for analyzing the dynamics of
parafoil-payload systems, similar to that of parachute-payload ones, are instead Vishnyak [1993], Müller et al.
[2003] and Mooij et al. [2003].

A model derived using a multibody approach describing the motion of a parachute-payload spacecraft is
not necessarily better than a rigid body one, determined for example using Newton. In fact, the former nor-
mally requires more time for being developed and, also, if the system has more DOF then the state vector
describing its trajectory is larger and its dynamics more articulated. Additionally, the physical interpretation of
the EOM is not straightforward, this being a fundamental requirement if the system has to be studied analyti-
cally. On the other hand, the multibody model can simulate the relative motion of the elements of the non-rigid
spacecraft, while rigid body models can only reproduce its pendulum-like oscillations.

Considering the purpose of the present study, both a rigid body and a multibody model are needed. The
first will indeed be used for deriving analytical results and have a better insight into the physics of the problem
and on the parameters that most characterize the dynamics of the spacecraft. This model will be realized
by applying the Newton approach for which an accurate investigation of the equilibrium of the forces and
moments acting on the body is required.

For the multibody model, instead, two options seem to be appriopriate. In fact, the C++ code implementing
the already cited model of Abdulkadir [2011], based on the multibody formalism of Wittenburg [2008], has been
recovered and updated as part of the present project. It is robust, versatile and computationally efficient but
offers poor insight into the dynamics of the problem. A second option would consist instead of building a
multibody parachute-payload model starting from the idea of Neustadt et al. [1967]. In this publication the
objective was to determine the optimal anchorage point between the parachute riser and the Apollo capsule.
To study how these bodies influence each other, the riser was modelled as a spring. In particular, the parachute
and capsule move independently under the effect of the respective forces and moments, the only influence
between them being the elastic force caused by the connecting riser. The lengthening of the riser is due to the
two body elements moving apart. This concept could be developed into a more extensive parachute-payload
system. In the resulting model, the EOM of each rigid element would be determined using Newton and no
constraint forces should be taken into account. This approach would allow to derive a model that can simulate
the relative motion between the elements of the spacecraft in a short amount of time with respect to other
multibody methodologies. Also, the resulting EOM would remain simple, this being an additional advantage of
this approach. In Section 3.3 these two options will be further discussed, compared and investigated.
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2.5. MISSION AND SYSTEM REQUIREMENTS

During this research project we will need a nominal mission and vehicle. This information will be used to
build the model, to validate it and as a reference for the analysis.

The reference mission is a classical Mars EDL mission consisting of an entry phase, a parachute phase and
a powered terminal descent phase, at the end of which the lander touches down on the Red Planet. Thanks
to its proven robustness, this mission layout, with minor variations in the parachute deployment altitude and
touchdown and entry strategies, since Viking mission represents the standard not only for NASA but also for
every other Mars landing mission. In particular, we focus our attention on the parachute descent phase. For
the MSL mission that, as explained, represents the state of art of Mars EDL missions, the parachute deploy-
ment sequence was initiated at a target altitude of 10 km, when the velocity is around 450 m/s. The constraints
for a successful parachute inflation requested that the dynamic pressure was lower than 750 Pa and the Mach
number between 1.1 and 2.3. After the inflation of the main chute, the drag force stabilized the system and de-
celerates until it reaches the vertical steady-state flight at around 6000-5000 m, depending on the atmospheric
conditions the spacecraft faces once on Mars. From this point the only purpose of the parachute is to deceler-
ate the vehicle until it reaches a vertical velocity around than 70-60 m/s at the target altitude of 1000 m, where
the terminal descent thrusters ignite for ensuring a soft and safe touchdown. The total descent, from deploy-
ment to engine ignition, lasts around 100 s while the steady-state flight phase starts 70 s before target altitude
is reached. These parameters, derived from the detailed MSL mission reconstruction of Mendeck and Craig
McGrew [2014], will be used as a reference mission. The nominal flight condition is assumed to be a vertical
descent flight in absence of winds starting at 6000 m with a velocity of 100 m/s (this value has been verified
to be appropriate after several simulations with the reference vehicle). Also, the spacecraft is assumed to be
oriented vertically for this nominal flight condition.

With respect to the reference vehicle, however, the MPF spacecraft is chosen. The EDL mission sequence
for this mission, as already discussed earlier, was characterized by a powered descent phase in which, differ-
ently from MSL, the parachute was still in use. Its aim in this case was not only to reduce vertical speed, but
also to stabilize the vehicle that was equipped with backshell thrusters pointing downwards, these being the
main source of deceleration in this flight phase. The three-body architecture of this vehicle, depicted in Fig-
ure 2.2, is appropriate for housing the thrusters that in our case we want to use for position control at higher
altitudes with respect to MPF treminal descent. Also, we decide to slightly modify the vehicle dimensions by
assuming a shorter riser between the backshell and the payload. For our MPF vehicle we assume 5 m instead
of ≈ 20 m. In fact, the reasons for having such a long riser were imputable to the need of avoiding impinge-
ment of the thrusters plume with the payload and of limiting the oscillation amplitude due to gusts impacting
on the vehicle at low altitudes. On the other hand, a shorter riser can result in a system that responds more
quickly to commanded lateral thrust. The length of the riser, however, is one of those parameters that signifi-
cantly influence the system stability and the performance of the guided descent concept and thus the effect on
its dynamics will be analysed in more detail in Chapter 8. The other relevant relevant vehicle parameters and
properties, taken from Abdulkadir [2011] that also uses MPF as reference vehicle, are given in detail in Section
3.2.3.

Table 2.1 contains the mission requirements that determine how the present study will be approached. In
addition to these, we also need the system requirements, reported in Table 2.2, defining the desired characteris-
tics for the guided parachute-payload descent spacecraft. These requirements, that summarize the discussion
of the present chapter, will yield an outline for guiding the models development and the analyses of Chapters
6 to 8.

A final remark has to be made with respect to the navigation and control subsystems. In particular, naviga-
tion heavily influences the performance of the guidance system because it receives in input the estimated state.
In other words, when analysing the characteristics of the concept, we need to take into account this effect that,
currently, represents the largest obstacle to climb if pinpoint landing accuracy on Mars has to be achieved.
This is why Section 8.2.3 discusses this theme in more detail. Nevertheless, the present research project will
focus more at determining if powered position control during the Mars parachute phase is efficient from the
point of view of dynamic stability and if it is performing with respect to consumption and amount of error that
can be compensated. The problem of having a navigation system that can make controlled descent possible,
despite discussed, is somehow independent with respect to the present work and represents a later step in the
development of the technology.
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Table 2.1: Mars parachute descent guidance and control MISSION REQUIREMENTS.

Req. ID Content
MR.1 A guidance system for the parachute descent flight on Mars shall be developed.
MR.2 A rigid body model of the reference vehicle shall be designed.
Rationale: this model will be used for deriving analytical results with respect to the dynamic properties of parachute-payload

systems.

MR.3 A multibody model of the reference vehicle shall be designed.
Rationale: this model will be used for simulating the descent flight of the parachute-payload system.

MR.4 The analysis shall be performed using the MPF vehicle as reference.
MR.5 The environment of Mars between the altitudes of 10000 and 1000 m over its surface shall be

modelled.
Rationale: this is the altitude band where the parachute descent flight takes place.

MR.6 The dynamic response of the system to gusts and atmospheric turbulence shall be analysed.
Rationale: gusts and turbulence are typical perturbations that are encountered in the planetary boundary layer of Mars. In

particular the gust resembles a impulsive input and can be used to evaluate the rigidity of the system and its how
well it damps oscillations. Turbulence instead continuously excites the oscillations of the system and can be used to
determine which input frequencies are more dangerous.

Specification: the characteristics of the gusts and turbulence for the analysis are given respectively in Section 4.1.2 and 4.1.3.

MR.7 The performance of the guidance system shall be analysed in both nominal and perturbed
conditions.

Specification: for perturbed conditions it is intended the case in which the vehicle is subjected to winds, gusts and turbulence during
the descent flight.

MR.8 The influence of navigation error on the performance of the guidance system shall be anal-
ysed.

Table 2.2: Mars parachute descent guidance and control SYSTEM REQUIREMENTS.

Req. ID Content
SR.1 The guidance system shall generate commands for the thrusters installed on the backshell of

the reference vehicle.
SR.2 The guidance system for the Mars parachute descent flight shall control the position and ve-

locity of the spacecraft.
Rationale: these state variables are the most important to control for improving landing accuracy. In fact, the final landing error

is indeed a position error and velocity errors directly influence it.

Specification: This topic is discussed in more detail in Section 2.3.

SR.3 The mass, geometric, and aerodynamic properties of the MPF reference vehicle shall be taken
from Abdulkadir [2011].

SR.4 The spacecraft is assumed to be equipped with an optical navigation system.
Rationale: optical systems for Mars EDL navigation, as discussed in Section 8.2.3, are now object of research and could be

adapted for being used also during the parachute descent phase.

Specification: the characteristics of the navigation system shall refer to Johnson et al. [2015].

SR.5 The initial condition and constraints for the descent flight simulation shall refer to the MSL
mission reconstruction of Mendeck and Craig McGrew [2014].

Specification: the initial conditions for the simulations are not fixed. Sometimes they are varied around the reference values for
highlighting certain aspects of the dynamics of the system.
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FLIGHT MECHANICS

In Section 2.4 the need for models that can simulate the dynamics of the reference vehicle and are appro-
priate with respect to the requirements of the following analysis phase has been addressed. Before to develop
them, however, Section 3.1 introduces the theory that forms the basis of flight mechanics studies. This in-
cludes Newton’s laws, reference frame definitions and frame transformations, coordinate systems and, last but
not least, the introduction of the general formulation of the EOM for a moving vehicle. This background rep-
resents the starting point for the definition, in Section 3.2, of a rigid body parachute-payload model that will
serve for obtaining analytical preliminary information about dynamics of the spacecraft. Section 3.3, instead,
is dedicated to the development of a multibody model that, amongst others, can reproduce the relative motion
of the parachute, backshell and payload elements and can be used for higher fidelity response simulations.

3.1. MATHEMATICAL & PHYSICAL BACKGROUND

Mechanics is the discipline that studies the equilibrium of bodies subjected to a number of forces and mo-
ments acting on and around its COM. This discipline can be divided in three different branches. These are
statics, that studies the equilibrium of the forces acting an a system at rest, dynamics, that studies the varia-
tions of the forces that act on a system causing its motion and yields information about the resulting linear and
angular accelerations of the body itself and kinematics, that studies the motion of the body by simply analysing
how the velocities caused by the forces the body is subjected to result in changes of its position and attitude.

The Philosophiae Naturalis Principia Mathematica written in the second half of the 17th century by Sir Isaac
Newton represents the foundation of all these three branches. In particular, the three Newton’s laws of motion
are at the basis of any other concept and theory related to the field of mechanics developed in the following
centuries. These are [Wie, 2008]:

1. First law: A particle remains in its state of rest or uniform, straight-line motion unless it is acted upon
by forces to change that state; this is the law of inertia. (Note that the term particle is a mathematical
abstraction of a relatively small body and it is used interchangeably with the term point mass.).

2. Second law: The force acting on a particle equals the mass of the particle times its inertial acceleration.
Mathematically this law is expressed as:

F = ma (3.1)

where F is the force acting on the particle, m is its constant mass and a its inertial acceleration.

3. Third law: For every applied force, there is an equal and opposite reaction force; this is the law of action
and reaction.

The Newton’s laws of motion are the starting point for determining the EOM of any dynamic system. Nev-
ertheless, they only hold for an inertial reference frame. In flight dynamics applications, however, several non-
inertial frames, described in 3.1.1 together with the topics of coordinates and frame transformations, are com-
monly used. To use the Newton’s laws also is these cases it is necessary to add some corrective terms, the

15
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apparent forces and moments, in the balance expressed by the EOM. This process is described in Section 3.1.2.
In there, the problem of deriving the EOM for the the case of the parachute-payload descent vehicle will also be
introduced. In particular, first an appropriate reference frame in which the EOM can be defined will be chosen,
and second the forces and moments that dominate its motion will be discussed.

3.1.1. REFERENCE FRAMES & TRANSFORMATIONS

A reference frame consists of a set of three mutually orthogonal axes that intersect in the origin of the frame.
For the purpose of studying the dynamics of a flying vehicle, many reference frames, either inertial or non-
inertial, can be used. An inertial frame is fixed in space or translates with constant velocity, while non-inertial
frames feature rotational and linear accelerations with respect to inertial ones. Some of the most used reference
frames for flight dynamics purposes include [Mooij, 2015]:

• Inertial planetocentric reference frame (I)
The origin of this frame coincides with the COM of the central body and the X I YI -plane with its equa-
torial plane. The ZI -axis corresponds to the rotational axis of the central body and points North while
the X I -axis the points the position of the reference meridian at time t0. The YI -axis completes the right-
handed system. For re-entry systems applications the motion of the rotational axis of the planet due to
the gravitational influences of other bodies of the Solar System can be neglected.

• Rotating planetocentric reference frame (R)
This frame corresponds to the I frame at time t0 and after any complete rotation of the central body
around its axis. Indeed, assuming no nutation and precession, the ZR -axis frame always coincides with
the ZI -axis but the XR -axis constantly points the reference meridian of the body and rotates with it. The
YR -axis completes the right-handed system and also rotates with the central body.

• Body reference frame (B)
The origin of this frame is fixed to the COM of the vehicle that is assumed to have a symmetry plane in
longitudinal direction. This plane is the XB ZB -plane where the XB -axis points in forward direction and
the ZB -axis points downwards. The YB -axis completes the right handed system.

• Vertical reference frame (V)
The origin of this frame corresponds to the COM of the vehicle. The ZV -axis points in radial direction
towards the COM of the central body and the XV -plane is perpendicular to it and points the northern
hemisphere. The YV -axis completes the right-handed system. The XV YV -plane perfectly coincides with
the local horizontal plane when the central body is a sphere but in the real case, i.e., when the oblateness
is considered, a small error is introduced.

• Trajectory reference frame, airspeed based (TA)
The origin of this frame corresponds to the COM of the vehicle. The XT A-axis points in the same direction
as the velocity vector with respect to the atmosphere while the ZT A-axis is perpendicular to XT A and
points downwards. The YT A-axis completes the right-handed system. An analogous frame (TG) can be
defined also with respect to the groundspeed.

• Aerodynamic reference frame, airspeed based (AA)
The origin of this frame corresponds to the COM of the vehicle. The X A A-axis points in the same direction
as the velocity vector with respect to the atmosphere while the ZA A-axis that is perpendicular to X A A , is
collinear with the lift force vector (defined according to the airspeed velocity) but is opposite in direction.
The YA A-axis completes the right-handed system. An analogous frame (AG) can be defined also with
respect to the groundspeed. When the vehicle is not banking the T A-frame coincides with the A A-frame
and the TG-frame coincides with the AG-frame.

• Propulsion reference frame (P)
The origin of this frame corresponds to the COM of the vehicle. This frame is used when the thrust
vector is identified using its magnitude and two direction angles defined with respect to the B-frame.
The XP -axis has the same direction as the thrust vector while ZP - and YP -axis are obtained by rotating
the B-frame around its ZB - and YB -axis of an angle equal to the corresponding direction angles of the
thrust vector.

The forces typically acting on a flying vehicle, characterized in Section 3.1.2, can have either a gravitational,
aerodynamic or propulsive nature and normally they are not expressed with respect to the same reference
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58 Fundamentals of Motion

Figure 3-5: The Euler transformation: successive rotations about the ZI -axis (yaw angle ψ), the Y1-
axis (pitch angle θ) and the X2-axis (roll angle φ) brings us from the inertial planetocentric
reference frame (index I) to the body reference frame (index B).

Figure 3.1: Classical angles θ, φ and ψ relating the body B-, and
inertial planetocentric I -frames [Mooij, 2015].

3-2 Reference Frames, State Variables and Frame Transformations 59

Figure 3-6: Definition of the aerodynamic attitude angles α, β and σ. The three related reference frames
are the body frame (index B), the aerodynamic frame (index A) and the trajectory frame
(index T ). Here, both α, β and σ are positive.

imaginary numbers are different square roots of −1 and obey the following constraint:

i2 = j2 = k2 = ijk = −1

The quaternions can be defined in terms of the Euler axis, a, and the Euler angle, Φ.
The vector part is defined as

Q =

 Q1

Q2

Q3

 = a sin
Φ

2
(3-5)

and the scalar part as

Q4 = cos
Φ

2
(3-6)

The rotation specified by the quaternions is expressed as (Q, Q4). The 4 quaternions
are not mutually independent because they satisfy the following constraint:

QTQ +Q4
2 = Q1

2 +Q2
2 +Q3

2 +Q4
2 = 1 (3-7)

This shows that the quaternions describe a unit 3-sphere, i.e., a sphere in 4-dimensional
space. Any rotation is therefore a trajectory on the surface of the 3-sphere. Also, the
orientation specified by (Q, Q4) is the same as the orientation specified by (−Q,−Q4),
since the latter describes the Euler rotation with Euler axis -a and Euler angle −Φ.
This means that if (Q, Q4) describes the shortest rotation then (−Q,−Q4) describes
the longest rotation. To enforce the shortest rotation the necessary condition is that
Q4 > 0.

Quaternions are a very vast topic, with their own special algebra and properties making
an exhaustive treatment beyond the scope of these lecture notes. The interested reader

Re-entry Systems

Figure 3.2: Aerodynamic angles α, β and σ relating the body B-,
aerodynamic A- and trajectory T -frames (either airspeed or

groundspeed based) [Mooij, 2015].

frame. The aerodynamic forces are identified in an aerodynamic reference frame, because their direction is
always fixed with respect to the velocity of the vehicle relative to the atmosphere, while the gravity force is
normally determined in the vertical reference frame and the thrust force in the body or propulsion reference
frame. As a result, before to be included in the balance defined by the EOM describing the motion of the
vehicle, all these vectors need to be expressed with respect to a common reference frame by means of frame
transformations. Frame transformations are possible if the relative position and orientation of a frame with
respect to another, namely the state and attitude of the vehicle, is known.

For identifying the spacecraft position and velocity several sets of variables can efficiently be adopted.
Those relevant for our research are:

• Cartesian components: these components are normally used to determine the position and velocity of
the vehicle with respect to the I or R frames. The position is identified by the elements x,y ,z while the
velocity is given by ẋ,ẏ ,ż.

• Spherical components: this is also a set of six elements. The position of the vehicle with respect to the R-
frame is identified by the distance from its origin R, the longitude τ (0◦ ≤ τ < 360◦) measured positively
towards the East direction starting from the reference meridian and the latitude δ (−90◦ ≤ δ≤ 90◦) mea-
sured positive due north starting from the equator. The velocity, on the other hand, is identified using
the groundspeed magnitude Vg , the flight-path angle γg and heading angle χg defined with respect to
the groundspeed vector.

Analogously, the attitude of a vehicle can be determined using the sets:

• Classical attitude angles: these angles, namely the roll angle φ, the pitch angle θ and the yaw angleψ, are
used to determine the attitude of the vehicle with respect to the inertial frame or with respect to the local
horizontal plane. When using these angles it is important to determine the sequence of rotations that
realizes the transformation. For aerospace applications the most commonly used sequence is the 3-2-1,
consisting of a yaw rotation about the Z− axis followed by pitch and roll rotations around, respectively,
the local Y − and X− axes.

• Aerodynamic angles: these angle, namely the angle of attack α (−180◦ ≤α< 180◦, α> 0 for nose-up), the
sideslip angle β (−90◦ ≤ β ≤ 90◦, β > 0 for nose-left) and the bank angle σ (−180◦ ≤ σ < 180◦, σ > 0 for
right bank), determine the attitude of the vehicle with respect to the groundspeed or airspeed vectors.
The aerodynamic angles α, β and σ represent a set of Euler angles whose sequence has order 2-3-1. This
set of angles is depicted in Figure 3.2.

Any frame transformation can be written as the sum of a translation and a rotation. To express the vector
vA in the A frame with respect to the B frame we write:
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3-2 Reference Frames, State Variables and Frame Transformations 61

Figure 3-8: Axis transformation from frame A to frame B, composed of a translation and a rotation.

Unit axis-rotations

The transformation from one (right-handed Cartesian) frame to another one can be expressed
by means of, for instance, unit axis-rotations, Directional Cosine Matrices and quaternions.
In this section we will concentrate on unit axis-rotations (positive rotations according to the
right-hand rule).

Let us have a look at the transformation from reference frame A to reference frame B. Frame
B is obtained from frame A by rotating this frame about its unit axis XA by the angle α.
This rotation is shown in Fig. 3-9.

Figure 3-9: Rotation from reference frame A to reference frame B.

From this figure, the following equations can be derived:

xB = xA (3-9a)

Re-entry Systems

Figure 3.3: Reference frame transformation from A to B [Mooij, 2015].

vB = T+CB,AvA (3.2)

where T is the translation vector that goes from the origin of the A frame OA to the origin of the B frame OB and
CB,A is the rotation matrix from frame A to frame B given by [Mooij, 2015]:

CB,A =
1 0 0

0 cosα sinα
0 −sinα cosα

 (3.3)

This orthonormal matrix, as suggested in Figure 3.3, can be derived by expressing the components of the vector
vA, defined with respect to the axes of the A frame, with respect to the axes of the B frame. More generally,
if identified with the notation C1(α), the matrix in Eq. (3.3) gives the counter-clockwise rotation of a frame
around its X -axis of an angle α. Analogous expressions hold for the rotations around the Y - and Z - axes. We
have respectively:

C2(α) =
cosα 0 −sinα

0 1 0
sinα 0 cosα

 (3.4)

C3(α) =
 cosα sinα 0
−sinα cosα 0

0 0 1

 (3.5)

Also, a frame rotation can always be decomposed in a sequence of three rotations each around one of its inde-
pendent axes. The resulting transformation matrix, that is still orthonormal, is found as the product of the three
matrices C1, C2 and C3. Moreover, if CB,A is the matrix transforming frame A into frame B, then the opposite
transformation, thanks to the fact that rotation matrices are orthonormal, is given by the transpose:

CA,B = C−1
B,A = CT

B,A (3.6)

According to this theoretical background about frame transformations, it is possible to define some stan-
dard relationships, collected in Table 3.1, between the reference frames presented above. The relations that are
not directly reported can be obtained by combining those that are listed.

In cases when one is dealing with 2D vectors lying, then the rotation matrix can be reduced to size [2×2].
In fact every 2D rotation can be described using a single angle and the row and column corresponding to the
rotation axis (the one with only one term different from zero) is not needed any more. Also in this case the right
hand rule determines the sign of the elements in the rotation matrix and the frame rotation direction can be
counter-clockwise (as the one given by Eq. (3.3) or clockwise.



3.1. MATHEMATICAL & PHYSICAL BACKGROUND 19

Table 3.1: Standard frame transformations [Mooij, 2015].

From To Transformation matrix Involved variables

R I CI,R = C3(−ωcb t )
ωcb = central body rotation rate

t = time from epoch

V R CR,V = C3(−τ)C2(π2 +δ)
τ= planetocentric longitude
δ= planetocentric latitude

W V CV,W = C3(−χw )C2(−γw )
γw = flight path angle wrt wind vector
χw = heading angle wrt wind vector

TG V CV,TG = C3(−χg )C2(−γg )
γg = flight path angle wrt groundspeed vector
χw = heading angle wrt groundspeed vector

TA V CV,TA = C3(−χa )C2(−γa )
γa = flight path angle wrt airspeed vector
χa = heading angle wrt airspeed vector

AA TA CTA,AA = C1(σa ) σa = bank angle wrt airspeed vector

B AA CAA,B = C3(βa )C2(−αa )
βa = sideslip angle wrt airspeed vector
αa = angle of attack wrt airspeed vector

B AG CAG,B = C3(βg )C2(−αg )
βg = sideslip angle wrt groundspeed vector
αg = angle of attack wrt groundspeed vector

B P CP,B = C3(ψT )C2(εT )
εT = elevation angle of the thrust vector
ψT = azimuth angle of the thrust vector

3.1.2. EQUATIONS OF MOTION & EXTERNAL FORCES

The EOM of a non-elastic body (6 DOF) are used to characterize the motion of and around its COM and
directly derive from the application of the Newton’s laws of motion and the Galileo Principle of Relativity to the
dynamic system. In case these are defined with respect to a non-inertial reference frame then the terms for
the relative forces have to be included in the balance. If the relativistic effects are neglected, this being possible
because the characteristic velocity we are dealing with is much smaller than the speed of light, the translational
EOM with respect to an arbitrary reference frame is:

FI +FC +Frel = F̃I = m
d 2rcm

d t 2 (3.7)

For the rotational equilibrium a similar equation holds:

Mcm +MC +Mrel = M̃cm =
∫

m
r̃×

(
dω

d t
× r̃

)
dm +

∫
m

r̃× [ω× (ω× r̃)]dm (3.8)

In Eq. (3.7) and (3.7), FI and Mcm are the total external force and moment with respect to COM of the body of

mass m, and FC, Frel, MC and Mrel are the Coriolis and relative forces and moments. Also, d 2rcm
d t 2 is the accel-

eration of the COM in the inertial reference frame, ω is the rotation vector of the body frame with respect to
the inertial frame and r̃ is the position of a mass element with respect to the COM of the body. While Eq. (3.7)
can easily be inverted for isolating the linear acceleration of the body, the same is not possible for determining
the rotational acceleration from Eq. (3.8). However, in case we are dealing with a rigid body, the latter can be
simplified to the so called Euler equation, that directly expresses the angular acceleration vector of the body
frame with respect to the inertial frame:

ω̇= I−1 (
M̃cm −ω× Iω

)
(3.9)

where I is the inertia tensor of the body referred to the body frame B expressed as:

I =
 Ixx −Ix y −Ixz

−Iy x Iy y −Iy z

−Izx −Iz y Izz

 (3.10)

I can be simplified if the body mass is symmetric with respect to some body axes and/or planes. The derivation
of Eq.(3.7), (3.8) and (3.9), together with the defitions for the Coriolis and relative forces and moments, are not
reported here, but can be found in Appendix A of Mooij [2015].

Consider now that the EOM Eq. (3.7) and (3.8) are defined in a reference frame whose origin is fixed to an
arbitrary point of the surface of Mars. The Coriolis and relative forces and moments are due to the fact that
this frame is non inertial, because it rotates with the planet, and due to time variations in mass distribution
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Figure 3.4: Aerodynamic forces defined in the aerodynamic A A-frame [Mooij, 1998a].

of the body. With respect to the parachute descent dynamics, however, we deal with a vehicle with constant
mass and, also, the rotation of the planetary body does not have a significant influence on its motion since the
descent flight is short. In such a case the effect of the relative forces and moments in the EOM can be neglected
and the reference frame can be assumed to be inertial. In fact, if the planet does not rotate then this frame
does not move with respect to the frame I described earlier. For convenience, in the following the EOM of the
parachute-payload spacecraft will be defined in a frame, that will also be identified with the index I , whose
origin lies in an arbitrary point of the surface of Mars1. The ZI -axis is perpendicular to the surface pointing
upwards. The YI - and X I -axes complete the right handed system as shown in Figure 3.5.

What still remains to analyse before to derive the EOM describing the dynamics of the parachute descent
vehicle are the forces that characterize its motion. If magnetic disturbances and gravitational perturbations
of planetary bodies other than the central one are neglected, then the forces that dominate the motion of the
spacecraft, to be translated into the same reference frame and included in the term FI, are:

Aerodynamic forces

The aerodynamic forces (subscript ’a’) depend on the air density and on the velocity of the vehicle. Most com-
monly they are determined in the A A-frame (see Figure 3.4) as:

Fa,AA =
−D
−S
−L

=
−CD qdynSref

−CS qdynSref

−CL qdynSref

 (3.11)

in which Sref is the reference surface and the dynamic pressure is given by:

qdyn = 1

2
ρV 2

a (3.12)

and CD ,CS and CL are the aerodynamic coefficients of the spacecraft and Va its velocity with respect to the
atmosphere. These coefficients are functions of the aerodynamic angles α and β, and of the Mach number M ,
that is:

M = Va

a
= Va√

γRTair
(3.13)

in which a =√
γRTair is the speed of sound. In case of no wind it also holds that:

Fa,AG = Fa,AA (3.14)

1This is possible because, according to the environment model described in Chapter 4, the variation of the characteristics of the atmo-
sphere and gravity field of Mars as a function of the latitude and longitude of the spacecraft over the planet are neglected.
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Aerodynamics does not only influence the motion of the COM, but also the motion around it. Indeed, a vehi-
cle is characterized by both aerodynamic force coefficients and aerodynamic moment coefficients. The latter
result in a moment around the COM that can be written, in the body frame B , as:

MM
a,B =

 ML

MM

MN

=
Cl qdynSrefbref

Cm qdynSrefcref

Cn qdynSrefbref

 (3.15)

where bref and cref are the aerodynamic reference lengths for the roll and yaw rotations, and for the pitch ro-
tation respectively. Also, in case the aerodynamic reference point, which is generally the suspension point of
the model in the wind tunnel, does not coincide with the COM of the vehicle, the forces in Eq. (3.11) generate
a moment around the latter that, with respect to the body frame B , can be expressed as:

MF
a,B = rcm ×CB,AAFa,AA (3.16)

where rcm = (xcm, ycm, zcm)T is the position of the COM relative to the aerodynamic reference point. The total
moment about the COM of the vehicle is the summation of these two characteristic moment contributions:

Ma,B = MM
a,B +MF

a,B (3.17)

It is remarked that when the aerodynamic moments or forces, that can be generated by each of the body ele-
ments of the spacecraft, are to be included in the EOM, a frame transformation is normally required.

Gravitational force

The second force contribution that is relevant for our study is the gravity force. This force is proportional to the
gravitational acceleration and, with respect to the inertial frame I fixed to the surface of Mars defined earlier, is
given by:

Fg,I = mgI (3.18)

in which gI is given by Eq. (4.10). If the gravitational acceleration is not constant, and, in particular, propor-
tional to the altitude, it causes a force gradient over the length of the spacecraft and, as a result, produces a
gravitational moment acting on it. Nevertheless, this moment is much smaller with respect to the one pro-
duced by the aerodynamic and propulsive forces and can be neglected.

Propulsion forces

The last external force contribution we will take into account later on is the propulsion. In fact, as explained
in Section 2, the propulsion force generated by the backshell thrusters is the one that the guidance system
commands for controlling the trajectory of the spacecract during the descent. This force is normally defined
with respect to the propulsion frame P or body fixed frame B . There exists extensive literature that explain
the physical principles behind propulsion, but, since in the following we will exclusively consider the force
generated by a generic engine, these are not discussed here. The interested reader is referred to Mooij [1998a]
that dedicates some space to this topic. The performance of an engine can generally be characterized using the
specific impulse:

Isp = T

ṁe g0
(3.19)

in which ṁe is the mass ejected from the exhaust per each second and g0 the gravitational acceleration on the
surface of the Earth. For EDL purposes hydrazine thrusters, with an Isp around 240 s [Ley et al., 2009], repre-
sent a good solution because they ensure high performance with respect to the amount of thrust produced,
robustness and responsiveness, at the cost of low consumption efficiency when compared with other types of
engines. Also, the maximum thrust that hydrazine thrusters can generate varies between 1 N and 10 kN. The
choice of an appropriate thrusters to use for guiding the spacecraft during the parachute descent, however, will
be discussed in Chapter 8. The fuel consumption of an engine can be evaluated by rearranging Eq. (3.19):

m f =
T∆t

Ispg0
(3.20)

in which ∆t is the time fraction during which the thrust T remains constant.



22 3. FLIGHT MECHANICS

3.2. RIGID BODY DYNAMICS

At this point we are ready for defining a model that can be used to derive analytical information about the
main features of the dynamic behaviour of the system that has to be studied. This can be done by applying the
theory introduced in Section 3.1.

Also, for the upcoming EOM derivation, Figure 3.5 can be used as a reference for the frames, system config-
uration and angle conventions. First, it has to be noticed that, while the I frame corresponds to the description
given in Section 3.1.2, the A A frame depicted in this figure is different with respect to the one given in Figure
3.4. In particular, the ZA A-axis is positive in the direction of the drag D and the lift force L is directed along the
YA A-axis. The X A A-axis, parallel to the side force S completes the right handed system. Also, as better explained
later, the B frame is defined in such a way that the ZB -axis corresponds to the rotational symmetry axis of the
spacecraft. With this convention, in case of a nominal parachute descent flight, the X A A-, XB - and X I -axes are
all positive in the same direction and the Z -axes point upwards with respect to the surface of Mars. Finally, we
will identify as pitching moment of the spacecraft, depending on the coefficient Cm , the moment around its
XB -axis. These choices are intended to make the frame situation easier to understand and more appropriate
for the analysis of the flight dynamics of the parachute-payload system.

In addition to this, for a parachute descent in nominal conditions, i.e., a vertical flight in absence of wind,
the drag D is directed upwards and the lift force L is almost parallel to the surface of Mars. For convenience
thus we will refer to L as lateral force in the remainder of the study. Finally, it is remarked that for drawing clarity
reasons the parachute COP and COM have been assumed to coincide and, also, for the purpose of showing the
angle convention, the B and I frames have been translated in this point (their axes are dashed). The relative
dimensions of the parachute backshell and payload elements are clearly unrealistic.

The first step in the derivation of the EOM is the introduction of some reasoned assumptions that are in
agreement with the characteristics of the problem and the requirements for the analysis. The attitude motion
of a parachute-payload system is characterized by two peculiar modes. The first is the pendulum-like mode
while the second is the scissors-like mode. To start with the analysis of parachute-payload dynamics we only
focus on the pendulum mode that can be fully described using a rigid body model. With this approach the EOM
of the model greatly simplify but, on the other hand, the information about the relative motion of the elements
of the spacecraft and, in turn, about the scissors motion mode that it determines, are lost. This aspect will be
analysed later by means of a multibody model. The rigid body assumption, however, does not compromise
the validity of the results obtained, in particular for the position-velocity trajectory of the system that is more
significantly influenced by the pendulum motion. Finally, in steady-state flight conditions, when no external
disturbances act on the body, the high descent velocity causes the aerodynamic force of the parachute to be
very large in vertical direction. This, coupled with the weight of the payload, makes the structure of the system
pretty stiff and limits the relative motion of the elements of the system.

Second, it is assumed that all the bodies of the spacecraft, i.e., the parachute, the backshell and the payload,
are rotationally symmetric at least around one of their axes. Also, they are aligned in such a way that the result-
ing rigid body spacecraft is rotationally symmetric around the ZB-axis, as Figure 3.5 shows. This configuration
results in the fact that the characteristics of the motion of the body around the XB- and YB-axes, and along the
XI- and YI-axes, are analogous. In addition, the rotation about the rotational symmetry axis ZB does not have
a significant impact on the trajectory of the spacecraft and is for the moment neglected. This aspect, however,
has to be taken into account for the design of the scientific instrumentation and the navigation and control
subsystems of the spacecraft. In fact, their use during the descent is critically influenced by the the rotational
orientation of the vehicle with respect to the vertical direction. The resulting 2D 3DOF model, describing the
translation along the YI- and ZI-axes and the rotation around the XB-axis, is sufficient for determining the crit-
ical information with respect to the dynamic stability of the system. This model is appropriate, because of its
simplicity, to be used for analytical considerations. A similar 2D 3DOF model was indeed used also in Helmut
and Lawrence Jr. [1965] for analogous studies.

The aerodynamic forces that the elements of the MPF reference spacecraft generate do not have the same
magnitude and the relevance of their effect on the dynamics of the vehicle is not the same. In particular, we
want to determine how the aerodynamic forces and moment generated by the parachute compare with respect
to those due to the the payload body. While the data for the parachute are available from Cruz et al. [2003], the
aerodynamic coefficients of the MPF capsule for the Mach number characterizing the descent phase (≈ 0.3),
are not available. Nevertheless, as is proved by the comparison of Edquist et al. [2011], MPF capsule has the
same geometry of the Phoenix capsule. This allows to assume that the aerodynamic properties of the latter, also
available there, can be used for rough estimations of the dynamics of MPF. The drag forces are compared for
α= 0◦ while the lateral force and moment around the XB -axis for α= 4◦ (for other sample angles the situation
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Figure 3.5: Parachute-backshell-payload spacecraft rigid body model dynamic analysis (dashed frames show the angle convention).

is analogous). We have:

Dpc

Dpl
= CD,pc(0◦)Sref,pc

CD,pl(0◦)Sref,pl
= 0.345×127.4

1×5.5
≈ 8

Lpc

Lpl
= CL,pc(4◦)Sref,pc

CL,pl(4◦)Sref,pl
= 0.012×127.4

0.01×5.5
≈ 28

Mpc

Mpl
= Cm,pc(4◦)Sref,pc

Cm,pl(4◦)Sref,pl
= −0.0224×127.4

−0.01×5.5
≈ 52

(3.21)

Equation (3.21) clearly shows that the aerodynamics of the parachute dominates over the aerodynamic of the
payload. This is valid also for the backshell whose contribution aerodynamic is comparable to that of the
payload. This situation is typical of Mars EDL missions, where the low density of the atmosphere requests
that the parachute is really large in comparison with the payload. The situation would be different on Earth.
Another thing that has to be noticed is that the aerodynamic forces generated by the parachute have a much
longer arm with respect to those of the other elements. In fact, the COM of the whole system is closer to
the most massive body, i.e., the payload. Because of this, the parachute dominates the attitude behaviour of
the spacecraft. With these considerations we can be sure that neglecting the aerodynamic effect of the payload
and backshell on the dynamics of the system is a sustainable assumption that will greatly simplify the following
analytical study.
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3.2.1. TRANSLATIONAL EQUILIBRIUM

With these fundamental assumptions in mind it is now possible to start with the derivation of the EOM of
the model. According to Newton, the translational equilibrium is expressed by the equation:

Fext = mg a (3.22)

in which Fext is the sum of all the external forces acting on the COM of the body, mg is the body gravitational
mass and a its acceleration vector. In this section all the vectors are 2D because we only consider the translation
along the X I - and YI -axes. The forces acting on the spacecraft are the aerodynamic forces generated by the
parachute and the weight of the body itself. With respect to the inertial frame I , the latter is given by:

Fg,I = W = mg gI =
(

0
mg g

)
(3.23)

in which the acceleration g is determined by the gravity model introduced in Section 4.2. The aerodynamic
force vector acting on the parachute-payload system, defined with respect to the A A frame as given by Figure
3.5, is:

Fa,AA =
(

L
D

)
(3.24)

where the lateral force component L and the drag component D are still singularly defined as given by Eq.
(3.11). Now we have all the forces that have to be included in the equilibrium expressed by Eq. (3.22). However,
before to do so we need to express all of them with respect to the same reference frame that we choose to
be the inertial reference frame I in Figure 3.5. While Fg ,I is already expressed in the I frame, Fa,AA has to be
appropriately transformed as:

Fa,I = CI,AAFa,AA (3.25)

where CI,AA is the matrix expressing a clockwise rotation around the XAA-axis that brings the YA A-axis on the
YI -axis. The rotational angle is π

2 −(−γ) that, according to Figure 3.5, is the angle between the YI- and YAA-axes.
We thus have:

Fa,I = CI,AAFa,AA =
[

cos
(
π
2 +γ) −sin

(
π
2 +γ)

sin
(
π
2 +γ)

cos
(
π
2 +γ) ](

L
D

)
=

(−L sinγ−D cosγ
L cosγ−D sinγ

)
(3.26)

By inserting Eq. (3.23) and (3.26) in Eq. (3.22) we get:

Fg,I +Fa,I = mg aI (3.27)

and, after rearrangement:

aI =
(

ÿ
z̈

)
=

( −L sinγ−D cosγ
mg

g + L cosγ−D sinγ
mg

)
(3.28)

where the gravitational acceleration g , that pulls the spacecraft towards the surface of the planet, is negative in
the inertial frame I .

3.2.2. ROTATIONAL EQUILIBRIUM

For the rotational equilibrium around the XB-axis an Eq. similar to (3.22) holds. This corresponds to Eq.
(3.9) for the case in which the the body rotates exclusively with respect to its XB -axis:

Mext,XB = IXB θ̈ (3.29)

where θ is the parachute attitude angle between the YI-axis and the ZB-axis, Mext,XB is the sum of the external
moments acting on the body around its XB-axis and IXB is the moment of inertia of the body also around XB.
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Differently from the previous section, the analysis of the rotational motion of the body requests that we deal
with 3D vectors even if we are exclusively interested in the rotation about the XB -axis. This is because rotation
vectors are perpendicular to the rotational plane. Also, the side force S is assumed to be always null as well as
the moments around the YB - and ZB -axes.

The external moments acting on the body once more have aerodynamic and gravitational origin. The grav-
itational moment around the XB-axis is given by:

Mg,XB = Lpc,B ×Fg,pc,I +Lbs,B ×Fg,bs,I +Lpl,B ×Fg,pl,I (3.30)

in which the gravity force vectors, one per each element of the spacecraft, is defined according to Eq. (3.18) and
Eq. (4.10), with h being the altitude of the corresponding spacecraft element. Lpc, Lbs and Lpl are respectively
the positions, in the B frame centred in the rigid body COM (red and black circle in Figure 3.5), of the the
parachute, backshell and payload COM (yellow and black circles in Figure 3.5). These vectors are given by:

Lpc =
 0

0
zpc

 Lbs =
 0

0
zbs

 Lpl =
 0

0
zpl

 (3.31)

The rigid body COM position along the ZB -axis with respect to the parachute COM can be determined as a
function of the distances between the elements of the spacecraft and their masses:

zpc =
mbsDpc-bs +mpl(Dpc-bs +Dbs-pl)

mpc +mbs +mpl
(3.32)

in which Dpc-bs and Dbs-pl, as Figure 3.5 shows, are the distances between the COM of the parachute and the
backshell and between the COM of the backshell and the payload and can be estimated if one knows the ge-
ometric properties of the parachute payload system, in particular the suspension lines length and their angle
with respect to the ZB-axis and the riser lengths, available in Section 3.2.3. The positions of the backshell and
payload with respect to the body COM follow as:

zbs = zpc −Dpc-bs (3.33)

zpl = zpc −Dpc-bs −Dbs-pl (3.34)

The gravitational moment as given by Eq. (3.35) turns out to be almost null per every configuration of the
system. In fact, the gravitational acceleration g varies as a function of the altitude and this generates a gravity
force gradient on the body that depends on its attitude. The effect on the attitude behaviour of the spacecraft
of the resulting gravity gradient torque, however, is negligible with respect to the aerodynamic contribution of
the parachute. We thus can assume:

Mg,XB ≈ 0 (3.35)

The attitude of the parachute-payload system is completely governed by the aerodynamic forces. The mo-
ment they generate is defined as:

Ma,XB = Msw +LCOP ×Fa,AA (3.36)

in which the aerodynamic moment generated around the swivel point of the parachute body, in agreement
with Figure 3.5, is:

Msw = Mswx̂B (3.37)

where x̂B is the XB -axis unit vector and Msw
2, defined as in Eq. (3.15), is a function of the parachute aerody-

namic moment coefficient Cm defined later. The position of the center of pressure of the parachute LCOP, with
respect to the body frame B , is:

2Since we are dealing with a 2D model in the following we will also refer to Msw as simply M
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LCOP =
 0

0
zCOP

 (3.38)

To simplify the computation of the cross product in Eq. (3.36) we choose to first express Fa,AA with respect to
the frame B . To do so frame A A has to be rotated clockwise of an angle −α. This gives:

Fa,B = CB,AAFa,A A

1 0 0
0 cos(−α) −sin(−α)
0 sin(−α) cos(−α)

 0
L
D

=
 0

L cosα+D sinα
−L sinα+D cosα

 (3.39)

By inserting Eq. (3.37), (3.48) and (3.39), we get:

Ma,XB = Mswx̂B +
 0

0
zCOP

×
 0

L cosα+D sinα
−L sinα+D cosα


= (Msw − zCOP(L cosα+D sinα))x̂B

(3.40)

The resulting rotational EOM is:

θ̈ = Msw − zCOP(L cosα+D sinα)

IXB

x̂B (3.41)

3.2.3. MARS PATHFINDER MODEL CHARACTERISTICS

To completely define a dynamic model, determining its EOM, i.e., its structure, is not enough. In particular,
the forces and inertia parameters that are in these EOM need to be specified as well. While the structure of the
model generally defines the type of motion, its parameters give a ‘dimension’ to this motion. For example, if
the EOM of a parachute-payload system characterize an oscillatory behaviour, then the mass of the payload
and the size of the parachute will determine the frequency of the oscillations, the damping factor of the system
and so on.

The present study, amongst others, has the aim of evaluating how the dynamic stability characteristics
of the model are influenced by its parameters. Because of this, some of them will not be kept fixed during
simulations. Nevertheless, it is fundamental to define a nominal configuration that can be used not only to
understand the effect of parameter variation but also for model validation and verification purposes.

GEOMETRIC AND MASS PROPERTIES

The mass and geometric properties for our reference vehicle MPF have already been calculated by Abdulka-
dir [2011]. Its results, reported below, will be reused for completing the dynamic model presented earlier but
their derivation is omitted.

The MPF spacecraft is equipped with a disk-gap-band parachute with a nominal diameter of D0 of 12.74 m.
Its reference surface can be found as the corresponding circular area:

Sref =π
(

D0

2

)2

= 127.48 m2 (3.42)

Abdulkadir [2011] estimates the mass of the parachute by assuming that the canopy is half sphere with a certain
surface density depending on its material and that the suspension lines are cylinders. The available geometric
and density data yield respectively a canopy mass mcan of 13.8 kg and a suspension lines mass msus of 2.3 kg.
The moment of inertia for the rotation around the X B ,pc-axis, that is parallel to XB but passing through the
parachute COM, once more assuming that it is an half sphere and that the suspension lines COM coincides
with the one of the canopy, is given by:

Ipc,XB = 5

12

(
D0

2

)2

mcan + 1

12
Lsus cos2Φsusmsus = 276.16 kg m2 (3.43)

Table 3.2 summarizes the values of the parameters that characterize the disk-gap-band parachute MPF was
equipped with.
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Table 3.2: Mars Pathfinder disk-gap-band parachute mass and geometry characteristics [Abdulkadir, 2011].

Nomenclature Description Value
D0 [m] Nominal parachute diameter 12.74

Sref [m2] Reference canopy area 127.48
pcan [-] Canopy porosity 0.2

ρcan [kg/m2] Canopy surface density 0.054
Rcan [m] Canopy radius 6.37
Lsus [m] Suspension lines length 21.65

ρsus [kg/m3] Suspension lines density 1470.0
dsus [m] Suspension lines diameter 0.0015
Nsus [-] Suspension lines number 40
Φsus [◦] Suspension line half-cone angle 17.37

msus [kg] Suspension lines mass 2.3
mcan [kg] Canopy mass 13.8
mpc [kg] Parachute mass 16.1

Ipc,XB [kg m2] Moment of inertia around the Xpc-axis 276.16

Table 3.3: Mars Pathfinder backshell mass and geometry characheristics [Abdulkadir, 2011].

Nomenclature Description Value
mwall [kg] Backshell wall mass 56.9
mplate [kg] Backshell upper plate mass 2.9

mbs [kg] Backshell mass 59.8
Ibs,XB [kg m2] Moment of inertia around the Xbs-axis 28.7

Table 3.4: Mars Pathfinder payload mass and geometry characteristics [Abdulkadir, 2011].

Nomenclature Description Value
Rpl [m] Payload radius 2
mpl [kg] Payload mass 287.8

ρpl [kg/m3] Payload density 8.59
Ipl,XB [kg m2] Moment of inertia around the Xpl-axis 460.48

The backshell of MPF comprises the lateral wall, the upper plate and the heatshield. The latter is signif-
icantly massive and is ejected when the payload gets extracted, just after the main parachute depletion and
stabilization, so that the spacecraft gets more decelerated. This is why its contribute to the mass and moment
of inertia of this body is not taken into account. The mass and geometric properties of the backshell are re-
ported in Table 3.3.

The payload mass corresponds to the weight of the MPF lander plus the airbag system that absorbs the
residual kinetic energy at touchdown. By assuming that the payload is a sphere with radius Rpl, Abdulkadir
[2011] estimates the payload density as:

ρpl =
3

4

mpl

πR3
pl

= 8.59 kg/m3 (3.44)

from which the payload moment of inertia, that for a sphere is the same with respect to each of its 3 symmetry
axes, is:

IXpl,B = 8

15
πρplR

5
pl = 460.48 kg m2 (3.45)

Finally, for the inertia properties of the body, it is important to determine how the parachute, the backshell
and the payload are placed with respect to each other. In other words we want to define the distances between
the parachute and the backshell Dpc-bs and between the backshell and the payload Dbs-pl. By assuming that
the swivel point of the parachute, where the suspension lines meet, corresponds to the backshell COM and that
the parachute body COM is where the parachute canopy begins, then we have:
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Table 3.5: Mars Pathfinder distances between elements COM [Abdulkadir, 2011].

Nomenclature Description Value
Dpc-bs [m] Parachute-backshell COM distance 20.66
Dbs-pl [m] Backshell-payload COM distance 5
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Figure 3.6: Mars Pathfinder parachute aerodynamic coefficients for M = 0.29 as a function of α. Adapted from Cruz et al. [2003].

Dpc-bs = Lsus cosΦsus = 20.66 m (3.46)

The riser between the backshell COM and the payload COM, corresponding to Dbs-pl, is instead assumed to be
5 m long, as already introduced in Section 2.5.

AERODYNAMIC PROPERTIES

The aerodynamic forces and moments the parachute generates depend on the aerodynamic coefficients.
Its rotational symmetry around the ZB-axis results in the fact that its aerodynamic properties are fully defined
by only 3 coefficients, i.e., the drag coefficient CD , the side force coefficient CL and the aerodynamic moment
coefficient Cm that are a function of the Mach number M and of the angle of attack α. This can be determined
as a function of the state of the spacecraft as:

α= θ−γ (3.47)

As already introduced, our reference vehicle is the MPF whose disk-gap-band aerodynamic data are available
from Cruz et al. [2003], who determined experimentally the functions CD (α), CL(α) and Cm(α) for M = 0.29. It
has been verified that in steady-state descent the Mach number that the MPF parachute experiences is between
0.2 and 0.3. Since this condition is realistic for the the nominal steady-state flight of MPF then the values
from Cruz et al. [2003] are appropriate for our purpose. The aerodynamic coefficients as a function of α are
given in Figure 3.6, that is consistent with the convention of Figure 3.7. It is important to notice that the CD is
symmetrical with respect to α= 0◦ and always positive, while CL and Cm , according to the force convention in
Figure 3.5, always result in moments that tend to decrease ‖α‖, thus contributing to making more stable the
attitude oscillatory behaviour of the spacecraft.

The aerodynamic forces that the parachute generates are applied in its COP. This point, despite being
always located on the ZB-axis of the parachute thanks to its rotational symmetry, moves along it depending on
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Figure 3.7: Mars Pathfinder parachute aerodynamic coefficients convention. Adapted from Cruz et al. [2003].

α and M . Its position with respect to the swivel point, still according to Cruz et al. [2003], can be determined
as:

zCOP =−Cm

CL
D0 (3.48)

A final notice has to be made on the determination of the airspeed. In fact, the velocity of the spacecraft with
respect to the atmosphere, is determined by the velocity of the spacecraft with respect to the inertial system
and by the wind speed. However, since also the speed of the parachute with respect to the atmosphere due to
its oscillatory motion has to be taken into account, we have:

Va = VI −Vw,I + θ̇
(−sinθ

cosθ

)
zCOP (3.49)

PARACHUTE ADDED MASS

When dealing with parachute systems one has to take into account the added mass effect. The added mass
of the parachute is the air mass that is contained inside its canopy. This air is not subjected to the gravitational
force but, of course, when the parachute moves this air has to be moved as well. In other words the added mass
cause an increase in the inertial mass and moment of inertia of the parachute.

There exist several ways to model the added mass effect. One of the most straightforward approaches,
implemented by Guglieri [2012], consists of estimating the air mass of a hemispherical parachute as:

ma = 2

3
π

(
D0

2

)3

ρka (3.50)

in which ρ is the air density and ka is a factor that depends on the porosity of the parachute p that is generally
around 0.2:

ka = 1.068
(
1−1.465p −0.25975p2 +1.2626p3) (3.51)

The added mass moment of inertia is estimated once more as if the air mass has a hemispherical shape. As-
suming that the COM of the air mass coincides with the COM of the parachute, with respect to the XB-axis then
we have:

Ia,XB = 2

5
ma

(
D0

2

)2

+ma z2
pc (3.52)

In summary, according to this approach the added mass causes an increase in total inertial mass and moment
of inertia of the parachute. The relevance of this effect, since ρ is a function of altitude, will vary along the
descent trajectory.
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3.3. MULTIBODY DYNAMICS

The rigid body model of the parachute-backshell-payload system, as discussed earlier, is appropriate for
deriving analytical expressions that can describe its dynamic behaviour. However, it can only simulate the
pendulum-like motion of the parachute. In fact, the relative motion of the elements of the descending space-
craft is inhibited and for the purpose of analysing it a multibody model is necessary.

As introduced in Section 2.4, a number of models of parachute-payload and parafoil-payload systems have
been developed since the 1960s. The general trend in the evolution of these models consisted in a constant
increase of DOF for the system and the addition and optimization of new features, such as the added mass
inertial effect. One that is particularly interesting is the model developed by Abdulkadir [2011] and based on
the Wittenburg [2008] formalism. A second option consists instead of implementing a multibody model based
on the methodology of Neustadt et al. [1967]. The latter approach makes it possible to build a multibody model
in a small amount of time, when compared to other methods, at the cost of a loss in robustness and numerical
efficiency of the resulting simulator. With respect to the purpose of the present study, such a model would
clearly ensure the capability to gather all the data relevant for the relative motion of the parachute, backshell
and payload. In addition, it would give the possibility to easily integrate the thrust force on it without the
need to significantly modify the existing EOM, that directly derive from those already defined for the rigid body
model in Section 3.2.

In Section 3.3.1, the characteristics of the methodology of Neustadt et al. [1967] will be introduced and then,
with the help of the physical double pendulum example, its advantages and disadvantages will be analysed in
light of the objective of the present work, also in comparison the approach of Wittenburg [2008]. This anal-
ysis will lead to the choice of one of the options introduced in the previous paragraph. Section 3.3.2 finally
introduces the multibody model describing the motion of the parachute-backshell-payload spacecraft.

3.3.1. THE NEUSTADT MULTIBODY METHODOLOGY

The interest of the space engineering community with respect to multibody mechanics started to grow in
the 1960s, triggered by the desire to understand more about the motion of parachute-payload systems, consid-
ering that the parachute descent was a critical phase of missions such as Gemini, Mercury and, later, Apollo.

One of the earliest publications that applies multibody mechanics in the field of space engineering is Neustadt
et al. [1967]. Its objective was to determine the optimal position for anchoring the parachute, through the riser,
to the Apollo capsule. The concept at the base of the model they built for the study consisted of considering
each body, the rigid parachute and the capsule, as moving independently with respect to each other, under the
influence of their respective aerodynamic and gravitational forces and moments, and the tension generated by
the riser connecting them, modelled as a massless spring. In this way it is possible to describe the dynamics
of each element of the system as it is a stand-alone rigid body without the need to determine any constraint
force between them. In fact, the force that one element exerts on another connected to it is not direct, but is
instead the result of the lengthening of the pseudo spring. This lengthening is caused by the fact that during
the propagation step each body moves exclusively under the influence of its own forces and the elastic force
that remains constant during the step.

The paper of Neustadt et al. [1967], however, does not describe a multibody methodology in detail. This
is why it is assumed to be useful and scientifically significant to analyse and develop the characteristics of the
approach of Neustadt et al. [1967] in a more structured way. This will be done with the help of the physical
double pendulum example, to give a preliminary overview of its advantages and disadvantages, also with the
aim to determine whether it represents a good option for the purpose of the present study.

The mechanics of the double pendulum is a classical physics problem. In fact, there exist several models
describing its dynamics and kinematics. In particular, it is very well suited for validating a multibody method-
ology and for determining its main properties. The physical double pendulum we will use, shown in Figure
3.8, consists of two equivalent rigid bars of mass m and length l interconnected through a pivot that inhibits
the relative translation of two corresponding extremes of the bars. The COM of these bars is placed halfway
between its extremes. The system of two bars is fixed to the ceiling also with a pivot that does not allow the
translation of bar 1 with respect to an inertial reference frame.

According to the concept introduced in Neustadt et al. [1967], to obtain the EOM of the double pendulum
system using this approach it is sufficient to describe the dynamics of each bar independently, subjected to
the gravitational force and the elastic forces of the connections. In particular, bar 1 will be subjected to the
gravitational force due to its mass and the elastic force Fe,a due to the pivot between the ceiling and bar 1 and
the elastic force Fe,b due to the pivot between bar 1 and bar 2, while instead the dynamics of bar 2 will be deter-
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Figure 3.8: The physical double pendulum.

mined by its gravitational force and the elastic force Fe,b of the pivot between bar 1 and bar 2. It is remarked that
the same pseudo spring exerts a force with opposite direction with respect to the two bars that it connects. The
derivation of the EOM for the single bars is simple and the procedure is analogous to what already done for the
rigid body parachute-payload system and will not be repeated here. By exclusively considering the translation
and rotation of the system elements in the vertical plane, then the EOM for the two bars are:

ÿ1 =
Fe,a cosθc,a −Fe,b cosθc,b

m

z̈1 = g0 +
Fe,a sinθc,a −Fe,b sinθc,b

m

θ̈1 =
−Fe,a sin

(
θc,a −θ1

)
l −Fe,b sin(θc,b −θ1)l

2I
(3.53)

ÿ2 =
Fe,b cosθc,b

m

z̈2 = g0 +
Fe,b sinθc,b

m

θ̈2 =
−Fe,b sin(θc,b −θ2)l

2I

in which I is the moment of inertia of the bars with respect to the axis passing through their COM and perpen-
dicular to the Y Z -plane. Also, Fe,a , Fe,b and θc,a , θc,b are, respectively, the magnitudes and directions of the
elastic forces due to the lengthening of the connections and have to be determined externally.

The pivot connections are assumed to be massless springs of 0 nominal length that can only transfer force
along their extension. At each integration step we can reconstruct the position of the hinges of the bars and
from this calculate the distance between them and, thus, the elongation of the pseudo spring. This elongation
in turn yields the magnitude of the elastic forces, proportional to the spring elastic constant k. In addition,
once more using the hinge positions, we can also determine the orientation of the pseudo spring, i.e., θc,a ,
θc,b , that, as said, determine the directions along which the elastic forces are transmitted. Clearly, in case of no
elongation and 0 nominal length of the connection, it is not possible to determine the force direction, but since
in this case the force is null then this does not cause any singularity. The position of the hinges of connection
a between the ceiling and bar 1 and of the hinges of connection b between bar 1 and bar 2 with respect to the
rigid bodies they bond, labelled respectively with 0,1 and 2, are:
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h0a =
(
0
0

)
h1a =

(
y1 − l

2 cosθ1

z1 − l
2 sinθ1

)
(3.54)

h2b =
(

y1 + l
2 cosθ1

z1 + l
2 sinθ1

)
h2b =

(
y2 − l

2 cosθ2

z2 − l
2 sinθ2

)

From these positions it is possible to derive the polar coordinates of the vector connecting the hanging point in
the ceiling and the upper extreme of bar 1, and the vector connecting the lower extreme of bar 1 with the upper
extreme of bar 2. We have:

(
ρa

θc,a

)
= cart2pol (h1a −h0a)(

ρb

θc,b

)
= cart2pol (h2b −h2a) (3.55)

where the function cart2pol, used for transforming Cartesian coordinates to polar coordinates, is defined as:

cart2pol(v) =
(
ρv

θv

)
=

(√
y2 + z2

atan
(

z
y

) )
, v =

(
y
z

)
(3.56)

Finally, assuming that the hinges of the double pendulum have nominal length 0, the magnitude of the elastic
forces, proportional to the elongation of the pseudo springs, is given by:

Fe,a =−kρa

Fe,b =−kρb (3.57)

The definition of the dynamics of the double pendulum is concluded and we can already highlight some
aspects that characterize the methodology. First, it is clear that the procedure is really pragmatic since there
is no need to define abstract elements such as the energy-like function we need for the derivation with the
Lagrange method, or mathematical entities such as the topology matrix, that instead we use when applying
the Wittenburg [2008] formalism. The constraint forces or the analysis of the dynamic equilibrium in the con-
fluence point are also not required. In principle, one could add an infinite number of other rigid elements to
the system without the need to modify the EOM for those that are not not directly connected with it. This is
because they are all independent and the only influence between them is the pseudo springs connecting them.
This simplicity, however, comes at the price that, since the dynamics of each body is considered independently,
the connections between them do not result in a reduction of DOF for the total multibody system with respect
to the total number of DOF of all the single elements.

The physical double pendulum has rigid connections. This means that the rigidity of the pseudo springs
should be infinite. Nevertheless, this is mathematically impossible because in such a situation, even for a very
small elongation, the resulting elastic forces in Eq. (3.64) would be infinite as well. The only way to model a
system with rigid connections, and in particular the double pendulum of Figure 3.8, with the methodology of
Neustadt et al. [1967] is to assume that the elastic constant k is really large. This, as we will see in the following,
can cause numerical issues.

The properties of the pseudo springs, together with the mass and geometric properties of the elements of
the multibody, will determine vibrations during the propagation of its trajectory. While this represents an un-
wanted effect for the case of systems with rigid connections, if some elements of the multibody are connected
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Table 3.6: Characteristics of the double pendulum for the simulation of Figure 3.9.

Parameter Value
k1 [N/m] 10000
k2 [N/m] 10000

m [kg] 2
l [m] 40

g0 [m/s2] −9.81

Table 3.7: Initial conditions of the double pendulum for the simulation of Figure 3.9.

Parameter Value
θ1,0 [deg] −75
θ2,0 [deg] −20
θ̇1,0 [deg/s] 0
θ̇2,0 [deg/s] 0

through ropes or similar, the possibility to simulate their elasticity represents a value added for this methodol-
ogy. However, as we will see later, by using very rigid pseudo springs in relation to the involved masses of the
multibody elements, the vibration effect can be made negligible for the attitude and trajectory of the system.

To verify that the concept of Neustadt et al. [1967] is valid and to understand how the vibrations influence
the simulation of the motion of the physical double pendulum it is possible to compare the model derived in
the previous paragraphs with a model obtained by Abdulkadir [2011] using Lagrangian mechanics. With this
model, the dynamics of the system can be fully described by means of the attitude angles θ∗1 and θ∗2 , whose
relation with the attitude angles θ1 and θ2 in Figure 3.8 is:

θ∗1 = π

2
−θ1, θ∗2 = π

2
−θ2 (3.58)

The EOM for this Lagrange model are:

θ̇∗1 = 6

ml 2

2pθ∗1 −3cos
(
θ∗1 −θ∗2

)
pθ∗2

16−9cos2
(
θ∗1 −θ∗2

)
θ̇∗2 = 6

ml 2

8pθ∗2 −3cos
(
θ∗1 −θ∗2

)
pθ∗1

16−9cos2
(
θ∗1 −θ∗2

) (3.59)

in which the time derivative of the two momenta pθ∗1 and pθ∗2 , that correspond to the derivative of the La-

grangian function associated to the physical double pendulum, with respect to θ̇∗1 and θ̇∗2 , are defined as:

ṗθ∗1 =−1

2
ml 2

[
θ̇∗1 θ̇

∗
2 sin

(
θ∗1 −θ∗2

)+3
g

l
sinθ∗1

]
ṗθ∗2 =−1

2
ml 2

[
−θ̇∗1 θ̇∗2 sin

(
θ∗1 −θ∗2

)+3
g

l
sinθ∗2

]
(3.60)

Figure 3.9 shows a comparison between the simulated motion of the double physical pendulum using ei-
ther the model derived using the Lagrange formalism and the one obtained using the Neustadt method. The
pendulum characteristics and sample IC are given respectively in Table 3.6 and Table 3.7. The correspondance
of the two trajectories proves that the concept of Neustadt et al. [1967] is valid for building multibody models.

The good correspondence between the simulation results of the two models has been obtained using a
stringent integrator3 tolerance for both models, i.e., RelTol = 10−5 and AbsTol = 10−8, so that also the 50 s
propagation has required a significant amount of computational time. With lower tolerances, however, already
at around 50 s it is possible to notice that the trajectories of the two simulated pendula do not coincide. In fact,

3For the integration, the Matlab function ode45 implementing a Runge-Kutta routine has been used.
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Figure 3.9: Simulation of the double pendulum (Table 3.6) oscillation using the models derived with Lagrange method (l) and with
Neustadt method (n) (IC from 3.7).
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Figure 3.10: Influence of different tolerances on the result of the propagation of the Neustadt double pendulum model (zoom for the
same simulation as in Figure 3.9).

when propagating the trajectory of the Neustadt model, each bar of the pendulum moves independently so
that, if the propagation stepsize is too large, then the two elements move apart too much during one step and
the resulting elastic force, that is assumed to be constant during the integration step, will be really large and will
exert on the bars a force that does not correspond at all to the reality. Indeed, depending on the rigidity of the
spring and on the mass and geometric properties of the rigid elements of the system, there exists a minimum
optimal stepsize that can reproduce the real vibrations of the system caused by the elastic connection. In
general, if the pseudo spring is very rigid and the elements have low mass, the reproduction of the resulting
small vibrations of the system is only possible with stringent tolerances. Figure 3.10 shows how the propagator
tolerances influence the trajectory of the bars and the amplitude of vibrations due to the presence of the pseudo
springs.

Another drawback of the Neustadt methodology is that the initial conditions need to be specified for each
state vector element of each body in the system. This is because with Neustadt each component of the multi-
body moves independently and the constraint forces are determined indirectly through the elongation of the
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pseudo springs caused by the bodies moving apart one with respect to the others. In addition to this, the initial
conditions have to be really accurate, especially for the case of pseudo springs with very large elastic constant
k, because otherwise the elastic force at the beginning of the propagation is so large that it causes it to diverge.

From the discussion above, it clearly emerges that the Neustadt methodology is outperformed by the other
classical multibody mechanics approaches when computational efficiency, accuracy and robustness represent
a main requirement. Also, the presence of the vibrations caused by the pseudo spring approximation, especially
for the case in which rigid connections have to be modelled, causes a loss in accuracy and robustness of the
model because an unexpected disturbance could cause an excessive elongation and, in turn, large inaccuracies
in the propagation. Finally, the facts that for each propagation step the evolution of every single state vector
component has to be evaluated, and that for achieving good accuracy this step needs to be very small, are
responsible for a significant decrease in numerical efficiency.

On the other hand, there are cases in which the Neustadt approach represents a convenient choice. Indeed,
the fact that one does not need to deal with energy functions, constraint forces or matrix operations, but only
rigid body mechanics, is a significant advantage when time constraints are stringent and accuracy, robustness
and computational efficiency are not the main concern. This is the case, for example, during feasibility studies,
where the designer is requested to quickly evaluate the influence of multiple parameters on a certain aspect
of the mission that has not been explored yet, and decide whether to invest time and money to study that
aspect in more detail. This is the case of the present research, where the aim is to evaluate whether the use of
thrust for controlling the horizontal position of the spacecraft during the parachute descent can significantly
contribute to the size reduction of the final landing ellipse on Mars in an efficient way, with particular attention
for the dynamic stability properties of the system. Another advantage of using the Neustadt approach is that
it allows one to use the same framework already developed for the rigid body model introduced in Section 3.2.
This will thus represent the starting point for realizing the following parachute-backshell-payload multibody
model. Also, integrating this model with the GNC system that will be developed in Chapter 7 is straightforward.
These aspects, together with the possibility to add something innovative to the present work, are the main
reasons that make the development of a new multibody system based on the methodology of Neustadt more
appropriate with respect to other choices, in particular the use of the model of Abdulkadir [2011] based on the
Wittenburg [2008] formalism, for the purpose of this study.

3.3.2. DESCENT SPACECRAFT MULTIBODY DYNAMICS

In this section the characteristics of the multibody model derived using the method of Neustadt for simu-
lating the dynamics of a parachute-backshell-payload spacecraft descending through the atmosphere of Mars
and the resulting EOM will be introduced and briefly discussed.

As for the rigid body model, also the multibody model will exclusively reproduce the motion of the space-
craft in a single plane perpendicular to the surface of Mars. In fact, for dynamic stability study purposes, the
rotational symmetry of the system allows to introduce this simplification without loss of relevant information.
The model will thus be 2D and, considering that the rotation about the symmetry axis is neglected and that the
Neustadt approach does not imply a reduction of DOF for the multibody system, it will have 9 DOF.

The aerodynamics of the backshell and payload, analogously to Section 3.2, are neglected also in this case.
In fact, the weight of the payload and the aerodynamic forces of the parachute dominate the dynamics of each
single body element. This is because even if they do not act directly on a certain element, they are transmitted
through the risers and are present in the form of elastic force.

The risers, connecting the parachute with the backshell and the backshell to the payload, are each modelled
as massless springs. Also, the parachute, backshell and the payload are assumed to be rigid bodies. Each of
them features its own body frame B centred in the respective COM. The parachute is assigned subscript 1,
the backshell subscript 2 and the payload subscript 3. For simplicity reasons, this notation will be used in the
following for indicating the gravitational masses and moments of inertia around the respective XB -axes and
other parameters related to the specific elements of the spacecraft.

To write the EOM for the multibody model we can refer to Figure 3.11 while the angle convention, also for
the attitude angles of the risers, and all the X -axes are analogous to those for the rigid body system in Figure
3.5. The only differences between the rigid and multibody models are the fact that for the latter each of the
spacecraft elements has its own state vector components y , z and θ, and that it is characterized by the presence
of the elastic forces. Considering these, the EOM in the inertial reference frame I for each of the body elements
are:
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Figure 3.11: Parachute-backshell-payload spacecraft multibody model dynamic analysis.

ÿ1 =
−D cosγ−L sinγ−Fe,a cosθr,a

m1 +ma

z̈1 =
g m1 −D sinγ+L cosγ−Fe,a sinθr,a

m1 +ma

θ̈1 =
−D sinαzCOP −L cosαzCOP +M −Fe,a sin

(
θr,a −θ1

)
l1a

I1 + Ia

ÿ2 =
Fe,a cosθr,a −Fe,b cosθr,b

m2

z̈2 =
g m2 +Fe,a sinθr,a −Fe,b sinθr,b

m2
(3.61)

θ̈2 =
−Fe,a sin

(
θr,a −θ2

)
l2a −Fe,b sin
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θr,b −θ2
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l2b
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In Eq. (3.61), Fe,a is the magnitude of the elastic force generated by the pseudo spring between the parachute
and the backshell, Fe,b the magnitude of the elastic force generated by the pseudo spring between the backshell
and the payload, θr,a and θr,b their respective attitude angles (defined with resect to the the I -frame) and l1a ,
l2a , l2b , l3b the distances between the anchorage point of the connection (a or b) on the body and the COM
of the body (1, 2 or 3). Also in this case, following the Neustadt approach, the magnitude and direction of the
forces generated by the pseudo springs can be determined by calculating the inertial position of the hinges at
each integration step. The position vectors for the hinges a and b connecting bodies 1,2 and 3 are:

h1a =
(

y1 + l1a cosθ1

z1 + l1a sinθ1

)
h2a =

(
y2 − l2a cosθ2

z2 − l2a sinθ2

)
(3.62)

h2b =
(

y2 + l2b cosθ2

z2 + l2b sinθ2

)
h3b =

(
y3 − l3b cosθ1

z3 − l3b sinθ1

)
The elongation of the elastic connections and their orientation, determining respectively the magnitude of the
force and its direction, are:

(
ρa

θr,a

)
= cart2pol(h2a −h1a)(

ρb

θr,b

)
= cart2pol(h3b −h2b) (3.63)

so that:

Fe,a =−ka
(
ρa −Lr,pc-bs

)
Fe,b =−kb

(
ρb −Lr,pc-bs

)
(3.64)

in which Lr,pc-bs and Lr,bs-pl are the nominal lengths of the risers and ka and kb the corresponding pseudo
springs elastic constants. While for most of the vehicle parameters in Eq. (3.61) it is possible to reuse the values
defined for the MPF reference case already introduced in Section 3.2.3 for the rigid body model, some others
need to be specifically defined for the multibody model.

The elastic constants of the risers ka and kb can be chosen according to an accurate literature research,
aimed at determining their material and geometric properties. However, by running some sample simulations
with realistic values for these parameters it has been verified that the elasticity of the riser has a negligible
effect on the attitude and position of the spacecraft. This aspect is indeed more relevant for the study of the
vibrations that affect the system during the flight. Because of this, for the purpose of the present study it is
more straightforward to choose a value for ka and kb that is simply consistent with the physical expectations.
In particular, we assume very rigid risers with ka = kb = 200000 N/m.

By studying the behaviour of the rigid body model it has been verified that the variation of the parachute
COP position does not really influence the dynamics of the system. This is why for the multibody model zCOP is
assumed to be fixed and equal to the projection of the suspension lines on the parachute rotational symmetry
axis. Also, the riser nominal lengths, in agreement with the data given in Section 2.5, are set to dn,a = 0 m and
dn,b = 5 m.

Finally, we need to determine the distance of the hinges with respect to the COM of the elements of the
spacecraft. In particular, the hinge of the upper riser with respect to the parachute COM also corresponds to
the projection of the suspension lines on the parachute rotational symmetry axis. The COM of the backshell is
instead 0.5 m distant from the upper hinge and 1 m distant from the lower hinge. Finally, the payload COM is
2 m distant from its upper hinge. It is remarked that the y-coordinate of the hinges positions in the respective
body frames is always 0 (the hinges are along the ZB -axes of the spacecraft elements). These distances are not
exact but are reasonable and consistent with the geometric data available.
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4
MARS ENVIRONMENT

Mars is the last terrestrial planet in our Solar System per distance from the Sun. It has a mean radius of
3389.5 km and a mass of 6.4185×1023 kg. Some of the features of this planet include the presence of water-ice
and a thin atmosphere, as well as the fact that it is in the habitable zone of the Sun. Because of this, the first
missions to the Red Planet were designed, amongst others, to search for evidence of life on its surface, but they
had no success in this. Still, it is possible that Mars can support life, reason why a lot of research effort is being
done to land the first man on it. This chapter summarizes all the information for characterizing and modelling
the environment of Mars. However, some more detailed information can be found in Lissauer and de Pater
[2013], that discusses all the physical aspects of the planet, and Haberle et al. [2017], that focuses on describing
the processes taking place in its atmosphere.

The color of Mars is due to the presence of rust, Fe2O3, in the rocks of the surface. Its hemispheres are not
equal: the north is smoother, while the south is characterized by craters and is, in part, 3 to 4 km high over the
nominal surface level. Mars is characterized by the presence of water geological formations, indicating that in
the past liquid water was present on it, and of the highest mountain of the Solar System, the Olympus Mons,
extending 27 km over the geoid, this being possible thanks to the low gravity and low lithosphere temperature.

Mars’ magnetic field is really tenuous and is caused by residual magnetism of the rocks of the crust. This
magnetic field, coupled with the ionospheric pressure, is sufficient to protect the planet from the solar wind.
However, these two effects are negligible in flight dynamics applications. In fact, the motion of the spacecraft
during the parachute descent is dominated by the aerodynamic and gravity forces and moments. The aerody-
namic forces depend, amongst others, on the atmospheric density ρ and on the airspeed of the vehicle that is
influenced by the wind conditions on the planet. These topics are discussed in Section 4.1. The gravitational
acceleration g , determining the gravity force, changes as a function of the position of the spacecraft in the
sphere of influence of Mars. A model describing this variation that is appropriate for the purpose of the present
study will be discussed in Section 4.2.

4.1. MARS ATMOSPHERE

The atmosphere of Mars is very thin with respect to the atmosphere of the Earth. It is a mixture of 95%
CO2, 3%N2, Ar, CO and H2O. At the surface the mean pressure is 6 mbar, about the 0.6% of the corresponding
value on Earth. This pressure is below the saturation pressure for liquid water at 215 K, that is the mean surface
temperature, so that water can be present either as vapour or ice. Over the equatorial regions, at about 10 km
of altitude, formation of water-ice clouds is possible, while at 50 km, where the temperature is about 150 K,
CO2-ice clouds take shape.

During the parachute descent phase, the spacecraft is subjected to the winds taking place in the so called
planetary boundary layer, corresponding to the atmosphere band between the surface and an altitude of 10 km.
In here, the pressure gradients originating winds depend on a number of factors. The temperature gradients
are the most relevant. The fact that the atmosphere of Mars is tenuous implies that it is really sensitive to
solar heating and so the day-night thermal excursion is large. Temperature ranges from 130 K in the night to
300 K during daytime. This causes the thermal tide winds, strong winds across the day-night line. Other factors
include the friction of the atmosphere with the surface of the planet and the Coriolis force due to its rotation.
Depending on how these contributions influence each other, however, it is possible to have different types of
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wind phenomena that cause the vehicle to drift away from its nominal trajectory. Because of this, they need
to be taken into account when designing a Mars landing spacecraft. For example, the deployment conditions
for the parachute, representing the target for the hypersonic entry phase, are chosen according to the available
estimation of the wind profile in the landing zone. In fact, if the parachute descent is passive, then from the
deployment to the ignition of the terminal descent thrusters there is no possibility to counteract the wind drift
effect. For the Phoenix mission, about 2000 atmosphere situations for the landing site area were modelled and
simulated before to choose an appropriate landing target.

According to Prince et al. [2008], for the stripe between latitudes 65◦ and 72◦, vertical winds have an average
speed of 10 m/s up to an altitude of 7 km and 5 m/s between 7 and 25 km, but can eventually reach values as
high as 20 m/s after this point. These winds can cause shifts in mission schedule as well as an increase in
fuel consumption for the terminal descent. The horizontal winds are instead more homogeneous all over the
considered altitude range, with a mean value between 5 and 10 m/s but can reach peaks of 40 m/s over the
whole altitude range of interest 0-25 km. They contribute significantly to the landing position error and disturb
the attitude behavior of the parachute-payload system. In general, winds from the surface to ≈10 km are really
variable in direction as well as in magnitude. Kaas et al. [2003] estimated the 1σ wind velocities over the entire
planet to be around 20-30 m/s. Another example is wind data from the Mars Exploration Rover Gusev landing
site (14.5◦S, 175.4◦E) reporting a mean wind velocity of 15 m/s with a 1σ uncertainty of 12 m/s.

The factors described earlier influencing the mechanics of the atmosphere of Mars can also result in the
atmospheric turbulence phenomenon. Turbulence is by definition a flow regime characterized by chaotic
changes in pressure and flow velocity. It is in contrast to a laminar flow regime, which occurs when a fluid
flows in parallel layers, with no disruption between those layers. Despite being always governed by the same
equations, turbulence on Mars can take place at different scales, depending on the size of the vortexes, called
eddies, that determine it. The eddies exchange between each other viscous energy according to the mechanics
of the energy cascade.

If the turbulence phenomenon takes place on a planetary scale it is referred to as atmospheric turbulence
and causes chaotic movements of large air masses within the atmosphere of a planet that are analogous, from
the point of view of the influence they have on the descent trajectory, to the other wind phenomena described
earlier.

By progressively considering smaller scales of atmospheric turbulence vortexes, we have the gusts. Gusts
are indeed unpredictable flows of air that invest the vehicle in a specific and limited altitude band and can be
caused by the turbulence phenomenon. When instead the scale of the eddy is more or less comparable to the
characteristic length of the spacecraft then we speak about turbulent wind. In this case the wind speed profile
is irregular. Gusts and turbulent winds are mainly relevant for the dynamic stability of the vehicle, because they
cause dangerous oscillations that have to be damped.

These considerations and data have served to give an idea of what the descent spacecraft has to face during
an EDL mission on Mars. They will be taken into account in the following for the definition of a model that can
simulate the aspects of the atmosphere of the Red Planet that are relevant for our study.

4.1.1. MARS ATMOSPHERE MODEL

For modelling the atmosphere of Mars several options are available. One of these consists of using the Eu-
ropean Mars Climate Database (EMCD) Version 5.2 introduced by Millour et al. [2015], available from March
2015. This database has been realized according to the General Circulation Models (GCM) developed by Forget
et al. [1999] and has been validated using both orbiter and lander measurements. It is mainly employed in EDL
studies for future missions, investigation of specific Martian issues and analysis of observations. The model
yields many meteorological variables, including temperature, density, pressure, winds, atmospheric composi-
tion and others, for different altitudes, epochs and coordinates. The second option consists instead of using
tables that give the values of the relevant atmospheric variables, namely the wind speed, density, pressure and
temperature, according to a precise altitude grid. The value of a certain atmospheric variable for an arbitrary
altitude can then be determined by interpolation. The values in the table can be specific for a mission epoch
and location or could be derived by averaging measurement data from different missions. Finally, the third op-
tion consists of using a simpler model for determining sample temperature and density profiles as a function
of the altitude over Mars and model the wind phenomena we need for the study, i.e., constant wind, gusts and
turbulence, independently.

The use of the EMCD or tables gives the possibility to accurately simulate different atmospheric conditions
that the spacecraft could face on Mars. On the other hand, using a model that gives the atmospheric variables
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as simple functions of the altitude is more computationally efficient. This option is also more appropriate if
analytical consideration about the dynamics of the system have to be made, considering that the analytical
formulas can eventually be included in the EOM. In addition, we not need to simulate the exact atmospheric
conditions that the spacecraft will encounter on Mars. In fact, by analysing the response of the system to each
atmospheric perturbation separately, we can evaluate the performance of the guided descent system and its
dynamic stability properties much more effectively. Considering these, the third option is assumed to outper-
form the others with respect to the purpose of the present project.

The temperature and density profiles can be described with the model1 that NASA uses for preliminary
studies and in particular for aerodynamics and thermodynamics simulations. It was developed according to
the atmospheric data gathered by the orbiter Mars Global Surveyor in April 1996 and is the model that is also
used in the FoilSim 2 simulator. According to this model we have:

p = 0.699−exp(−0.00009h)

T =
{−23.4−0.00222h for h > 7000 m
−31−0.000998h for h < 7000 m

ρ = p

0.1921(T +273.1)

(4.1)

in which the altitude h is in m, the temperature T in C◦, the pressure p in KPa and the densityρ in kg
m3 . To include

the effect of wind speed in the dynamic description of the system, it is sufficient to calculate the airspeed of the
vehicle Va, that in turn determines its angle of attack α, as:

Va = Vg −Vw (4.2)

where Vg and Vw are, respectively, the ground speed and wind speed vectors in the chosen reference frame.
While for a simple wind the wind speed vector has constant components, the profiles for gusts and turbulences
are modelled as described respectively in Sections 4.1.2 and 4.1.3.

For using the atmosphere model described here in a simulation environment, at each propagation step the
state of the vehicle is given in input to the function implementing it. The relevant state vector elements are
then used to calculate the corresponding density, temperature and pressure using Eq. (4.1) and the wind speed
according to the corresponding perturbation wind speed profile.

4.1.2. WIND GUSTS

While descending through the atmosphere of Mars it is possible that the spacecraft encounters a wind
gust. Wind gusts are critical, particularly at low altitude, because they may cause dangerous oscillations of the
elements of the parachute-payload system that require time to damp out. The response to a wind gust can yield
valuable information with respect to the stability of the parachute-payload system. As introduced earlier, wind
gusts are present in the atmosphere of Mars in the altitude range 0-10 km. A wind gust phenomenon consists
of an increase of wind velocity, up to 30 m/s for Mars, having short duration, typically lower than 10 s. The gust
causes the wind speed to vary. With respect to the inertial frame I fixed to Mars defined in Section 3.1, the wind
speed vector is defined as:

Vw,I =
Vw,I ,1

Vw,I ,2

Vw,I ,3

 (4.3)

where each component Vw,I ,i for i = 1, ...,3 can be modelled as a function of the altitude h. To do so we need to
define some parameters. These are the altitudes where the gust begins, hi , and where it ends, he , the transient
size ∆ht and the wind gust vector:

Vg u =
Vg u,1

Vg u,2

Vg u,3

 (4.4)

1More info about this model can be found at https://www.grc.nasa.gov/www/k-12/airplane/atmosmrm.html. Last accessed:
28/01/2018.

2More details about about Foilsim are available from https://www.grc.nasa.gov/www/k-12/airplane/foil3.html. Last accessed:
28/01/2018

https://www.grc.nasa.gov/www/k-12/airplane/atmosmrm.html
https://www.grc.nasa.gov/www/k-12/airplane/foil3.html
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Figure 4.1: Sample gust profile.

that represents the difference between the maximum velocity of the air in the gust band and the background
wind speed, that is:

Vb =
Vb,1

Vb,2

Vb,3

 (4.5)

To model the gust profile as shown in Figure 4.1, the atmosphere can be ideally divided in five different
regions. Considering a descending spacecraft, the first region it finds is the one before the gust where there
is only the constant background wind (that clearly can eventually be null). At a certain altitude the vehicle
encounters the gust. At this point the speed of the air does not suddenly assume the maximum gust speed. It
is possible to model this interface, that is the transient, as the velocity of the air increases linearly at a constant

rate. For the component i of the gust speed this rate is given by
Vg u,i

∆ht
. At the end of the transient region the air

velocity is constant and equal to Vg u,i +Vb,i . A second transient phase is experienced at the end of the gust band

and here the air velocity decreases at a constant rate
Vg ,i

∆ht
. After this second transient the air speed is once more

equal to the background wind speed. For a single component of the wind speed, mathematically we have:

Vw,I ,i =



Vb,i for h > hi

Vb,i +
Vg u,i

∆ht
(hi −h) for hi −∆ht < h < hi

Vb,i +Vg u,i for he +∆ht < h < hi −∆ht

Vb,i +Vg u,i −
Vg ,i

∆ht
(he +∆ht −h) for he < h < he +∆ht

Vb,i for h < he

(4.6)

While short horizontal wind gusts are particularly dangerous for the attitude of a parachute-payload system
descending vertically in the atmosphere, a vertical gust is not critical from this point of view because the relative
motion of the elements of the spacecraft is constrained along this direction. Oblique gusts can be seen as the
composition of an horizontal and a vertical gust and do not give yield any additional information with respect
to the dynamic properties of the system. This is why in Chapter 8 the stability of the system will be tested
with horizontal gusts. According to the wind data introduced earlier, the reference gust is assumed to happen
between the altitudes 4000 m and 3900 m and have a speed of 20 m/s with a transient of 10 m. This short gust
is particularly appropriate for flight dynamics analysis since the attitude of the spacecraft is sensitive to the
impact of the gust and not really to its duration. Also, a larger transient size causes the impact of the gust on
the system to be less critical so that the smaller this parameter is the more conservative the results will be.
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Figure 2 A turbulent velocity signal measured using standard hot-wire anemometry 1 8  m 
above the ground in an atmospheric surface layer. Time and velocity are plotted in arbitrary 
units. 

similar to the whole under an affine transformation, the process is said to 
be self-affine. Mandelbrot ( 1985, 1 986) has discussed self-affine fractals 
and introduced recursively self-affine fractals (see also Voss 1989). 

One cannot define similarity dimension for even the simplest self-affine 
fractal curves. If one evaluates this dimension mechanically, pretending 
the curve in Figure 2 to be like a coastline, the value depends on the 
expansion used for one quantity relative to the other. If, for example, the 
time scale is stretched enough to render the signal to appear as a collection 
of smooth increments, it is intuitively clear that the dimension (called the 
global dimension) will be unity. If, on the other hand, the ordinate is 
stretched over a range of values, one can define the usual fractal dimension 
according to (2. 1) .  This is the so-called local dimension of the self-affine 
fractal. As pointed out by Mandelbrot ( 1986), more than one dimension 
is necessary to characterize self-affine fractals. For the most part in this 
review, we do not concern ourselves with self-affine fractals-partly 
because not much work has been done beyond that mentioned, say, by 
Turcotte (1988) and Voss ( 1989) and partly because many subaspects of 
self-affine fractals possess self-similarity. For example, while the velocity 
trace of Figure 2 is self-affine, there are reasons to believe (Section 3 .2) 
that some of its level sets (that is, the sets of points obtained by various 
level crossings) are self-similar. There is much scope for further work here. 
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Figure 4.2: Turbulent velocity signal measured using standard hot-wire anemometry 18 m above the ground in an atmospheric surface
layer plotted in arbitrary units of time and velocity [Sreenivasan, 1991].

4.1.3. ATMOSPHERIC TURBULENCE

The most commonly used models for simulating turbulence in flight dynamics applications are the von
Karman and Dryden models, that have been specifically designed for simulating turbulence on Earth. A model
developed for engineering applications simulating the turbulence in the atmosphere of Mars is unfortunately
not available. However, for testing the stability properties of our spacecraft, it is sufficient to simply reproduce
the characteristics of the turbulent flow that are relevant for the study of this aspect.

A turbulent flow is characterized by an irregular velocity profile. By looking at the sample profile depicted
in Figure 4.2, one notices that it is characterized by several superimposed pseudo-oscillating trends. Each of
these trends, that represent the different scales of the turbulence, features a certain frequency. The dynamic
response of the spacecraft will be different per each of these frequencies. Considering this, a straightforward
approach for evaluating how the spacecraft behaves in case of turbulence consists of testing its response using
sinusoidal turbulent wind speed profiles with different frequencies. A single wind speed component in the I
frame will thus be defined as:

Vw,I ,i = A sin(ωt ) (4.7)

where A is the amplitude of the turbulence wind speed profile and ω its frequency.

The turbulent profile given by Eq. (4.7) expresses the variation of the wind speed as a function of time and
not of the altitude, as one could expect. In fact, as explained earlier, the turbulence is due to the eddies that
have a precise spacial dimension. With this approach, however, ω is the input frequency that the spacecraft
senses independent of its velocity while it passes through the perturbation. In this way the results that we will
get from the turbulence response analysis will be less dependent on the state of the vehicle and will have a
more general validity.

Now we need to determine the amplitude, A, and frequency, ω, of the sinusoidal signal. These depend to
the characteristics of the atmosphere of Mars. According to Haberle et al. [2017] the standard deviationσ for the
turbulence in the planetary boundary layer is 2.4 m/s for both the horizontal and vertical velocity components.
This value can be used as amplitude A of the periodic signal.

The turbulence frequency ω, for the reasons introduced earlier, is not a unique value. It varies within a
frequency spectrum whose extremes need to be defined. The smallest scale of the vortices that can be found in
a turbulent flow is determined by the constant η, called Kolmogorov length scale, that for Mars varies between
7 mm and 2 cm. This value can be used to determine the maximum frequency that the turbulent velocity profile
signal can have, that is the inverse of the Kolmogorov time scale τη defined by Pope [2000] as:

τη =
(ν
ε

) 1
2

(4.8)
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in which the kinematic viscosity the atmosphere of Mars ν, according to Petrosyan et al. [2011], is 10−3 m2/s
and the average rate of dissipation of turbulence kinetic energy per unit mass ε can be determined by inverting
the equation for the Kolmogorov length scale that, once more according to Pope [2000], is:

η=
(
ν3

ε

) 1
4

(4.9)

The resulting maximum turbulence velocity profile signal frequency, corresponding to the smaller possible size
of the eddies 7 mm, is thus 40.82 Hz. The lower extreme for the desired frequency spectra, instead, cannot be
derived from physical considerations. Because of this the response of the system will be tested with decreasing
frequencies until the point in which the effect of turbulence is negligible with respect to its attitude dynamics.

Also in this case, for reasons analogous to those introduced for the gust, only the response of the system
to the horizontal component of the turbulence will be tested. This is in fact the most critical for the attitude
stability of the system.

4.2. MARS GRAVITY FIELD

The Mars gravity field is much less strong than that of the Earth. At surface level it has an acceleration
of about 3.7 m/s2, less than half of the corresponding value on Earth. For modelling it, several possibilities
are available. The most accurate option is to use the gravity potential model. According to Mooij [2015], in
this case the gravitational potential U , from which the gravitational acceleration vector can be derived, may be
expressed as the summation of a central field term, that is a mass-symmetric body, and a correction term for the
Mars’ non-symmetric mass distribution. In particular, this correction term depends on a series of coefficients
describing each a particular feature of the distribution of the mass of Mars.

The gravity potential model yields a very accurate description of the gravity field of Mars and represents
the most appropriate choice in case of accurate EDL simulations aimed, for example, at the prediction of
the landing site. On the other hand, however, the effect of the force variation due to the correction term on
the dynamic stability of the spacecraft is absolutely negligible with respect to the aerodynamic forces of the
parachute, the weight of the payload due to the central field term and the propulsion force generated by the
backshell thrusters. With respect to the purpose of the present study, the inclusion of the correction term would
cause a increase in complexity and average CPU time of the software package without improving the validity of
the results. Also, keeping only the central field term still gives the possibility to take into account the variation
of the gravitational acceleration with the altitude with respect to the surface. Finally, the resulting formula for
the gravitational acceleration, that is the classical inverse square law, is simple enough to be used for analyt-
ical investigation. With respect to the inertial frame I fixed to Mars defined in Section 3.1.2, the gravitational
acceleration vector can be defined as:

gI =

 0
0

− µM

(RM+z)2

=
0

0
g

 (4.10)

where z is the altitude over the surface of Mars, µM =4.282837×1013 m3/s2 and RM =3389500 m. For conve-
nience, g can be used to indicates the vertical component of the gravitational acceleration vector.
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SOFTWARE VERIFICATION AND VALIDATION

The dynamic models developed in Chapter 3 need to be implemented in a software package and inte-
grated with the Mars environment and GNC system models. The software architecture and the tools to realize
a working parachute descent simulator are discussed in Section 5.1. In Section 5.2, instead, the functions of the
software and the the rigid body and multibody dynamic models introduced earlier will be verified.

5.1. SOFTWARE ARCHITECTURE AND TOOLS

Figure 5.1 shows the architecture of the Matlab software used for simulating the parachute descent of the
parachute-backshell-payload spacecraft modelled as a multibody system. By looking at it, it is easy to notice
four main blocks that are the environment, vehicle dynamics, GNC and output. The environment block, ac-
cording to the characteristics of the atmosphere and gravity field described in Chapter 4, determines the wind
speed, air density and gravitational acceleration as a function of the state of the vehicle. It this way its response
can be tested with different atmospheric perturbations depending on the input from the simulation manager.
The environment block is recalled after every step of the integrator function that integrates the equations of mo-
tion defined inside the vehicle dynamics block. The dynamic contributions determining the balance expressed
by the equations of motion are the aerodynamic forces, that depend on the airspeed vector and the parachute
aerodynamics, the gravity forces, the elastic forces due to the elongation of the risers connecting the spacecraft
elements and the thrust force generated by the GNC system. Also, the added mass effect influences the inertia
properties of the vehicle. The GNC block takes in input the state, simulates the estimation inaccuracy of the
navigation by adding to it a random error (calculated according to a certain standard deviation), and computes
the thrust command according to its position-velocity target and to the characteristics of the guidance algo-
rithm. The trajectory resulting from the propagation is then taken in input by the output block that, after post
processing operations, produces significant data and graphs. The software based on the rigid body model is
analogous, the only difference being that no elastic forces appear in its dynamics.

The software environment chosen for the development of the simulator is Matlab R2017a. In fact, if the
software is implemented in Matlab a number of useful built-in functions and toolboxes, such as the Aerospace
and Control Systems Toolboxes, can be exploited to increase the productivity and save time. One example is the
ode45 integrator implementing a Runge-Kutta integration routine. This function is built-in in Matlab and has
been used in the simulator for propagating the spacecraft dynamics. In addition to this, the Matlab proprietary
language is simple and appropriate for engineering research purposes. The debug features of Matlab, also, are
very well performing and versatile. The only drawback is that, in general, a Matlab software is less efficient
than, for example, a C++ or Fortran software, but the development time in the first case is significantly lower
and for the present study the advantage of a more efficient code is not a key requirement.

The process to develop the software has followed the Waterfall model. The requirement definition and soft-
ware design phases, completed during the literature study period, have been followed by the coding, debugging
and verification of the several functions, that, afterwards, have been integrated. The final phase consisted of
the system tests in Sections 5.2.2 and 5.2.3. Clearly, the first software to be developed was the one based on
rigid body mechanics. To implement the multibody model, as already mentioned, only minor changes had to
be applied to the whole code. This represents a direct advantage of using the Neustadt approach, because the
dynamics of the multibody model is an extension of the dynamics of the rigid body system.

45
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Figure 5.1: Parachute-backshell-payload descent simulator software architecture.
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5.2. VERIFICATION

At this point of the research project we need to be sure that the models developed in Chapter 3 are valid
and yield consistent results. In the following the verification of the units of software package are reported.
Also, some reasoned system tests related to different aspects of the dynamics of parachute descent will be
carried out. Their results will be discussed to determine whether they are consistent with the expectations. It
is remarked that the results of Chapter 8 also prove the validity of the software since in any case they can be
explained with physical considerations.

5.2.1. UNITS VERIFICATION

The dynamics of the spacecraft represents the core of the model and will be verified in the following sec-
tions. However, the physical consistency of the results that are produced by the software package also depend
on the other units that it contains. In particular, the following unit tests were conducted and resulted to be
successful:

Gust: this function, described in Section 4.1.2, was tested by checking that for a vertical sample flight
subjected to a gust with chosen parameters, the wind speed profile as a function of the altitude showed
the expected gust characteristics in agreement with Figure 4.1. The test was repeated using gusts with
different parameters.

Turbulence: this function, described in Section 4.1.3, was tested by checking that, for a vertical sample
flight subjected to a turbulent perturbation with precise amplitude and frequency, the wind speed profile
as a function of the flight time was a sinusoid with the expected characteristics. The test was repeated
with different turbulent signal amplitudes and frequencies.

Constant wind: this function was tested by checking that the horizontal wind causes the vehicle to drift
away with respect to the vertical trajectory in the direction of the wind. The vertical wind has instead
been tested by checking that a wind directed positively with respect to the ZI -axis causes the descent
time to increase, while the opposite happens for a vertical wind in the opposite direction.

Density (pressure, temperature) profile: this function was verified by checking that the values of the at-
mosphere density for certain sample points along a vertical descent trajectory, correspond to the values
that can be calculated manually using Eq. (4.1).

Gravity field: this function was verified by checking that the values of the gravitational acceleration for
certain sample points along a vertical descent trajectory, correspond to the values that can be calculated
manually using Eq. (4.10).

Guidance unit: this function was verified by checking that the values of the thrust command for certain
sample points along an arbitrary descent trajectory, corresponds to the values that can be calculated
manually, for a certain state vector error and controller gains, using Eq. (7.16).

Added mass effect: this function was verified by checking that the added mass has a stabilizing effect on
the dynamics of the system and that this effect, due to an increase in the inertial mass and moment of
inertia of the parachute, is more significant as the altitude of the spacecraft decreases.

Parachute aerodynamics: this function was verified by checking that the coefficients given in output for
a certain α correspond to the values that can be graphically obtained using Figure 3.6.

5.2.2. RIGID BODY MODEL VERIFICATION

The purpose of the present section is to validate the rigid body parachute-payload system mechanics intro-
duced in Section 3.2. To do so we will design some tests and then verify that these are successful for the model
to validate.

SYSTEM MECHANICS ANALYSIS IN VACUUM

This test will determine whether the dynamic evolution in vacuum of the system, modelled as a 3DOF rigid
body, corresponds to the expectation. For this test we will assume that the atmosphere is absent, so that the
spacecraft is exclusively subjected to the influence of the gravity force of Mars.
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Consider now the translational motion of our rigid body. If no forces other than the gravity act on it, then
the accelerations of the COM in horizontal and vertical directions, with respect to the inertial frame I , are:

{
ay = 0;

az = g0;
(5.1)

where g0 is the gravitational acceleration at the surface of Mars, and is constant and negative. The accelerations
in Eq. (5.1) are constant and can easily be integrated to get the resulting y− and z−velocities and position
components as a function of time. We have:

{
vy = vy,0;

vz = vz,0 + g0t ;
(5.2)

{
y = y0 + vy,0t ;

z = z0 + vz,0t + g0t 2

2 ;
(5.3)

Equations (5.2) and (5.3) represent the analytical solution for the trajectory of the spacecraft in vacuum with
constant gravitational acceleration. This analytical trajectory has been compared to the numerically simulated
one for different IC. The percentual error between the state variables is always smaller than O(10−9). The two
trajectories thus perfectly correspond.

If the spacecraft is not subjected to any force other than gravity, then there is no dissipative effect acting
on the system and the total mechanical energy of the system Etot, that is the sum of the kinetic translational
energy Ek,t , the kinetic rotational energy Ek,r and the potential energy Ep,g , where these terms are given by:

Ek,t =
mg ||V||2

2

Ek,r =
IXB θ̇

2

2
Ep,g = mg g z

Etot = Ek,t +Ek,r +Ep

(5.4)

must remain constant. This has been proven to be true for different numerically simulated trajectories. With
respect to the rotational motion in vacuum an additional remark has to be made. In fact, if the system is
exclusively subjected to gravity force, then there in no torque acting on it and the body keeps rotating at the
same velocity it had at instant t0. This is true only if one assumes that the gravitational acceleration is constant.
If this is not true, then the gravitational acceleration gradient along the body generates a torque on it. However,
the gravity gradient torque is is very small with respect to the aerodynamic forces that in the real case dominate
the rotational equilibrium of the body and can be neglected.

EQUILIBRIUM CONDITION CONVERGENCE

Now that the motion in vacuum has been proved to be valid, we want to demonstrate that the system be-
haves as expected also in the real case, i.e., when the atmosphere is present. In particular, it is known by expe-
rience that the equilibrium condition for a parachute-payload system corresponds to the vertical flight, with
a vertical velocity equal to the equilibrium velocity Ve . In this case, also, the system is oriented perpendicular
to the ground with the payload below the parachute. So, we want to verify that, irrespective of the IC of the
simulated trajectory, the following is true:

Vz →Ve, θ→−90◦, θ̇→ 0, α→ 0 (5.5)

where:

Ve =
mg g√

Sref
2 ρCD,0

(5.6)

Figure 5.2 shows that this test is successful because the system converges to its equilibrium position for
different IC sets. Also, the delay time of the vertical velocity for the three cases is comparable, in the order of
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Figure 5.2: Convergence of the system to the equilibrium condition for different IC sets (from Table 5.1).

Table 5.1: IC for the test cases in Figure 5.2.

Parameter Case 1 Case 2 Case 3
γ0 [deg] -90 -80 -100
θ0 [deg] -85 -75 -115
θ̇0 [deg/s] 1 5 10
V0 [m/s] 100 150 200

3 s, but not equal. The differences are due to the non-linearities of the system. Also, the monotonous decrease
of the vertical velocity is a result that was expected from a physical point of view. It is remarked that for this test
both the gravitational acceleration and atmospheric density are kept constant and equal to their surface values,
this for showing better the convergence to the equilibrium velocity, that otherwise would vary as a function of
the altitude.

Other tests have also been conducted by giving as IC a positive flight path angle. These were also successful
but are not shown to keep Figure 5.2 as clear as possible.

ENERGY DISSIPATION ANALYSIS

The main objective of a parachute system is to decelerate a payload descending through an atmosphere, or,
in other words, to dissipate the energy that the spacecraft has accumulated during the previous flight phases.
The major responsible for energy dissipation is the drag force that the parachute generates. In fact, as already
shown in the previous validation step, the system always converges to the vertical flight condition, where θ ≈
−90◦ and θ̇ ≈ 0. In this situation the rotational kinetic energy is 0. In this case the total energy of the system is
given by:
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Figure 5.3: Total energy of the parachute-payload system along a vertical trajectory (IC: γ0 =−90◦, θ0 =−90◦, θ̇0 =−90◦, V0 = 100 m
s ,

z0 = 6000 m, y0 = 0 m).

Etot =
mg ż2

2
+mg g z (5.7)

By deriving Etot with respect to time and inserting in it the EOM for z̈, simplified for the equilibrium condition,
we get:

Ėtot = mg ż

(
−g + D

m

)
+mg g ż = Dż (5.8)

Figure 5.3 shows that the total energy of the system during the descent flight reduces as a result of the drag
dissipation. The correspondence of the total energy, calculated using Eq. (5.4) and Eq. (5.8) along the trajectory,
shows that this validation test is successful.

OSCILLATORY BEHAVIOUR ANALYSIS

With this validation test we want to be demonstrate that the oscillatory motion of the parachute is influ-
enced as expected by the aerodynamic forces and moment. For a certain Mach number, the aerodynamic
coefficients, determining the sign of the corresponding forces and moment, are, according to the model in Sec-
tion 3.2.3, an exclusive function of the angle of attack α of the parachute. In particular, CD is positive per every
α, CL is positive for α> 0 and negative for α< 0 while Cm is negative for α> 0 and positive for α< 0.

We now consider a sample case for our parachute payload system, in which θ =−80◦ and γ=−90◦ so that
α= θ−γ= 10◦. In this situation, according to the balance expressed by Eq. (3.41), the terms due to D , L and M
should all generate a negative stabilizing contribution to θ̈. If we assume that the initial θ̇ = 0, it means that if
all contributions from D , L and M are considered, then θ will reach its equilibrium value faster with respect to
the case in which either L or M are neglected. In addition to this, as soon as θ goes past its equilibrium point,
if D , L and M are all considered, then a moment triggering a rotation in the opposite direction will grow faster
in magnitude and the overshoot of θ will be lower with respect to the case in which L or M are not considered.
This situation is shown in Figure 5.4.

MPF PARACHUTE DESCENT DATA REPRODUCTION

This final test aims at determining if the 3DOF model can reproduce the real MPF trajectory with some
accuracy. To do so the data derived from the EDL mission analysis in Spencer and Braun [1996] have been
compared to the results obtained by simulating the same descent using the 3DOF MPF reference vehicle model.
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Figure 5.4: Oscillatory behaviour of the system with and without L force and/or aerodynamic moment (IC: γ0 =−90◦, θ0 =−80◦,
V0 = 100 m

s , z0 = 6000 m, y0 = 0 m).

Table 5.2: Descent trajectory comparison: simulation by Trovarelli vs data derived from Spencer and Braun [1996] (IC: γ0 =−25.83◦,
θ0 =−25.83◦, θ̇0 = 0◦/s, V0 = 386 m

s , z0 = 8600 m, y0 = 0 m).

Spencer and Braun [1996] Trovarelli | ∆% |
h [m] t [s] Vz [m/s] t [s] Vz [m/s] | ∆t% | | ∆Vz % |
8600 0 -175.3 0 -175.3 0 0
6500 20.0 -71.7 22.4 -75.1 12.0 4.7
4700 45.0 -72.4 46.0 -77.2 2.2 6.6
1500 92.0 -65.0 89.0 -70.2 3.3 9.0
300 111.0 -62.0 106.6 -66.5 4.0 7.3
50 115.0 -60.0 110.4 -65.8 4.0 9.7

The first part of the simulated trajectory, between the altitudes of 8600 m and 4700 m, corresponds to the
transient phase. In here, after the deployment the parachute stabilizes the payload until the vertical flight
condition is reached. In this case the simulated trajectory shows a delay with respect to the reference data.
This delay is due to the fact that the model does not consider the inflation of the parachute. In other words, in
the real case the parachute does not generate immediately the maximum drag because it needs time to reach
its nominal dimension.

After 4700 m the vertical velocity stabilizes around its equilibrium value. In this case the situation is op-
posite with respect to the transient phase because the simulated spacecraft decelerates less than in the real
case and stabilizes on a larger vertical equilibrium velocity. This can be explained by considering that the dy-
namic model neglects the drag force generated by the elements other than the parachute. These would clearly
contribute to further decelerating the vehicle. Also, it has to be noticed that the effect of neglecting the drag
generated by the payload and backshell on the descent trajectory, is partially compensated by the fact that also
the wake effect that these bodies cause is not taken into account. The latter is indeed responsible for a decrease
in the aerodynamic force of the parachute.

In general, however, Table 5.2 shows that the error between the two trajectories is not larger than 10% for
the vertical velocity and descent time. These data, together with the consideration above allow us to state that
this test is successful.
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5.2.3. MULTIBODY MODEL VERIFICATION

While the analysis of the physical double pendulum mechanics in Section 3.3.1 has served for proving the
validity of the multibody apporach based on the concept of Neustadt et al. [1967], in this section it will be
demonstrated that the resulting parachute-backshell-payload model, introduced in Section 3.3.2, behaves as
expected. To do so we will first analyse how the energy of the system varies in different sample situations
and then we will verify that the system converges to a predetermined equilibrium condition. These two tests,
together with the double pendulum analysis, are assumed to be sufficient for verifying the multibody model
introduced earlier since it can also be considered as an extension of the rigid body model validated in Section
5.2.2. It is remarked that the validation tests use the MPF nominal configuration whose details are discussed in
Sections 3.2.3 and 3.3.2.

ENERGY DISSIPATION ANALYSIS

One of the aspects to analyse for understanding whether a model is consistent is its total energy. The total
energy of the multibody parachute-backshell-payload system, derived using the Neustadt approach, shall con-
sider, in addition to the contributions of the translational kinetic(k, t ), rotational kinetic (k,r ) and gravitational
potential energies (p, g ) of each element of the system, also the elastic potential energy (p,e) that is stored in
the risers when these are lengthened, either positively or negatively. By assuming that the gravity on Mars is
constant and equal to its surface value, the total energy Etot of the whole spacecraft can be written as:

Etot = Ek,t ,1 +Ek,t ,2 +Ek,t ,3 +Ek,r,1 +Ek,r,2 +Ek,r,3

+Ep,g ,1 +Ep,g ,2 +Ep,g ,3 +Ep,e,a +Ep,e,b

= 1

2

(
m1||V1||2 +m2||V2||2 +m3||V3||2

)
(5.9)

+ 1

2

(
I1θ1

2 + I2θ1
2 + I3θ1

2)+ g0 (m1z1 +m2z2 +m3z3)

+ 1

2
kr,a∆l 2

a +
1

2
kr,b∆l 2

b

in which the subscripts 1,2 and 3 indicate, in this order, the parachute, backshell and payload elements. If
we further assume that the spacecraft is flying in vacuum, then the energy should remain constant, because no
dissipation mechanism acts on the system. This has been verified for several sets of sample IC and, for stringent
propagator tolerances (RelTol = 10−8, AbsTol = 10−10) the relative error of the total energy with respect to its
initial value was always in the order of 10−131. In these conditions the elastic energy is 0 because each of the
multibody elements moves exclusively under the influence of the constant gravitational acceleration, so that in
each point of the trajectory they are characterized by the same velocity and no riser elongation takes place. The
situation is different if the gravity is assumed to vary with altitude. In this case the parachute, backshell and
payload, whose COM are at different altitudes, do not feel the same exact gravitational acceleration. This in fact
varies along the body in vertical direction. The resulting gradient, amongst others, causes that the velocities of
the bodies per each instant are not exactly the same. This causes a small elongation of the risers, whose elastic
force counteracts the gradient. This elongation, that causes the elastic potential energy to be different from 0
and to increase, grows until the external and internal forces balance.

The second test series related to energy analysis consisted, analogously to what already done for validating
the rigid body model, of proving that the variation of the total energy of the system during a vertical flight in
the atmosphere of Mars can either be obtained calculating Eq. (5.9) at each trajectory point, or by integrating
Eq. (5.8), expressing the energy dissipation due to the drag, along the trajectory itself. In this case, for different
sets of initial conditions, the relative error during the propagation was always lower than 1%. In addition to
this it was verified that, along the vertical flight trajectory, the elastic potential energy is characterized by a
first phase in which it oscillates. These oscillations, however, are damped and in the second phase this energy
contribution tends to a stable condition. This expected behaviour is due to the fact that, as for the vacuum
case, the forces acting on the vehicle, after a transient period, reach an equilibrium with the internal elastic
forces generated by the risers lengthening.

1This relative error increases in case the tolerances of the integrator are larger. This is a characteristic of the multibody approach of
Neustadt that, as explained earlier, is less accurate with respect to other multibody formulations due to the presence of the pseudo-spring
approximation.
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Table 5.3: IC for the multibody simulation of Figure 5.5.

Parameter Value Parameter Value Parameter Value
γ10 [deg] -85 γ20 [deg] -95 γ30 [deg] -90
θ10 [deg] -80 θ20 [deg] -100 θ30 [deg] -90
θ̇10 [deg/s] 1 θ̇20 [deg/s] -1 θ̇30 [deg/s] 0
V10 [m/s] 100 V20 [m/s] 100 V30 [m/s] 100

z10 [m] 6000 θr,1 [deg] -90 θr,2 [deg] -90
y10 [m] 0 y20 [m] 0 y30 [m] 0

EQUILIBRIUM CONVERGENCE

The second test campaign for proving the validity of the multibody model based on the Neustadt approach
consists of evaluating whether the system, irrespective of the IC, always converges to the steady-state flight con-
dition and whether this condition is the one expected from a physical point of view. In particular, we expect
that in absence of winds the drag generated by the parachute and the gravitational forces due to the masses of
the system elements cause the vehicle to end up flying vertically, both with respect to the attitude of the space-
craft itself and the direction of the velocity vectors. This is clearly shown in Figure 5.5 from which we get that
the attitude oscillations are damped and that the vertical velocity of the vehicle tends to its equilibrium condi-
tion, expressed by Eq. (5.6), that in this case is computed using varying atmospheric density and gravity. Also,
the plots at the bottom demonstrate that the vertical distances between the COM of the multibody elements
stabilize on the sum of the position of the hinges and the riser lengths (corresponding to the initial value for
∆z ), plus a small offset of some mm that is due to the equilibrium elongation of the risers. This is the condition
in which the external forces acting on the system balance with the internal elastic contributions.

The plot for the vertical velocity of the system shows that the vertical velocity of the system remains always
a little bit larger in magnitude than the equilibrium velocity. This delay is due to the fact that the equilibrium
velocity decreases with altitude and, as a result, the system is always in deceleration. In fact, since the system
has a certain inertia, the deceleration takes time and by the moment the system has decelerated to reach a
certain equilibrium velocity, this has already became smaller and the system has to decelerate further. The
offset between the equilibrium velocity and the vertical velocity of the system, that is in the order of 1 m/s, will
never go to 0 but is smaller if the drag force of the parachute is more dominant with respect to the mass of the
system.

Even if Figure 5.5 shows only one test case for clarity reasons, the same test has been run with other sample
IC and the results were always satisfactory. It is finally remarked that the missing z coordinates for bodies 2 and
3 in the IC of Table 5.3 for Figure 5.5 are substituted in this case by the initial orientation of the risers. This is
just an alternative way for determining the system IC.
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Figure 5.5: Sample MPF descent trajectory simulated with the multibody model based on Neustadt (IC from Table 5.3).



6
RIGID BODY OPEN-LOOP STABILITY

The study of the parachute-backshell-payload spacecraft dynamics starts with the analysis of the behaviour
of the rigid-body model. Section 6.1 introduces the theory at the basis of dynamic stability studies. This theory
is then applied in Section 6.2 where the nonlinear system developed in Section 3.2 is first linearised for the
flight in steady-state condition and then some analytical information about its dynamics is derived.

6.1. DYNAMIC STABILITY

In Section 6.1.1, first the basic concepts about dynamic stability will be introduced. After this the Direct
Method of Lyapunov, that represents the base for nonlinear stability analysis will be discussed. This method,
as explained in Section 6.1.2, is easily applicable in case of linear systems but has limited practical utility with
when one is dealing with nonlinear systems. In this case the Indirect Method of Lyapunov, introduced in Sec-
tion 6.1.3, represents the most straightforward choice.

6.1.1. EQUILIBRIUM POINTS & DIRECT METHOD OF LYAPUNOV

A generic dynamical system is a system that satisfies the following conditions:

ẋ = f (x, t ) x (t0) = x0 x ∈Rn (6.1)

where x is a vector of generalized coordinates and x0 are the initial conditions the solution of the system x (t )
has to satisfy. In addition to this, it is also requested that the function f (x, t ) guarantees that the solution x (t )
exists and is unique.

The equilibrium point of a dynamical system is a particular state vector x∗ ∈ Rn for which it holds that
f (x∗, t ) = 0. This equilibrium point is locally stable if every solution x (t ) satisfying the initial conditions x (t0) =
x0 in the vicinity of the equilibrium point x∗ remains close to it for every t ≥ t0. In the following, for practical
reasons, the equilibrium point(s) will always be placed in the origin of the reference frame, so that x∗ = 0.
Mathematically, an equilibrium point x∗ = 0 for t = t0 is stable in the sense of Lyapunov if ∀ ε> 0 ∃ δ (t0,ε) such
that:

‖x (t0)‖ < δ ⇒ ‖x (t )‖ < ε ∀t > t0 (6.2)

The same point is also asymptotically stable if the solution x (t ) gets closer to x∗ for t →∞. In particular, an
equilibrium point x∗ = 0 is asymptotically stable for t = t0 if:

1. x∗ = 0 is stable in the sense of Lyapunov

2. x∗ = 0 is locally attractive, meaning that ∃ δ (t0) such that:

‖x (t0)‖ < δ ⇒ lim
t→∞x (t ) = 0 (6.3)

55
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Figure 4.7: Phase portraits for stable and unstable equilibrium points.

for all ‖x(t0)‖ ≤ ǫ and t ≥ t0. The largest constant α which may be
utilized in (4.34) is called the rate of convergence.

Exponential stability is a strong form of stability; in particular, it im-
plies uniform, asymptotic stability. Exponential convergence is important
in applications because it can be shown to be robust to perturbations and
is essential for the consideration of more advanced control algorithms,
such as adaptive ones. A system is globally exponentially stable if the
bound in equation (4.34) holds for all x0 ∈ Rn. Whenever possible, we
shall strive to prove global, exponential stability.

4.2 The direct method of Lyapunov

Lyapunov’s direct method (also called the second method of Lyapunov)
allows us to determine the stability of a system without explicitly inte-
grating the differential equation (4.31). The method is a generalization
of the idea that if there is some “measure of energy” in a system, then
we can study the rate of change of the energy of the system to ascertain
stability. To make this precise, we need to define exactly what one means
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Figure 6.1: Type of equilibrium points according to Lyapunov definitions (from left to right: stable, asymptotically stable, unstable)
[Murray et al., 1994].

The stability in the sense of Lyapunov is also uniform if the equilibrium point maintains its characteristics
∀t > t0. This is the case if the function δ is not dependent on time t .

If the conditions expressed in Eq. (6.2) are not satisfied then the equilibrium point is said to be unstable.
Also, Eq. (6.2) and (6.3) give conditions that have to be satisfied for assessing local stability. If the solutions x(t )
still converges to x∗ for initial conditions x0 not in the close vicinity of the equilibrium point, then the stability
of x∗ is said to be global. This latter case is a desirable property but is often difficult or impossible to obtain in
practical situations. In the following we will exclusively consider systems in which the ẋ is not a direct function
of the time t . These are called time-invariant systems.

Lyapunov introduced the basic concepts of dynamic stability. In addition, he developed the Direct Method
of Lyapunov for evaluating the stability behaviour of a generic dynamical system. For each dynamical system,
in fact, there exists an associated Lyapunov function, V , measuring a quantity that can be considered as a
sort of energy related to it. According to this method, the dynamic stability characteristics of the system can
be deduced, in agreement with the Theorem of Lyapunov, from an analysis of the properties of the Lyapunov
function, whose value depends on the state of the dynamical system itself. In particular, if the equilibrium point
of a system is stable, then the existence of a Lyapunov function V that satisfies the conditions the Theorem of
Lyapunov for a stable equilibrium point is guaranteed. More detailed information about the Direct Method
of Lyapunov and Lyapunov stability in general, as well as the formulation of the Theorem of Lyapunov can be
found in Khalil [2001].

6.1.2. STABILITY OF LINEAR SYSTEMS

Consider the linear time-invariant system

ẋ = Ax (6.4)

The Lyapunov function V of this system can simply be defined as:

V = xT Px (6.5)

where P, according to Khalil [2001] is the nonsingular matrix that block diagonalizes the state matrix A. In this
case the application of the Direct method of Lyapunov for the determination of the stability properties of the
system reduces to the analysis of the eigenvalues and eigenvectors of A.

Consider for example a [2×2] state matrix A. The corresponding state vector x will also be two-dimensional.
Depending on the value of the eigenvalues λ1 and λ2 of A, the following cases are possible:

• λ1 <λ2 < 0: the origin is a stable node

• λ1 >λ2 > 0: the origin is an unstable node

• λ1 < 0 <λ2: the origin is a saddle point

• λ1,2 =α+ iω: the origin is a centrum

In case of complex eigenvalues the system does not only tends towards (or diverges from) the equilibrium
point but also oscillates around it. This type of equilibrium point is called centrum. In particular, as shown by
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6-4 Eigenmotion of winged entry vehicles 223

number of time points. To illustrate the eigenmotion, we will conclude this section by showing
the results of a 6-dof open-loop re-entry simulation.

Having computed the eigenvalues and corresponding eigenvectors, how can we relate them
to the actual motion of a vehicle? Based on the eigenvalues, we can see whether a compo-
nent of the motion is (un)stable and (a)periodic, see also Figure 6-8. An eigenvalue can be
real or complex. Complex eigenvalues appear in (conjugated) pairs and indicate a periodic
eigenmotion, whereas real eigenvalues imply an aperiodic eigenmotion. The sign of the real
part of the eigenvalue shows whether the eigenmotion will be converging (negative real part)
or diverging (positive real part). When the real part is zero, the oscillations have a constant
amplitude. A more detailed discussion can, amongst others, be found in DSouza (1988) and
Kuo (1987).
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Re(   )
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h

Figure 6-8: Impulse responses for various eigenvalue locations in the complex plane (based on DSouza
(1988)), where the conjugate eigenvalues are omitted.

To characterise the eigenmotion we compute some specific coefficients, i.e., the period P ,
when a pair of complex conjugate eigenvalues represents a periodic motion, defined as

P =
2π

Im(λ)
(6-134)

An aperiodic motion does not have a period, which also follows from the fact that the imag-
inary part of the eigenvalue is zero.

Next, we define the halving time T 1
2
, indicating the time interval when the amplitude of the

motion has become half its original value,

T 1
2

=
ln 1

2

Re(λ)
(6-135)

However, when the real part of the eigenvalue is positive, the halving time becomes negative.
In that case it is better to speak of the doubling time of the (diverging) eigenmotion:

T2 =
ln 2

Re(λ)

Re-entry Systems

Figure 6.2: Stability and oscillation periodicity as a function of eigenvalues real and imaginary parts [D’Souza, 1988].

Figure 6.2, the real part of the eigenvalue has a major influence on the damping properties of the system. In par-
ticular, if the real part is more negative then the system, once perturbed, will tend back faster to its equilibrium
position. The oscillations around the equilibrium are instead more significantly influenced by the imaginary
part of the eigenvalue. If this is larger in magnitude then the oscillation frequency of the system about the equi-
librium position will be higher. According to Golnaraghi and Kuo [1987], the damped oscillatory behaviour of
a system around a stable centrum, defined by its natural frequency ωn , damping ratio ζ and period P , can be
dimensioned using the eigenvalues of its state matrix:

ωn =
√

Re(λ)2 + Im(λ)2, ζ=−Re(λ)

ωn
, P = 2π

Im(λ)
(6.6)

The question is now to determine which eigenvalue of the state matrix has to be used in Eq (6.6). There
are situations in which a certain eigenvalue is related to the dynamics of a single state variable. However, this
is not normally true. In reality, in fact, the eigenvalues refer to a certain eigenmotion. The term eigenmotion
indicates the modality through which a certain group of interrelated state variables dynamically evolve. If,
for example, the state matrix describes the motion of a spaceplane along a steady-state trajectory, one eigen-
motion could be represented by the attitude oscillations around the spacecraft COM. In such a case the state
variables angular position θ and velocity θ̇ around a chosen axis would evolve together according to a certain
characteristic scheme, called eigenmotion. The same dynamical system can, of course, have different types of
eigenmotions and they do not necessarily need be characterized by an oscillatory behaviour. To understand
how a certain eigenvalue is related to the eigenmotion variables and determine to what extent these influence
the chosen eigenvalue, it is possible to analyse the eigenvectors of the state matrix. The rows of an eigenvector,
that correspond to a precise eigenvalue, are related to the state variables. In principle the influence of the state
variable n on the eigenvalue k is proportional to the value of the element of row n of the eigenvector k.

The state matrix associated to a linear system can be characterized by a certain number of blocks of variable
dimension. Each block represents a certain eigenmotion of the system itself. If one identifies all the blocks in
a certain state matrix, for example by analysing its eigenvectors, then it is possible to determine, through the
study of the eigenvalues using the information above, the dynamic stability properties of each eigenmotion
separately, this representing a great advantage in some cases because it greatly simplifies the calculations.

6.1.3. INDIRECT METHOD OF LYAPUNOV

The Direct Method of Lyapunov introduced in Section 6.1.3 has the advantage of being very general, be-
cause no assumption on the type of dynamical system analysed is made. In particular, deriving the Lyapunov
function V for a linear system and analysing its properties, as explained in Section 6.1.2, is straightforward.
Nevertheless, there is not a general methodology to derive the Lyapunov function for a nonlinear dynamic
system, this making the Direct Method of Lyapunov scarcely applicable for many practical problems.

An alternative way to asses the stability that is more suitable for engineering applications is Indirect Method
of Lyapunov. Consider the nonlinear dynamical system given by:
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ẋ = f(x) (6.7)

in which xT = (x1, ..., xn) is the state vector and fT = (
f1, ..., fn

)
. The Indirect Method of Lyapunov, explained in

detail by Khalil [2001], yields the conditions under which the stability characteristics of the nonlinear system
in the vicinity of the linearisation point x0 are equivalent to those of the linear system:

˙̄x = Ax̄ (6.8)

where x̄ is the deviation of the state x with respect to the linearisation point and A is the Jacobian matrix defined
as:

A = ∂f(x)

∂x

∣∣∣∣
x=x0

=


∂ f1(x)
∂x1

· · · ∂ f1(x)
∂xn

...
. . .

...
∂ fn (x)
∂x1

· · · ∂ fn (x)
∂xn


x=x0

(6.9)

This approach is used in any field of engineering. One example is Mooij [1998b], who linearises the EOM
describing the motion of a spaceplane and then analyses the eigenmotion of the system by studying the eigen-
values of the resulting Jacobian matrix.

6.2. STABILITY ANALYSIS

The dynamic behaviour of a nonlinear system can be analysed in many ways. The approach that yields the
most accurate results consists of investigating the properties of the Lyapunov function associated to the system.
Its drawback, as already discussed in Section 6.1.1, is that a systematic procedure for determining the Lyapunov
function of a generic nonlinear system does not exist. As a result, if a complex and highly nonlinear system has
to be studied, the most straightforward procedure consists of analysing the linear system associated to it that, in
the vicinity of the linearisation point, features the same behaviour of its nonlinear counterpart. In the following
Sections, first the 3DOF parachute-payload nonlinear system developed in Section 3.2 will be linearised and
then its stability properties will be investigated by means of the linear stability analysis techniques discussed
in Section 6.1.2. It is remarked that it has been chosen to linearise the 3DOF rigid body model because it
represents a good compromise between fidelity with respect to the real system and simplicity, the latter being
a fundamental requirement if analytical results have to be derived.

6.2.1. SYSTEM LINEARISATION

The 3DOF nonlinear system describing the parachute-payload system descending in the atmosphere of
Mars, introduced in Section 3.2, can be written as:

ẋ = f(x) =



f1(x4)
f2(x5)
f3(x6)

f4(x2, x3, x4, x5, x6)
f5(x2, x3, x4, x5, x6)
f6(x2, x3, x4, x5, x6)

 , x =



y
z
θ

ẏ
ż
θ̇

=



x1

x2

x3

x4

x5

x6

 (6.10)

From this description it is possible to derive the linear system:

˙̄x = Ax̄ (6.11)

where x̄ indicates the deviation of the state with respect to its reference and A is the [6× 6] Jacobian matrix
associated to the system of Eq. (6.10). A can be found as:

A =


∂ f1
∂x1

. . . ∂ f1
∂x6

...
. . .

...
∂ f6
∂x1

. . . ∂ f6
∂x6


x=xss

(6.12)
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To determine A we simply need to explicitly express the nonlinear system f(x) as a function of the elements of
the state vector x and derive. However, the fact that the Jacobian has to be defined for a specific linearisation
point along the trajectory, xss, allows us to introduce in the EOM some assumptions. These, that are valid exclu-
sively for the steady-state flight condition of the vehicle, contribute to significantly simplifying the derivation1

of A for the reference MPF configuration. The following part of this section will be dedicated to this.

During a typical Mars EDL mission such as MPF, the parachute is deployed at and altitude between 10000 m
and 8000 m, when the vehicle is flying with a low flight path angle, that can vary between −10◦ and −25◦ de-
pending on the mission, and a Mach number between 1.5 and 2. When this happens the spacecraft experiences
a deceleration peak that is followed by a transient phase in which the attitude of the system oscillates at a very
high frequency and the flight path angle decreases. At an altitude of about 6000-5000 m the transient phase
is concluded. At this point the vehicle is flying in steady-state conditions. During this flight phase the undis-
turbed spacecraft would descend vertically through the atmosphere of Mars. According to the convention in
Figure 3.5, the angle of attack is ≈ 0◦ while both the attitude and flight path angles are ≈−90◦. The vehicle has
no horizontal velocity and the vertical velocity tends to the parachute-payload system equilibrium velocity,
given by Eq. (5.6). For the MPF reference vehicle a representative steady-state vector would be:

xss =



x1 ≈ 0 [m]
x2 ≈ 1000 [m]

x3 ≈ 90◦
x4 ≈ 0

x5 ≈ 70
[ m

s

]
x6 ≈ 0

 , α≈ 0, γ≈ 90◦ (6.13)

While the choice of the steady-state value for the variables x3, x4 and x6 is clear from the discussion above,
the choices of x1, x2 and x5 have to be explained. In particular, x1, corresponding to the y-position, has abso-
lutely no effect on the evolution of the system because it does not appear in any right hand side of the EOM,
so that it can be assumed to have any value. Setting it to 0 is the most obvious choice. The altitude x2, instead,
determines the atmosphere density and the gravitational acceleration. Even tough these two variables, as will
be pointed out later, vary very slowly, they still influence the dynamics of the spacecraft, so that the choice of x2

has to be reasoned. In particular, we could have chosen any value within the steady-state range 6000-1000 m.
The choice has fallen on 1000 m because in this way we can directly get information about the stability at a low
altitude where, since the vertical velocity is lower, the system is more sensitive to external perturbation (this is
also proven in Section 8.1.1). In addition to this, if a disturbance is experienced at a larger altitude, the system
has more time to return to its stable position with respect to the case that the same disturbance happens in
the vicinity of the target. In other words, we are more interested in studying the stability properties of the sys-
tem where these properties have a critical influence on the success of the mission, this corresponding for our
specific case to the descent phase just before the beginning of the terminal powered descent at an altitude of
1000 m. Finally, x3=70 m/s is simply the approximated equilibrium velocity for the MPF vehicle at the altitude
of 1000 m.

We start the simplification process by considering the velocity of the parachute with respect to the atmo-
sphere. In case of no wind, according to Section 3.2.3, it is defined as:

Va =
(

x4 +x6 sin(x3)zpc

x5 −x6 cos(x3)zpc

)
(6.14)

If the vehicle is flying in steady-state conditions then x6 cos(x3)zpc ≈ 0 is much smaller than x5 and can be
neglected. Also, sin(x3) ≈−1 so that Va can be rewritten as:

Va ≈
(

x4 −x6zpc

x5

)
(6.15)

The norm of the airspeed determines the dynamic pressure on the parachute and, in turn, the aerodynamic
forces. It is defined as:

Va = ||Va|| =
√

(x4 −x6zpc)2 +x2
5 (6.16)

1The most complicated steps of the analytical study reported here and in Chapter 7 have been validated using the software package Maple
for symbolic calculus.
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Va can be simplified by considering that x4 ≈ x6zpc << x5, so that:

Va ≈
√

x2
5 (6.17)

The EOM of the first three state vector elements, i.e. the y− and z− position components x1 and x2 and the
attitude angle θ, corresponding to x3, are respectively:

ẋ1 = x4

ẋ2 = x5

ẋ3 = x6

(6.18)

While these are very simple, the equations for the velocity in the YZ-plane and the attitude angle rotation
velocity can be further simplified if the system is in its steady-state condition. To do so we need to analyse
them one by one and try to physically understand the importance of each appearing term. For the velocity Vy

(=x4) we have:

ẋ4 = −L sinγ−D cosγ

mg +ma
(6.19)

where mg is the gravitational mass of the parachute-payload system while ma is the added mass that depends
on the atmosphere density ρ and, in turn, on the altitude x2. In the steady-state flight region, corresponding

to altitudes varying between 6000 m and 1000 m, however, ρ varies very slowly between 0.01 kg
m3 and 0.015 kg

m3 .
As a result, the variation of ρ, that also appears in the dynamic pressure term determining the aerodynamic
forces, would not significantly affect the stability behaviour of the model and can be neglected by considering
it constant in defining the linear model. If the atmospheric density is considered constant, then also the added
mass is constant and equal to its value calculated in the steady-state condition. The inertial mass of the vehicle
can thus be written as m = mg +ma .

In steady-state conditions, the angle of attack isα≈ 0. This allows for a simplification of the definition of the
aerodynamic coefficients. By looking at Figure 3.6 we notice that a possible simplification would be to assume
that CD is a positive constant and that both CL and Cm can be described by a line. So we have:

CD =CD (0) =CD,0 CD,0 = 0.3449

CL = kCLα kCL = 0.4414

Cm = kCmα kCm =−0.7212

(6.20)

where kCL and kCm have been obtained by fitting a line on the the experimental data from Cruz et al. [2003].
This approximation has been validated by checking that the response of the nonlinear system does not change
significantly when using the approximated coefficients. By substituting the coefficients of Eq. (6.20) in Eq.
(6.19) we get:

ẋ4 =−qdynSref(kCLαsinγ+CD,0 cosγ)

m
(6.21)

If, once more, we consider that the vehicle is flying in steady-state conditions, then kCLα ≈ 0, sinγ ≈ −1 and
cosγ, that for γ→−π

2 can be approximated as γ+ π
2 , tends to 0 as well. This allows us to further simplify Eq.

(6.19) but also tells us that both terms at the numerator have comparable magnitude and none of them can be
ignored. By introducing in Eq. (6.19) the assumptions discussed until now we get:

ẋ4 ≈−qdynSref
(−kCLα+CD,0

(
γ+ π

2

))
m

=−Srefρx2
5

(−kCL

(
x3 −arctan

(
x5, x4 −x6zpc

))+CD,0
(
arctan

(
x5, x4 −x6zpc

)+ π
2

))
2m

(6.22)

The same procedure is applied to also simplify ẋ5 and ẋ6. For ẋ5 we have:

ẋ5 =
mgg −qdynSref(−kCLαcosγ+CD,0 sinγ)

m
(6.23)
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In this case we have that kCLα ≈ cosγ ≈ 0 while instead sinγ ≈ −1. As a result it holds that kCLαcosγ <<
CD,0 sinγ so that, in this case, the contribution of the L force can be neglected with respect to the drag force
contribution. However, it is also interesting to understand how does the aerodynamic term, reduced to the
only drag, compares to the gravity term in the vertical equilibrium equation. To do so we need to calculate
approximated values for both terms in the steady-state condition. By inserting the spacecraft properties of
MPF presented in Section 3.2.3, we get that, for a descent in steady-state conditions starting at an altitude of
≈ 6000 m with a velocity of ≈ 120 m/s, the drag force ranges between 3000 N and 1000 N while the gravity force
is almost constant around 1300 N. This makes it clear that the gravitational and aerodynamic contributions to
the vertical force equilibrium are comparable and none of them can be ignored. However, what can still be
done to simplify this equation is to also consider the gravitational acceleration as a constant. This is justified
by the fact that, similarly to what happens for the the atmosphere density, the variation of g as a function of x2

is very small in the steady-state region and it does not significantly affect stability characteristics of the model.
The resulting ẋ5 can thus be written as:

ẋ5 ≈
2mg g +ρx2

5SrefCD,0

2m
(6.24)

Finally, we need to analyse the rotational equilibrium equation ẋ6, that is:

ẋ6 =−qdynSref
(
zpc

(
kCLαcosα+CD,0 sinα

)−kCmαD0
)

IXB + Ia,XB

(6.25)

Since we already assumed that ρ, and in turn the added mass ma , are constant, then the additional moment
of inertia it causes will be constant as well. Because of this we write Itot = IXB + Ia,XB . Also, it is assumed
that the parachute COP is fixed with respect to the body frame B and corresponds to the parachute COM. By
means of numerical simulations, also this simplification has been proven to be acceptable for the purpose of
this study because it does not significantly influence the stability properties of the rigid body model. In steady-
state conditions (α ≈ 0) it is possible to consider that cosα ≈ 1 and sinα ≈ α. If one inserts this information
into Eq. (6.25), this gives after rearrangement:

ẋ6 ≈−qdynSrefα
(
zpckCL + zpcCD,0 −kCm D0

)
Itot

(6.26)

in which all the 3 terms expressing the aerodynamic contributions, i.e., zpckCL , zpcCD,0, and kCm D0 have com-
parable magnitude. Because of this none of them can be neglected. The resulting simplified explicit equation
for ẋ6 is:

ẋ6 ≈−ρx2
5Sref

(
x3 −arctan

(
x5, x4 −x6zpc

))(
zpckCN + zpcCD,0 −kCm D0

)
2Itot

(6.27)

The dynamics of the parachute-payload spacecraft, in proximity of the the linearisation point xss, in which
it is flying is steady-state conditions, is thus accurately described by the system:

ẋ = f(x) =



x4

x5

x6

− Srefρx2
5

(−kCL (x3−arctan(x5,x4−x6zpc))+CD,0
(
arctan(x5,x4−x6zpc)+ π

2

))
2m

2mg g+ρx2
5 SrefCD,0

2m

−ρx2
5 Sref(x3−arctan(x5,x4−x6zpc))

(
zpckCL +zpcCD,0−kCm D0

)
2Itot



(6.28)

The nonlinear system in Eq. (6.28), thanks to the simplifications, is characterized by a much lower degree of
complexity with respect to the initial nonlinear model it is derived from and will thus be used for studying an-
alytically the stability behaviour of the parachute-payload system in steady-state conditions. The elements of
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matrix A of Eq. (6.12) defining the associated linear system can be found, according to Eq. (6.12), by differenti-
ating the EOM with respect to the state vector components. These are:

∂ f1

∂x1
= 0,

∂ f1

∂x2
= 0,

∂ f1

∂x3
= 0,

∂ f1

∂x4
= 1,

∂ f1

∂x5
= 0,

∂ f1

∂x6
= 0;

∂ f2

∂x1
= 0,

∂ f2

∂x2
= 0,

∂ f2

∂x3
= 0,

∂ f2

∂x4
= 0,

∂ f2

∂x5
= 1,

∂ f2

∂x6
= 0;

∂ f3

∂x1
= 0,

∂ f3

∂x2
= 0,

∂ f3

∂x3
= 0,

∂ f3

∂x4
= 0,

∂ f3

∂x5
= 0,

∂ f3

∂x6
= 1;

∂ f4

∂x1
= 0,

∂ f4

∂x2
= 0,

∂ f4

∂x3
= Srefρx5

2kCL

2m
,

∂ f4

∂x4
= Srefρx5

3
(
CD,0 +kCL

)
2m

(−zpc x6 +x4
)2

(
1+ x5

2

(−zpc x6+x4)2

) ,

∂ f4

∂x5
=−Srefρx5

2m

(
2

(
CD,0

(
arctan

(
x5,−zpc x6 +x4

)+ π

2

))
+ . . .

. . .−kCL

(
x3 −arctan

(
x5,−zpc x6 +x4

)))+ x5

(
CD,0 +kCL

)
(
−zpc x6 +x4

)(
1+ x5

2

(−zpc x6+x4)2

))
,

∂ f4

∂x6
=−Srefρx5

3zpc
(
CD,0 +kCL

)
2m

(−zpc x6 +x4
)2

(
1+ x5

2(−zpc x6 +x4
)2

)−1

; (6.29)

∂ f5

∂x1
= 0,

∂ f5

∂x2
= 0,

∂ f5

∂x3
= 0,

∂ f5

∂x4
= 0,

∂ f5

∂x5
= CD,0 Srefρx5

m
,

∂ f5

∂x6
= 0;

∂ f6

∂x1
= 0,

∂ f6

∂x2
= 0,

∂ f6

∂x3
=−Srefρx5

2
(
CD,0 zpc −D0 kCm +zpc kCL

)
2Itot

,

∂ f6

∂x4
=−Srefρx5

3
(
CD,0 zpc −kCm D0 +kCL zpc

)
2
(−x6 zpc +x4

)2 Itot

(
1+ x5

2(−x6 zpc +x4
)2

)−1

,

∂ f6

∂x5
=−Srefρx5

(
CD,0 zpc −D0 kCm +zpc kCL

)
Itot

(x5

(
1+ x5

2

(−x6 zpc+x4)2

)−1

2
(−x6 zpc +x4

) + . . .

. . .− (
x3 −arctan

(
x5,−x6 zpc +x4

)))
,

∂ f6

∂x6
= Srefρx5

3zpc
(
CD,0 zpc −D0 kCm +zpc kCL

)
2
(−x6 zpc +x4

)2 Itot

(
1+ x5

2(−x6 zpc +x4
)2

)−1

;

Also in this case an accurate physical analysis can lead to an even more compact system. Since the space-
craft is assumed to be flying vertically without rotating, then x5 >> x4 − x6zpc. This results in the fact that we
can approximate the recurring term:

1+ x2
5(

x4 −x6zpc
)2 ≈ x2

5(
x4 −x6zpc

)2 (6.30)

After inserting Eq. (6.30) in (6.29) and rearranging (this step is left to the reader), we also consider that:

arctan
(
x5,−zpc x6 +x4

)≈−π
2

x3 −arctan
(
x5,−zpc x6 +x4

)≈ 0 (6.31)
−zpc x6 +x4

x5
≈ 0

so that the final form of the simplified Jacobian is:
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∂ f1

∂x1
= 0,

∂ f1

∂x2
= 0,

∂ f1

∂x3
= 0,

∂ f1

∂x4
= 1,

∂ f1

∂x5
= 0,

∂ f1

∂x6
= 0;

∂ f2

∂x1
= 0,

∂ f2

∂x2
= 0,

∂ f2

∂x3
= 0,

∂ f2

∂x4
= 0,

∂ f2

∂x5
= 1,

∂ f2

∂x6
= 0;

∂ f3

∂x1
= 0,

∂ f3

∂x2
= 0,

∂ f3

∂x3
= 0,

∂ f3

∂x4
= 0,

∂ f3

∂x5
= 0,

∂ f3

∂x6
= 1;

∂ f4

∂x1
= 0,

∂ f4

∂x2
= 0,

∂ f4

∂x3
= Srefρx5

2kCL

2m
,

∂ f4

∂x4
= Srefρx5

(
CD,0 +kCL

)
2m

,

∂ f4

∂x5
≈ 0,

∂ f4

∂x6
=−Srefρx5zpc

(
CD,0 +kCL

)
2m

; (6.32)

∂ f5

∂x1
= 0,

∂ f5

∂x2
= 0,

∂ f5

∂x3
= 0,

∂ f5

∂x4
= 0,

∂ f5

∂x5
= CD,0 Srefρx5

m
,

∂ f5

∂x6
= 0;

∂ f6

∂x1
= 0,

∂ f6

∂x2
= 0,

∂ f6

∂x3
=−Srefρx5

2
(
CD,0 zpc −D0 kCm +zpc kCL

)
2Itot

,

∂ f6

∂x4
=−Srefρx5

(
CD,0 zpc −kCm D0 +kCL zpc

)
2Itot

,

∂ f6

∂x5
≈ 0,

∂ f6

∂x6
= Srefρx5zpc

(
CD,0 zpc −D0 kCm +zpc kCL

)
2Itot

;

The linear model defined by Eq. (6.32) represents the most simple linear model that it is possible to obtain
from the initial nonlinear 3DOF rigid body parachute-payload model that still ensures a very good level of
accuracy. It will thus be used for the following analytical stability study. It is remarked that every step of the
simplification process has been verified by comparing the linearised system initial condition, step and impulse
responses after the simplification of the variables having a constant equilibrium position2, i.e., Vy , Vz , θ and θ̇,
with the corresponding responses of the nonlinear system. In every case the two systems showed an analogous
dynamic behaviour so that the simplifications were considered to be valid.

6.2.2. EIGENMOTION ANALYSIS

At this point we are ready to derive analytical expressions for the eigenvalues of the Jacobian matrix A,
whose elements are given by Eq. (6.32). These will determine the dynamic stability properties of the parachute-
payload system. However, determining these analytical expressions by solving the characteristic equation as-
sociated to the full [6×6] A is not possible. An alternative solution consists of identifying the block structure of
the matrix and find the eigenvalues of these blocks, that will correspond to the eigenvalues of the complete ma-
trix. The drawback of this approach is that to identify the blocks, while still being able to get simple expressions
for the eigenvalues, some other assumptions have to be introduced in the system.

First of all, it is easy to note that the columns 1 and 2 of matrix A only contain zeros. As a result its rank will
not be higher than 4 and two eigenvalues will be null. From the physics of the problem and the assumptions we
made earlier it is clear that these null eigenvalues should refer to variables x1 and x2. These correspond to the
horizontal and vertical position components and are not present at all in the right hand sides of the elements
of the Jacobian A. This can be proved by analysing the relationship between its eigenvalues and eigenvectors.
In particular, by determining the value of the elements of A for a specific linearisation point, it is possible, using
the Matlab function eig3, to compute numerically both the eigenvalues and eigenvectors of A for that point. It
has been checked that, for every point chosen of the steady-state vertical trajectory of the MPF vehicle, the first
and fifth eigenvalues, λ1 and λ5, were null. The corresponding first and fifth eigenvectors, instead, for every
considered point were:

vλ1,(1) =
(
1 0 0 0 0 0

)T
, vλ5,(1) =

(
0 1 0 0 0 0

)T
(6.33)

2The nonlinear model simulates the response the state variables of the system. The linearised system instead can only reproduce the
dynamic evolution of the deviation with respect to the reference point. In general thus, comparing them is not possible. Nevertheless,
it is possible that some of the state variables feature a constant condition equilibrium. In this case it is possible to translate the linear
system on the nonlinear one to check whether the characteristics of the dynamic response for these particular variables in the vicinity of
the reference point is analogous for the two systems.

3https://nl.mathworks.com/help/matlab/ref/eig.html. Last accessed: 18/01/2018.

https://nl.mathworks.com/help/matlab/ref/eig.html
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The fact that x1 and x2 are dominant, respectively, in eigenvectors vλ1 and vλ5 , proves that the null eigenvalues
correspond to the horizontal and vertical position components state variables. In addition to this, the analysis
of the eigenvectors has revealed that their components 2 and 5 are always 0 except for vλ1,(1) and vλ5,(1). This
means, as expected, that variables x1 and x2 have no role in the dynamic evolution of the linearised dynamic
system. Considering these, we are allowed to eliminate, without loss of information, columns 1 and 2 and rows
1 and 2, and only study the resulting [4×4] matrix that is:

A(1) =


0 0 0 1
∂ f4
∂x3

∂ f4
∂x4

0 ∂ f4
∂x6

0 0 ∂ f5
∂x5

0
∂ f6
∂x3

∂ f6
∂x4

0 ∂ f6
∂x6

 (6.34)

where the subscript (i ), in the case of Eq. (6.34) corresponding to (1), will be used throughout the eigenvalues
derivation for indicating the version of the Jacobian matrix A that is being considered in a particular step. By
swapping in A(1) column and row 4 with column and row 2 and, then, the new column and row 4 with column
and row 3 one obtains:

A(2) =


0 1 0 0
∂ f6
∂x3

∂ f6
∂x6

∂ f6
∂x4

0
∂ f4
∂x3

∂ f4
∂x6

∂ f4
∂x4

0

0 0 0 ∂ f5
∂x5

 (6.35)

that makes it clear that the vertical velocity eigenmotion, related to variable x5, is completely decoupled with
respect to the rotational and translational horizontal velocity ones. The fact that eigenvalue λ4,(2) of matrix A(2)

corresponds to x5 can be proved by noting that eigenvector vλ4,(2), for every point of the steady-state trajectory,
has all zeros except for its last element, that is 1. In fact, the operations of simultaneous column and row swap
were performed in such a way that in a certain row appear all the derivatives of the same EOM with respect to
the state vector elements. In this way the row is directly related to a particular state variable. In this case row 4
is related to variable x5. As a result, the eigenvalue related to the vertical velocity is given by:

λVz =
∂ f5

∂x5
= CD,0 Srefρx5

m
(6.36)

We now want to find also the eigenvalues of the remaining [3×3] block, that we rewrite as:

A(3) =

 0 1 0
∂ f6
∂x3

∂ f6
∂x6

∂ f6
∂x4

∂ f4
∂x3

∂ f4
∂x6

∂ f4
∂x4

 (6.37)

However, determining them for a [3×3] matrix by means of the characteristic equation det(A(3)−λI) = 0, where
λ is the vector containing the eigenvalues, or by rearranging the terms in such a way that different blocks can
be analytically identified would still result in overcomplicated definitions. The most efficient option consists
of introducing approximations in A(3) so that to obtain smaller blocks that can more easily be solved. First,
according to the definitions in Eq. (6.32), we notice that:

norm

 ∂ f4
∂x4

∂ f4
∂x6

= norm

 ∂ f6
∂x4

∂ f6
∂x6

= 1

zpc
(6.38)

Since zpc = 23.70 m for the considered MPF configuration, then 1
zpc

<< 1. This means that the magnitude of

terms ∂ f4
∂x4

and ∂ f6
∂x4

is much smaller than the magnitude of terms ∂ f4
∂x6

and ∂ f6
∂x6

. In addition to this, calculating the

terms ∂ f6
∂x3

, ∂ f6
∂x6

, ∂ f4
∂x3

and ∂ f4
∂x6

for the MPF reference vehicle flying in steady-state conditions shows that their mag-
nitude is in the order of 1 to 10. According to these, all the terms in column 3 of matrix A(3) can be approximated
with 0 and the Jacobian can be reduced to:
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A(4) =

 0 1
∂ f6
∂x3

∂ f6
∂x6

∂ f4
∂x3

∂ f4
∂x6

 (6.39)

Matrix A(4) is clearly rank deficient. One of its lines is linearly dependent on the others. However, we want
to keep the terms of the Jacobian expressing the derivatives of the attitude angle and velocity of the system
with respect to themself. In other words we want to demonstrate that the third line of matrix A(4) is linearly
dependent on rows 1 and 2 of the same matrix. Without performing the actual calculations, it is enough to
notice that a linear combination of rows 2 and 3 can lead term A(4)(3,1) to 0 and, then, the new term A(4)(3,2),

that will be a linear combination of ∂ f6
∂x6

and ∂ f4
∂x6

, can be made 0 using the term A(4)(1,2) = 1. This procedure
leaves us with a [2×2] matrix:

A(5) =
[

0 1
∂ f6
∂x3

∂ f6
∂x6

]
(6.40)

By numerically solving for the eigenvalues of A(5) for the MPF reference configuration one gets complex eigen-
values, that suggests that they are related to the rotational motion of the parachute payload system. Also in this
case, and some other later on, it was demonstrated using the eigenvectors that a certain eigenvalue is related
to some particular variables. However, these verifications, whose result is normally obvious from the analysis,
will be omitted for brevity. Analytical expressions for the eigenvalues of A(5) can be determined by solving the
characteristic polynomial:

λ

(
Srefρx5zpc

(
CD,0 zpc −D0 kCm +zpc kCL

)
2Itot

−λ
)
+ . . .

. . .+ Srefρx5
2
(
CD,0 zpc −D0 kCm +zpc kCL

)
2Itot

= 0

(6.41)

whose solution yields:

λθ =
x5

2

(
kzpc ±

√
k

(
kz2

pc −4
))

,

k = Srefρ
(
CD,0 zpc −D0 kCm +zpc kCL

)
2Itot

(6.42)

At this point, however, we still need one eigenvalue of the dynamical system, the one related to the horizon-
tal motion. The information to derive it was lost when the Jacobian was reduced to A(4), where we neglected
the column of the derivatives with respect to x4. As a result, to be able to calculate λVy we need to go back to
matrix A(3):

A(3) =

 0 1 0
∂ f6
∂x3

∂ f6
∂x6

∂ f6
∂x4

∂ f4
∂x3

∂ f4
∂x6

∂ f4
∂x4

 (6.43)

According to the Gaussian elimination method, that is well explained in Press et al. [2007], a matrix can be made
block diagonal by means of only row operations. These can be row swap, row subtractions or multiplication of
a row by a scalar different from 0. Also, we know from the derivation of the rotational motion eigenvalues, that
elements A(3)(1,1), A(3)(1,2), A(3)(2,1) and A(3)(2,2) can be approximated to an independent block. As a result
it is true that the horizontal eigenmotion can be represented by a [1×1] block and that the only element in this

block is a linear combination of the elements in column 3 of matrix A(3), i.e., ∂ f6
∂x4

and ∂ f4
∂x4

.

What we still don’ t know, however, are the parameters we need for relating these terms and determine the
analytical expression for the horizontal motion eigenvalue. These will be determined experimentally to keep
the expression of the eigenvalue as simple as possible. To do so we calculate the eigenvalue λVy numerically for
the MPF in steady-state flight. The fact that it is real allows us to write it as a linear combination of the elements
defining it. We have:

Re
(
λVy ,ss

)
= ∂ f6

∂x4

∣∣∣∣
ss

k1,o + ∂ f4

∂x4

∣∣∣∣
ss

k2,o (6.44)
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One of the parameters can be determine as a function of the other:

k2,o =
Re

(
λVy ,ss

)
− ∂ f4

∂x4

∣∣∣∣
ss

k1,o

∂ f6
∂x4

∣∣∣∣
ss

(6.45)

The approximated analytical λVy eigenvalue is then given by:

λVy =
Srefρx5

2

(
−

(
CD,0 +kCL

)
zpc −kCm D0

Itot
k1,o +

CD,0 +kCL

m
k2,o

)
(6.46)

where the coefficients k1,o and k2,o , determined by means of an optimization that minimizes the error between
the analytical and numerical eigenvalues for the MPF reference vehicle flying in steady-state conditions, are:

k1,o = 0.047611578, k2,o = 0.489989999 (6.47)

The analytical eigenvalues given by Eq. (6.36), (6.42) and (6.46) yield accurate results for the dynamics of
the MPF reference vehicle in steady-state descent, as Figure 6.3 shows. In particular, while λVz eigenvalue is
exact, the approximation introduced to derive λθ causes errors in the order of 2% for both the real and imagi-
nary parts. Also, the introduction of the coefficients k1,o and k2,o causes an error for λVy calculated analytically
always smaller than 0.015% throughout the descent with respect to the case in which it is defined numerically.
These coefficients, as said, have been determined for the MPF reference vehicle, so that if its configuration
changes then the error of the λVy eigenvalue will grow. Nevertheless, even large variations (up to ±100% with
respect to MPF reference value) in vehicle mass and geometry or aerodynamic parameters, cause an additional
relative error in the order of 1%. These facts all together demonstrate that the analytical definition of the eigen-
values derived for the parachute-payload system is consistent and can be used for further analysis.

Figure 6.3 shows on the left hand side the relative error of the approximated analytical eigenvalues of the
parachute-payload system with respect to the same eigenvalues calculated numerically without any approx-
imation along a steady-state trajectory. On the right hand side is depicted how the eigenvalues associated to
the system, determined using Eq. (6.36), (6.42) and (6.46), vary along the steady-state trajectory of the space-
craft. The sample trajectory consists in a vertical flight with IC: γ0 = −90◦, θ0 = −90◦, θ̇0 = 0◦/s, V0 = 120 m

s ,
z0 = 6000 m, y0 = 0 m.

The first interesting aspect to notice about the dynamics of the system is that for our reference configu-
ration the eigenvalues λθ are complex and conjugate, with negative real part. This results in the fact that the
rotational eigenmotion is periodical and converges to the equilibrium point. For this eigenmotion it is possible
to determine the natural frequency ωθ, the damping factor ζθ and the period Pθ according to Eq. (6.6). After
some rearrangements we get:

ωθ =
∣∣x5

∣∣pk (6.48)

ζθ =
p

kzpc

2
(6.49)

Pθ =
4π∣∣x5

∣∣√k
(
kz2

pc −4
) (6.50)

where the recurring parameter k is given by:

k = Srefρ
((

CD,0 +kCL

)
zpc −D0 kCm

)
2Itot

(6.51)

These formulas confirm the physical expectations about the attitude behaviour of the parachute-payload
system. It is clear that the characteristics of the pendulum motion mode of the spacecraft result from the
balance between the inertia properties of the body and the effect of the aerodynamic forces, mathematically
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Figure 6.3: Eigenvalue analysis for the steady-state flight of the open-loop rigid body MPF reference vehicle.
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Table 6.1: MPF open-loop descent system attitude stability characteristics in the steady-state point xss (from Eq. (6.13)).

Property Value
Pθ 2.52 s
ωθ 2.85 rad

s
ζθ 0.48

expressed by the parameter k. In general, a larger k, corresponding to a predominance of the aerodynamic con-
tributions, results in higher frequency and better damped oscillations. If k is smaller the situation is opposite
but external perturbations have a lower impact on the attitude of the system.

With respect to the single parameters appearing in Eq. (6.48) to (6.51), it is easy to notice that larger (in
magnitude) CD,0, kCL and kCm coefficients all contribute to an increase of the relative weight of the aerodynamic
effect. On the other hand, the interpretation of the influence of the parameters zpc and D0, respectively the
distance of the body COM from the parachute and its radius, is not straightforward because they influence
both the aerodynamic and inertia properties of the system. Finally, smaller vertical velocity x5 and atmospheric
density ρ are responsible for a lower dynamic pressure and clearly this causes the aerodynamic contribution to
lose importance.

The characteristics of the oscillatory motion of the parachute-payload system, i.e., the oscillatory period,
frequency and damping ratio, have been calculated for the MPF reference configuration in the linearisation
point given by Eq. (6.13) using Eq. (6.48) to (6.50). The resulting values are stored in Table 6.1. Clearly, these
numbers would change in case the parameters of the MPF reference vehicle vary and also along the trajec-
tory. This is the result of a varying dynamic pressure and, in agreement with the discussion of the previous
paragraphs, a varying ratio between the aerodynamic and inertia properties of the system.

By looking once more at Figure 6.3 it is possible to notice thatλVy andλVz , for the considered reference case,
are real and negative. This suggests that the vertical and horizontal velocities will simply exhibit a converging
monotonous behaviour. Also, the figure shows that there is a point in which these values are maximum and, as
a result, the Vz and Vy are less stable around the respective equilibrium positions. This maximum corresponds
to the condition in which the dynamic pressure, during the descent flight, reaches a minimum. This minimum
is due to the fact that the vertical velocity x5 has reduced due to the drag dissipation but the density ρ has not
yet increased significantly as a result of the lower altitude.

The balance between aerodynamic and inertia properties of the system is also visible from an analysis of the
equations expressing the eigenvalues for the vertical and horizontal velocity. In particular, the interpretation of
Eq. (6.36) is straightforward. Larger CD,0 and Sref and lower m result in the fact that the vertical velocity, once
perturbed, tends back faster to the equilibrium velocity. Eq. (6.46) for the horizontal velocity eigenvalue is more
interesting. It is characterized by two terms. The second term, that has m at the denominator, implies a stability
behaviour analogous to that of the vertical velocity. The first term is instead due to the influence of the attitude
of the vehicle on its horizontal eigenmotion. This is physically consistent. In fact, differently from the case of
the vertical velocity, when the horizontal velocity is perturbed, then the angle of attack of the spacecraft varies.
The resulting lateral aerodynamic forces cause it to incline in the airspeed direction. This effect, however, has
opposite sign with respect to that due to the second term and is thus destabilising for the horizontal velocity of
the system. This destabilization most probably derives from the fact that when the vehicle reorientates in the
direction of the airspeed, the angle of attack caused by the presence of the perturbation reduces. As a result
the magnitude of the aerodynamic forces that had grown in horizontal direction, and that are responsible for
the deceleration to Vy =0 just after the perturbation, reduce as well and the convergence to the equilibrium
condition is less prompt. Nevertheless, the fact that k1,o << k2,o suggests that this destabilizing effect has a
much smaller magnitude with respect to that due to the second term.
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The objective of the present Master Thesis project, as introduced in Chapter 2, is to evaluate whether a
control system exploiting the force generated by the backshell thrusters can represent a performing and effi-
cient solution for guiding the a parachute-payload spacecraft during the descent in the atmosphere of Mars.
This chapter is dedicated to the definition and preliminary evaluation of a guidance concept that satisfies the
system requirements listed in Table 2.2.

After a preliminary discussion about feedback control, Section 7.1 introduces the guidance system concept.
The resulting system is optimized and analytically investigated, with techniques analogous to those already
used for the open-loop system in Section 6.2, in Section 7.2.

7.1. GUIDANCE

As already explained in Section 2.2, the size of the landing ellipse for a Mars landing mission depends on a
number of factors. Among these there are the wind drift effect during the parachute descent and the navigation
error that gets accumulated during all the three EDL mission phases. The main objective of the guidance logic
we want to design is to control the horizontal position of the parachute-payload system during the descent
flight by means of backshell thrust. In this way the wind drift effect can be counteracted and the position error
already present at parachute deployment can be reduced.

The results of the open-loop stability analysis in Chapter 6 have proved, as it was expected, that for a
parachute-payload system like the MPF, the attitude and the horizontal and vertical velocities of the system
are all naturally stable during the steady-state flight in the atmosphere of Mars. The horizontal and vertical
position components, however, do not have the same property. This means that there is not an equilibrium
Y Z -position the uncontrolled spacecraft automatically tends to. The control system we are going to design
and integrate in the existing dynamic models, as said, will have the purpose of stabilizing the horizontal mo-
tion of the system so that, if it is subjected to an external disturbance, it will tend back to the equilibrium
y-position that is given in input to the controller. Also, it is required that the eventual negative influence of the
control action does not compromises other aspects of the dynamics of the system.

Of course, it would also be possible to design a guidance and control system that can control the vertical
motion of the vehicle. In fact, the size of the landing ellipse is also influenced by the fact that the vertical velocity
at a certain altitude is different from its nominal value, for example due to vertical winds or navigation errors
causing a late parachute deployment and a consequent late deceleration. However, the time constraints for the
Master Thesis project would not allow an in depth study of both vertical and horizontal closed-loop parachute-
payload system stability behaviour, so that a choice had to be made. First, it was considered that a system
that used backshell thrust to reduce vertical speed before touchdown was already equipped on the MPF. This
means that vertical motion control would not have been an absolute novelty, while instead the control of the
horizontal motion, up to this point, has never been integrated on any mission. Also, the information gathered
in Section 6.2 have shown that a parachute-payload system similar to MPF ensures very good vertical velocity
damping capabilities. In addition to this, the plane on which the landing ellipse lies is parallel to the horizontal
YI -axis, this suggesting that the capability to control the horizontal motion of the system could influence much
more significantly its size with respect to the vertical control. Finally, studying the impact of horizontal thrust
pushes on the attitude dynamics of the non-rigid descent spacecraft is much more interesting from the attitude
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stability point of view because, as already mentioned, the parachute-payload system is particularly sensitive to
horizontal perturbations. Considering these, from now on we will focus on horizontal motion control.

Before to discuss the guidance concept, however, some considerations, that directly follow from the pur-
pose of the study, have to be introduced. The final output of the study will include information on the perfor-
mances that can be achieved with such a system, data on how horizontal thrust influences the dynamics of the
spacecraft and parachute-payload systems design headlines to favourish the integration of active control on
future systems. In fact, no existing literature about the use of backshell thrust for horizontal parachute descent
control purposes is available up to the present moment. Assuming this, it is clear that analytical results can
yield additional insight into this new problem. This is why the guidance system that will be designed and ex-
amined will have, as a main requirement, simplicity. In this way it will possible to treat the closed-loop system
analytically and focus the attention on its dynamic behaviour. In particular, in this section we will limit our-
selves to studying the dynamics of the controlled parachute-payload system only during the steady-state flight,
similarly to Section 6.2, once more using the 3DOF rigid body model described in Section 3.2.

The first thing to choose is the configuration of the control thrusters on the backshell. Since the vehicle
in steady-state conditions flies vertically and we want the system to be as simple as possible, we assume that
the thrusters always push perpendicularly to the symmetry axis of the backshell. For the case of the rigid body
model then the thrust force T is perpendicular to the ZB -axis that is the rotational symmetry axis of the whole
parachute-payload system. With respect to the body frame B , we have:

TB =
0

T
0

 (7.1)

and, by rotating frame B clockwise of an angle π
2 − (−θ) around the XB -axis, with the thrust vector can be

expressed with respect the inertial frame I :

TI =
1 0 0

0 cos
(
π
2 +θ) −sin

(
π
2 +θ)

0 sin
(
π
2 +θ)

cos
(
π
2 +θ)

0
T
0

=
 0
−T sinθ
T cosθ

 (7.2)

The backshell thrust T also has an effect on the rotational equilibrium. By assuming that it is applied in the
COM of the backshell, whose position in the B frame is:

Lbs =
 0

0
zbs

 (7.3)

The moment that the thrust generates around the parachute-payload system COM is:

MT = Lbs ×TB =
 0

0
zbs

×
0

T
0

=−Tzbsx̂B (7.4)

By including the effect of control thrust T in Eq. (3.28) and (3.41), in which the added mass effect has been
introduced, we get:

ÿ = −L cosγ−D sinγ−T sinθ

mg +ma

z̈ = mg g +L sinγ−D cosγ+T cosθ

mg +ma
(7.5)

θ̈ = (−L cosα−D sinα)zCOP +M −Tzbs

IXB + Ia,XB

Equations (7.5) introduce in the system the effect of the backshell thrust. An analogous procedure was also
adopted for modifying the EOM describing the dynamics of the single backshell in the multibody model given
by Eq. (3.61).
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Up to now, however, the thrust force has not been defined as a function of the state variables as, for example,
the aerodynamic forces are. To control the dynamic evolution of the system, the command can be calculated
externally, parametrized with respect to some peculiar variable characterizing the evolution of the system, e.g.,
the altitude, the dynamic pressure or the time, and given to the system as an external input. However, it is also
possible to define the control input T so that it is proportional to the estimated value of one or more elements
of the state vector. In this case we are dealing with a feedback controller and a closed-loop system. Feedback
controllers can be simple, versatile, offer good performance and are perfectly suitable for deriving analytical
results, so that we choose to implement one for stabilizing the horizontal motion of our parachute-payload
spacecraft.

7.1.1. STATE AND OUTPUT FEEDBACK

The working principle of a feedback controller consists of taking in input the state or the output of a system,
that in control engineering jargon is called plant, and compare it with a commanded signal, i.e., the desired
state or output. The difference between these two quantities yields an error value that the controller has to
nullify by generating an appropriate input for the actuators of the plant.

The dynamic evolution of a linear controlled dynamic system, whose state is determined by the n×1 vector
x, controlled using the m×1 control vector u, is described by the dynamics equation:

ẋ = Ax+Bu (7.6)

where A is the state matrix, analogous to that already defined for the system given by (6.7), and B is the control
coefficient matrix. They have dimensions respectively n ×n and n ×m. In this case the system is said to be
written in state-space form. The output of the system is instead defined by the output equation:

y = Cx+Du (7.7)

in which y is the k×1 output vector, and C and D are the output and direct transmission matrices, with dimen-
sions k ×n and k ×m respectively.

Even if it is possible to describe a nonlinear system in state-space form, classical control theory has been
developed for linear systems. As explained in Section 6.1.3, under certain conditions a nonlinear system can
be studied using linear techniques. In particular, its A, B, C, and D matrices are normally determined after
linearisation of the EOM describing the system to be controlled. In such a case the state vector x and the output
vector y are substituted in Eq. (7.6) and (7.7) by the state error vector x̄ and the output error vector ȳ that define,
respectively, the difference of the state and output of the system with respect to a certain reference. In other
words, when a system is linearised it is the state error and output error that evolve linearly in the vicinity of the
linearisation point. From now on, we will assume that we are dealing with a linearised system and that the A, B,
C, and D matrices are constant, this making the system also time invariant. Also, as for the majority of dynamic
systems, it is possible to assume that D = 0, this making the implementation of the controller much easier.

The control action of a controller can be either proportional to its output (or output error) or to its state (or
state error). In the following, as explained in Section 7.1.4, we will implement a state-feedback controller. In our
case the control action will be somehow proportional to the state error vector x̄. The control law is:

u =−Kx̄ (7.8)

in which K is the gain matrix. After substitution of Eq. (7.8) in Eq. (7.6) we get:

˙̄x = (A−BK) x̄ = A∗x̄ (7.9)

where A∗ is the state matrix of the closed-loop system. Its eigenvalues λ directly depend on the gain matrix K.
They can be determined by solving the associated equation:

det
∣∣A∗−λI

∣∣= det |A−BK−λI| = 0 (7.10)

In summary, the control action consists of modifying the eigenvalues and eigenvectors of the state matrix A
by means of the gain matrix K and control matrix B. For a certain B, then the control problem reduces to the
determination of K in such a way that the system will behave as desired.
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7.1.2. CONTROLLER PERFORMANCE ANALYSIS

The response of a control system can be written as:

c(t ) = ctr (t )+ css (t ) (7.11)

in which ctr is called transient response and represents the system response from the initial to the final state
and css is the steady-state response that characterizes the behaviour of the system for t →∞. In general, it is the
transient response that most characterizes the performance characteristics of a controller. To measure these
performance characteristics the system is given a unit-step input, that is easy to generate, when it is at rest. In
fact, if the transient response of a linear system to a unit-step input is known then it is mathematically possible
to reconstruct the response to an arbitrary input that indeed can be modelled as a series of sequential unit-step
inputs.

First of all, the dynamic response of a system is characterized by oscillations with a frequency that is called
natural frequency ωn . The damping ratio ζ is instead a measure of how well these oscillations are damped by
the system. For a second-order system 0.4 ≤ ζ≤ 0.8 is desirable. Indeed, systems with ζ≤ 0.4 are characterized
by excessive overshoot, while, on the other hand if ζ≥ 0.8 the response will be sluggish. These two parameters
can be determined as a function of the eigenvalues of the model matrix A of the system, as already introduced
in Section 6.1.

The performance criteria thanks to which it is possible to evaluate the characteristic response of the system
a unit-step impulse, depicted in Figure 7.1, are defined as follows [Ogata, 2010]:

1. Delay time td : time required for the response to reach half the final value the very first time. According to
Golnaraghi and Kuo [1987] for an overdamped system it can be estimated as:

td ≈ 1+0.7ζ

ωn
, 0 < ζ< 1 (7.12)

2. Rise time tr : time required for the response to rise from 10% to 90%, 5% to 95%, or 0% to 100% of its
final value. For underdamped second-order systems,the 0% to 100% rise time is normally used. For over-
damped systems the 10% to 90% rise time can be estimated, asccording to Golnaraghi and Kuo [1987],
as:

tr ≈ 0.8+2.5ζ

ωn
, 0 < ζ< 1 (7.13)

3. Peak time tp : time required for the response to reach the first peak of the overshoot.

4. Maximum overshoot Mp : maximum peak value of the response curve measured from unity. If the final
steady-state value of the response differs from unity, then it is common to use the maximum percent
overshoot. The amount of the maximum (percent) overshoot directly indicates the relative stability of
the system.

5. Settling time ts : time required for the response curve to reach and stay within a range about the final
value of size specified by an absolute percentage of the final value (usually 2% or 5%). The settling time
is related to the largest time constant of the control system. Once more Golnaraghi and Kuo [1987] give
an estimation of this parameter as a function of the system natural frequency and damping ratio. For a
threshold of 5% it the settling time can be estimated as:

ts ≈


3.2
ζωn

, 0 < ζ< 0.69

4.5ζ
ωn

, ζ> 0.69

(7.14)

In addition to these transient response performance criteria, also the steady-state error, consisting of the
error between the state on which the system stabilizes for t →∞ and the desired state is something to minimize
when designing a control system.
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These specifications are defined in what follows and are shown graphically in Figure 5–8.

1. Delay time, td : The delay time is the time required for the response to reach half
the final value the very first time.

2. Rise time, tr : The rise time is the time required for the response to rise from 10%
to 90%, 5% to 95%, or 0% to 100% of its final value. For underdamped second-
order systems, the 0% to 100% rise time is normally used. For overdamped systems,
the 10% to 90% rise time is commonly used.

3. Peak time, tp :The peak time is the time required for the response to reach the first
peak of the overshoot.

4. Maximum (percent) overshoot, Mp : The maximum overshoot is the maximum
peak value of the response curve measured from unity. If the final steady-state
value of the response differs from unity, then it is common to use the maximum
percent overshoot. It is defined by

The amount of the maximum (percent) overshoot directly indicates the relative
stability of the system.

5. Settling time, ts : The settling time is the time required for the response curve to
reach and stay within a range about the final value of size specified by absolute per-
centage of the final value (usually 2% or 5%). The settling time is related to the
largest time constant of the control system.Which percentage error criterion to use
may be determined from the objectives of the system design in question.

The time-domain specifications just given are quite important, since most control
systems are time-domain systems; that is, they must exhibit acceptable time responses.
(This means that, the control system must be modified until the transient response is
satisfactory.)

Maximum percent overshoot =
cAtpB - c(q)

c(q)
* 100%

Figure 7.1: Feedback control transient response and steady-state response performance criteria [Ogata, 2010].

7.1.3. PID CONTROL

The PID controller is the most commonly used closed-loop feedback controller. It takes in input an error
signal e(t ) and produces a control signal u(t ) so that to drive this error to zero. However, the PID algorithm does
not guarantee optimal control nor system stability. It is particularly good for applications were uncertainties
play a significant role.

As for any other feedback-control system, also for the PID controller the parameters that determine its
performance characteristics are the gains. As said, these can be either constant during the whole mission or
can be parametrized according to a specific variable. It is remarked, however, that parametrization with respect
to time, for the majority of applications, could be a badly performing choice since uncertainties, such as winds,
could shift the critical mission variables with respect to the time schedule. For gain scheduling in aerospace
applications the dynamic pressure, the altitude or the Mach number are more appropriate.

Assuming now we are dealing with a single-input single-output (SISO) system, the one-dimensional control
signal u(t ) can be written as:

u(t ) = Kp e(t )+Ki

∫ t

0
e(τ)dτ+Kd

de(t )

d t
(7.15)

from which is clear that the control action is the sum of three different contributions. These are:

1. Proportional action: this control signal contribution is directly proportional to the error signal. It resem-
bles the behaviour of an amplifier. However, if Kp is too large then the system could be unstable but if it
is too small the response will be too slow.

2. Integral action: the control signal contribution is in this case proportional to the accumulation of past
errors. The integral contribution causes an increase in overshoot but reduces or removes steady-state
error. Large Ki values can result in a growth of the error and, eventually, can cause saturation, in which
case a small error signal triggers a large control action. To avoid this it is possible to realize a controller
that deactivates the integral action when the error signal is small.

3. Derivative action: in this case the control signal contribution is proportional to the prediction of future
error based on its current rate of change. The derivative contribution slows down the rate of change of the
controller output, i.e., the transient response, by augmenting the controller stability but is not effective
for slowly varying error signals. A larger Kd can reduce overshoot but yields could have an unfavourable
influence on the steady-state error.

The gains of the PID controller can be determined in many ways. For example the Ziegler-Nichols tuning
rules, available from Ogata [2010], define an heuristic method to determine the gains with a low effort that
is based on the transient response characteristics of the controlled plant. The most straightforward method,
however, is to simulate the dynamics of the closed-loop system and tune the gains so that to obtain the desired
step or impulse response.
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7.1.4. PARACHUTE-PAYLOAD HORIZONTAL POSITION CONTROL

In agreement with the requirements introduced in Section 2.5 and the discussion at the beginning of this
section, we require our controller to stabilize the horizontal position of the parachute payload system. This
means that the control signal shall be proportional to the horizontal position error. In addition to this, we also
want to avoid that at the end of the parachute descent, when the terminal descent engines need to be ignited for
decelerating the payload until it reaches touchdown velocity, the system still features a significant horizontal
velocity. This can be avoided if the control signal is also proportional to the error of the horizontal velocity
with respect to the reference, that clearly will be 0. According to these, we would have a control input that is
proportional to the horizontal position error and to its true, not numerically estimated, time derivative, i.e.,
the error of the estimated horizontal velocity. The resulting PD controller, with appropriately tuned gains, can
ensure a satisfactory responsiveness and low overshoot, while still maintaining the fundamental characteristic
of simplicity we need for deriving analytical results.

It is remarked that the control signal is in reality proportional to the estimated state. The estimated state
corresponds to the actual state that is estimated by the navigation system and is thus affected by a navigation
error. If however the purpose is to study the controlled system closed loop stability, we can for now neglect the
navigation error and consider it in a later stage of the work. Assuming these, the control signal for our specific
case can be written as:

u = T =−Kx̄ =−[
Kp 0 0 Kd 0 0

]


x̄1

x̄2

x̄3

x̄4

x̄5

x̄6

=−Kp x̄1 −Kd x̄4 (7.16)

in which x̄i , for i = 1, ...,6 indicate the displacement of the state vector elements with respect to their references.

What still remains to determine is the reference trajectory with respect to which the state vector error x̄
can be calculated. We assume to this is a simple vertical trajectory along the ZI -axis. In this way both the
horizontal position and velocity reference values are constant and equal to 0. This choice is realistic, because
it corresponds to an undisturbed parachute descent steady-state trajectory and is particularly appropriate for
the purpose of deriving analytical results and for studying the performance characteristics of the closed-loop
systems.

For real applications, however, the values that the controller uses as a reference for the state variables of
the system and the control strategy should adapt to different flight situations. For example, if the reference is
kept constant, it is possible that when the target altitude is reached, the control input is still dominated by the
position error and the horizontal velocity is large. A possible solution to this problem would be stop the control
action before to reach the target so that the system naturally tends back to the vertical flight condition. Another
possible strategy would be to reschedule the target as the farthest point that the system can reach without
violating certain constraints, eventually also taking into account the effect of wind. These considerations are
not needed for the purpose of studying the feasibility of the parachute horizontal position control concept from
the points of view of efficiency, dynamic stability and achievable nominal performance, but should be taken
into account for designing a control algorithm that can be equipped on a real spacecraft, that represents the
next step of the technology development.

7.2. STABILITY ANALYSIS

In this section the motion of the closed-loop parachute-payload system will be analysed. A similar ap-
proach to that used in Section 6.2 will be applied, with the only difference consisting in the fact that now the
3DOF rigid body model, that is appropriate for deriving analytical results, will also include the thrust con-
tribute. The gain optimization for the controller will also be carried out within this section, after the system
linearisation, because it is based on the analysis of the linear response of the system, and before than the
derivation of the analytical expressions for the eigenvalues of the system, since the values of the gains are
needed for this last task.
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7.2.1. SYSTEM LINEARISATION

To study the stability properties of the controlled parachute-payload system once more we start by linearis-
ing it and then to analyse its eigenmotion. The EOM to linearise, given by Eq. (7.5), now include the thrust
force. We want to translate this nonlinear system to its state-space form, given by:

˙̄x = Ax̄+Bu (7.17)

Matrix A for the closed-loop system is equivalent to the Jacobian already defined for the open-loop system,
whose elements are given by Eq. (6.32), because it is calculated in the steady-steady condition that in our case,
amongst others, requests the thrust magnitude T to be 0. The input matrix B is instead defined as:

B = ∂f

∂u
(7.18)

where f is the system of nonlinear equations consisting of the first three elements of Eq. (6.10) and the EOM
from (7.5). In our case the control vector u is simply the thrust magnitude T , so that if the same assumptions
already introduced for deriving the simplified version of the A matrix in Section 6.2.1 are also used for deter-
mining B, we get:

B =



0
0
0

− sin x3
m

cos x3
m

− zbs
Itot


(7.19)

By inserting Eq. (7.19), (7.16) and (6.32) in (7.9) it is possible to determine the elements of matrix A∗ de-
scribing the controlled parachute-payload linearised system. These are:

A∗
11 = 0, A∗

12 = 0, A∗
13 = 0, A∗

14 = 1, A∗
15 = 0, A∗

16 = 0;

A∗
21 = 0, A∗

22 = 0, A∗
23 = 0, A∗

24 = 0, A∗
25 = 1, A∗

26 = 0;

A∗
31 = 0, A∗

32 = 0, A∗
33 = 0, A∗

34 = 0, A∗
35 = 0, A∗

36 = 1;

A∗
41 =

sin x3Kp

m
, A∗

42 = 0, A∗
43 =

Srefρx2
5

2m
,

A∗
44 =

Srefρx5
(
CD,0 +kCL

)
2m

+ sin x3Kd

m
, A∗

45 = 0, A∗
46 =−Srefρx5

(
CD,0 +kCL

)
2m

; (7.20)

A∗
51 =

cos x3Kp

m
, A∗

52 = 0, A∗
53 = 0, A∗

54 =−cos x3Kd

m
, A∗

55 =
CD,0Srefρx5

m
, A∗

56 = 0;

A∗
61 =− zbsKp

Itot
, A∗

62 = 0, A∗
63 =−Srefρx2

5

((
CD,0 +kCL

)
zpc +kCm D0

)
2Itot

,

A∗
64 =−Srefρx5

((
CD,0 +kCL

)
zpc +kCm D0

)
2Itot

+ zbsKd

Itot
, A∗

65 = 0,

A∗
66 =

Srefρx5
((

CD,0 +kCL

)
zpc +kCm D0

)
zpc

2Itot
;

Also in this case the consistency of the linear system expressed by matrix A∗ has been validated, using
sample controller gains, by verifying that the error between its step, initial conditions and impulse responses
of the variables having a constant equilibrium position, i.e.,y Vy , Vz , θ and θ̇, and the corresponding responses
of the nonlinear controlled system was negligible.

7.2.2. GAIN TUNING

To get appropriate gains for the PD controller several options are available. Some methods yield the gains
optimized according to a specific cost function while others instead give a first estimation of the gains depend-
ing on some specific parameters of the system to be controlled. Clearly, the latter methods are generally faster
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Figure 7.2: Parachute-payload linear system response for different Kp and Kd gains.

but less accurate. Another very much used strategy is to exploit the linear response to tune, by trial and er-
ror, the gains for the linear system. This approach is particularly appropriate when the response of the system
depends on a limited number of gains and when controller optimality is not a key requirement.

The present project aims at evaluating the feasibility of controlling, with propulsive actuators, the horizon-
tal position of the spacecraft during the parachute descent, so that a highly optimal controller is not needed.
In addition to this, the PD controller has only two gains and the linear system to use for response analysis, ex-
pressed by Eq. (7.22), has already been developed and proved to be valid. The choice of applying trial and error
for tuning the controller gains seems to be the most appropriate.

Figure 7.2 shows the response of the linearised parachute-payload closed-loop system for different propor-
tional and derivative gains Kp and Kd . For this analysis a sample error of 500 m in the horizontal position y
has been given in input to the system as initial condition. To tune the gains we need to focus mainly on the
the response of y that is the variable we want to stabilize through the use of a controller. Despite this, also the
response of the others is significant. In general, it is possible to notice that a larger Kp causes a faster response
but also increases the overshoot. This, in turn, can result in a higher fuel consumption for the guidance sys-
tem whose control force is thrust. The Kd gain, instead, contributes to limiting the overshoot but lowers the
responsiveness. A good compromise for having minimum rise time and almost no overshoot is Kp = 1.8 and
Kd = 25. These controller gains will be used as reference values in the following analyses.

7.2.3. EIGENMOTION ANALYSIS

The linear system described by Eq. (7.20) is simple. It can be used for response analysis and, in turn, for
tuning the gains Kp and Kd of the PD controller according to the requirements for the MPF parachute-payload
guidance system, as has been done in Section 7.2.2. This optimization has yielded Kp = 1.8 and Kd = 25. In
addition to this, we know that for the reference vehicle MPF the backshell position along the ZB -axis with
respect to the body COM is zbs = 3.04 m while its total moment of inertia, also considering the added mass
inertial effect calculated in the steady-state point, is Itot ≈ 1500 kgm2. Considering these, the following holds
for the terms due to the control action in row 6 of A∗:

zbsKp

Itot
= 0

(
10−3) ,

zbsKd

Itot
= 0

(
10−2) (7.21)
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By introducing in A∗ the parameters of the MPF for the steady-state condition, it has been checked that all
the other terms appearing in the right hand sides of the elements of row 6, containing the derivatives of the
rotational acceleration with respect to the state variables, are significantly larger with respect to those in Eq.
(7.21). This means that their influence on the system eigenmotion is negligible and we can ignore them. In
addition, A∗

51 and A∗
54 are ≈ 0 due to the fact that in steady-state flight x3 ≈ −90◦ and cos x3 ≈ 0. In summary,

the influence of the controller on the rotational and vertical motions of the vehicle is marginal and it is possible
to simplify the elements of the model matrix A∗ to:

A∗
11 = 0, A∗

12 = 0, A∗
13 = 0, A∗

14 = 1, A∗
15 = 0, A∗

16 = 0;

A∗
21 = 0, A∗

22 = 0, A∗
23 = 0, A∗

24 = 0, A∗
25 = 1, A∗

26 = 0;

A∗
31 = 0, A∗

32 = 0, A∗
33 = 0, A∗

34 = 0, A∗
35 = 0, A∗

36 = 1;

A∗
41 =

sin x3Kp

m
, A∗

42 = 0, A∗
43 =

Srefρx2
5

2m
,

A∗
44 =

Srefρx5
(
CD,0 +kCL

)
2m

+ sin x3Kd

m
, A∗

45 = 0, A∗
46 =−Srefρx5

(
CD,0 +kCL

)
2m

;

A∗
51 ≈ 0, A∗

52 = 0, A∗
53 = 0, A∗

54 ≈ 0, A∗
55 =

Srefρx5

m
, A∗

56 = 0; (7.22)

A∗
61 ≈ 0, A∗

62 = 0, A∗
63 =−Srefρx2

5

((
CD,0 +kCL

)
zpc −kCm D0

)
2Itot

,

A∗
64 ≈−Srefρx5

((
CD,0 +kCL

)
zpc −kCm D0

)
2Itot

, A∗
65 = 0,

A∗
66 =

Srefρx5
((

CD,0 +kCL

)
zpc −kCm D0

)
zpc

2Itot
;

Before to go on we need to notice that the terms taking into account the control action in row 4:

sin(x3)Kp

m
= 0

(
10−3) ,

sin(x3)Kd

m
= 0

(
10−2) (7.23)

are also small and have magnitude comparable with those in Eq. (7.21). Nevertheless, the other terms appear-
ing in the right hand sides of row 4 of A∗ are not much larger. This, together with the fact that these terms
directly influence the translational eigenmotion, that is the one we want to stabilize by means of the controller,
implies that they cannot be neglected.

Figure 7.3 shows on the left hand side the relative error that is committed when determining numerically
the eigenvalues using A∗ in the form of Eq. (7.22) instead of Eq. (7.20). The fact that this error is really small
proves that the assumptions above are valid. On the right hand side of the figure is instead reported how the
eigenvalues associated to the system, calculated numerically using A∗ in the form Eq. (7.22), vary along the
steady-state trajectory of the spacecraft. The IC for this trajectory are once more γ0 =−90◦, θ0 =−90◦, θ̇0 = 0◦/s,
V0 = 120 m

s , z0 = 6000 m, y0 = 0 m. Also in this case the analysis of the eigenvectors has been exploited to
understand how the state variables are related to a certain eigenvalue.

In a similar way to what has been done for deriving analytical expressions for the eigenvalues of the open-
loop system in Section 7.2.3 we can now determine analytical expressions for the eigenvalues of the closed-loop
parachute-payload system. First of all we write down matrix A∗ as:

A∗ =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

A∗
41 0 A∗

43 A∗
44 0 A∗

46
0 0 0 0 A∗

55 0
0 0 A∗

63 A∗
64 0 A∗

66

 (7.24)

By eliminating column and row 2, that are related to variable x2, i.e., the altitude, that has no influence on the
dynamic evolution of the other variables in this simplified model, and by swapping row and column 5 with row
and column 6 and row and column 3 with row and column 4, in such a way that the rows and columns related
to the rotational motion and to the horizontal motion are grouped, we get:
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Figure 7.3: Eigenvalue analysis for the steady-state flight of the closed-loop rigid body MPF reference vehicle.
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A∗
(1) =


0 1 0 0 0

A∗
41 A∗

44 A∗
43 A∗

46 0
0 0 0 1 0
0 A∗

64 A∗
63 A∗

66 0
0 0 0 0 A∗

55

 (7.25)

From Eq. (7.25) it is already clear that A∗
55 represents a block on itself. This block, related to the vertical

eigenmotion, is equivalent to that of the open-loop system. The eigenvalue related to the vertical velocity then,
also in this case, is defined by Eq. (6.36). We now rewrite our matrix as:

A∗
(2) =


0 1 0 0

A∗
41 A∗

44 A∗
43 A∗

46
0 0 0 1
0 A∗

64 A∗
63 A∗

66

 (7.26)

By means of Schur decomposition, for which once more the interested reader is referred to Press et al. [2007], it
has been numerically demonstrated, using the Matlab function bdschur1, that matrix A∗

(2) can be diagonalized
in two [2×2] size blocks. These are the blocks related to the horizontal and rotational motion modes and we
want to determine the respective eigenvalues that characterize them.

It is already interesting to notice how the introduction of the control action has caused a variation in the
block structure of the Jacobian matrix associated to the closed-loop system. In particular, differently from
the case of the open-loop system, now the horizontal eigenmotion is represented by a [2 × 2] block whose
eigenvalues that, as Figure 7.3 shows, are complex and conjugate with negative real part. This implies a damped
oscillatory motion about an equilibrium position.

Consider now the rotational eigenmotion of the controlled system. By comparing the graphs in the right
columns of Figure 7.3 and Figure 6.3, one notices that the eigenvalues that are more influenced by the action
of the guidance system are those related to the horizontal eigenmotion. The eigenvalues λθ for the rotational
eigenmotion in the closed-loop case are not significantly different with respect to those defined for the open-
loop system. As mentioned earlier, this is due to the fact that the control action has negligible magnitude in
the rows of A∗ containing the derivatives of the attitude angle and velocity, θ and θ̇. This suggests that the
rotational motion eigenvalues for the closed-loop system can be approximated with the analytical expressions
found for the open-loop case, given by Eq. (6.42).

The analytical expression for λθ had been determined by demonstrating that columns 1 and 2 of A(3) could
be rearranged to a [2×2] size block. Since columns 1 and 2 of A(3), after the simplifications introduced until now,
exactly correspond to columns 3 and 4 of A∗

(2) (only the row order is different), this suggests that columns 1 and
2 of of A∗

(2) can be rearranged in such a way to yield the [2×2] block describing the horizontal eigenmotion of
the spacecraft. We can use once more the fact that, according to the Gaussian elimination method, a matrix can
be block diagonalized by only row operations. This means that, also in this case, the eigenvalues of the [2×2]
horizontal eigenmotion block can be determined as a linear combination of the terms appearing in columns 1
and 2 of A∗

(2), i.e., A∗
41, A∗

44 and A∗
64.

As for the open-loop analysis, there is not a straightforward way to determine the linear combination coef-
ficients for obtaining exact and simple analytical expressions for the eigenvalues. We thus choose also in this
case to approximate them experimentally for the steady-state flight of the MPF reference vehicle.

We start by multiplying row 2 by a scalar k1,c and row 4 by a scalar k2,c and sum the latter to the former. Also,
the real part of the eigenvalues of the [2×2] horizontal motion block is exclusively a function of the terms on
its diagonal. So, similarly to what has been done in Section 7.2.3, it is possible to express Re(λy ) as a function
of terms A∗

44,ss and A∗
64,ss multiplied by the experimental coefficients k1,c and k2,c , and then use the computed

Re(λy ) to express one of the parameters as a function of the other. Considering that the real part of a complex
eigenvalue, for a [2×2] matrix, is equal to half the sum of its diagonal terms, then we can write:

2Re
(
λy,ss

)= A∗
44,ssk1,c + A∗

64,ssk2,c → k2,c =
2Re

(
λy,ss

)− A∗
44,ssk1,c

A∗
64,ss

(7.27)

The imaginary part of the eigenvalues, however, depends on both the diagonal and off-diagonal terms.
This means that the optimization of k1,c and k2,c must also take into account the value of the imaginary part

1https://nl.mathworks.com/help/control/ref/bdschur.html. Last accessed: 17/01/2018

https://nl.mathworks.com/help/control/ref/bdschur.html
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of the horizontal motion eigenvalues. In addition to this, we choose to introduce a third parameter, k3,c , that
multiplies row 1 of A∗

(2). The resulting [2×2] matrix from which the eigenvalues will be derived is thus:

A∗
(3) =

[
0 k3,c

A∗
41k1,c A∗

44k1 + A∗
64k2,c

]
(7.28)

whose conjugate eigenvalues are:

Re(λy ) = Srefρx5
(
CD,0 +kCL

)
k1,c

4m
− Srefρx5

((
CD,0 +kCL

)
zpc −D0kCm

)
k2,c

4Itot
+ sin x3Kd k1,c

2m

Im(λy ) =
√

sin x3Kp k1,c k3,c

m
+ Re2(λy )

16

(7.29)

To determine the parameters k1,c and k3,c a 2DOF optimization procedure is needed. In particular, it has
been chosen to determine k1,c and k3,c so that the error between the analytical eigenvalues from Eq. (7.29) and
the numerically computed ones, in correspondence of the linearisation point of Eq. (6.13), is minimum. For
this purpose a graphical method was applied. This resulted in:

k1,c = 0.6734, k2,c = 0.0515, k3,c = 1.518 (7.30)

A set of experimental coefficients, however, can be optimized for a single point and reference vehicle. With
respect to the open-loop case, the error of the horizontal motion analytical eigenvalues with respect to the nu-
merical ones is much more sensitive to variations of the trajectory point in which these are computed and of
the parameters of the spacecraft. For very accurate results one should optimise the coefficients specifically per
every point in the trajectory and every change in its configuration. Of course, this procedure is really time con-
suming and would yield no value added to our analysis that, from a qualitative point view, aims at determining
how changing a parameter influences the stability behaviour of the spacecraft.

In our case, along the steady-state trajectory for Figure 7.3, the error of the analytical real part is always lower
than ≈ 2%, while the imaginary part can have an error up to ≈ 20%. The larger error are of course experienced
in the first part of the trajectory, where the vertical velocity is really different from the value for which it was
optimized. However, if the trajectory stays close to the chosen optimisation point, then the errors reduce to a
maximum of 1% for the real part and 7% for the imaginary part. In this case, also significant variations of the
system parameters, for example the payload mass or the riser length, in the order of 20%, cause an increase of
only some % points in these errors. This allows us to say that the translational eigenvalues definition, given by
Eq. (7.29), is consistent and can be used for determining the stability properties of the system, in particular in
the vicinity of the linearisation point for which the coefficients k1,c , k2,c and k3,c have been optimized.

Consider now the real part of the horizontal motion eigenvalue λy in Eq. (7.29). This is characterized by
three terms. The first two, that express a ratio between the aerodynamic and inertia properties of the system,
are analogous to those determining λVy in Eq. (6.46) for the open-loop case. In particular the second term,
featuring the moment of inertia of the spacecraft at the denominator, expresses the influence of the attitude
equilibrium of the system on its translational motion. As before, this term is positive for the considered MPF
reference configuration but also much smaller with respect to the others (k2,c << k1,c ). This means that even if
it is destabilising, its contribution to the horizontal eigenmotion of the spacecraft is negligible. The first term,
that instead is negative (x5 < 0), suggests that if the aerodynamic forces generated by the parachute are larger,
then it will damp faster a perturbation in its horizontal position and velocity state. The term that marks the
difference with respect to the open-loop case, however, is the third. It is directly due to the presence of the
control action in the dynamics of the system and is the most important contribution to Re(λy ). In particular,
it demonstrates that a larger derivative gain Kd and a smaller spacecraft mass m contribute to making more
stable the horizontal eigenmotion of the system.

The imaginary part of λy is also really interesting. It includes two terms. One, that is negative, is propor-

tional to the gain Kp , while the other corresponds to
Re(λy )

4 squared. This second term is clearly always positive
and, as described earlier, is influenced by the aerodynamic and inertia properties of the system and by the
derivative gain Kd . The contribution of the two terms to Im(λy ) is opposite. In particular, the oscillatory be-
haviour is present only if the eigenvalues are complex, this requiring that the first term in Im(λy ) is larger in
magnitude than the second. In this situation, according to Eq. (7.29), the oscillatory motion around the equi-
librium position will be more relevant in the dynamics of the vehicle if Kp is larger, Kd lower and if the inertia
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Figure 7.4: Linear Response analysis of the closed-loop rigid body MPF reference vehicle.

Table 7.1: MPF closed-loop descent system horizontal position stability characteristics in the the steady-state point xss (from Eq. (6.13)).

Property Value
ωy 0.0706 rad

s
ζy 0.906
Py 209.4 s
td 23.15 s
tr 43.40 s
ts 57.73 s

of the system dominates over its aerodynamic properties. This is the case for the MPF reference vehicle and
mission.

By inserting Eq. (7.29) in Eq. (6.6) it is possible to determine analytical expressions for the the natural fre-
quency ωy and damping ratio ζy of the horizontal eigenmotion of the spacecraft. However, the interpretation
of the influence that the various parameters of the spacecraft have on these characteristic values is not straight-
forward to analyse. This is due to the fact that the analytical expressions describing them, that are not reported
here, are more complicated and feature the same dynamic contribution in more places. Nevertheless, it is still
possible to state that, in case the λy are complex and conjugate, a larger Kp results in a higher ωy and lower ζy .

Table 7.1 reports the properties of the horizontal eigenmotion of the MPF reference spacecraft for the cho-
sen gains. In particular, the delay time td , rise time tr and settling time ts have been calculated by inserting
the damping ratio and natural frequency in Eq. (7.12) to (7.14). The tabled values show a good correspondence
with the td , tr and ts estimated graphically using the response of Figure 7.4. Also, the response shown in Figure
7.4 seems to have no oscillatory behaviour, as instead the complex eigenvalues predict. This can be explained
by noting that its period is really large, in the order of 200 s and thus the oscillations around the equilibrium
condition, despite being present, are absolutely negligible. This comparison represents a further proof of the
validity of the analysis of the present section.
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8
MULTIBODY SYSTEM PERFORMANCE

Chapter 3 was dedicated to the development of two models, verified in Chapter 5, for describing the dy-
namics of a parachute-backshell-payload systems descending through the atmosphere of Mars, whose envi-
ronment was defined in Chapter 4. The rigid body model was then used in Chapters 6 and 7 for deriving an-
alytical information about the stability behaviour of the system and for tuning the gains of its guidance logic.
This model, despite being useful for a preliminary understanding of the dynamics of parachute-payload sys-
tems, cannot describe the relative motion of the elements of the spacecraft. On the other hand, the multibody
model is less appropriate for linearisation and analytical studies but can reproduce the motion of the descend-
ing non-rigid spacecraft with a higher degree of accuracy. The analytical information based on the study of the
rigid body model derived until now, will be used as a reference for the analysis of the dynamic stability and
horizontal position control system performance of the descent vehicle, modelled as a multibody system. It is
remarked that for the multibody model used in the analyses of this chapter the spring constant of the risers is
so large that their elasticity is hardly noticeable. In fact, this characteristic is more important for the study of
the vibrations affecting the spacecraft and is not really relevant for its attitude that is instead what we are more
interested in.

The present chapter is subdivided in two main areas. Section 8.1 will analyse the dynamic response of the
system to isolated and continuous inputs, simulating respectively the effect of wind gusts and turbulences that
invest horizontally the spacecraft during the descent. In Section 8.2, instead, the use of backshell thrusters
for controlling the horizontal position of the spacecraft during the descent will be analysed from the points of
view of efficiency and performance it can achieve in correcting an horizontal position error and compensating
wind. The chapter is concluded with a discussion about the navigation and control aspects that influence the
characteristics of the parachute descent guidance system.

8.1. OPEN-LOOP SYSTEM PERFORMANCE

In this Section the aim is to characterize the dynamic response of the parachute-backshell-payload system.
In particular, this will be tested with a single gust in Section 8.1.1 and turbulence in Section 8.1.2. While the
first analysis provides valuable information on how an isolated wind disturbance is absorbed and damped,
the latter is important for characterizing the frequency response of the spacecraft. Also, by varying some of the
parameters of the spacecraft, the analysis will determine the influence that these have on its stability properties.

8.1.1. RESPONSE TO WIND GUSTS

During the parachute descent in the planetary boundary layer of Mars the spacecraft can encounter a wind
gust. According to the description given in Section 4.1, the gust resembles a net discontinuity in the constant
wind speed profile. Considering a parachute-backshell-payload system flying vertically, a vertical gust causes
an increase in the drag forces generated by its body elements as a result of a larger dynamic pressure. These
force contributions, however, are parallel to the rotational symmetry axis of the spacecraft along which relative
movement is constrained. If on one hand these gusts can cause significant variation in vertical velocity and, in
turn, shifts in the mission schedule, on the other hand they do not represent a critical issue from the attitude
dynamics point of view. Because of this, the system response to a vertical gust will not be analysed in detail.
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Table 8.1: Set of IC for the MPF reference vehicle used for gust response open-loop system simulations.

Parameter Value Parameter Value Parameter Value
γ10 [deg] -90 γ20 [deg] -90 γ30 [deg] -90
θ10 [deg] -90 θ20 [deg] -90 θ30 [deg] -90
θ̇10 [deg/s] 0 θ̇20 [deg/s] 0 θ̇30 [deg/s] 0
V10 [m/s] 100 V20 [m/s] 100 V30 [m/s] 100

z10 [m] 6000 z20 [m] 5978.83 z30 [m] 5970.83
y10 [m] 0 y20 [m] 0 y30 [m] 0

Table 8.2: Sample gust characteristics.

Parameter Value
hi [m] 4000
he [m] 3900
∆ht [m] 10

Vgu [m/s] 20

The situation is completely different in case of a horizontal gust. This is indeed very dangerous for the at-
titude stability of the parachute-payload vehicle. Assuming a null background wind speed, as the gust impacts
the system, the angles of attack of the parachute, backshell and payload vary and the aerodynamic forces grow
in horizontal direction. In particular, if the spacecraft is flying in steady-state flight in absence of wind before
the gust, then the new angle of attack and in turn the magnitude of the aerodynamic forces that the gust gen-
erates depend on the difference between the velocity of the spacecraft and that of the gust. At this point the
elements of the spacecraft experience different accelerations that cause them to oscillate one with respect to
the other. Also, the newly generated aerodynamic forces cause the horizontal velocity of the whole system,
depending on its aerodynamic and inertia properties and on the characteristics of the gust, to increase asymp-
totically and tend to the maximum gust speed. In this new equilibrium condition the angles of attack, and in
turn the horizontal component of the aerodynamic forces, would be once more null. However, a gust is nor-
mally so short that the horizontal velocity variation is not really significant so that the wind speed discontinuity
at the end of the gust and the consequent horizontal aerodynamic force variation it generates are negligible.
After this point the spacecraft tends back to its original steady-state flight condition in absence of wind.

The attitude behaviour of the MPF reference spacecraft is depicted in Figure 8.1 that shows how its body
elements are excited at the beginning of the gust and oscillate in different ways before to be damped once the
gust has ended. The oscillation amplitude of the system elements is determined by the intensity of the gust
and for the considered vehicle it can reach 45◦ for the payload in case of a 20 m/s gust. Also, it is interesting
to notice how the oscillation of the backshell is clearly the result of the superimposition of two sinusoids with
different frequencies. This characteristic is due to its direct interaction with both the parachute and the payload
that, through the connection forces, impose to the backshell the respective oscillatory behaviour. The same
behaviour is valid also for the other two boldy elements but less noticeable. Figure 8.2 displays instead the step
in the descent trajectory of the MPF reference vehicle caused by the presence of gusts of different duration. In
general, a gust with a duration of a few seconds can cause a displacement in the order of 100 m.

In the following, the study of the response of the MPF reference vehicle to sample gusts will be used to
underline the general characteristics of its attitude dynamics behaviour. It is remarked that not only the attitude
of the vehicle oscillates, but also the positions of the COM of the elements of the spacecraft. However, these
two aspects are strictly correlated thanks to the connections that bond the bodies. In other words the analyses
of the two would lead to the same general considerations about the dynamic stability of the system. We choose
to focus the attention on investigating the spacecraft attitude dynamics because, differently from the position
components of the COM, the attitude angles of the system elements have a constant equilibrium position even
in case of external perturbations such as winds, and because this allows us to compare the results derived here
with those from previous sections, that also focus mainly on the attitude of the system.

The response of the parachute-payload system to a horizontal gust depends on its attitude when the gust is
met. In fact, with respect to the factors influences the aerodynamic forces generated by the parachute, the gust
speed causes variations in the angle of attack and in the dynamic pressure. Consider that the system is flying
in steady-state conditions. If the gust invests the parachute perpendicularly to its rotational symmetry axis the
side force increase caused by the variation of the angle of attack is the dominant effect. If instead the parachute
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Figure 8.1: Effect of a sample wind gust (Table 8.2) on the attitude behaviour of the MPF reference vehicle (IC from Table 8.1).
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Figure 8.2: Effect of wind gusts (Table 8.2) of different size Lg on the trajectory of the MPF reference vehicle (IC from Table 8.1).

is partially oriented in the direction of the gust speed, then the increase of drag force in horizontal direction
due to a larger dynamic pressure will be the dominant effect. The drag increase in horizontal direction is much
larger than the side force that is generated by the variation of the angle of attack and can thus generate much
more dangerous attitude oscillations of the whole system.

The spacecraft horizontal and vertical velocities of the spacecraft in the moment when the gust is met also
have a significant influence on the oscillatory motion that this disturbance causes. As already suggested, the
intensity of the gust that the spacecraft senses depends on the difference between the horizontal velocity of
the vehicle and that of the gust. If instead the vertical velocity is larger, then the variation of the angle of attack
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Figure 8.3: Effect of gust on the attitude oscillations of the payload for different vertical velocities.

due to the same gust is lower because the horizontal airspeed component due to the gust is more negligible
with respect to the vertical one. As a result, the horizontal aerodynamic forces that the gust generates will
have a lower magnitude. In other words, the system is stiffer and will withstand better the impact of the gust.
Considering these, a gust at lower altitude, where the vertical velocity of the spacecraft is lower as well, is more
critical and, additionally, the system has less time for damping the resulting oscillatory motion before than the
terminal descent thruster ignition target altitude is reached.

This analysis is proved by Figure 8.3 that shows the effect of the spacecraft vertical velocity on the influence
that the same gust (hi = 5500 m, he = 5400 m, ∆ht = 10 m, Vg u = 20 m/s) has on its oscillatory behaviour. For
clarity reasons the image shows only the attitude oscillations of the payload, where this effect is better visible.
The IC for the descent flight simulation of the MPF reference vehicle are those listed in Table 8.1 for the red
plot, while for the black plot an initial velocity of 200 m/s has been assumed for all the three elements. The
simulation has assumed constant atmosphere density equal to 0.0138 kg/m3 that corresponds to an altitude of
1000 m.

The most important factors determining the dynamic response to a gust are those related to the aerody-
namic and inertia properties of the vehicle. One of these is the reference surface of the parachute that influ-
ences different aspects of the descent flight. In fact, if on one hand it is desirable that the equilibrium velocity,
proportional to the inverse of the parachute reference surface, is as low as possible, this meaning that the
aerodecelerator can dissipate more energy before to reach the target, on the other hand a larger parachute
weights more and causes the wind drift error contribution to increase due to the fact that the descent phase
is longer. Also, a larger deceleration implies that the vertical velocity is lower and, as earlier demonstrated,
this represents a disadvantage from the point of view of attitude dynamic stability when the gust is met. How-
ever, the driving requirement for deciding the parachute size remains the equilibrium velocity that has to be
achieved before terminal descent thrusters ignition and, in turn, the payload mass whose weight has to be
balanced.

Other parameters that have a significant influence on the attitude behaviour of the system include the type
of parachute (namely its aerodynamic properties), whose choice is heavily influenced by the mission heritage,
and, above all, the spacecraft configuration, i.e., the distances between its three elements. Indeed, once the
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Figure 8.4: Effect of a sample wind gust (Table 8.2) on the reference vehicle MPF backshell attitude behaviour for different
parachute-backshell riser lengths.

spacecraft baseline has been defined, its configuration can be adjusted by varying the lengths of the risers
connecting the parachute with the backshell and the backshell with the payload, so that to achieve the desired
dynamic response.

By running several gust response simulations with different lengths of both risers, it has been verified that
these parameters have a marginal effect on the oscillatory behaviour of the parachute body. This was expected
because its attitude is dominated by the aerodynamic forces that grow as soon as its angle of attack moves
with respect to the 0 equilibrium condition. In addition to this, while the length of the riser between the
parachute and the backshell Lr,pc-bs has a major influence on the backshell attitude behaviour, it influences
only marginally the characteristics of the payload oscillations. The opposite happens for the riser between the
backshell and the payload Lr,bs-pl. Considering these, we can analyse the attitude behaviour of the backshell
and payload as exclusive functions of, respectively, Lr,pc-bs and Lr,bs-pl.

Figure 8.4 shows the oscillatory response of the backshell when the spacecraft is hit by a sample 20 m/s
horizontal gust, for different values of Lr,pc-bs. The IC are those listed in Table 8.1 with the exception of the z0,2

and z0,3 initial position components. These depend indeed on the riser lengths that are varied in the figure,
but can easily be determined by considering that the simulation starts with the vehicle oriented vertically and
that the risers are not lengthened at t0. The same holds also for the IC of Figure 8.5. From this figure it is really
interesting to notice that, while the response for the cases of Lr,pc-bs = 0 m and Lr,pc-bs = 10 m is pretty much
similar, in case of the intermediate value Lr,pc-bs = 5 m the oscillations are damped much more efficiently and,
still, the maximum backshell attitude angle variation does not go beyond 30◦.

The influence of the backshell-payload riser length Lr,bs-pl on the oscillations of the payload body, that rep-
resents most of the mass of the MPF spacecraft, can easily be explained. Figure 8.5 confirms that, as expected,
a shorter riser, that results in a lower moment of inertia for the lower section of the spacecraft (lower riser at-
tached to the payload), causes the payload attitude angle oscillation amplitude to be larger at the impact of the
gust, up to 40◦, but also that these oscillations are damped faster in the remainder of the descent.

The stability of the backshell is fundamental if the thrusters to be used for horizontal position control pur-
poses during the descent are fixed with respect to it. In fact, these should always push as parallel to the ground
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Figure 8.5: Effect of a sample wind gust (Table 8.2) on the reference vehicle MPF payload attitude behaviour for different
backshell-payload riser lengths.

as possible. If the thrust direction oscillates, then the system loses efficiency. The condition Lr,pc-bs = 5 m, even
if it causes the impact of the gust to be a little bit more critical for the backshell, represents an optimum for
the purpose of our guided system and will be used for studying the performance of the closed-loop system in
Section 8.2. With respect to the backshell-payload riser length, instead, a shorter riser, as already suggested in
Chapter 2, results in a system that is more sensitive to external perturbations but damps the oscillations faster
and is more responsive. The latter are desirable characteristics for the purpose of controlling the trajectory and
thus this parameter will be kept equal to 5 m.

When choosing the riser lengths, however, also impingement of the thrusters plumes with the parachute
or payload has to be taken into account. For the original MPF spacecraft, equipped with backshell thrusters
pushing downwards, the payload was at least at a distance of 20 m. In our case the thrusters push horizontally
and we can accept a payload that is closer to the backshell, at more than 5 m. Also, since the spacecraft flies
vertically, the plumes of the engines will extend upwards from the backshell to the parachute and this could
represent a danger. However, the suspension lines, together with the parachute backshell riser, keep the canopy
at a distance of around 25 m that is assumed to be adequate to avoid impingement, even if more accurate
studies about this topic are suggested.

Finally, it is interesting to notice that the oscillatory motion of the payload body, shown in Figure 8.5 for the
original MPF reference case with and Lr,bs-pl = 5 m, has a period between 2 and 2.4 s. This is comparable to the
period for the attitude oscillatory motion of the parachute-payload rigid body system whose attitude behaviour
properties, derived analytically for the case of steady-state flight in Section 6.2, are reported in Table 6.1. In ad-
dition to this, the payload attitude oscillations are clearly under-damped, as also predicted for the rigid body by
the damping ratio value. This parallelism can be explained by considering that the payload represents the ma-
jor contribution to the moment of inertia of the spacecraft and that for small angles of attack, this representing
one of the assumption for the linearisation of the system in steady state conditions, the attitude motion of the
system is dominated by its inertia properties over the aerodynamic forces generated by the parachute.
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Table 8.3: Set of IC for the MPF new reference vehicle used for turbulence response and closed-loop system simulations.

Parameter Value Parameter Value Parameter Value
γ10 [deg] -90 γ20 [deg] -90 γ30 [deg] -90
θ10 [deg] -90 θ20 [deg] -90 θ30 [deg] -90
θ̇10 [deg/s] 0 θ̇20 [deg/s] 0 θ̇30 [deg/s] 0
V10 [m/s] 100 V20 [m/s] 100 V30 [m/s] 100

z10 [m] 6000 z20 [m] 5973.83 z30 [m] 5965.83
y10 [m] 0 y20 [m] 0 y30 [m] 0

Table 8.4: Mars planetary boundary layer sample turbulence characteristics.

Parameter Value
hi [m] 4000
he [m] 3000
σ [m/s] 2.4

ωt ,max [Hz] 40.82

8.1.2. RESPONSE TO TURBULENCE

The analysis of Section 8.1.1, based on the response to an isolated sample gust, has served for determining
some general characteristics of the attitude dynamics of a parachute-backshell-payload non-rigid spacecraft.
Some of the conclusions derived there, such as the fact that longer risers result in a system that can withstand
more effectively the impact of external perturbations, could have been derived also by analysing the attitude
response to a turbulence investing it. However, studying the response to a single gust was considered to be the
most straightforward approach. In this section the aim is to analyse the frequency response of the spacecraft.
This is in fact particularly important for a non-rigid system. For this purpose we will evaluate how the attitude
of the system reacts to the continuous excitement due to the atmospheric turbulence in the planetary boundary
layer of Mars that, as explained in Section 4.1.3, has been modelled as a sinusoidal signal.

Figure 8.6 shows the oscillatory behaviour of the attitude angles θ due to sinusoidal wind velocity profiles
with different frequencies. The blue dot in the plot for θbs indicates when the turbulence begins while the red
dot indicates when it ends. The first thing to notice here is that the minimum frequency for the atmospheric
turbulence on Mars ωt =40.82 Hz is not an issue for the dynamics of the system that, in this case, does not
significantly senses the disturbance. As the frequency decreases the effects of turbulence, especially on the
parachute and backshell elements, become significant. At 10 Hz these two bodies experience a resonance ef-
fect. The similarity of their attitude motion is due to the fact that they have comparable moment of inertia.
However, the oscillation amplitude for the parachute is much smaller because of the dominant contribution of
the horizontal aerodynamic forces when its angle of attack increases. At these frequencies the motion of the
payload is not yet significantly influenced because of the fact that it has a much larger moment of inertia. When
increasing the turbulence signal period even more, also the natural oscillation frequency of the payload body
is matched at around 1-5 Hz. At this point, however, the turbulence is already not an issue for the parachute
and backshell elements. After 1 Hz the influence of turbulence on the attitude behaviour of the system be-
comes progressively less important. At 0.1 Hz its effect on the spacecraft dynamics is comparable to that of a
long lasting shallow gust and causes mainly oscillations in its horizontal velocity and, in turn, in the descent
trajectory.

These results have been derived for the MPF configuration with Lr,bs-pl = Lr,pc-bs = 5 m. By changing the
riser lengths the frequencies at which the attitude angles oscillation amplitudes are maximum vary as well but
these maximum amplitudes will not change significantly. In fact, the latter are directly proportional to the
amplitude of the excitation signal and do not really depend on its configuration. Figure 8.6 shows that the
atmospheric turbulence on Mars represents a minor issue for the attitude motion if compared with the effect
of gusts. In particular, the 2.4 m/s horizontal velocity profile standard deviation due to atmospheric turbulence
causes at most oscillations with an amplitude of 15◦ for the backshell, while a gust of 20 m/s, that according to
the available wind data for Mars is an average value, can result in angular variations of up to 30◦. This suggests
that dimensioning the spacecraft configuration according to the gust attitude response, as done in the previous
section, is an appropriate choice.
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Figure 8.6: Effect of different turbulence (Table 8.4) frequencies on the attitude oscillations of the new MPF reference vehicle (IC from
Table 8.3).

8.2. CLOSED-LOOP SYSTEM PERFORMANCE

As already mentioned multiple times, the purpose of the present study is to evaluate the possibility to im-
plement a guidance system based on the backshell thrusters that can control the horizontal position of a space-
craft during the parachute descent on Mars. In this section we will characterize the performance that this sys-
tem, equippend on the MPF reference vehicle, can achieve in correcting a trajectory error and compensating a
horizontal wind. Also, we will evaluate how backshell thrust affects, amongst others, the attitude behaviour and
the mass of the spacecraft. In addition, the effect of atmospheric perturbations on the closed-loop system will
also be evaluated. A discussion about the influence of the navigation and control aspects on the performance
of the guidance system concludes the chapter.

8.2.1. PERFORMANCE IN NOMINAL CONDITIONS

In the previous chapters the characteristics of the spacecraft and of the guidance system for controlling its
trajectory during the parachute descent have been defined. The only parameter for which a reference value
has not been set yet is the maximum thrust Tmax of the hydrazine-based reference backshell thrusters.

A larger Tmax implies a larger maximum error that can be corrected and a better system responsiveness.
On the other hand, however, the mass and volume of a hydrazine thruster is somehow proportional to the
Tmax it can generate. In addition to this, a thrust push, similarly to a short wind gust, causes the attitude
of the system to oscillate with an amplitude proportional to the intensity of the push, that in the worst case
is Tmax. By running a number of tests with different sample errors between 100 and 500 m, that represent
the order of magnitude of the wind drift error, it has been verified that the system responsiveness does not
increase significantly with values of Tmax larger than 500 N. A sudden push at Tmax = 500 N, also, causes θ
angles oscillations, estimated for a vehicle vertical speed of 100 m/s, with a maximum amplitude of 35◦ (this
worst case is for the payload whose oscillations have a larger amplitude than for the other elements), that is
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comparable to that due to an average Mars gust, analysed in Section 8.1. Finally, a 500 N hydrazine thruster
weights about 2 kg and is 45 cm long1. These dimensions are considered to be acceptable for housing the
thrusters in the backshell of the MPF spacecraft.

Now the reference configuration for the spacecraft is complete and we can use the available information
to determine the performance that the parachute descent control system can achieve. Figure 8.7 shows how
the system responds to initial errors of different magnitude. In general, the system always gets close to the
y = 0, Vy = 0 equilibrium condition, but, already for an initial error of 900 m, the accuracy at target altitude is
low. At this point indeed the spacecraft is still 60 m far from its target and features a horizontal velocity slightly
larger than 5 m/s. In this situation the system is clearly at its limit, this being confirmed by the fact that for
half of the descent the thrusters are saturated. The situation improves if the error to correct is 700 or 500 m.
However, even for a small initial error of 100 m, whose correction never requires the system to push at Tmax,
a small residual error, in the order of 1 m and 0.1 m/s for respectively the horizontal position and velocity, is
present when the target altitude is reached. This is caused by the fact that when the position error is small,
i.e., when the system is close to the target, then the proportional and derivative contributions determining the
control signal have comparable magnitude and opposite sign, so that the commanded thrust is about null and
the spacecraft tends to fly almost vertically even if it has not reached the target. This behaviour can be changed
by increasing the controller gain Kp or reducing Kd . This would result in a higher responsiveness at the cost
of having a system that consumes more propellant and that oscillates around the equilibrium position, the
latter causing, in turn, also undesirable attitude oscillations of the non-rigid spacecraft. Finally, a larger initial
position error causes the trajectory to be more curved and longer and, as a result, the total descent time will be
larger as well.

From Figure 8.7 it was possible to estimate the delay times td for the various descent trajectories (indicated
by the coloured dots). It is interesting to notice that the delay times for ∆y,0 = 100,300,500 m are compara-
ble to the delay time td = 23.15 s estimated analytically for the parachute-payload rigid body model flying in
steady-state conditions. As ∆y,0 increases, however, the descent segment during which the thrusters are satu-
rated enlarges accordingly and, as a result, the delay time increases. In this case in fact the actual thrust that
the system generates, i.e., Tmax, is lower than the thrust proportional to the state error that the PD controller
computes. In general, all the differences with respect to the linear system response depicted in Figure 7.4 are
imputable to the non-linearities of the multibody model and to differences in the configuration of the space-
craft.

Each of the trajectories depicted in Figure 8.7 is characterized by a certain fuel consumption. Clearly, the
maximum consumption of 7.1 kg of fuel is for ∆y,0 = 900 m, while instead for correcting ∆y,0 = 100 m the
system needs 0.9 kg of hydrazine. Considering this, a tank containing 8 kg of fuel is assumed to be appropriate
and redundant for ensuring control authority enough to handle different mission scenarios. If we assume that
the backshell is equipped with 6 thrusters, then the whole guidance and control system for parachute descent,
assuming that the computing hardware is the same already installed for guiding the entry and terminal descent
phases, would have a mass of about 20 kg2. This mass has not been taken into account in the calculations.
However, this does not represent a problem because the MPF payload mass is much larger and 20 kg more
would not dramatically affect the total descent time or trajectory. Conversely, if the the thrusters and tank are
installed in the backshell, then it would cause a non negligible increase in its mass and moment of inertia,
thus making its attitude less sensitive to external perturbations or thrust pushes. In summary, not considering
the mass contribution of the the parachute descent guidance and control unit does not result in significant
inaccuracies and is a conservative approach with respect to attitude dynamics.

A final remark has to be made with respect to the guidance command update frequency. This parameter,
if too small, causes an increase of the overall consumption and a less smooth trajectory. However, for values
larger than 1 Hz, the system performance characteristics do not significantly improve while instead the com-
putational time for the simulation increases dramatically. Assuming a guidance command update frequency
of 1 Hz for the simulations in Figure 8.7 represents a good compromise between computational time and ac-
curacy.

1These data are derived from the data sheets available from http://www.rocket.com/propulsion-systems/
monopropellant-rockets. Last accessed: 05/02/2018.

2This value gives the order of magnitude of the mass of the whole parachute descent guidance and control unit for the parachute descent.
However, depending on the hardware and amount of control authority that the mission requires this estimation can significantly vary.

http://www.rocket.com/propulsion-systems/monopropellant-rockets
http://www.rocket.com/propulsion-systems/monopropellant-rockets
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Figure 8.7: Response of the closed-loop system to different initial horizontal position errors (IC from Table 8.3 except that for y position
components that vary with the initial error).
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8.2.2. PERFORMANCE IN PERTURBED CONDITIONS

In Section 8.2.1 the nominal performance of the system in absence of external disturbances has been eval-
uated and discussed. The purpose of this section is instead to understand how the MPF reference spacecraft,
for which the configuration and GNC system characteristics have been updated in the previous paragraphs
according to the results that were progressively derived, behaves in presence of constant wind and how the
performance of the parachute descent GNC system varies in case the spacecraft is subjected to turbulence
during the flight.

While descending through the atmosphere of Mars the spacecraft can encounter constant winds. A hor-
izontal constant wind speed causes the equilibrium condition of the parachute-backshell-payload system to
vary. In particular, after a transient phase in which the system behaves analogously to the case of the gust due to
the airspeed discontinuity, the horizontal velocity stabilizes and becomes equal to the horizontal wind speed.
The angles of attack and attitude angles of the elements of the spacecraft are 0 also in this case but the descent
is not vertical any more. Depending on the characteristics of the spacecraft, the duration of the transient phase
can vary but the final equilibrium condition depends exclusively on the wind situation.

The thrust force generated by the backshell thrusters can be exploited to compensate the effect of wind
up to a certain wind speed. Figure 8.8 shows how the guided trajectory of the system responds to constant
winds of variable intensity. The system is also given an initial horizontal position error of 500 m so that at an
altitude of 6000 m, where the wind is supposed to begin, it is already pushing at Tmax. It is easy to notice that
the thrust generated by the backshell engines can easily handle a horizontal wind with a speed up to 15 m/s. In
fact, in these cases the system would be able to reach the target by simply pushing at Tmax for a longer period.
To obtain this behaviour, however, a more sophisticated control law taking into account the effective airspeed
of the vehicle is needed. As the wind speed increases, the horizontal component of the aerodynamic force
generated by the parachute increases as well until at Vw = 26 m/s it almost balances with the thrust force. As
Figure 8.9 shows, in this situation the parachute bends in the direction of the wind, opposite to the direction of
the thrust, so that, assuming a wind with positive speed in the inertial frame I , its attitude angle increases. The
equilibrium is reached when the horizontal component of the parachute drag equals the backshell thrust. This
happens when θpc ≈ −110◦. For wind speeds larger than 26 m/s the horizontal component of the parachute
drag becomes dominant over the backshell thrust and the system cannot any more compensate for it even
pushing constantly at Tmax. By increasing Tmax, the maximum wind speed that can be compensated increases
accordingly but then, for reaching the equilibrium condition, the parachute has to bend even more with respect
to the backshell and this represents an issue for impingement reasons. The fact that the θbs does not stabilize
exactly on -90◦ is due to the fact that the attitude of this element is influenced by both the forces generated by
the parachute and payload that are transmitted through the risers. In the situation depicted in Figure 8.9 the
backshell is tilted in the same direction of the parachute because the drag it generates is dominant over the
payload weight.

The performance of the backshell thrust guidance system has been evaluated also in case the spacecraft
is subjected to turbulence for the whole descent flight. In particular, the response has been tested using a
turbulence frequency of 10 Hz, that, as demonstrated earlier, is the most critical frequency for the attitude
behaviour of the backshell and parachute, and 1 Hz, that is instead dangerous for the attitude oscillations of
the payload body. The results of this analysis, however, have shown that the spacecraft trajectory, as well as the
overall guidance system consumption, are not significantly influenced by the presence of this perturbation.

8.2.3. GNC-SYSTEM CONSTRAINTS

The state of the art for Mars EDL missions, as said, is represented by MSL. Indeed, Curiosity rover was
landed with an accuracy of about 10 km. This result, however, is still far from the 100 m accuracy that NASA has
set as long term objective for enabling manned missions to the Red Planet. The major contribution to these
residual 10 km is the navigation error that the spacecraft accumulates during the cruise, entry, and descent
phases. In other words, navigation error on Mars represents still the biggest step to climb for achieving pinpoint
landing accuracy.

When the parachute phase starts, at an altitude between 10000 m and 8000 m over the surface of Mars, the
deployment position inaccuracy is in the order of 3 km (3σ) and is almost totally due to navigation error. This
inaccuracy then increases due to additional navigation error, wind drift and other effects in the remainder of
the flight. The parachute descent horizontal control concept has the objective to ensure the system a certain
control authority budget to compensate for the disturbances that affect this flight phase and to correct some
of the inaccuracy already present at deployment. In the real case, however, its performance is affected by the
characteristics of the navigation and control subsystems. These two topics, despite can be treated indepen-
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Figure 8.8: Effect of horizontal wind on the guided parachute descent trajectory (IC: from Table 8.3 except y1,0 = y2,0 = y3,0 = 500 m).
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Figure 8.9: Effect of 26 m/s horizontal wind on the attitude behaviour of MPF reference guided vehicle (IC from Table 8.3 except
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dently with respect to the argument of the present study, are closely related to it and thus need to be discussed.
The navigation error is not an error contribution just like the others that can be compensated if the vehicle has
enough control authority. In fact, it causes the error signal that the guidance logic takes in input to be wrong, so
that the resulting command, that is tuned for correcting the error signal, will not be appropriate for correcting
the real error.

What normally happens during a generic EDL mission is that at lower altitudes and lower speeds, progres-
sively more accurate navigation units can be used. For example, during entry the main navigation unit is the
IMU. When the altitude decreases the radar can be activated and the altitude estimation improves. Finally,
during the descent phase, when the spacecraft is closer to the surface it is possible to use an optical navigation
system that ensures the highest level of accuracy for Mars navigation.

In recent years the performance of optical navigation systems based on Mars craters mapping and recogni-
tion has grown significantly so that they seem to represent a step forward in the direction of pinpoint landing
accuracy. The position estimation uncertainty of these systems, that have only been designed for being used
up to altitudes of 3000 m, depends on the accuracy they can achieve at locating a feature on the surface with
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respect to the inertial space. This accuracy varies from 500 m to 1 km for standard systems and can be improved
to 100 m if orbital imaging is integrated. Further information about optical navigation for Mars can be found
in Johnson et al. [2015]. Future improvements, triggered by the need to use optical navigation also during the
parachute flight, could yield optical navigation systems that can work also at higher altitudes over the surface
of Mars.

It is remarked that parachute descent control on Earth can already achieve pinpoint landing accuracy. This
is possible thanks to the longer descent time and, most of all, to the use of GPS navigation, that is clearly
unavailable on Mars, and wind probes placed in the landing site area to offer real-time wind speed estimations.
This second tool could eventually be adapted for a Mars landing.

Figure 8.10 shows how the performance and efficiency of the parachute descent guidance system vary for
different navigation errors with a magnitude that is realistic for an optical system according to the data reported
above. What is particularly evident is that a decrease in the accuracy of the navigation system causes significant
increases in the consumption and horizontal position error at target altitude. In fact, even a small sample 200 m
horizontal position error can require about 10 kg of fuel to be compensated. Also, these trajectories have been
obtained by assuming a GNC system update frequency of 10 Hz. It was verified that increasing this parameter
beyond 10 Hz has a marginal effect on the consumption but can contribute to make the trajectory smoother.

The navigation system has to determine not only the position and velocity of the spacecraft, but also its
attitude and in particular its orientation around the rotational symmetry axis that, in steady-state conditions,
is placed perpendicularly with respect to the surface of Mars. The accuracy of the navigation system in esti-
mating the attitude of the spacecraft is key for the control system that has to generate the commanded thrust
force according to the orientation of the vehicle. Other aspects of the control system that affect with variable
magnitude the performance of the parachute horizontal position control concept include the delay of the con-
troller in achieving the desired thrust level, its accuracy, the configuration of the thrusters on the backshell and
the possibility to tilt them so that to be able to push horizontally more precisely.
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9
CONCLUSIONS AND RECOMMENDATIONS

The previous chapters were dedicated to an extensive analysis of the stability properties of parachute-
backshell-payload systems and to the evaluation of the potentialities of a guidance system for controlling the
trajectory of the spacecraft during the parachute descent on Mars. The analysis has been guided by the research
question and subquestions introduced in Chapter 1. In Section 9.1 the results of the study will be summarized
to give concise replies to these questions. The analysis, however, has highlighted some interesting aspects of
the research that should be studied in more detail. These are briefly discussed in Section 9.2.

9.1. CONCLUSIONS

In this section we will respond to the question addressed in Chapter 1:

Q1. What are the most relevant external disturbances during the parachute descent on Mars?

R1. During the parachute descent on Mars the spacecraft can encounter gusts and turbulences. These phe-
nomena have a more significant effect on the attitude behaviour of the non-rigid vehicle and cause dangerous
oscillations of its body elements. In particular, a typical 20 m/s Mars gust causes attitude oscillations that have
a larger amplitude with respect to those due to a typical Mars turbulence, but the latter can result in a reso-
nance effect if the input frequency of the disturbance matches with the natural oscillation frequency of one of
the elements of the spacecraft. The descent trajectory is instead very sensitive to lateral wind that causes the
vehicle to drift up to a few km away from its reference path. In general, horizontal perturbations are more crit-
ical than vertical ones both from the points of view of the effect they have on the attitude and on the trajectory
of the vehicle.

Q2. What actuators are more appropriate for controlling the spacecraft descent trajectory on Mars and what
guidance strategy could be more performing?

R2. The use of backshell thrusters for guiding the spacecraft during the parachute descent seems to represent
the most performing choice compared to others as, for example, a guided parafoil or a gliding parachute (com-
manded by varying the length of its risers). In fact, a parafoil is in general a less robust solution with respect to a
parachute for space recovery applications and, also, the size of a Mars parafoil, for compensating the low den-
sity of the atmosphere, would be prohibitive. With respect to the gliding parachute, instead, backshell thrusters
ensure a much better responsiveness. Also, backshell thrusters have already been used for deceleration pur-
poses on the MPF spacecraft. An appropriate guidance strategy for the guided descent concept is to use the
backshell thrust to control the horizontal position and velocity of the spacecraft. These are indeed the state
variables that most influence the size of the final landing ellipse on Mars.

Q3. What are the key characteristics of modelling the spacecraft as a rigid body or a multibody system? When are
the differences between these two approaches significant?

R3. A rigid body model can only reproduce the pendulum motion mode of the parachute-payload vehicle. This
approach is appropriate for rough estimations of its position-velocity descent trajectory and is simple enough
if analytical data have to be derived. For simulating the relative motion of the elements of the spacecraft, a
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multibody model is needed. With this second approach one can simulate with a much higher fidelity the dy-
namics of the system. In particular, the time required for designing a multibody model using the method of
Neustadt is significantly lower than with other approaches. This is why this formulation is particularly indi-
cated for preliminary studies.

Q4. How do the the key system parameters determine the dynamic properties of the parachute-payload space-
craft in both the cases of passive and guided descent?

R4. The analysis of the previous chapters has highlighted that the stability characteristics of the rigid body
open-loop parachute-payload system depend on the balance between its aerodynamic and inertia properties.
In general, if the former dominates over the latter, in case of a perturbation the system will tend back faster
to the vertical flight steady-state condition. At the same time, however, a lower relative weight of the inertia
of the system makes it more sensitive to external disturbances. The most important parameters to adjust for
optimizing the dynamic response of the system as desired are the risers’ lengths. Other parameters, such as
the size of the parachute or the payload mass, are more bounded by other requirements of the specific EDL
mission. The response of the closed-loop system is analogous to that of the open-loop system except for the
horizontal motion. This, as a result of the control action, governed by the gains Kp and Kd , stabilizes around
the condition y=0, Vy =0.

Q5. How much control authority can the designed guided descent system yield and what target accuracy it can
achieve? How is the system performance influenced in case of external perturbations?

Q6. What are the disadvantages of controlling the parachute descent spacecraft trajectory with the designed
system?

Q7. How is the guided descent system influenced by the performance of the navigation and control subsystems
of the spacecraft?

R5-6-7. From the results in Chapter 8.2 it emerges that the guided descent system, in absence of wind, is able
to significantly reduce the horizontal position error. The position-velocity target accuracy, however, decreases
for large initial horizontal position errors and is around 60 m and 5 m/s if the initial error is 900 m. This can
be considered to be the limit of the system. The first disadvantage of using it is the fact that the use of thrust
significantly affect the attitude of the system. It has been verified that a sudden push at Tmax of 500 N, that has
been estimated to be an appropriate value with respect to the aim and constraints of the mission, causes dan-
gerous oscillations of the elements non-rigid spacecraft. However, a 20 m/s horizontal gust has been proved to
be more critical for its attitude behaviour, this meaning that the response to gusts should still be used as pri-
mary test bed for the stability properties of a Mars descent spacecraft, even in case this is going to be equipped
with a guidance system analogous to the one designed here. The system can compensate a horizontal constant
wind speed up to 26 m/s that represents an extreme condition (the average is around 5-10 m/s according to
the data from Prince et al. [2008]). Also, the backshell thrust control system performance is only marginally
affected by the presence of turbulences and gusts during the descent. The fuel needed for the descent depends
on the conditions the spacecraft has to face. With a total amount of 8 kg the system can correct an horizontal
position error of 900 m. This is assumed to be enough for most mission scenarios. If the system comprises also
6 thrusters then the total redundant mass of the guidance and control unit can be estimated around 20 kg. This
estimation, however, greatly varies in the real case due to navigation error that causes the fuel efficiency of the
system to reduce dramatically. The additional vehicle mass due to the guidance and control hardware and fuel
mass is a second disadvantage of using the descent guidance system.

With these information it is now possible to give a concise reply to the main research question:

Q. Can a guidance system for controlling the spacecraft parachute descent trajectory represent a per-
forming and efficient solution for increasing the landing accuracy on Mars?

R. Yes, a guidance system for controlling the spacecraft parachute descent could represent a per-
forming and efficient solution for increasing the landing accuracy on Mars, but more research
about its potentialities and its drawbacks is needed.
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9.2. RECOMMENDATIONS

The results obtained are encouraging. This suggest that continuing the research related to parachute de-
scent guidance is desirable, because it could lead to a system that can contribute to the achievement of pinpoint
landing accuracy on Mars. Some aspects of the problem analysed in this thesis, however, shall be analysed in
more detail:

1. Sensitivity analysis of the system parameters: in the present study the influence of the system parameters
on its dynamics has been evaluated qualitatively using two tools. First, the analytical expressions derived in
Chapters 6 and 7 for the rigid body model and then the response simulations obtained with the multibody
model. This type of approach, however, cannot give detailed information about the effect of variation of each
single parameter when it influences multiple aspects of the dynamics of the system. In this case a sensitivity
analysis with the analytical formulas and the multibody model could yield more in depth results.

2. Guidance during the parachute transient phase: in the present study we focused on evaluating the poten-
tialities of a guidance system that can control the trajectory of the spacecraft during the steady-state parachute
flight. It would be interesting to understand whether a similar system can also be implemented for the flight
segment just after the parachute deployment. In this case the system would have more time to correct the
position error and could contribute more significantly to the reduction of the size of the landing ellipse.

3. Analytical study with multibody model: the multibody model developed with the approach of Neustadt is
more extensive and complex than the rigid body model. Nevertheless, its EOM are simpler and offer a better
insight than those that can be derived with other multibody mechanics methodologies such as the one of Wit-
tenburg [2008]. It would be interesting to determine analytical expressions that describe the dynamics of the
descent spacecraft also using the EOM of the multibody model.

4. More extensive multibody model with Neustadt: the multibody model that has been developed is planar and
does not consider the aerodynamic contributions of the backshell and payload elements. The development of
a 3D multibody model using the Neustadt approach that also considers the aerodynamics of the bodies other
than the parachute, its inflation, a more accurate definition of the elasticity of the risers and the rotation about
the rotational symmetry axis would represent a valuable tool for accurate descent simulation. An additional
value added for this tool would also be the integration with the EMCD for simulating the atmosphere of Mars.

5. Analysis of vertical disturbances: in the present study we focused on the analysis of atmospheric perturba-
tions that impact perpendicularly the descending parachute-paylaod vehicle. These are indeed more critical
for its attitude stability and the mission landing accuracy. However, it would be interesting to also study in
detail the response of the system to perturbations that are parallel with respect to its rotational symmetry axis.

In addition to these recommendations, some research topics related to the present study include:

1. An optical navigation for Mars parachute descent: the performance of the descent horizontal position con-
trol system is particularly sensitive to navigation accuracy. Advancements in optical navigation for Mars are
key for enabling this technology. In particular, it would be interesting to increase the operative range of current
optical system so that to reach the altitude band where the parachute descent takes place.

2. A more performing guidance algorithm: the PD controller developed for the purpose of studying the feasi-
bility of the concept is not enough for a system that has to be equipped on a real spacecraft. In particular, a
guidance scheme that can take into account the presence of wind, capable of rescheduling the target depend-
ing on the flight situation and that is also more optimal and accurate, is highly desirable.

3. A backshell thrust control system: the guidance logic yields a commanded thrust according to a certain esti-
mated state error. The thrust command that it generates has to be reproduced by the control system according
to the current spacecraft attitude. The development of the control system could also take into account the
possibility to tilt the thrusters with respect to the backshell and determine an optimal configuration for the
thrusters, tank and so on.
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